11-21-2017

Influence of Longitudinal Position on the Evolution of Steady-State Signal in Cardiac Cine Balanced Steady-State Free Precession Imaging

Tyler J. Spear
University of Kentucky, tyler.spear@uky.edu

Tori A. Stromp
University of Kentucky, tori.stromp@uky.edu

Steve W. Leung
University of Kentucky, steve.leung@uky.edu

Moriel H. Vandsburger
University of Kentucky, m.v@uky.edu

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/cvrc_facpub

Part of the [Cardiology Commons](https://uknowledge.uky.edu/cardiology), [Circulatory and Respiratory Physiology Commons](https://uknowledge.uky.edu/circulatory), and the [Radiology Commons](https://uknowledge.uky.edu/radioLOGY)

Repository Citation
https://uknowledge.uky.edu/cvrc_facpub/35

This Article is brought to you for free and open access by the Cardiovascular Research at UKnowledge. It has been accepted for inclusion in Saha Cardiovascular Research Center Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Influence of longitudinal position on the evolution of steady-state signal in cardiac cine balanced steady-state free precession imaging

Tyler J Spear¹, Tori A Stromp¹,², Steve W Leung¹,³ and Moriel H Vandsburger¹,²,⁴

Abstract

Background: Emerging quantitative cardiac magnetic resonance imaging (CMRI) techniques use cine balanced steady-state free precession (bSSFP) to measure myocardial signal intensity and probe underlying physiological parameters. This correlation assumes that steady-state is maintained uniformly throughout the heart in space and time.

Purpose: To determine the effects of longitudinal cardiac motion and initial slice position on signal deviation in cine bSSFP imaging by comparing two-dimensional (2D) and three-dimensional (3D) acquisitions.

Material and Methods: Nine healthy volunteers completed cardiac MRI on a 1.5-T scanner. Short axis images were taken at six slice locations using both 2D and 3D cine bSSFP. 3D acquisitions spanned two slices above and below selected slice locations. Changes in myocardial signal intensity were measured across the cardiac cycle and compared to longitudinal shortening.

Results: For 2D cine bSSFP, 46% ± 9% of all frames and 84% ± 13% of end-diastolic frames remained within 10% of initial signal intensity. For 3D cine bSSFP the proportions increased to 87% ± 8% and 97% ± 5%. There was no correlation between longitudinal shortening and peak changes in myocardial signal. The initial slice position significantly impacted peak changes in signal intensity for 2D sequences (P < 0.001).

Conclusion: The initial longitudinal slice location significantly impacts the magnitude of deviation from steady-state in 2D cine bSSFP that is only restored at the center of a 3D excitation volume. During diastole, a transient steady-state is established similar to that achieved with 3D cine bSSFP regardless of slice location.

Keywords

3D, magnetic resonance imaging (MRI), heart, steady-state imaging, cardiac motion

Date received: 28 July 2017; accepted: 8 August 2017

Introduction

Balanced steady-state free precession (bSSFP) imaging (1) has become the clinical standard technique for cardiac magnetic resonance imaging (CMRI) due to excellent contrast between myocardial tissue and the adjacent ventricular blood pool (2,3). Recently, several studies have noted that changes in tissue structure due to edema (4,5) and fibrosis (6) generate quantifiable changes in myocardial signal intensity. While these techniques often rely only on end-diastolic images, other techniques that require accurate and consistent bSSFP signal throughout an entire cardiac cycle, such as...
as mapping of native-T1 relaxation times (7) and blood oxygen level dependent (BOLD) imaging (8), are increasingly used for quantitative CMRI. Although the underlying mechanisms of cine bSSFP imaging are well modeled and understood (9,10), it has been shown that measured signal intensity values in the myocardium diverge substantially from the predicted signal intensities (11). While some of the discrepancies can be attributed to imperfections in magnetic field homogeneity, non-ideal pulse profiles, magnetization transfer (MT), and off-resonance effects due to proximity to other organs such as lungs (11), Goldfarb et al. previously demonstrated that changes in myocardial signal intensity throughout the cardiac cycle exhibit a cyclical pattern that results in a transient steady-state in the myocardium (12). Cardiac motion even in the presence of gating has long been shown to impact signal intensity and relaxation times (13). However, previous studies have only explored such factors in a single mid-ventricular imaging slice without taking into account the complex three-dimensional (3D) motion of the heart during the cardiac cycle. The contributions of the initial longitudinal slice position of axial imaging slices and of longitudinal shortening during the cardiac cycle to the evolution of steady-state myocardial signal in two-dimensional (2D) cine bSSFP remain unexplored. As quantitative CMRI methods are increasingly applied to whole heart imaging, it is important to fully understand the factors that contribute to changes in signal evolution that may confound measurements derived from such methods.

The purpose of this study was to examine the impact of the initial longitudinal slice position within the heart and peak longitudinal shortening during contraction on the evolution of steady-state magnetization in 2D cine bSSFP by comparison to 3D volume (slab) cine bSSFP. We hypothesized that cyclical deviation from steady-state signal in 2D cine bSSFP is a function of the initial longitudinal position of the axial imaging slice. We further hypothesized that using 3D cine bSSFP sequences can eliminate the impact of slice location on deviation from steady-state signal.

Material and Methods

Scan protocol

Nine healthy adult male volunteers with no history of tobacco use or cardiovascular disease (mean age = 25.7 years, age range = 23–29 years) completed CMRI on a 1.5 T Siemens Aera scanner (Erlangen, Germany) using an 18-channel body coil and 12-channel spine coil. Additional system specifications included gradient strength of 45 mT/m and slew rate of 200 T/m/s. The local Institutional Review Board approved the study. All participants were informed and consented prior to scanning. Localizing scans, including a four-chamber cine, were performed to acquire a single short axis stack spanning from left ventricular base to apex consisting of nine 8-mm thick slices. Starting at the most basal position of the left ventricle in which the ventricular myocardium was contiguous throughout the cardiac cycle, every other slice was used as the center of a 3D cine bSSFP acquisition (slab) consisting of six 8-mm thick slices across a total of three slabs (Fig. 1). Additional scan parameters include: TR/TE = 3.4/1.46 ms, field of view (FOV) = 260 x 260 mm², flip angle = 50°, matrix = 256 x 256, in-plane spatial resolution = 1 x 1 mm², number of averages = 1, acceleration factor = 2, phase sampling = 75%. Prospective electrocardiogram triggering was used. In parallel, a stack of corresponding 2D cine bSSFP acquisitions were performed at slice locations corresponding to the same location as the two center slices of each slab.
(Fig. 1). All acquisition parameters were maintained for 2D imaging except TR/TE (3.2/1.2 ms). All acquisitions were single breath-hold acquisitions across both protocols. The mean scan time for a single 3D slab was 21 s and for a single 2D slice was 9 s. Total scan time for each individual was roughly 30 min.

Image analysis

All data analysis was performed using custom written software in Matlab version 2013a (Mathworks, Natick, MA, USA). Epicardial and endocardial borders were defined for each cardiac phase using a custom feature tracking algorithm (14) and the average myocardial signal intensity was measured for both 2D and 3D acquisitions. All myocardial voxels within the two borders were used to calculate a mean signal intensity. The dynamic change from the initial myocardial signal (S₀) was defined as \(\Delta S_i := S_i / S_0 \), where \(S_i \) is the average myocardial signal intensity at each cardiac phase \(i \). A single cardiac phase was identified as maintaining steady-state if the signal intensity \(S_i \) was within 10% of \(S_0 \). For each slice and acquisition mode, the deviation from steady-state was quantified by measuring the ratio of cardiac phases with changes in signal intensity greater than 10% to the total number of phases in that acquisition. Identical analysis was performed over diastolic phases representing the last 30% of the cardiac cycle. Temporal information was gathered from trigger time and cardiac interval recorded at the time of scan.

Separately, a single observer used the same custom feature tracking algorithm (14) to define the apex and mitral valve insertion points on each phase of a four-chamber cine series for each participant. The mitral plane was defined by the line between these connection points. The distance from the midpoint of this mitral line to the apex was used to define the longitudinal length (L) of the heart as described in (15). Longitudinal shortening was defined as \(\Delta L_i := L_0 - L_i \) for each phase \(i \). In order to reduce variability in the definition of \(L_0 \) and \(L_i \), two observers defined the apex and mitral valve plane on the same four-chamber cine images in the first phase and at end systole. Average peak \(\Delta L_i \) between observers was used for analysis. End-systolic images were overlaid on the first frame and the distance between the points defining the apex were used to define displacement of the apex. This process was repeated using the midpoints defined from the mitral valve insertion points. Local signal maxima corresponding to systole and the end of diastolic filling were identified from each \(\Delta S_i \) waveform for both 2D and 3D imaging. Signal maxima were compared to the initial slice location, measured from the mitral plane, and to maximum \(\Delta L_i \) for each individual.

Statistical analysis

Statistical analysis was completed using IBM SPSS Statistics Version 22 (IBM Corp, Armonk, NY, USA). Student’s t-tests were used to compare ratios of total and diastolic phases within 10% of \(S_0 \) as well as maximum signal changes between 2D and 3D acquisitions. Linear regressions were used to compare maximum \(\Delta S_i \) at both end systole and late diastolic filling against slice location. Pearson correlations were used to compare maximum \(\Delta S_i \) at both end systole and late diastolic filling. Data are presented as mean ± standard deviation. For all comparisons, \(P < 0.05 \) was considered significant.

Results

Steady-state characteristics within a 3D slab

Examination of \(\Delta S_i \) across all slices within 3D slabs revealed preservation of steady-state magnetization predominantly within the two middle slices (slices 3 and 4). Representative \(\Delta S_i \) waveforms for all slices within a 3D slab centered at the mid-ventricle are shown in Fig. 1 and demonstrate substantial deviation from steady-state values in outer slices. In parallel, image quality was significantly reduced in slices at the borders of the 3D volume as shown in Fig. 2. Noticeable artifacts were observed in the anterior and lateral walls, and blurring was observed in the septum and inferior wall in images acquired at slice positions 1, 2, 5, and 6 within a 3D volume. Based on these findings, all comparisons of signal evolution were performed between 2D cine bSSFP and corresponding 3D data when the slice was acquired at the center of the 3D slab (slices 3 and 4).

Signal evolution

Sample images at end-diastole, peak systole, and late diastolic filling acquired with 2D and 3D cine bSSFP are shown in Fig. 3. Corresponding \(\Delta S_i \) waveforms demonstrate substantial changes in myocardial signal intensity in 2D cine bSSFP throughout the majority of the cardiac cycle that are not present in the 3D acquisition. Across all individuals and slices, nearly all cardiac phases demonstrated myocardial signal intensity within 10% of initial values for 3D cine bSSFP acquisitions (Fig. 4). In comparison, corresponding measurements for images acquired with 2D cine bSSFP were preserved in approximately half of cardiac phases (Fig. 4). During the last 30% of the cardiac cycle, both 2D and 3D bSSFP acquisitions result in a high percentage of phases with signal intensity within 10% of initial signal intensity (Fig. 4). However, this value was significantly higher in 3D.
Fig. 3. (a) Representative mid-ventricular images at end-diastolic (initial phase), end-systolic, and diastolic filling phases of the cardiac cycle acquired at the same slice position using 2D (top) and 3D acquisitions (bottom). All images are windowed and leveled identically in order to reveal changes in myocardial signal intensity. Images acquired using 2D cine bSSFP demonstrated substantially increased myocardial signal intensity at end-systole and during diastolic filling compared to end-diastole. In contrast, myocardial signal intensity is similar at end-diastole, peak systole, and during diastolic filling when images are acquired with 3D cine bSSFP. (b) Normalized signal intensity waveforms from 2D and 3D acquisitions for the slice shown in (a) and the adjacent slice at the center of the 3D slab demonstrate the degree of deviation from steady-state in 2D cine bSSFP as a function of cardiac phase. Despite significant deviation from initial values, myocardial signal intensity returns to steady-state values by the conclusion of the cardiac cycle in 2D cine bSSFP. The longitudinal length (L) during the cardiac cycle in this individual is plotted on the same time scale for purposes of comparison.

Fig. 2. Representative end-diastolic images acquired with 2D and 3D cine bSSFP for all slices in a 3D slab as shown on the long axis image in Fig. 1. 3D images come from a single slab acquisition and display artifacts and reduction of image quality in outer slices (1, 2, 5, and 6) when compared to corresponding 2D cine bSSFP images.
acquisitions compared to 2D cine bSSFP (Fig. 4). The maximum deviation from the initial signal intensity was uniformly significantly higher in 2D acquisitions compared to corresponding 3D acquisitions (Fig. 4).

Longitudinal shortening and slice location

Comparison of the maximum change in signal intensity at both peak systole and during diastolic filling to the maximum change in length of the left ventricle revealed no significant correlation when accounting for the initial longitudinal position of the imaging slice (Fig. 5), though 2D imaging at peak systole was trending towards significant ($P = 0.07$). Corresponding Pearson correlation statistics are found in Table 1. The average maximal longitudinal displacement of the mitral plane was 9.09 ± 1.51 mm, compared to 3.60 ± 1.29 mm at the apex, as measured on the four-chamber cine. The range of ΔL, across all patients was 1.79 mm. The initial longitudinal slice position within the heart, measured as the distance from the mitral valve, demonstrated a significant and negative correlation ($P < 0.001$) with peak systolic ΔS_i in 2D cine bSSFP (Fig. 6). The average difference in peak systolic ΔS_i between the most basal and apical slices was 0.221 ± 0.163 (AU). In contrast, no correlation was found when images were acquired using 3D cine bSSFP (Fig. 6). For both 2D and 3D cine bSSFP, the peak ΔS_i during the period of diastolic shortening does not influence deviation from steady-state signal intensity when accounting for initial slice position. Peak systolic (top) and diastolic (bottom) changes in normalized myocardial signal intensity are shown as a function of maximum longitudinal shortening (ΔL) for both 2D and 3D cine bSSFP. Analysis using Pearson correlations (Table 1) revealed no meaningful correlation between maximal longitudinal shortening and peak signal changes when the initial longitudinal position of the 2D imaging slice was taken into account.
filling did not demonstrate a significant correlation with slice position (Fig. 6, Table 2). Representative ΔSi waveforms for multiple 2D acquisitions at incremental slice positions demonstrate the gradient from base to apex in peak systolic ΔSi and consistent peak ΔSi during diastolic filling (Fig. 6).

Discussion

In this study, we examined the influence of initial longitudinal slice position and global longitudinal shortening in modulating steady-state signal evolution in 2D cine bSSFP. Our findings revealed that the initial

Table 1. Pearson correlation statistics for longitudinal shortening and maximum signal changes (maximum ΔL, vs. peak ΔSi)

<table>
<thead>
<tr>
<th>Acquisition</th>
<th>Slab 2</th>
<th>Slab 3</th>
<th>Slab 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D</td>
<td>0.669 (0.070)</td>
<td>0.652 (0.057)</td>
<td>0.445 (0.230)</td>
</tr>
<tr>
<td>3D</td>
<td>0.532 (0.175)</td>
<td>-0.116 (0.765)</td>
<td>-0.318 (0.404)</td>
</tr>
<tr>
<td>Diastolic filling</td>
<td>0.559 (0.150)</td>
<td>0.419 (0.261)</td>
<td>0.609 (0.082)</td>
</tr>
<tr>
<td>3D</td>
<td>0.639 (0.088)</td>
<td>0.555 (0.121)</td>
<td>0.230 (0.552)</td>
</tr>
</tbody>
</table>

The Pearson coefficient (rho) represents the strength of correlation, while the P value in parentheses represents the statistical significance of the observed correlation.
longitudinal slice position plays a determining role in
the peak deviation from steady-state during systole in
2D cine bSSFP. In contrast, the magnitude of global
longitudinal shortening does not appear to influence
the deviation from steady-state. Importantly, despite
significant deviations from steady-state early in the car-
diac cycle, the majority of 2D acquisitions had returned
to initial steady-state signal intensity by the end of
diastole.

While we found no correlation between ΔS, and
global longitudinal shortening, the significant impact
of the initial slice location in 2D cine bSSFP imaging
implies that slice-specific through-plane motion may
contribute to patterns of deviation from steady-
state. During the cardiac cycle, the base of the heart
undergoes greater translation compared to the apex,
which displays more torsional motion (16). In a given
slice, the proportion of non-steady-state spins through-
out the cardiac cycle will be most impacted by the mag-
nitude of through-plane motion. This pattern of
through-plane motion likely underlies the gradient in
maximum deviation from steady-state observed in this
study.

Increasingly, bSSFP approaches are being imple-
mented for quantitative CMRI techniques including
imaging of myocardial perfusion (17,18), diffusion-
weighted imaging (19), and for measurement of ven-
tricular T1 (20) and T2 (21) relaxation times. In add-
tion, several studies have examined the utility of atrial
signal intensities on cine bSSFP imaging for surgical
planning with catheter ablation (21–23). In such appli-
cations, the deviation from steady-state magnetization
as a function of slice position when using 2D cine
bSSFP can potentially influence the results derived
from such scans. For example, a recent study by
Goldfarb et al. concluded that for late gadolinium-
enhanced (LGE) imaging with 2D cine bSSFP, the
end-systolic image produced the greatest difference in
signal between edematous and healthy myocardial
tissue (12). Although this study examined the cyclic
patterns of signal deviation as a function of anatomical
position within a single short axis slice containing an
infarct, the degree of systolic enhancement observed
may depend largely on the longitudinal position of
the infarct. As another example, it has been shown
that T1 measurements can be consistently lower if
measured during end systole compared to end-diastole
(24,25). While these studies do not explore the under-
lying cause of these changes, it is thought to be a result
of cardiac motion and partial volume effects.

A potential method to reduce the influence of
through-plane motion of the heart is to use 3D cine
bSSFP, which has demonstrated similar diagnostic
capacity in assessing global left ventricular structure
and function to 2D cine bSSFP (26) alongside shorter
overall scan time (27). However, our results reveal that
while myocardial steady-state signal is well maintained
regardless of longitudinal slice position when using 3D
cine bSSFP, this is only valid at the center of the
excited volume. Using conventional, non-accelerated
3D imaging, it was necessary to overlap the 3D
slabs to such an extent that each slice was in effect
acquired three times, with only one acquisition provid-
ing maintained steady-state. The deviation from
steady-state as a function of position within a 3D
volume, alongside increased breath-hold durations
required for large 3D volumes, should be weighed
when quantitative approaches necessitate properly
maintained steady-state magnetization in the myocar-
dium. However, use of accelerated imaging techniques
and/or compressed sensing, or use of free-breathing
imaging, could enable the acquisition of larger 3D
volumes, thereby increasing the inner slab thickness
in which steady-state is maintained.

One limitation to the current study was that we
were unable to perform myocardial tagging or cine
DENSE imaging in order to obtain accurate measure-
ments of longitudinal displacement for each of the
imaging slices. In addition, our study population was
limited to only healthy individuals and did not include
those with prior myocardial infarction who would
demonstrate altered longitudinal shortening. Future
studies that include patients with acute myocardial
infarction could further probe both the role of longi-
dudinal shortening and 3D cine bSSFP imaging for
quantitative tissue characterization and perfusion ima-
ging. Finally, we chose to use prospective gating
and not retrospective triggering in order to remove
the impact of heart rate on reconstructed cine
frames that would be mitigated by retrospective
triggering.

In conclusion, the deviation from steady-state in
2D cine bSSFP imaging is most significantly affected
by the initial longitudinal position of the imaging
slice within the heart. Using 3D cine bSSFP acquisi-
tions can reduce signal fluctuations throughout the car-
diac cycle as long as a sufficiently large excitation
volume is used.
Declarations of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work is funded by NIH R01 HL128592-02.

References

