Circulating MicroRNAs in Alzheimer's Disease: The Search for Novel Biomarkers

Véronique Dorval
Université Laval, Canada

Peter T. Nelson
University of Kentucky, pnels2@email.uky.edu

Sébastien S. Hébert
Université Laval, Canada

Follow this and additional works at: https://uknowledge.uky.edu/sbcoa_facpub

Part of the Family, Life Course, and Society Commons, and the Geriatrics Commons

Repository Citation
Dorval, Véronique; Nelson, Peter T.; and Hébert, Sébastien S., 'Circulating MicroRNAs in Alzheimer's Disease: The Search for Novel Biomarkers' (2013). Sanders-Brown Center on Aging Faculty Publications. 36.
https://uknowledge.uky.edu/sbcoa_facpub/36

This Review is brought to you for free and open access by the Aging at UKnowledge. It has been accepted for inclusion in Sanders-Brown Center on Aging Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Alzheimer’s disease (AD) is the most common neurodegenerative disease in the elderly. While advancements have been made in understanding the genetic and molecular basis of AD, the clinical diagnosis of AD remains difficult, and post-mortem confirmation is often required. Furthermore, the onset of neurodegeneration precedes clinical symptoms by approximately a decade. Consequently, there is a crucial need for an early and accurate diagnosis of AD, which can potentially lead to strategies that can slow down or stop the progression of neurodegeneration and dementia. Recent advances in the non-coding RNA field have shown that microRNAs (miRNAs) can function as powerful biomarkers in human diseases. Studies are emerging suggesting that circulating miRNAs in the cerebrospinal fluid and blood serum have characteristic changes in AD patients. Whether miRNAs can be used in AD diagnosis, alone or in combination with other AD biomarkers (e.g., amyloid and tau), warrants further investigation.

Keywords: microRNA, Alzheimer’s disease, biomarker, diagnosis, mild cognitive impairment

INTRODUCTION

Alzheimer’s disease (AD) is a prevalent, devastating, and progressive neurodegenerative disorder. Epidemiological studies predict that over 35 million people worldwide will be affected by 2050, thus significantly increasing social and economical burdens. There is no cure at hand, and only a few medications aimed at slowing down memory deficits and clinical symptoms are available, with limited benefits. Consequently, there is an urgent need for the identification of biomarkers that will allow the detection of AD at early (prodromal) stages, potentially leading to novel diagnostic or therapeutic strategies.

Pathologically, AD is characterized by the gradual, widespread loss of neurons, synapses, and neuropil, culminating in ∼40% loss of brain mass in end-stage disease (West et al., 1994; Gomez-Isla et al., 1996). There are two main AD pathological hallmarks: extracellular amyloid (senile) plaques and intracellular neurofibrillary tangles (NFTs) containing γ-secretase complex (Kang et al., 1987; Wolfe, 2006). The amyloid plaques comprise aggregated amyloid-beta (Aβ) peptides that are generated by sequential cleavage of amyloid precursor protein (APP) by β-secretase/BACE1 and the presenilin (PSEN) containing γ-secretase complex. The NFTs result from the abnormal aggregation of hyperphosphorylated microtubule-association protein tau. The reason for tau aggregation into tangles remains under investigation, but may result from an imbalance in the delicate regulation of tau kinases and phosphatases. Whereas approximately 1–3% of AD cases can be explained genetically by mutations in APP or PSEN genes, the exact cause(s) of sporadic AD remains obscure. Most experts agree, however, that sporadic AD is caused by a combination of genetic and environmental factors (multifactorial), perhaps exacerbated by oxidative stress and inflammation.

Biomarkers are used to measure or indicate the effects or progress of a disease or condition. A subtype of biomarkers relates to specific and traceable biochemical molecules or compounds found in body fluids. Detection of these substances may indicate disease states or allow correlations with the progression or the susceptibility to a disease or a given treatment. They can be measured in, for instance, saliva, sweat, breath, blood/serum, urine, and cerebrospinal fluid (CSF). The collection of these biological fluids is relatively non-invasive compared to biopsies. Body fluids provide a wealth of information that can be used for diagnostics or therapy. Moreover, their potential use in the clinic (Ingelson et al., 1999). Furthermore, their potential use as prodromal AD biomarkers remains uncertain. Therefore, most experts agree that additional biomarkers are required for an accurate and early diagnosis of AD vs. other potential causes of dementia.

Accumulating evidence suggests that circulating biomarkers may be used in AD diagnosis, the most common being Aβ peptides (Aβ40 and Aβ42, the latter being more prone to aggregation) and tau/phospho-tau (Thr181 being one of the common phospho-epitopes). While this area of research continues to progress (Tarawneh and Holtzman, 2010; Holtzman, 2011), large variability exists in the literature, hampering or delaying their routine use in the clinic (Ingelson et al., 1999). Moreover, their potential use as prodromal AD biomarkers remains uncertain. Therefore, most experts agree that additional biomarkers are required for an accurate and early diagnosis of AD vs. other potential causes of dementia. In this review, we discuss recent studies suggesting that miRNAs could function as novel, non-invasive biomarkers in AD.

miRNAs AS BIOMARKERS

The miRNAs are a class of small (∼22 nt) non-protein-coding RNAs crucially involved in the post-transcriptional regulation of gene expression. MicroRNAs are non-coding small RNAs (20–24 nucleotides) that function as regulators of gene expression by complementary base pairing to specific sites in the 3′-UTR of target mRNAs, leading to their degradation or translational repression (Bartel, 2004). The human genome encodes ∼2000 miRNAs, which represent 1–2% of the total protein-coding genes (Griffith et al., 2005). miRNAs are expressed in a tissue-specific manner, and their expression alters during disease development.

miRNAs are promising candidates as disease biomarkers, as they are easily accessible in peripheral blood, tissue, and cerebrospinal fluid. Several miRNAs have been found to change in AD and other neurodegenerative diseases, such as Huntington’s disease (HD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). miRNAs have a critical role in neural development, as well as in maintenance of neural homeostasis and synapse formation (Mitsunaga and Kato, 2009). Thus, changes in miRNA expression in AD could reflect alterations in the neural circuitry. In this review, we discuss recent studies suggesting that miRNAs could function as novel, non-invasive biomarkers in AD.
biochemical and/or physiological changes that occur inside the contact with the extracellular space of the brain, and can reflect CNS and, in turn, to act as a waste remover. The CSF is an primary function of CSF is to circulate nutrients within the system (CNS; Landgraf et al., 2007). Furthermore, bioinformatics are present in specific cells or tissues, including the central nervous system (CNS; Landgraf et al., 2007). Furthermore, bioinformatics studies suggest that miRNA abundance is directly correlated with mRNA template(s), causing an overall downregulation in protein output. The miRNAs can target several disease-related genes involved in neurodegeneration (Delay et al., 2012; Abe and Bontini, 2013).

The precise mechanism(s) involved in miRNA release from cells remain largely unknown, but may involve the ceramide-dependent secretory machinery (Kosaka et al., 2010). Alternatively, there may be a passive leakage from necrotic or apoptotic cells (Zernecke et al., 2009). In any case, these small RNAs are highly stable in body fluids such as plasma and CSF (Mraz et al., 2009), making them attractive biomarkers. There are several factors involved in modulating (distant) circulating miRNAs. These small RNAs are transported in free forms, exosomes, liposomes, or high-density lipoproteins, which protect them from degradation (Vickers et al., 2011; Hu et al., 2012); the stable packaging, processing, and functionality of miRNAs in biofluids is a fascinating and important area of research mostly beyond what is addressed in the current review. While some miRNAs are ubiquitously expressed, others are present in specific cells or tissues, including the central nervous system (CNS; Landgraf et al., 2007). Furthermore, bioinformatics studies suggest that miRNA abundance is directly correlated with miRNA target activity (Dorval et al., 2012).

Interestingly, miRNAs have been described as epigenetic contributors to age-related cognitive changes (Kosik et al., 2012). It has been suggested that dysregulation of these miRNA-dependent epigenetic functions in vulnerable brain regions may lead to cog- nitive impairments. Accordingly, the past few years have witnessed an explosion of papers linking miRNAs to disease states, and current research efforts establish that miRNA expression profiles are altered in a variety of pathogenic conditions. This is particularly recognized in the cancer field (Saleh and Abdelatif, 2011). Interestingly, the various changes in miRNA levels are observable not only in cells/tissues directly related to disease (e.g., tumors vs. adjacent tissues), but often in the periphery or distant biological systems (e.g., tumors vs. blood). It is noteworthy that most peripheral miRNAs are also found in the brain, albeit at various levels (Hobert et al., 2013).

CIRCULATING miRNA BIOMARKERS IN AD CEREBROSPINAL FLUID

Cerebrospinal fluid is a clear fluid that flows within the ventricles and around the surface of the brain and spinal cord. One primary function of CSF is to circulate nutrients within the CNS and, in turn, to act as a waste remover. The CSF is an attractive source of biomarkers as it is in direct and constant contact with the extracellular space of the brain, and can reflect biochemical and/or physiological changes that occur inside the brain.

In a pioneer study by Cogswell et al. (2008), the group performed a large-scale expression analysis of miRNAs in control and AD CSF. About 201 (out of 242 tested) miRNAs were detected above background levels, as measured by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) using Taq-Man probes (Applied Biosystems). They identified 60 miRNAs, including let-7i, that were significantly altered in AD CSF (Braak V stage) when compared to healthy elderly controls (Braak I stage; n = 10 per group, P < 0.05). Using biological pathway enrichment algorithms, the group observed an association between misregulated miRNAs and the immune system, including pathways such as innate immunity (e.g., miR-146b) and T cell activation and differentiation (e.g., miR-181a, miR-142-5p). Putative targets for these miRNAs include IRAK1, TRAF6 (Lindsay, 2008), and Bel-2 family members (Ouyang et al., 2012). The authors suggested that abnormally expressed miRNAs in the CSF were likely derived from immune cells. This was the first study demonstrating that miRNAs can be detected in the CSF (even when initially frozen) and are altered in neurodegenerative disease conditions.

van Harten et al. (2011) confirmed that it was technically feasible to perform genome-wide expression analyses of circulating miRNAs in control and AD CSF. The authors used two stem-loop qRT-PCR methods, including: (1) an individual miRNA TaqMan qRT-PCR and (2) a Megaplex modified microarray. Using this latter approach, the authors detected 667 miRNAs from one control and one AD subject (note that more than 2,000 human miRNAs are currently registered in the miRNA database – www.mirbase.org). The authors specifically quantified and validated changes in neuronal miR-402, a suppressor of cavelonin-1 (Lin et al., 2011), in the CSF of control (n = 8) and AD (n = 14) patients. Clinical tests, combined with Aβ42, t-tau, and p-tau-181 measurements in the CSF were globally consistent with the diagnosis of either group. Whether other miRNAs were misregulated in AD conditions was not evaluated.

Only recently have two critical questions been addressed in relation to CSF miRNAs in neurodegenerative diseases. The first natural question relates to why miRNAs are stably present in this biofluid. After all, RNAs are notoriously unstable in solution, and yet there presence has been reliably affirmed. Thus, there is a tanta-

lizing possibility that the miRNAs in solution – and in biochemical packaging as described above – may be playing a role in the CNS. In an elegant study, Lehmann et al. (2012) demonstrated that circulating miRNAs, and in particular let-7b, could exacerbate brain damage and neurodegeneration by binding directly to the Toll-like receptor 7 (TLR7). As measured by miRNA qRT-PCR, AD CSF (n = 13) contained significantly higher levels of let-7b when compared to controls (n = 11). Here, AD patients were selected, in part, on the basis of Aβ42 and t-tau levels. Unfortunately, no correlation between these AD markers and let-7b levels was provided. However, this study demonstrates that miRNAs in CNS are bioac-
vative, and may have paracrine/hormonal-like functions, which, if generally true, provides a novel and potentially incredibly important context for miRNA function (and pathological impact) in the brain.

A second key question is more practical, and was addressed by Alexandrov et al. (2012): is there a correlation between Aβ peptides and miRNA levels in the CSF? In this study, the patient
AD CSF, although this observation did not reach statistical significance (P < 0.06). Interestingly, the authors measured higher (greater than 100-fold) levels of total miRNAs (total mass) when compared to Aβ peptides, and this, both in control and AD CSF. Fluorescence-based miRNA microarrays indicated that the pro-inflammatory miRNAs miR-9, miR-125b, miR-146a, and miR-155 were significantly increased in AD CSF. These observations were further validated by a highly sensitive light-emitting diode (LED)-based Northern dot-blot analysis. This increase of specific miRNAs was extended to in vitro paradigms, where primary human neuronal/glial cells treated with AD-derived extracellular fluid lead to an increase of the same set of miRNAs. Significant negative correlations were observed between Aβ42 peptides and miR-137 (r = −0.75, P = 0.003), miR-181c (r = −0.57, P < 0.037), miR-9 (r = −0.57, P = 0.007), miR-29a (r = −0.64, P = 0.01), and miR-29b-1 (r = −0.569, P = 0.037), and this, in both control and AD patients. Based on these observations, it is tempting to speculate that miRs, alone or in combination with known AD biomarkers, could provide a better assessment of AD diagnosis.

BLOOD

Blood circulates in the principal vascular system, composed of arteries and veins, to carry oxygen to and carbon dioxide from tissues. The combination of lymphocytes, monocytes, and macrophages composes the peripheral blood mononuclear cells (PBMCs) population. These blood cells are critical components in the immune system.

Schipper (2007) assessed miRNA levels in blood mononuclear cells (BMCs) derived from sporadic AD and age-matched controls (n = 16 per group), using a microarray chip containing 482 human miRNAs. Several miRNAs were identified to be significantly altered in AD BMCs. A large number of miRNAs, including miR-34a, miR-181b, and let-7f, were validated by miRNA qRT-PCR. Interestingly, miR-34 targets include p53 (He et al., 2007), miR-34a, miR-181b, and let-7f, were validated by miRNA qRT-PCR. The let-7 regulates the expression of AD-related genes such as the oncogene Ras protein, thus promoting tumorigenesis (Johnson et al., 2005). Inversely, let-7 expression is regulated by the oncogenic Myc protein (Chang et al., 2008), suggesting a regulatory feedback loop. Together, these observations highlight the importance of these miRNAs in cell/tissue homeostasis.

Geekyanye and Chan (2011) showed by miRNA qRT-PCR a decrease in miR-137, miR-181c, miR-9, and miR-29a/b levels in the neocortical region of controls (n = 7) and AD subjects (n = 7), which negatively correlated with Aβ42 levels in post-mortem brain tissues. In a follow-up study, using the same technical approach, the group reported that the same miRNAs were also present in the blood, albeit at lower basal levels (Geekyanye et al., 2012). They were found to be downregulated in the blood serum of mild cognitive impairment (MCI, n = 7) and “probable” AD patients (n = 7) when compared controls (n = 7).

Villa et al. (2013) provided further evidence that dysregulation of peripheral miRNAs might contribute to AD development. In isolated PBMCs, they first showed that the transcription factor Sp1 was regulated at a post-transcriptional level by miR-29b. Interestingly, Sp1 regulates the expression of AD-related genes such as APP (La Fascia et al., 1999) and tau (Hsieh et al. and Ginzburg, 2000). In a cohort of 393 AD patients and 412 healthy controls, the group observed an inverse relationship between Sp1 mRNA and miR-29b levels in PBMCs (p = 0.002). To our knowledge, this is the first report suggesting that changes in miRNA levels (e.g., miR-29b) and its/their target(s) (e.g., Sp1) may serve as cooperative biomarkers for AD diagnosis. Whether a genuine interaction between both molecules occurs in the blood remains to be validated.

Very recently, Bekris et al. (2013) reported in an elegant 3-phase study including post-mortem brain arrays and qRT-PCR validation that plasma miR-15a correlated with neuritic plaque score and Braak stages in AD. This particular miRNA was predicted to modulate 9 AD-relevant genes, including APP (Liu et al., 2012) and tau (Hibert et al., 2010). The authors concluded that pathologically- and clinically- altered brain miRNAs might be detected in CSF or plasma during life, providing further proof of principle that miRNAs are relevant clinical biomarkers of AD pathology.

CIRCULATING miRNA BIOMARKERS IN MILD COGNITIVE IMPAIRMENT, AND CHALLENGES IN PATHOLOGICAL SPECIFICITY

Mild cognitive impairment is a term often conflated with indicating early clinical manifestation of AD, and many do indeed progress to full-blown AD clinically, although many other pathologies than AD underlie the clinical state of MCI (see below). Nevertheless, it is essential to develop tools that can accurately discriminate between normal aging, MCI, AD, and likely other cognitive disabilities. An attractive approach has recently been proposed, namely miRNA “pairs.” This concept uses, following single qRT-PCR TaqMan assays, bioinformatics to analyze the ratios of all measured miRNAs, and select the most promising pair(s) of biomarkers (Shutterman et al., 2012). In a pilot study, 13 miRNA pairs allowed to discriminate between AD and age-matched controls, as well as between MCI and age-matched controls (n = 10 per group), and this, with up to 90% accuracy. The proposed sets of miRNAs could detect pre-symptomatic MCI 1–5 years before the diagnosis in 70% of cases. Finally, the same pairs of miRNAs have been able to discriminate between aged and young healthy controls (n = 20 per group).

There are two practical issues that are important to the clinical relevance of any biomarker: sensitivity and specificity. The issue of sensitivity is basic and relates to the fact that by the time AD is manifest as MCI, it may be too late for (at least some) therapeutic interventions. The Ap/tau CSF studies have now shown that, as expected (Nelson et al., 2009), up to one-third of nondemented subjects harbor some AD-type pathology (Nelson et al., 2012). It is increasingly appreciated that these are the patients that should be targeted for biomarker studies as well as clinical trials.

Aspects of biomarker specificity are perhaps paramount, and often under-appreciated. Although MCI is often used to indicate an early stage of AD, MCI was originally defined according to neuropsychological features (Portert et al., 2006), which have been recognized to entail “multiple sources of heterogeneity.” As such, it...
is quite usual for MCI to be associated with brain pathologies other than AD, dementia with Lewy Bodies (DLB), vascular pathologies, hippocampal sclerosis (HS-Aging), frontotemporal lobar dementia (FTLD), and other conditions can cause or contribute to MCI, as to dementia (Jicha et al., 2006). This highlights an important aspect of AD-related biomarkers: they are not only used in predicting which subtype of dementia will be predominant; the importance of this specificity for clinical trials is obvious. Novel insights, relevant to this consideration, were obtained by deep sequencing miRNAs from brains of individuals with multiple different pathological diseases (AD, DLB, FTLD, and HS-Aging). Hebert et al., 2013. Although not a biomarker study per se, this showed that some miRNAs (particularly miR-132-5p) are downregulated in neurodegenerative diseases non-specifically. In the future, it is hoped that more specific miRNA “fingerprints” may help to distinguish the individual subtypes of neurodegenerative diseases before their earliest manifestations.

CONCLUSION AND PERSPECTIVES

To date, most researchers have relied on the combination of AD peptides, total-tau, and phospho-tau (Thr181) ratios to provide the best discriminative values for individuals with or without AD. However, in most cases, large variability and differences between studied groups did not reach statistical significance, leaving inconsistencies. Without excluding the amyloid and tau biomarkers, a combination of biomarkers may provide a better tool for AD diagnosis, therefore improving their clinical usefulness. Known examples include structural (e.g., hippocampal shrinkage), functional (e.g., glucose metabolism), and molecular imaging (e.g., fluorescent Pittsburgh compound B), Chistamannenroth and Bhaskar, 2012.

Small non-coding RNAs, and in particular miRNAs, have come to the fore in the past two decades. As discussed herein, circulating miRNAs provide an exciting and emerging research area in the biomarker field. As of now, long lists of miRNAs potentially misregulated in disease conditions, although finding overlaps is challenging (note that this is also the case for miRNA profiling studies in the brain). However, some AD-specific miRNAs were “consistently” identified, including some let-7 family members (let-7i, let-7b, and let-7d), miR-9, miR-181, and miR-29 (Maes et al., 2009). These miRNAs seem involved in processes previously associated with AD, that is to say inflammation and immunological response. Perhaps expectedly, several miRNAs and their functions as biomarkers have been patented or in the process thereof (see, e.g., www.freepatentonline.com or www.patentlawlinks.com). Although very attractive, the applicability of miRNAs as diagnostic tools into the clinic for AD (or MCI) will require extensive validation and follow-up studies in larger cohorts of patients. This is important as AD is a heterogeneous, multifactorial disease, with often display overlapping pathologies (e.g., AD deposits and Lewy bodies; Gomperts et al., 2008) and/or co-morbid diagnoses (e.g., diabetes, stroke). Obviously, the ultimate goal is to provide a sensitive, reproducible, and accurate detection of AD neuropathological changes prior to the onset of the disease and the appearance of the clinical symptoms. To this end, future studies will require better neuropathological validations as well as, ultimately, far greater sample sizes for robust statistical power.

In conclusion, circulating miRNAs are amongst the promising next generation of biomarkers for AD, and ultimately the discrimination between neurodegenerative diseases. They may be small molecules, but miRNAs certainly provide a big potential for the diagnosis of human diseases.

Note: While this work was in progress, a report has been published with regards to a circulating miRNA signature in AD patients (Leidinger et al., 2013).

ACKNOWLEDGMENTS

This work was supported by the Alzheimer’s Society of Canada and the Canadian Institutes of Health Research.

REFERENCES

“fnmol-06-00024” — 2013/8/30 — 11:32 — page 4 — #4

Frontiers in Molecular Neuroscience www.frontiersin.org August 2013 | Volume 6 | Article 24 | 4

Dorval et al. miRNA biomarkers in Alzheimer’s disease

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 04 June 2013; paper pending published: 26 June 2013; accepted: 31 August 2013; published online: 30 August 2013.

This article was submitted to the journal Frontiers in Molecular Neuroscience. Copyright © 2013 Dorval, Nelson and Hébert. This is an open-access article distributed under the terms of the Creative Commons Attribution License (C.C.B.Y.).