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The influence of emissions of an active volcano on the composition of nanoparticles and ultrafine road dust was
identified in an urban area of the Andes. Although many cities are close to active volcanoes, few studies have
evaluated their influence in road dust composition. Air quality in urban areas is significantly affected by non-
exhaust emissions (e.g. road dust, brake wear, tire wear), however, natural sources such as volcanoes also
impact the chemical composition of the particles. In this study, elements from volcanic emissions such as
Si > Al > Fe > Ca > K > Mg, and Si\\Al with K were identified as complex hydrates. Similarly, As, Hg, Cd, Pb,
As, H, Cd, Pb, V, and salammoniac were observed in nanoparticles and ultrafine material. Mineral composition
was detected in the order of quartz>mullite> calcite> kaolinite> illite> goethite>magnetite> zircon>mon-
azite, in addition to salammoniac, a tracer of volcanic sources. The foregoing analysis reflects the importance of
carrying out more studies relating the influence of volcanic emissions in road dust in order to protect human
health. The road dust load (RD10) ranged between 0.8 and 26.8 mg m−2 in the city.
© 2020 Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Air quality in urban areas has suffered great pressure in recent years
due to various anthropogenic activities (demolition/construction, in-
dustries, vehicles, biomass burning, among others), with the increase
in the vehicle rate one of themain causes discussed by different authors
(Bergbäck et al., 2001; Sörme et al., 2001; EEA, 2004; Amato et al., 2009,
2011; González, 2017). Natural sources, such as sea spray, vegetation,
and volcanoes can increase pollution levels (Silva et al., 2020). There
are suggestive hypotheses that these particles of natural sources may
have a greater potential for adverse health impacts compared with
their larger counterparts (WHO, 2016). Long-term exposure studies
would be required to confirm these hypotheses, but these are currently
unavailable (Silva et al., 2020).

Particulate matter is one of the pollutants of most concern due to its
effects on human health and its complex and varied composition, shape
and size (PM10, PM2.5, ultrafine, and nanoparticles) (WHO, 2016). These
effects ranging from respiratory to cardiovascular diseases, cognitive
decline, and stroke (Kioumourtzoglou et al., 2016; WHO, 2016; Chen

et al., 2017; Saikia et al., 2018; Ramírez et al., 2019). Metals, such as
Zn and V have been associated with cardiovascular diseases, whereas
Ni, Si, and Ti are related with respiratory exacerbations (Stafoggia and
Faustini, 2018). Organic compounds, including PAHs, are highly toxic
and involved in carcinogenic processes (Grigoratos and Martini, 2015).

The contribution of vehicular sources to particulate matter emis-
sions are exhaust-type (exhaust pipe) and non-exhaust-type (brake
wear, tire wear, and road dust) The particles emitted by the exhaust
gases and the wear of the vehicle parts, together with primary and sec-
ondary particles of anthropogenic and natural origin, are deposited and
accumulate daily on the pavement as road dust (Amato et al., 2009,
2011). The action of passing vehicles causes re-suspension of road
dust with an aerodynamic diameter of less than 10 μm (RD10) due to
turbulence generated by the wheels. The importance of RD10 emissions
resides in that they can be comparable with non-depleted emissions as
different studies have found (Amato et al., 2009, 2011; Bukowiecki et al.,
2010; Harrison et al., 2008; Querol et al., 2001). Ultra-fine particles
smaller than 300 nm diameter contribute over 99% of total particulate
emissions (Kumar et al., 2009). Unlike the lower cut-off size, any
upper cut-off size over 300 nm does not influence ultrafine particles
(UFPs) estimates greatly. In Europe, the contribution from road traffic
varied from ~32% of total nanoparticles (PNs) emissions in Greece to
~97% in Luxemburg. France, Spain, Germany, Italy, UK and Poland are
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the top six PN emitters in the European Union and together, their road
traffic contributes nearly 3/4 (~72%) of the total traffic-induced PN
emissions in the European Union (Kumar et al., 2014). Road dust emis-
sions vary widely in quantity and chemical composition at each loca-
tion, as they are influenced by different parameters, including road
characteristics, traffic condition, land use, and meteorology (Amato
et al., 2009, 2011; Pachón et al., 2020), in addition, the contribution by
other emission sources. The influence of other variables, such as volca-
nism in road dust levels is yet to be investigated. Currently the current
estimation models lack sufficient experimental information on the
impact of the different factors that control this variability (Amato
et al., 2013).

Studies have documented the impact of volcanoes on air quality,
observing large ambient SO2 concentrations downwind from volcano
plumes (Carn et al., 2011; Carn et al., 2017; Longo, 2013; Cuesta et al.,
2018; Cuesta et al., 2020). Volcanos can deliver large number of par-
ticles from nano (<50 nm) to coarse PM10 to the atmosphere
(Buseck and Adachi, 2008; Schӓfer et al., 2011; Businger et al., 2015,
Silva et al., 2020).

Mineral dust and particulate material from volcanic emissions dif-
fer significantly due to the generation processes. The first corresponds
to the dust deposited on the surface of the pavement and passes into
the air through the action of external agents (vehicular passage, air,
among others). The second corresponds to magma produced by a vol-
canic eruption and fragments (Malek et al., 2019). The re-suspended
dust is composed of several types of minerals, such as silica, clay,
micas, feldspar, carbonates, sulfates, and phosphates. In contrast,
the particulate material from volcanic emissions is generally com-
posed of silica (vitreous glass, quartz, and other polymorphs) and pla-
gioclase feldspar (solid-solution series from Na- to Ca-feldspar)
(Malek et al., 2019). In order to identify mineral components and haz-
ardous elements in road dust, electron microscopy techniques have
become widely available. Field emission scanning electron micros-
copy (FE-SEM) and high-resolution transmission electron micros-
copy (HR-TEM) observations coupled to energy dispersion X-ray
spectroscopy (EDS) give physicochemical information of the individ-
ual particles, allowing the distinction of contribution sources
(Labrada et al., 2012; Malek et al., 2019; Mantovani et al., 2018;
Onat et al., 2013).

Colombia hasmany volcanoes, some of themost active are Nevado
del Ruiz, Nevado del Huila, and Galeras. The Nevado del Ruiz volcano
is located 28-km southeast of the city of Manizales, could reach a VEI
(Volcanic Explosivity Index) of 3–4 (SGC, 2015) and registering per-
manent activity of daily SO2 emissions (SGC, 2019). In a study carried
out in 2015 by Carn et al. (2017) the Nevado del Ruiz volcano was the
fifth highest annual emitter in Latin America with SO2 emissions of
1145 kt in 2015 (above the volcanoes: Popocatepetl volcano in
Mexico, Nevado del Huila volcano in Colombia, Tungurahua volcano
in Ecuador, Ubinas volcano and Sanbancaya volcano in Peru). The re-
gion where the city of Manizales is located has been characterized in
geological and environmental samples, including rocks, soil, water,
etc. for presenting volcanic soils (Erazo et al., 2015; Laj and Boutron,
1990; Parnell and Burke, 1990). Likewise, Nevado del Ruiz plume
emissions can impact Manizales air quality (Cuesta et al., 2018,
2020). In fact, large sulfate concentrations related to volcanic ash
emissions have been observed in the PM10 chemical composition
(Velasco, 2015). Furthermore, volcanic SO2 plume and ash emissions
are associated with acid rain in Manizales (González and Aristizábal,
2012). A rain profile of sulphates> calcium> chloride> nitrates con-
centration has been found (González and Aristizábal, 2012).

In this study, the influence of emissions from the Nevado del Ruiz
volcano on the composition and morphology of nanoparticles (NPs -
particles with aerodynamic diameter < 50 nm) and ultrafine particles
(UFPs - particles with aerodynamic diameter < 100 nm) of road dust
in the city of Manizales was determined by applying advanced electron
microscopy techniques (FE-SEM/EDS and HR-TEM/EDS). This study is

the first of its kind in Latin America, a region with severe air pollution
problems and numerous active volcanoes.

2. Methodology

2.1. Area of study

Manizales is a medium-size Andean city, located in the central west
of Colombia on the western slope of the Cordillera Central (altitude of
2150 m.a.s.l - meters above sea level) (Cuesta et al., 2020). The urban
region has an approximate area of 54 km2 with an urban population
of 405,234 inhabitants (DANE, 2019). The city has a population density
of ~7504 inhabitants per km2 in the urban area and it is the second city
in the country with the highest motorization rate (455.2 vehicles per
1000 inhabitants in the year of 2018) above Bogotá and Medellín
(329 and 454 vehicles/1000 inhabitants in the year of 2018)
(González, 2017; Manizales Cómo Vamos, 2019). The city's vehicle
fleet is conformed of 169,142 vehicles for the year 2017, 95.4% of
which correspond to private vehicles (vehicular activity: 25 km/day/
vehicle) and motorcycles (vehicular activity: 25 km/day/vehicle)
(Unal-Corpocaldas, 2019). The remaining 4.6% corresponds to taxis,
buses and trucks. The city has three peak traffic periods: (1) 06:30 to
07:30 h. (2) between 11:45–12:45 h; and between 13:30–14:30 h.
(3) 17:30 to 18:30 h (Findeter, 2017).

The city is characterized by having microclimates of precipitation,
with annual precipitation of approximately 1454 mm, 1670 mm, and
1776 mm for the eastern, central, and western areas, respectively. The
diurnal temperature profile ranges between 12 and 24 °C, maximum
solar radiation of 1306 W m−2, high relative humidity between 82%,
and low wind speeds ≤2 m s−1. Valley-mountain wind circulation pat-
terns are characterized as ascending by day and descending by night
(as a result of heating and cooling by radiation) with possible transport
of volcanic emissions during downslope wind (Fig. 1A) (Cuesta et al.,
2020; González, 2017). Lowwind speeds alongwithwind patterns gen-
erate minimal dispersion of pollutants and are directed towards the
urban area of the city (Cuesta et al., 2020; González, 2017). Further-
more, the high precipitation favors the washing of the atmosphere,
dragging the particulate material of the air, this phenomenon is
known as Scavenging (González andAristizábal, 2012). These particular
characteristics can generate pressure on air quality of the city, with ep-
isodes of contamination during low rain seasons with potential impact
on the population and natural ecosystems (Unal-Corpocaldas, 2019).

Local atmospheric chemistry is influenced by the proximity to the
Nevado del Ruiz volcano, the fifth most active in Latin America, regis-
tering significant activity since 2010 with daily SO2 and ash-emission
episodes (Fig. 1B) (Carn et al., 2017). During the sampling period
(July–September of 2019) height of emission column was reported
between 636 and 1300 m (SGC, 2019).

2.2. Road dust sampling

The RD10 samples were taken at 21 points distributed across the
urban area of Manizales (Fig. 2). The field campaign was conducted be-
tween July and September of 2019 during dry season (9-mm accumu-
lated precipitation and average temperature of 18 °C) as established
by the sampling method described by Amato et al. (2009, 2011). It
was carried out in the dry season because during this time it is a critical
conditionwhere the resuspension of RD10 is higher than during the rain
period. A “dry dust sampler” equipment designed at the Spanish Re-
search Council was used; a description of the instrument is available
elsewhere (Amato et al., 2009, 2011).

A pavement section of the active right lane was chosen at a distance
of 1m from the gutter andwithout episodes of rain in the previous 24 h
of each sampling. An area of 1 m2 was sampled for 30 min with an air
flowof approximately 30 Lmin−1. At each site, samplingwas performed
3 times using three different filters to reduce occasional errors and to
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collect enough samples for analysis. Samples were collected on a glass
fiber filter Whatman ® brand (47 mm Ø). Filters were dried at 500 °C
for 12 h and dehumidified for 48 h (at 22 °C and 50% of relative humid-
ity). After sampling, the filterswere kept dried for 48 h (at 22 °C and50%
of relative humidity) and then refrigerated at 4 °C until before the FE-
SEM/EDS and HR-TEM/EDS analysis. During each 48 h conditioning
two weighing procedures were carried out every 24 h, in each the filter
mass was measured three times using a microbalance (Mettler Toledo
MS205DU). The road dust mass fraction per m2 (RD10 load) at each
sitewas calculated by difference inweights before and after sample col-
lection, and averaging the mass collected in the 3 samples (mg m−2).

2.3. Morphological analysis

To investigate the NP and the UFP, a random filter was selected
from the three sampled by each site. In total, 21 RD10 samples were
analyzed. To ensure adequate reliability of results, all laboratorymate-
rials weremaintained for 24 h in a 15% v/v nitric acid bath andwashed
with Milli-Q H2O prior to use to prevent possible adulteration that
could modify the results (Gredilla et al., 2017; Gredilla et al., 2014).
In the laboratory, sampled condensed water and precipitate particles
were evaluated in two ways: (1) 1 mL of sampled water was pipet-

ted onto the Cu-grid of the field emission scanning electron micro-
scope (FE-SEM), and high-resolution transmission electron micro-
scope (HR-TEM) stub; (2) the decanted particles were sampled sepa-
rately and suspended in water again by ultrasound, to later be
transferred and analyzed with advanced microscopes. In some cases,
it was necessary to wait up to 48 h for the water to evaporate before
the samples could be analyzed. However, this methodology was cho-
sen to avoid chemical, mineralogical, morphological, and geo-metric
modifications of NPs and UFPs. This procedure was established
based on published studies (Ribeiro et al., 2010).

Themineralogy of NPs and UFPs were performed using a Field Emis-
sion Scanning Electron Microscope (FE-SEM), Zeiss model FEG sigma
300 VP with a X Flash Detector 410-M (Civeira et al., 2016a) and ad-
vanced High-Resolution Transmission Electron Microscope (HR-TEM,
200 kV) equipped with an Energy-Dispersive X-ray Spectrometer
(EDS). Electron diffraction patterns of the crystalline phases were re-
corded in selected area electron diffraction (SAED), micro-beamdiffrac-
tion (MBD), and Fast Fourier Transform (FFT) (Silva et al., 2020). In
order to facilitate the identification of amorphous, crystalline, oxidized,
and sulfate particles, the sequential extraction previously developed by
Ribeiro et al. (2010); Ribeiro et al. (2013a); Ribeiro et al. (2013b) was
implemented.

Fig. 1. (A) Location of Manizales in the Colombian Andean region. (B) Annual SO2 emissions comparison among volcanoes with similar altitude in Latin America (Carn et al., 2017).

E.M. Trejos, L.F.O. Silva, J.C. Hower et al. Geoscience Frontiers 12 (2021) 746–755

748



Before FE-SEMand STEManalysis, theHR-TEM specimenholderwas
cleaned with an Advanced Plasma System (Gatan Model 950) to mini-
mize contamination. The samples were prepared by a critical point
dryer on a glass plate, which was mounted on a SEM stub (Cutruneo
et al., 2014). The samples were then covered with a thin Au layer
(~20 nm) to make it conductive, and a Pt layer to protect the surface.
Then, a large and deep rectangular trench was dug in each sample, by
rough milling with an ion current of 93 nA at 30 kV. Then, the surface
of the cut was polished with an intermediate current of 0.28 nA, using
the option “cleaning cross-section”. In this option, the ion beam moves
in and slices the sample in a direction that is perpendicular to the cut
surface. Finally, to attain a fine polish, we used an ion beam with very
small aperture and very low current (28 pA), even though it is time-
consuming, it was required to avoid artifacts induced by heating.
Then, the images were recorded using the Through Lens Detector
(TLD), which gives a spatial resolution in a nanometer range. During
thinning, the SEM imageswere subjected to a secondary electron detec-
tor to control the process and choose the side that required to be
thinned and with an in-lens back-scattered electron detector to distin-
guish particles using chemical contrast. Finally, the amorphousmaterial
re-deposited by the plasma during thinning was removed by scanning
the sectionedwith a 5 kV ion beam at an angle of 4°–7° with the section
surface. In addition, the utilized SAED and nanobeam diffraction pat-
terns were recorded on FEI G2 20 and Philips CM30 TEM. At 200 and
300 kV, amorphization by radiation damage to quartz (but not Fe-
bearing minerals) was fast enough to permit SAED and nano-beam dif-
fraction on mineral crystallites and amorphous nano-particles without
interference by the quartz matrix. The aperture- selected areas are
outlined by a circle in the SAED figures.

Scanning transmission X-ray microscopy was used to perform high
spatial resolution (25 nm) spectromicroscopic analysis at the car- bon
K-edge (energy range 270–320 eV) to image the distributions of special
minerals (e.g., carbonates) and organic matter and identify carbonates
in X-ray absorption near-edge spectroscopy spectra (Lepot et al.,

2017). The utilized microscope chamber was evacuated to 100 mTorr
after sample insertion and back-filled with He. The spectral resolution
of 0.8 eV between 275 and 283 eV, 0.15 eV between 283 and 295 eV,
0.5 eV between 295 and 310 eV and the counting times of the order of
a fewmilliseconds or less per pixel were used. The details of data acqui-
sition, processing, and interpretation have been providedbyAlleon et al.
(2016). Carbonate maps were obtained by subtraction of the X-ray
transmission images recorded at 290.3 eV to 285.4 eV (aromatic absorp-
tion maximum), and aromatic carbon maps were obtained by subtrac-
tion of X-ray transmission images at 285.4 eV (aromatics) to 275 eV
(Lepot et al., 2017).

3. Results and discussion

3.1. Road dust load (RD10) variation

RD10 load values in Manizales varied between 0.8 and 26.8 mgm−2

(Table 1), slightly lower than values obtained in Bogotá (range
1.8–45.8 mg m−2) using the same dust sampler (Pachón et al., 2020).
RD10 levels were also similar to Zurich, Switzerland (0.2–1.3 mg m−2),
Barcelona (3.7–23.1 mg m−2), and Girona, Spain (1.3–48.7 mg m−2)
(Amato et al., 2011). It should be noted that these cities do not have
proximity to volcanic sources. Studies of this type are focused on deter-
mining the relationship between the RD load and the characteristics of
the sampling area such as type of paving, traffic intensity, proximity to
the braking zone, vegetation, seasonal effects and contribution of an-
thropogenic sources (Amato et al., 2009, 2011; Hussein et al., 2008;
Pachón et al., 2020).

3.2. Chemical and morphological analyses of road dust

The geochemical composition of more than half of road dust load
samples detected by EDS presented Fe, Ti, Al-Si-K hydrated complexes,
As, Hg, Cd, Pb, and salammoniac (Fig. 3). A similar geochemical profile

Fig. 2. Location of the RD10 load sampling points in Manizales city.
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was identified in rural background PM10 in Colima, Mexico, located
35-km from the “Volcán del Fuego” (Campos et al., 2011) and in other
studies (Cangemi et al., 2017; Fernández et al., 2012; Lieke et al., 2013).
This profile suggests the influence of the Nevado del Ruiz volcano in
the city. In fact, during the sampling period the prevailing winds came
from the southeast direction, corresponding to the area where the vol-
cano is located (Fig. 4 and Table 1). Likewise, episodes of volcanic ash
emission occurred as discussed in section 2.1.

Through the SEM images, the morphology of the particles (size and
shape) was observed. Multiple shapes were observed due to the variety
of RD10 sources, particles with spherical and angular shapes in
micrometric and nanometric sizes (Fig. 5). Not only was the shape het-
erogeneous but also the chemical and mineralogical composition, the
minerals detected in the samples were quartz, mullite, calcite, kaolinite,
illite, goethite, magnetite, zircon, monazite (Fig. 3A), with size variation
between 0.1 nm to 16 μm (Fig. 5). Some of the particles were minerals,
as in the case of monazite, but in most of the cases, they were complex
particles containing both amorphous and crystallinematerial, as charac-
terized byHR-TEM/EDS (Fig. 3A). Fig. 6 shows the classic example of the
complexity of such particles, especiallywhen they are incipient welding
facies of road dust near volcano area. Similar particles were detected by
Alarcón et al. (2020) in a study of the Cerro Bravo volcano from a solid
deposit of pyroclastic ash flow using SEM. The Cerro Bravo volcano is lo-
cated approximately 25 km from Manizales; however, the most recent

Table 1
RD10 load estimated in the city of Manizales.

Point No. Longitude Latitude Sampling date RD10 load
(mg m−2)

1 5.02794°N −75.45139°W 02/09/2019 26.75
2 5.03301°N −75.45135°W 20/08/2019 11.72
3 5.03614°N −75.46143°W 02/09/2019 0.77
4 5.03195°N −75.46563°W 31/07/2019 8.54
5 5.03413°N −75.46665°W 30/08/2019 2.52
6 5.03386°N −75.48126°W 28/08/2019 1.74
7 5.04704°N −75.48372°W 09/08/2019 1.96
8 5.05149°N −75.48191°W 08/08/2019 7.19
9 5.05206°N −75.49001°W 28/08/2019 2.22
10 5.05754°N −75.48675°W 09/08/2019 2.72
11 5.05992°N −75.4939°W 30/08/2019 3.17
12 5.06392°N −75.50177°W 20/08/2019 2.73
13 5.07024°N −75.49876°W 22/08/2019 3.57
14 5.06598°N −75.5058°W 06/08/2019 6.46
15 5.06801°N −75.51079°W 22/08/2019 1.43
16 5.06783°N −75.51538°W 01/08/2019 7.14
17 5.07040°N −75.51501°W 28/08/2019 4.16
18 5.06910°N −75.51682°W 06/08/2019 5.92
19 5.06866°N −75.52168°W 08/08/2019 6.52
20 5.07151°N −75.52493°W 01/08/2019 7.53
21 5.05591°N −75.53086°W 06/08/2019 5.03

Fig. 3. (A) Amorphous phases, minerals, and (B) particles chemical composition from studied road dust by FE-SEM, HR-TEM, and EDS. Other elements foundwere S, Al, Si, Ca, K, Na,
Mn, and Mg.
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products generated from this date from 600 to 200 years B.P. (before
present).

Different studies have reported the geochemical composition of vol-
canic ashwithmain elements such as Al, Si, O, Na,Mg, K, Ca, Fe, and Ti in
variable concentrations (Cangemi et al., 2017; Lestiani et al., 2018; Lieke
et al., 2013). Other important volcanic ash tracers are reported, such as
complex and highly porous mixtures of Al-Si-K hydrates (Fig. 7). In
some cases, porous particles allow the distinction of kaolinite and differ-
ent zeolites, with a chemical composition showing a contain of Si, Al, Fe,
Ca, K, Mg.

Anthropogenic organic particles of high toxicity, such as fuller-
enes, carbon nanotubes, graphene, in addition to organometallic
complexes containing potential hazardous elements, could be depos-
ited in the pores of such particles. The smallest particles can be re-
leased from the pores when they are inhaled generating multiple
impacts on health, since they can pass through the respiratory system
and enter into the bloodstream, thus reaching the entire body. There-
fore, ultra-fine particles of volcanoes can serve as a storage species for
highly toxic anthropogenic NPs.

In addition, the porous fine particles collected in this study are al-
ways composed of amorphous material and have sulfur in most of the
cases (Fig. 6). These particles could generate sulfuric acid in the

Fig. 4. TROPOMI satellite image of the emission of volcanic ash, trajectory and height of the SO2 column during a sampling day (July 31, 2019) (TROPOMI, 2019). Rose diagram of daily
average wind of the sampling period is shown as inset. Hospital de Caldas weather station (CDIAC, 2019). Symbols: Δ: volcanoes. ●: City of Manizales.

Fig. 5. General road dust FE-SEM view containing spherical, angular, micrometric, and
nanometric particles (multiple chemical elements and crystallinity).

Fig. 6. FE-SEM/EDS image of incipiently welding facies of road dust sample containing Nb
near volcano area.
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presence of water (humidity or rain). González and Aristizábal (2012)
suggested that conditions of the city, such as the proximity to the vol-
cano and high rainfall, it favors thewashing of the atmosphere, dragging
the particulate material from the air (phenomenon known as Scaveng-
ing), when rainfall they are low can increase the content of pollutants
present in the atmosphere in road dust. However, it is important to
note that high rainfall can also generate a sweep of road dust.

According to petrographic studies, the plagioclase feldspar (e.g.
andesine) is a mineral associated with volcanic zones, as it was
described in studies of volcanic evolution of the Mount of Cameroon
(located at the ocean-continent boundary of the Cameroon Volcanic
Line) using automated electron microprobe analyzer equipped with
an EDS (Wembenyui et al., 2020). In two places on the island of Tenerife
(the Arenas Negras volcano and the Anaga massif), feldspars were de-
tected by Raman spectroscopy and confirmed by X-ray diffraction and
infrared spectroscopy (Lalla et al., 2016). Feldsparswere found inmicro-
particles of Himalayan ice cores using SEM/EDS analysis techniques
with ATR-FTIR (Malek et al., 2019). FE-SEM/EDS analyzes performed
in the present study indicated that, in addition to the presence of pla-
gioclase crystalloclasts (mainly oligoclase-andesine), all samples pre-
sented multiple crystals (plagioclase slats, see Fig. 8). Various elongated

crystals have not only been detected in the samples near the volcanoes
but also regularly in all the samples of this study. These results indicate
that ultra-fine volcanic particles are abundant throughout the study
area, presenting a serious risk to people's health, especially when they
are nanometric and contain potentially toxic elements such as As,
Hg, Cd, Pb, among others (e.g. see Fig. 9).

Although magnetite is a mineral that can be derived from several
sources (terrestrial crust, building materials, steel industries, vehicular
traffic, others), in this study it was detected in more than half of the
sampled sites, which allows inferring that the entire study area is im-
pacted by the Nevado del Ruiz volcano. Similarly, elements such as As
Hg, Cd, Pb, V, Se, detected by EDS, were also found not only in samples
near theNevado del Ruiz volcano, but also regularly in all study samples
(see Fig. 3B). In particular, arsenic, a highly-volatile element with great
mobility, is released into the environment through volcanic gases. In
thismanner, arsenic, in contact withwater (e.g. precipitation), is depos-
ited in sediments (Juncos et al., 2016; Rodríguez et al., 2018; Smedley
and Kinniburgh, 2002). Studies on the geochemical composition of
leachate in ash waters of the Chaitén volcano in Chile have reported
high concentrations of major elements such as Cl, S, F, Ca, Mg, Na, K,
Si, and Al; trace elements such as As, Pb, P, Fe, Sr, Zn, Mn, and Br; and
lower, but significant, contents Ba, Li, Ti, Ni, Nb, and Cu (Ruggieri et al.,
2012). Likewise, equivalent results have been reported in other volcanic
ash characterization studies (Cangemi et al., 2017; Fernández et al.,
2012; Lieke et al., 2013). In contrast, geochemical composition of RD10

samples also has influences from anthropogenic sources such as demo-
lition/construction (S, Ca, Sr), industries (Pb, Zn, Mn, Fe, Cl), vehicular
exhaust (Elemental Carbon (EC), Organic Carbon (OC), Na, Fe), brake
wear (OC, S, Zn), tire wear (As, Rb, K, Zn, Cd), pavement wear (Ba, Zn,
Cu, Pb); with semi-spherical, angle, and sub-angled morphology) and
burning of biomass (As, Rb, K) (Amato et al., 2009, 2011; Karanasiou
et al., 2011; Cheng et al., 2015; Ramirez et al., 2019).

Gypsum found in road dust samples (Fig. 10A) can originate from
multiple sources such as construction debris, soil, but also by volcanic
reactions in the presence of water. Salammoniac, a mineral detected
in this study, serves as volcano tracer (Fig. 10B). Previous studies
found that salammoniac results from sublimation around volcanic fu-
maroles (Gaines et al., 1997). Sulfur is an abundant element in volcano
fumaroles, and it is typically found in association with gypsum and
salammoniac. Sulfur and salammonia form during gas exhalation and
condensation through interaction with surface water, atmospheric
gases, and surrounding rocks (Ribeiro et al., 2010).Minerals, such as he-
matite, zircon (Fig. 10C) and illite (Fig. 10D), present a higher health risk

Fig. 7. Example of porous particlewith pores that vary from300 nm to 2 μm. This indicates
that such particles can encase other particles, especially those of smaller size.

Fig. 8. FE-SEM image of agglomerated of soft and porous hydrous Al\\Si particles.
Fig. 9. HR-TEM image of nano-magnetite magnification (containing As and Hg) and
amorphous Al-Fe-Si-O-nanoparticles.
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than gypsum(Fig. 10A). Zircon, aswell as themonazite and quartzwere
detected as particles larger than 10 μm, these minerals with high resi-
dence time in the environment, and are insolubles in acidic media. In
addition, they are minerals of high density, which facilitate their sedi-
mentation and prevent their resuspension. Therefore, in comparison
with organic, amorphous ultra-fine (Fig. 10E and 10F), and nanometric
particles that contain potentially dangerous elements, they are not con-
sidered to be worrisome (Longo et al., 2013; Silva et al., 2020).

Among the collected samples, sites 4, 5, 7, 13, 11, 15, and 17
contained only natural minerals, probably from the soil and/or the vol-
cano. These samples did not show as much occurrence of dangerous el-
ements according to the EDS results (Fig. 3A and B).

4. Conclusions

In this study, the influence of volcanic emissions on road dust (RD10)
was analyzed for the first time in Latin America. The advanced micro-
scopic analysis of nanoparticles and ultrafine particles of dust from the
roads in Manizales allowed identification of the influence of volcanic
emissions from the Nevado del Ruiz volcano. In general, the mineral
composition detected was: quartz, mullite, calcite, kaolinite, illite, goe-
thite, magnetite, zircon, monazite, salammoniac (tracer of volcanic
sources). Multiple crystals (plagioclase slats - mainly oligoclass-
andesine) were observed. Likewise, Si, Al, Fe, Ca, K, Mg and Si\\Al
with K as complex hydrate, and NPs that contain potentially toxic ele-
ments such as As, Hg, Cd, Pb, As, H, Cd, Pb and Vwere detected. Ultrafine
particles of the volcano were present throughout the study area.

Therefore, the importance of conductingmore studies that relate the
influence of volcanic emissions on road dust in order to establish public
air pollution policies that protect human health is reflected, since in the
region there are very few or no studies with this approach but many
active volcanoes.

These findings are of interest for air quality management, as they
highlight the importance of conducting more studies that evaluate the
volcanic influence on road dust, and not the influence with parameters
such as type of pavement, traffic condition, land use area that is already
documented. In addition, complement SEM-EDS image observations
with attenuated total reflection: Fourier transform infrared spectros-
copy (ATR-FTIR) to identify with certainty in an individual particle its
molecular species, functional groups, and crystallinity and specifically
identify the type of mineral and their polymorphs.

Declaration of Competing Interest

The authors have not conflict of interest.

Acknowledgments

Special thanks to Fulvio Amato and Xavier Querol from the Spanish
Research Council to facilitate the road dust equipment. An acknowledg-
ment to Omar Ramirez for their discussions during the study.

References

Alarcón, E., Murcia, H., Borrero, C., Arnosio, M., 2020. Evidence for welding of a block and
ash pyroclastic flow deposit: the case of Cerro Bravo Volcano, Colombia. Bull.
Volcanol. 82 (3), 1–14. https://doi.org/10.1007/s00445-019-1334-5.

Alleon, J., Bernard, S., Guillou, C., Marin-Carbonne, J., Pont, S., Beyssac, O., Mckeegan, K.,
Robert, F., 2016. Molecular preservation of 1.88 Ga Gunflint organic microfossils as
a function of temperature and mineralogy. Nature. Communications 7, 11977.
https://doi.org/10.1038/ncomms11977.

Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., Moreno, T., 2009. Spatial and
chemical patterns of PM10 in road dust deposited in urban environment. Atmos.
Environ. 43 (9), 1650–1659. https://doi.org/10.1016/j.atmosenv.2008.12.009.

Amato, F., Pandolfi, M., Moreno, T., Furger, M., Pey, J., Alastuey, A., Bukowiecki, N., Prevot,
A.S.H., Baltensperger, U., Querol, X., 2011. Sources and variability of inhalable road
dust particles in three European cities. Atmos. Environ. 45 (37), 6777–6787.
https://doi.org/10.1016/j.atmosenv.2011.06.003.

Amato, F., Pandolfi, M., Alastuey, A., Lozano, G., Contreras, J., Querol, X., 2013. Impact of
traffic intensity and pavement aggregate size on road dust particles loading. Atmos.
Environ. 77, 711–717. https://doi.org/10.1016/j.atmosenv.2013.05.020.

Bergbӓck, B., Johansson, K., Mohlander, U., 2001. Urban Metal Flows – a Case Study of
Stockholm. Review and Conclusions. Water. Air Soil Pollut. 1, 3–24. https://doi.org/
10.1023/A:1017531532576.

Bukowiecki, N., Lienemann, P., Hill, M., Furger, M., Richard, A., Amato, F., Prévôt, A.S.H.,
Baltensperger, U., Buchmann, B., Gehrig, R., 2010. PM10 emission factors for non-
exhaust particles generated by road traffic in an urban street canyon and along a free-
way in Switzerland. Atmos. Environ. 44 (19), 2330–2340. https://doi.org/10.1016/j.
atmosenv.2010.03.039.

Buseck, P.R., Adachi, K., 2008. Nanoparticles in the Atmosphere. Elements 4 (6), 389–394.
https://doi.org/10.2113/gselements.4.6.389.

Businger, S., Huff, R., Pattantyus, A., Horton, K., Sutton, A.J., Elias, T., Cherubini, T., 2015.
Observing and forecasting Vog Dispersion from Kīlauea Volcano, Hawaii. Bull. Am.
Meteorol. Soc. 96 (10), 1667–1686. https://doi.org/10.1175/BAMS-D-14-00150.1.

Campos, A., Aragon, A., Alastuey, A., Galindo, I., Querol, X., 2011. Levels, composition and
source apportionment of rural background PM10 in Western Mexico (State of Co-
lima). Atmosp. Pollut. Res. 2 (4), 409–417. https://doi.org/10.5094/APR.2011.046.

Cangemi, M., Speziale, S., Madonia, P., D’Alessandro,W., Andronico, D., Bellomo, S., Brusca,
L., Kyriakopoulos, K., 2017. Potentially harmful elements released by volcanic ashes:
examples from the Mediterranean area. J. Volcanol. Geotherm. Res. 337, 16–28.
https://doi.org/10.1016/j.jvolgeores.2017.03.015.

Carn, S., Froyd, K., Anderson, B., Wennberg, P., Crounse, J., Spencer, K., Dibb, J., Krotkov, N.,
Browell, E., Hair, J., Diskin, G., Sachse, G., 2011. In situ measurements of tropospheric
volcanic plumes in Ecuador and Colombia during TC4. J. Geophys. Res. 116, 1–24.
https://doi.org/10.1029/2010JD014718.

Carn, S., Fioletov, V., Mclinden, C., Li, C., Krotkov, N., 2017. A decade of global volcanic SO2

emissions measured from space. Sci. Rep. 7, 44095. https://doi.org/10.1038/
srep44095.

CDIAC [Centro de Datos e Indicadores Ambientales de Caldas], 2019. Datos diarios de
velocidad del viento 2019 – Estación meteorológica Hospital de Caldas. http://cdiac.
manizales.unal.edu.co/etl-cdiac-app/externalReport/getReportStation.

Chen, H., Kwong, J., Copes, R., Hystad, P., van Donkelaar, A., Tu, K., Brook, J., Goldberg, M.,
Martin, R., Murray, B., Wilton, A., Kopp, A., Burnett, R., 2017. Exposure to ambient air
pollution and the incidence of dementia: a population–based cohort study. Environ.
Int. 108, 271–277. https://doi.org/10.1016/j.envint.2017.08.020.

Cheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., Chow, J.,Watson, J., Cao, J., Zhang, R., 2015.
PM2.5 and PM10–2.5 chemical composition and source apportionment near a Hong Kong
roadway. Particuology 18, 96–104. https://doi.org/10.1016/j.partic.2013.10.003.

Civeira, M., Pinheiro, R.N., Gredilla, A., de Vallejuelo, S., Oliveira, M.L.S., Ramos, C.G.,
Taffarel, S.R., Kautzmann, R.M., Madariaga, J.M., Silva, L.F.O., 2016a. The properties
of the nano-minerals and hazardous elements: potential environmental impacts of

Fig. 10. General FE-SEM illustrations of (A) Gypsum, (B) salammoniac, (C) Hematite
aggregate and zircon, (D) Illite; and HR-TEM figures, (E) Amorphous and crystalline
carbonaceous materials, (F) Spherical carbon nanotube.

E.M. Trejos, L.F.O. Silva, J.C. Hower et al. Geoscience Frontiers 12 (2021) 746–755

753

https://doi.org/10.1007/s00445-019-1334-5
https://doi.org/10.1038/ncomms11977
https://doi.org/10.1016/j.atmosenv.2008.12.009
https://doi.org/10.1016/j.atmosenv.2011.06.003
https://doi.org/10.1016/j.atmosenv.2013.05.020
https://doi.org/10.1023/A:1017531532576
https://doi.org/10.1023/A:1017531532576
https://doi.org/10.1016/j.atmosenv.2010.03.039
https://doi.org/10.1016/j.atmosenv.2010.03.039
https://doi.org/10.2113/gselements.4.6.389
https://doi.org/10.1175/BAMS-D-14-00150.1
https://doi.org/10.5094/APR.2011.046
https://doi.org/10.1016/j.jvolgeores.2017.03.015
https://doi.org/10.1029/2010JD014718
https://doi.org/10.1038/srep44095
https://doi.org/10.1038/srep44095
http://cdiac.manizales.unal.edu.co/etl-cdiac-app/externalReport/getReportStation
http://cdiac.manizales.unal.edu.co/etl-cdiac-app/externalReport/getReportStation
https://doi.org/10.1016/j.envint.2017.08.020
https://doi.org/10.1016/j.partic.2013.10.003


Brazilian coal waste fire. Sci. Total Environ. 544, 892–900. https://doi.org/10.1016/j.
scitotenv.2015.12.026.

Cuesta, A., González, C., Velasco, M., Aristizábal, B., 2018. Distribución espacial de
concentraciones de SO2, NOx y O3 en el aire ambiente de Manizales. Revista
Internacional de Contaminación Ambiental 34, 489–504. https://doi.org/10.20937/
RICA.2018.34.03.11 (in Spanish with English abstract).

Cuesta, A., Wahl, M., Acosta, J., García, A., Aristizábal, B., 2020. Mixing layer height and
slope wind oscillation: Factors that control ambient air SO2 in a tropical mountain
city. Sustain. Cities Soc. 52, 101852. https://doi.org/10.1016/j.scs.2019.101852.

Cutruneo, C., Oliveira, M.,Ward, C., Hower, J., Brum, I., Sampaio, C., Kautzmann, R., Taffarel,
S., Calesso, T., Silva, L., 2014. A mineralogical and geochemical study of three Brazilian
coal cleaning rejects: Demonstration of electron beam applications. Int. J. Coal Geol.
130, 33–52. https://doi.org/10.1016/j.coal.2014.05.009.

DANE (Departamento Administrativo Nacional de Estadística), 2019. Censo Nacional de
Población y Vivienda 2018. Población ajustada por cobertura. https://www.dane.-
gov.co/files/censo2018/informacion-tecnica/presentaciones-territorio/190801-
CNPV-presentacion-Caldas-Manizales.pdf (in Spanish with English abstract).

EEA (European Environment Agency), 2004. EMEP/CORINAIR Atmospheric Emission In-
ventory Guidebook, third ed. Technical Report No. 30. European Environmental
Agency, Copenhagen, Denmark.

Erazo, D., Londoño, A., Aristizabal, B., 2015. Study of the impact of volcanic fluids on the
water resources of the Chinchiná river basin. Manage. Environ. 18 (2), 81–93.

Fernández, J.L., Saavedra, J., Ruggieri, F., Gimeno, D., Perez, F.J., Rodríguez, A., Galindo, G.,
2012. Geoquímica de cenizas volcánicas a lo largo de dos transectas en Sudamérica:
implicaciones ambientales. Geo-Temas 13, 2–5. http://hdl.handle.net/10261/53751
(in Spanish with English abstract).

Findeter, 2017. Plan Maestro de Movilidad de Manizales. Manizales, Caldas, Colombia.
Gaines, R., Skinner, H., Foord, E., Mason, B., Rosenzweig, A., 1997. Dana’s NewMineralogy:

The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana. eighth
ed. John Wiley & Sons Inc, New York, p. 1819.

González, C., 2017. Dinámica e impacto de emisiones antrópicas y naturales en una ciudad
andina empleando un modelo Euleriano de transporte químico on-line. Caso de
estudio: Manizales, Colombia. Ph.D thesis. Universidad Nacional de Colombia - sede
Manizales, Manizales, Colombia, pp. 234 (in Spanish with English abstract).

González, C., Aristizábal, B., 2012. Acid rain and particulate matter dynamics in a mid-
sized Andean city: the effect of rain intensity onion scavenging. Atmos. Environ. 60,
164–171. https://doi.org/10.1016/j.atmosenv.2012.05.054.

Gredilla, A., Fdez-Ortiz de Vallejuelo, S., de Diego, A., Arana, G., Madariaga, J.M., 2014. A
new index to sort estuarine sediments according to the contaminant content. Ecol.
Indic. 45, 364–370. https://doi.org/10.1016/j.ecolind.2014.04.038.

Gredilla, A., Fdez-Ortiz de Vallejuelo, S., Gomez-Nubla, L., Carrero, J.A., de Leão, F.B.,
Madariaga, J.M., Silva, L.F., 2017. Are children playgrounds safe play areas? Inorganic
analysis and lead isotope ratios for contamination assessment in recreational
(Brazilian) parks. Environ. Sci. Pollut. Res. 24, 333–345. https://doi.org/10.1007/
s11356-017-9831-6.

Grigoratos, T., Martini, G., 2015. Brake wear particle emissions: a review. Environ. Sci.
Pollut. Res. 22, 2491–2504. https://doi.org/10.1007/s11356-014-3696-8.

Harrison, R.M., Stedman, J., Derwent, D., 2008. New Directions: why are PM10 concentra-
tions in Europe not falling? Atmos. Environ. 42 (3), 603–606. https://doi.org/10.1016/
j.atmosenv.2007.11.023.

Hussein, T., Johansson, C., Karlsson, H., Hansson, H.-C., 2008. Factors affecting non tail
pipe aerosol particle emissions from paved roads: On-road measurements in
Stockholm Sweden. Atmos. Environ. 42 (4), 688–702. https://doi.org/10.1016/j.
atmosenv.2007.09.064.

Juncos, R., Arcagni, M., Rizzo, A., Campbell, L., Arribére, M., Guevara, S.R., 2016. Natural or-
igin arsenic in aquatic organisms from a deep oligotrophic lake under the influence of
volcanic eruptions. Chemosphere 144, 2277–2289. https://doi.org/10.1016/j.
chemosphere.2015.10.092.

Karanasiou, A., Moreno, T., Amato, F., Lumbreras, J., Narros, A., Borge, R., Tobías, A., Boldo,
E., Linares, C., Pey, J., Reche, C., Alastuey, A., 2011. Road dust contribution to PM levels
– Evaluation of the effectiveness of street washing activities by means of Positive Ma-
trix Factorization. Atmos. Environ. 45 (13), 2193–2201. https://doi.org/10.1016/j.
atmosenv.2011.01.067.

Kioumourtzoglou, M., Schwartz, J., James, P., Dominici, F., Zanobetti, A., 2016. PM2.5 and
Mortality in 207 US Cities: Modification by Temperature and City Characteristics. Ep-
idemiology 27 (2), 221–227. https://doi.org/10.1097/EDE.0000000000000422.

Kumar, P., Fennell, P., Hayhurst, A., Britter, R., 2009. Street versus rooftop level concentra-
tions of fine particles in a Cambridge street canyon. Bound.-Layer Meteorol. 131,
3–18. https://doi.org/10.1007/s10546-008-9300-3.

Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., Harrison, R.,
Norford, L., Britter, R., 2014. Ultrafine particles in cities. Environ. Int. 66, 1–10.
https://doi.org/10.1016/j.envint.2014.01.013.

Labrada, G., Aragon, A., Campos, A., Castro, T., Amador, O., Villalobos, R., 2012. Chemical
and morphological characterization of PM2.5 collected during MILAGRO campaign
using scanning electron microscopy. Atmos. Pollut. Res. 3 (3), 289–300. https://doi.
org/10.5094/APR.2012.032.

Laj, P., Boutron, C., 1990. Trace elements in snow deposited at Nevado del Ruiz volcano,
Colombia. J. Volcanol. Geotherm. Res. 42, 89–100. https://doi.org/10.1016/0377-
0273(90)90071-M.

Lalla, E., Lopez-Reyes, G., Sansano, A., Arranz, A., Martínez-Frías, J., Medina, J., Rull, F., 2016.
Raman-IR vibrational and XRD characterization of ancient and modern mineralogy
from volcanic eruption in Tenerife Island: Implication for Mars. Geosci. Front. 7 (4),
673–681. https://doi.org/10.1016/j.gsf.2015.07.009.

Lepot, K., Addad, A., Knoll, A., Wang, J., Troadec, D., Béché, A., Javaux, E., 2017. Iron min-
erals within specific microfossil morphospecies of the 1.88Ga Gunflint Formation.
Nat. Commun. 8, 1–11. https://doi.org/10.1038/ncomms14890.

Lestiani, D., Apryani, R., Lestari, L., Santoso, M., Hadisantoso, E., Kurniawati, S., 2018. Char-
acteristics of Trace elements in Volcanic ash of Kelud Eruption in East Java, Indonesia.
Indian J. Chem. 18 (3), 457–463. https://doi.org/10.22146/ijc.26876.

Lieke, K., Kristensen, T., Korsholm, U., Sørensen, J., Kandler, K., Weinbruch, S., Ceburnisd,
D., Ovadnevaite, J., O'Dowd, C., Bilde, M., 2013. Characterization of volcanic ash
from the 2011 Grímsvötn eruption by means of single-particle analysis. Atmos. Envi-
ron. 79, 411–420. https://doi.org/10.1016/j.atmosenv.2013.06.044.

Longo, B.M., 2013. Adverse Health Effects Associated with increased activity at Kīlauea
Volcano: a Repeated Population-based survey. ISRN Public Health 2013, 475962.
https://doi.org/10.1155/2013/475962.

Malek, A., Eom, H., Hwang, H., Hur, S., Hong, S., Hou, S., Ro, C., 2019. Single particle min-
eralogy ofmicroparticles fromHimalayan ice-cores using SEM/EDX and ATR-FTIR im-
aging techniques for identification of volcanic ash signatures. Chem. Geol. 504,
205–215. https://doi.org/10.1016/j.chemgeo.2018.11.010.

Manizales Cómo Vamos, 2019. Informe calidad de vida Manizales 2019. ISSN 2389-9514.
http://manizalescomovamos.org/wp-content/uploads/2019/09/Calidad_de_vida_
2019_compressed.pdf.

Mantovani, L., Tribaudino, M., Solzi, M., Barraco, V., De Munari, E., Pironi, C., 2018. Mag-
netic and SEM-EDS analyses of Tilia cordata leaves and PM10 filters as a complemen-
tary source of information on polluted air: results from the city of Parma (Northern
Italy). Environ. Pollut. 239, 777–787. https://doi.org/10.1016/j.envpol.2018.04.055.

Onat, B., Sahin, U.A., Akyuz, T., 2013. Elemental characterization of PM2.5 and PM1 in dense
traffic area in Istanbul, Turkey. Atmos. Pollut. Res. 4 (1), 101–105. https://doi.org/
10.5094/APR.2013.010.

Pachón, J.E., Vanegas, J., Saavedra, C., Amato, F., Silva, L.F.O., Blanco, K., Chaparro, R.,
Casas, O., 2020. Evaluation of factors influencing road dust loadings in a Latin
American urban center. J. Air & Waste Manag. Assoc. https://doi.org/10.1080/
10962247.2020.1806946.

Parnell, R., Burke, K., 1990. Impacts of acid emissions from Nevado del Ruiz volcano,
Colombia, on selected terrestrial and aquatic ecosystems. J. Volcanol. Geotherm.
Res. 42, 69–88. https://doi.org/10.1016/0377-0273(90)90070-V.

Querol, X., Alastuey, A., Rodríguez, S., Plana, F., Mantilla, E., Ruiz, C.R., 2001. Monitoring of
PM10 and PM2.5 ambient air levels around primary anthropogenic emissions. Atmos.
Environ. 35 (5), 848–858. https://doi.org/10.1016/S1352-2310(00)00387-3.

Ramírez, O., Verdona, A., Amato, F., Moreno, T., Silva, L., de la Rosa, J., 2019. Physicochem-
ical characterization and sources of the thoracic fraction of road dust in a Latin
American megacity. Sci. Total Environ. 652, 434–446. https://doi.org/10.1016/j.
scitotenv.2018.10.214.

Ribeiro, J., Flores, D., Ward, C., Silva, L.F.O., 2010. Identification of nanominerals and nano-
particles in burning coal waste piles from Portugal. Sci. Total Environ. 408,
6032–6041. https://doi.org/10.1016/j.scitotenv.2010.08.046.

Ribeiro, J., Daboit, K., Flores, D., Kronbauer, M., Silva, L., 2013a. Extensive FE-SEM/EDS, HR-
TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash. Sci.
Total Environ. 452-453, 98–107. https://doi.org/10.1016/j.scitotenv.2013.02.010.

Ribeiro, J., Taffarel, S.R., Sampaio, C.H., Flores, D., Silva, L.F.O., 2013b. Mineral speciation
and fate of some hazardous contaminants in coalwaste pile from anthracitemining in
Portugal. Int. J. Coal Geol. 109-110, 15–23. https://doi.org/10.1016/j.coal.2013.01.007.

Rodríguez, P.F., Shruti, V.C., Jonathan, M.P., Martinez, E., 2018. Metal concentrations and
their potential ecological risks in fluvial sediments of Atoyac River basin, Central
Mexico: Volcanic and anthropogenic influences. Ecotoxicol. Environ. Saf. 148,
1020–1033. https://doi.org/10.1016/j.ecoenv.2017.11.068.

Ruggieri, F., Fernandez, J., Saavedra, J., Gimeno, D., Polanco, E., Amigo, A., Galindo, G.,
Caselli, A., 2012. Contribution of volcanic ashes to the regional geochemical balance:
the 2008 eruption of Chaiten volcano, Southern Chile. Sci. Total Environ. 425, 75–88.
https://doi.org/10.1016/j.scitotenv.2012.03.011.

Saikia, B.K., Saikia, J., Rabha, S., Silva, L.F.O., Finkelman, R., 2018. Ambient nanoparticles/
nanominerals and hazardous elements from coal combustion activity: Implications
on energy challenges and health hazards. Geosci. Front. 9 (3), 863–875. https://doi.
org/10.1016/j.gsf.2017.11.013.

Schäfer, K., Thomas, W., Peters, A., Ries, L., Obleitner, F., Schnelle-Kreis, J., Birmili, W.,
Diemer, J., Fricke, W., Junkermann, W., Pitz, M., Emeis, S., Forkel, R., Suppan, P.,
Flentje, H., Gilge, S., Wichmann, H.E., Meinhardt, F., Zimmermann, R., Weinhold, K.,
Soentgen, J., Münkel, C., Freuer, C., Cyrys, J., 2011. Influences of the 2010
Eyjafjallajökull volcanic plume on air quality in the northern Alpine region. Atmos.
Chem. Phys. 11, 8555–8575. https://doi.org/10.5194/acp-11-8555-2011.

SGC [Servicio Geológico Colombiano], 2015. Mapa de amenaza volcánica del Volcán
Nevado del Ruiz, v3. https://www2.sgc.gov.co/sgc/volcanes/VolcanNevadoRuiz/
Paginas/Mapa-amenaza.aspx.

SGC [Servicio Geológico Colombiano], 2019. Boletín semanal de actividad del volcán
Nevado del Ruiz. Manizales, Caldas. Dirección de Geoamenazas.

Silva, L., Pinto, D., Neckel, A., Oliveira, M.L.S., Sampaio, C., 2020. Atmospheric
nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic forma-
tion interactions. Chemosphere 254, 126822. https://doi.org/10.1016/j.
chemosphere.2020.126822.

Smedley, P.L., Kinniburgh, D.G., 2002. A review of the source, behavior and distribution of
arsenic in natural waters. Appl. Geochem. 17 (5), 517–568. https://doi.org/10.1016/
S0883-2927(02)00018-5.

Sӧrme, L., Bergbäck, B., Lohm, U., 2001. Goods in the Anthroposphere as a Metal Emission
Source a Case Study of Stockholm, Sweden.Water, Air Soil Pollut. 1, 213–227. https://
doi.org/10.1023/A:1017516523915.

Stafoggia, M., Faustini, A., 2018. Chapter 3 - Impact on Public Health—Epidemiological
Studies: A Review of Epidemiological Studies on Non-Exhaust Particles: Identification
of Gaps and Future needs. In: Amato, F. (Ed.), Non-Exhaust Emissions. Academic
Press, London, pp. 67–88 https://doi.org/10.1016/B978-0-12-811770-5.00003-0.

E.M. Trejos, L.F.O. Silva, J.C. Hower et al. Geoscience Frontiers 12 (2021) 746–755

754

https://doi.org/10.1016/j.scitotenv.2015.12.026
https://doi.org/10.1016/j.scitotenv.2015.12.026
https://doi.org/10.20937/RICA.2018.34.03.11
https://doi.org/10.20937/RICA.2018.34.03.11
https://doi.org/10.1016/j.scs.2019.101852
https://doi.org/10.1016/j.coal.2014.05.009
https://www.dane.gov.co/files/censo2018/informacion-tecnica/presentaciones-territorio/190801-CNPV-presentacion-Caldas-Manizales.pdf
https://www.dane.gov.co/files/censo2018/informacion-tecnica/presentaciones-territorio/190801-CNPV-presentacion-Caldas-Manizales.pdf
https://www.dane.gov.co/files/censo2018/informacion-tecnica/presentaciones-territorio/190801-CNPV-presentacion-Caldas-Manizales.pdf
http://refhub.elsevier.com/S1674-9871(20)30203-6/rf0115
http://refhub.elsevier.com/S1674-9871(20)30203-6/rf0115
http://refhub.elsevier.com/S1674-9871(20)30203-6/rf0115
http://refhub.elsevier.com/S1674-9871(20)30203-6/rf0120
http://refhub.elsevier.com/S1674-9871(20)30203-6/rf0120
http://hdl.handle.net/10261/53751
http://refhub.elsevier.com/S1674-9871(20)30203-6/rf0130
http://refhub.elsevier.com/S1674-9871(20)30203-6/rf0135
http://refhub.elsevier.com/S1674-9871(20)30203-6/rf0135
http://refhub.elsevier.com/S1674-9871(20)30203-6/rf0135
https://doi.org/10.1016/j.atmosenv.2012.05.054
https://doi.org/10.1016/j.ecolind.2014.04.038
https://doi.org/10.1007/s11356-017-9831-6
https://doi.org/10.1007/s11356-017-9831-6
https://doi.org/10.1007/s11356-014-3696-8
https://doi.org/10.1016/j.atmosenv.2007.11.023
https://doi.org/10.1016/j.atmosenv.2007.11.023
https://doi.org/10.1016/j.atmosenv.2007.09.064
https://doi.org/10.1016/j.atmosenv.2007.09.064
https://doi.org/10.1016/j.chemosphere.2015.10.092
https://doi.org/10.1016/j.chemosphere.2015.10.092
https://doi.org/10.1016/j.atmosenv.2011.01.067
https://doi.org/10.1016/j.atmosenv.2011.01.067
https://doi.org/10.1097/EDE.0000000000000422
https://doi.org/10.1007/s10546-008-9300-3
https://doi.org/10.1016/j.envint.2014.01.013
https://doi.org/10.5094/APR.2012.032
https://doi.org/10.5094/APR.2012.032
https://doi.org/10.1016/0377-0273(90)90071-M
https://doi.org/10.1016/0377-0273(90)90071-M
https://doi.org/10.1016/j.gsf.2015.07.009
https://doi.org/10.1038/ncomms14890
https://doi.org/10.22146/ijc.26876
https://doi.org/10.1016/j.atmosenv.2013.06.044
https://doi.org/10.1155/2013/475962
https://doi.org/10.1016/j.chemgeo.2018.11.010
http://manizalescomovamos.org/wp-content/uploads/2019/09/Calidad_de_vida_2019_compressed.pdf
http://manizalescomovamos.org/wp-content/uploads/2019/09/Calidad_de_vida_2019_compressed.pdf
https://doi.org/10.1016/j.envpol.2018.04.055
https://doi.org/10.5094/APR.2013.010
https://doi.org/10.5094/APR.2013.010
https://doi.org/10.1080/10962247.2020.1806946
https://doi.org/10.1080/10962247.2020.1806946
https://doi.org/10.1016/0377-0273(90)90070-V
https://doi.org/10.1016/S1352-2310(00)00387-3
https://doi.org/10.1016/j.scitotenv.2018.10.214
https://doi.org/10.1016/j.scitotenv.2018.10.214
https://doi.org/10.1016/j.scitotenv.2010.08.046
https://doi.org/10.1016/j.scitotenv.2013.02.010
https://doi.org/10.1016/j.coal.2013.01.007
https://doi.org/10.1016/j.ecoenv.2017.11.068
https://doi.org/10.1016/j.scitotenv.2012.03.011
https://doi.org/10.1016/j.gsf.2017.11.013
https://doi.org/10.1016/j.gsf.2017.11.013
https://doi.org/10.5194/acp-11-8555-2011
https://www2.sgc.gov.co/sgc/volcanes/VolcanNevadoRuiz/Paginas/Mapa-amenaza.aspx
https://www2.sgc.gov.co/sgc/volcanes/VolcanNevadoRuiz/Paginas/Mapa-amenaza.aspx
http://refhub.elsevier.com/S1674-9871(20)30203-6/rf0310
http://refhub.elsevier.com/S1674-9871(20)30203-6/rf0310
https://doi.org/10.1016/j.chemosphere.2020.126822
https://doi.org/10.1016/j.chemosphere.2020.126822
https://doi.org/10.1016/S0883-2927(02)00018-5
https://doi.org/10.1016/S0883-2927(02)00018-5
https://doi.org/10.1023/A:1017516523915
https://doi.org/10.1023/A:1017516523915
https://doi.org/10.1016/B978-0-12-811770-5.00003-0


TROPOMI [TROPOspheric Monitoring Instrument], 2019. Satellite image of the volcanic
ash emission, trajectory, and height of the SO2 column – Nevado del Ruiz volcano.
Colombia. http://www.tropomi.eu/data-products/level-2-products

UNAL [Universidad Nacional de Colombia – sede Manizales]., CORPOCALDAS
[Corporación Autónoma Regional de Caldas], 2019. Aplicación de herramientas de
simulación atmosférica en el estudio de la calidad del aire en Manizales. Convenio
Interadministrativo 107–2018. Colombia, Manizales, Caldas, p. 233.

Velasco, M., 2015. Evaluación de la concentración y caracterización preliminar del PM10

en la ciudad de Manizales. Master's thesis. Universidad del Valle. Santiago de Cali,
Colombia. 105 pp.

Wembenyui, E., Collerson, K., Zhao, J., 2020. Evolution of Mount Cameroon volcanism:
Geochemistry, mineral chemistry and radiogenic isotopes (Pb, Sr, Nd). Geosci.
Front. https://doi.org/10.1016/j.gsf.2020.03.015 corrected proof.

WHO [World Health Organization], 2016.World health statistics 2016: monitoring health
for the SDGs, sustainable development goals. E-ISBN 9789240695696. https://www.
who.int/gho/publications/world_health_statistics/2016/en/.

E.M. Trejos, L.F.O. Silva, J.C. Hower et al. Geoscience Frontiers 12 (2021) 746–755

755

http://www.tropomi.eu/data-products/level-2-products
http://refhub.elsevier.com/S1674-9871(20)30203-6/rf0340
http://refhub.elsevier.com/S1674-9871(20)30203-6/rf0340
http://refhub.elsevier.com/S1674-9871(20)30203-6/rf0340
https://doi.org/10.1016/j.gsf.2020.03.015
https://www.who.int/gho/publications/world_health_statistics/2016/en/
https://www.who.int/gho/publications/world_health_statistics/2016/en/

	Volcanic Emissions and Atmospheric Pollution: A Study of Nanoparticles
	Repository Citation

	Volcanic Emissions and Atmospheric Pollution: A Study of Nanoparticles
	Digital Object Identifier (DOI)
	Notes/Citation Information
	Authors

	Volcanic emissions and atmospheric pollution: A study of nanoparticles
	1. Introduction
	2. Methodology
	2.1. Area of study
	2.2. Road dust sampling
	2.3. Morphological analysis

	3. Results and discussion
	3.1. Road dust load (RD10) variation
	3.2. Chemical and morphological analyses of road dust

	4. Conclusions
	Declaration of Competing Interest
	Acknowledgments
	References


