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          DISSERTATION 



ABSTRCAT OF DISSERTATION 
 

 

EXPERIMENTAL-COMPUTATIONAL ANALYSIS OF VIGILANCE DYNAMICS 

FOR APPLICATIONS IN SLEEP AND EPILEPSY 

Epilepsy is a neurological disorder characterized by recurrent seizures. Sleep problems 

can cooccur with epilepsy, and adversely affect seizure diagnosis and treatment. In fact, 

the relationship between sleep and seizures in individuals with epilepsy is a complex one. 

Seizures disturb sleep and sleep deprivation aggravates seizures. Antiepileptic drugs may 

also impair sleep quality at the cost of controlling seizures. In general, particular 

vigilance states may inhibit or facilitate seizure generation, and changes in vigilance state 

can affect the predictability of seizures. 

A clear understanding of sleep-seizure interactions will therefore benefit epilepsy care 

providers and improve quality of life in patients. Notable progress in neuroscience 

research—and particularly sleep and epilepsy—has been achieved through 

experimentation on animals. Experimental models of epilepsy provide us with the 

opportunity to explore or even manipulate the sleep-seizure relationship in order to 

decipher different aspects of their interactions. Important in this process is the 

development of techniques for modeling and tracking sleep dynamics using 

electrophysiological measurements.  

In this dissertation experimental and computational approaches are proposed for 

modeling vigilance dynamics and their utility demonstrated in nonepileptic control mice. 

The general framework of hidden Markov models is used to automatically model and 

track sleep state and dynamics from electrophysiological as well as novel motion 

measurements. In addition, a closed-loop sensory stimulation technique is proposed that, 

in conjunction with this model, provides the means to concurrently track and modulate 

vigilance dynamics in animals. 

 
 



The feasibility of the proposed techniques for modeling and altering sleep are 

demonstrated for experimental applications related to epilepsy. Finally, preliminary data 

from a mouse model of temporal lobe epilepsy are employed to suggest applications of 

these techniques and directions for future research. The methodologies developed here 

have clear implications the design of intelligent neuromodulation strategies for clinical 

epilepsy therapy. 
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1. CHAPTER I   INTRODUCTION 

 

1.1. Significance 

Epilepsy is a common neurological disorder that affects more than 65 million people 

worldwide. Each year, 200,000 people are diagnosed with epilepsy; the costs in the 

United States alone total $15.5 billion (Holland 2014). The indirect costs associated with 

uncontrolled seizures are seven times higher than that of the average for all other chronic 

diseases (Holland 2014). Even with today’s medication, epilepsy cannot be cured 

completely and treatment does not work for everyone. Although in 70% of cases seizures 

can be controlled with the help of available treatments (specialized diet, medication, 

surgery, etc.), a large number of patients (almost one million Americans) have to live 

with seizures that resist such treatments. There is an urgent need for more research to 

discover better treatments with fewer side effects for the first group, as well as novel 

techniques to predict or control seizures in the second group of patients.  

The National Institute of Neural Disorders and Stroke (NINDS), the major sponsor of 

epilepsy research in the U.S., identified as one of the important goals in epilepsy 

research, the need to: "Prevent, limit, and reverse the co-morbidities associated with 

epilepsy and its treatment" (Dingledine et al. 2007). Along with many other neurological 

conditions accompanying epilepsy such as depression, anxiety, cognitive impairment etc., 

“sleep disturbances” was specifically identified by NINDS as an area requiring closer 

attention. A deep investigation of interactions between sleep disorders and epilepsy could 

shed light on “underlying mechanisms” and “optimal treatments”, and lead to discoveries 

of new ways to “prevent the adverse consequences”. Hence, it seems essential to conduct 

research on realistic animal models of epilepsy and determine novel diagnostic and 

treatment options. For example, electrical stimulation is known to control seizures in 

many patients but it is not clear what the underlying mechanism is and how to design an 

optimal stimulation protocol. In addition to electrical stimulation, determination of 

effective or optimal dosage and timing of antiepileptic drugs (AEDs) requires a thorough 

understanding of how sleep and seizures interact, which can be obtained through 

investigations on animals. 
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The sleep-seizure interplay constitutes a vicious cycle that accentuates the burden on 

individuals with epilepsy (Figure. 1.1). Seizures disrupt normal sleep and sleep quality in 

turn influences seizure generation and likelihood. The effects of epilepsy on sleep 

structure have been shown in clinical trials and animal models (Matos et al. 2010b). In 

general, epilepsy can impair sleep at two levels: the acute effect of seizures that disturbs 

sleep continuity and the chronic effect of seizures that alters gross sleep architecture 

(Crespel et al. 2000). For instance, complex partial seizures (particularly in temporal lobe 

epilepsy) that happen during sleep significantly reduce the amount of rapid eye 

movement (REM) sleep (Bazil et al. 2000). In contrast, the effect of sleep on seizures can 

be protective or precipitating (Baldy and Moulinier, 1984). The precipitating role of sleep 

on seizures has been linked to the generation of interictal epileptiform discharges (IEDs) 

(Niedermeyer, 1982). IEDs are the electrophysiological markers most commonly 

associated with epilepsy and their generation and spread can be affected by stages of 

sleep in different types of epilepsy.  In most cases of epilepsy, and particularly in 

temporal lobe epilepsy, IEDs present during wakefulness, spread in synchronized non-

REM sleep and diminish sharply during REM sleep (Badawy et al. 2012). Distribution of 

partial seizures during the sleep-wake cycle was summarized in a comprehensive clinical 

study (Herman et al. 2001). It was concluded that in patients with temporal lobe epilepsy, 

after correcting for the fraction of time spent in each stage of sleep, sleep-onset seizures 

are much more likely to occur during lighter stages of NREM sleep (N2). It was shown 

that synchronization in neural activity during NREM facilitates initiation and propagation 

of partial seizures which is consistent with observations of IED generation and spread. 

On the other hand, desynchronized REM sleep prevents generalized discharges and 

prevents seizure incidence (Crespel et al. 2000 and Badawy et al. 2012).      

2 
 



 

Figure  1.1 A simple model for sleep-seizure interactions in epilepsy. Seizures impair 

sleep quality and sleep states bias seizure generation and likelihood. This interplay can 

aggravate epilepsy in patients (Image courtesy of S. Sunderam, 2011) 

Thus, experimental investigations on established animal models of epilepsy would help 

scientists develop ways to control seizures while sustaining sleep quality. The same 

general framework can be utilized for many different methods of neuromodulation being 

considered for automated seizure control like electrical stimulation, brain cooling, and 

drug infusion. Understanding the sleep-seizure relationship could also help doctors adjust 

the timing and dose of antiseizure and sleep medication so that seizure freedom and 

normal sleep are both achieved. The first step to decipher this reciprocal interaction is to 

design and develop appropriate experiments and computational techniques for analyzing 

sleep in animal models. 

Sleep quality is a critical determinant of public health. Sleep disorders are not only 

problematic diseases by themselves but also aggravate the management of a wide range 

of neurological syndromes such as epilepsy, Parkinson’s and Alzheimer’s disease. 

Clinical evaluation of sleep involves overnight polysomnography (PSG) and explicit 

guidelines for scoring. A PSG recording essentially includes electroencephalogram 

(EEG), electrooculogram (EOG), electromyogram (EMG) and electrocardiogram (EKG). 
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The polysomnogram is inspected by a human expert typically in 30s epochs to score 

sleep into five distinct states of vigilance: Wakefulness (W), rapid eye movement or REM 

sleep (R), and non-REM sleep (N) with stages N1, N2, and N3 that reflect increasing 

sleep depth. Scoring sleep in PSG recordings, in spite of detailed guidelines, remains a 

tedious and subjective task for sleep physicians. Automated algorithms for clinical or 

experimental analysis of sleep are in great demand. 

Despite increasing knowledge about sleep and its regulation, its basic functions are still 

unclear. Since homeostatic modulation of sleep and circadian rhythms is similar across 

different mammalian species, available knowledge about sleep mechanisms in humans 

has been widely improved through appropriate animal models.  The application of animal 

models, particularly rodents such as mice and rats, provides scientists with the 

opportunity to discover the neurobiological alterations underlying sleep abnormalities. 

Mice are of great value in sleep and behavior research since they are readily available and 

electrophysiological determination of sleep state is quite similar to humans. Mice are also 

widely used to study the contribution of genes in sleep and behavior. Hence, progress in 

experimental investigation of sleep is always welcome. 

This dissertation aims to cover different experimental and computational aspects related 

to sleep investigation in animal models. We first propose novel techniques ranging from 

electrophysiological recording and modeling to manipulation of sleep and apply them to 

wild type control mice; then we discuss their application in an epilepsy model. The 

specific goals of this dissertation are as follows. 

1.2. Specific aims 
Aim I: Unsupervised analysis of mouse sleep using EEG/EMG measurements 

Sleep scoring is the prerequisite step for analysis of vigilance dynamics and studying the 

correlation with seizures. However, sleep scoring usually requires tedious visual review 

of prolonged EEG/EMG recordings by a human expert. Since data-driven segmentation 

of sleep could give reproducible output while reducing the need for human scoring, 

computerized analysis of sleep is highly desirable. To this end, much effort has gone into 

using computer algorithms to imitate human scoring. The majority of proposed 

classification algorithms are supervised, meaning that they require scored data sets for 
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both training and validation. In contrast, unsupervised models seek out inherent partitions 

or patterns in the data to score vigilance states without prior training, which a supervised 

classifier cannot do. 

As this specific aim, a completely unsupervised classifier based on hidden Markov 

models (HMMs) was developed to accurately track instantaneous sleep-wake states in 

mice from continuous EEG/EMG measurements. The proposed model was tested on 

several animals and performance compared with true manual scores. The outcome of this 

study demonstrated the HMM's efficacy in prediction of vigilance state and can be very 

useful in chronic epilepsy models. 

Aim II: Automated noninvasive determination of vigilance state in mice using a 

piezoelectric motion sensor 

Although EEG/EMG measurements are the gold standard for scoring sleep in mice, the 

need for surgical implantation of electrodes limits the scope and rate of experimentation. 

In this aim, we applied the computational modeling procedure proposed in Aim I to a 

motion measurement based on a piezoelectric pressure sensor to assess the potential for 

noninvasive scoring of sleep in mice. Successful implementation of such a system not 

only benefits high-throughput sleep screening, but also provides several advantages for 

screening animal models of epilepsy.  

Aim III: Computational tracking of sleep dynamics following brain injury 

The ability to track sleep quality and microstructure following brain injury could 

potentially provide clues for diagnosis and treatment of neural disorders such as epilepsy. 

Also, continuous tracking of vigilance dynamics during intervention (e.g. electrical 

stimulation or drug injection) would help to dynamically optimize treatment dose and 

timing. Here, we proposed metrics of sleep quality and dynamics derived from HMM 

parameters estimated from different physiological measurements and showed how 

sequential reestimation of these metrics enables us to track progressive changes in sleep 

quality in long-term recordings. This technique will be useful for extracting dynamic 

information associated with epileptogenesis and epilepsy without the need for visual 

scoring.  

Aim IV: Selective restriction of sleep states using sensory stimulation 

Experimental manipulation of sleep is necessary to understand the underlying 
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mechanisms of it. It is also a useful tool to study the relationship between seizures and 

vigilance state in experimental investigations. One approach is to deprive sleep partially 

or totally in pre-clinical animal models of epilepsy to investigate the consequences on 

seizures and fill the gaps in our knowledge of sleep-epilepsy interactions. In this specific 

aim, a closed-loop sensory stimulation technique was proposed and the functionality for 

selective REM sleep restriction validated in mice. This system can be used to modulate 

sleep quality in epilepsy models and study the effects on seizures (Figure. 1.1). 

In specific aims 1-4, we tried to develop experimental and computational tools to 

facilitate sleep research in animal models. These tools, each presented in a separate 

chapter, are expected to be useful for addressing problems related to the analysis of sleep-

seizure interactions in epilepsy. In a separate chapter, we discuss the implementation of a 

chronic model of epilepsy in mice and the application of tools proposed in the four 

specific aims for the analysis of sleep and sleep-seizure interactions. This discussion is 

intended to point the way forward for further investigation in this area. The final chapter 

wraps up the main findings of this dissertation. Three manuscripts published after peer 

review are presented in the Appendix as evidence of dissemination of the findings, 

mainly for clinically relevant applications. 
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2. CHAPTER II   UNSUPERVISED ANALYSIS OF MOUSE SLEEP 

USING EEG/EMG MEASURMENTS 

 

2.1. Rationale 

To overcome the difficulties associated with manual scoring of sleep and behavior, several 

statistical classifiers have been developed. The main objective of such models is to 

automate this process and replicate human performance. These computational tools either 

look for inherent patterns to define dominant vigilance states, referred to as unsupervised 

classification, or require supervision in the form of expert heuristics or expert-scored 

training data to stage sleep, referred to as supervised classification. Both techniques are 

mutually exclusive and implemented in essentially the same manner: a model is fitted to 

data from a set of subjects and validated on out-of-sample data from another set. This 

guarantees that the model will work reliably on new subjects. 

The need for scored training data and subjectivity and variability in human scoring are 

the main constraints for supervised classifiers. Thus, a method to generate a reasonable 

first-pass hypnogram (i.e., a time sequence of vigilance state scores) from a sleep 

recording without supervision or previous training is highly desirable. Unsupervised 

scoring of sleep has been attempted almost since the time digital EEG was first available. 

The earliest algorithms translated heuristics used by sleep experts to analyze different 

features of EEG/EMG signals and divide them into vigilance states (Frost 1970). With 

advances in machine learning algorithms, various unsupervised classifiers were 

developed to extract natural partitions in features possibly corresponding to sleep states. 

Unsupervised sleep classifiers can be further divided into static and dynamic models. In 

general, static models do not consider time or context when classifying state and label 

each observation only based on its location with respect to boundaries that separate 

clusters of data in the feature space (Figure. 2.1). Nevertheless, subsequent steps such as 

minimum duration criterion or median filtering are often applied to refine the static 

classifier output.  On the other hand, investigations of sleep dynamics suggest that human 

sleep can be fairly well represented by a Markov chain model (Zung et al. 1965), which 
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incorporates dynamics. The hidden Markov model (HMM) maps continuous-valued 

observations onto discrete hidden states (Rabiner 1989). The notion of dynamics can be 

implicitly captured by HMMs as follows: each sleep state follows a trajectory whose 

likelihood depends (only) on the previous state at any instant (Figure. 2.1). Markov chain 

models were first used to extract sleep dynamics from human-scored hypnograms by 

representing probabilistic transitions between different sleep stages (Zung et al. 1965). 

Optimized versions of Markov chain models were later applied to characterize sleep 

disorders and medication effects on sleep (Kim et al. 2009 and Bizzotto et al. 2010). 

Based on Markov chain theory, the HMM assumes that sleep data contain observations 

generated in various discrete sleep states that are hidden from view. HMM training and 

parameter estimation are often done in an unsupervised manner, so that the model's 

prediction of state is not biased by human opinion and will depend on the features 

selected to represent the data and how much they vary between states. This assumption 

has made the HMM a popular model in automatic sleep scoring (Flexer et al. 2005; 

Doroshenkov et al. 2006; Pan et al. 2012 and Langrock et al. 2013). 

 

 

Figure  2.1 A comparison between static and dynamic classifiers in the context of sleep. A 

static (left) classifier labels features estimated from continuous PSG time series solely 

based on distributions on feature space. A dynamic classifier (right) includes context (e.g. 
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time dependencies between states) in scoring. 

 

The advantages of dynamic classifiers (e.g. HMMs) over other unsupervised but static 

classifiers have been demonstrated on a clinical sleep dataset (Yaghouby et al. 2014a). To 

justify the computational burden imposed by Markov dynamics on sleep scoring 

performance, HMMs were shown to outperform other static classifiers (e.g. Gaussian 

mixture models, k-means clustering and linkage trees) in a naïve scenario i.e. there was 

no prior knowledge of number of vigilance states and labels.  

Automated detection of sleep in rodents has widely benefited from progresses in machine 

learning. Although the majority of reported techniques in this field are rule-based 

algorithms (Louis et al. 2004) which are indeed supervised, there are a few attempts to 

develop completely unsupervised classifiers of rodent’s sleep. These unsupervised 

classifiers are mainly static and model the distribution of features using parametric 

(Libourel et al. 2015) and nonparametric (Bastianini et al. 2014 and Sunagawa et al. 

2013) techniques to label sleep states. Dynamic classifiers have been used, e.g. HMM 

(McShane et al. 2013) and naïve Bayes classifier (Rytkönen et al. 2011), but have been 

used in a supervised manner: i.e., the model was estimated using a labeled dataset (scored 

manually by human rater) and validated on an out-of-sample set.  

In this chapter, an HMM-based sleep classifier using EEG/EMG signals is proposed and 

validated for automated scoring of vigilance state in mice without the assistance of expert 

opinion. To our knowledge, this is the first attempt to implement a dynamic- 

unsuppressed sleep classifier using EEG/EMG measurements which are required in 

epilepsy research as well. However, similar applications of the proposed method in 

human sleep scoring are presented in Appendix section at the end of this dissertation.  

2.2. Animal species, care and protocols  

All experimental procedures in this dissertation were conducted with the approval of the 

Institutional Animal Care and Use Committee (IACUC) at the University of Kentucky. 

All experiments were performed on adult male wild type mouse (C57BL/6J, henceforth 
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"BL6"; 6-12 weeks old; 24-29 g). BL6 mice are the most widely used inbred strain which 

are identical in genotype and provided by the Jackson Laboratory (Bar Harbor, ME). 

UK’s Division of Laboratory Animal Resources (DLAR) is a fully equipped animal 

facility that provides stable environmental conditions to minimize variability in research 

results and interruptions in animal’s normal behavior. Mice were housed independently 

upon arrival in animal holding rooms with ambient temperature  23℃±2℃ , 50%±10% 

humidity, 14h light/10h dark cycle (lights on at 7 am) and free access to food and water 

as well as daily animal care.   

2.3. Electrode implantation and data acquisition 

The gold standard for sleep staging in mice is invasive EEG/EMG recordings. After a 2-3 

day acclimatization period following arrival, EEG/EMG electrodes for brain and muscle 

activity recordings were implanted in the mice under 2.5% isoflurane anesthesia. The 

surgery procedure is as follows: the mouse's head is positioned in the surgical apparatus 

using ear bars and under isoflurane anesthesia (Figure. 2.2a). Using a surgical blade and 

scissors a longitudinal cut is made in the scalp and the skull surface is gently cleaned by 

sterile gauze. A small headmount chip (Part# 8201, Pinnacle Technology, Inc, Lawrence, 

KS) is attached with super glue to the skull so that the upper edge is located directly over 

bregma (Figure. 2.2b). A 23 gauge needle is used to bore four fine holes through the skull 

in the frontal and parietal regions corresponding to holes in the headmount. Then, four 

silver screws are passed through the holes to serve as EEG electrodes (0.1” anterior and 

0.12” posterior) and to keep the headmount fixed to the skull (Parts# 8209 and 8212). 

Silver epoxy (Part# 8226) is also applied to the screws to enhance the conductivity of the 

EEG electrodes (Figure. 2.2c). The EMG electrodes, a pair of Teflon-coated leads, are 

tunneled bilaterally into the dorsal neck muscle posterior to the skull. Two or three 

sutures on the posterior side of the incision help to fix the loose skin and heal the wound. 

Finally, dental acrylic is used to coat the headmount and EMG electrodes (Figure. 2.2d). 

The animal is then allowed to recover and adapt to the headmount for at least one week 

before starting any experiment. 
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Figure  2.2 Surgical implantation of EEG/EMG electrodes in a wild type mouse. a) 

Animal’s head is fixed using ear bars under anesthesia. b) A headmount chip is attached 

to the skull using super glue. c) Four screws with silver epoxy act as EEG electrodes. d) 

Dental acrylic covers the headmount and electrodes 

 

Once the animal has recovered from surgery, continuous recording of EEG/EMG is 

initiated. A pre-amplifier (Part# 8202) is plugged into the mouse headmount that provides 

initial amplification of 100X for EEG and EMG signals. A low-torque commutator (Part# 

8204) connects the preamplifier to the acquisition/conditioning system (Part# 8206). The 

8206 system provides an additional 50x amplification as well as highpass and antialiasing 

filtering (0.5 Hz for EEG and 10Hz for EMG). The acquisition part digitizes input signals 

using a 14-bit A/D converter with a 400Hz sampling rate and directs them to computer-

based acquisition software (Sirenia, Pinnacle Technology) via a USB connection (Figure. 

2.3). Along with EEG/EMG recording, a video monitoring system was implemented to 

capture the animal’s behavior. A small USB camera (Microsoft LifeCam VX-6000) is 

attached to the animal’s cage so that it is always in the field of view. The digital video is 

recorded by a custom-written LabVIEWTM program (National Instruments, Austin, TX) 

and timestamped to be comparable to the EEG/EMG recording. An infrared (IR) LED 
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illuminator source is placed in close proximity to the animal’s cage and enables 

uninterrupted video recording through the light and dark period. 

 

 

Figure  2.3 Data acquisition system. The preamplifier (#8202) is attached to the animal’s 

headmount and provide initial 50x amplification. A commutator (#8204) connects the 

preamp to the data acquisition system (#8206). After a final amplification and 

conditioning by 8206, digital data are recorded using SireniaTM. 

 

2.4. Manual determination of vigilance state 
Unsupervised automated sleep scoring can produce very reasonable outcomes without 

prior training, but must ultimately satisfy the gold standard of human expert assessment. 

EEG and EMG recordings are the gold standard for sleep analysis in all mammals. Three 

vigilance states are typically defined in mice based on EEG/EMG: 1) Wakefulness or 

Wake, characterized by low amplitude desynchronized EEG and high amplitude variable 

EMG; 2) Paradoxical or rapid eye movement (REM) sleep, characterized by a prominent 

theta rhythm in EEG (𝜽𝜽: 6-9 Hz) similar to activity during Wake and suppression of tonic 

EMG, but with phasic muscle twitches ;3) Non-REM (“NREM”) or slow wave sleep 

stage has increasingly prominent delta (𝛿𝛿: 0.5-4 Hz) in EEG and low tonic EMG (Figure. 

2.4). The vigilance state was manually scored based on well-established criteria using an 

EEG viewer (SireniaTM, Pinnacle Tech.) and video in consecutive 4s epochs as Wake, 

REM and NREM. Then states of sleep are verified as: NREM, with suppressed EMG and 

slow oscillation (delta wave: 0.5-4Hz) in EEG signals and REM, with further decrement 
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in EMG amplitude and faster frequencies (theta waves: 6-9Hz) in EEG signals. Sleep is 

further confirmed from video when the mouse is motionless with eyes closed. Wake state 

could also be verified as high EMG activity and various range of frequencies in EEG.   

 

 

Figure  2.4 Samples of EEG/EMG signals and EEG power spectral density in different 

vigilance states. Wake state is distinct from high muscle activity and distribution of EEG 

power separates REM from NREM in sleep. 

 

2.5. Signal processing and feature extraction 

Automated signal analysis and classification was performed based on continuous 

recordings from six mice. A 24-hour EEG/EMG segment from each animal (starting at 7 

AM) was first exported to European Data Format (EDF) file and then divided into 4s 

epochs for processing in MATLABTM. All epochs were scored manually by a human 

expert according to the aforementioned guidelines. Based on these scoring criteria and 

EEG/EMG in different vigilance states, spectral band power features were chosen to 

construct an automated sleep staging algorithm. Each 4s epoch was bandpass-filtered into 

seven different frequency bands: 𝛿𝛿L (0.5-2 Hz), 𝛿𝛿H (2-4Hz), 𝜽𝜽 (6-9Hz), 𝜶𝜶 (9-13Hz), 𝜷𝜷 

(13-30Hz) and 𝜸𝜸 (30-45Hz) using 3rd order Butterworth IIR filters. The mean signal 

power in each band was estimated as an initial signal feature in each epoch. To reduce 
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dimensionality of the feature space, the (𝛿𝛿L+𝛿𝛿H)/𝜽𝜽 band power ratio was selected as a 

discriminative feature to separate NREM and REM in sleep. This ratio is high when 

animal is in NREM sleep and delta is prominent, but declines during REM as theta 

becomes prominent (Figure. 2.5). The mean power of the bandpass-filtered EMG (80-100 

Hz) was also used to discriminate sleep from wake based on muscle tone. 

 

Figure  2.5 A sample EEG/EMG recording and EEG spectrogram during different 

vigilance states. EEG power has shifted from delta to theta region following NREM to 

REM transition in sleep. 

2.6. Unsupervised modeling and classification 

Here we utilized HMMs for automated scoring of sleep and wake states. This section 

starts with a general introduction to the statistical classification following by a derivation 

of Bayesian models, particularly HMMs. 

In general, a statistical classifier assigns sample observations 𝑿 to one of 𝑁 distinct 

classes 𝑆 ∈ {1,⋯ ,𝑁} by assuming a statistical model that maps 𝑿 → 𝑆. A supervised 

model needs class-labeled training samples to estimate the parameters; while 

unsupervised models can be fitted to unlabeled training data and predict the class of 

upcoming observations. Unsupervised classifiers typically look for intrinsic clusters in 

the data that coincide with the classes of interest. The prediction of an unsupervised 

classifier may or may not correspond absolutely with an expert rater’s opinion of the 
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class. But these classifiers can still be beneficial particularly when no prior class 

definitions are available. Bayesian models, specifically Gaussian mixture models 

(GMMs) and hidden Markov models (HMMs), are introduced here to demonstrate the 

feasibility of unsupervised classification of sleep. 

In the context of mouse sleep, we can assume that the vector of  𝑀 features 𝑿 =

[𝑥𝑥1,⋯ , 𝑥𝑥𝑀]𝑇 ,𝑿 ∈ ℝ𝑀 (T = transpose) is extracted from EEG/EMG samples (e.g., 4 s 

epochs) of an animal that is always in one of 𝑁 vigilance states 𝑆 ∈ {1,⋯ ,𝑁}. So, a set of 

observations 𝑿1:𝑇 = {𝑿1,⋯ ,𝑿𝑇} can be made in states 𝑆1:𝑇 = {𝑆1,⋯ , 𝑆𝑇}. In fact 𝑆 

includes model states that may correspond directly to true vigilance state i.e. NREM, 

REM and Wake. The state of the subject at any given time 𝑆𝑡 is quantified by the 

observation 𝑿𝑡. The basic role of a classifier is to infer 𝑆𝑡 from 𝑿𝑡 with adequate 

accuracy. However, estimation of 𝑿 can be affected by variability and noise and this is 

modeled using a probability density function 𝑓(𝑿). The probability measure 𝑃(𝑿) is 

obtained by integrating 𝑓(𝑿) over a region of 𝑿. Since the 𝑁 states are mutually 

exclusive, the probability of observation 𝑿 integrates the probability that 𝑿 is observed in 

any state: i.e., 

𝑃(𝑿) = � 𝑃(𝑿 ∩ 𝑆)
𝑆

          (1) 

Similarly, the conditional probability is the probability that 𝑿 is observed and the state is 

known to be 𝑆: 

𝑃(𝑿|𝑆) = 𝑃(𝑿 ∩ 𝑆)/𝑃(𝑆)          (2) 

 𝑃(𝑆) Indicates the prior probability of state 𝑆 when there is no information about 𝑿. Eq. 

2 is known as Bayes rule. By combining equations 1 and 2, an expression for the 

probability distribution of 𝑿 in terms of the conditional and prior probabilities is 

obtained: 

𝑃(𝑿) = � 𝑃(𝑿|𝑆)𝑃(𝑆)
𝑆

          (3) 

Posterior probability of state 𝑆 can be computed knowing probability of observation 𝑿: 

𝑃(𝑆|𝑿) = 𝑃(𝑆 ∩ 𝑿)/𝑃(𝑿) = 𝑃(𝑿|𝑆)𝑃(𝑆)/𝑃(𝑿)     (4) 

And a reasonable prediction of state is the one that maximizes the posterior probability: 

�̂� = argmax
𝑆

𝑃(𝑆|𝑿)          (5) 

15 
 



To make any prediction using a Bayesian model, a prior knowledge of the conditional 

probability 𝑃(𝑿|𝑆), usually in a form of standard parameters is required. For example in 

a GMM, 𝑃(𝑿|𝑆) is modeled as a Gaussian distribution parameterized by a state-

dependent mean vector 𝝁𝑆 ∈ ℝ𝑁×𝑀 and covariance matrix Σ𝑆 ∈ ℝ𝑀×𝑀. A linear 

coefficient  𝛼𝑆 replaces the state prior 𝑃(𝑆) in Eq. 3 to represent 𝑃(𝑿) as a mixture of 

Gaussian components. In the other words, a GMM fitted to sleep data assumes that 

observation 𝑿 can be modeled as a mixture of Gaussian components and each component 

corresponds to one of the vigilance states. 

HMMs have been used to model sleep dynamics and track the evolution of a process over 

time. “Dynamics” in HMMs can be added as a layer of complexity to Eq. 3 by linking the 

model states to each other. In fact, rather than independent observations, an HMM 

models the distribution 𝑃(𝑿1:𝑇) of the time series of observations generated by a hidden 

state sequence 𝑆1:𝑇 (Figure. 2.6A-B). The Markov property is the first assumption for 

HMM in which the current state exclusively determines the distribution of future states: 

𝑃(𝑆𝑡|𝑆1:𝑡−1,𝑿1:𝑡) = 𝑃(𝑆𝑡|𝑆𝑡−1)          (6) 

Eq. 6 represents state transition probabilities that form an 𝑁 × 𝑁 state transition matrix 𝛾 

when all possible combination of 𝑆𝑡−1 and 𝑆𝑡 get assembled. In addition to Markov 

transitions, the second assumption is that given the current state, observation is 

conditionally independent of previous observations and states (Figure. 2.6C): 

𝑃(𝑿𝑡|𝑆1:𝑡,𝑿1:𝑡−1) = 𝑃(𝑿𝑡|𝑆𝑡)          (7) 

This conditional probability 𝑃(𝑿|𝑆) along with a matrix of transition probability 𝛾 and a 

set of state prior probabilities 𝜋 = 𝑃(𝑆) characterize an HMM parameters. To simplify 

the calculations, we assume these properties are independent of time 𝑡𝑡  (stationary). In 

such manner, the dynamics of the process underlying observations 𝑿1:𝑇 can be 

interpreted by applying recursive Bayes’s rules. 

Once HMM parameters are fixed, we can decode a sequence of states 𝑆1:𝑇 most likely to 

have generated a sequence of observations 𝑿1:𝑇 using the Viterbi algorithm (Rabiner 

1989). The probability of first observation 𝑿1 is first defined by Viterbi algorithm as 

𝛿𝛿1(𝑆) = 𝑃(𝑿1|𝑆), for 𝑆 ∈ {1,⋯ ,𝑁}. Then, the preceding state is sequentially computed 

as the one that maximizes the probability of successive observations 𝛿𝛿𝑡(𝑆′) =

max𝑆[𝛿𝛿𝑡−1(𝑆)𝛾(𝑆, 𝑆′)]𝑃(𝑿𝑡|𝑆′). At the end, the optimal probability of state sequence is 
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𝑃∗(𝑆) = max𝑆 𝛿𝛿𝑇(𝑆); i.e. terminal state is the one that maximizes 𝑃∗(𝑆). Once sequence 

𝛿𝛿𝑡 is determined, the most likely sequence of states 𝑆1:𝑇  is optimized by backtracking  𝛿𝛿𝑡 

(Figure. 2.6D). 

Estimation of GMM and HMM parameters is based on maximum likelihood (ML) 

algorithm on training data (Rabiner 1989). For a GMM with parameter set Θ =

{𝛼𝑆,𝝁𝑆, Σ𝑆},  likelihood function 𝐿 is defined as the joint probability density of a set 𝑿1:𝑇 

of independent and identically distributed observations: 

𝐿(Θ|𝑿1:𝑇) = 𝑃(𝑿1:𝑇|Θ) = � 𝑃(𝑿𝑡|Θ)
T

t=1
          (8) 

The product is converted to a sum over data using log operator: 

log 𝐿 = � 𝑃(𝑿𝑡|Θ)
T

t=1
          (9) 

The likelihood function 𝐿 defines the model parameters as a function of observations. 

Hence, by taking the partial derivative of log 𝐿  with respect to each parameter and 

equating it to zero, we can obtain parameters Θ that maximize log 𝐿. 

In supervised case, where labeled training data is available, the estimation of model 

parameters is relatively easy and straightforward. For example, mean of state 𝑆 is 

estimated as the arithmetic average of all training samples labeled as 𝑆 by a human 

scorer. However, the main application of GMMs and HMMs is in unsupervised 

classification where no labeled training data are available. In this case, observations 

become dependent on the parameters through hidden states 𝑆1:𝑇 apart from the unknown 

Θ: 

log 𝐿 = � 𝑃(𝑿𝑡, 𝑆𝑡|Θ)
T

t=1
          (10) 

Hence, in Eq. 10 we have unknowns on both side of the conditional: Θ and 𝑆𝑡. The 

Expectation-Maximization (E-M) algorithm becomes a solution to this problem (Rabiner 

1989). E-M starts with an initial guess for the model parameters and converges to a local 

minimum through an iterative process. Several initial guesses are tested and the 

parameters set with greatest likelihood is selected. In this manner, we avoid to get trapped 

in local optima. A widely known E-M algorithm for HMMs is the Baum-Welch 

algorithm (Rabiner 1989).  
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Figure  2.6 Sequential steps for HMM modeling of sleep-wake in mice. A) EEG/EMG 

features are extracted from continuous signals in 4s epochs. B) These observations are 

noisy but the distributions in feature space depend on state. C) A hidden state can be 

inferred by applying sequential Bayes’ rule. D) HMM gives a graphical representation of 

sleep dynamics along with a matrix of transition probabilities. 

 

 

2.7. Results and discussion 

The feasibility of HMMs for automated sleep scoring in mice (n=6) was investigated. 

One complete 24-hour day of EEG/EMG recording from each mouse was manually 

scored in 4-s epochs and two features were calculated: EEG 𝛿𝛿/𝜽𝜽 power ratio which is 

low in REM sleep and EMG power which is high during wake. Figure. 2.7 demonstrates 

a 6-hour recording sample of EEG/EMG features (starting at 7 AM). Model 

performance can be assessed by comparing HMM-predicted labels against true 

hypnogram labels from visual scoring. Contingency tables in Figure. 2.7 show strong 

agreement between the classifier and independent scorers in every state of vigilance.  
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The overall performance of the proposed classifier on six mice is shown in Figure. 2.8a. 

Two conventional metrics from the contingency table are used to assess detection 

accuracy: 1. The sensitivity (expected true positive rate) of a specific vigilance state 

reflects the proportion of actual sample epochs of that state correctly identified by the 

classifier; and 2. The specificity (expected true negative rate) for a particular state is the 

proportion of other states not wrongly classified as the state of interest. HMMs predict 

manual sleep scores with >90% sensitivity and specificity and within the bounds of inter-

rater variability. 

 

 

Figure  2.7 Comparison of HMM output with two human scorers in a 6-hour sample 

recording. EMG power (blue) reflects muscle tone and separates sleep from wake. EEG 

delta/theta (green) is used to distinguish REM from NREM. An HMM fitted to these 

features predicts instantaneous vigilance state with high accuracy. Comparison between 

HMM output and human raters shows over 90% agreement. 

The % time spent in NREM, REM and Wake is a popular metric that can be derived from 

manual or automated scores. The prior probability of each HMM state is analogous to 

this metric. A comparison with manual estimates in 24 h scored samples shows strong 

agreement (Figure. 2.8b). Hence, HMMs can extract sleep metrics without tedious visual 

scoring. 
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Figure  2.8 HMM performance for sleep classification in 6 mice. a) Sensitivity and 

specificity are high (>90%)  for all states. b) Comparison of time spent in each state 

between model and manual estimations shows strong correlation (Yaghouby et al. 2013). 

Unsupervised HMMs were found to track instantaneous sleep-wake state with high 

accuracy from continuous EEG/EMG measurements.  Unsupervised HMM scoring of 

sleep-wake state can be used to estimate conventional metrics of sleep quality such as the 

% time spent in each state and mean bout duration. This modeling approach could be a 

useful tool for studying vigilance dynamics in mouse models of epilepsy as well. In 

Chapter 7, we will show how to take advantage of such a model and score vigilance 

states in epilepsy models.  

The same computational modeling framework can be employed to resolve clinical sleep 

scoring problems. Clinical sleep scoring requires tedious visual analysis of overnight 

Polysomnograms (PSG) by a human expert. To automate this process, many efforts have 

been made using computer algorithms to imitate human scoring patterns. The majority of 

proposed classification algorithms are supervised, and are typically trained on scored data 

and then validated using out-of-sample data. The need for human scoring of training data 

and subjectivity and variability are the main constraints for supervised classifiers. Thus, a 

method to generate a reasonable first-pass hypnogram from a sleep recording without 
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supervision or previous training is in great demand. Strictly speaking, there is no initial 

model available in the "naïve" scenario. Also, all vigilance states may not occur during a 

recording that needs to be scored. On the other hand, evolution from clinical sleep 

monitoring systems to portable/wearable devices depends on simplifying and improving 

conventional systems. Detection of sleep stages using a single EEG signal, instead of 

whole PSG data, not only brings more comfort for patients (less sensor contact and 

cabling) but also reduces the computational load of signal analysis. Hence, an exclusively 

EEG-based sleep classification algorithm will make the design and implement of a 

portable sleep monitoring device more efficient. In Appendix A, we described a 

methodology based on HMMs for scoring overnight sleep recordings with two key 

benefits: 1) only EEG data were used not whole PSG  set; and 2) there was no need for 

expert labels to train the classifier. The proposed model was tested on a 22-subject sleep 

database and performance compared with other unsupervised classifiers (Yaghouby et al. 

2014a). 

Another clinical application of the proposed technique is presented in Appendix B.  As 

we discussed in this chapter, manual scoring of sleep is a tedious and subjective task and 

uncertainty and variability in assessments by expert raters are the major obstacles. Even 

expert raters can be unsure about the presentation of particular states and may disagree 

widely in their assessment of specific recordings. None of the available automated sleep 

scoring algorithms explicitly address rater uncertainty and disagreement issues. We 

proposed a quasi-supervised classifier that models observations in an unsupervised 

manner but mimics an expert’s scoring patterns wherever training scores are available. 

The novel technique proposed addresses three problems related to human sleep scoring: 

1. The rater is confident of scoring only some of the states; 2. The rater scores all states 

but is uncertain of some observations; and 3. Two raters score all states and observations 

but with some disagreement. To address these problems, PSG features were first 

extracted from overnight recordings. Then, unsupervised statistical models (Gaussian 

mixture and hidden Markov models) were estimated from training features incorporating 

partial scores. Finally, the fitted models were used to predict scores for complete 

recordings and performance is assessed statistically (Yaghouby et al. 2015a).  
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3. CHAPTER III   NONINVASIVE ANALYSIS OF MOUSE SLEEP 

USING A PIEZOELECTRIC MOTION SENSOR 

 

3.1. Rationale 

Automated analysis of mouse sleep using EEG/EMG measurements was explored in the 

previous chapter. However, invasive implantation of electrodes and recovery from 

surgery remain as the main obstacles particularly in large-scale experiments (e.g. genetic 

screening) and affect the scope of such investigations drastically. Furthermore, 

EEG/EMG acquisition often requires that the animal be tethered, thus restricting 

behavior. This severely limits the ability to simultaneously screen a large number of 

animals. Non-tethered telemetric systems exist but require invasive implantation of 

electrodes, preamplifier, battery pack, and transmitter that again alter behavior and 

restrict movement, especially in the smaller mouse. In this chapter the feasibility of a 

motion sensor sensitive to movement (during wakefulness) and respiration patterns 

(during sleep) for automated sleep scoring in mice is investigated. 

3.2. Experimental setup and data acquisition 
A completely noninvasive monitoring system discriminating stages of sleep and behavior 

in mice, at a level comparable to that of EEG/EMG, would greatly facilitate high 

throughput screening of sleep in neuroscience research and  gene discovery. It has 

previously demonstrated that a continuous signal derived from a pressure-sensitive 

piezoelectric sensor can be used to distinguish sleep from wake in mice with accuracy 

comparable to a human expert (Donohue et al. 2008). The piezoelectric sensor (piezo) is 

a thin polyvinilidine diflouride (PVDF) film that produces a voltage signal in response to 

changes in surface pressure. Hence, motion associated with mouse behavior produces 

characteristic signals that typify behavior. The PVDF sensor is a 110um thick dielectric 

sheet (Signal Solutions LLC, Lexington, KY). Silver ink sputtered on each side creates a 

conductive link from any position where pressure is applied. The capacitance of the 

PVDF is ~30nF, and when coupled to the input  instrumentation differential amplifiers 

followed by a lowpass filter, effectively bandpasses the pressure signals from 1.35-20Hz 

(-3dB). The pass band of the instrumentation amplifier filter was designed to cover the 
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frequency range associated with sleep and breathing in mice (Friedman et al. 2004). The 

amplified signal is acquired using a multichannel data acquisition board (NI-DAQ 6211, 

National Instruments) and controlled with SireniaTM software (Pinnacle technology, 

INC).  

The “piezo” signal can discriminate sleep from wake states with over 90% accuracy 

(Donohue et al. 2008). Simultaneous measurement of respiratory effort using an 

impedance pneumogram (Flores et al. 2007) showed that changes in breathing can be 

detected when the mouse is relatively inactive.  

It is widely accepted that breath rate fluctuates largely in REM sleep while is highly 

regular during NREM sleep (Freidman et al. 2004).Two major characteristics of REM 

sleep, muscle atonia and phasic events, play a key role in ventilation control. Atonia in 

voluntary muscles affects respiratory motor output in diaphragm and consequently causes 

breathing variability during REM sleep. Phasic events, originated in brainstem, could 

spread their effects peripherally and alter heart rate or blood pressure. Therefore, they 

could profoundly alter respiration by impressing neural systems of ventilation control. 

Phasic events, and particularly rapid eye movements, alter three major respiratory 

variables consistently. By increased eye movement density in REM sleep, respiration rate 

elevates while expiratory duration and rib cage motion suppress. Accordingly, the main 

source of breathing variability during REM sleep is alteration in these variables in 

relation to phasic events (Pack 1995). Respiration in REM sleep differs from NREM 

sleep and this contrast could be because of: 1) During REM sleep, contribution of 

abdominal motion in ventilation is significantly high compared with rib cage motion in 

NREM sleep; and 2) Phasic events in REM cause asynchrony in rib cage and abdomen 

movement which are synchronous during NREM. Although the mechanism is not clear 

yet, some studies have shown significant suppression in transmission of respiratory 

afferent signals during REM that affects respiration pattern as well (Pack 1995). 

Pressure changes on the piezo sensor associated with respiratory patterns may have 

signatures characteristic of different stages of sleep as well. Variations in respiratory 

patterns captured by piezo signal in mice are shown in Figure. 3.1. In all five sample 

signals, regular piezo became erratic following transition to REM sleep and before 

animal is woken up. 
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Figure  3.1 Samples of piezo signal changes time-locked to NREM-REM transitions. 
Regular breathing during NREM becomes erratic in both amplitude and frequency at 

transition to REM (at Time = 0s) (Yaghouby et al. 2011). 

 

Figure. 3.2a shows how a regular pattern of breathing in NREM sleep is disturbed by 

transition to REM and then Wake states. The correlation between constant 3-4 Hz breath 

rate and EEG delta power along with correspondence between variable breath rate and 

EEG theta power is obvious in spectrograms (Figure. 3.2b). 
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Figure  3.2 Simultaneous EEG/EMG/piezo recordings during different vigilance states.  a) 
Regular breathing associated with NREM is interrupted at the middle of recording with 
transition to REM. b) EEG and piezo spectrograms show correlation between breathing 
patterns and sleep states. Regular breathing (3-4 Hz breathing rate) is associated with 

NREM and irregular breathing reflects REM sleep. 

3.3. Signal processing and modeling 
The introduced piezo system would be of much greater value if it could be proven to 

differentiate between stages of sleep i.e. REM and NREM as well. Here, we have further 

investigated the competence of piezo signal and features in tracking respiration during 

sleep. A computational framework for extracting piezo features that represent breathing 

regularity and levels of activity is proposed. Feature extraction is then followed by a 

HMM-based classification algorithm to segment 4-s epochs of the peizo signal first into 

sleep and wake states, as well as subdivisions of these that bear a striking statistical 

similarity to REM/NREM sleep and brief arousals. Similar to unsupervised classification 

using EEG/EMG features in previous chapter, we modeled piezo features using HMMs to 

correlate inherent breathing dynamics with vigilance states. Simultaneous recording of 

EEG/EMG signals along with piezo provides the capability of visual scoring that can be 

used to evaluate the performance of proposed algorithm.  
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Mouse sleep and behavior can be characterized using superficial pressure induced to the 

cage floor and captured by the piezo sensor. One can extract different piezo features to 

identify gross and fine movements of the animal. In general, two main feature categories 

from piezo signal were defined: motion and respiration features. The rest of this section is 

dedicated to introducing these features. 

Motion features: This category consists of a feature that distinguishes gross motor 

movement (reflecting most likely wakefulness) from quite state (reflecting most likely 

sleep). It has been shown before that combination of a linear classifier and a range of 

piezo features could efficiently distinguish sleep and wake in mice (Donohue et al. 2008). 

Teager energy (Kaiser 1990) is a measurement of a signal broadband energy and chosen 

here to determine motion. Teager energy (TE) of a piezo time series 𝑝(𝑡𝑡) is estimated as: 

𝜓[𝑝(𝑡𝑡)] = 𝑝2(𝑡𝑡) − 𝑝(𝑡𝑡 + 1)𝑝(𝑡𝑡 − 1)     (1) 

As can be seen in Figure. 3.4a, piezo TE correlates strongly with EMG power and mirrors 

instantaneous power of muscle tone even in brief episodes of wake. So, it can be 

considered as a noninvasive surrogate for tracking muscle tone.  

 

Figure  3.3 Correlation between piezo and EEG/EMG features in different vigilance 
states. a) Piezo TE correlates strongly with EMG power and separates sleep even from 
brief wake episodes. b) Piezo breath regularity suppresses when theta portion of EEG 
elevated in REM. So, breath regularity can be used noninvasively to track EEG 
delta/theta power. 

 

Respiration features: Noninvasive tracking of sleep/wake using piezo TE is 

advantageous but discrimination of sleep stages (REM and NREM) is a higher-risk 

endeavor. Chest and abdominal wall movement becomes the predominant motion when 
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animal is inactive (i.e. during sleep). Hence, piezo signal can reflect respiratory patterns 

in sleep (Figures .3.1 and 3.2). Breathing characteristics (e.g. amplitude and frequency) 

are modulated by autonomic nervous system which is under sleep state influence itself. 

Generally, breathing in NREM and particularly in deeper states is more regular than 

during wakefulness and REM sleep (Pack 1995). The irregularity in breathing during 

wakefulness is because of body movements, conscious control, or other external factors. 

While, as explained before, muscle atonia is one of the major reasons for breathing 

variability during REM sleep (Pack 1995). 

Figure. 3.2 shows that deviation form baseline breathing following REM transition could 

be in both amplitude and frequency. Therefore, features reflecting the regularity or 

variability of piezo signal during sleep can be used to separate NREM and REM 

episodes. First of all, piezo signal is low-pass filtered at 5 Hz to generate breathing signal 

(breath rate in mice is in 3-4 Hz range). Then, two groups of features were extracted from 

breathing signal to quantify variability in amplitude and regularity in time. Variation of 

breathing amplitude is one source of irregularity that can be estimated using “envelope” 

of the breathing signal. Here we used “analytic signal” to estimate envelope. Analytic 

signal is a complex time series in which the real part is original signal and imaginary part 

is Hilbert transform of the signal. If 𝑝(𝑡𝑡) is a time series of breathing signal, the signal 

envelope 𝑒(𝑡𝑡) is defined as the magnitude of the analytic signal �̂�(𝑡𝑡) (Figure. 3.5a): 

�̂�(𝑡𝑡) = 1
𝜋 ∫

𝑝(𝑠)
𝑡−𝑠

𝑑𝑠∞
−∞            (2) 

𝑒(𝑡𝑡) = �𝑝2(𝑡𝑡) + 𝑝 �2(𝑡𝑡)      (3) 

Finally, the coefficient of variance of 𝑒(𝑡𝑡) is calculated as breathing amplitude variability 

(BAV) feature: 

𝐵𝐴𝑉 =  𝑠𝑡𝑑(𝑒(𝑡))
𝑚𝑒𝑎𝑛(𝑒(𝑡))

              (4) 

To assess regularity of breathing signal in time, an accurate estimation of instantaneous 

breath rate (IBR) is first required. IBR may be calculated as number of phase rotations in 

Hilbert transform of breathing signal. IBR doesn’t change that much during NREM (3-4 

Hz) but varies in REM and wakefulness (Figure. 3.2). Breathing time regularity (BTR) is 

another feature that can be estimated in three different ways. First approach is to calculate 

the phase coherence between foreground (𝑃(𝑡𝑡)) and background (𝑃(𝑡𝑡 − 𝜏); 𝜏 = 1𝑠) 
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breathing signals (BTR1). When breathing is regular in baseline phase, coherence should 

constantly stay high. When breathing becomes irregular during REM, the coherence 

between piezo signal and its delayed version in time would drop and BTR1 becomes 

lower (Figure 3.4b).  

The other alternative way for BTR estimation is based on the Rayleigh circular statistics 

(Fisher 1993) in which a breath, b, can be considered as a complex phasor, 𝑟𝑏 =

exp (−𝑗𝜔𝑡𝑡𝑏) where = √−1 , tb is the time of breath b with respect to an arbitrary origin, 

and 𝜔 = 2𝜋𝑓 where frequency f = IBR. Vectorial summation of individual phasors in a 

short window produces a net phasor |𝐵𝑅𝑇2 = ∑ 𝑟𝑏𝑏 |. If the breath interval distribution is 

random (Poisson), BTR will approach zero; but if it breathing is highly regular with a 

strong periodicity, R will approach IBR that is defined as: 

𝐼𝐵𝑅 =  # 𝑜𝑓 𝑏𝑟𝑒𝑎𝑡ℎ𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡
𝑖𝑛𝑡𝑒𝑟 𝑏𝑟𝑒𝑎𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

         (5) 

We can determine inter breath interval using Hilbert transform as explained above. BTR2 

measures how closely the phasors are clumped, a reflection of periodicity in breathing. 

As Figure. 3.3b shows, BTR2 tracks EEG 𝛿𝛿/𝜽𝜽 power ratio and is relatively high when 

breathing is regular in NREM but drops momentarily when it is variable in REM.  
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Figure  3.4 Estimation of respiration features from piezo signal. a) Breathing signal 
(lowpass-filtered piezo) and estimation of amplitude envelope during NREM and REM 
samples. Breathing amplitude changes significantly in REM while stays constant during 

NREM; b) Breath regularity/variability features (BAV and BTR1) in a sample sleep 
transition (NREM -->REM). Both breathing timing and amplitude become irregular at the 

transition to REM sleep. 

 

The last approximate for BTR is based on the spectral analysis of breathing signal. 

Multitaper estimation of power spectrum can reflect the strength of a harmonic buried in 

noise (Thomson 1982). The same technique was used here to estimate spectral power of 

breathing signal. The spectral modal frequency and amplitude are equivalent to IBR and 

BTR3 respectively. 

Automated sleep classifier: Piezo signal would be of super excellence if it could track 

sleep in large-scaled experiments without prior knowledge of the state (i.e. no EEG/EMG 

prerequisite). Thus, an unsupervised classifier becomes a desirable option. As we 

discussed it in previous chapter, unsupervised classifiers cannot be biased by human 

opinion to impose input data to regions with pre-defined boundaries in feature space. 

Actually they cluster input data based on intrinsic partitions in feature space without a 
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need for labeled training data. Similar to Chapter 2, hidden Markov models were 

implemented to extract mouse behavior characterized by motion and respiration features. 

Then, the correspondence between model output and vigilance states was evaluated. 

Although the modeling details were thoroughly explained in previous chapter, we review 

the general procedure briefly. Here we implemented HMMs to map sequential 

observations from piezo signal Ot = {TE, BTR1-3, BAV and IBR} to a set of discrete but 

‘hidden’ states St = {motion, regular breathing, irregular breathing}. At any given time, 

the probability distribution of Ot is conditioned on the model state P(Ot | St = i) and each 

model state has a prior probability P(S = i). State transition matrix as the main feature of 

HMM gives the probability of a transition from state i to state j as P(St+1=j | St=i) . The 

HMM is derived from O1:t by maximum likelihood estimation and Markov property 

assumption: state S at any time t depends only on the state at t-1 and not on previous 

history. Once model parameters are determined, Viterbi algorithm is applied to decode 

the most likely sequence of states S1:t that generate new observations O1:t. 

We hypothesized that piezo motion and respiration features would separate sleep from 

wakefulness and REM from NREM respectively.  To test this hypothesis, a correlation 

analysis between model prediction and human-scored vigilance state was done using 

performance analysis metrics and potential sources of error were also discussed. 

3.4. Results and discussion 
In this study, we used simultaneous recordings of EEG/EMG and piezo from 20 adult 

mice with 24-hour duration of each. Piezo features were first calculated in each 

individual mouse and then modeled using HMMs. Each trained model was also used to 

decode the most likely sequence of vigilance state corresponding to the feature set of that 

specific subject. Finally, correlation between model output and true states was evaluated 

using available labels for 4-s epochs by two independent scorers (consensus hypnogram 

considered as the reference). The performance analysis was assessed base on confusion 

matrix analysis (e.g. sensitivity, specificity and Cohen’s Kappa) as well as sleep 

parameters estimations (e.g. time spent, mean bout duration and number of bouts in each 

state). A flow diagram of steps above is shown in Figure. 3.5. 
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Figure  3.5 Overall procedure for noninvasive mouse sleep scoring 

Figure. 3.6 demonstrates a 6-hour sample of piezo features and HMM output along with 

two hypnograms from independent raters. To estimate sleep parameters, all three 

hypnograms were filtered first to retain only prolonged bouts of sleep or wake (longer 

than 5 minutes). The binary hypnogram corresponding to scorer 1 is shown in Figure. 3.6. 

Confusion matrices on the top of Figure.3.6 show high sensitivity (~>90%) for all states 

except REM. Thus, we have an HMM that noninvasively classifies a set of piezo signal 

features (motion, breathing regularity) into behavioral states that are roughly equivalent 

to REM, NREM, and Wake. Though the accuracy for REM is relatively low, this could 

serve as a first-pass screen for a large cohort to noninvasively select potentially 

interesting sleep phenotypes (e.g., high REM/NREM ratio) for further analysis. 

 Irregular breathing during REM—just like the eye movement itself—is episodic and 

need not necessarily last the entire of a REM bout.  However, these irregularities indicate 

an elevated probability of REM occurrence. This likelihood is captured here using hidden 

Markov models. A closer view on Figure.3.6 reveals that about 55% and 13% of detected 

REM episodes were actually NREM and Wake states respectively. So, REM sensitivity 

and NREM specificity both suffer from a misclassification error. 
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Figure  3.6 Piezo features and automated scoring. Piezo TE (blue) correlates with muscle 
tone and separates sleep from wake. Breath regularity (green) and variability (red) 

features are used to discriminate NREM from REM during sleep. HMM prediction of 
sleep-wake states is close to manual scores except that REM sensitivity is moderate. 

Based on defined features for piezo signal, unsupervised HMM tends to discriminate 

regular and irregular breathing when animal is asleep. However, when we compared 

HMM-predicted states with manual scores, it seems to overestimate REM (including 

irregular breathing) with a portion of NREM (including regular and irregular breathing) 

sleep. It is known that during NREM sleep, breathing regularity increases with the depth 

of sleep (Long et al. 2014). Then, irregular breathing during light stages of NREM sleep 

might be a potential source for misclassification error for REM detection. 

To evaluate the impact of light sleep on REM misclassification, average trend of piezo 

(TE and BTR1) and EEG (𝛿𝛿/𝜽𝜽 power ratio) features for 20 mice were plotted time-locked 

to onset of prolonged sleep determined by human scorer. Figure. 3.7 (top) shows these 

trends in a one-hour time period centered at sleep onset. REM FP (or classification error) 

is also defined as the probability of falsely detected REM state by unsupervised HMM. 

At the beginning of sleep bout, TE suppresses because of elimination of muscle activity, 

and stays low for at least 10 minutes and then increases gradually as possible transitions 

to REM or Wake happen.  Trends for BTR1 and EEG 𝛿𝛿/𝜽𝜽 power ratio are similar and 

start rising at sleep onset. However, there is a distinct surge in REM FP right at the sleep 
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onset and falls back to the baseline level gradually.  

 

Figure  3.7 Mean piezo feature trends at sleep onset. REM specificty is low at the 
beginning of sleep onset where delta portion of EEG and piezo regularity are still low. 
Unsupervised HMM integrates this transitional state (i.e. light sleep) and REM sleep as 

one state. 

Figure. 3.8 (lower) shows EEG 𝛿𝛿/𝜽𝜽 power ratio, BTR1 and REM FP in a 5 minute 

interval (sleep starts at minute 1). Mean feature trends at sleep onset revealed a gradual 

increase and saturation of EEG 𝛿𝛿/𝜽𝜽 power ratio that is mirrored by piezo breath 

regularity. REM detection specificity appeared to be lower at the onset of sleep following 

prolonged wakefulness. This period of light sleep is marked by an elevated REM false 

positive rate. Hence, the unsupervised HMM seems to integrate light sleep and REM into 

one state based on their irregular breathing patterns. 

To overcome the misclassification problem, a supervised HMM was estimated and 

applied using n-fold cross-validation (n = 20 mice). HMM parameters were estimated 

using piezo features and available labels from n-1 mice. The model then validated using 

piezo features from left-out test animal. Agreement between the HMMs and rater 

consensus scores was assessed in terms of Cohen’s kappa. Cohen’s kappa 𝜅 is a 

measurement of inter-rate agreement that corrects observed agreement (𝑃𝑜) for chance 

agreement (𝑃𝑒): 

𝜅 =  𝑃𝑜−𝑃𝑒
1−𝑃𝑒

   (6) 
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𝜅 larger than 0.8 indicates perfect agreement, 0.6 to 0.8 indicates substantial agreement, 

0.4 to 0.6 indicates moderate agreement and less than 0.4 indicates slight or fair 

agreement between scorers. Figure. 3.8 summarizes the distribution of 𝜅 for 20 mice 

when we compared individual scorers with each other and model outcome with 

consensus scores. The range of 𝜅 for unsupervised HMMs falls within the moderate level 

of agreement while inter-rates agreement is almost perfect (>0.9 in average). However, 

supervised HMMs improved 𝜅 to the substantial level. 

 

Figure  3.8  𝜿 ranges for inter-rater agreement and unsupervised/supervised classifiers. 
Supervised HMM significantly improved the agreement to the substantial level. 

A more detailed performance analysis was also done using state-dependent metrics from 

confusion matrix that are sensitivity and specificity (see Table. 3.1). As we discussed 

earlier, NREM sensitivity and REM specificity are the main limitations of the 

unsupervised classifier. Actually, the major source of misclassification error is confusion 

between NREM and REM states. According to Table. 3.1, supervised HMMs 

significantly improved NREM sensitivity and REM specificity while the rest of 

parameters are either remained unchanged or slightly improved.  
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Table  3.1 Comparison of sensitivity and specificity of classifier. Supervised HMM 
improved NREM sensitivity and REM specificity. 

 
Three commonly used metrics of sleep structure were also compared for Sleep and Wake 

bouts as well as each vigilance state within Sleep. These parameters include portion of 

spent time, mean bout duration and number of bouts in each state and estimated 

independently from the HMMs and manual scores. Sleep and wake bouts were first 

extracted by filtering scoring vectors (retain only episodes with a minimum of 5-minute 

length) and then finer comparison within sleep stages including NREM, REM and brief 

arousal (short wakefulness episodes) was done. As it is shown in Figure. 3.9, prediction 

of all parameters for sleep and wake bouts is almost the same as the ones obtained from 

manual scores. Similar analysis for sleep states revealed that supervised HMM gives 

better estimates of time spent and number of bout per state while the unsupervised HMM 

gives better estimates of mean bout duration. 
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Figure  3.9 Different sleep-wake parameters are compared between vigilance states. 
Supervised HMM gives better predictions of % time and number of bouts while 

unsupervised HMM predicts mean bout durations more accurately (Yaghouby et al. 
2015b). 

Actigraphy, or measuring the levels of activity, in mice can be done as wheel running, 

photoelectric beam breaking, videography or accelerometry. The piezo system essentially 

overcomes limitations of actigraphy; since it is completely noninvasive and nonintrusive 

and provides a continuous record of sleep-wake activity. It was successfully applied to 

discriminate sleep from wake in mice with 95% accuracy (Donohue et al. 2008). In 

wakefulness, gross motor activity produces clear variable signals (Figures. 3.1 and 3.2). 

Even quiet wake (QW) typically has grooming, postural adjustments, or other fine 

movements with distinctive signatures captured by the sensor (Donohue et al. 2008).The 

piezo signal not only discriminates sleep from wake based on levels of activity, but also 

provides an excellent respiratory trace during sleep (Friedman et al. 2004 and Flores et al. 

2007). The piezo sensor therefore offers the unique opportunity to noninvasively 

distinguish sleep from wake based on small movements undetectable by other techniques, 
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and subtle changes in breathing when the animal is relatively motionless. A few studies 

have recently tried to validate piezo merit in mice sleep/wake detection against 

EEG/EMG. One study (Sato et al. 2014) examined a similar piezo system against EEG 

and EMG in control and narcolepsy mice and reported 70% agreement for sleep/wake 

discrimination. Another study in mice validated the ability of piezo signal in sleep/wake 

discrimination with simultaneous EEG/EMG recordings and claimed the potential for 

finer discrimination of sleep stages (Meng et al. 2013).  

Here we demonstrated that HMMs estimated exclusively from features of the piezo signal 

can be used to discriminate between stages of mouse sleep noninvasively. The ability to 

study sleep structure without EEG facilitates investigation of the genetic basis of sleep 

disorders such as sleep fragmentation in the elderly or REM sleep behavioral disorder. 

Specificity of REM classification by the unsupervised HMM suffered due to the similar 

breathing variability observed during light NREM at the onset of sleep. However, a 

supervised HMM largely alleviated this problem. Although unsupervised prediction of 

sleep metrics (e.g. time spent and bout duration) is less than perfect, it may be accurate 

enough to distinguish outliers in a cohort on the basis of a sleep trait, which is the goal of 

many behavioral assays.  

The piezo system is a beneficial tool in epilepsy research as well. It could not only be 

used to track vigilance dynamics in the absence of EEG (or EEG good quality), but also 

as a novel biomarker to detect seizures noninvasively. In Chapter 7, we will discuss a few 

applications from the piezo system in epilepsy research in mice. 

 

 

 

 

 

 

37 
 



4. CHAPTER IV   MARKOV MODELING OF SLEEP DYNAMICS 

FOLLOWING NEURAL INJURY 

 

4.1. Rationale 

Understanding how behavior changes over time as a consequence of degenerative neural 

disorders or acute neural injury involves tracking sleep-wake metrics and other markers 

(e.g., behavior, cognition, seizures) etc. at various points in time during disease 

progression in animal models. The previous chapter showed that HMMs can be useful for 

tracking instantaneous sleep-wake state with reasonable accuracy from continuous 

invasive (EEG/EMG) or even noninvasive (piezo) measurements. From the output of 

these classifiers, conventional sleep metrics like the % time spent, mean bout duration, 

and number of bouts of each state can be derived for the period under investigation.  

While the methodology presented in Chapters 2 and 3 perform quite well on control 

animals and when behavior is stable over the diurnal cycle, it remains to be seen how it 

would perform when there is progressive change in behavior over time. Convenient 

metrics that track sleep-wake dynamics over time—beyond simplistic measures such as 

the percent time spent in each state or mean bout duration—are lacking and presume the 

ability to accurately predict the instantaneous state in chronic recordings. Disturbances in 

sleep and diurnal rhythms (e.g. insomnia) are common following traumatic brain injury 

(TBI) in 30-70% of patients and potentially undermine patient rehabilitation and recovery 

(Orff et al. 2009).  Interestingly, recent studies have indicated that acute or mild TBI may 

be more associated with increased likelihood of sleep disturbances than severe forms of 

TBI (Orff et al. 2009). Recovery from acute TBI is also critical for avoiding development 

of chronic disorders such as epilepsy. The ability to track changes in the microstructure 

of sleep in the post-traumatic period could help assess the efficacy of intervention and 

perhaps offer clues about the likelihood of epileptogenesis. In this chapter, we 

investigated the utility of an unsupervised methodology based on hidden Markov 

models—estimated from invasive (EEG, EMG) and noninvasive (piezo) measurements in 

mice—for tracking and characterizing progressive changes in sleep-wake dynamics in the 
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period following neural injury. 

4.2. Animal model of acute brain injury 

Invasive implantation of EEG/EMG electrodes in mice was explained in Chapter 2. It is 

usually recommended to give animals at least 10-15 days for recovery from surgery 

before recording any baseline data or performing investigative experiments. Such a 

craniotomy, performed here for implantation of EEG/EMG electrodes and headmount, is 

often used as an experimental control for investigations of brain injury in mice. In this 

experiment, with IACUC approval, adult C57BL/6J mice (n=6) were implanted with 

EEG/EMG preamplifiers and monitored immediately round-the-clock for three weeks to 

record and analyze progressive changes in sleep-wake dynamics. 

4.3. Model structure and features reflecting dynamics 

The HMM's ability to capture brain dynamics associated with the sleep-wake cycle 

without human supervision makes it an appropriate tool for automated sleep scoring. The 

use of the HMM as an unsupervised classifier was previously validated for sequencing 

prolonged time series of continuous features (EEG/EMG or piezo) into discrete states, 

specifically NREM, REM, and Wake. The underlying Markov chain model has also been 

shown to reasonably represent sleep dynamics: discrete states during sleep follow a 

trajectory whose likelihood at any given time depends on the previous state. A graphical 

representation of mouse sleep dynamics is given in Figure. 4.1. The prior probability of 

each state and transition probabilities between them (shown by arrows in the Figure) can 

be extracted by HMMs. Hence, an HMM is parameterized by a vector of marginal state 

probabilities (P) and a matrix of state transition probabilities (S).  
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Figure  4.1 Graphical representation of sleep dynamics in mice. HMM models sleep 

dynamics using two parameters: a vector of marginal state probabilities (P) and a matrix 

of state transition probabilities (S).  

These parameters can provide subtle metrics that quantify sleep quality; and continuous 

reestimation of the parameters over time may be useful in detecting and tracking subtle 

dynamical changes in behavior following an acute insult. For example, the trace Tr of the 

state transition matrix -- i.e., the sum of the diagonal elements -- conveys the average 

probability that any state will persist uninterrupted. This could be considered as a 

measure of sleep fragmentation: low Tr indicates lower probability of an auto-transition 

from each state; while high Tr reflects increased probability of transition between states. 

Similarly, the prior probability of each state (e.g., Pw for Wake probability) also conveys 

the proportion of time spent in that specific state. Trends in Tr and Pstate reflect 

progressive changes in sleep-wake dynamics and can be used to track sleep quality and 

diurnal trends during recovery from injury. 

4.4. Results and discussion 

To investigate sleep dynamics after neural injury n=6 mice were continuously monitored, 

except short interruptions for cage cleaning and data downloads, following implantation 

surgery for three weeks. We recorded EEG/EMG signals simultaneously with a piezo 

signal (see Chapter 3). The same features used in previous chapters were estimated in 4s 

epochs for the recorded signals: spectral bandpower features from EEG/EMG and 

motion/respiration features from the piezo signal. Reestimation of HMM parameters over 

time (every 4 hours) yields a time series of metrics reflecting sleep quality. In this 

chapter, we introduced Tr and Pstate as metrics that reflect evolving sleep-wake dynamics 
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across the diurnal cycle. We estimated these parameters from HMMs fitted to invasive 

(EEG/EMG) or noninvasive (piezo) signal features. Figure. 4.2 shows how HMM 

parameter time trends, estimated from EEG/EMG features, can track sleep dynamics 

across the light/ dark cycle. 

 

 

Figure  4.2 HMM metrics from EEG/EMG features track changes in sleep dynamics. Tr 

reflects fragmentation of sleep that stays low during light period in which several 

transitions happen during sleep. Pw is probability of wakefulness that is higher in dark 

period (Yaghouby et al. 2013). 

EEG delta/theta power ratio and EMG power were estimated from 4-s epochs of a mouse 

recording in a 24-hour period. These feature have been used to construct an HMM that 

generates automated scores as a hypnogram in Figure. 2.7. Two HMM properties were 

estimated from this hypnogram as follows: the original hypnogram is binarized so that 

epochs with Wake label were 1 and the rest remained 0. The probability of Wake (Pw) is 

estimated as smoothed version of this binary vector (15-min moving average filter). Tr 

was also estimated similarly: a binary vector is derived from the hypnogram in which 

epochs at state transitions are set to 0 and the rest to 1. A 15-min moving average was 

used to extract the Tr trend from the binary vector. As shown in Figure. 4.2, Pw is high 

corresponding to prolonged wake bouts while high Tr reflects a stable vigilance state in 

the dark period. However, during the light period we have several sleep-wake cycles and 
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Tr is correspondingly lower. 

During the monitoring period following brain injury, HMMs were derived separately 

from EEG/EMG and piezo feature sets every four hours using a maximum likelihood 

estimation procedure(Rabiner 1989). Figure. 4.3 demonstrates trends in HMM parameters 

estimated from EEG/EMG and piezo features in mice (n=6). Tr and Pw were tracked for at 

least three weeks after surgical implantation of an EEG headmount. The time traces are 

averaged over the six animals. Tr reflects the probability that any state will persist 

uninterrupted. As can be seen in Figure. 4.3a and Figure. 4.3c, Tr is low following 

surgery, indicating that sleep is more fragmented, but recovers to a stable baseline 

(dashed line) about a week after surgery. However, clear diurnal rhythmicity is not 

evident until Week 3. For HMMs estimated from piezo signals, recovery time is almost 

the same as for the EEG/EMG-derived HMMs but Tr periodicity is not that evident 

(Figure. 4.3c). One reason could be differences in sleep parameter values of the 

unsupervised HMMs estimated from EEG/EMG and piezo features. A quick comparison 

between Figure. 2.7 and Figure. 3.7 reveals the performance distinction: EEG/EMG 

models are highly accurate in estimation of all sleep stages while piezo models are not as 

good at distinguishing between NREM and REM during sleep.  
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Figure  4.3 Tracking sleep recovery after neural injury. a and c (top): Tr is a measure of 

sleep fragmentation. It is low right after injury and increase gradually to the normal level 

with diurnal rhythmicity, particularly in EEG/EMG modeling, after 3 weeks. b &d 

(lower): Pw is percent time spent in wake that approaches to the baseline faster in 

EEG/EMG modeling. Trends representing means in 6 mice. 

The prior probabilities of the HMM reflect the proportion of time spent in each of the 

vigilance states: for instance, Pw in Figure. 4.3, lower panel, conveys the % time in Wake 

state estimated by different models. This metric is low in the early phase of recovery, 

consistent with increased somnolesence, but approaches a baseline with prominent 

diurnal rhythmicity by Week 2 (Figure. 4.3b). The recovery time for Pw is delayed for the 

piezo HMMs and strong rhythms comparable to baseline are not evident until the third 

week. In summary, trends in Figure. 4.3 suggest increased but more fragmented sleep 

soon after implantation with persistent disruption in diurnal rhythm for up to two weeks. 

Slight differences in Tr and Pw trends between two models (EEG/EMG vs. piezo) during 

recovery is due to contrast in performance of unsupervised sleep classification. As 

discussed in Chapters 2 and 3, unsupervised HMM gives an accurate estimation of 

vigilance state when is modeled using EEG/EMG signals. While, performance is 
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moderate, particularly for NREM/REM discrimination, when an unsupervised HMM is 

fitted to piezo features.   

However, in this specific application, though the piezo signal is a noninvasive 

measurement, it could potentially provide additional information that the EEG/EMG 

signals cannot. According to Figure. 4.3, it takes almost three weeks for a brain-injured 

mouse to recover to the stable dynamics of sleep-wake structure. But how do we know 

whether the stable sleep structure is the same as before the injury? In other words, even 

mild injury could induce adverse plastic changes in behavior and cause sleep quality to 

drift to another level permanently. It turns out that the piezo signal is a convenient tool 

not only to model control (i.e. baseline structure of sleep before the brain injury) where 

no EEG/EMG information is available, but also to track recovery from injury by 

comparison with the baseline. In Figure. 4.4 time trends of HMM parameters estimated 

from piezo features in a mouse are shown for up to five weeks: two weeks prior to 

surgery (baseline) and three weeks following the surgery (recovery). The animal was 

continuously monitored in the cage for two weeks (only piezo recording) and then 

implanted surgically. Monitoring was continued for three more weeks following the 

surgery using both EEG/EMG and piezo recordings. Baseline modeling prior to surgery 

shows a fairly high Tr with slight but visible diurnal variation. After surgery, Tr 

dramatically reduced outside the bounds of baseline circadian variation and recovers over 

time (Figure. 4.4a). At the end of Week 5 (3rd week following injury), Tr stays stable but 

the level is slightly lower than baseline. 

 

Figure  4.4 Piezo HMMs enable us to model baseline sleep dynamics prior to injury. a) Tr  
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shows a stable variation during baseline and progressive changes following injury. b) Pw  

is recovered to the baseline level after one week (Yaghouby et al. 2012). 

Similar to Tr, the proportion of time spent in the Wake state (or Pw) is high in baseline 

with clear rhythms reflecting light-dark cycles. Following the injury, it drops sharply and 

rebounds thereafter in about a week. Trends for Pw, after this recovery period, are very 

similar to the ones estimated during baseline. Interestingly, Pw  recovers to baseline 

within a week but Tr shows that sleep remains fragmented and asymptotically approaches 

the baseline (dashed line) on a longer timescale (see Figure. 4.4). Similar to what we 

observed for EEG/EMG modeling, these trends indicate that net sleep time increases after 

acute injury but that sleep is more fragmented. This supports what we concluded in post-

surgery analysis (Figure. 4.3): although time spent in Wake (or sleep) rebounds fairly 

fast, the sleep fragmentation (quality) might still remain as a problem.  

Preliminary results of this study suggested that HMMs estimated from physiological 

measurements could provide quantitative markers of behavior and recovery from brain 

injury. Recovery from acute brain injury is critical for avoiding development of chronic 

disorders such as epilepsy and cognitive impairment. The search for biomarkers that 

index healing using animal models of brain injury involves extensive behavioral 

screening via sleep-wake and cognitive analysis. However, properties of the HMM can be 

used to track dynamic changes in sleep in an unsupervised manner. This could provide 

useful quantitative behavioral correlates of epileptogenesis and recovery from injury. 
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5. CHAPTER V   SELECTIVE SLEEP RESTRICTION IN MICE 

USING MILD SENSORY STIMULATION 

5.1. Rationale 
The available knowledge about mechanisms of sleep and circadian rhythms has been 

widely improved through experimental manipulation of sleep in animal models. 

Understanding the contribution of REM or NREM stages in sleep regulation would help 

analyze related disorders in humans. Total sleep deprivation (TSD) has been used as an 

experimental tool to investigate the consequences of sleep loss on mechanisms for several 

years. Research done in animal models revealed a prominent rebound in characteristic 

EEG rhythms during NREM (slow wave activity; SWA or delta: 0.5-4Hz oscillations) 

and REM (theta activity: 6-9 Hz oscillations) sleep following TSD (Schwierin et al. 

1999). Intermittent interruptions in human sleep do not necessarily lead to total sleep 

loss. Hence, TSD may not be an appropriate model to investigate physiological 

consequences of partial sleep loss, and selective sleep deprivation has evolved as a tool in 

animal sleep research. Although restriction of any sleep state will result in rebound in that 

specific state during the recovery period (Endo et al. 1997), it could also affect other 

states as well. For example, REM sleep deprivation (REM SD) could result in both REM 

rebound and significant suppression of SWA in NREM (Endo et al. 1997). The first 

generation of selective sleep deprivation protocols in rodents relied on manual sensory 

stimulation such as gentle handling or cage movement to compare the role of sleep states 

on behavior and cognition; these are still in use (Mistlberger et al. 2002 and McCoy and 

Strecker, 2011). However, the need for human supervision and intervention remains the 

main constraint in such systems. REM sleep plays a substantial role in development of 

the brain and memory consolidation (Mallick et al. 2010). So, investigating the 

consequences of REM loss in rodents has been of much interest. For REM SD a 

technique called “the multiple platform method” was devised in which animal sits on one 

of multiple platforms surrounded by water. During REM sleep and due to muscle atonia, 

the animal falls into a basin and awakens (Mendelson et al. 1974). Although this 

technique is highly stressful, it deprives the animal of almost all REM sleep and has been 

widely accepted as an effective tool for REM SD in rodents. Recently, programmable 
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devices have been designed to predict the vigilance state automatically using real-time 

analysis of EEG/EMG signals and rouse the animal using different types of stimulation 

such as cage shaking, rotating disk or activating a stir bar on the cage floor (Sahu et al. 

2013; Kushida et al.1989 and Wisor et al.2011). Although automated sleep restriction 

provides great flexibility in timing and amount of stimulation and reduces the effects of 

stress, each system has specific requirements for the cage and means of stimulation 

delivery. Convenience of use, cost, and efficacy still remain major concerns in such 

systems. 

 In this chapter, the feasibility of a novel sleep restriction technique for mice is presented. 

A closed-loop sensory stimulation system was designed to detect the onset of a targeted 

sleep state (REM or NREM) using EEG/EMG analysis and apply tactile stimulation in 

the form of mechanical vibration to the cage floor. Selective sleep restriction using this 

system can be implemented with greater flexibility over the sleep loss proportion while 

other states of sleep remain intact. Here, this system was employed to selectively deprive 

REM sleep, which could be of interest in epilepsy research as well.  

The relationship between sleep and epilepsy is complex. In general, epilepsy can impair 

sleep quality and different sleep stages can have a protective or precipitating influence on 

seizure occurrence. It is also well known that SD increases the chances of seizure 

occurrence by activating IEDs (Niedermeyer, 1982). Increase in cortical excitability 

following total SD has been noted in some clinical studies, with a greater effect resulting 

from selective REM SD (Placidi et al, 2013). Since hyperexcitability in brain networks 

during the pre-seizure (pre-ictal) period has been observed and investigated as a means of 

anticipating clinical seizures, it seems reasonable to expect that selective REM sleep 

deprivation will lead to more seizures than a corresponding amount of NREM sleep loss 

(Figure. 5.1). To address this hypothesis, the closed-loop sensory stimulation system can 

be utilized to assess the effects of chronic REM sleep restriction on epileptic mice that 

express spontaneous seizures (e.g., the pilocarpine-treated mouse model (Cavalheiro et al. 

1996)). 
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Figure  5.1  A possible model linking REM sleep loss, brain excitability and seizures. 

REM sleep restriction elevates cortical excitability and seizure likelihood. 

 

5.2. Experimental design  
Under IACUC approval, adult male wild type mice (C57BL/6J, 4-6 weeks old, n = 4) 

were surgically implanted with EEG/EMG electrodes. Prior to the experiment, each 

animal was kept in individual cages under consistent environmental conditions (light/dark 

cycle and ambient temperature/humidity) for 2-3 weeks of recovery. Details for animal 

care, surgery and acquisition system were discussed in Chapter 2. A 6-hour recording 

from EEG/EMG during baseline was acquired for each mouse (1-7 P.M.) and visually 

scored to train an automated REM sleep detection algorithm. Vigilance state was 

manually scored using defined criteria on EEG/EMG signals as Wake, REM and NREM. 

Hence, transition to REM sleep based on EEG/EMG feature boundaries was used to 

design the REM detector. Then the experimental session was performed later at the same 

time period as the baseline and for the same duration on a different day. 

5.3. Vibro-tactile sensory stimulation system 
In this experiment, a novel closed-loop sensory stimulation technique was proposed and 

tested to restrict sleep in mice. To study the consequences of sensory stimulation on 

different states of sleep, a tactile sensory stimulation system was devised using a micro-

vibration motor attached to the floor of the animal’s cage. This vibration motor was 

controlled by a computer program and generated mild intermittent sensory stimulation 

(MISS) that perturbed the animal’s behavior. In an open-loop test, the motor was 
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controlled to produce a train of consecutive vibration pulses (three pulses with 1s 

duration each at intervals of 1s) at 15 min intermittent intervals. Along with this open-

loop sensory stimulation protocol, cortical EEG and dorsal EMG signals were also 

recorded in mice as described in Chapter 2. 

For closed-loop sensory stimulation applications, e.g. REM sleep deprivation, we 

designed a vibration platform by embedding eight equally spaced button microvibrator 

motors to a square rubber pad. This platform was attached to the base of the animal’s 

cage and controlled by a computer program to deliver mild tactile stimulation to the 

animal. Each motor (10 mm diameter, 2 mm thickness) vibrates with amplitude of 0.75 g 

force at 12,000 r.p.m. when driven by a DC voltage (Pololu Corporation, Las Vegas, NV, 

USA). A driving pulse can be generated and applied to the vibration pad after a preset 

threshold on bout duration of any sleep state (e.g. REM) has been crossed. This real-time 

detection was performed by online processing of the EEG/EMG signals from the analog 

output of the amplifier (part # 8206, Pinnacle Technology). The acquisition system also 

has a screw terminal to enable external control and analog signal output. The EEG/EMG 

signals at these terminals were analyzed in real time for closed-loop stimulation for REM 

SD. EEG/EMG signals were routed to a data acquisition board (NI USB 6211, National 

Instruments) and digitized at 16-bit resolution and 400 samples per second. Digitized 

EEG/EMG signals were recorded and processed online using a custom VI to detect REM 

sleep and activate the stimulation system by sending a DC pulse to the vibration pad at 

specific times. The trigger signal was recorded in synchrony with the EEG and EMG as 

an additional data stream to the data acquisition board. The Labview program analyzed 

every 1s epoch of EEG/EMG signals (after 4-s moving average filtering) and estimates 

spectral band power features. The stimulation automatically stops when the state has 

changed and animal is awake (see Figure. 5.2). 
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Figure  5.2 Closed-loop REM detection and restriction system. A computer program 

analyzes EEG/EMG signals and delivers stimulation command to vibrating platform once 

REM is detected (Yaghouby et al. 2014c) 

Transition from wakefulness to REM sleep is not likely in normal mice; so the 

stimulation remains off until animal experiences a NREM to REM transition in sleep 

after normal sleep-wake cycles. 

 

5.4. Sleep scoring and REM detection algorithm 
 A baseline recording was performed in each animal following two days of 

acclimatization to the cage environment. Then, training data to determine transition to 

REM sleep based on EEG/EMG features were selected from the baseline recording. 

Manual scoring of baseline sleep was based on visual inspection of video-EEG in 4 s 

epochs. Spectral band power features from EEG and EMG were used to construct an 

automated REM sleep detector in each animal. The mean power from bandpass-filtered 

EMG (80-100 Hz) reflects muscle tone and was used to discriminate sleep from 

wakefulness. During sleep, the EEG 𝛿𝛿/𝜽𝜽 band power ratio was estimated to detect the 

REM sleep onset: elevated theta rhythm in REM with reduction in delta activity reduces 

𝛿𝛿/𝜽𝜽 intensely. Hence, REM detection thresholds were established using both features 

from the baseline recording and visual scores. These feature thresholds were used to 
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detect REM sleep onset during the REM SD experiment. 

 

Figure  5.3 Tactile stimulation interrupts REM sleep. A brief stimulation pulse terminates 

REM sleep and animal falls back into NREM after a brief arousal. 

 

 

5.5. Results and discussion 
Results for this section are presented in three parts. First, the state-dependent effect of 

sensory stimulation is demonstrated from an open-loop experiment. Then we evaluate the 

performance of the real-time REM sleep detector for each animal. Finally, the effect of 

closed-loop sensory stimulation on REM sleep restriction is discussed. 

Open-loop sensory stimulation: Figure. 5.4 shows snapshots of the MISS protocol on 

mouse sleep and behavior. A vibrating micromotor attached to the cage generated three 

1s pulses at 15 min intervals. Behavior was monitored by cortical EEG (top trace), dorsal 

EMG (middle), and a piezo (bottom) signal. Duration of each segment is about 10s and 

vertical lines mark onset and offset of the stimulation. As can be seen in Figure. 5.4 (top), 
MISS briefly interrupts NREM sleep. The slow delta oscillation on EEG and regular 

breathing signal on the piezo is interrupted by stimulation, but the animal returns from 

the brief arousal back to NREM sleep. Middle Figure shows how MISS disrupts REM 

sleep. Rhythmic theta EEG waves and relatively irregular breathing in REM are abruptly 
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terminated as the animal is roused by the stimulus, which is identical to that applied 

during NREM above but with a dramatically different response. This is to be expected as 

sensory thresholds differ for REM and NREM sleep (Rechtschaffen et al. 1966). The 

bottom part of Figure. 5.4 demonstrates the animal response to MISS during wakefulness. 

Characteristic EEG and EMG of Wake are unchanged by stimulation, which proves that 

MISS has minimal effects on Wake.  

 

 

Figure  5.4 Effects of sensory stimulation on vigilance state. MISS briefly interrupts 

NREM sleep (top), disrupts REM sleep (middle) and has no effect on Wake (bottom). 

The average effect of open-loop sensory stimulation on each vigilance state over n=4 

mice was also investigated. Mice were stimulated in open-loop mode (a 1s pulse every 15 

min) over a 24-hour period. Figure. 5.5 shows dorsal EMG power time-locked to the 
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stimulation onset and averaged over multiple stimulations during each vigilance state. 

Compared to what was seen in Figure. 5.4, consistent awakening is observed from REM 

sleep, transient arousal from NREM sleep, and no perceptible change in Wake.  

 

 

 

Figure  5.5 The average effect of sensory stimulation on each vigilance state. Consistent 

awakening from REM, transient arousal from NREM and no perceptible change in Wake 

are observed. 

Result from open-loop sensory stimulation experiment reflected the difference in sensory 

thresholds for REM and NREM sleep and suggested that this technique could be useful 

for closed-loop REM SD in mice. 

Real-time REM sleep detection performance: To evaluate the performance of our 

designed real-time REM detection algorithm, a human scorer blind to the state of the 

stimulation inspected EEG, EMG and video data for each mouse during stimulation and 

determined vigilance state in 4 s epochs. The closed-loop sensory stimulation was 

performed for each mouse over a 6-hour period in the afternoon (lights on). Then, 

stimulation onset and offset times were extracted and used to assess the performance of 

REM detection by comparing them with true REM bout onset and offset. The following 

events were first extracted based on this comparison for each recording: 1. True Positive 

(TP) events as the number of REM bouts that coincided with stimulation onset; 2. True 
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Negative (TN) events as the number of NREM or Wake bouts in which stimulation was 

off; and 3. False Positive (FP) events as the number of NREM or Wake epochs in which 

stimulation was on. Finally we combined these counts to estimate two commonly used 

performance measures: 

Sensitivity = TP / (TP + FN)                                           (1) 

Positive predictive value (PPV) = TP / (TP + FP)            (2) 

 

In addition to the REM detection accuracy, detection latency is another important factor, 

particularly in real-time applications. Depending on choice of threshold, filter length and 

scoring resolution, there can be a delay from REM onset to stimulation triggering. This 

delay can be estimated as the time between REM onset and stimulation onset in TP 

events. Table 5.1 provides a summary of detector metrics. The REM detection sensitivity 

is high and over 90 %, except in Animal 1. However, the specificity (PPV) is moderate 

and ranged from 38% to 73 % in the same animals (Animal 1 has high specificity). The 

specificity range states that about one-third to one-half of all stimulations occurred during 

NREM or Wake. According to Figure. 5.5 tactile stimulation does not change the 

animal's state when awake. Thus, false stimulation could potentially affect NREM sleep. 

 

Table  5.1 Evaluation of REM detection performance 

 
The other metric in Table. 5.1 is latency. On average it takes about 7 s (or two epochs) 

for the detector to determine REM sleep and deliver a stimulation pulse. During manual 

scoring, brief or transitional REM episodes were scored as REM sleep while detection 

algorithm was tuned to detect only distinctive signature of REM sleep based on 

EEG/EMG features and defined thresholds. This could be one reason for this delay. As a 
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result, the closed-loop stimulation protocol only affected prolonged REM bouts and 

ignores brief episodes.  

 

Closed-loop sensory stimulation for REM restriction: Analysis in the previous section 

revealed that the real-time REM sleep detector performed with reasonable sensitivity, 

specificity, and latency. To evaluate the effectiveness of closed-loop REM SD system, 

sleep parameters were estimated separately for the baseline and closed-loop stimulation 

recordings. Visual scores from each animal were used to extract the amount of time spent 

in each vigilance state as well as the distribution of bout durations in baseline and REM 

SD phases. Figure. 5.6 (top) shows the cumulative distribution of bout durations in 

different sleep/wake states where data from all animals were pooled together. As can be 

seen, closed-loop stimulation drastically reduced REM bout duration while the effect on 

NREM and Wake is relatively minor. The reduction in median REM bout duration, from 

28s to 4s, supports our observation on protocol latency. The mean % time spent in each 

state (n=4 mice) is also shown in Figure. 5.5 (lower) for both baseline and stimulation 

phases. While % REM is noticeably reduced, the % time in NREM remained almost 

intact and % Wake increased. As discussed above, stimulation in NREM induced only 

brief arousal (Figure. 5.4 and Figure. 5.5), which explains why the slight reduction in 

NREM bouts is not accompanied by a significant decrease in % NREM. The brain's 

tendency to recover lost REM sleep following REM SD could be another possible reason 

for the shorter NREM bouts. The slight reduction in Wake bout duration might be due to 

an increase in brief arousals due to some false detections stimulated in NREM. However, 

as we pointed out, the greater % Wake matched the reduction in % REM: the amount of 

REM loss appeared to be compensated by a gain in Wake. 
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Figure  5.6 Effects of closed-loop sensory stimulation on sleep. Upper: Cumulative 

distribution function (CDF) of bout durations in each state. Lower: Comparison of time 

spent in each state for baseline and stimulation. Error bars represent standard error of the 

mean (n = 4). 

 

Table 5.1 and Figure. 5.5 indicated that closed-loop stimulation protocol produced more 

than 50% reduction in REM sleep over a 6-hour period. The detection latency could be a 

reason that REM sleep is not eliminated in total. Here we implemented a simple linear 

threshold-based classifier to detect REM that was very sensitive to EEG/EMG signal 

quality. For example, poor detection specificity in Animal 2 was mainly related to 

original signal quality. Application of more robust machine learning techniques, such as 

support vector machines or hidden Markov models, could improve the real-time REM 

detection performance and consequently the efficacy of REM sleep restriction.  

Adaptation to sensory stimulation: Although the open-loop stimulation protocol was 

applied for 24 hours on each mouse, the efficacy of the closed-loop system was examined 

for selective disruption of REM sleep in acute experiments with 6-hour durations. In 

addition to specificity limitations of our detection algorithm, adaptation to the tactile 
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stimulation may also affect performance. Depending on the frequency and duration of 

applied stimulation, the animal could become insensitive and unresponsive to it. Figure. 

5.7 represents the mean % time spent in REM sleep for each successive hour of 

monitoring during the baseline and stimulation protocol. In the first hour of the 

experiment the % time in REM was lowest (1%). Over the next five hours of the 

experiment % time in REM increased and stayed at a relatively constant level (4-6%). In 

baseline, this value started at 10%, peaked in the mid-afternoon (14%) and dropped as 

evening approaches (consistent with the diurnal cycle). Hence, the amount of REM loss 

for the last two hours is low because the probability of REM occurrence was already low 

under baseline conditions. 

 

 

Figure  5.7 Trends in mean hourly percent time spent in REM during the baseline (BSL) 

and REM SD (RSD) stimulation protocol (Yaghouby et al. 2014b). 

In conclusion, the efficacy of the closed-loop stimulation seems to be relatively stable 

except in the first hour when animal has experienced the stimulus at that first time. 

Hence, the animal remains responsive to the tactile stimulation in acute experiments 

without a change in threshold.  

As explained at the beginning of this chapter, sleep deprivation is known as a provoking 

factor for seizures in different kinds of epilepsy. While the pathophysiologic mechanism 

of this effect is unexplored, selective sleep restriction in animal models can help 

investigators understand the underlying mechanism. Although seizure occurrence is, in 
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general, less likely in REM sleep, the effects of REM deficit on seizure incidents have 

not sufficiently been addressed. Thus, using the proposed system, the effects of selective 

REM sleep deprivation on seizure tendency and sleep microarchitecture in animal models 

can be assessed. Findings of such experiments will be useful for their relevance in human 

pathology.  
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6. CHAPTER VI   INVESTIGATION OF SLEEP-SEIZURE 

INTERACTIONS IN A MOUSE MODEL OF TEMPORAL LOBE 

EPILEPSY 

 

6.1. Rationale 

In the preceding chapters, a set of experimental techniques and computational algorithms 

were proposed and tested for modeling and perturbation of sleep dynamics in mice. 

Although these novel tools are of obvious relevance to sleep research, the main purpose 

of this dissertation was to develop methods for facilitating animal research in epilepsy. 

The implications of the complex relationship of sleep with seizures in epilepsy were 

discussed in Chapter 1. The complex relationship between sleep dynamics and epilepsy is 

widely investigated in clinical and experimental studies. Pathological neural events like 

seizures can disturb the endogenous regulation of the sleep-wake cycle, and alterations in 

sleep regulation or poor sleep can precipitate seizures. In fact, vigilance dynamics biases 

the likelihood of seizure generation; and since seizure likelihood varies with vigilance 

state, it also affects the performance of seizure prediction algorithms (Schelter et al. 2006 

and Bazil et al. 1997).  

It is therefore important to investigate dynamical changes in the vigilance state and 

understand how they influence seizures or vice versa. This insight is clinically desirable 

for improving seizure diagnosis (or prediction) and treatment. The use of animal models, 

especially mice and rats, provides the opportunity to determine unknown neurobiological 

changes underlying sleep dynamics and seizure incidence. Data-driven algorithms 

developed in this dissertation (Chapters 2-4) have been shown to model vigilance 

dynamics in mice efficiently. In the current chapter, we try to benefit from similar tools 

for automated seizure detection as well. Furthermore, the proposed techniques can be 

applied to mouse models of epilepsy to study sleep-seizure interactions. This endeavor 

can be combined with closed-loop somatosensory stimulation system (explained in 

Chapter 4) to investigate the effects of programmed modulatory stimuli on seizure 

outcome and sleep quality in a chronic mouse model of epilepsy. This chapter of the 
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dissertation seeks to implement some of the proposed techniques in a chronic animal 

model of epilepsy and suggest future avenues of research. 

6.2. Pilocarpine model of temporal lobe epilepsy 

Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy in adults. The 

main characteristics of TLE that can be reproduced in chronic animal models are: 1) 

Seizure foci located in the limbic system, specifically in hippocampus; 2) An initial 

precipitating event or injury is often found before the onset of TLE; and 3) A latent 

seizure-free period is observed after the precipitating event (Curia G. et al. 2008). Models 

of chronic epilepsy implemented by inducing status epilepticus (SE) in rodents as the 

precipitating event are widely used for preclinical analysis of mechanisms and treatment 

effects in several laboratories. In the pilocarpine model, SE is induced in the animal by 

injecting pilocarpine. After SE, there is a latent period during which neuroanatomical 

changes are observed, mainly in the hippocampal formation that lead to spontaneously 

recurring seizures (SRS) (Curia G. et al. 2008). Pilocarpine is a non-selective muscarinic 

receptor agonist in the parasympathetic nervous system which is widely used to induce 

chronic epilepsy in rodents. In this experiment, SE is induced in the animals with a single 

intraperitoneal (i.p.) injection of pilocarpine (290mg/kg). This dose has been shown to be 

effective with relatively low mortality rate (Shibley and Smith, 2002). 

Methylscopolamine is also injected 15 minutes before the pilocarpine treatment to 

suppress peripheral cholinergic effects (1 mg/kg) that could be fatal for the animal. 

Following pilocarpine injection, SE onset is identified by convulsive and intermittent 

seizures (Racine scale 3 and higher). According to guidelines formulated by Racine 

(Racine, 1972) seizures in rodents are categorized into five different scales based on 

observable behavior: 

1: Mouth and facial twitches. 

2: Head nodding movements. 

3: Forelimb myoclonus.  

4: Forelimb clonus with rearing 
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5:  Generalized motor convulsions are observed as forelimb clonus, rearing and falling. 

After pilocarpine administration, animals that survived and successfully developed SE 

with at least 3 convulsive seizures are considered for monitoring. The mortality rate 

during SE for this model is about 40% and injection dose plays a critical role (Shibley 

and Smith, 2002). Pilocarpine dosage should be large enough to induce verifiable 

hippocampal morphological changes (Curia G. et al. 2008). Hence a trade-off should be 

considered between the pilocarpine dosage and survival rate. SE monitoring after 

pilocarpine injection is performed for up to two hours and candidate animals are given 

softened feed soaked in sucrose water for a couple of days. Following SE, the animal 

enters a phase known as the latent or quiescent period. During this period, changes 

leading to the development of epilepsy (epileptogenesis) occur at the cellular level 

including: mossy fiber sprouting, interneuron loss, rewiring of synaptic circuits, glial cell 

activation and ectopic cell proliferation (Pitkanen and Sutula, 2002). Although some of 

these pathophysiological phenomena have been shown to be important in epileptogenesis, 

the animal generally shows normal behavior and brain electrical activity (EEG) during 

the latent period. Following a 4-6 week latent period, candidate mice are implanted with 

an EEG/EMG headmount and monitored for spontaneously recurring seizures. 

 

Figure  6.1 Pilocarpine model of TLE. Animals develop spontaneous seizures after silent 

period 

6.3. Automated analysis of seizures and vigilance dynamics 

Once an animal survives SE and develops spontaneous seizures following a latent period, 

a chronic epilepsy model is available for use in experimental investigations. On average, 
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C57BL/6J mice have 2-3 tonic-clonic seizures (Racine 3 or higher) per day during their 

chronic epileptic phase (Shibley and Smith,2002). The first step in investigating the 

sleep-seizure interplay is to identify seizure onset. Figure. 6.2 demonstrates a set of 

physiological recordings--including EEG, EMG and piezo signals--during a spontaneous 

seizure in a mouse treated with pilocarpine. A seizure is typically characterized by 

concurrent high-amplitude and high-frequency epileptiform spikes on the EEG. This 

activity is usually accompanied by convulsions reflected in EMG and piezo signals as 

high muscle activity. Hence, EEG features that are descriptive of this seizure signature 

(large amplitude, rhythmic spiking) can be used to automate the seizure detection 

process. Here, we apply a simple threshold-based algorithm using EEG features to 

identify seizure candidates followed by a quick verification using raw signals and 

recorded video. Two commonly used features from the EEG signal have been chosen 

here to detect seizure onset: Teager energy (or TE) and line length (or LL).  

 

Figure  6.2 Electrophysiological recordings during a seizure incidence in mouse model of 

TLE. Concurrent high-amplitude and high-frequency EEG spikes are the main 

characteristics of seizures. This is also accompanied with convulsions obvious in EMG 

and piezo signals.  

 

TE (for the piezo signal) was proposed in Chapter 3 as a surrogate for muscle tone (EMG 

signal). TE is a nonlinear operator that approximates the instantaneous energy of an 
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oscillator (Kaiser 1990) and reflects changes in amplitude and frequency in a time series. 

Here, we extracted TE from the broadband EEG signal (0.5-45Hz). In a continuous EEG 

time series x(𝑡𝑡), TE is computed as: 

            𝑇𝐸(𝑡𝑡) =  𝑥𝑥2(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 1)𝑥𝑥(𝑡𝑡 + 1)         (1) 

The mean value of TE over each epoch is estimated as a feature of the data. The EEG line 

length (LL) is also a computationally simple feature that has been used before for seizure 

detection (Esteller et al., 2001). Similar to TE, LL grows as signal magnitude and 

frequency increases. LL of a signal (e.g. EEG time series 𝑥𝑥 (𝑡𝑡)) is estimated as: 

𝐿𝐿(𝑡𝑡) = ∑(|𝑥𝑥(𝑘) − 𝑥𝑥(𝑘 − 1)|) , 𝑘 = 𝑡𝑡 − 𝑁 + 1, … , 𝑡𝑡     (2) 

That is, LL is the total distance traversed by the signal from sample to sample over the 

epoch. Figure. 6.3 illustrates trends in TE and LL features for an almost 4-day long 

recording in a mouse. There are nine verified seizures during this recording that are 

noticeable as sharp spikes in both features. However, LL has smaller dynamic range in 

the baseline and seems to be less susceptible to other factors such as sleep and circadian 

rhythms. Because of the available contrast with the baseline, seizure detection can be 

accurately performed using EEG line length. This seizure detection algorithm has been 

applied to a handful of mice and showed 100% sensitivity and higher than 90% 

specificity. 
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Figure  6.3  Seizure detection features from EEG. TE and LL show sharp spikes at 

seizures. 9 seizures are evident during the first 3 days. 

Once seizures were detected accurately in recorded data, the temporal correlation 

between seizure events and sleep states can be determined by scoring the EEG/EMG 

signals. From Chapter 2, we know that determination of vigilance state in mice is feasible 

using unsupervised HMMs built on EEG/EMG features. Here, we utilize the same 

framework in epileptic mice. Discriminative features from EEG and EMG signals, i.e. 

EEG delta/theta power ratio and EMG power, were estimated in fixed epochs ( 4 s) and 

modeled using an HMM. Figure. 6.4 shows trends of EEG/EMG features as well as 

automated detection of vigilance state by an HMM. We also show how to apply a 

threshold to EEG line length and detect seizures. In Figure. 6.4, LL is normalized with 

respect to a smoothed version of it to correct for baseline variation (here a 3-minute long 

median filter was used). This step emphasizes the contrast between seizures and baseline 

in LL. 
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Figure  6.4  Sleep and seizure features from a TLE mouse. Vigilance state can be 

determined using an HMM fitted to EEG/EMG features. 9 seizures are also detected 

using EEG line length.  

Once seizures and vigilance state are determined, we can study the passive correlation 

between them. For example, out of 9 seizure incidences seen in Figure. 6.4, two seizures 

happened when animal was awake and the rest happened when the animal was asleep 

(NREM). A similar analysis on prolonged recordings will tell us how seizures are 

clustered, when they usually happen, how sleep/wake cycles are modified following 

seizures, and how changes in vigilance state elevate or suppress seizure likelihood. 
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6.4. Noninvasive detection of seizures 

A closer look at Figure. 6.2 reveals that convulsive seizures impose a characteristic 

pattern on the piezo signal that is different from the effect of other movements. It makes 

us wonder if the piezo signal can be used for detection of seizure onset. Noninvasive 

detection of seizures without the help of EEG/EMG measurements would enable us to 

continuously monitor an animal's behavior during the silent period and identify viable 

candidates with spontaneous seizures for EEG/EMG surgery and experimentation. In 

fact, the mortality rate of SE using pilocarpine is relatively large (~30-40%) and about 

50% of surviving animals will develop spontaneous seizures (Shibley and Smith, 2002). 

Hence, on average one of three mice treated with pilocarpine will survive and become 

chronically epileptic. Given the cost and time spent for EEG/EMG surgical implantation, 

it is desirable to identify epileptic models during the silent period and then implant them 

with electrodes; rather than implanting them first with EEG/EMG electrodes and then 

injecting with pilocarpine and hoping for survival. Here, we investigate the feasibility of 

a similar detection algorithm to that described earlier but using noninvasive piezo 

measurements. Features reflecting seizure onset (TE and LL) are computed from the 

broadband piezo signal (0.5-20 Hz) in 4s epochs. Figure. 6.5 shows a feature from the 

piezo signal (TE) during the fourth week post-implantation with pilocarpine. The animal 

was not instrumented with the EEG/EMG headmount prior to pilocarpine injection. 

However, recording of the piezo signal along with video was started immediately after 

SE at the beginning of the silent period.  
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Figure  6.5 Noninvasive detection of seizures using piezo TE. 6 seizure candidates were 

detected with applying an arbitrary threshold and 4 seizures were verified using video.  

A threshold-based detection was performed and candidate events were verified using the 

simultaneous video recording. Figure. 6.5 demonstrates that six candidate events were 

detected during a 4-5 day recording and after verification from video, four of them were 

identified as convulsive seizures and the other two were false detections (motion). 

Although the specificity of piezo signal features for seizure detection is not as high as 

EEG features, it is still a very useful tool to determine onset of spontaneous seizures 

following SE and identify animal candidates for EEG/EMG surgery.  

In Chapter 3, we introduced an unsupervised technique for automated extraction of 

vigilance state from noninvasive piezo measurements. The same is applicable here to 

model vigilance dynamics in an epileptic animal without the need for EEG/EMG 

measurements. Noninvasive determination of vigilance state along with noninvasive 

detection of seizure onset would help us investigate their relationship either during the 

latent period prior to EEG/EMG implantation or in the event that the EEG/EMG signals 

lack the required quality. This endeavor can lead to the design of an effective tool to 

investigate behavioral indices of epileptogenesis even in large sample animal 

experiments. The same features presented in Chapter 3 were extracted here from the 

piezo signal and modeled using a 3-state HMM. Figure. 6.6 shows trends of two selected 

piezo feature along with HMM-decoded vigilance state. Seizures are also evident in the 
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Figure. A simple correlation analysis in a sample of reasonable size will tell us whether 

(and in what proportions) seizure occurrence is biased by vigilance state. Hence, 

noninvasive analysis of sleep and seizures could help us correlate seizure onset with 

vigilance state and explore the effect of seizures on sleep structure without the need for 

invasive EEG/EMG measurements.  

 

Figure  6.6 Piezo signal features and unsupervised detection of vigilance states using an 

HMM. Features reflecting motion and respiration were used to model vigilance 

dynamics. 

6.5. Conclusions 

This chapter of the dissertation was intended to examine the utility of the techniques 

previously introduced in an animal model of temporal lobe epilepsy. In fact, the 
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feasibility of such techniques was shown in a few simple applications; other applications 

along with statistical inference based on larger samples are deferred to future 

investigations. Understanding the relationship between seizures and any vigilance state in 

a baseline recording is critical to explaining how seizures are clustered and generated 

with respect to circadian or ultradian rhythms. The hidden Markov model -- and its 

usefulness as an efficient sleep classifier as proposed in Chapter 2 -- was successfully 

applied to EEG/EMG features from an epileptic mouse and a continuous hypnogram of 

sleep/wake states predicted without the availability of expert-scored training data (Figure. 

6.4). Once we incorporated seizures into the analysis with the help of a simple but 

efficient seizure detection algorithm, the correspondence between seizures and vigilance 

can be studied. We have also shown that the correlation analysis can be done even 

without EEG/EMG signals to some extent. The noninvasive sleep scoring system 

proposed in Chapter 3 was applied here to extract vigilance states from the piezo signal 

recorded from a mouse treated with pilocarpine. This provided us with a reasonable 

partitioning of sleep-wake cycles along with fairly accurate seizure detection. This 

preliminary analysis showcases the potential of noninvasive piezo signals for detection of 

epileptic seizures in rodents.  

The piezo system has never been utilized to detect seizures and successful 

implementation of this would lead to a completely noninvasive system for seizure 

monitoring that eliminates limitations of available noninvasive seizure detection systems 

(e.g. video monitoring). While the ability of HMMs for instantaneous prediction of 

vigilance state was shown in epileptic animals, continuous re-estimation of HMMs over a 

prolonged recording-- similarly to what was proposed in Chapter 4--can be performed to 

extract dynamical features related to sleep and epilepsy. This could serve as a useful 

noninvasive tool to track biomarkers of sleep or seizure dynamics particularly during 

epileptogenesis.  

In addition to passive correlation between sleep states and seizures, sleep structure can be 

modulated actively to investigate the consequences on seizures. For example, the 

selective sleep restriction system proposed in Chapter 5 is one way to manipulate one 

variable (i.e., sleep) and study responses in another one (i.e., seizures). The introduced 
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system is flexible enough to modify sleep architecture in several controlled ways such as: 

reducing percent time or bout durations in different stages of sleep (e.g. REM or deep 

NREM) or inducing fragmentation (e.g. brief arousals). However, it is also useful to 

modulate sleep quality in an opposite direction; i.e. increasing sleep propensity or 

alleviating fragmentations or interruptions in sleep. We have shown that by regulating the 

ambient temperature using a thermostatic control system, it is possible to induce those 

effects on mouse sleep (Abbas et al. 2015). Thus, both sensory stimulation and 

thermoregulation systems are useful tools for modulating sleep quality in epilepsy models 

and investigating the consequences on seizures. 
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7. CHAPTER VII   CONCLUSIONS 

7.1. Overview 

Available treatments for epilepsy can have mild or severe side effects (Ortinski et al. 

2004) such as poor sleep quality, which affects many epilepsy patients (Dingledine et al. 

2007). On the other hand,  it is well known that seizures disrupt normal sleep and sleep in 

turn influences seizure generation: 1) Light or transitional NREM sleep can facilitate 

seizures while REM sleep can inhibit them; and 2) Sleep deprivation can elevate brain 

excitability and thus precipitate seizures. A thorough understanding of sleep-seizure 

interactions using animal experiments would help scientists balance their reciprocal 

effects and improve the quality of life in patients with epilepsy. This dissertation focused 

on experimental analysis of sleep including novel computational techniques, empirical 

designs and tools for use in animal models and specifically mice. The ultimate goal of 

this endeavor is to develop a framework for programming seizure therapy without 

compromising sleep quality. This research offers a clear translational path toward 

epilepsy therapies such as automated neuromodulation for seizure control and 

programmed timing/dosage of medications. In this chapter a summary of the main 

findings of this dissertation is given. In terms of computational modeling, hidden Markov 

models were employed as unsupervised classifiers of sleep states and dynamics. Specific 

experiments were also designed to study sleep recovery following acute brain trauma and 

effects of sensory stimulation on sleep. The piezo signal as a novel measurement for 

scoring mouse sleep was also introduced and its potential for noninvasive analysis of 

sleep and behavior was evaluated.   

7.2. Unsupervised scoring of mouse sleep using EEG/EMG 

measurements 

Experimental and clinical evaluation of sleep and related disorders commonly involves 

visual scoring of usually prolonged EEG/EMG recordings which indeed is a tedious task. 

So, automated scoring of sleep using computers is highly desirable in sleep research and 
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several machine learning algorithms have been developed to implement this. In 

unsupervised classification, a model finds natural partitions in the input feature space 

without the need for human supervision. Sleep is a complex phenomenon and 

incorporates dynamics that can be modeled using Markov chains. Hence, Hidden Markov 

models are appropriate models for classifying sleep. We showed that unsupervised 

HMMs estimated from EEG/EMG features can accurately predict stages of sleep in mice 

(Yaghouby et al. 2012 &2013). On average (n = 6 mice), the sensitivity of our classifier 

was 93%, 96% and 88% for NREM, REM and Wake respectively. The specificity of the 

model was correspondingly high at 90%, 96% and 98% for NREM, REM and Wake 

respectively. The unsupervised model also gave accurate estimates of metrics of sleep 

dynamics such as the % time spent in each state. Successful implementation of this model 

in epileptic animals, similar to the example shown in Chapter 7, would greatly facilitate 

analysis of sleep structure and its correlation with epileptogenesis and epilepsy. 

7.3. Noninvasive scoring of mouse sleep and behavior using a 

piezoelectric motion sensor 

Many sources of variation in sleep architecture can be explained by heredity. Thus, 

investigation of genes that contribute to normal and abnormal sleep and wake behaviors 

would improve our knowledge of mechanisms and functions of the underlying vigilance 

states. Mice are considered the best genetic models for characterizing sleep through 

large-scale screening and behavioral experiments. However, screening still requires 

expensive and labor-intensive animal experimentation with EEG/EMG analysis. We 

proposed a noninvasive technique based on a piezoelectric motion sensor for scoring 

stages of sleep and behavior in mice. Measures of broadband activity and breathing 

regularity derived from the piezo signal showed potential for automated sleep scoring 

with reasonable accuracy when fitted with an unsupervised HMM (Yaghouby et al. 2011, 

2012 and 2015b). The classifier distinguished Wake with high (89% sensitivity, 96% 

specificity) and REM with moderate (73% sensitivity, 75% specificity) accuracy, but 

NREM with poor sensitivity (51%) and high specificity (96%). The main source of error 

appeared to be the variability in breathing regularity associated with both REM and light 

NREM sleep. A supervised HMM classifier corrected the NREM-REM discrimination 
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problem and gave sensitivities of 90, 81, and 67% and all specificities above 90% for 

Wake, NREM, and REM respectively. Estimation of sleep metrics by the proposed 

model, i.e. % time spent in each state etc., was also comparable with human assessments. 

As we showed in Chapter 6, the piezo system can also be used to detect seizures and 

sleep states noninvasively. The findings of this research will open up new avenues for 

high throughput analysis of sleep or seizure phenotypes while alleviating the need for 

EEG recordings in small animals like rodents. 

7.4. Unsupervised tracking of sleep dynamics during recovery from 

brain trauma 

The ability to model and track brain dynamics from continuous physiological 

measurements will benefit investigations of related neural disorders such as brain injury 

and epilepsy. Hidden Markov models were shown to track the dynamics of sleep 

efficiently without the need for observer supervision (Yaghouby et al. 2012 and 2013). 

We applied HMMs for tracking sleep dynamics following acute brain injury in mice. 

Reestimation of HMM parameters over time provides us with useful metrics for sleep 

quality and dynamics. Such metrics can track progressive changes in behavior over time. 

The results suggested that HMMs estimated from both invasive and noninvasive signals 

could reveal peculiarities in sleep-wake dynamics. This approach can also be used to 

model and continuously track the effects of interventions such as sensory or electrical 

stimulation on mouse sleep regulation and dynamics.  

7.5. Tactile sensory stimulation for selective sleep restriction in mice 

Deeper understanding of sleep mechanisms and related disorders requires experimental 

techniques for manipulating sleep in animal models. A considerable amount of research 

has been done to propose sleep restriction systems in rodents. Each system comes with 

specific trade-offs such as implementation, adaptation, intrusiveness, stressfulness, and so 

on, that must be considered when designing an experiment to investigate a research 

question. Hence, novel techniques for experimental sleep manipulation are always of 

interest. To this end, we evaluated a promising technique for selective sleep restriction in 

mice that employs vibratory tactile stimulation triggered by automated detection of a 
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particular sleep state (in this case, REM). The effectiveness of the proposed technique in 

terms of sensitivity and specificity of real-time REM detection, the responsiveness of the 

animal to the stimulus and the chance of adaptation and getting desensitized to repeated 

stimulation were carefully evaluated and discussed (Yaghouby et al. 2014b&c). On 

average (n = 4 mice) the closed-loop sensory stimulation system consistently reduced % 

time spent and bout durations in REM. The real-time detection algorithm performed with 

high sensitivity (96%), moderate specificity (66%) and reasonable latency (7.4s) when 

compared with manual scores. Selective restriction of REM sleep in epilepsy models will 

improve our understanding of sleep-epilepsy interactions and its translatability across 

species. While REM sleep is known to prohibit seizures, its loss hasproportionally a 

greater effect on cortical excitability compared to NREM loss. On the other hand, REM 

sleep deprivation can occur as a consequence of a person's lifestyle: keeping up late hours 

and getting up early would eliminate majority of REM sleep, because the proportion of 

REM increases toward the end of sleep cycle. Repetition of such behaviors may cause a 

cumulative effect and promote seizures. Besides, understanding the effects of selective 

REM SD (totally or partially) may be useful for better adjustment of timing and dosage 

of seizure and sleep medications. 

7.6. Other applications 

The reciprocal model for sleep-seizure interactions (proposed in Chapter 1) was the base 

for different research questions addressed in this dissertation and to be explored in future 

work. One question was: “Can sleep quality be modulated to indirectly control seizure 

likelihood?” In Chapter 6 we proposed a sensory stimulation technique to alter sleep 

architecture and test the effect on seizure likelihood. A similar design, with more 

flexibility in vibration intensity, was also implemented and applied in a pilot study (not 

reported here) to restrict deep sleep in rats. The purpose of that study is to use mild tactile 

stimulation to prevent rats from awakening while reducing the amount of deep NREM 

sleep. Although this experiment is still at a preliminary stage, the effectiveness of closed-

loop sensory stimulation for deep sleep restriction has been shown in rats (Huffman et al. 

2015). 

In general, the ability to regulate sleep quality can be considered as a non-
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pharmacological therapy for sleep abnormalities. Dynamical modulation of sleep could 

also serve as a useful approach to control or reduce seizure likelihood in epilepsy. 

Besides sensory stimulation, regulation of ambient temperature can alter sleep dynamics. 

In a preliminary study we showed the ability to titrate REM and NREM sleep by 

controlling ambient temperature in mice (Abbas et al. 2015). By designing a thermostatic 

control system, we were able to adjust the ambient temperature of animal’s cage at 

certain levels and study the consequences on sleep structure. The results showed that an 

elevation in temperature will change both REM and NREM proportions and bout 

durations in sleep, which can be a useful approach for investigating the reverse of the 

effect of tactile stimulation. Both sensory stimulation and temperature regulation offer 

low-intrusive techniques to mosulate sleep and investigate outcomes.  I expect my 

research to have set the tone for further investigations whose results will have broad 

implications for the dose and timing of sleep and anti-seizure medication, and for the 

design of neuromodulation systems for individuals with epilepsy. 
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ABSTRACT 
 Clinical sleep scoring involves tedious visual review of overnight polysomnograms by a 

human expert. Many attempts have been made to automate the process by training 

computer algorithms such as support vector machines and hidden Markov models 

(HMMs) to replicate human scoring. Such supervised classifiers are typically trained on 

scored data and then validated on scored out-of-sample data. Here we describe a 

methodology based on HMMs for scoring an overnight sleep recording without the 

benefit of a trained initial model. The number of states in the data is not known a priori 

and is optimized using a Bayes information criterion. When tested on a 22-subject 

database, this unsupervised classifier agreed well with human scores (mean of Cohen's 

kappa > 0.7). The HMM also outperformed other unsupervised classifiers (Gaussian 

mixture models, k-means, and linkage trees), that are capable of naive classification but 

do not model dynamics, by a significant margin (p < 0.05).  

 

INTRODUCTION 
Sleep quality is a critical determinant of human health and performance. Clinical 

evaluation of disordered sleep involves overnight polysomnography (PSG) following 

specific guidelines [1]. A PSG recording includes electroencephalogram (EEG), 

electrooculogram (EOG), electromyogram (EMG), and other measurements, and is 
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scored by an expert in 30 s epochs into discrete vigilance states, namely wakefulness 

(Wake), rapid eye movement (REM) sleep, and non-REM (NREM, stages 1-3) sleep [2]. 

Scoring sleep is difficult and tedious. Many statistical classifiers have been developed to 

automate this process and replicate human performance [3], sometimes from a single 

EEG channel alone [4-5]; most require supervision in the form of expert heuristics or a 

statistical model derived from expert-scored training data to stage sleep; and all are used 

in essentially the same manner: i.e., by fitting a model to scored data from one set of 

subjects and validating it on out-of-sample data from another set [3-5]. This gives 

confidence that the model will work reliably on future subjects. 

Supervised classifiers are constrained by the need for (and subjectivity/variability of) 

human scoring of training data. No method to date generates a reasonable first-pass 

hypnogram from a sleep recording without supervision: i.e., without previous training. 

Even hidden Markov models (HMMs), which, strictly speaking, are unsupervised 

classifiers, are first fitted to training data in which all vigilance states are known to occur, 

and then used to score test data [6-8]. But in the naive scenario, no initial model is 

available; nor may all vigilance states occur. Here, we propose a method for using HMMs 

to score overnight sleep without the benefit of a trained classifier. While supervised 

classifiers need labeled training data, unsupervised classifiers like the HMM find natural 

partitions in data that could map signal features onto distinct hidden states. In principle, 

PSG epochs can be mapped onto vigilance states without prior training-which a 

supervised classifier cannot do. This could yield a useful first-pass score for a new 

patient, to be refined by an expert if reasonably accurate.  

Implicit in HMMs is the notion of dynamics, that the state follows a trajectory whose 

likelihood depends on the previous state at any instant. In contrast, most classifiers are 

"static", i.e., they do not incorporate context when determining state, unless subsequent 

steps filter classifier output: for instance, a minimum duration criterion, median filtering, 

exponential updating, and so on. Research on sleep dynamics suggests that human sleep 

is fairly well represented by a Markov chain model [9]. Since HMMs are built on Markov 

chains, this may explain their popularity in sleep scoring. However, other unsupervised 

but "static" classifiers (e.g., Gaussian mixture models or GMMs, k-means, k nearest 

neighbors, linkage trees, etc.) that cluster the feature space to score sleep from PSG 
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features have been investigated in the past [10-11]. Whether the assumption of Markov 

dynamics in HMMs truly translates into better predictive performance compared to other 

unsupervised static classifiers has not been verified. Here, we test a methodology for 

naive scoring of human sleep using HMMs. We also compare HMM performance with 

three unsupervised static classifiers to see if the added computational burden imposed by 

Markov dynamics is justified by classification performance. 

METHODS 
Signal features extracted from 30s epochs of overnight PSGs were modeled using four 

unsupervised classifiers: an HMM, a GMM, a k-means classifier, and a linkage tree. The 

number of states in each was optimized by an information criterion. Classification 

accuracy was assessed against expert-scored hypnograms. 

 

 

Data source and feature extraction 

This analysis is based on a Physionet database of 22 overnight expert-scored PSGs (6-9 h 

each; 100 Hz sampling) of healthy subjects (male/female, 18-79 years old, mean ~40) 

without medications [12-13]. All analysis was performed using MatlabTM (Mathworks, 

Natick, MA). The hypnograms, which mapped 30s epochs of data onto six states (NREM 

1-4, REM, and Wake) were relabeled per the current guidelines of the American 

Academy of Sleep Medicine [2] by combining NREM stages 3 and 4. Hence, each 

hypnogram contained up to five labels: N1, N2, N3 for NREM, R for REM, and W for 

Wake. The Fpz-Cz signal from each subject was bandpass-filtered into seven distinct 

frequency bands, specifically: 𝛿𝛿L (0.5-2 Hz), 𝛿𝛿H (2-4Hz), 𝜽𝜽 (4-9Hz), 𝜶𝜶 (9-12Hz), 𝝈𝝈 (12-

16Hz), 𝜷𝜷 (16-30Hz) and 𝜸𝜸 (30-45Hz) using 3rd order Butterworth IIR filters. The mean 

power in these bands was estimated in 30s epochs and combined into "sleep variable" 

ratios:  

S1 = (𝛿𝛿L + 𝛿𝛿H) / 𝜽𝜽                                                            (1) 

S2 = (𝜶𝜶 + 𝜷𝜷 + 𝝈𝝈 + 𝜸𝜸) / (𝛿𝛿L + 𝛿𝛿H + 𝜽𝜽)                              (2) 

S3 = 𝛿𝛿L / 𝝈𝝈                                                                        (3) 

Each variable is designed to emphasize contrast between EEG rhythms observed in 

different states of vigilance: S1 captures differences between N3 (strong delta) and R 
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(strong theta), S2 distinguishes N3 (low frequency) from W (broadband activity), and S3 

discriminates N2 (spindle activity). This three-dimensional vector of features was 

expressed on a logarithmic scale, which makes the observation distribution 

approximately Gaussian, and used as the input to the unsupervised classifiers to be 

evaluated. 

 

 

Modeling the data using unsupervised classifiers 

 The main aims of this analysis are: 1. To perform unsupervised sleep scoring 

using an HMM; and 2. To compare HMMs, which incorporate dynamics as Markov state 

transitions, with other unsupervised but static classifiers (GMMs, k-means clustering, and 

linkage trees) that do not have dynamics. In effect, GMMs and HMMs are parametric 

since they are based on a probability model, while k-means and linkage trees are 

nonparametric since they are based solely on proximity in the feature space.  

Gaussian mixture models. A GMM expresses the distribution of S = [S1 S2 S3]T as a 

linear mixture of Gaussians: p(S | Θ) = ∑ αk p(S | θk). Each component k corresponds to 

one of ns model states, and θk is parameterized by a mean vector and covariance matrix; 

αk is a mixing coefficient. Once ns is fixed, model parameters are determined from 

sample PSG data using maximum likelihood estimation. Assuming samples are 

independent and identically distributed, optimal parameters are those that maximize the 

function L(Θ | S1:N) = ∏ p(Si | Θ), which expresses the joint likelihood of all samples i = 

1:N. L (or more commonly, log L) is optimized via an Expectation-Maximization (E-M) 

algorithm [14], in which an initial parameter guess is iteratively refined in a way that 

local convergence is guaranteed. For each subject, we used multiple randomized seeds 

and selected the solution with largest log L. Then, we labeled each epoch by the GMM 

component that maximized its probability density.  

Hidden Markov models. An HMM is a dynamical model of a sequence or time series [15] 

that assumes each observation Sk in a sequence to be randomly drawn from a probability 

distribution conditioned on an underlying nominal state Qk. Sk is conditionally 

independent of Sk-1 given Qk. The evolution of state Qk over time follows the Markov 

property: i.e., given Qk, the distribution of Qk+1 is independent of Qk-1, Qk-2, and so on 
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[16]. Here, we model the observation density p(S | Q) as a Gaussian distribution where Q 

is one of ns discrete model states that relate to the different states of vigilance. To model 

a PSG recording using an HMM, its parameters must be fixed: namely, a set of priors π 

and emission models p(S | Q), one for each of the ns states; and a matrix of transition 

probabilities Ptr between any two states. Algorithms are available for statistical inference 

using HMMs [16] that generally involves the recursive application of Bayes rule to 

compute the probability of a sequence of emissions from an arbitrary sequence of states, 

and for decoding the most likely sequence of states given an arbitrary sequence of 

emissions (the Viterbi algorithm). An E-M variant known as the Baum-Welch algorithm 

is used to estimate HMM parameters for a sample observation sequence S1, S2,...,SN [14]; 

since the source states are not known a priori, the HMM is an unsupervised model. Since 

we have chosen a Gaussian emission model for each state, we used the GMMs described 

in the previous section as the initial guesses of the priors and observation densities of the 

HMM. Once the model is determined, the Viterbi algorithm is used to decode the 

sequence of hidden states Q0, Q1,...,QN most likely to have generated the sequence of 

emissions. As for GMMs, the likelihood L associated with the model can be computed 

for a sequence of observations. 

k-means clustering. This is a well-known unsupervised algorithm, used here to cluster 

sample vectors of sleep variables into different states. The algorithm starts with k 

randomly selected prototypes or centroids (for k states), and then associates each data 

sample with a centroid based on the Euclidean distance between them in the feature 

space. The centroids are then recomputed based on the newly determined membership of 

each state. State labels and centroids are recursively updated until convergence [17]. 

Hierarchical clustering. A linkage tree is a clustering technique that builds a hierarchy of 

clusters using a “bottom up” approach. It starts with each observation forming its own 

cluster and then merges clusters based on their proximity to each other to move up the 

tree [18]. The tree therefore contains successively smaller numbers of clusters (states) at 

each level until there is only one cluster encompassing all the data at the top. The level at 

which the tree is "cut" or terminated determines the number of states, and their 

descendants on the tree inherit their labels. 
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Figure 1. Criteria (shown for one sample subject) for selecting the number of model 

states ns that best fits the data. Left: Bayes information criterion (scaled by the dynamic 

range) passes through a minimum that determines ns for GMMs and HMMs. Right: 

Optimal ns for k-means and linkage tree classifiers is chosen as the lowest value for 

which an F-statistic representing relative variance between states exceeds 90%. 

 

Optimization of the number of classifier states  

 For an unsupervised classifier, the number of model states ns must first be 

specified. Since the optimal number of states is not known a priori, a criterion is needed 

for the value of ns that best predicts the scatter observed in the data. While a large ns may 

give a better fit, the parameter space needs to be kept manageable and overfitting 

avoided. Also, ns should be close-but not necessarily equal-to the actual number ms of 

vigilance states in the sample: some model states may be sub-states of one vigilance state 

that together determine its distribution in the feature space. 

 For the parametric classifiers (GMM and HMM), we constructed models with ns 

varying from 2 to 15 Gaussian components. Then the optimal model was chosen by using 

the Bayes information criterion (BIC) [19], which balances conflicting terms representing 

the goodness-of-fit of the model and the degrees of freedom respectively: 

BIC = -2 log L + k log n                                                 (4) 

L is the likelihood of the data given the probability model, n is the number of 

observations (i.e., epochs of data), and k is the model degrees of freedom based on the 
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total number of fitted parameters in the model. Fig. 1a demonstrates how BIC varies with 

ns in a GMM fitted to data from an arbitrary subject (blue graph) whose recording 

contained all five vigilance states (ms = 5). A GMM with ns = 6 seems optimal for this 

subject. For an HMM of the same subject's data a choice of eight model states (ns = 8) is 

deemed optimal. The excess model states turn out to be subcomponents of vigilance 

states. For the nonparametric classifiers (k-means clustering and linkage trees) there is no 

probabilistic model, so a likelihood measure cannot be defined. Instead, we specify a 

criterion inspired by the F-statistic typically used in analysis of variance. We selected the 

optimal ns as the smallest value for which the ratio R of the variance between clusters to 

the total variance crossed 90%. For the sample subject in Fig. 1b, R monotonically 

increases with ns for the k-means algorithm and crosses 90% at ns = 11. Similarly, ns = 

12 is optimal for a linkage tree classifier extracted from the same subject's data. 

 

 

 

 
Figure 2. HMM classifier output for a sample overnight sleep recording. Input features 

S1, S2, and S3 are shown below the model-generated  (black) and true (beige) hypnograms 

for the data (Cohen’s kappa = 0.8). 

Mapping the model states to vigilance states  

For each sleep record, dynamic (HMM) and static (GMM, k-means and linkage tree) 

unsupervised classifiers with ns optimized by BIC or R were constructed. The mapping 
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between model states and vigilance states is not known a priori. In fact, multiple model 

states may form sub-states of a particular vigilance state; and not all vigilance states may 

occur in a sleep record (e.g., subject never reaches N3, or the recording does not include 

W). Whichever the case, we assume that a sleep physician could quickly inspect a few 

samples of each model state and fix the true vigilance state, based on which the 

hypnogram can easily be relabeled. In our analysis, we determine the mapping from 

model states to vigilance states by computing Cohen's kappa [20], which is a widely used 

statistical measure of inter-rater agreement. Since kappa takes chance agreement between 

the nominal states into account, it is a more reliable measure than just the overall 

proportion of agreement between labels. We applied the mapping that optimized Cohen's 

kappa for each subject before assessing the performance of each classifier. 

 Assessment of classifier performance  

Classifier performance was assessed by comparing model-predicted labels against true 

hypnogram labels using conventional metrics of detection sensitivity and specificity. The 

sensitivity (expected true positive rate) of a specific vigilance state reflects the proportion 

of actual sample epochs of that state correctly identified by the classifier. Conversely, the 

specificity (expected true negative rate) for a particular state is the proportion of other 

states not wrongly classified as the state of interest. Overall model performance was 

gauged by kappa while the ability to detect specific states was assessed using sensitivity 

and specificity.  

RESULTS 
 Fig. 3 gives the performance of optimal static and dynamic classifiers on a 22-

subject database in terms of Cohen's kappa. The static classifiers appeared to have similar 

performance with kappa of about 50%, which is considered moderate agreement with 

expert sleep scores. GMMs and linkage trees performed slightly but not significantly 

better than k-means. HMMs significantly outperformed the static classifiers (p < 0.05 by 

ANOVA), with a median kappa of over 70% (substantial agreement). 

 Trends in classifier performance in terms of sensitivity and specificity for each 

vigilance state (Table I) mirrored overall agreement (kappa), with some differences. 

Linkage trees and k-means gave very similar sensitivity and specificity for all five states. 

GMMs performed significantly better overall, except for lower sensitivity and higher 
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specificity to N2, than the other static classifiers. HMMs gave comparable or significantly 

higher sensitivity and specificity for all states than any of the static classifiers. 

 

 

 

 

                   Table I. Performance of unsupervised classifiers by vigilance state. 

 
 

DISCUSSION 
In this work, we compared HMMs with multiple static classifiers for clinical sleep 

scoring. The presumptive advantage gained by the empirical Markov chain representation 

of the dynamical sleep state transitions in the HMM has never been verified, but are now 

clear. Our other goal, to propose and test a means for obtaining reasonable initial sleep 

scores for an overnight recording without a previously trained model, also appears 

feasible. In this regard, we proposed a criterion for optimizing the number of states 

modeled by the classifier from the data without a priori information. This approach 

improved classification performance compared with similar studies [6-8], which are few 

in number and presume without justification that all stages of sleep are presented in each 

recording. Since the purpose of our HMM is to generate a first-pass segmentation, a 

human expert can quickly match up the model states with conventional vigilance states 

by reviewing a random sample of each model state. Moreover, our use of three simple 

power spectral features rather than a wide range of spectral /nonlinear EEG features [3-8] 

or auxiliary EMG/EOG features [8] results in a simple but more efficient automated sleep 

scoring technique. Use of the initial band power variables did not improve classifier 

performance despite the greater dimensionality. 
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Figure 3. Overall performance of sleep classifiers assessed using Cohen's kappa (n = 22 

subjects). HMM performance is significantly better than GMM, linkage tree and k-means 

classifiers (p < 0.05). 

 

REFERENCES 
[1] A. Rechtschaffen , A. Kales, “A manual of standardized terminology, techniques 

and scoring system for sleep stages of human subjects”, CA: BI/BR, Los Angeles, 1968.  

[2] C. Iber, S. Ancoli-Israel, A. Chesson, and S.F. Quan, “The AASM manual for the 

scoring of sleep and associated events”, American Academy of Sleep Medicine, 2007. 

[3] S. Khalighi , T. Sousa, G. Pires and U. Nunes, “Automatic Sleep Staging: A 

Computer Assisted Approach for Optimal Combination of  

Features and Polysomnographic Channels”, Expert Syst Appl, vol. 40, pp.7046–7059, 

2013. 

[4] B. Koley and D. Dey, ” An ensemble system for automatic sleep stage 

classification using single channel EEG signal”, Comput Biol Med, vol. 42, pp. 1186–

1195, 2012. 

[5] L. Fraiwan, K. Lweesy, N. Khasawneh, H. Wenz and  H. Dickhaus, “Automated 

sleep stage identification system based on time–frequency analysis of a single EEG 

channel and random forest classifier”, Comput Meth Prog Bio,vol. 8, pp. 10-19, 2012.  

86 
 



[6] A. Flexer, G. Grubera and G. Dorffner , “A reliable probabilistic sleep stager 

based on a single EEG signal,” Artif Intell Med, vol. 33, 199-207, 2005. 

[7] L.G. Doroshenkov, V.A. Konyshev  and S.V. Selishchev, “Classification of 

Human Sleep Stages Based on EEG Processing Using Hidden Markov Models”, 

Biomedical Engineering, vol. 41, pp. 25-28, 2006. 

[8] S. Pan, C. Kuo, J. Zeng and S. Liang, ”A transition-constrained discrete hidden 

Markov model for automatic sleep staging”, BioMed Eng OnLine., vol. 11, 2012. 

[9] J.W. Kim, J.S. Lee, P. A. Robinson, and D.U. Jeong, ”Markov Analysis of Sleep 

Dynamics”, Phys Rev Lett, vol .102, pp.178104, 2009. 

[10] I. Gath, C. Feuerstein, and A. Geva. "Unsupervised classification and adaptive 

definition of sleep patterns". Pattern Recognition Lett, vol. 15, 977-984, 1994. 

[11] H. Escola, E. Poiseau, M. Jobert, and P. Gaillard. "Classification using distance-

based segmentation application to the analysis of EEG signals", Pattern Recognition Lett, 

vol. 12, 327-333, 1991. 

[12] A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. Ivanov, R. Mark , J Mietus, 

G. Moody , C. Peng, H. Stanley, ”PhysioBank, PhysioToolkit, and PhysioNet: 

Components of a New Research Resource for Complex Physiologic Signals”, 

Circulation, vol .101, pp. 215-220, 2000.  

[13] B. Kemp, A.H. Zwinderman, B. Tuk, H.A.C. Kamphuisen, J.J.L. Oberyé, 

”Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity 

of the EEG”, IEEE-BME vol. 47, 1185-1194, 2000. 

[14]  JA. Bilmes, “A Gentle Tutorial of the EM Algorithm and its Application 

to Parameter Estimation for Gaussian Mixture and Hidden Markov Models” International 

Computer Science Institute, 1998. 

[15] A.  Krough, “An introduction to hidden Markov models for biological 

sequences”, Computational Methods in Molecular Biology, 1998. 

[16] L.R. Rabiner, “A tutorial on hidden markov models and selected applications in 

speech recognition”, Proc. IEEE, vol. 77, 257-286, 1989. 

[17] J. B. McQueen, “Some Methods for classification and Analysis of Multivariate 

Observations”, Proceedings of 5th Berkeley Symposium on Mathematical Statistics and 

Probability 1. University of California Press. pp. 281–297, 1967. 

87 
 



[18] G. J. Székely and M. L. Rizzo, “Hierarchical clustering via Joint Between-Within 

Distances: Extending Ward's Minimum Variance Method”, J Classif, vol. 22, pp. 151-

183, 2005. 

[19] D. Posada and T.R. Buckley, “Model Selection and Model Averaging in 

Phylogenetics: Advantages of Akaike Information Criterion and Bayesian Approaches 

Over Likelihood Ratio Tests”, Syst Biol, vol. 53, pp. 793-808, 2004. 

[20] J. Cohen, “A coefficient of agreement for nominal scales”. Educ Psychol Meas, 

vol. 20, pp. 37-46, 1960. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88 
 



APPENDIX B 

 

© 2014 IEEE. Reprinted, with permission, from [Yaghouby Farid; Schildt 

Christopher J.; Donohue Kevin D.; O’Hara Bruce F.; Sunderam Sridhar. 

Validation of a Closed-Loop Sensory Stimulation Technique for Selective Sleep 

Restriction in Mice. Engineering in Medicine and Biology Society (EMBC), 2014 

Annual International Conference of the IEEE. August 26- 30, 2014]. 

 

In reference to IEEE copyrighted material which is used with permission in this 

dissertation, the IEEE does not endorse any of University of Kentucky's products or 

services. Internal or personal use of this material is permitted. If interested in 

reprinting/republishing IEEE copyrighted material for advertising or promotional 

purposes or for creating new collective works for resale or redistribution, please go 

to http://www.ieee.org/publications_standards/publications/rights/rights_link.html 

to learn how to obtain a License from RightsLink. 

 

 

 

 

 

 

 

 

 

 

89 
 



Validation of a Closed-Loop Sensory Stimulation Technique for 

Selective Sleep Restriction in Mice* 

 
Farid Yaghouby, Member, IEEE-EMBS, Christopher J. Schildt, Kevin D. Donohue, Senior 

Member, IEEE, Bruce F. O’Hara, and Sridhar Sunderam, Member, IEEE-EMBS 

Conf Proc IEEE Eng Med Biol Soc. 2014;2014:3771-74. 
DOI: 10.1109/EMBC.2014.6944444  

* This research was supported in part by National Institute of Neurological Disorders and Stroke 

grant NS083218 and Kentucky Spinal Cord and Head Injury Research Trust grant 10-5A. 

 

ABSTRACT 

Experimental manipulation of sleep in rodents is an important tool for analyzing the 

mechanisms of sleep and related disorders in humans. Sleep restriction systems have 

relied in the past on manual sensory stimulation and recently on more sophisticated 

automated means of delivering the same. The ability to monitor and track behavior 

through the electroencephalogram (EEG) and other modalities provides the opportunity 

to implement more selective sleep restriction that is targeted at particular stages of sleep 

with flexible control over their amount, duration, and timing. In this paper we 

characterize the performance of a novel tactile stimulation system operating in closed-

loop to interrupt rapid eye movement (REM) sleep in mice when it is detected in real 

time from the EEG. Acute experiments in four wild-type mice over six hours showed that 

a reduction of over 50% of REM sleep was feasible without affecting non-REM (NREM) 

sleep. The animals remained responsive to the stimulus over the six hour duration of the 

experiment. 
 

INTRODUCTION 

Since circadian and homeostatic modulation of sleep is similar across different 

mammalian species, animal models may be useful in unraveling the mechanisms of sleep 
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in humans. The use of animal models, particularly rodents, in sleep research provides 

scientists with the opportunity to investigate the genetic and neurobiological changes 

underlying sleep abnormalities.  

Total sleep deprivation (TSD) has long been used for investigating sleep regulation 

mechanisms and the effects of sleep loss.  The main effects of TSD on rodent sleep are  a 

prominent increase in electroencephalogram (EEG) slow wave activity (SWA; 0.75-4Hz 

oscillations) during non-rapid eye movement (NREM) sleep as well as theta activity (6-9 

Hz oscillations) in rapid eye movement (REM) sleep [1]. However, TSD is not an 

adequate model for interrupted sleep in humans, which does not always feature total sleep 

loss. Hence, selective sleep deprivation has been investigated in animal models and 

humans to evaluate its effects on physiology.  

Selective sleep deprivation protocols permit comparison of the roles of each state of 

sleep on behavior and cognition. Deprivation of NREM (REM) sleep is followed by 

NREM (REM) rebound during the recovery period [2]. However, deprivation of either 

state may affect the other one as well. REM sleep deprivation (REM SD) is not 100% 

selective and results in REM rebound and extensive suppression of SWA in NREM [2]. 

Manual experimental methods have been employed to target particular stages of sleep that 

may involve gentle handling [3] or cage movement [4]. To avoid the need for human 

supervision and intervention, other methods have been devised, especially for REM SD: 

for instance, the "flower pot” or “multiple platform” method, in which the animal is placed 

on a platform and falls into a basin when it becomes atonic during REM sleep. This 

method essentially deprives the animal of all REM sleep and is highly stressful [5].  

Programmable computer-controlled devices have been employed to detect sleep state 

automatically from the EEG and rouse the animal using some form of stimulation, such as 

cage shaking [6,7], a rotating disk over water [8] or a slowly rotating stir bar on the cage 

floor [9]. Automated sleep restriction may provide greater flexibility and selectivity 

compared to previous techniques, and perhaps limit the confounding effects of hormonal 

stress. However, each manipulation technique has advantages and limitations related to 

convenience, intrusiveness, cost, and efficacy. Here, we test the feasibility of a novel sleep 

restriction technique in mice. The basis of this technique is to detect the onset of a targeted 
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sleep state (REM or NREM) from EEG signals using a computer algorithm and apply 

tactile stimulation in the form of vibrations transmitted through the cage floor to rouse the 

animal. Using this system, we can implement selective sleep restriction relatively easily 

and with greater flexibility over the proportion of sleep loss. The application of our 

technique for selective REM SD in mice is described in this paper.   

METHODS 

Animals, care and protocols 

All experimental procedures in this study were conducted with the approval of the 

Institutional Animal Care and Use Committee (IACUC) at the University of Kentucky. 

The experiments were performed on adult male wild type mice (C57BL/6J, Jackson Labs), 

the most widely used inbred strain (4-6 weeks old, n = 4). Each animal was housed 

independently with 14h/10h light/dark (ambient temperature: 20 ± 2℃, humidity: 

50 ± 10%) and free access to food and water at all times. A baseline EEG recording of 6 h 

duration (1-7 P.M.) during subjective night was acquired from mice and used to tune an 

automated REM sleep detector. An experimental session was performed at a later date, at 

the same time of day and for the same duration, in which tactile stimulation was applied 

whenever REM sleep onset was detected from the EEG.  

Surgical implantation and signal acquisition 

 Electrodes for monitoring brain and muscle activity were implanted under 2.5% 

isoflurane anesthesia. A head-mounted preamplifier (8201; Pinnacle Technology, Inc, 

Lawrence, KS) was affixed directly over bregma using four miniature silver screws that 

serve as two differential cortical EEG derivations with a common reference and ground. 

Teflon-coated leads were inserted bilaterally into the dorsal neck muscle posterior to the 

skull to provide an electromyogram (EMG). Then, the animals were allowed to recover 

and adapt for two weeks before collecting data.  

Our chronic acquisition system includes tethered EEG/EMG (8206; Pinnacle Tech., 

Lawrence, KS), with a USB camera (Microsoft LifeCam VX-6000) and infrared (IR) 

illumination source to enable continuous video recording across light and dark periods. 

Input signals were digitized at 14 bits and a sampling rate of 400 Hz under software 
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control (SireniaTM, Pinnacle Tech.). A custom LabVIEWTM interface (National 

Instruments) captured video in synchrony with EEG/EMG acquisition. 

 
Figure 1. Snapshot of EEG and EMG during a NREM-REM state transition during sleep 

interrupted by a brief tactile stimulus. The animal is aroused briefly as seen from the 

elevated EMG amplitude, and then drifts back into NREM sleep. 

EEG/EMG signals were analyzed in real time using LabVIEW to detect REM sleep onset 

and trigger stimulation for REM SD. A baseline recording was first processed offline to 

tune the REM classifier. This was then used to detect REM sleep onset in real time and 

trigger the stimulation system in closed-loop. The trigger signal was recorded 

synchronously with the EEG and EMG as an additional data stream. 

Sleep scoring and REM detector training 

 Training data were selected from a baseline recording in each mouse (after 

allowing it to adapt to the recording cage for two days) to determine transition to REM 

sleep based on EEG/EMG features. The vigilance state was manually scored based on 

well-established criteria using a video-EEG viewer in 4 s epochs as Wake, REM and 

NREM. Wake is identified by low amplitude, desynchronized EEG and relatively high 

amplitude EMG. NREM stages have increasingly prominent delta (𝛿𝛿: 0.5-4 Hz) while 
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REM has a prominent theta oscillation (𝜽𝜽: 6-9 Hz) similar to activity during Wake; EMG 

amplitude is low in both REM and NREM. Hence, spectral band power estimates from 

EEG and EMG were used as features to construct an automated REM sleep detector for 

each animal. The mean power from band-pass filtered EMG (80-100 Hz) was used to 

detect low muscle tone in sleep. Within sleep, the 𝛿𝛿/𝜽𝜽 band power ratio was estimated to 

detect the onset of REM sleep. Thus, REM detection thresholds were established for both 

features using the baseline recording and manual scores. These feature thresholds were 

used to detect REM sleep onset during the REM SD experiment. 

Real time REM sleep detection and stimulation 

 REM SD experiments were performed using a closed-loop system that applies a 

vibratory tactile stimulus to the animal when REM sleep is detected. Eight equally spaced 

button-type shaftless vibration motors (No. 1638, Pololu Corporation, Las Vegas, NV, 

USA) are attached to the underside of a rubber pad on the floor of the animal's cage. Each 

motor (10 mm diameter, 2 mm thickness) vibrates with an amplitude of 0.75 g at 12,000 

r.p.m. when driven by a 3 V DC supply. The vibration is transmitted to the animal's body 

via the pad and produces tactile stimulation. A LabVIEW program calculates frequency 

band power features from EEG and EMG in 1 s epochs (4 s moving average) and 

activates the stimulation when preset thresholds on the EEG/EMG features are crossed 

indicating that REM sleep onset has been detected. The stimulation is automatically 

stopped when the state has changed and the animal is awake (see Fig. 1). Using this 

technique we were able to selectively reduce the proportion of REM sleep dramatically 

without affecting NREM sleep. The performance of the system in detecting REM sleep in 

real time and reducing its proportion was verified against manual scoring of the data from 

the experiment. 

RESULTS 

 First, we evaluate the performance of the real-time REM sleep detector for each 

animal. Then we assess the effects of closed-loop sensory stimulation on REM and 

NREM sleep. 

Assessment of real-time REM sleep detection  
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 A human scorer inspected EEG, EMG and video data for each mouse during the 

experimental stimulation phase and determined vigilance state in sequential 4 s epochs. 

The state of the stimulation trigger was not visible to the scorer. Stimulation onset and 

offset times were also extracted from the recordings. To assess the performance of real-

time REM detection in each animal, true REM incidents (bouts of continuous REM) as 

determined by visual scoring were compared against stimulation times. Numbers of the 

following events were determined for each recording: 1. True Positive (TP) detections, 

i.e., REM bouts that overlapped with stimulation onset; 2. True Negative (TN) events, 

i.e., NREM or Wake bouts (i.e., other than REM) in which stimulation was already off or 

switched off; and 3. False Positive (FP) detections, i.e., NREM or Wake epochs in which 

stimulation was activated or already on. These counts were combined into two commonly 

used performance measures: 

 

Sensitivity = TP / (TP + FN)                                            (1) 

Positive predictive value (PPV) = TP / (TP + FP)             (2) 

 

In addition, depending on the choice of threshold or time constants related to filtering and 

the 4 s resolution of manual scoring, there can be a finite delay from the true onset of 

REM to when the detector is triggered. The REM detection latency was estimated for 

each TP detection as the time between REM onset and stimulation onset. A summary of 

detector metrics is presented in Table I.  
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Figure 2. Effects of closed-loop sensory stimulation on sleep. Upper: Cumulative 

distribution function (CDF) of bout durations in each state (data pooled from all four 

mice). Lower: Comparison of mean percent time spent in each state for baseline and 

stimulation periods. Error bars represent standard error of the mean (n = 4). 

 

Performance of REM sleep restriction system 

 To study the effectiveness of closed-loop REM SD system, sleep parameters were 

estimated and compared for the baseline and experimental REM SD recordings. Visual 

scores from each animal in baseline and REM SD phases were used to estimate percent 

time spent in REM, NREM, and Wake as well as the distribution of bout duration for 

each state. In Fig. 2 (Upper) we plot the cumulative distribution of bout duration for each 

state of vigilance (data from all animals are pooled together). It shows that stimulation 

drastically reduced REM bout duration while its effect on NREM and Wake is relatively 
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small. In Fig. 2 (Lower) the mean % time spent in each state (n = 4 mice) is shown for the 

baseline and stimulation phases. The % time in NREM is almost intact while % REM is 

clearly reduced and % Wake increased. The amount of REM loss appears to be 

compensated by a gain in Wake. 

DISCUSSION 

  Sleep is a delicate and complex dynamical process. Disruption of sleep due to stress, 

injury, medication, disease, lifestyle, and environmental factors can have serious health 

consequences. Experimental manipulation of sleep can help us understand how sleep and 

health are inter-related and discover new treatments for sleep-related disorders. Many 

methods have been proposed for sleep restriction in rodents, and each one comes with 

unique trade-offsease of implementation, flexibility, stressfulness, intrusiveness, 

efficacy, arousal threshold, adaptation over timethat must be considered in selecting 

one that is appropriate for the research question under investigation. New additions to the 

arsenal of techniques for sleep manipulation are therefore always welcome. 

 In this paper a promising new technique for selective sleep restriction in mice was 

evaluated that employs vibratory tactile stimulation triggered by automated detection of a 

particular phase of sleep (in this case, REM). As with any closed-loop sleep restriction 

method, the effectiveness of this technique relies on how sensitive and selective the 

detector is to REM sleep, the responsiveness of the animal to the stimulus, and whether 

the animal is likely to get desensitized to the stimulus with repeated exposure to it over 

the course of the experiment. We consider these factors below in light of our 

experimental results. 

 The ability of our algorithm to detect REM sleep in real time is summarized in 

Table I. The sensitivity of the detector to REM sleep onset was high, over 90 %, in 3 of 4 

animals. But this is balanced by a much more moderate specificity (PPV), which ranged 

from 38 to 73 % in the same animals. (The situation is reversed in Animal 1, which had 

relatively poor detection sensitivity but high specificity.) This means that roughly one-

third to one-half of all stimulations occurred during a state other than REM (NREM or 

Wake). Since tactile stimulation does not change the animal's state when awake, the 
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slight reduction in mean NREM bout duration relative to baseline (Fig. 2 Upper) could 

have been due to these false REM detections. 

 

Table I. Evaluation of REM detection performance. 

 
Stimulation during NREM appeared to induce only brief arousal, which may explain why 

the fragmentation of NREM sleep is not accompanied by a significant reduction in % 

NREM sleep in Fig. 2 (Lower). Another possible reason for the shorter NREM bouts 

could be the brain’s homeostatic tendency to try to recover lost REM sleep as the 

protocol is continued. Metrics for Wake show a lower bout duration, which may be due 

to increased brief arousals during NREM triggered by FP stimulation, but a greater % 

Wake, which matches the reduction in % REM closely. The other detection metric in 

Table I is latency. On average it takes about 7 s (two 4 s epochs) for the detector to 

determine that the animal is in REM sleep and then deliver a stimulation pulse. A 

possible reason for this delay is the way data was scored. Brief or transitional episodes of 

REM are manually scored as REM while the detector may wait for a more distinctive 

signature of REM sleep based on EEG/EMG features and the preset thresholds on them. 

As a consequence, the protocol only affects prolonged REM bouts and ignores brief 

episodes. The reduction in median REM bout duration (Fig. 2 Upper)  compared to 

baseline (from 28 s to 4 s) supports this observation. 

 Taken together, Table I and Fig. 2 indicate that the stimulation protocol produced 

a reduction in REM sleep of over 50 % on average over a 6 h period. That REM sleep is 

not eliminated altogether may be attributed in part to the latency of detection. In this 

preliminary study, we have implemented a simple linear thresholding approach for REM 

onset detection that is very sensitive to EEG/EMG signal quality, which was poor in 
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Animal 2 and adversely affected detection specificity (PPV). Taking advantage of better 

supervised machine learning techniques, such as support vector machines or hidden 

Markov models, could improve the performance of online REM detection and thereby the 

efficacy of REM sleep restriction.  

 

Figure 3. Trends in mean hourly percent time spent in REM during  the baseline (BSL) 

and REM SD (RSD) stimulation protocol. 

 

 The effectiveness of this system was examined for selective disruption of REM 

sleep in mice in acute experiments 6 h in duration. Besides the limitations on 

performance of the detector, the animal could become desensitized and eventually 

oblivious to the stimulus depending on the frequency and duration over which it is 

applied. Fig. 3 presents the mean % time spent in REM for each consecutive hour of 

monitoring during the baseline and RSD protocols. The % time in REM is lowest (1 %) 

in the first hour and higher but relatively constant (4-6 %) over the next five hours. By 

comparison the baseline value starts at 10 %, peaks in the mid-afternoon (14 %), and 

starts to fall as the evening approaches; this is consistent with diurnal variation. It is 

logical that the achievable reduction in REM later in this period is low simply because 

the probability of its occurrence is already low under baseline conditions. In conclusion, 

the efficacy of the stimulation protocol appears to be relatively stable except in the first 

hour since the animal is naive to the stimulus at that time. This suggests that, in the acute 

experiments performed, the animal remains responsive to the stimulus without a change 
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in threshold. However, it remains to be seen whether the effect will persist with more 

frequent application over a longer monitoring period. More experimentation is under way 

to better characterize the performance and limitations of this new system for chronic 

selective sleep restriction in mice. 
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ABSTRACT 

The limitations of manual sleep scoring make computerized methods highly desirable. 

Scoring errors can arise from human rater uncertainty or inter-rater variability. Sleep 

scoring algorithms either come as supervised classifiers that need scored samples of each 

state to be trained, or as unsupervised classifiers that use heuristics or structural clues in 

unscored data to define states. We propose a quasi-supervised classifier that models 

observations in an unsupervised manner but mimics a human rater wherever training 

scores are available. EEG, EMG, and EOG features were extracted in 30s epochs from 

human-scored polysomnograms recorded from 42 healthy human subjects (18 to 79 

years) and archived in an anonymized, publicly accessible database. Hypnograms were 

modified so that: 1. Some states are scored but not others; 2. Samples of all states are 

scored but not for transitional epochs; and 3. Two raters with 67% agreement are 

simulated. A framework for quasi-supervised classification was devised in which 

unsupervised statistical models—specifically Gaussian mixtures and hidden Markov 

models—are estimated from unlabeled training data, but the training samples are 

augmented with variables whose values depend on available scores. Classifiers were 

fitted to signal features incorporating partial scores, and used to predict scores for 

complete recordings. Performance was assessed using Cohen's Κ statistic. The quasi-

supervised classifier performed significantly better than an unsupervised model and 

sometimes as well as a completely supervised model despite receiving only partial scores. 
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The quasi-supervised algorithm addresses the need for classifiers that mimic scoring 

patterns of human raters while compensating for their limitations. 

Keywords: Automatic sleep scoring, supervised, unsupervised, quasi-supervised, EEG, 

PSG, hidden Markov model, Gaussian mixture. 

INTRODUCTION 

Sleep is increasingly the subject of debate in the context of public health [1, 2]. Disorders 

of sleep [3] are not only unique in the spectrum of illnesses but also accompany and 

complicate the management of other serious neurological conditions such as epilepsy [4], 

Parkinson's [5] and Alzheimer's disease [6]. Human sleep has been dissected broadly into 

five distinct states of vigilance: Wakefulness (W), rapid eye movement or REM sleep (R), 

and non-REM sleep (N) with stages N1, N2, and N3 that reflect increasing sleep depth. 

Sleep analysis typically involves overnight monitoring in a sleep lab resulting in a 

polysomnogram: i.e., a suite of continuous measurements that may include an 

electroencephalogram (EEG), electromyogram (EMG), electrooculogram (EOG), and 

electrocardiogram (EKG), among other physiologically derived signals. The 

polysomnogram is inspected by a human expert, who labels the predominant vigilance 

state in sequential epochs, each typically 30s in duration, for the entire recording. Despite 

the adoption of detailed guidelines [7] for labeling each vigilance state by practitioners of 

sleep medicine, and continuing efforts to automate the process, scoring sleep in 

polysomnographic recordings remains a tedious and subjective exercise. Even expert 

raters can be uncertain about the presentation of certain vigilance states and may vary 

widely in their assessment of specific recordings [8]. 

Computational tools that segment sleep either look for intrinsic patterns in the data [9-11] 

to define the predominant vigilance states or model a human rater’s scoring of sample 

data and try to mimic her performance when applied to future recordings [12, 13]. These 

contrasting approaches, referred to as unsupervised and supervised classification 

respectively, are mutually exclusive; moreover, they do not explicitly address issues of 

rater uncertainty and disagreement. Here we propose a simple modification to the way 

classifiers are applied to sleep data to address three specific scenarios: 
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1. A human rater is more certain about the symptoms of some vigilance states than 

others;  

2. A rater labels all the states, but only in samples where the evidence is unambiguous; 

and 

3. One classifier needs to mimic a panel of raters with some variance in their scoring 

patterns. 

In our algorithmic solution to these distinct but related problems, a set of features 

computed from each epoch of the polysomnogram is augmented, or tagged, with a vector 

variable whose value depends on the available score(s). This sequence of score-

augmented input variables is used to train an unsupervised classifier—Gaussian mixture 

models (GMMs [14]) and hidden Markov models (HMMs [15]) are used here as 

illustrative examples—to map the continuous-valued features onto discrete vigilance 

states. Minor variations on this theme are used to address each of the scoring scenarios 

identified above and the performance of the classifier compared with appropriate 

reference methods. 

 

METHODS 

Overview 

Descriptive features were extracted from sequential signal epochs of overnight 

polysomnograms derived from an online database. For each recording, the hypnogram—

i.e., the sequence of vigilance state labels assigned by a human rater—was systematically 

modified to simulate situations in which the rater was uncertain about the identity of 

certain states or epochs. The vector time series of features was fitted to two different 

statistical classifiers, a GMM and an HMM, using a novel quasi-supervised algorithm and 

used to predict the sequence of true vigilance states. The predictions were compared 

against the hypnogram to assess the ability of the proposed algorithm to compensate for 

missing or imprecise scores, and tested on a second night's recording from each subject 

when available. The performance of fully supervised and unsupervised classifiers on the 

same data were also assessed as reference cases. 

Description of human subject data 
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This analysis is based on the Sleep EDF database [16] (available from 

www.physionet.org [17]). The database has a total of 61 overnight expert-scored PSG 

recordings from healthy individuals acquired with institutional oversight and informed 

consent. The data were collected from two different studies: 1. Sleep cassette (SC), which 

includes two successive overnight in-home recordings (except in one case) from 20 

subjects (10 male and 10 female, 25-34 years old) without any medications; and 2. Sleep 

telemetry (ST), in which PSGs were recorded in-hospital, from 22 healthy subjects (15 

female and 7 male, 18-79 years old) with mild difficulty falling asleep, for two nights, 

one after temazepam intake. However only the placebo night was available and used in 

our analysis. Besides the cohort and data acquisition methods, there are no other 

differences between the SC and ST data sets. The entire duration of each PSG (mean 

duration 8.3±1.1 h, n = 61) was used in our analysis and contains EEG (Fpz-Cz and Pz-

Oz channels), EOG (horizontal) and submental EMG signals (100 Hz sampling rate) as 

well as a hypnogram of manual scores by a trained technician. The hypnograms, which 

mapped 30s epochs of data onto six states (non-REM 1-4, REM, and Wake), were 

relabeled per the current guidelines of the American Academy of Sleep Medicine [ 7] by 

combining non-REM stages 3 and 4. Hence, each hypnogram contained up to five labels: 

N1, N2, N3 for non-REM, R for REM, and W for Wake. 

Signal feature selection and extraction 

All analysis was performed using custom-written code on the MatlabTM environment 

(Mathworks Ltd., Natick, MA). Frontal EEG (Fpz-Cz) from each subject was bandpass-

filtered into seven distinct frequency bands, specifically delta-low (0.5-2 Hz), delta-high 

(2-4 Hz), theta (4-9 Hz), alpha (9-12 Hz), sigma (12-16 Hz), beta (16-30 Hz), and gamma 

(30-45 Hz) using Butterworth IIR filters. The mean power fraction in each band was 

estimated in 30s epochs and combined into a vector of seven EEG features. The root-

mean-squared (r.m.s.) values of broadband EMG and EOG were also included to give a 

vector X of nine features for analysis. All feature values were converted to a decibel 

scale, i.e., 10 log10(∙), to make the distributions more symmetric over their dynamic 

range and less sensitive to outliers. The choice of spectral bands reflects commonly 

recognized EEG rhythms; other selections of features may be used within the same 

modeling and analysis framework. 
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Sleep scoring algorithms 

Supervised and unsupervised classification: A statistical classifier assigns sample 

measurements 𝑿 to one of 𝑁 discrete categories or classes 𝑆 ∈ {1,⋯ ,𝑁} by assuming a 

(usually parametric) statistical model of 𝑿 → 𝑆. Examples of statistical classifiers are 

linear discriminant analysis (LDA), artificial neural networks (ANN), and support vector 

machines (SVM). In order to construct the statistical model, class-labeled training 

samples are usually required to estimate the parameters, and the model is referred to as a 

supervised classifier; all the above examples belong to this category. 

Other models known as unsupervised classifiers can be used to fit models to unlabeled 

training data and predict the class membership of future observations. Such classifiers 

typically look for natural clusters in the data that may coincide with the classes of 

interest, in this case the sequence of vigilance states underlying the polysomnogram. Of 

course, the states modeled by an unsupervised classifier may not conform completely to 

an individual human rater’s perceptions of class differences and are determined by the 

measurements and features used to estimate the model parameters. But such classifiers 

can still be very useful, especially when no prior class definitions are available; common 

examples are k-means, linkage trees, GMMs, and HMMs—though some of these may be 

supervised as well. 

Here we describe a method for constructing quasi-supervised classifiers: models that tend 

to mimic a human rater’s behavior when scoring information is available but look for 

structural clues in the training data when the available scores are selectively applied or 

uncertain. To demonstrate the feasibility of this approach, we use models that rely on 

Bayesian inference, specifically GMMs and HMMs. 

Bayesian models, GMMs, and HMMs: We provide a brief overview of Bayesian models 

in the context of sleep scoring and the issues relevant to GMMs and HMMs. We 

emphasize intuition over mathematical rigor, and refer the interested reader to other 

sources for a formal theoretical treatment [14, 15, 18, 19]. 

First, we assume that the subject is always in one of 𝑁 discrete, mutually exclusive 

vigilance states 𝑆 ∈ {1,⋯ ,𝑁}, and that a vector of 𝑀 features 𝑿 = [𝑥𝑥1,⋯ , 𝑥𝑥𝑀]𝑇 ,𝑿 ∈ ℝ𝑀 

(T = transpose), is extracted from samples of the signals in a polysomnogram in 

successive windows of time (e.g., 30 s duration), so that we have a set of observations 
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𝑿1:𝑇 = {𝑿1,⋯ ,𝑿𝑇} that are made in states 𝑆1:𝑇 = {𝑆1,⋯ , 𝑆𝑇}. Each value in set 𝑆 

represents a modeled state that may—but does not necessarily—correspond directly to a 

human rater-scored vigilance state (N3, N2, etc.). At an arbitrary time 𝑡𝑡, the subject may 

be in a vigilance state 𝑆𝑡 but the state is quantified by the observation 𝑿𝑡. The classifier’s 

task is to infer 𝑆𝑡 from 𝑿𝑡 with acceptable accuracy. It is expected that there will be some 

variability and noise in the estimation of 𝑿, and this is described by a probability density 

function 𝑓(𝑿) which, when integrated over a region of 𝑿, gives a probability measure 

𝑃(𝑿). 

Since the 𝑁 states are mutually exclusive, the probability associated with an observation 

𝑿 integrates the probability that 𝑿 is observed in any of the states: i.e., 

𝑃(𝑿) = � 𝑃(𝑿 ∩ 𝑆)
𝑆

          (1) 

The probability that 𝑿 is observed, when the state is known to be 𝑆, is the conditional: 

𝑃(𝑿|𝑆) = 𝑃(𝑿 ∩ 𝑆)/𝑃(𝑆)          (2) 

where 𝑃(𝑆) represents the prior probability of state 𝑆 in the absence of information about 

𝑿. Eq. 2 is known as Bayes rule. From the above, we get an expression for the probability 

distribution of 𝑿 in terms of the conditional and prior probabilities: 

𝑃(𝑿) = � 𝑃(𝑿|𝑆)𝑃(𝑆)
𝑆

          (3) 

Starting from an observation 𝑿, we can now compute the posterior probability of state 𝑆 

as: 

𝑃(𝑆|𝑿) = 𝑃(𝑆 ∩ 𝑿)/𝑃(𝑿) = 𝑃(𝑿|𝑆)𝑃(𝑆)/𝑃(𝑿)     (4) 

A reasonable prediction of state is the one that maximizes the posterior: 

�̂� = argmax
𝑆

𝑃(𝑆|𝑿)          (5) 

A Bayesian model must assume knowledge of the conditional 𝑃(𝑿|𝑆), usually in a 

standard parametric form, in order to make predictions. The GMM is one such model 

[ 14], in which 𝑃(𝑿|𝑆) is expressed as a Gaussian distribution parameterized by a state-

dependent mean vector 𝝁𝑆 ∈ ℝ𝑁×𝑀 and covariance matrix Σ𝑆 ∈ ℝ𝑀×𝑀. Each Gaussian 

component contributes to the mixture to a degree expressed by a linear coefficient 𝛼𝑆, 

which replaces the state prior 𝑃(𝑆) in Eq. 3. A GMM constructed from sleep data would 

assume that the observation 𝑿 can be modeled as a mixture of Gaussian components, and 
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that each component corresponds to one of the known vigilance states (or perhaps their 

sub-states).  

HMMs [15] can be used to capture the evolution of a process over time and have been 

used for modeling the dynamics of sleep [10, 20-22] An HMM adds a layer of 

complexity to Eq. 3 by linking the model states to one another. The purpose is to model 

not just independent observations but the distribution 𝑃(𝑿1:𝑇) of the ordered sequence 

(i.e., time series) of observations generated by a latent state sequence 𝑆1:𝑇. In this model, 

the current state exclusively determines the distribution of future states (viz. the Markov 

property): 

𝑃(𝑆𝑡|𝑆1:𝑡−1,𝑿1:𝑡) = 𝑃(𝑆𝑡|𝑆𝑡−1)          (6) 

This quantity is known as a state transition probability; its values for all possible 

combinations of 𝑆𝑡−1 and 𝑆𝑡 constitute an 𝑁 × 𝑁 state transition matrix 𝛾, an essential 

property of the HMM. In addition to Markov transitions, the current observation is 

assumed conditionally independent of previous observations and states given the current 

state: 

𝑃(𝑿𝑡|𝑆1:𝑡,𝑿1:𝑡−1) = 𝑃(𝑿𝑡|𝑆𝑡)          (7) 

Along with a set of state priors 𝜋 = 𝑃(𝑆), fixing 𝛾 and the conditional 𝑃(𝑿|𝑆) 

completely specifies the structure of an HMM; an assumption of stationarity makes these 

properties independent of time 𝑡𝑡. In our treatment, the observation 𝑿 is multivariate 

Gaussian, and the model is therefore a Gaussian observation HMM (GO-HMM) [23]. 

The simplifying assumptions made above permit the recursive application of elementary 

rules of probability (the product rule and Bayes' theorem) to make inferences regarding 

the dynamics of the process underlying observations 𝑿1:𝑇. A common problem solved 

using HMMs is to decode the sequence of states 𝑆1:𝑇 most likely to have generated 𝑿1:𝑇. 

This is commonly accomplished using the Viterbi algorithm [15]. The algorithm is 

initialized by computing the distribution of the first observation 𝑿1 as 𝛿𝛿1(𝑆) = 𝑃(𝑿1|𝑆), 

for 𝑆 ∈ {1,⋯ ,𝑁}, and keeping track of the preceding state that maximizes the probability 

of each successive observation 𝛿𝛿𝑡(𝑆′) = max𝑆[𝛿𝛿𝑡−1(𝑆)𝛾(𝑆, 𝑆′)]𝑃(𝑿𝑡|𝑆′). At 

termination, the optimal path probability is 𝑃∗(𝑆) = max𝑆 𝛿𝛿𝑇(𝑆) and the terminal state is 

the one that maximizes 𝑃∗(𝑆). We can now backtrack along the sequence 𝛿𝛿𝑡 to identify 

the most likely predecessor at each step and recover the best state sequence 𝑆1:𝑇. 
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GMM and HMM parameters are estimated from training data using maximum likelihood 

(ML) techniques. In ML estimation [18], a likelihood function 𝐿 is defined as the joint 

probability density of a set 𝑿1:𝑇 of independent and identically distributed observations 

for the chosen model with parameter set Θ (e.g., Θ = {𝛼𝑆,𝝁𝑆, Σ𝑆} for a GMM): 

𝐿(Θ|𝑿1:𝑇) = 𝑃(𝑿1:𝑇|Θ) = � 𝑃(𝑿𝑡|Θ)
T

t=1
          (8) 

Taking the logarithm on both sides converts the product into a sum over the sample data: 

log 𝐿 = � 𝑃(𝑿𝑡|Θ)
T

t=1
          (9) 

The likelihood function 𝐿 expresses the parameters as a function of the fixed 

observations. ML estimation proceeds by taking the partial derivative of  

log 𝐿 with respect to each parameter, equating it to zero, and solving the resulting system 

of equations for the unknown parameters Θ that maximize log 𝐿 (hence the name ML). 

When labeled training data exist, ML estimates of GMM and HMM parameters are 

relatively easy to derive and compute: for instance, the ML estimate of the true mean of 

state 𝑆 is merely the arithmetic average of independent training samples labeled as 𝑆 by a 

human rater; similarly for the covariance matrices, state priors, and transition matrix. 

If no labeled training data are available, the observations become related to the 

parameters through hidden variables (the states 𝑆1:𝑇) apart from the unknowns Θ, and we 

have: 

log 𝐿 = � 𝑃(𝑿𝑡, 𝑆𝑡|Θ)
T

t=1
          (10) 

with unknowns on either side of the conditional. This is often intractable, since log 𝐿 

must now be maximized over all possible state paths for 𝑆1:𝑇 to determine the correct 

maximum. One solution to this problem is to use an E-M algorithm (for Expectation-

Maximization) [18]. E-M is an iterative process that converges to a local maximum when 

given an initial guess of the model parameters. In order to avoid getting trapped in a local 

trough, several initial guesses within the search space are tested and the solution with 

greatest likelihood is selected. A popular version of E-M used for HMMs is the Baum-

Welch algorithm [15]. 

A framework for quasi-supervised classification: We have seen how GMMs and HMMs 

can be estimated and used to predict state when labeled or unlabeled training data are 
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available. Though such models are widely used, there are no methods to address 

situations in which sample scores are limited or uncertain. Here we propose a simple 

method for building quasi-supervised classifiers that use partial scores to stage sleep. 

Consider a scored polysomnogram from which a sequence of labeled observations 𝑿1:𝑇 is 

derived. Let each 𝑿1:𝑇 be augmented with another vector 𝒆 = [𝑒1,⋯ , 𝑒𝐾]𝑇so that  

𝒁𝑇 = [𝑿𝑇𝒆𝑇]  ⟹ 𝒁 ∈ ℝ𝑀+𝐾          (11) 

where 𝐾 is the number of unique states labeled by the human rater (in the hypnogram). 

For instance, 𝐾 = 3 if the rater labels R and W but does not distinguish between N1, N2, 

and N3 in non-REM sleep.  

Just as for 𝑿1:𝑇, we can model 𝒁1:𝑇 as an N-state GMM with parameters Θ = {𝛼𝑆,𝝁𝑆, Σ𝑆} 

by initializing the parameters with randomized seeds and following the E-M algorithm 

until it converges to the solution with greatest likelihood. The 𝑁 modeled states are not 

necessarily identical to the 𝐾 states scored by the rater. They must be selected by the user 

to suit the problem at hand. This flexibility is important in different scoring scenarios, as 

we will see below. Finally, the values in 𝒆 are chosen based on the state label 𝑆𝑡 assigned 

by a human rater to each observation 𝑿𝑡.  

Let us start with 𝐾 = 5 vigilance states (for N3, N2, N1, R, and W) scored from a 

polysomnogram in 30 s epochs. The time series 𝑿1:𝑇 extracted from the signals can be 

fitted using an E-M algorithm to a GMM or HMM with 𝑁 = 5 states. If the value of 𝒆𝑡 is 

uncorrelated with 𝑆𝑡 (for instance, always a zero vector), then the E-M algorithm simply 

yields an unsupervised classifier that optimizes the fit of the model to the observed data. 

If, on the other hand, 𝒆𝑡 bears some correlation to the scored state 𝑆𝑡, we can expect the 

model to tend toward the human rater's scoring patterns. But 𝑆 is a categorical variable, 

and therefore incompatible with 𝑿 in the augmented vector 𝒁. So what form should 𝒆 

take?  

Recall that 𝑆 takes on values from {1,⋯ ,𝐾}. Let us define 𝒆 so that: 

𝑒𝑗 = � 1 if 𝑆 = 𝑗
0 otherwise

 , 𝑗 ∈ {1,⋯ ,𝐾}          (12) 

Each state 𝑆 is now identified by a unit vector 𝒆 in 𝐾 dimensions. It follows that for two 

observations at times 𝑡𝑡 and 𝑡𝑡′: 

𝒆𝑡𝒆𝑡′ = �1 if 𝑆𝑡 = 𝑆𝑡′
0 otherwise

          (13) 
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That is, the set of values assumed by 𝒆 form an orthogonal basis. This lets us incorporate 

the state label 𝑆, a categorical variable, into the quantitative description 𝑿 of a sample 

without otherwise altering its properties or imposing an artificial ordering on the states. 

Adopting this definition for 𝒆 in Eq. 11, intuition tells us that if 𝑿 is now set to zero, the 

E-M algorithm will cluster the data strictly on the basis of scores 𝑆𝑡—in effect, a 

supervised classifier. Observations augmented with similar tags 𝒆 will cluster since they 

are closer to each other in the augmented feature space ℝ𝑀+𝐾 than in ℝ𝑀; by the same 

logic, samples with unlike tags are farther apart and less likely to form a cluster. Hence 

tagging the training samples makes an unsupervised classifier behave like a supervised 

one. If the tags are excluded in the training step (or all set to be identical), the E-M 

algorithm converges to the unsupervised model. The tags incorporate the knowledge and 

intuition of a human rater into the parameter estimation. While the unsupervised and 

supervised asymptotes are illustrative and set bounds on the resulting model, it is 

situations where only partial scoring information is available that determines the utility of 

the quasi-supervised algorithm. 

To conclude, the algorithm proceeds as follows (see Fig. 1): Available categorical scores 

𝑆 are transformed into vector “tags” 𝒆 of length equal to the number of scored vigilance 

states 𝐾. The tags are attached to the vector of training observations 𝑿 to give augmented 

input variables 𝒁. Starting with randomized initial guesses for the model parameters, a 

GMM or HMM is estimated from 𝒁 using the appropriate E-M algorithm with the desired 

number of states N specified. After stripping entries corresponding to the tag 𝒆 from 

parameters 𝝁𝑆 and Σ𝑆, the model is then used to predict the state in epochs for which 

scores are unavailable or uncertain based on un-augmented observations 𝑿 (i.e., not 𝒁). 

This approach is quasi-supervised in that model parameters are estimated using exactly 

the same methods as for unsupervised classifiers—except that the samples are tagged 

with a score-based vector—but converges to a strictly supervised classifier when 

complete  scoring information is incorporated into the training data. The choice of score 

tags 𝒆 is critical and can be tailored to address different typical scoring scenarios, as 

illustrated below. 
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Figure 1. Flow diagram for quasi-supervised classification. A vector 𝑿 of 𝑀 features is 

computed from each epoch of a polysomnogram. The sleep score 𝑆 is converted into a 

unit vector 𝒆 whose length depends on the number 𝐾 of states scored by the rater. 𝑿 is 

augmented with 𝒆 to give 𝒁, the input to an E-M algorithm, which estimates the 

parameters of the GMM or HMM that maximizes the likelihood that a model with 𝑁 ≥ 𝐾 

states explains the data. The excess dimensions are removed from the mean vector 𝝁𝑆 and 

covariance matrix Σ𝑆 of each state in the model. The model is then used to classify new 

unlabeled inputs 𝑿, or the same data in which only 𝐾 states were previously labeled, into 

𝑁 states. 

 

Analysis procedure 

The general procedure followed for analysis is common for Problems 1 to 3 below except 

where noted. First, surrogates were prepared from the available hypnograms based on the 

requirements of each problem. Then samples of the observation vector 𝑿 were augmented 

with a scoring vector 𝒆 chosen from one of 𝐾 unique values corresponding to the states 
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scored on the surrogate hypnogram (Fig. 1). The number of states, 𝑁, to be modeled was 

fixed and the score-augmented variables used to estimate GMM and HMM parameters 

through an E-M algorithm. The models were used to predict the sequence of vigilance 

states in each polysomnogram and on a second night's data when available. Performance 

was assessed in terms of Cohen's Κ statistic [24], which measures the agreement in 

categorical scores on a sample scored by two independent raters. Κ was used here to 

assess concordance between the model predictions and true hypnogram, separately for 

each vigilance state and then for all states pooled together. These metrics were compared 

for the quasi-supervised method against reference methods in which the same algorithm 

was applied, but in a completely unsupervised (no tags) and completely supervised (unit 

basis vector tags used for all five states: 𝐾 = 5). This is intended to help evaluate the 

extent to which the quasi-supervised classifier is able to compensate for incomplete score 

information in the training data. Since each polysomnogram is analyzed independently by 

the three algorithms, differences in Κ for the cohorts (same night and second night) were 

investigated using a Wilcoxon sign rank test separately for the quasi-supervised classifier 

versus the unsupervised and supervised classifiers respectively. In each comparison, a 

false positive probability 𝑝 under 0.01 was considered statistically significant. 

Problem 1: Human rater is uncertain about certain vigilance states. Here we consider 

the situation in which the rater is confident of identifying some states but not others. For 

instance, she is sure of the distinction between W, R, and N, but not stages of N, i.e., N1, 

N2, and N3. Hence labels are not available for three of the five states and completely 

supervised classification is not possible. On the other hand, unsupervised classification 

does not take advantage of the available scores for W, R, and N. In our quasi-supervised 

approach, we collapse stages of N into one label on the hypnogram (𝐾 = 3), and tag W, 

R, and N with unit vectors 𝒆 (specifically [1 0 0]𝑇 for N, [0 1 0]𝑇 for R, and [0 0 1]𝑇 for 

W) but fit the data to a GMM or HMM with 𝑁 = 5 since we wish to recover all the 

vigilance states. The expectation is that W, R, and N will be separated by the E-M 

algorithm based on their disparate tags, but that three natural partitions or sub-states 

corresponding to N1, N2, and N3 will be required to adequately fit the model to samples 

of 𝑁 based on the distribution of 𝑿. 

114 
 



We test the utility of this approach in situations where the rater does not distinguish 

between the following states: I. N1, N2, and N3; II. N1 and W; III. W and R; IV. N1 and 

N2; and V. N1 and R. These choices reflect typical sources of confusion faced by human 

raters in scoring sleep [ 8,  33,  40]. 

Problem 2: Human rater scores all vigilance states, but only labels epochs with clear 

manifestations. Suppose that the rater labels samples of all five vigilance states, but only 

those epochs for which he is sure of the predominant state. This can happen at the 

transitions between different states or in the presence of artifacts. We simulate this 

situation by deleting the scores from three successive epochs at each state transition in the 

hypnogram. In the solution, the score tags e are set to orthogonal unit vectors of length 

𝐾 = 5 but to a zero vector for unscored epochs. In the modeling step, as in Problem 1, we 

specify 𝑁 = 5 states. Since 𝒆 for unscored epochs is equidistant from all the unit vector 

tags in ℝ𝐾, the E-M algorithm allocates scored epochs to the five states according to the 

tag 𝒆, but distributes the unlabeled epochs among these states based on 𝑿. 

Problem 3: Two or more raters score a polysomnogram and one model is to be trained, 

but there is some level of disagreement between them. Here, each rater produces a 

hypnogram but there is only one sequence of observations to be modeled. Since only one 

rater's scores were available for each recording, we simulated a scenario in which two or 

more human raters disagree about one-third of the time by generating surrogate 

hypnograms in which 33% of randomly selected epochs had their scores deleted. The 

quasi-supervised classifier was then used to complete the scores and its performance 

evaluated against the original hypnogram. While this is not strictly identical to the case of 

inter-rater disagreement, it is expected that it is a reasonable simulation of that scenario.  

 

RESULTS 

Table I summarizes the incidence of states N1, N2, N3, R, and W in each hypnogram in 

terms of the number of 30 s epochs and the percent time spent in that state. Results of 

analysis for Problems 1, 2, and 3 using HMMs are presented in Tables II-IV. The 

corresponding results obtained using GMMs are presented in the Supplement and are 
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referred to as Tables S1, S2, and S3. The performance of HMMs was consistently better 

than GMMs, with the same trends being observed in different scenarios. 

Problem 1. Only some vigilance states are scored by the human rater 

Tables II and S1 give the performance of the quasi-supervised algorithm in terms of 

Cohen's Κ, compared to completely unsupervised and supervised implementations, for a 

GMM and HMM. Results are presented separately for each state and finally for all states 

together. Four different scenarios are explored in which some of the vigilance states were 

assigned identical scores to simulate scoring uncertainty: Case I. N1, N2, and N3; Case II. 

N1 and W; Case III. W and R; and Case IV. N1 and N2. Each entry in the table represents 

Cohen's Κ averaged over 42 overnight PSGs along with the standard error of the mean. 

Table 1 Distribution of sleep states per PSG 

State 
First night 

(n = 42) 

Second night 

(n = 19) 

State Epochs % Time Epochs % Time 

N3 146±12 15±1 149±17 16±2 

N2 445±20 45±2 460±33 45±2 

N1 79±7 8±1 61±8 6±1 

R 188±9 19±1 188±13 18±1 

W 127±10 13±1 153±9 15±1 

All values reported as mean±standard error. 

 

In general—with a few exceptions for individual states—the proposed quasi-supervised 

classifier performs significantly better in terms of Κ than the unsupervised model but not 

as well as the completely supervised model, which represents the maximum attainable 

performance when complete scoring information is available. When all states are 

considered, Κ for the quasi-supervised classifiers is within the 60-80% range, which is 
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thought to indicate excellent agreement [25]; in fact, Κ of 80% for five states in equal 

proportion would mean perfect agreement, which is highly unlikely in practice. In 

contrast, Κ for the unsupervised classifiers is close to 50% in all cases, i.e., moderate 

agreement. 

The HMM almost always outperformed the GMM but only by a small margin. When 

examining the predictions for each hypnogram, the difference was attributed to noise 

fluctuations in the GMM predictions that are smoothed by the HMM, which optimizes 

the entire sequence rather than the state in each epoch without context (see Fig. 2). 

Table 2 HMM classifier accuracy 𝝹𝝹a for Problem 1 (first night PSG; n = 42). 

 Scenario: 

I 

(N1, N2, 

N3 pooled) 

II 

(N1 and W 

pooled) 

III 

(W and R 

pooled) 

IV 

(N1 and 

N2 pooled) 

V 

(N1 and R 

pooled) 

 Unsupervised 63±4
* 64±3 64±3 64±3 64±3 

N3 
Quasi- 

supervised 
60±4 73±4 75±4 76±4 73±4 

 Supervised 83±2 83±2 83±2
† 83±2

† 83±2 
 Unsupervised 51±2

* 51±2 50±2 51±2 49±2 

N2 
Quasi- 

supervised 
57±3 70±2 73±2 69±2 69±2 

 Supervised 82±1 82±1 82±1 82±1 82±1 
 Unsupervised 14±3 16±3

* 14±3 16±3 13±3 

N1 
Quasi- 

supervised 
35±4 22±4 52±4 34±4 6±3 

 Supervised 66±2 66±2 66±2 66±2 66±2 
 Unsupervised 59±3 58±4 57±3 60±3 57±3 

R 
Quasi- 

supervised 
90±1 89±1 68±4 91±1 74±2 
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 Supervised 90±1
† 90±1

† 90±1 90±1
† 90±1 

 Unsupervised 51±4 50±5 51±5
* 49±5 51±4 

W 
Quasi- 

supervised 
81±2 62±5 46±6 80±3 79±3 

 Supervised 87±1 87±1 87±1 87±1 87±1 
 Unsupervised 50±2 50±2 49±2 50±1 49±1 

All 
Quasi- 

supervised 
65±2 68±2 68±2 73±2 65±2 

 Supervised 83±1 83±1 83±1 83±1 83±1 
aCohen's kappa (mean± standard error). *Quasi-supervised model is not significantly different (p > 0.01) 

from unsupervised model according to a Wilcoxon sign rank test (matched samples). †Quasi-supervised 

model is not significantly different (p > 0.01) from supervised model according to a Wilcoxon sign rank 

test (matched samples). 
 

Table S1 GMM classifier accuracy 𝝹𝝹a for Problem 1 (first night PSG; n = 42). 

 Scenario: 

I 

(N1, N2, 

N3 pooled) 

II 

(N1 and W 

pooled) 

III 

(W and R 

pooled) 

IV 

(N1 and 

N2 pooled) 

V 

(N1 and R 

pooled) 

 Unsupervised 63±3
* 64±3 64±3 64±3 63±3 

N3 
Quasi- 

supervised 
60±4 75±4 77±3 77±3 75±4 

 Supervised 82±1 82±1
† 82±1

† 82±1
† 82±1

† 
 Unsupervised 49±2

* 49±2 49±2 49±2 48±2 

N2 
Quasi- 

supervised 
54±2 67±3 69±3 64±2 64±3 

 Supervised 81±1 81±1 81±1 81±1 81±1 
 Unsupervised 13±3 14±3

* 14±3 15±3 13±3
* 
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N1 
Quasi- 

supervised 
30±3 21±4 50±4 31±3 2±2 

 Supervised 62±2 62±2 62±2 62±2 62±2 
 Unsupervised 54±3 54±3 53±3

* 54±3 53±3 

R 
Quasi- 

supervised 
85 ±1 85±1 62±5 85±1 71±2 

 Supervised 86 ±1
† 86±1 86±1 86±1

† 86±1 
 Unsupervised 52±4 52±4

* 52±4
* 50±4 52±4 

W 
Quasi- 

supervised 
81±2 58±5 47±6 79±3 77±3 

 Supervised 85±1
† 85±1 85±1 85±1

† 85±1 
 Unsupervised 48±2 48±2 48±2 48±1 47±2 

All 
Quasi- 

supervised 
63±2 65±2 65±2 69±2 61±2 

 Supervised 81±1 81±1 81±1 81±1 81±1 
aCohen's kappa (mean± standard error). *Quasi-supervised model is not significantly different (p > 0.01) 

from unsupervised model according to a Wilcoxon sign rank test (matched samples). †Quasi-supervised 

model is not significantly different (p > 0.01) from supervised model according to a Wilcoxon sign rank 

test (matched samples). 
In each of the four case studies of selective scoring examined, the quasi-supervised 

classifier significantly improved on the unsupervised model for states that were not 

scored (in the surrogate hypnogram), but not to the extent that it matches the supervised 

model; for the scored states however, the quasi-supervised classifier rivals the supervised 

classifier in performance. This indicates that the proposed algorithm is able to track the 

human rater when scores are available but can still uncover the unscored states by 

modeling variability in the observed data. Fig. 2 illustrates this using a spectrogram 

derived from a sample polysomnogram. Although the scores used to construct the quasi-

supervised models did not differentiate between N1, N2, and N3, the GMM and HMM 

are both able to recover the scores for these states quite well, thus saving the human rater 
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the inconvenience of having to make these distinctions. Κ appeared to be relatively low 

for N1, even for the supervised classifier, in all four case studies. This is easily explained 

by the very low incidence of N1 in the data (see Table I), which means that there are few 

samples for any of the classifiers to train on or distinguish from the other vigilance states. 

In truth, stage N1, occurring at the transition between W and N2, is notoriously hard to 

distinguish. While W is more easily characterized by elevated muscle tone and active 

EOG, and N2 displays distinctive transients such as sleep spindles and K complexes, N1 

is in a gray area that human raters find hard to demarcate. These factors taken together 

contribute to the poor classification performance on N1. A second night's recording was 

available in 19 of the 42 subjects analyzed. For these subjects, Tables III and S2 give the 

performance of each classifier trained on the first night of recording but applied blind to 

data from the second night. Unlike Tables II and S1, which represents a composite of 

performance with and without scoring information on the same data set, the results in 

Tables III and S2 are strictly derived from out-of-sample classification. As expected, Κ 

for all states together was lower for all three approaches, unsupervised, quasi- and 

supervised while following similar trends to those noted in Tables II and S1 when 

comparing scored versus unscored states and GMMs versus HMMs. Κ for the quasi-

supervised classifier was close to 60%, which is lower than in Tables II and S1 but still 

acceptable, especially when considering that Κ for the unsupervised classifier now dwells 

close to 45%; nor is the supervised classifier that much better at 65-70%. 
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Figure 2. Automatic sleep scoring when only some states are labeled by the human rater 

in the training data (Problem 1). The figure shows a 3 h sample (starting at 2 a.m.) from a 

spectrogram , i.e., the distribution of signal power in decibels (dB) by frequency over 

time, computed for an 8 h recording in 30 s epochs of EEG from Fpz-Cz. Overlaying the 

image are staircase plots of the True five-state hypnogram (thin line); the surrogate three-

state hypnogram (thick line), which does not differentiate between N1, N2, and N3; and 

the hypnograms predicted by the quasi-supervised GMM and HMM, which were trained 

using input features augmented with a score vector derived from the surrogate 

hypnogram. A comparison of model predictions with the true hypnogram shows that the 

GMM and HMM are able to reconstruct the unlabeled states with reasonable accuracy 

even as they track the human rater's scores of the labeled states. The HMM is less 

susceptible to noise fluctuations than the GMM, resulting in slightly better performance. 

 

Table 3 HMM classifier accuracy 𝝹𝝹a for Problem 1 (second night PSG; n = 19). 

 Scenario: 

I 

(N1, N2, 

N3 pooled) 

II 

(N1 and W 

pooled) 

III 

(W and R 

pooled) 

IV 

(N1 and 

N2 pooled) 

V 

(N1 and R 

pooled) 

 Unsupervised 58±7
* 59±6 59±6 57±7

* 56±7
* 
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N3 
Quasi- 

supervised 
59±6 74±5 72±5 69±6 67±5 

 Supervised 76±4 76±4
† 76±4

† 76±4
† 76±4

† 
 Unsupervised 44±5

* 46±5 47±5 44±5 46±6 

N2 
Quasi- 

supervised 
55±4 66±4 66±3 62±4 65±4 

 Supervised 72±3 72±3
† 72±3

† 72±3 72±3
† 

 Unsupervised 8±3
* 7±3

* 6±3 6±3
* 7±3

* 

N1 
Quasi- 

supervised 
18±5 15±5 26±5 14±4 4±3 

 Supervised 23±5
† 23±5

† 23±5
† 23±5

† 23±5 
 Unsupervised 41±7 40±7 39±7 40±7 40±7 

R 
Quasi- 

supervised 
62±7 67±5 58±6 67±6 59±6 

 Supervised 69±6
† 69±6

† 69±6 69±6
† 69±6 

 Unsupervised 54±6 51±7
* 54±6

* 56±5 57±5 

W 
Quasi- 

supervised 
65±5 63±5 55±7 71±5 71±5 

 Supervised 74±5
† 74±5 74±5 74±5

† 74±5
† 

 Unsupervised 44±4 44±4 45±4 44±3 45±4 

All 
Quasi- 

supervised 
56±3 63±3 61±3 62±3 60±3 

 Supervised 69±3 69±3
† 69±3

† 69±3 69±3 
aCohen's kappa (mean± standard error). *Quasi-supervised model is not significantly different (p > 0.01) 

from unsupervised model according to a Wilcoxon sign rank test (matched samples). †Quasi-supervised 

model is not significantly different (p > 0.01) from supervised model according to a Wilcoxon sign rank 

test (matched samples). 
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Table S2 GMM classifier accuracy 𝝹𝝹a for Problem 1 (second night PSG; n = 19). 

 Scenario: 

I 

(N1, N2, 

N3 pooled) 

II 

(N1 and W 

pooled) 

III 

(W and R 

pooled) 

IV 

(N1 and 

N2 pooled) 

V 

(N1 and R 

pooled) 

 Unsupervised 61±6
* 60±6

* 58±5 58±6
* 59±6

* 

N3 
Quasi- 

supervised 
60±6 69±6 71±5 71±5 66±6 

 Supervised 75±4 75±4
† 75±4

† 75±4
† 75±4

† 
 Unsupervised 46±5

* 44±5 44±5 43±5
* 46±5

* 

N2 
Quasi- 

supervised 
49±3 63±4 64±3 57±3 63±3 

 Supervised 70±3 70±3
† 70±3

† 70±3 70±3
† 

 Unsupervised 8±3
* 8±3

* 7±3 9±3
* 9±3

* 

N1 
Quasi- 

supervised 
14±4 13±4 23±4 11±4 1±2 

 Supervised 25±4 25±4 25±4
† 25±4

† 25±4 
 Unsupervised 41±6 37±7 38±6

* 40±6 39±6 

R 
Quasi- 

supervised 
64±5 63±5 53±6 64±5 57±5 

 Supervised 63±5
† 63±5

† 63±5 63±5
† 63±5 

 Unsupervised 53±5 52±5
* 53±6

* 54±5 55±5 

W 
Quasi- 

supervised 
69±5 65±4 54±6 71±4 72±4 

 Supervised 71±4
† 71±4

† 71±4 71±4
† 71±4

† 
 Unsupervised 45±3 43±3 43±3 44±3 45±3 
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All 
Quasi- 

supervised 
54±3 60±2 58±3 59±3 58±3 

 Supervised 67±3 67±3
† 67±3

† 67±3 67±3
† 

aCohen's kappa (mean± standard error). *Quasi-supervised model is not significantly different (p > 0.01) 

from unsupervised model according to a Wilcoxon sign rank test (matched samples). †Quasi-supervised 

model is not significantly different (p > 0.01) from supervised model according to a Wilcoxon sign rank 

test (matched samples). 

Problem 2. Only some epochs are scored, but for all vigilance states 

Results for Problem 2 are presented in Tables IV and S3. The overall performance of the 

quasi-supervised classifier is somewhat improved by a few points relative to Problem 1 

for the first night analysis as well as for the second night, which is completely out-of-

sample data. This is to be expected since sample scores are available here for all five 

vigilance states (except at the transitions between states) and the algorithm is not forced 

to come up with its own definitions. Of course, the unsupervised and supervised 

classifiers perform about the same as before since the scoring information provided to 

them is unchanged. From the spectrogram in Fig. 3, it can be seen that the model appears 

to fill in the missing scores at the transitions between states in a reasonably satisfactory 

manner. 

Problem 3. One classifier must be constructed based on the sample scores of multiple 

raters 

Tables 4 and S3 also summarize results for Problem3. The performance of the GMM and 

HMM classifiers for in-sample and out-of-sample data is very similar to that obtained for 

Problem2. It shows that even when a full third of the data is left unscored, the model is 

still capable of filling the blanks with reasonable accuracy. 
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Figure 3. Automatic sleep scoring when all states are labeled by the human rater, but not 

for all epochs in the training data (Problem 2). The figure shows a 3 h sample (starting at 

2 a.m.) from a spectrogram , i.e., the distribution of signal power in decibels (dB) by 

frequency over time, computed for an 8 h recording in 30 s epochs of EEG from Fpz-Cz. 

Overlaying the image are staircase plots of the True five-state hypnogram (thin line); the 

surrogate five-state hypnogram (thick line), in which scores are deleted for three 

successive epochs at each state transition; and the hypnograms predicted by the quasi-

supervised GMM and HMM, which were trained using input features augmented with a 

score vector derived from the surrogate hypnogram. A comparison of model predictions 

with the true hypnogram shows that the GMM and HMM are able to track changes in 

vigilance state across state transitions. 
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Table 4 HMM classifier accuracy 𝝹𝝹a  for Problem 2 and Problem 3 

  Problem 2 Problem3 

  First night 

PSG 

(in-sample 

test; n = 42) 

Second night 

PSG 

(out-of-sample 

test; n = 19) 

First night 

PSG 

(in-sample 

test; n = 42) 

Second night 

PSG 

(out-of-sample 

test; n = 19) 

 Unsupervised 63±3 57±6
* 64±4 62±4 

N3 
Quasi- 

supervised 
73±4 66±7 73±4 74±3 

 Supervised 83±2 76±4
† 83±2 80±2 

 Unsupervised 50±2 46±5 50±2 51±3 

N2 
Quasi- 

supervised 
75±2 71±3 77±1 72±3 

 Supervised 82±1 72±3
† 82±1 77±2 

 Unsupervised 12±3 9±4 13±3 8±2 

N1 
Quasi- 

supervised 
36±4 18±4 35±4 24±4 
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 Supervised 66±2 23±5
† 66±2 45±4 

 Unsupervised 58±3 39±7 59±3 52±4 

R 
Quasi- 

supervised 
88±1 66±6 81±3 70±4 

 Supervised 90±1 69±6
† 90±2 80±3 

 Unsupervised 51±4 56±6
* 53±4 61±4 

W 
Quasi- 

supervised 
73±3 64±5 66±5 73±4 

 Supervised 87±1 74±5 87±1 83±3 
 Unsupervised 49±2 45±4 50±1 50±3 

All 
Quasi- 

supervised 
74±1 64±3 74±1 69±3 

 Supervised 83±2 69±3 83±1 77±3 
aCohen's kappa (mean± standard error). *Quasi-supervised model is not significantly 

different (p > 0.01) from unsupervised model according to a Wilcoxon sign rank test 

(matched samples). †Quasi-supervised model is not significantly different (p > 0.01) from 

supervised model according to a Wilcoxon sign rank test (matched samples). 

 

Table S3 GMM classifier accuracy 𝝹𝝹a  for Problem 2 and Problem 3 

  Problem 2 Problem3 

  First night 

PSG 

(in-sample 

Second night 

PSG 

(out-of-sample 

First night 

PSG 

(in-sample 

Second night 

PSG 

(out-of-sample 
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test; n = 42) test; n = 19) test; n = 42) test; n = 19) 

 Unsupervised 63±3 58±5
* 63±3 63±4 

N3 
Quasi- 

supervised 
73±4 62±7 68±4 71±3 

 Supervised 82±1 75±4
† 82±1 80±2 

 Unsupervised 49±2 44±5 49±2 50±3 

N2 
Quasi- 

supervised 
73±2 67±3 70±2 66±3 

 Supervised 81±1 70±3
† 81±1 75±2 

 Unsupervised 13±3 10±4
* 14±3 8±2 

N1 
Quasi- 

supervised 
32±4 16±3 25±4 17±3 

 Supervised 62±2 25±4
† 62±2 44±4 

 Unsupervised 54±3 39±6 53±3 48±4
* 

R 
Quasi- 

supervised 
82±1 60±6 69±3 54±4 

 Supervised 86±1 63±5
† 86±1 76±3 

 Unsupervised 50±4 52±6
* 52±4

* 61±3
* 

W 
Quasi- 

supervised 
70±3 65±4 62±5 65±4 

 Supervised 85±1 71±4
† 85±1 80±2 

 Unsupervised 48±2 44±3 48±1 49±3 
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All 
Quasi- 

supervised 
71±2 60±2 66±1 61±3 

 Supervised 81±1 67±3 82±1 75±3 
aCohen's kappa (mean± standard error). *Quasi-supervised model is not significantly 

different (p > 0.01) from unsupervised model according to a Wilcoxon sign rank test 

(matched samples). †Quasi-supervised model is not significantly different (p > 0.01) from 

supervised model according to a Wilcoxon sign rank test (matched samples). 

 

DISCUSSION 

Computerized sleep scoring is desirable because with it comes the prospect of objective, 

data-driven segmentation of vigilance states that can consistently be applied to get 

reproducible output. Unsupervised sleep scoring has been pursued almost since the 

advent of digital EEG. The earliest efforts encoded heuristics used by experts in their 

visual analysis to process spectral measures or other quantitative features of 

polysomnographic signals and divide them into different states of vigilance [26, 27]. The 

goal was to produce a reasonable first pass segmentation that could quickly be refined by 

an expert into a final sequence of scores. Not surprisingly, advances in machine learning 

techniques have prompted various approaches—particularly probabilistic models—to the 

task of finding natural partitions in sleep data that could correspond to different vigilance 

states. The HMM is one such modeling technique that maps continuous observations onto 

discrete hidden states [15]. Early statistical models of sleep dynamics used Markov chain 

models to represent probabilistic transitions between stages of sleep extracted from 

expert-scored hypnograms [28]. These models have become more refined and are being 

used to characterize disordered sleep and the effect of medication [29, 30]. The HMM is 

a natural extension of the Markov chain that assumes the polysomnogram to comprise a 

sequence of observations generated by Markov states that are hidden from view [ 15]. 

This has contributed to its popularity in automatic sleep scoring [10, 20-22]. HMM 

parameters are usually estimated using unsupervised ML techniques; so the modeled 
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states are not biased by human opinion. They are, however, dependent on the features 

chosen to represent the data and how much they vary between vigilance states.  

Unsupervised scoring can give very reasonable results without prior training, but must 

ultimately satisfy the gold standard of human assessment. Despite well-defined 

guidelines—first suggested in the 1960s [31]—that have evolved over time to reflect a 

growing consensus [7, 32], agreement between human raters scoring the same recording 

is hardly perfect and can be quite variable. One recent study comparing sleep scores 

between raters from two laboratories in different countries [ 8] found only moderate 

agreement for controls (mean Κ = 0.57) that was still lower for a cohort with narcolepsy 

(mean Κ = 0.54). The greatest disagreement was seen between scores on stages N1 and 

N2, N2 and N3, and N1 and W; in Problem 1, we used our algorithm to distinguish 

between these states without supervision. A larger study [33] with independent raters 

from nine centers found better overall agreement (mean Κ = 0.63) although agreement by 

sleep stage still varied over a wide range. A rater has opinions forged by his or her 

training that can mutate over time and with experience. For this reason it is difficult to 

predict to what extent an unsupervised classifier will agree with a particular human rater. 

There is another perhaps more obvious motivation for automatic sleep scoring: a 

computer algorithm may never be perfect in the eyes of one rater or another, but it can be 

programmed to behave like one. Models built for this purpose are known as supervised 

classifiers. A statistical model can be trained to mimic the scoring habits of a particular 

human rater, thus alleviating (if not eliminating) the burdensome task of manual scoring. 

Supervised sleep scoring also has a long history. Early efforts have used discriminant 

analysis [34] and distance metrics [35] of from samples of human-scored vigilance states 

to determine the scores of incoming data. Fisher discrimination, in which the input 

features are transformed to optimize the separation between samples of different states, 

has also been employed. More recent supervised schemes continue to make their way into 

this domain as and when they are developed or as increases in computing power makes it 

feasible to do so: these include linear discriminant analysis [36], neural networks and 

their variants [37], support vector machines [38], and random forest classifiers [39]. 

Increased computing power has also made it feasible to enlarge the feature space in a bid 

to better fit training data and improve performance. But the true measure of a supervised 
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classifier remains its ability to accurately score new recordings, i.e., out-of-sample data. 

The ability of a classifier trained on one cohort (e.g., healthy controls) to score data from 

another cohort (e.g., individuals with possible sleep disordered breathing) remains a 

concern.  

We have discussed how unsupervised classifiers can model observations unconstrained 

by human-defined vigilance states, and how supervised classifiers can encode and mimic 

a specific human rater's scoring patterns. The middle ground in which a classifier seeks 

its own definitions but defers to human judgment when required has not been explored. 

In this manuscript, we have described an algorithmic framework that compensates for 

rater uncertainty and incomplete training data to automatically score sleep in a 

polysomnogram. 

We accomplish this quasi-supervised classification by transforming categorical sleep 

scores into numerical variables or tags that link the scores to continuous-valued features 

extracted from the data. This sleight of hand allows an essentially unsupervised classifier 

to compensate for scoring uncertainty and for partial or incomplete scores in the training 

data. Three problem scenarios were explored using this framework: 

1. In which only some states are scored by the human rater: Here the quasi-supervised 

model recognizes that the system may have more states than identified by the scorer. By 

augmenting samples of the scored states with unique tags, the classifier identified scored 

states with accuracy comparable to a completely supervised classifier but still 

distinguished unscored states in the manner of an unsupervised classifier. Consequently, 

overall performance on in-sample and out-of-sample data is somewhere between these 

extremes. 

2. In which all vigilance states are scored, but not all of the epochs: In this scenario, the 

rater is uncertain of the prevailing state during some periods of the recording. We make 

the reasonable assumption that this is most likely during transitions between states and do 

not use those scores in the modeling step. The results demonstrate that the quasi-

supervised classifier was able to fill in the blanks with reasonable accuracy, sometimes as 

well as the supervised classifier. 

One question that might arise is whether a quasi-supervised method is really needed for 

addressing Problem 2. Since training samples are available for all the vigilance states, it 
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seems that a completely supervised classifier of any sort could be trained to predict sleep 

scores. This is true, but only for "static" classifiers such as LDA, which model individual 

observations and not sequential data. For an incomplete state sequence, a supervised 

HMM cannot be constructed without additional considerations. The quasi-supervised 

algorithm proposed here allows us to proceed using an E-M algorithm for unsupervised 

model estimation by augmenting observations from scored and unscored epochs with 

distinctive tags that reflect the rater's opinion when available. 

3. In which multiple raters score all the epochs and states, but sometimes disagree: 

Since only one professional scoring was available for the analyzed data, we generated 

surrogate hypnograms from the available ones to simulate the scenario in which raters 

disagree one-third (33%) of time. Then a GMM/HMM was constructed using the quasi-

supervised algorithm from the incomplete hypnograms in which scored epochs represent 

the putative consensus between multiple human raters. As was seen in Problem 2, the 

algorithm performed reasonably well in completing the scores.   

We have treated Problems 1, 2, and 3 in isolation, but they could co-occur in a given 

scenario: for instance, multiple raters partially score each hypnogram based on their 

certainty/uncertainty with respect to some states/epochs, but with some level of 

disagreement. Although this composite scenario certainly merits discussion, a rigorous 

analysis would be more useful when two or more independent raters are actually 

available (rather than the simulation of consensus hypnograms that we have used in 

Problem 3). 

In conclusion, we have described a framework for quasi-supervised classification that 

may prove useful for clinical sleep scoring and also for investigating the properties of 

vigilance dynamics through polysomnographic recordings. The proposed method is 

flexible enough to accommodate different situations in which scoring uncertainty occurs 

and computer assistance is desirable. There are some limitations in the method as 

presented at this time: First, since the classifier is constructed around an unsupervised 

learning algorithm, states that are not previously labeled by the human rater must still be 

identified with known vigilance states (or sub-states thereof). Here we have completed 

that assignment by finding the best matching state within the complete hypnogram, which 

is not feasible in practice. For instance, in Problem 1 the rater may identify only N, R, and 

132 
 



W, but not stages of N. We have fitted the incompletely scored data to a five-state model 

on the assumption that the two excess states will emerge from N as a product of the E-M 

algorithm. While this was always the case in the recordings analyzed here, it need not 

always be so. Consider a sample from a different cohort—for instance a more elderly 

one—in which deep sleep (N3) is absent or poorly represented [40]. A five state model of 

this data may have support for N1 and N2, but the remaining state may be carved out of 

the distribution of X under R or W rather than N3. More investigation is necessary for 

defining objective criteria for labeling model states that are better aligned with human-

recognized vigilance states. A graphical analysis of the linkage between the states on the 

basis of the ordering of common spectral measures (e.g., delta/theta power ratio, EMG 

amplitude) may help resolve this problem. 

Secondly, while the algorithm appears to match the rater's opinion for those states that 

were scored in the training data, the remaining states that are identified must still appeal 

to the end user by some yardstick. This is not a straightforward concern to address. We 

speculate however that the use of quasi-supervised classifiers could, over time, help 

resolve discrepancies between data-driven definitions and human perceptions of 

vigilance. The framework proposed here for sleep scoring provides a fresh perspective on 

human-computer interaction that calls for further investigation. 

Finally, although the quasi-supervised algorithm was applied here to data from healthy 

subjects, the methods do not rely on the assumption of normal sleep patterns. They are 

likely to apply to disordered sleep as well—for instance, the algorithm performed equally 

well on the ST database, in which patients reported mild difficulty falling asleep. 

Performance on other conditions in which sleep quality is compromised, such as in 

epilepsy or REM sleep behavior disorder, remains to be seen and is deferred to a future 

investigation. 
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