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ABSTRACT OF DISSERTATION 
 
 
 
 

RAD GTPASE: IDENTIFICATION OF NOVEL REGULATORY MECHANISMS 
AND A NEW FUNCTION IN MODULATION OF BONE DENSITY AND 

MARROW ADIPOSITY  
 

 The small GTP-binding protein Rad (RRAD, Ras associated with diabetes) 
is the founding member of the RGK (Rad, Rem, Rem2, and Gem/Kir) family that 
regulates voltage-dependent calcium channel function. Given its expression in 
both excitable and non-excitable cell types, the control mechanisms for Rad 
regulation and the potential for novel functions for Rad beyond calcium channel 
modulation are open questions.  Here we report a novel interaction between Rad 
and Enigma, a scaffolding protein that also binds to the E3 ubiquitin ligase Smad 
ubiquitin regulatory factor 1 (Smurf1).  Overexpression of Smurf1, but not of a 
catalytically inactive mutant enzyme, results in ubiquitination of Rad and down 
regulation of Rad protein levels.  The Smurf1-mediated decrease in Rad levels is 
sensitive to proteasome inhibition and requires the ubiquitination site Lys204, 
suggesting that Smurf1 targets Rad for degradation.  Rad protein levels, but 
notably not mRNA levels, are increased in the hearts of Enigma-/- mice, leading 
to the hypothesis that Enigma may function as a scaffold to enhance Smurf1 
regulation of Rad. 
 
 In addition to ubiquitination, phosphorylation of RGK proteins represents 
another potential means of regulation.  Indeed, Rem phosphorylation has been 
shown to abolish calcium channel inhibition.  We demonstrate that β-adrenergic 
signaling promotes Rad phosphorylation at Ser39. Rad Ser39 phosphorylation is 
correlated with a decrease in the interaction between Rad and the CaVβ subunit 
of the calcium channel and an increase in Rad binding to 14-3-3.  Interestingly, 
Enigma overexpression promotes an increase in Rad Ser39 phosphorylation as 
well.  Despite an interaction between Enigma and the CaV1.2 calcium channel 
subunit, overexpression of Enigma had no effect on Rad-mediated channel 
inhibition.  Thus, Rad Ser39 phosphorylation alters its association with the 
calcium channel, but its impact on calcium channel regulation has yet to be 
determined. 
 



 Finally, we report a novel function for Rad in the regulation of bone 
homeostasis.  Rad deletion in mice results in a significant decrease in bone 
mass. Dynamic histomorphometry in vivo and primary calvarial osteoblast assays 
in vitro demonstrate that bone formation and osteoblast mineralization rates are 
depressed in the absence of Rad.  Microarray analysis revealed that canonical 
osteogenic gene expression is not altered in Rad-/- osteoblasts; instead robust 
up-regulation of matrix Gla protein (MGP, +11-fold), an inhibitor of mineralization 
and a protein secreted during adipocyte differentiation, was observed.  Strikingly, 
Rad deficiency also resulted in significantly higher bone marrow adipose tissue 
(BMAT) levels in vivo and promoted spontaneous in vitro adipogenesis of primary 
calvarial osteoblasts.  Adipogenic differentiation of WT osteoblasts resulted in the 
loss of endogenous Rad protein, further supporting a role for Rad in the control of 
BMAT levels.  These findings reveal a novel in vivo function for Rad signaling in 
the complex physiological control of skeletal homeostasis and bone marrow 
adiposity. 

 
 In summary, this dissertation expands our understanding of Rad 
regulation through identification of a novel binding partner and characterization of 
post-translational regulatory mechanisms for Rad function. This work also 
defines a new role for Rad that may not depend upon its calcium channel 
regulatory properties: regulation of the bone-fat balance.  These findings suggest 
that the regulation of Rad GTPase is likely more complex than guanine 
nucleotide cycling and that functions of Rad in non-excitable tissues warrant 
further study. 
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Chapter 1 

 

Introduction 

 

Ras superfamily of small GTPases 

The Ras superfamily of small monomeric GTP-binding proteins consists of over 

170 structurally related proteins that regulate a diverse array of signal 

transduction cascades and cellular functions [1].  All Ras-related GTPases 

contain five conserved domains known as G1-G5 and function as guanine 

nucleotide-dependent switches that are in an active state when bound to 

guanosine triphosphate (GTP) and an inactive state when bound to guanosine 

diphosphate (GDP) [2].  Guanine nucleotide exchange factors (GEFs) promote 

GTP loading of these small G-proteins by facilitating the release of GDP, while 

GTPase activating proteins (GAPs) catalyze the hydrolysis of GTP to GDP and 

thus promote inactivation [2].  The small GTPases of the Ras superfamily are 

divided into five large families, Ras, Rab, Rho, Arf, and Ran, which are further 

classified into subfamilies based on structural and functional conservation [1].  

The studies in this dissertation will focus primarily on Rad, a member of the RGK 

subfamily within the Ras family. 
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RGK subfamily of the Ras-related small GTPases 

The RGK subfamily of small GTPases consists of four members: Rad (Ras 

associated with diabetes; also known as Rrad) [3], Rem (Rad- and Gem-like; 

also known as Rem1 or Ges) [4], Rem2 (Rad- and Gem-like 2) [5], and Gem/Kir 

(gene expressed in mitogen-stimulated T-cells, or tyrosine kinase-inducible Ras-

like) [6].  RGK subfamily G-proteins share a number of unique structural features 

that are distinct compared to other Ras-related proteins [7-9].  For instance, RGK 

proteins contain non-conservative substitutions within regions of the Ras core 

domain that are required for nucleotide binding and hydrolysis.  Moreover, 

proteins of the RGK subfamily have long N- and C-terminal extensions compared 

to other members of the Ras superfamily, and the C-terminus of these proteins 

lacks the -CAAX motif that permits lipid modification and directs membrane 

association of most Ras-related GTPases [10].  Instead, RGK proteins have a 

conserved polybasic C-terminal motif that directs membrane association without 

lipid modification, and the C-terminal extension also serves to regulate RGK 

protein function.  The N-terminal extensions range in length from 44-88 amino 

acids and are not conserved within the RGK family, and the putative G2 effector 

domains also differ among RGK proteins [11].  This lack of conservation 

observed within RGK effector domains implies that the regulatory proteins and 

downstream effector proteins with which RGK proteins interact may be distinct.  

Established functions for RGK proteins include inhibition of the activity of voltage-

dependent calcium channels (VDCCs) through an interaction with the accessory 

CaVβ subunit [11-18] and regulation of cytoskeletal dynamics through control of 
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the Rho/Rho kinase signaling axis [19-22], and a growing literature suggests the 

potential for novel functions of RGK family proteins in processes including 

metabolism [23-27], tumorigenesis [24-39], transcriptional regulation [25, 40-42], 

and stem cell differentiation [42-46].  The means by which RGK protein function 

is regulated in each of these settings is an active area of investigation in the field.  

Interestingly, RGK proteins exhibit distinct tissue expression profiles [11], and 

expression of RGK proteins is regulated at the transcriptional and 

posttranscriptional levels in a variety of contexts [3, 4, 6, 20, 26, 30-32, 34, 35, 

37, 41, 43, 44, 46-74].  This chapter will review the structural and functional 

properties of RGK subfamily proteins, discuss the regulation of RGK proteins 

through subcellular localization, post-translational modifications, and expression 

level changes, and delve into the physiological significance of RGK proteins with 

a specific emphasis on the Rad GTPase.  Following an introduction to RGK 

proteins, osteoblast differentiation and bone biology will be briefly outlined as 

these are pertinent to data presented in Chapter 5 expanding our current 

understanding of Rad GTPase function.   

RGK proteins have a unique primary structure compared to other Ras 

family GTPases 

The amino acid sequences of RGK proteins contain a number of non-

conservative substitutions at positions important for guanine nucleotide binding 

and hydrolysis [4, 5] (Figure 1.1).  First, RGK proteins contain substitutions 

within the G1 motif involved in phosphate binding. The residue equivalent to 
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Gly12 in Ras is highly conserved among Ras-related GTPases, and mutation of 

this residue results in constitutive activation of Ras and Rho family GTPases.  

Notably, this residue is substituted in all four RGK proteins (to proline in Rad and 

Rem2, to serine in Rem, and to glutamine in Gem; Figure 1.1).  Moreover, the 

highly conserved Thr35 residue within the Ras switch I domain, which senses the 

γ-phosphate and facilitates the conformational change of Ras family proteins in 

response to nucleotide cycling, is absent in the RGK subfamily (Figure 1.1). 

Furthermore, the highly conserved phenylalanine residue in the switch I motif 

responsible for capping the guanine ring to promote high affinity nucleotide 

binding is substituted in each of the RGK proteins (Figure 1.1).  Mutation of the 

equivalent Phe28 in H-Ras to leucine resulted in a higher rate of nucleotide 

dissociation.  The RGK protein G2 and G3 domains, which promote the 

conformational change within Ras family proteins in response to GTP binding, 

also exhibit key sequence divergences compared to other Ras family GTPases.  

All four RGK proteins share a conserved DXWEX G3 motif with a bulky 

tryptophan and charged glutamate residue that are in striking contrast to the 

small alanine and glycine residues in the conserved DTAGQ motif of other Ras-

related G-proteins [75] (Figure 1.1).  The glutamine residue in this motif, which is 

critical for GTP hydrolysis in Ras, is conserved in Rad and Rem2 but is 

substituted for alanine and asparagine in Rem and Gem, respectively (Figure 

1.1).  Despite its conservation in Rad, however, mutation of this glutamine 

residue appears to have no effect on GTPase activity [76].  Finally, the G2 

domain, which serves as the primary docking site for downstream effector 
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proteins, is characteristically highly conserved within Ras subfamilies.  

Intriguingly, this putative G2 effector domain differs across the RGK subfamily, 

suggesting that individual RGK effector proteins may be distinct. The differences 

in RGK protein G2 effector domains also imply that interactions that are shared 

by each of the RGK proteins, such as binding to the CaVβ subunit of the calcium 

channel, may not be nucleotide dependent.  

The differences in RGK protein primary structure when compared to other Ras 

family GTPases first suggested that RGK proteins might not function as 

canonical GTPases subject to regulation by GTP/GDP cycling [11].  However, 

despite the sequence divergences observed in the RGK subfamily, all RGK 

proteins exhibit intrinsic, albeit low, GTPase activity and can bind to GTP and 

GDP.  Notably, nucleotide binding for RGK proteins is in the micromolar range, 

much weaker than what is observed for other Ras-related GTPases [3, 4, 6-9, 

77].  Despite efforts at identifying regulatory proteins, GEFs and GAPs for RGK 

protein regulation in vivo have not been found [11].  Early in vitro studies 

indicated that the nucleotide binding status of Rad is modified by the tumor 

suppressor nm23, which can phosphorylate GDP or dephosphorylate GTP bound 

to Rad, but it remains unclear whether nm23 regulates Rad, or other RGK 

proteins, in vivo [28, 78].  Evidence for RGK control through the classical 

GTPase cycle is lacking, and there is no clear indication to date that any known 

RGK binding partners associate in a GTP-dependent fashion [11]. These 

reasons, coupled with the identification of other unique means of RGK regulation 

including transcriptional control, post-translational modifications, and alteration of 
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subcellular localization, question the importance of GTP-binding to RGK 

activation and downstream signaling [11].  

Structure of RGK subfamily GTPases 

Crystal structures of the core G-domains of Rad, Gem, and Rem2 in the GDP-

bound state indicate that the overall RGK G-domain structure is similar to Ras 

and other small GTPases with a central β-sheet of six strands (β1-β6) and five 

surrounding α-helices (α1-α5) [7-9, 79].  In each of these structures, the GDP 

nucleotide was present in the canonical nucleotide-binding pocket observed for 

other Ras family GTPases; however, in contrast to Ras, there are fewer contacts 

between RGK proteins and the bound nucleotide.  In particular, the switch I 

region, which covers the bound nucleotide in Ras, is further from the bound 

nucleotide in the structures of Gem and Rad [7-9, 79].  The switch I and switch II 

regions of each of the RGK proteins are conformationally flexible in the GDP-

bound state [7-9, 79].  Intriguingly, the recent crystal structures of the Rad and 

Rem2 G-domains bound to GNP, a non-hydrolyzable GTP analog, revealed 

almost no difference in conformation compared to the GDP-bound structures 

[77].  Specifically, the conformational change in the switch I region of Ras in 

response to GTP binding was absent in the Rad:GNP and Rem2:GNP structures, 

suggesting that RGK proteins may not undergo the canonical nucleotide-

dependent molecular switching characteristic of other small GTPases [77].  One 

caveat to such a conclusion is that these structures were obtained from the 

isolated RGK GTP-binding domains, without the N- and C-terminal extensions.  
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The contributions of these extensions to the structure of RGK proteins, 

particularly of the switch regions, remain unclear.  It is worth noting that Splingard 

and colleagues reported the structure of the G-domain of Gem along with the 

majority of the C-terminal extension and observed that a portion of this extension 

folds into an α-helix that makes contacts with the G-domain [8] in a manner that 

is similar to the N-termini of GDP-bound Arf proteins and the C-terminus of Ran 

[80, 81].  While this region is conserved in Rad, it differs in Rem and Rem2, 

which instead contain a Src homology 3-binding motif (PXXP) that cannot form 

an α-helical fold.  The N- and C-terminal extensions of Gem influenced its 

intrinsic GTPase activity but not its affinity for nucleotides [8].  Additional crystal 

structures of full-length RGK proteins bound to GDP and GTP are necessary to 

clarify whether these extensions may undergo rearrangements in response to 

nucleotide binding and modulate the overall RGK structure.  

One other important observation in these biochemical and structural analyses is 

that the putative dominant negative mutation, equivalent to Ras S17N, in RGK 

proteins must be approached with caution.  The Ras S17N mutant is locked in a 

GDP-bound state and is thought to form non-productive, stable interactions with 

GEF proteins and thereby sequester them away from wildtype GTPases in the 

cell [82, 83].  This serine residue is conserved in RGK subfamily proteins and has 

been mutated to asparagine in order to generate a “dominant negative” RGK 

protein in a number of studies in the literature [84-90].  However, Opatowsky et 

al. and Sasson et al. reported that Gem S89N and Rad S105N may in fact be 

non-native proteins that fail to bind nucleotide or exhibit only partial occupancy of 
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nucleotide [7, 77].  In addition, they reported that these mutants express quite 

poorly [7, 77], which is an observation we have made in the laboratory as well.  

Hence, these mutants may not represent a dominant-negative protein as 

expected. 

RGK protein function: regulation of cytoskeletal dynamics 

RGK proteins, especially Rad and Gem, have been reported to promote cell 

shape remodeling through regulation of the cytoskeleton. Rad- and Gem-

mediated changes in cell morphology are mediated through direct and indirect 

modulation of Rho/Rho kinase signaling [19, 22, 91, 92].  Both Gem and Rad 

directly bind and antagonize Rho kinase (ROK), with Gem specifically binding 

and inhibiting ROKβ and Rad showing specificity for ROKα [19]. Ectopic 

expression of Rad or Gem induced cell flattening and neurite extension through 

inhibition of ROK-mediated cell rounding and neurite retraction [19, 93].  In 

epithelial and fibroblastic cells, blunting of ROK signaling through ectopic Rad or 

Gem expression caused disassembly of stress fibers and focal adhesions [19, 

20].  In addition to direct inhibition of ROK activity, recent yeast-two hybrid 

studies have identified another cytoskeletal regulatory pathway in which Gem 

associates with the novel Gem-interacting protein (Gmip), which serves as a 

GAP for Rho GTPase, and Ezrin, which is a membrane-cytoskeleton linker 

protein [22].  The interaction between Gem and Ezrin at the interface between 

the plasma membrane and the cytoskeleton is required for the recruitment and 

activation of Gmip, which in turn serves to inhibit Rho signaling [22].  More recent 
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studies have highlighted the importance of the Gem-Ezrin-Gmip interaction to 

Gem-mediated cytoskeletal rearrangements, as knockdown of Gmip or 

introduction of constitutively active RhoA rescued the Gem overexpression 

phenotype [92].  Notably, although Ezrin has only been reported as a binding 

partner for Gem [22], co-immunoprecipitation and mass spectrometry studies 

conducted in our laboratory suggest that Rad also associates with Ezrin and the 

related proteins Radixin and Moesin (data not shown).    

Gem has also been studied in its regulation of the microtubule cytoskeleton [94-

96]. Kinesin-like protein (KIF9) is a microtubule-associated protein that binds to 

Gem, and these two proteins together induce changes in cell morphology [95] 

and regulate spindle length and chromosome alignment during mitosis [94]. 

Interestingly, Gem expression is up regulated in the brains of tau-deficient mice, 

and Gem overexpression in Chinese hamster ovary cells induced cell elongation 

that was inhibited by the microtubule-associated tau protein [96], further 

suggesting a role for Gem in the microtubule cytoskeleton.   

Although they have been less studied, both Rem and Rem2 have been reported 

to regulate cytoskeletal dynamics as well [69, 89, 97-99].  Rem overexpression 

induced endothelial cell sprouting [89], and Rem2 is a negative regulator of 

dendritic complexity in neurons [69, 97-99].  Notably, Rem and Rem2 do not bind 

to or regulate either ROK isoform [19], and it remains unclear whether these 

proteins associate with Ezrin to control the activity of Gmip.  Thus, further studies 
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are necessary to clarify the mechanisms of RGK-mediated regulation of 

cytoskeletal dynamics.  

RGK protein function: inhibition of voltage-dependent calcium channels 

Voltage-dependent calcium channels (VDCCs) transduce changes in membrane 

potential at the cell surface into an increase in intracellular calcium concentration 

that can initiate a number of downstream physiological processes [100].  These 

processes include muscle contraction, hormone secretion, synaptic transmission, 

and gene transcription [100].  VDCCs are classified as high voltage-activated 

(HVA) channels or low voltage-activated (LVA) channels based upon their 

activation threshold [100].  HVA calcium channels are composed of a complex of 

proteins, which include a pore-forming CaVα1 subunit and auxiliary β, α2δ,  and in 

some cases γ subunits [100]. In contrast, LVA channels consist of only the CaVα1 

subunit [100].  

The pore-forming CaVα1 subunits are large, 190 kD proteins composed of four 

homologous domains (I-IV) that each include six transmembrane segments (S1-

S6) [100].  In HVA channels, the accessory CaVβ subunit binds with high affinity 

to a conserved region of CaVα1 in the intracellular loop connecting domains I and 

II (I-II loop) known as the α interaction domain (AID) [100].  There are ten genes 

encoding CaVα1 subunits, and these are divided into three families based upon 

sequence similarity and pharmacological properties [100].  The CaV1 family 

contains the L-type calcium channels CaV1.1 (α1S), CaV1.2 (α1C), CaV1.3 (α1D), 
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and CaV1.4 (α1F), and the CaV2 family contains the P/Q-type channel CaV2.1 

(α1A), the N-type channel CaV2.2 (α1B), and the R-type channel CaV2.3 (α1E) 

[100].  The CaV1 and CaV2 families are HVA calcium channels.  L-type calcium 

channels are expressed in skeletal muscle, smooth muscle, ventricular 

myocytes, neuronal dendrites, and osteoblasts in the bone, while P/Q-, N-, and 

R-type calcium channels are primarily expressed in the nervous system [100].  

The LVA calcium channels comprise the third family of CaVα1 subunits, the CaV3 

family, which contains the T-type calcium channels CaV3.1 (α1G), CaV3.2 (α1H), 

and CaV3.3 (α1I) [100].  T-type calcium channels are expressed in neurons, 

pacemaker cells, and osteocytes in the bone [100].   

There are four genes encoding CaVβ subunits, designated CaVβ1-4, and each of 

these has a variety of splice variants [101].  The CaVβ2a isoform is expressed 

highly in the heart and will be used for experiments in this dissertation.  Each of 

the CaVβ subunits contains three variable regions separated by conserved Src 

homology 3 (SH3)-like and guanylate kinase (GK)-like domains [102].  The AID 

domain of the pore-forming CaVα1 subunit, described above, binds with high 

affinity to a region within the CaVβ GK-like domain [100]. The interaction of 

auxiliary CaVβ subunits with CaVα1 contributes to the proper forward trafficking of 

CaVα1 to the plasma membrane and also modulates the gating properties of 

VDCCs resident at the membrane [100].  

The linkage between the RGK subfamily and voltage-dependent calcium 

channels was established when an interaction between Gem and CaVβ3 was 
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identified in MIN6 cells [14].  All four RGK proteins have since been shown to 

function as potent inhibitors of VDCCs, with ectopic expression of RGK proteins 

in a variety of experimental settings ranging from heterologous expression 

systems to primary cells consistently causing almost complete blockade of VDCC 

current (ICa) [12-14].  RGK protein-mediated inhibition has been reported for L-

type, P/Q-type, and N-type calcium channels [11].  Notably, RGK proteins have 

no effect on T-type calcium channels, which do not require CaVβ for current 

expression [12, 103].  In line with a physiological role for RGK proteins in 

inhibiting calcium current, RNA interference and transgenic knockout mouse 

models also indicate that loss of function of RGK proteins in cardiac myocytes 

promotes an increase in VDCC current [104, 105], although the effect was more 

pronounced with loss of function of Rad than Rem.   

The interaction between RGK proteins and the calcium channel complex and its 

likely contributions to RGK-mediated ICa inhibition have been further investigated.  

Each of the four RGK proteins has been shown to bind to CaVβ isoforms [14-16, 

106], and deletion-mapping studies indicate that RGK proteins, like CaVα1, bind 

within the GK-like domain of CaVβ [15].  However, the site for RGK binding to 

CaVβ is structurally distinct from the AID, as evidenced by the identification of 

CaVβ mutants that are null for CaVα1 binding yet retain Rem binding and by the 

observation of simultaneous binding of CaVβ to RGK proteins and CaVα1 [15, 

106]. Interestingly, RGK proteins were subsequently shown to interact directly 

with the CaVα1 pore-forming subunit [18, 107, 108].  Specifically, Gem co-
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immunoprecipitated with CaV2.1 in the absence of CaVβ subunit [108], and three 

RGK family proteins, Rem, Rad, and Gem, were shown to bind to the proximal 

and distal regions of the CaV1.2 C-terminus [107].  Yang and colleagues also 

reported a CaVβ-independent interaction between Rem and CaV1.2, but they 

identified a Rem-binding site within the N-terminus of CaV1.2 [18].  Interestingly, 

Rem2 and Gem failed to bind to the CaV1.2 N-terminus, and Rem did not bind to 

the N-terminus of CaV2.2, suggesting that distinct regulatory mechanisms may be 

at play for different RGK proteins and CaVα1 isoforms [18].  

While it is well established that RGK proteins physically associate with the VDCC 

complex and negatively regulate calcium current, there is debate as to the 

mechanism(s) responsible for this effect.  One model contends that RGK proteins 

inhibit ICa by preventing trafficking of the channel to the surface of the cell through 

interference with the interaction between CaVα1 and CaVβ subunits [14, 16, 64, 

90, 109].  Proponents of this CaVβ sequestration model cite the findings that 14-

3-3 and calmodulin binding alter the subcellular localization of RGK proteins, with 

RGK mutants that are null for binding to 14-3-3 or calmodulin accumulating in the 

nucleus along with co-expressed CaVβ [16].  A second, opposing model suggests 

that RGK proteins bind to and inhibit CaVα1 and CaVβ-containing channels 

present at the plasma membrane [12, 13, 15, 87, 103, 106, 110, 111].  This 

model is supported by the observations that RGK protein binding to CaVβ 

subunits does not block CaVα1 binding [15, 106] and that the C-terminus of RGK 

proteins, which targets them to the plasma membrane, is required for ICa 
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inhibition but not for CaVβ binding [12, 110]. Furthermore, biochemical studies 

demonstrate far higher binding affinity between CaVα1 and CaVβ subunits than 

between RGK proteins and CaVβ; thus, RGK proteins are not abundant enough 

to block or sequester CaVα1:CaVβ complex formation, and there is no evidence 

for a large pool of unbound CaVβ within the cell [15]. Notably, all of the studies in 

support of the decreased surface expression model involved investigation of L-

type calcium channels, or the CaV1 family.  In contrast, analysis of RGK-

mediated inhibition of N-type, or CaV2.1 family, calcium channels consistently 

revealed that RGK proteins inhibit ICa without altering the density of channels at 

the membrane [103, 106, 111].  Thus, it is possible that RGK proteins use distinct 

means of regulating channels from different CaVα1 families.   

Yang and colleagues performed an elegant study of Rem-mediated VDCC 

regulation that has begun to reconcile these seemingly disparate models by 

suggesting that Rem uses a combination of mechanisms to inhibit ICa [17].  First, 

ectopic expression of Rem in HEK293 cells was found to decrease the 

expression of recombinant CaV1.2 channels at the cell surface [17].  Interestingly, 

however, Rem was shown to decrease the surface density of CaV1.2 channels by 

enhancing dynamin-dependent endocytosis of the channel rather than by 

preventing its forward trafficking to the membrane [17].  While the co-expression 

of dominant-negative dynamin with Rem normalized the surface density of 

CaV1.2, Rem-mediated ICa inhibition was still observed, suggesting that Rem is 

also capable of inhibiting calcium channels resident at the cell surface [17].  This 

study and others are beginning to suggest that RGK proteins use multiple 
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mechanisms to inhibit proper localization of calcium channels at the plasma 

membrane as well as to inhibit calcium channels already present at the 

membrane [17, 18].  In summary, studies from many laboratories using diverse 

experimental systems indicate that RGK proteins are intrinsic negative regulators 

of calcium current; however, the mechanisms for regulation of RGK proteins are 

much less characterized, particularly since cells that endogenously express RGK 

proteins are still electrically active.  It also remains unclear whether the dominant 

physiological role for RGK proteins is to block calcium current or whether they 

may have additional roles in the regulation of calcium signaling or of other 

pathways altogether. 

Regulation of RGK subfamily GTPases 

Most Ras-related small GTPases function as molecular switches that are 

regulated by their nucleotide binding status, with nucleotide exchange facilitated 

by specific GEF and GAP regulatory proteins [112].  RGK subfamily proteins may 

be a novel exception, however, because as discussed earlier in this chapter, 

evidence for RGK control via the classical GTPase cycle is lacking [11].  Instead, 

studies from a number of systems indicate that RGK protein function may be 

modulated on a number of levels, through subcellular localization, post-

translational modifications, and even transcriptional control.  Further probing of 

the regulatory mechanisms for RGK proteins is critical to understanding how 

these proteins are controlled within the cell.   
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RGK regulation through subcellular localization 

One layer of regulation of RGK protein function appears to be at the level of 

subcellular localization, as RGKs have been reported to localize to the plasma 

membrane, the cytosol, and the nucleus in various contexts [5, 16, 40, 41, 106, 

109, 110, 113-117].  In particular, the C-terminus of RGK proteins, which is well 

conserved across the subfamily (Figure 1.1), plays an important role in the 

regulation of RGK subcellular distribution in part due to its interactions with other 

proteins [116-120] as well as with the phospholipid bilayer [106, 110].  Following 

its initial cloning, Rem2 was shown to have a punctate plasma membrane 

localization that was abolished upon deletion of the C-terminus [5], despite the 

lack of lipid modification of RGK proteins.  Our laboratory later determined that 

the polybasic motif at the C-terminus of RGK proteins directs them to the plasma 

membrane through association with phosphatidyl inositol phospholipids (PIP 

lipids) [106, 110], and our studies suggest that this plasma membrane targeting 

is essential for calcium current modulation [110], as outlined previously.  In 

addition to the polybasic motif, the C-terminal extension of RGK proteins also 

contains a nuclear localization sequence (NLS) that binds to importin proteins, a 

calmodulin binding site, and two serine residues that can be subject to 

phosphorylation [116].  One of these phospho-serine residues serves as a 14-3-3 

binding site [118], while the other serine residue that is two amino acids 

upstream impedes 14-3-3 binding when phosphorylated [117].  The many 

overlapping regulatory regions within the RGK C-terminus complicate our 

understanding of its role; however, Mahalakshmi et al. showed for all four RGK 
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proteins that importins can bind to the NLS sequence at the C-terminus of RGK 

proteins to facilitate their nuclear transport [116, 117], and mass spectrometry 

studies conducted in our laboratory have also identified an association between 

Rad and importin proteins (data not shown).  Work by Beguin and colleagues 

indicates that binding of 14-3-3 and calmodulin disrupts nuclear transport, likely 

by blocking the association of RGKs with importins [16, 109, 113].  In contrast, 

mutations that abolish 14-3-3 and calmodulin binding result in RGK protein 

accumulation in the nucleus [16, 109, 113].  Interestingly, 14-3-3 binding also 

interferes with PIP lipid binding [106]; hence, 14-3-3 binding to RGK proteins 

promotes cytosolic redistribution.   

While plasma membrane targeting seems to play a crucial role in RGK-mediated 

calcium channel modulation [106, 110], the role of nuclear targeting of RGK 

proteins is not entirely clear.  Beguin and colleagues argued that nuclear 

localization of RGK proteins constitutes a novel mechanism for calcium channel 

inhibition through sequestration of CaVβ [16, 109, 113]; however, it is plausible 

that RGK proteins may have a functional role in the nucleus, especially given 

recent reports that endogenous RGK proteins are localized predominantly in the 

nucleus [115, 117] and that Rad can bind to the transcription factors CCAAT-

enhancer binding protein-delta (C/EBPδ) and RelA/p65 within the nucleus and 

regulate their binding to DNA [40, 41]. 

While many of the earlier studies of RGK protein subcellular distribution 

employed overexpression of wildtype and mutant proteins to probe the roles of 
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various binding partners on RGK localization [16, 109, 113, 116], recent studies 

have suggested that Rem2 subcellular redistribution may be stimulus-dependent 

[98, 114].  In response to N-methyl-D-aspartate (NMDA) receptor activation and 

calcium influx, Rem2 redistributes from a diffuse to a highly punctate pattern that 

colocalizes with calmodulin-dependent protein kinase II (CaMKII) in neurons 

[114].  A subsequent study demonstrated that Rem2 is a novel substrate for 

CaMKII phosphorylation, with CaMKII phosphorylation promoting nuclear 

redistribution of Rem2 [98]. Hence, redistribution of the RGK protein Rem2 from 

the cytoplasm to the nucleus appears to be a physiologically relevant event, but 

the function of Rem2 within the nucleus and the possibility that other RGK 

proteins may undergo stimulus-dependent changes in subcellular distribution 

require further investigation. 

RGK regulation by post-translational modifications 

While evidence for the regulation of RGK proteins by the canonical guanine 

nucleotide cycle is lacking, there is a growing body of literature suggesting that 

RGK proteins may instead be regulated by post-translational modifications, most 

notably phosphorylation.  In particular, Rad phosphorylation at multiple distinct 

serine residues has been demonstrated by a variety of kinases including protein 

kinase A (PKA), protein kinase C (PKC), calmodulin-dependent protein kinase II 

(CaMKII), and casein kinase II [49].  Phosphorylation of RGK proteins has been 

reported to modulate their protein-protein interactions as well as their subcellular 

distribution [16, 49, 109, 113, 116-118, 121].  For instance, phosphorylation of N- 
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and C-terminal serine residues is required for RGK proteins to bind to 14-3-3 

dimers [109, 113, 118, 121].  Interestingly, 14-3-3 binding seems to increase the 

half-life of RGK proteins and to modulate their subcellular localization, specifically 

by excluding them from the nucleus [16, 109, 113, 116, 117, 121].  Moreover, an 

additional C-terminal serine phosphorylation site was identified for all RGK 

proteins that blocks 14-3-3 binding [117].  Phosphorylation of Rad by PKC or 

casein kinase II was shown to reduce binding to calmodulin [49].  Furthermore, 

phosphorylation of serine residues within the C-terminal nuclear localization 

signal of RGK proteins was reported to block association with importins to 

regulate nuclear accumulation [116]. The effects of phosphorylation on binding to 

CaVβ subunits had not yet been explored and will be described in Chapter 4 of 

this dissertation. 

Importantly, a number of recent studies have suggested that phosphorylation of 

RGK proteins at different serine residues may regulate their functions in both 

cytoskeletal reorganization and voltage-dependent calcium channel regulation.  

Phosphorylation of Ser261 and Ser289 in the Gem C-terminus was reported to 

regulate the cytoskeletal reorganization function of Gem separately from its role 

in calcium channel regulation [121].  Similarly, the phosphorylation of C-terminal 

serine residues within the nuclear localization signals that inhibited entry into the 

nucleus also blocked the effects of Gem on the cytoskeleton without impacting its 

ability to regulate calcium current [116].  The function of Rem2 in controlling 

dendritic complexity is also regulated by phosphorylation, as CaMKII 

phosphorylation of Rem2 triggered nuclear localization of Rem2 and was 
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required for its inhibition of dendritic arborization [98]. The physiological 

relevance of RGK phosphorylation is highlighted by the recent report that 

endogenous Rem2 is found in the nuclei of basal ganglia cells and is 

phosphorylated at multiple serine residues [115].  RGK phosphorylation has also 

recently been reported to afford regulation of calcium channel modulation.  Rem 

phosphorylation by protein kinase D1 (PKD1) was shown to reverse Rem-

mediated calcium channel blockade in heterologous expression systems and in 

primary cardiac myocytes [64]. Interestingly, PKA inhibition also partially relieved 

Rem-mediated calcium current inhibition [122], further suggesting that kinase 

cascades modulate RGK blockade of calcium current but that the nature of this 

regulation may be complex. These recent studies suggest that RGK 

phosphorylation is an important regulatory mechanism; however, the kinases that 

regulate RGK phosphorylation and the effects of phosphorylation on RGK 

function more broadly require more extensive study, particularly whether 14-3-3 

binding to phosphorylated RGK proteins may block association with other binding 

partners or whether phosphorylated RGKs may show enhanced binding to 

certain effectors.  It also remains unclear whether the same kinase cascades 

regulate each of the four RGK proteins or whether a diversity of regulatory 

pathways may exist. 

While phosphorylation is the best-studied post-translational modification of RGK 

proteins, mass spectrometry analysis has demonstrated that Rad protein can 

also be ubiquitinated at Lys204 [123, 124]. However, the E3 ubiquitin ligase 

enzyme(s) responsible for catalysis of Rad ubiquitination and the physiological 
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relevance of this modification remain to be determined. The possibility of 

ubiquitin-mediated proteostatic control of Rad will be investigated in Chapter 3 of 

this dissertation.  

Transcriptional regulation of RGK proteins 

In contrast to the regulatory mechanisms reported for most Ras-related small 

GTPases, RGK proteins are unique in their ability to be regulated at the level of 

expression [3, 4, 6, 20, 26, 30-32, 34, 35, 37, 41, 43, 44, 46-74].  Gem was 

initially discovered as a gene up regulated in human T cells following mitogen 

stimulation [6] and in BCR-Abl-transformed B cells [125].  Subsequent studies 

have shown that Gem expression is also up regulated in the context of heart 

failure [50], as well as following stroke [63], sciatic nerve injury [66], spinal cord 

injury [68], peripheral nerve injury [73], and optic nerve crush [70].  Moreover, 

Gem is down regulated in hepatocellular carcinoma, with expression levels 

negatively correlated with the histological grade, the size of the tumor, and the 

invasive and proliferative properties of the cancer [37].  In contrast, high 

expression of Gem in bladder cancer was correlated with decreased survival 

[36].  Expression of Gem as well as Rem2 is induced in MIN6 cells, a pancreatic 

β-islet cell line, following glucose treatment [13, 126].  Insulin and potassium 

chloride treatment of MIN6 cells also induced Gem expression [126].  Rem2 is up 

regulated in developing neurons and in human embryonic stem cells [42, 43], as 

well as in endothelial cells of stage IV pancreatic disease [56].  Rem2 is also 

regulated at the transcriptional level by calcium influx through VDCCs [69].  Rem 
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expression is up regulated in cardiomyocytes following isoproterenol treatment 

[127] and down regulated in mouse cardiac muscle following lipopolysaccharide 

injection [4].   

While all four RGK proteins have been shown to be under transcriptional control 

[3, 4, 6, 13], modulation of Rad expression has been described the most 

frequently, particularly in muscle.   Rad was initially identified as a gene 

overexpressed in the skeletal muscle of type II diabetic individuals [3], although 

analysis of Rad expression in Pima Indians and the Zucker diabetic rat model did 

not find such a correlation [128].  Subsequent studies indicated that Rad 

expression in muscle was positively correlated with body mass index and body 

fat percentage and negatively correlated with resting metabolic rate [129].  

Several independent studies have identified insulin as a stimulus for induction of 

Rad expression in muscle [47, 55, 57], and in the same vein, Rad expression 

was increased in pancreatic islets following exposure to type I diabetic serum 

[58, 65].  Rad expression also appears to be up regulated during muscle 

development and in response to muscle injury, as Rad levels are elevated in the 

progression of myoblasts to myotubes in vitro [128, 130], in regenerating limb 

muscle following amputation in the newt [46], in denervated mouse muscle [51, 

61], in ALS muscle [61], in vascular smooth muscle following balloon injury [20] 

and stimulation with platelet-derived growth factor [62], in dissecting aorta [72], 

and in the myogenic progenitor cell population during skeletal muscle 

regeneration [54].  In the heart, Rad expression is up regulated following 

ischemic preconditioning [60] and down regulated in heart failure [131, 132].  Rad 
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levels are also altered in a number of other tissues [34, 48, 52, 53, 67, 74], which 

will be described in more detail later.  Taken together, these studies indicate that 

RGK proteins, and Rad in particular, are regulated at the level of expression.  

Evidence suggests that much of this regulation occurs at the level of 

transcription; however, post-translational protein stability could provide an 

additional level of control that remains to be explored, especially given the 

observation that Rad protein is subject to ubiquitination [123, 124].   

Physiological significance of the RGK subfamily protein Rad 

While the functions of RGK proteins have been investigated in a variety of cell 

models, we are still working to understand the physiological roles of these 

proteins.  RGK proteins are expressed in a number of excitable tissues where 

their regulation of VDCCs may be particularly relevant [11].  For instance, Rem is 

expressed in the heart, Rem2 is expressed in neurons, Gem is expressed in 

pancreatic β-cells, and Rad, the focus of this dissertation, is present in cardiac 

and skeletal muscle [11].  Rad expression has also been recently found in non-

excitable cell types [34, 48, 52, 53, 67, 74], however, suggesting that its 

physiological significance extends well past its role in VDCC regulation. 

Roles of Rad in the heart 

Given its high expression in cardiac muscle [3, 128] and its role in the regulation 

of VDCCs [12], the function of Rad has been characterized most extensively in 

the heart.  Rad expression is decreased in human heart failure and in cardiac 
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hypertrophy induced by pressure overload in mice [131, 132].  A novel single 

nucleotide polymorphism (SNP) resulting in a Q66P mutation in the human Rad 

protein was correlated with congestive heart failure [133]; however, mutation of 

this residue does not alter the ability of ectopic Rad expression to block calcium 

current [134], suggesting that this mutation may contribute to cardiomyopathy 

through an alternative mechanism than calcium channel modulation.  Rad has 

also been reported to regulate apoptosis of cardiomyocytes through p38 protein 

kinase activation [135] and to regulate excitation-contraction coupling and β-

adrenergic signaling in cardiac myocytes [86].   

The first loss-of-function studies for Rad in heart were performed using the 

putative dominant negative mutant Rad S105N [84-86].  Overexpression of this 

mutant in guinea pig cardiomyocytes was reported to cause an increase in 

calcium current and a prolonged QT interval resulting in arrhythmias [85].  

Another study found that transgenic mice overexpressing Rad S105N exhibited 

increased phosphorylation of the Ryanodine receptor, the channel by which 

calcium is released from the sarcoplasmic reticulum (SR) in response to calcium 

influx through VDCCs, and a subsequent increase in the frequency of 

inappropriate calcium release from the SR, termed calcium sparks, and of 

arrhythmias [84].  Furthermore, Wang et al. reported that overexpression of Rad 

S105N resulted in a comparable increase in ICa compared to Rad knock down 

[86]. However, other studies have suggested that the “dominant negative” 

mutations in RGK proteins are not effective [88], and the lack of solid evidence of 

GTP cycle regulation of Rad makes interpretation of these data difficult.  The 
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generation of Rad-/- mice helped to circumvent this issue.  Initial studies in these 

mice indicated that loss of Rad results in more severe cardiac hypertrophy 

following pressure overload [132] and more extensive cardiac fibrosis through 

enhanced extracellular matrix (ECM) deposition [41], but the impact of Rad loss 

on calcium channel dynamics had not been investigated in these earlier studies. 

Over the past several years, the Andres and Satin laboratories have collaborated 

to further study the role of Rad GTPase in the heart through analysis of the 

cardiac phenotype of Rad-/- mice.  I have contributed data to a number of these 

studies and am a co-author on several manuscripts, but this work will not appear 

in a chapter of this dissertation [104, 131, 136].  Briefly, we have shown that 

cardiac myocytes from Rad-/- mice have higher calcium current [104], suggesting 

that Rad is indeed an endogenous inhibitor of VDCCs.  Rad-/- cardiomyocytes 

also exhibited elevated diastolic and twitch calcium levels, higher sarcoplasmic 

reticulum calcium load, and elevated sarco/endoplasmic reticulum Ca2+-ATPase 

(SERCA2a) expression, and the Rad-/- cardiac phenotype closely resembled 

tonic β-adrenergic stimulation of the calcium channel complex [104, 136].  In 

keeping with this sympathomimetic phenotype, we went on to establish that Rad-

/- mouse hearts are hypercontractile relative to wildtype hearts, and that this 

improved cardiac function is maintained in aging [136].  Notably, unlike the Rad 

S105N overexpression studies, we did not observe arrhythmias in Rad-/- mice.  

Finally, we have replicated the finding that Rad protein levels are significantly 

lower in human failing hearts [131]; however, while more work is needed, our 

data from Rad-/- mice suggest that the loss of Rad may be a compensatory 
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response to the need to increase cardiac output in this setting rather than a 

pathological consequence of heart failure.  In summary, our work suggests that 

loss of Rad does not exacerbate cardiac hypertrophy or induce cardiac 

arrhythmias as may be expected with an increase in calcium current; instead, 

Rad deletion appears to generate a stable increase in cardiac function that 

renders protection upon cardiac insult [136], (unpublished data).   

Emerging roles of Rad in non-excitable tissues 

While Rad, as a putative inhibitor of VDCC function, has primarily been studied in 

excitable tissues, especially the heart where it is highly expressed, a number of 

recent reports suggest that there is value in exploring the function of Rad in non-

excitable tissues.  In addition to the changes in Rad expression in muscle 

described above, Rad levels are also altered in other systems that require further 

investigation.  For instance, Rad expression is induced in the suprachiasmatic 

nucleus following stimulation with light [59, 71], in peripheral blood mononuclear 

cells following heat shock [48] or polychlorinated biphenyl (PCB) exposure [74], 

in cirrhotic livers relative to normal livers [52], in human placenta following 

hypoxia [53], and during erythropoiesis to confer erythroid survival [67].  In each 

of these cases, the mechanism for up regulation of Rad expression and the 

functional implications of this up regulation require further investigation. 

Interestingly, modulation of Rad levels has also been reported in a diverse 

assortment of cancers. Rad silencing has been reported in breast [28], lung [24, 

25, 30, 34, 137], ovarian [38], cervical [138], liver [26, 27], nasopharyngeal [32], 
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and esophageal cancer [35], as well as in glioblastoma [39]. In many of these 

cases, Rad silencing is correlated with aberrant methylation of its promoter 

region [32, 35, 38, 39, 138]. Notably, elevated Rad expression was also 

observed in some cancers, especially in highly invasive tumors and in drug-

resistant tumors [28, 29, 33, 139].  Mechanistically, the frequent down regulation 

of Rad in cancer has been attributed to a novel role of Rad in inhibiting the 

Warburg effect [25, 27], suggesting a role for Rad in metabolism.  Interestingly, 

Rad was found to repress glycolysis primarily through inhibition of glucose 

transporter translocation to the plasma membrane [24].  In the same vein, earlier 

studies also implicated Rad in the regulation of glucose uptake, as Rad 

overexpression inhibited glucose uptake in muscle and fat cells [140], and Rad 

silencing promoted glucose uptake in an ovarian cancer model [38].  The role of 

Rad in mediating these changes, however, remains unclear. 

The ability of Rad to localize to the nucleus in addition to the cytosol and plasma 

membrane is well established [16, 29, 40, 117], and the nuclear localization of 

Rad was initially thought to provide a means of sequestration of Rad to inhibit its 

activities in cytoskeletal reorganization and/or VDCC control [16, 117].  However, 

recent studies suggest that Rad may play a direct role in the regulation of gene 

transcription.  Following the observation that Rad-/- mice exhibited more severe 

cardiac fibrosis, Zhang et al. identified up regulation of connective tissue growth 

factor (CTGF) as a key factor in the observed phenotype, and further analysis 

indicated that Rad associates with CCAAT-enhancer binding protein-δ (C/EBP-δ) 

and inhibits its binding to the CTGF promoter [41].  Similarly, Hsiao et al. recently 



	
   28 

reported a direct interaction between Rad and the p65/RelA subunit of nuclear 

factor kappa B (NFκB) that occurs in the nucleus and inhibits DNA binding of 

RelA [40]. Notably, overexpression of Rad decreased NFκB transcriptional 

activity, whereas Rad deletion resulted in up regulation of NFκB target genes 

[40].  Thus, it is plausible that Rad localization in the nucleus extends beyond a 

means of sequestering the protein to inhibit its regulation of VDCCs and the 

cytoskeleton; rather, Rad may actively bind to and activate or inhibit transcription 

factors and co-activators/co-repressors to influence gene expression.  

Finally, similar to the reports of Rem2 regulating embryonic stem cell self-

renewal and pluripotency [42, 43], Rad was also recently identified to have a 

potential role in embryonic stem cell differentiation [45] and to contribute to 

expression of stem factors enhancing self-renewal ability [139]. The involvement 

of Rad in regulation of stem cell maintenance and differentiation has also been 

extended to mesenchymal stem cells (MSCs), as Satija and colleagues recently 

reported that lithium priming of human MSCs toward the osteoblast lineage 

resulted in a significant up regulation of Rad expression, and that Rad silencing 

reversed the osteogenic effects of lithium [44]. The idea that RGK proteins, and 

Rad in particular, may influence MSC differentiation and osteogenesis will be 

explored in Chapter 5 of this dissertation.  In preparation for Chapter 5, a brief 

introduction of bone biology and osteoblast differentiation will now be described. 
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Bone remodeling 

Bone remodeling is a physiological process in which old or damaged bone is 

removed by osteoclasts and replaced by new bone formed by osteoblasts 

(Figure 1.2) [141].  This process occurs throughout life, with the entire skeleton 

of a child being replaced every four years and the entire adult skeleton being 

replaced every ten years [141].  The bone remodeling cycle can be broken into 

five stages: the resting state, resorption, reversal, formation, and mineralization 

[142]. 

In the resting state, the surface of the bone is covered with bone-lining cells, 

which are aged osteoblasts that no longer play a role in synthesis of bone matrix 

[143].  These bone-lining cells cover all non-metabolically active areas of the 

bone and thereby close it off to other cells, including osteoclasts [143].  The 

peeling back of the bone-lining cells stimulates and allows attachment of 

osteoclasts to the bone surface.  Osteocytes, which comprise 90% of all bone 

cells, are also derived from old osteoblasts that have been incorporated into the 

mineralized bone [144].  Osteocytes sense mechanical force and bone strain and 

respond to these forces by secreting factors that regulate osteoclast and 

osteoblast generation, thereby initiating the remodeling process on the bone 

surface [144].   

The bone remodeling cycle begins with osteoclast generation and recruitment to 

a particular site.  Under physiological conditions, this site may be in need of 

repair, while under pathological conditions it may be randomly and 
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inappropriately targeted.  Osteoclasts are giant, multinucleated cells derived from 

the hematopoietic lineage, and they have a specialized plasma membrane 

domain known as a ruffled border that attaches to the bone surface [145].  The 

osteoclast degrades mineralized extracellular matrix by secreting acid and 

lysosomal proteins, and the osteoclast then reabsorbs, packages, and secretes 

the minerals and proteins [145]. 

After osteoclastic resorption is complete, there is a reversal phase in which 

mononuclear cells migrate to the bone surface.  These cells put down a layer of 

glycoprotein-rich material known as the cement line to which osteoblasts can 

adhere, and they provide necessary signals for osteoblast differentiation and 

migration in the bone formation phase [142].  In this phase, successive waves of 

osteoblasts adhere to the cement line and lay down bone until the resorbed bone 

is completely replaced [142].  During the final stage, the newly formed bone 

matrix becomes mineralized, and the bone then returns to its resting state with 

little cellular activity on the bone surface until a new remodeling cycle begins. 

In normal bone remodeling, a balance between bone resorption mediated by 

osteoclasts and bone formation mediated by osteoblasts is tightly regulated and 

maintained in order to ensure that, in mature healthy bone, there are no major 

net changes in bone mass or mechanical strength after each remodeling cycle.  

Nonetheless, an imbalance between bone resorption and bone formation may 

occur under certain pathological conditions, such as osteoporosis, and this 

imbalance results in reduced bone density, or osteopenia [141].  Some of the 
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factors that can lead to dysregulation of the bone remodeling balance include 

aging, hormonal changes associated with menopause, changes in physical 

activity, medications, and secondary diseases [141].  Interestingly, many of these 

factors that are correlated with osteopenia are also associated with an increase 

in bone marrow adipose tissue, an idea that will be expanded in Chapter 5. 

Osteoblast and osteoclast differentiation  

As described above, the osteoblast is the cell type responsible for new bone 

formation through synthesis and secretion of collagen matrix and calcium salts 

[146].  Osteoblasts are derived from MSCs, which are pluripotent stem cells that 

can differentiate into a variety of tissues including adipocytes (fat), chondrocytes 

(cartilage), and myocytes (muscle) in addition to osteoblasts (bone) [146].  

Differentiation of MSCs toward the osteoblast lineage is controlled by a variety of 

cytokine signaling pathways including the Hedgehogs, transforming growth 

factor-β (TGF-β), parathyroid hormone (PTH), Wnts, and bone morphogenetic 

proteins (BMPs) [146].  Although there are a variety of upstream signals that can 

initiate the process of osteoblast differentiation, they each converge on the 

activation of Runt-related transcription factor 2 (Runx2), which is considered the 

master transcription factor for the regulation of osteoblast differentiation [147].  

Deletion of Runx2 in mice results in the complete absence of osteoblasts and a 

cartilaginous skeleton that lacks mineralized matrix [148].  Runx2 interacts with a 

number of co-regulatory proteins to positively or negatively regulate the 

expression of osteoblastic genes such as type I collagen, alkaline phosphatase, 
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osteocalcin, and osterix [149, 150].  Osterix is itself a transcription factor with a 

critical function in osteoblast differentiation, as Osterix-/- mice fail to develop 

osteoblasts [151].  The osteoblast differentiation process can be divided into the 

stages of proliferation of MSCs and osteo-chondrocyte precursors, maturation of 

these precursors into osteoblasts, and termination in which osteoblasts no longer 

function in bone formation and rather terminally differentiate into bone lining cells 

or osteocytes or undergo apoptosis [147]. Runx2 plays an early role in the 

differentiation of osteogenic precursors into immature osteoblasts, while Osterix 

promotes the maturation of these osteoblasts [147].   

Osteoclasts are the cells responsible for bone resorption, or break down.  Unlike 

osteoblasts, osteoclasts are multi-nucleated cells derived from the hematopoietic 

lineage, specifically from monocytes and macrophages near the bone surface 

[145].  Notably, differentiation of these macrophage precursors into osteoclasts 

requires two cytokines, receptor activator of nuclear factor-kappa B ligand 

(RANKL) and macrophage-colony stimulating factor (M-CSF), both of which are 

produced by osteoblasts [145, 152].  Hence, a direct regulatory linkage exists 

between osteoblasts and osteoclasts that is important for controlling bone 

homeostasis. 

Bone morphogenetic protein signaling 

The bone morphogenetic protein (BMP) signaling pathway is one of the 

pathways implicated in the regulation of osteoblast differentiation. BMPs are 

members of the transforming growth factor-β (TGF-β) superfamily that were 
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initially identified for their capacity to induce bone formation at ectopic sites in 

rats [153].  Since their discovery, the role of BMPs in bone homeostasis has 

been confirmed by their expression in skeletal tissues and their roles in skeletal 

development as well as in fracture healing [154].  Notably, conditional deletion of 

BMPs in mouse bone results in skeletal defects [154, 155], and inherited 

mutations in BMPs or their receptors are observed in skeletal disorders in 

humans [156].  BMPs are also utilized therapeutically in certain settings such as 

for the repair of open fractures of long bones and for spinal fusions [157]. 

BMP ligands bind as dimers to type-I and type-II serine/threonine receptor 

kinases, allowing receptor oligomerization.  This oligomerization allows the 

constitutively active type-II BMP receptors to phosphorylate and thereby activate 

the type-I receptors (Figure 1.3).  Type-I BMP receptor kinases activated by the 

type-II receptor kinases then phosphorylate the C-terminus of the receptor-

associated Smads (R-Smads) 1 and 5 (Figure 1.3).  Phosphorylated R-Smads 

can heterodimerize with the common-partner Smad (co-Smad) Smad4 and 

translocate into the nucleus (Figure 1.3), where they regulate the transcription of 

genes including Runx2 that are associated with bone development via interaction 

with various transcription factors and transcriptional co-activators or co-

repressors.  Meanwhile, C-terminally phosphorylated R-Smads in the nucleus are 

also subject to phosphorylation within the linker region by mitogen activated 

protein kinases (MAPKs) and glycogen synthase kinase-3 (GSK3) [158] (Figure 

1.4).  This linker phosphorylation allows R-Smad binding to E3 ubiquitin ligases 

such as Smurf1, which ubiquitinate the R-Smad proteins and target them for 
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degradation in the proteasome [158] (Figure 1.4).  Smurf1 thus regulates 

osteoblast differentiation by providing negative feedback on BMP signaling.    

Skeletal anatomy 

Bone tissue in mammals is classified into two different types of bone tissue: 

cortical and trabecular bone.  Cortical bone, sometimes also referred to as 

compact bone, forms the dense, outer shell (Figure 1.5) and is responsible for 

the majority of the weight of the skeleton (~80%).  Important functions of the 

cortical bone include supporting the weight of the body, protecting vital organs 

such as the brain and bone marrow, storing calcium, and providing leverage for 

movement.  Trabecular bone, also known as cancellous or spongy bone, is 

enclosed by the cortical bone and forms a less dense meshwork of bony plates 

and rods (Figure 1.5).  Trabecular bone is primarily found at the ends of long 

bones near joints and within vertebrae and flat bones.  Trabecular bone has a 

much higher surface area than cortical bone and is the primary site of bone 

remodeling associated with metabolism and maintenance of calcium 

homeostasis.  Trabecular bone is often impacted more severely than cortical 

bone in the setting of osteoporosis.  

The ends of long bones are known as the epiphyses.  The proximal epiphysis is 

the end that is closest to the center of the body (for instance, the top end of the 

femur which forms part of the hip joint), and the distal epiphysis is that farthest 

from the center of the body (the lower end of the femur which forms part of the 

knee joint) (Figure 1.5).  The majority of the histology presented in this 
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dissertation, as well as the trabecular bone µCT, utilizes the distal femur.  The 

shaft of long bones, or the portion between the two epiphyses, is called the 

diaphysis.  The diaphysis consists of a tube of cortical bone that encloses the 

medullary cavity (Figure 1.5).  Cortical analyses in this dissertation are 

performed at the mid-diaphysis of the femur.   

The medullary cavity is surrounded by a delicate membrane known as the 

endosteum (Figure 1.5), and the inner surface of the cortical bone is similarly 

called the endocortical surface.  A fibrous membrane called the periosteum 

surrounds the outer surface of the bone and is the site of tendon and ligament 

attachment to bones, as well as for blood vessels, nerves, and lymphatic vessels 

(Figure 1.5).  The outer surface of the cortical bone is thus referred to as the 

periosteal surface.  The bone formation rates of cortical bone in this dissertation 

will be presented for both the periosteal and endocortical surfaces. 

Scope of dissertation 

In summary, Rad is a member of the RGK subfamily of Ras-related small 

GTPases. This unique family of G-proteins binds to guanine nucleotides despite 

unusual amino acid substitutions within regions associated with nucleotide 

binding and hydrolysis. Rad has established functions in the regulation of 

cytoskeletal remodeling and of voltage-dependent calcium channel modulation, 

but it is unclear whether these functions are regulated through nucleotide binding 

status, subcellular distribution, post-translational modifications, transcriptional 

regulation, or proteostatic control mechanisms.  Rad expression has also been 
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reported in non-excitable cell types, and roles of Rad beyond its documented 

functions in regulating the cytoskeleton and calcium current are emerging.  In this 

dissertation, I seek to advance our understanding of how Rad might be 

regulated, both in excitatory and non-excitatory cells.  I will investigate the role of 

a novel Rad-interacting protein and an associated E3 ubiquitin ligase in the 

regulation of Rad protein levels in Chapter 3, followed by an examination of the 

role of Rad phosphorylation in the regulation of protein-protein interactions and 

calcium current regulation in Chapter 4.  Finally, I will explore the role of Rad in 

the regulation of bone homeostasis and osteoblast function in Chapter 5 of this 

dissertation. 
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Figure 1.1: Sequence alignment of the RGK subfamily 

The amino acid sequence of each of the four RGK subfamily proteins and H-Ras 

are aligned to illustrate regions of conservation and the lack thereof.  The G1-G5 

boxes of H-Ras, which are typically highly conserved among Ras-related 

GTPases, are enclosed in red boxes.  Black arrows indicate residues in H-Ras 

important for nucleotide binding and hydrolysis that are absent in RGK proteins. 

Amino acid residues depicted in orange represent sequence identity across the 

RGK subfamily, those in green represent sequence similarity across the RGK 

subfamily, and those in blue represent sequence similarity among three of the 

four RGK proteins. The lack of conservation in the N-terminal extensions of RGK 

proteins is readily observed.  The N- and C-terminal serine residues involved in 

phosphorylation-dependent 14-3-3 binding are enclosed in black boxes, and the 

site for calmodulin binding, the polybasic membrane targeting region, and the 

nuclear localization sequence within the conserved C-terminus of RGK proteins 

are also denoted. 
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Figure 1.2: The bone remodeling cycle 

Bone is a dynamic tissue that is constantly undergoing cycles of bone 

remodeling.  The five stages of bone remodeling are the resting state, osteoclast-

mediated bone resorption, reversal, osteoblast-mediated bone formation, and 

mineralization. 
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Figure 1.3: Bone morphogenetic protein signaling pathway 

Bone morphogenetic protein (BMP) ligand binding to BMP type I and type II 

receptors facilitates their oligomerization.  BMPRII phosphorylates and activates 

BMPRI, which then phosphorylates the C-terminus of receptor-associated Smad 

proteins such as Smad1.  Phosphorylated Smad1 then heterodimerizes with 

Smad4, and this complex translocates into the nucleus where it regulates gene 

transcription.  
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Figure 1.4: Smurf1-mediated ubiquitination of R-Smad proteins 

Following C-terminal phosphorylation of R-Smads by the BMP receptor, 

dimerization with Smad4, and nuclear translocation, R-Smad proteins are subject 

to phosphorylation at two serine residues within their linker region by MAPKs and 

GSK3. Linker phosphorylation allows recruitment of the Smurf1 E3 ligase, 

polyubiquitination of R-Smads, and proteasomal degradation. 

Modified from Fuentealba et al. 2007 [159]  
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Figure 1.5: Long bone anatomy 

This diagram of a long bone indicates the locations of important anatomical 

structures, such as cortical versus trabecular bone, diaphysis versus epiphysis, 

and periosteum versus endosteum. 

Modified from OpenStax College, Anatomy and Physiology. OpenStax CNX. 

http://cnx.org/contents/14fb4ad7-39a1-4eee-ab6e-3ef2482e3e228.81. 



	
   42 

  

Chapter 2 

 

Materials and Methods 

 

HEK293 cell culture and transfection 

HEK293 cells were obtained from American Type Cell Culture (ATCC) and were 

cultured in DMEM supplemented with 10% fetal bovine serum (FBS), 100 

units/mL penicillin, and 100 µg/mL streptomycin. The day prior to transfection, 

HEK293 cells were split into 6-well dishes at a density of 1x106 cells/well.  Cells 

were transfected using Transgin DNA Transfection Reagent (America Pharma 

Source, Gaithersburg, MD).  For each well of a 6-well plate, a total of 2 µg of 

plasmid DNA and 2 µL of Transgin were added to 100 µL of Opti-Mem and 

incubated at room temperature for 20 minutes.  HEK293 cells were incubated in 

1 mL of Opti-MEM per well plus the 100 µL transfection reaction for 4-6 hours, 

after which the Opti-MEM was replaced with 2 mL of standard growth media per 

well.  Cells were serum-starved for six hours prior to application of stimuli.  Cells 

were harvested 48 hours after transfection for immunoprecipitation or Western 

blotting analysis, or split 24 hours after transfection at low density into 35-mm 

dishes for electrophysiology experiments. 
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Plasmids and reagents 

Rat Enigma, mouse Enigma homolog 1 (ENH1), and human Cypher cDNA 

constructs were obtained from the DNASU plasmid repository and were 

subsequently subcloned into the p3XFLAG-CMV10 vector (Sigma) using the 

oligonucleotides in rows 1-6 of Table 2.1.  An N-terminal truncation of Enigma 

lacking the PDZ domain (ΔPDZ) was generated using the 5’ oligonucleotide in 

row 7 and the 3’ oligonucleotide in row 2 of Table 2.1, and a C-terminal 

truncation of Enigma lacking the three LIM domains (ΔLIM1-3) was generated 

using the 5’ oligonucleotide in row 1 and the 3’ oligonucleotide in row 8 of Table 

2.1.  

pKH3-Rem WT, pKH3-Rad WT, pKH3-Rem2 WT (long isoform), and pKH3-Gem 

WT have been previously described [12, 13].  pKH3-Rad K204R was generated 

by site directed mutagenesis using the QuikChange II Site-Directed Mutagenesis 

Kit (Agilent) and the oligonucleotides in rows 9 and 10 of Table 2.1.  pKH3-Rad 

S39A, S39D, and S301A were also generated by site directed mutagenesis by 

Dr. Hongge Jia.  

pRK-Myc-Smurf1 and pRK-Myc-Smurf2 were gifts from Dr. Ying Zhang 

(Addgene plasmids #13676 and 13678).  pCMV5B-Flag-Smurf1 WT, pCMV5B-

Flag-Smurf1 C699A, pCMV5B-Flag-Smad3, and pCMV5B-Flag-Smad4 were 

gifts from Dr. Jeff Wrana (Addgene plasmids #11752, 11753, 11742, and 11743). 

pCMV5 Flag-Smad1 was a gift from Dr. Joan Massague (Addgene plasmid 

#14044).  pRK-Myc-Ubiquitin was a gift from Dr. Tianyan Gao.  The β2-
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adrenergic receptor mammalian expression construct was a gift from Dr. John 

Kehrl (National Institute of Allergy and Infectious Diseases, National Institutes of 

Health).  LNCX BMP-RII was a gift from Dr. Rik Derynck (Addgene plasmid 

#12641).  pcDNA3.1-C/EBP α, β, and δ were gifts from Dr. Peter Johnson 

(Addgene plasmids #12550, 12557, and 12559). 

GFP-CaV1.2 (rabbit) was a gift from Dr. Kurt Beam (University of Colorado Health 

and Sciences Center, Aurora, CO).  HA-tagged CaV1.2 truncations (amino acids 

1507-2171, 1507-1906, and 1906-2171) have been described previously [107]. 

CaVβ2a was subcloned into the PiggyBac system vector PB514B-1 to generate a 

dual expression vector for CaVβ2a and RFP. The sequences of all constructs 

were confirmed using ACGT, Inc. or Eurofins MWG Operon. 

MG-132 (Selleckchem, Cat No. S2619) was used at a concentration of 10 µM for 

16 hours.  Recombinant BMP-2 protein (R&D Systems, Cat No. 355-BM-010) 

was used at a concentration of 100 ng/mL for 2 hours (HEK293 cells) or 7 days 

(primary osteoblasts), adding fresh growth media with BMP-2 every third day.  H-

89 (Calbiochem, Cat No. 371962) was used at a concentration of 1 mM.  

HEK293 cells were pre-treated with H-89 for 30 minutes prior to transfection, and 

H-89 was replenished in the media throughout the experiments, including during 

serum starvation, until the cells were lysed.  Isoproterenol (Sigma, 1351005) was 

used at a concentration of 100 ng/mL for 15 minutes.  Forskolin (Sigma, Cat No. 

F6886) was used at a concentration of 1 µM for the indicated amounts of time. 

Phorbol 12-myristate 13-acetate (PMA) (Sigma, Cat No. P1585) was used at a 
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concentration of 1 µM for the indicated amounts of time.  Macrophage-colony 

stimulating factor (M-CSF, Sigma, Cat No. M9170) and Receptor activator of 

nuclear factor kappa-B ligand (RANKL, Sigma, Cat No. R0525) were used as 

described in the osteoclast differentiation subsection of this chapter. 

Co-immunoprecipitations (Co-IPs) 

For co-IPs in chapters 3 and 5 of this dissertation, HEK293 cells were washed 

with PBS and harvested in ice-cold lysis buffer (20 mM HEPES (pH 7.4), 50 mM 

KF, 50 mM β-glycerophosphate, 150 mM NaCl, 2 mM EGTA (pH 8.0), 0.5% 

Triton X-100, 10% glycerol, 1x protease inhibitor (Calbiochem)) 48 hours after 

transfection. Lysates were cleared by high-speed centrifugation at 4oC, and 

protein concentrations were measured using BioRad Quick Start Bradford 1x Dye 

Reagent. For co-immunoprecipitations, 1 mg of protein was brought up to 500 µL 

total volume with lysis buffer, and 15 µL of Protein G Plus Agarose Suspension 

(Calbiochem) and 4 µg of anti-Flag M2 monoclonal antibody (Sigma) or anti-HA 

monoclonal antibody (Sigma) were added.  Tubes were rotated at 4oC for two 

hours, and the agarose beads were pelleted and washed once with 500 µL lysis 

buffer, twice with lysis buffer plus 150 mM NaCl, and twice more with lysis buffer.  

The bound fraction and the input were resolved on 10% SDS-PAGE gels, 

transferred to nitrocellulose, and subjected to Western blotting analysis.   

For CaVβ2a co-IPs in Chapter 4 of this dissertation, HEK293 cells were instead 

harvested in ice-cold Cavβ IP buffer (20 mM Tris (pH 7.5), 250 mM NaCl, 1% 
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Triton X-100, 10 mM MgCl2, 1x protease inhibitor (Calbiochem)), and co-IPs were 

otherwise performed as described in the above paragraph.  To probe for the 

effects of free calcium and of phosphorylation on the association between Rad 

and Cavβ2a, 2 mM EGTA (stock solution pH 8.0) or 50 mM β-glycerophosphate, 

respectively, were added to the Cavβ IP buffer and co-IPs were performed. 

Western blotting 

Membranes were blocked with casein in PBS-tween for one hour prior to 

incubation with primary antibodies (Table 2.2) for one hour at room temperature 

or overnight at 4oC. Membranes were then subjected to three 10-minute washes 

with PBS-tween and incubated with peroxidase-conjugated secondary antibodies 

(AffiniPure Goat Anti-Mouse IgG, Light Chain Specific, Jackson 

ImmunoResearch; Monoclonal Mouse Anti-Goat IgG, Light Chain Specific, 

Jackson ImmunoResearch; ECL Donkey Anti-Rabbit IgG, GE Healthcare) or 

peroxidase-conjugated streptavidin (Thermo Scientific) for one hour at room 

temperature (1:20,000 dilution). Signals were developed with Hyglo 

chemiluminescent reagent (Denville Scientific) and visualized on a ChemiDoc 

MP (Bio-Rad).   

Animals 

All animal procedures were reviewed and approved by the Institutional Animal 

Care and Use Committee at the University of Kentucky.  Global Rad knockout 

(Rad-/-) mice were obtained from Dr. C. Ronald Kahn and have been described 
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previously [132].  Global Enigma knockout (Enigma-/-) mice (also known as LIM 

mineralization protein (LMP)-/- mice) were obtained from Dr. Scott Boden at 

Emory University and have been described previously [160].   

Heart tissue homogenization 

Four-week-old male Enigma-/- mice and WT littermate controls were sacrificed, 

and hearts were excised, dissected into ventricles and apex, and snap frozen in 

liquid nitrogen.  The ventricles were pulverized under liquid nitrogen and 

homogenized in ice-cold lysis buffer (20 mM HEPES (pH 7.4), 50 mM KF, 50 mM 

β-glycerophosphate, 150 mM NaCl, 2 mM EGTA (pH 8.0), 0.5% Triton X-100, 

10% glycerol, 1x protease inhibitor (Calbiochem)).  Heart homogenates were 

centrifuged, and lysates were prepared at a concentration of 4 µg/µL, resolved 

on 10% SDS-PAGE gels, transferred to nitrocellulose, and subjected to Western 

blotting analysis.  The apices were stored at -80oC for RNA isolation. 

RNA isolation 

Samples for RNA isolation were first homogenized in TRIzol reagent.  Mouse 

heart tissue, specifically the apex of the heart, was pulverized under liquid 

nitrogen and homogenized in 0.5 mL of TRIzol in a microcentrifuge tube using a 

polypropylene pestle, after which an additional 0.5 mL of TRIzol was added to 

the tube.  For calvarial osteoblast cultures, 0.5 mL of TRIzol was added to each 

well of a 6-well plate, and the wells were scraped with a cell scraper and contents 
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were transferred into a microcentrifuge tube along with an additional 0.5 mL of 

TRIzol.  Samples were kept on ice during this time. 

For phase separation, 200 µL of chloroform was added to each tube.  Samples 

were vortexed vigorously for 15 seconds, incubated at room temperature for 3 

minutes, and then centrifuged at 11,500 rpm for 15 minutes at 4oC.  The 

colorless upper aqueous phase, which contains RNA, was transferred to a fresh 

microcentrifuge tube.  RNA was precipitated by adding 500 µL of isopropanol to 

each sample, inverting the tubes to mix, and incubating at room temperature for 

10 minutes.  The tubes were then centrifuged at 11,500 rpm for 10 minutes at 

4oC.  The supernatant was aspirated, and the pellet was washed with 1 mL of 

75% ethanol.  Samples were then vortexed and centrifuged at 6700 rpm for 5 

minutes at 4oC twice, removing as much ethanol as possible after each spin.  

The RNA pellet was then air-dried for 10 minutes and dissolved in 100 µL of 

DEPC-treated water.  DNase I and the appropriate buffer were then added to 

each sample, and the tubes were incubated at 37oC for one hour to allow 

digestion of DNA in the samples. 

To precipitate RNA, 12 µL of 5M ammonium acetate, 1.2 µL of linear acrylamide, 

and 240 µL of 100% ethanol were added to each sample, and the tubes were 

incubated at -20oC overnight.  The samples were then centrifuged at high speed 

for 20 minutes at 4oC, and the supernatant was aspirated before another 5-

minute high-speed centrifugation at 4oC.  The supernatant was carefully 

removed, and RNA pellets were air-dried for 5-10 minutes to evaporate additional 
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ethanol.  The pellets were then re-suspended in 10 µL of nuclease-free water, 

and concentrations were recorded and RNA quality was assessed using a 

Nanodrop instrument (Thermo Scientific). 

cDNA synthesis 

Total RNA (1 µg) was used as a template for cDNA synthesis using the RT2 First 

Strand kit (SABiosciences).  Briefly, 1 µg of total RNA was brought up to a 

volume of 10 µL with nuclease-free water in a 0.2 mL tube.  To each sample, 2 

µL of Buffer GE was added to facilitate degradation of any contaminating 

genomic DNA, and samples were heated at 42oC for 5 minutes.  Samples were 

then placed on ice, and the remaining kit components were added.  The tubes 

were then incubated at 42oC for 15 minutes and 95oC for 5 minutes to allow 

cDNA synthesis to proceed. 

Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) 

cDNA from WT and Enigma-/- heart tissue was diluted 1:50 in nuclease-free 

water and amplified via RT-PCR using Taqman probes from Life Technologies: 

Gapdh (Mm99999915_g1) and Rrad (Mm00451053_m1).  Each RT-PCR 

reaction consisted of 10 µL of Taqman universal PCR master mix (Life 

Technologies, Cat No. 4304437), 1 µL of the appropriate Taqman primers, 7 µL 

of nuclease-free water, and 2 µL of diluted cDNA for a total of 20 µL per assay.  

RT-PCR was performed in triplicate for each sample and primer. Threshold 

values (CT) for Rrad were normalized by subtraction from Gapdh.  WT was then 
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subtracted from Enigma-/- to determine ΔΔCT values, and fold changes were 

calculated as 2-ΔΔCT. 

Fetal ventricular cardiomyocyte isolation and culture 

Timed pregnant females were obtained from Jackson Laboratories and sacrificed 

at embryonic day 18.  The embryo sac was removed, and pups were extracted 

from the sac.  Hearts were dissected from each pup and placed in PBS + 0.1 M 

MgCl2.  Atria were removed, and ventricles were cleared of blood and placed in a 

15 mL tube with PBS + 0.1 M MgCl2.  The tubes were centrifuged, and ventricles 

were re-suspended in 1 mL of filtered 0.5 mg/mL type II collagenase in PBS + 0.1 

M MgCl2 and transferred into a culture dish.  Hearts were mechanically torn apart 

using forceps, transferred back into a 15 mL tube, and brought up to 10 mL with 

filtered collagenase.  The tube was then incubated at 37oC for 10 minutes and 

centrifuged for 5 minutes.  Cells were re-suspended in fresh filtered collagenase 

solution, and the process of mechanical disruption, incubation at 37oC, and 

centrifugation was repeated.  The cell pellet was then re-suspended in DMEM + 

10% FBS and pre-plated in a 10-cm culture dish for 2 hours at 37oC to remove 

contaminating fibroblasts.  Cells were seeded in a 24-well plate onto laminin-

coated cover slips and maintained in DMEM + 10% FBS for 48-72 hours.  Cells 

were treated with vehicle, forskolin, or isoproterenol and harvested in ice-cold 

lysis buffer (20 mM HEPES (pH 7.4), 50 mM KF, 50 mM β-glycerophosphate, 

150 mM NaCl, 2 mM EGTA (pH 8.0), 0.5% Triton X-100, 10% glycerol, 1x 

protease inhibitor (Calbiochem)) and subjected to Western blotting analysis. 
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Electrophysiology 

HEK293 cells were transiently transfected with GFP-tagged CaV1.2, a PiggyBac 

dual promoter vector (PB514B-1) expressing CaVβ2a and RFP, HA-tagged 

empty vector or Rad WT, and Flag-tagged empty vector or Enigma.  Cells were 

split at low density into 35-mm dishes 24 hours post-transfection, and recordings 

were made 6-24 hours later.  The whole-cell configuration of the patch clamp 

technique was used to measure ionic current, selecting isolated GFP+/RFP+ 

spherical cells.  Patch electrodes were pulled from glass capillary tubes to 

resistances of 1-2 MΩ, and the tips were flame-polished.  The external bath 

solution contained 112.5 mM CsCl, 30 mM BaCl2, 1 mM MgCl2, 10 mM 

tetraethylammonium chloride, 5 mM glucose, and 5 mM HEPES (pH 7.4).  The 

internal recording solution contained 110 mM K-gluconate, 40 mM CsCl, 1 mM 

MgCl2, 5 mM Mg-ATP, 3 mM EGTA, and 10 mM HEPES (pH 7.35).  Recordings 

were performed at room temperature, and only those cells with seal resistances 

exceeding 1 GΩ were used for recording.  pCLAMP 10.0 (Axon Instruments) 

software was used to generate the voltage-clamp protocols and to acquire and 

analyze data. 

Alizarin Red / Alcian Blue skeletal stain 

Neonatal mice at one day of age were sacrificed and dissected to remove all the 

skin and organs. Scalding the specimens in a 70oC water bath facilitates this 

process.  The specimens were fixed in 95% ethanol in 50 mL conical tubes for 24 

hours at room temperature with gentle rocking.  All following incubations were 
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also performed at room temperature with slow rocking for the indicated amounts 

of time.  After fixation, the ethanol was replaced with Alcian Blue staining solution 

(0.03% Alcian Blue in 80% ethanol/20% acetic acid), and specimens were 

incubated in this solution for three days to allow staining of cartilage.  Skeletons 

were washed with 95% ethanol for six hours and then incubated in 2% KOH for 

24 hours.  The specimens were then stained in Alizarin Red S solution (0.03% 

Alizarin Red S in 1% KOH) for 12 hours.  Finally, the skeletons were cleared in a 

solution of 1% KOH/20% glycerol for 24 hours, incubated in a 1:1 solution of 

glycerol and 95% ethanol for 24 hours, and then analyzed and photographed. 

Bone collection 

The right femora were dissected from 4-month-old male and female WT and  

Rad-/- mice immediately after sacrifice, taking care to remove all soft tissue.  For 

microcomputed tomography and bone histology, femora were fixed in a ten-fold 

volume of 10% neutral buffered formalin for three days with rocking and then 

transferred to 70% ethanol until analysis.  For four-point bending analysis, bones 

were snap frozen in liquid nitrogen and stored at -80oC in saline-soaked gauze 

prior to analysis. 

Microcomputed tomography 

Microcomputed tomography (µCT) was performed in collaboration with the µCT 

core facility at Rush University.  Femora were scanned (Scanco Model 40; 

Scanco Medical AG, Basserdorf, Switzerland) in 70% ethanol at 55 kV and 145 
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mA, 0.3-second integration time with a 10 µm isotropic voxel size in plane and a 

10 µm slice thickness. The overall femur length was recorded and used to guide 

the cortical and trabecular analyses.  Specifically, the trabecular region of interest 

ranged from just proximal of the distal growth plate to 30% of the bone length as 

measured from the distal end.  The trabecular output variables included total 

volume (TV), bone volume (BV), bone volume fraction (BV/TV), connectivity 

density (Conn.D), structural model index (SMI), trabecular number (Tb.N), 

trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), apparent density 

(Ap.Dens), material density (Mat.Dens), specific bone surface (BS/BV), and 

degree of anisotropy (DA). Trabecular analyses utilized a sigma value of 0.8, 

support of 1, and threshold at 270. Cortical data at the midshaft of the femur 

were also analyzed, including cortical bone area (Ct.Ar), total cross-sectional 

area (Tt.Ar), medullary area (Ma.Ar), cortical thickness (Ct.Th), and cortical area 

fraction (Ct.Ar/Tt.Ar). Cortical analyses used a sigma value of 1.5, support of 2, 

and threshold at 350. 

Four-point bending analysis 

Four-point bend testing was performed in collaboration with Dr. Matthew Allen at 

Indiana University School of Medicine to measure whole bone mechanical 

properties [161].  Because four-point bending produces pure bending between 

two loading points, fractures occur at the weakest location in the region [162], 

making it superior to three-point bending which uses a single loading point.  
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The anterior surface of each femur was placed on two lower supports with a span 

length of 9 mm and an upper span length of 3 mm.  Each femur was loaded at a 

rate of 2 mm/min until failure occurred, and a force-displacement curve was 

generated and used to determine structural properties including ultimate force, 

stiffness, displacement, and energy absorption for each specimen.  Derivation of 

apparent material properties utilized the cross-sectional moments of inertia and 

the distances from the centroid to the tensile surface using standard beam-

bending equations for four-point bending. The 0.2% offset criterion was used to 

define yield points, and a custom MATLAB (Version 11) program was used for all 

mechanical analyses [163]. 

Preparation of femur sections for histology 

Following fixation in 10% neutral buffered formalin as described above, femora 

were dehydrated through a graded series of ethanols for 4 hours at each step 

and cleared in xylenes for 4 hours.  For plastic embedding, the specimens were 

incubated in unpolymerized methyl methacrylate for 4 hours, in unpolymerized 

methyl methacrylate containing 4% dibutyl phthalate as a softening agent for 7 

days, and finally embedded in methyl methacrylate containing 4% dibutyl 

phthalate and 0.25% Perkadox 16 as a catalyst and allowed to polymerize at 

room temperature.  A band saw was used to remove excess plastic from the 

blocks, and the blocks were then shaped with a dental model trimmer.  A rotary 

microtome with a tungsten-carbide knife was used to cut thin sections (4-10 µm, 
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mostly trabecular bone), and a diamond wire saw was used to cut thick sections 

(80+ µm, mostly cortical bone).   

All histological measurements were made using a semiautomatic analysis 

system (Bioquant OSTEO 7.20.10, Bioquant Image Analysis Co.) attached to a 

Nikon Optiphot 2 microscope with both visible and ultraviolet light sources.  

Tartrate-resistant acid phosphatase stain 

Three thin sections per animal were de-plasticized in acetone and stained for 

tartrate resistant acid phosphatase (TRAP) as previously described [164] in 

collaboration with Dr. Keith Condon and the Bone Histology core facility at 

Indiana University School of Medicine.  Briefly, thin sections were incubated in 

0.2 M acetate buffer (pH 5.0), rinsed, and incubated in a warmed acid 

phosphatase solution.  Sections were then counterstained with Gill’s Hematoxylin 

No. 3 and coverslipped with an aqueous mounting media after air-drying.  TRAP 

staining was quantified as the percentage of the bone surface occupied by 

osteoclasts (% Oc.S/BS) using Bioquant OSTEO 7.20.10. 

Calcein labeling and dynamic histomorphometry 

To prepare the 0.6% calcein injection solution, 0.9 g NaCl was dissolved in 90 

mL of distilled water, followed by 2.0 g NaHCO3 and 0.6 g calcein. The calcein 

must be added slowly to avoid foaming of the solution.  The pH of the calcein 

solution was adjusted to 7.4 using 1 N NaOH or 1 N HCl, and the volume was 
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brought up to 100 mL with distilled water.  The solution was then filtered into a 

sterile glass vial and stored at 4oC in the dark. 

Mice were injected intraperitoneally with 30 mg/kg calcein (0.05 mL of 0.6% 

calcein for every 10 grams body weight) at 7 and 2 days prior to sacrifice.  The 

minimum dose used was 0.15 mL regardless of weight to ensure visualization of 

the label in bone, and each dose was administered as two half-doses. 

Thin sections for dynamic histomorphometry were kept in plastic and 

coverslipped using Eukitt mounting reagent to analyze trabecular bone formation 

rates.  Thick sections were briefly cleared in xylenes and coverslipped with Eukitt 

mounting reagent to analyze cortical bone formation rates at the periosteal and 

endocortical surfaces.  Slides were stored in the dark prior to analysis. 

Fluorochrome labels were quantified using Bioquant OSTEO 7.20.10.  First, the 

bone surfaces containing a single label (sLS), double labeling (dLS), and no label 

(noLS) were measured.  The mineral apposition rate (MAR) was calculated as 

the average distance between the two labels divided by the time interval of five 

days. The percent mineralizing surface (MS/BS), or the percentage of the bone 

surface that is actively forming bone, was calculated as the sum of the double-

labeled surface and half of the single-labeled surface divided by the total bone 

surface, or (dLS + ½ sLS)/(dLS + sLS + noLS) * 100%.  Finally, the bone 

formation rate (BFR/BS) in µm3/µm2/year was calculated as the mineral 

apposition rate multiplied by the percent mineralizing surface and 365 days/year, 

or MAR * MS/BS (as a decimal) * 365. 
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In vitro osteoclast isolation and culture 

Spleens were dissected from two-month-old mice and kept on ice in sterile PBS.  

Spleens were then transferred to sterile culture medium (α-MEM + 10% FBS + 

100 units/mL penicillin and 100 µg/mL streptomycin).  Spleens were crushed in 

culture medium using a 70-µm filter mesh, followed by pipetting to generate a 

single cell suspension.  This suspension was centrifuged 5 minutes at 1500 rpm, 

and the cell pellet was re-suspended in pre-osteoclast culture medium (α-MEM + 

10% FBS + 100 units/mL penicillin and 100 µg/mL streptomycin + 10 ng/mL 

macrophage colony stimulating factor (M-CSF)).  Cells were plated in untreated 

Petri dishes in pre-osteoclast medium for 5 days, changing the medium every 

other day.  Cells were washed three times with PBS and then incubated in PBS + 

0.25 mM EDTA for 15 minutes at 37oC.  EDTA was inactivated through the 

addition of an equal volume of culture medium, and cells were detached using a 

cell scraper and transferred into conical tubes.  Cell suspensions were 

centrifuged for 5 minutes at 1000 rpm, and the cells were re-suspended in a 

small volume of complete osteoclast culture medium (α-MEM + 10% FBS + 100 

units/mL penicillin and 100 µg/mL streptomycin + 5 ng/mL M-CSF + 50 ng/mL 

receptor activator of nuclear factor kappa-B ligand (RANKL)).  Cells were 

counted and seeded in 24 well plates at a density of 25,000 cells/well in complete 

osteoclast culture medium for 7 days, changing the media every other day, prior 

to osteoclast differentiation analysis. 
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Osteoclast differentiation assay 

Osteoclast differentiation was assessed using a tartrate-resistant acid 

phosphatase (TRAP) staining kit (Takara, Cat No. MK300).  Briefly, cells were 

fixed for five minutes at room temperature in the sodium citrate fixation solution 

supplied with the kit.  Cells were then stained with the substrate solution for acid 

phosphatase + 0.1 volume sodium tartrate solution at 37oC for 20 minutes.  This 

solution was discarded, and cells were washed three times with sterile water to 

stop the reaction.  Stained cells were analyzed using the Axiovert 100 

microscope.  The number of osteoclasts, defined as multinucleated (at least 

three nuclei) cells positive for TRAP staining, per well were counted. 

Neonatal calvarial osteoblast isolation and culture 

Calvariae, or skullcaps, were isolated from pooled litters of 3-day-old neonatal 

mice, taking care to remove all conjunctive tissues.  Calvariae were washed with 

ice-cold PBS and transferred to pre-warmed, filtered digestion media (α-MEM + 

1.5 mg/mL Type 2 Collagenase + 0.00625% Trypsin-EDTA).  The calvariae were 

digested with rotation at 37oC for 5 minutes, followed by 20 seconds of vigorous 

shaking.  The suspended cells, primarily fibroblasts, were discarded, and the 

medium was replaced with 10 mL of fresh digestion media.  The calvariae were 

digested with rotation at 37oC, shaking vigorously for 20 seconds every 10 

minutes for a total of 30 minutes.  The cell suspension was transferred to a new 

tube on ice, taking care to avoid large bone pieces.  Fresh digestion media was 

added to the calvariae, and they were digested at 37oC with rotation once more, 
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again shaking vigorously for 20 seconds every 10 minutes for a total of 30 

minutes.  The cell suspension was again transferred to a new tube on ice, and 

the two suspensions were centrifuged at 1300 rpm for 3 minutes at 4oC.  The cell 

pellets were re-suspended in growth media (GM; α-MEM + 10% FBS + 100 

units/mL penicillin and 100 µg/mL streptomycin) and plated in 10-cm dishes.  

After 72 hours, the cells were split into 6-well dishes at a density 15,000 cells/cm2 

and maintained in growth media for 72 hours.  Upon confluence, cells were either 

maintained in growth media or switched to osteogenic media (OM; α-MEM + 

10% FBS + 100 units/mL penicillin and 100 µg/mL streptomycin + 5 mM β-

glycerophosphate + 100 µg/mL ascorbic acid) or adipogenic media (AM; α-MEM 

+ 15% FBS, 5 µg/mL insulin, 50 µM indomethacin, 0.5 µM 3-isobutyl-1-

methylxanthine (IBMX), and 1 µM dexamethasone). The media was changed 

every 2-3 days until endpoint assays were performed. 

Alkaline phosphatase (ALP) stain 

WT and Rad-/- primary calvarial osteoblasts were assayed for alkaline 

phosphatase activity on day 0 (upon confluence) and day 7 of culture in 

osteogenic media or adipogenic media using a premixed 5-bromo-4-chloro-3-

indolyl phosphate (BCIP)/nitroblue tetrazolium (NBT) solution (Sigma, Cat No. 

B6404).  A sodium citrate (pH 5.4) fixation solution was prepared by combining 

45 mL of acetone, 10 mL of ethanol, 11.5 mL of 0.1 M citric acid monohydrate, 

and 33.5 mL of 0.1 M sodium citrate and was stored at -20oC. Cell monolayers in 

6-well dishes were incubated in 1 mL of sodium citrate fixation solution for 5 
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minutes and washed twice with distilled water.  The monolayers were then 

incubated with the BCIP/NBT solution for 10 minutes at room temperature, 

washed four times with distilled water, and maintained in PBS for imaging.  BCIP 

is a substrate for alkaline phosphatase, and dephosphorylation of BCIP 

generates an intermediate that dimerizes under alkaline conditions.  Hydrogen 

ions released during this dimerization reaction result in reduction of NBT, 

generating a bluish-purple precipitate that is indicative of alkaline phosphatase 

activity in these cells. 

Alizarin Red S (ARS) stain 

WT and Rad-/- osteoblasts were assayed for calcium deposition on day 21 of 

culture in osteogenic media using Alizarin Red S (ARS).  The working solution for 

this stain is 2% ARS, adjusted to pH 4.1-4.3 using NH4OH.  This solution must be 

filtered and stored in the dark and the pH checked prior to each use.  Cell 

monolayers were washed with PBS and fixed with 10% neutral buffered formalin 

for at least 30 minutes.  Cell monolayers were then incubated with the ARS 

working solution for 45 minutes at room temperature in the dark and then 

carefully washed four times with 1 mL of distilled water.  The last wash was 

replaced with PBS, and the cell monolayers were imaged using the Axiovert 100 

microscope. 

To quantify the ARS staining, which is proportional to the amount of calcium 

deposition, the ARS was solubilized and the optical density was measured.  ARS 

was solubilized from the osteoblast monolayers by adding 800 µL of 10% acetic 
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acid to each well and incubating for 30 minutes at room temperature with 

agitation.  The cells were scraped, transferred into a tube, and vortexed for 30 

seconds.  Samples were then heated at 85oC for 10 minutes, placed on ice for 

five minutes or until fully cooled, and centrifuged at high speed at 4oC for 15 

minutes.  Five hundred microliters of the supernatant were transferred to a new 

tube and neutralized with 200 µL of 10% NH4OH.  Samples were mixed well, and 

the pH was tested to ensure it fell between 4.1-4.5.  The absorbance at 405 nm 

was measured for each sample in triplicate by aliquoting 150 µL of each sample 

per well into an opaque-walled, transparent-bottomed 96-well plate.  The 

absorbance is directly proportional to the amount of ARS staining in the sample.   

Microarray analysis 

Total RNA was isolated from confluent WT and Rad-/- calvarial osteoblast 

cultures using the standard TRIzol and chloroform method described above, and 

RNA quality was assessed using RNA 6000 Nano-LabChip (Agilent).  The 

University of Kentucky Genomics Core Laboratory performed labeling of the RNA 

and hybridization to the chip. Total RNA (100 ng per sample) was labeled and 

hybridized onto the Affymetrix Clariom D mouse array. The arrays were 

hybridized for 16 hours at 45oC and 60 rpm.  The arrays were washed and 

stained on the Affymetrix Fluidics 450 station and scanned on the Affymetrix 

GeneChip7G scanner to quantify the signal intensity of hybridized probes.  Data 

were analyzed using the Affymetrix Command Console software. 
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Semi-quantitative RT-PCR 

For RT-PCR, cDNA from WT and Rad-/- osteoblast cultures was prepared from 1 

µg of total RNA using the RT2 First Strand Kit (Qiagen) as described above.  RT-

PCR reactions consisted of 12.5 µL of DreamTaq Green PCR Master Mix (2X) 

(Thermo Scientific), 2 µL of cDNA, 1 µL of the appropriate primers, and 9.5 µL of 

nuclease-free water.  Primers for mouse matrix Gla protein (MGP) and 18S were 

obtained from Real Time Primers, and RT-PCR cycling parameters followed the 

manufacturer’s instructions. PCR products were separated on 1% agarose gels, 

and band intensities were measured using ImageJ. 

Oil Red O (ORO) stain 

A stock solution of 0.3% Oil Red O (ORO) was prepared in isopropanol and 

stored in the dark.  Oil Red O staining was performed on osteoblast monolayers 

after 14 days in culture to quantify adipogenesis.  Cell monolayers were washed 

with PBS and fixed with 10% neutral buffered formalin for at least 30 minutes.  

During fixation, three parts of the ORO stock solution were combined with two 

parts distilled water and filtered to generate the working ORO solution.  This 

working solution must be used within 30 minutes of its preparation.  Cells were 

washed with distilled water and incubated in 60% isopropanol for 5 minutes at 

room temperature.  The cell monolayers were then incubated in ORO working 

solution for 15 minutes at room temperature, after which they were washed with 

distilled water four times.  Nuclei were stained purple by incubating the 

monolayers with Harris Hematoxylin solution for one minute at room temperature 
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and washing four times with distilled water.  Cell monolayers were kept in PBS 

for imaging on the Axiovert 100 microscope.  The number of ORO-positive cells 

per 20X field were quantified. 

Echo-MRI 

The body composition of live, unanesthetized WT and Rad-/- mice was measured 

using an EchoMRI-100 whole body composition analyzer (Echo Medical System, 

Houston, TX). 

Von Kossa / MacNeal’s tetrachrome stain 

Three thin sections per animal were de-plasticized in acetone and stained using 

a modification of the Von Kossa / MacNeal’s (VKM) tetrachrome protocol [165] in 

collaboration with the Bone Histology core facility at Indiana University School of 

Medicine.  Briefly, mineralized bone was stained using the Von Kossa silver 

method and unmineralized tissue was counterstained with MacNeal’s 

tetrachrome.  Slides were blinded, three random fields per section were imaged 

at the distal femur just proximal to the growth plate, and adipocyte number and 

size were quantified using ImageJ software. 

Statistics 

Statistical analysis was performed using Student’s t test, with p<0.05 considered 

significant, and all data are reported as mean +/- SEM. 
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Table 2.1: Primers 
 
Oligo Name Sequence 
1. Enigma 5’ HindIII -> Flag AATTAAGCTTATGGATTCCTTCAAGGT 
2. Enigma 3’ NotI -> Flag AATTGCGGCCGCTCATACGTGGGAAA 
3. ENH1 5’ HindIII -> Flag AATTAAGCTTATGAGCAACTACAGTG 
4. ENH1 3’ NotI -> Flag AATTGCGGCCGCTCAAAAATTCACAG 
5. Cypher 5’ HindIII -> Flag AATTAAGCTTATGTCTTACAGTGTGAC 
6. Cypher 3’ NotI -> Flag AATTGCGGCCGCTCACAAGTTGATGG 
7. Enigma ΔPDZ 5’ HindIII -> Flag AATTAAGCTTATGCACATGAAGCCC 
8. Enigma ΔLIM1-3 3’ NotI -> Flag AATTGCGGCCGCTCATACAGGCGTCT 
9. Rad K204R Sense CTCGTGGGCAACAGGAGTGACCTGGTG 
10. Rad K204R Antisense CACCAGGTCACTCCTGTTGCCCACGAG 
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Table 2.2: Primary antibodies 
 
Antibody Species Company and Catalog 

Number 
Dilution 

C/EBP alpha Rabbit  Cell Signaling, 8178 1:1000 

C/EBP beta Rabbit  Cell Signaling, 3087 1:1000 

C/EBP delta Rabbit  Cell Signaling, 2318 1:1000 

FLAG Mouse  Sigma, F1804 1:2000 

Gapdh Rabbit  Cell Signaling, 2118 1:1000 

GST Rabbit  Santa Cruz, sc-459 1:1000 

HA Mouse Sigma, H9658 1:2000 

Myc Mouse  Sigma, M4439 1:2000 

Phospho-Rad S39 Rabbit  Custom antibody 1:1000 

Rad Goat  Abcam, ab136865 1:1000 

Smad1 Rabbit  Cell Signaling, 6944 1:1000 
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Chapter 3 

 

Rad levels are regulated through a novel interaction with Enigma and the 

associated E3 ligase Smurf1 

 

Introduction 

Ras-related GTPases function as guanine nucleotide-dependent switches that 

cycle between an active guanosine triphosphate (GTP)-bound state and an 

inactive guanosine diphosphate (GDP)-bound state [2].  This classical regulatory 

cascade is facilitated by the activities of guanine nucleotide exchange factors 

(GEFs), which promote GDP release and GTP loading, and GTPase activating 

proteins (GAPs), which catalyze GTP hydrolysis and promote inactivation [2].  

Unlike most other small GTPases, the nucleotide dependence of Rad and the 

other RGK (Rad, Rem, Rem2, Gem/Kir) subfamily protein function has not been 

established, and they instead share the unique property of regulation at the level 

of expression [11].  Briefly, Rad levels are significantly decreased in human heart 

failure [131, 132] and in a variety of human cancers [24-28, 30, 32, 34, 38, 39], 

while Rad expression is up regulated in developing and regenerating muscle [20, 

46, 51, 54] and during osteoblast differentiation [44]. Although most of these 

alterations in Rad expression have been attributed to transcriptional changes, it 
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is unclear whether Rad protein levels may also be regulated post-translationally. 

Specifically, Rad protein turnover presents a potential, as of yet unexplored 

regulatory mechanism in light of recent mass spectrometry studies that have 

revealed that Rad protein is subject to modification by ubiquitination [123, 124]. 

In this chapter, I will describe the association of RGK proteins with a scaffolding 

protein known to interact with E3 ubiquitin ligases and demonstrate that Rad 

protein is subject to ubiquitination and degradation following ectopic expression 

of one of these E3 ubiquitin ligases.  

Plasma membrane localization of RGK proteins is essential for their function in 

voltage-dependent calcium channel (VDCC) inhibition [110], and data suggest 

that the C-terminus of RGK proteins is required for calcium channel blockade and 

for proper localization to the plasma membrane, at least in part through binding 

to phosphatidyl inositol phospholipids [12, 106].  Moreover, the independent 

observations by our laboratory and the Colecraft laboratory that RGKs can bind 

directly to the CaV1.2 pore-forming subunit of the calcium channel suggest 

another means of localization of these GTPases at the cell membrane [18, 107].  

We were interested in defining other potential regulatory partners for RGK 

proteins, and for Rad in particular, and we began looking for candidate binding 

partners that are expressed in the heart and that might link RGK proteins to the 

plasma membrane and/or the calcium channel complex. 
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A recent network map of 14,000 protein-protein interactions identified Enigma 

(also known as PDLIM7 or LIM mineralization protein (LMP)) as a novel Gem-

binding protein [166].  Enigma contains an N-terminal PDZ (Postsynaptic density 

95, discs large, and zonula occludens-1) domain and three C-terminal LIM 

(Lin11, Isl-1, and Mec-3) domains. Proteins containing PDZ and LIM domains 

play important roles as scaffolding proteins that allow the formation of multi-

protein complexes to provide spatial and temporal regulation of signaling [167].  

Both PDZ and LIM domains mediate protein-protein interactions.  PDZ domains 

recognize and bind to short motifs usually found at the C-terminus of other 

proteins [168]. For instance, class I PDZ binding motifs are found at the C-

terminus of proteins whose last three amino acid residues are S/T-X-Φ, where X 

is any amino acid and Φ is a hydrophobic residue [168].  It should be noted that 

Rad, Gem, and Rem2 end in class I PDZ binding motifs (-SVL), while Rem does 

not (-AVL).  LIM domains consist of two adjacent zinc finger domains separated 

by a short hydrophobic linker, and a specific recognition motif has not been 

identified for these domains [169].  There are ten genes in the mammalian 

genome that encode proteins containing both PDZ and LIM domains [167].  Of 

these, the Enigma subfamily of PDZ-LIM proteins consists of three members, 

each of which contains an N-terminal PDZ domain and three C-terminal LIM 

domains [170]: Enigma (LIM mineralization protein (LMP), PDLIM7) [171], 

Enigma homolog (ENH, PDLIM5) [172], and Cypher/Z-band associated protein 

(ZASP, PDLIM6) [173].  These proteins are highly homologous in sequence to 
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one another, with the main differences lying in the region between the PDZ and 

LIM domains.   

The potential for an interaction between RGK proteins and Enigma was of 

interest for several reasons.  First, each of the Enigma subfamily proteins is 

expressed in the heart [173-175], and ENH and Cypher have been reported to 

bind to and regulate voltage-dependent calcium channels [176-179].  Moreover, 

deletion of Cypher or ENH in mice results in dilated cardiomyopathy [180, 181], 

Cypher and ENH play roles during cardiac development [182], and Enigma-null 

(Enigma-/-) mice exhibit cardiac structural and functional abnormalities [183]; 

thus, Enigma subfamily proteins appear to have important roles in the heart and 

in VDCC regulation.  In addition to its potential role in the heart, Enigma also 

binds to and alters the activity of several different E3 ubiquitin ligases, including 

Smad ubiquitin regulatory factor 1 (Smurf1) [184], murine double minute 2 

(MDM2) [185], and Cbl-c [186].  It remains unclear whether Enigma directly 

regulates the activity of these proteins or whether Enigma, through its multiple 

protein-protein interaction domains, may act as a scaffolding protein to regulate 

ubiquitin ligase activity by directing substrate specificity via proximity.  Based on 

the properties of PDZ-LIM family proteins described above and the report of a 

putative interaction between Gem and Enigma [166], the work in this chapter 

aims to confirm the Gem interaction and ask whether the association with 

Enigma is shared by the other RGK subfamily proteins, particularly Rad, and 

whether the E3 ubiquitin ligases reported to bind to Enigma might regulate Rad 

protein stability.   
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Of the E3 ubiquitin ligases that bind to Enigma, I chose to focus on Smurf1 

because of its established role in the regulation of osteoblast differentiation [158, 

187] given the report of Rad up regulation during osteogenic differentiation of 

mesenchymal stem cells (MSCs) [44] and the bone density phenotype of Rad-/- 

mice that will be described in detail in Chapter 5. Briefly, Smurf1 regulates 

osteoblast differentiation by providing negative feedback on bone morphogenetic 

protein (BMP) signaling through polyubiquitination of Smad proteins, thereby 

targeting them for degradation in the proteasome [158]. Enigma, or LIM 

mineralization protein (LMP) in the bone literature, has an established role in the 

regulation of osteoblast differentiation that is thought to occur through its 

regulation of Smurf1 [184, 188, 189], and Enigma-/- mice have documented 

deficits in bone density as a result [160].  As mentioned previously, Rad levels 

are up regulated when MSCs are primed for osteoblast differentiation using 

lithium [44]. Notably, Satija et al. have found that RNAi-mediated Rad silencing 

impaired lithium-dependent osteogenic priming [44], suggesting that the loss of 

Rad may result in a similar phenotype to increased Smurf1 activity. This chapter 

will describe studies defining the interaction of RGK proteins with Enigma and 

provide evidence that Rad is subject to ubiquitination and that Rad protein levels 

are reduced following ectopic expression of the Smurf1 E3 ligase and in 

response to prolonged BMP signaling.  Taken together, these studies suggest 

that ubiquitination may serve as a novel regulatory mechanism to permit dynamic 

control of Rad, and perhaps other RGK, protein levels.  
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Results 

RGK subfamily proteins co-immunoprecipitate with Enigma 

To determine whether Gem and other RGK proteins associate with Enigma [166], 

HEK293 cells were transfected with HA-tagged RGK proteins (Rad, Rem, Rem2 

and Gem) and Flag-tagged empty vector (EV), Enigma, ENH1, or Cypher, and 

interactions between these proteins were assessed by anti-Flag co-

immunoprecipitations. While each of the RGK proteins co-immunoprecipitated 

with Enigma, no interaction was detected between RGK proteins and either 

ENH1 or Cypher (Figure 3.1).  Thus, Enigma serves as a common interacting 

partner for all members of the RGK subfamily, joining calmodulin, 14-3-3, and 

CaVβ  [12, 14, 16, 109, 118-120].  As Enigma has been shown to have a role in 

heart development [183], and a focus of our laboratory is to examine the 

physiological role of Rad signaling in the heart, further studies were directed at 

examining whether Enigma plays a role in the control of Rad GTPase. 

Rad association with Enigma does not require the PDZ domain 

I next sought to determine which of the protein-protein interaction domain(s) of 

Enigma were required for interaction with Rad. Given that the C-termini of Rad, 

Gem, and Rem2 consist of a putative PDZ-binding motif and that Rem, the only 

RGK protein without a PDZ-binding motif, consistently displayed the weakest 

interaction with Enigma (Figure 3.1), I hypothesized that the PDZ domain might 

mediate, or at least enhance, the interaction between Rad and Enigma. 
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Truncations of Enigma were generated to lack either the N-terminal PDZ domain 

(ΔPDZ) or the three C-terminal LIM domains (ΔLIM1-3) to determine which 

domain in Enigma is required for the interaction with Rad (Figure 3.2A).  Co-

immunoprecipitation analyses using these truncations revealed that the 

interaction between Enigma and Rad was maintained when the PDZ domain was 

removed; however, deletion of the three LIM domains completely abolished the 

interaction between these two proteins (Figure 3.2B). Therefore, Rad likely 

interacts with Enigma through its LIM domain(s), whereas the PDZ domain is 

dispensable for Rad-Enigma complex formation. 

Rad protein levels are elevated in the hearts of Enigma-/- mice  

Unlike ENH1 and Cypher [178, 179], Enigma has not been studied in the 

regulation of calcium channels.  However, Enigma has an established role in E3 

ubiquitin ligase regulation that sets it apart from the other members of the PDZ-

LIM scaffold family [184-186].  Studies by our lab and others have reported that 

Rad protein levels are decreased in human heart failure [131, 132], but the 

mechanism underlying the down regulation of Rad expression is unclear.  Thus, I 

next asked whether the interaction between Rad and Enigma might serve to 

modulate Rad levels.  Hearts from Enigma-/- mice and WT littermates were 

homogenized and subjected to Western blotting analysis to probe the impact of 

Enigma deletion on Rad protein levels. Enigma-/- hearts exhibited significantly 

higher levels of Rad protein than WT controls (Figure 3.3A).  RNA was extracted 

from the apices of these hearts and quantitative RT-PCR analysis indicated a 
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modest increase in Rad mRNA levels in Enigma-/- hearts that did not reach 

statistical significance compared to WT hearts (Figure 3.3B).  These data, while 

preliminary, suggest that Enigma deletion may result in an increase in Rad 

expression through post-transcriptional mechanisms, and we next investigated 

the potential contribution of the E3 ubiquitin ligases bound to Enigma in 

regulating Rad protein levels. 

Smurf1 overexpression results in decreased Rad levels 

Smad ubiquitin regulatory factor 1 (Smurf1) is one of the E3 ubiquitin ligases that 

binds to Enigma [184].  Given the observation that Enigma deletion imparts a 

significant increase in Rad protein, but not mRNA, levels in the heart, I next 

assessed the ability of Smurf1 to regulate Rad post-translationally.  Transfection 

of HEK293 cells with Smurf1, but not the related E3 ligase Smurf2 which does 

not bind to Enigma, resulted in a significant reduction in Rad protein levels 

(Figure 3.4A). Ectopic expression of Enigma was not required for this down 

regulation of Rad; however, we cannot rule out the possibility that endogenous 

Enigma in HEK293 cells may act as a scaffold for Rad and Smurf1. To determine 

whether Rad is ubiquitinated following Smurf1 overexpression, HEK293 cells 

were transfected with Myc-tagged ubiquitin along with HA-tagged Rad and either 

Flag-tagged EV or Smurf1.  Cells were treated with MG-132 prior to lysis to 

inhibit proteasomal degradation, and N-ethylmaleimide was added to the lysis 

buffer to block cellular deubiquitylating enzyme activity.  In support of a role for 

Smurf1 in the proteostatic regulation of Rad function, Rad ubiquitination was 
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increased in the context of Smurf1 overexpression (Figure 3.4B).  Moreover, 

treatment of these cells with the proteasome inhibitor MG-132 maintained Rad 

levels in the presence of Smurf1 overexpression (Figure 3.4B). This observation 

suggests that the E3 ubiquitin ligase activity of Smurf1 followed by proteasomal 

degradation is responsible for the decline in Rad levels observed upon Smurf1 

overexpression.  Notably, Smurf1 overexpression resulted in a decrease in the 

expression of the other RGK proteins Rem and Gem, but not of the unrelated Rin 

GTPase, suggesting that Smurf1 regulation may be a common feature across the 

RGK subfamily (Figure 3.5).  

Rad Lys204 is required for Smurf1-mediated turnover 

In keeping with the notion that ectopic Smurf1 expression promotes 

polyubiquitination and targeting of Rad for proteasomal degradation, 

overexpression of the catalytically inactive Smurf1 C699A mutant failed to alter 

Rad protein levels [190] (Figure 3.6).  Previous mass spectrometry analysis 

indicates that Rad protein can be ubiquitinated at lysine-204 (Lys204) [123, 124]. 

To test whether Lys204 is required for Smurf1-mediated Rad regulation, site 

directed mutagenesis was performed to change this lysine to arginine (K204R) to 

prevent site-selective ubiquitination. Importantly, Rad K204R was insensitive to 

Smurf1 overexpression, suggesting that ubiquitination of Rad at this residue is 

required for Smurf1-mediated turnover of the protein (Figure 3.6).  Taken 

together, these data suggest that Smurf1 ubiquitinates Rad at Lys204, targeting it 

for proteasomal degradation.   
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Rad co-immunoprecipitates with receptor-associated Smad (R-Smad) 

proteins 

The studies described above suggest that Rad is a substrate for Smurf1, like the 

receptor-associated Smad (R-Smad) proteins in the BMP signaling pathway, 

Smad1 and Smad5 [190].  Given the regulation of Rad and Smad proteins by 

Smurf1-mediated ubiquitination as well as the recent reports of Rad binding to 

transcription factors [40, 41], co-immunoprecipitation experiments were 

performed to probe for a potential interaction between Rad and Smad proteins.  

HEK293 cells were transfected with HA-Rad WT and either Flag-tagged Smad1, 

Smad3, Smad4, Enigma as a positive control, or EV as a negative control.  

Smad1 is an R-Smad in the BMP signaling pathway and is targeted by Smurf1 

[190], Smad3 is an R-Smad in the transforming growth factor β (TGFβ) signaling 

pathway and is targeted by the Smurf2 and ROC1 E3 ubiquitin ligases [191, 

192], and Smad4 is the common Smad partner (co-Smad) that dimerizes with 

phosphorylated R-Smads to facilitate nuclear translocation and transcriptional 

activation and is not subject to Smurf-mediated turnover [193].  Co-

immunoprecipitation analyses suggested that Rad forms a complex with Smad1 

as well as, unexpectedly, Smad3 (Figure 3.7).  Thus, the data suggest that Rad 

associates with R-Smads from both the BMP and TGFβ pathways, but not with 

the co-Smad, Smad4. 
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BMP-2 treatment decreases Rad levels 

BMP receptor activation results in increased downstream Smurf1 activity toward 

R-Smad proteins [158], whether through activation of the Smurf1 enzyme or 

generation of a recognizable substrate in phosphorylated R-Smad proteins.  For 

this reason, I next examined whether BMP-2 signaling might control Rad levels. 

HEK293 cells were transfected with HA-Rad WT and treated with vehicle or 

BMP-2 for two hours and probed for changes in Rad levels.  Western blotting 

analysis indicated that BMP-2 treatment results in a decrease in Rad protein 

levels (Figure 3.8A).   Since Enigma has been reported to inhibit Smurf1-

mediated ubiquitination of Smad proteins [184], I next asked whether Enigma 

overexpression might alter the effects of BMP-2 signaling on Rad protein levels. 

Notably, the previously observed decrease in Rad protein levels following BMP-2 

treatment was rescued when Enigma was overexpressed (Figure 3.8A).   

In addition to the change seen by our laboratory and others in Rad protein levels 

during human heart failure [131, 132], we and others have also recently observed 

changes in Rad expression during MSC differentiation toward the osteoblast [44] 

and adipocyte lineages (see Chapter 5).  Since BMP/Smad signaling plays a 

central role in the regulation of MSC differentiation toward the osteoblast lineage 

[153, 155, 194], and since Enigma has been recently implicated in the regulation 

of this process as well [184], I next assessed the impact of BMP-2 signaling on 

endogenous Rad levels in wildtype primary calvarial pre-osteoblasts.  

Interestingly, treatment of these cells with BMP-2 for one week resulted in a 
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marked reduction in Rad protein levels (Figure 3.8B).  As confirmation that 

Smurf1 activity is detectable at this time point and at this dosage of BMP-2, 

Smad1 levels were also found to be decreased (Figure 3.8B). These data are 

preliminary, but they suggest that Smurf1 activation may be a physiological 

means of regulating Rad protein levels that warrants further investigation both in 

osteoblasts and cardiac myocytes. 

Discussion 

RGK GTPases comprise a unique subfamily of Ras-related GTPases in many 

ways, especially in the means by which these G-proteins are regulated.  Unlike 

the majority of small GTPases, Rad and the other related RGK proteins do not 

appear to be predominantly controlled via the canonical GTP/GDP cycle, and 

attempts to identify GEF and GAP regulatory proteins have to date been largely 

unsuccessful [11].  Instead, regulation of RGK proteins via phosphorylation [64, 

98] and expression levels [11] has been reported.  We and others have reported 

that Rad levels are significantly lower in human failing hearts compared to 

healthy controls [102, 131], but the mechanism of Rad down regulation is 

unknown. In many cases, Rad down regulation has been attributed to 

transcriptional changes, but the potential for post-translational control of Rad 

levels has not been explored, despite the observation that Rad protein is subject 

to ubiquitination [123, 124]. 

The studies described in this chapter have identified a novel interaction between 

Rad GTPase and Enigma, a scaffolding protein containing an N-terminal PDZ 



	
   78 

domain and 3 C-terminal LIM domains that can bind to and regulate the activity 

of E3 ubiquitin ligases [184-186].  Deletion of Enigma results in an increase in 

Rad protein, but not mRNA, levels in mouse heart tissue, and overexpression of 

Smurf1, an E3 ubiquitin ligase that binds to Enigma, results in ubiquitination of 

Rad protein at Lys204 and proteasomal degradation.  While further studies are 

necessary and will be discussed below, we propose a working model in which 

Enigma acts as a scaffold to bring Smurf1 and its substrate Rad into close 

proximity to promote Rad ubiquitination and turnover (Figure 3.9A).  According 

to this model, deletion of Enigma would result in less efficient ubiquitination of 

Rad by Smurf1 (Figure 3.9B), and resting Rad levels would therefore increase 

as we observed in Figure 3.3 due to a loss of cellular proteostatic control.  While 

the observation that Enigma overexpression rescued the BMP-mediated decline 

in Rad levels (Figure 3.8A) seems at the surface to be at odds with such a 

model, this finding could also be explained if Enigma is required to scaffold Rad 

and Smurf1.  Overexpression of the scaffold may result in cases where Rad is 

sequestered away from limiting amounts of endogenous Smurf1; thus, 

paradoxically Enigma overexpression would result in Rad protection from 

Smurf1-dependent turnover (Figure 3.9C). We acknowledge that further studies 

are necessary to confirm our proposed model, some of which will be described in 

the following paragraphs.   

First, the co-immunoprecipitation analyses in Figure 3.1 indicate that RGK 

proteins associate with Enigma, but we cannot conclude whether this interaction 

is direct or indirect. Binding studies using purified recombinant proteins are 
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required to probe for direct binding of Rad to Enigma.  If the interaction is direct, 

identification of a minimal domain or region of Enigma necessary for Rad binding, 

beyond the preliminary analysis performed in Figure 3.2, would be useful to test 

the requirement of Enigma binding for Rad turnover.  The Smurf1 overexpression 

studies in HEK293 cells in Figures 3.4 and 3.6 indicate that Rad is subject to 

ubiquitination at Lys204 and proteasome-dependent turnover, but the role of 

Enigma in this process requires further investigation that would be assisted by 

such additional insights into the Rad-Enigma interaction. For instance, 

overexpression of the minimal domain of Enigma required for Rad binding would 

likely out-compete Rad binding to endogenous, full-length Enigma scaffolds and 

would thus be expected to block Smurf1-mediated Rad turnover if Enigma 

scaffolding is indeed a requirement.  Enigma knock down or overexpression of 

an Enigma construct lacking the Rad-binding region would be expected to have 

the same effect.  The regions of Enigma and Smurf1 required for their binding 

interaction have been modeled [188] and could be exploited in a similar manner.  

The nature of the ubiquitin linkage on Rad also warrants further investigation. 

Moreover, while the data in Figure 3.3 indicating a significant increase in Rad 

protein, but not mRNA, levels in Enigma-/- hearts is consistent with the model 

presented above, the requirement for Smurf1 and for proteasomal turnover in 

general has not directly been tested.  Primary calvarial osteoblasts present a cell 

system that expresses endogenous Rad and can be manipulated more readily 

than cardiac myocytes.  Rad levels should be probed in WT and Enigma-/- 

calvarial osteoblast cultures to determine whether the increase in Rad levels is 
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also observed in this cell type.  If so, overexpression of Enigma and Smurf1 may 

be expected to rescue this phenotype, and a pulse-chase experiment could be 

utilized to examine Rad turnover in these cells.  To confirm that the increase in 

Rad protein in Enigma-/- cells is indeed the result of hampered protein turnover, 

primary calvarial osteoblasts from WT and Enigma-/- mice could be treated with 

vehicle or MG-132 prior to probing Rad protein levels by Western blotting.  If the 

increase in Rad levels in cells lacking Enigma is due to a decrease in 

proteasomal degradation of Rad protein, then we would expect a more robust 

elevation in Rad levels in WT cells following proteasomal inhibition than in 

Enigma-/- cells.  Finally, probing Rad levels in tissues from Smurf1-/- mice would 

be expected to show a significant increase in Rad protein, but not mRNA levels. 

Furthermore, the observation that prolonged BMP-2 signaling results in 

decreased Rad levels in Figure 3.8 requires further studies to confirm the role of 

Smurf1 in this process.  To test for a direct role of Smurf1 in the down regulation 

of Rad, Smurf1 knock down could be performed in HEK293 cells or primary 

osteoblasts with the expectation that BMP treatment would no longer result in 

lower Rad or Smad1 expression.  We observed that Enigma overexpression 

rescued the BMP-mediated decrease in Rad levels in HEK293 cells, but 

interpretation of this experiment is difficult as discussed previously.  It would be 

worthwhile to ask whether Enigma knock down in HEK293 cells might also 

rescue Rad levels in the context of Smurf1 overexpression or BMP-2 treatment.  

In the same vein, BMP-2 treatment of WT calvarial osteoblasts in Figure 3.8B 

should be repeated in Enigma-/- osteoblasts with the expectation that BMP-2 
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would no longer promote a decrease in Rad levels, but perhaps that the 

decrease in Smad1 would be maintained since Enigma is not thought to 

associate with Smad proteins. To confirm that the BMP-2 mediated down 

regulation of Rad results from altered proteostatic control, HEK293 cells or 

primary osteoblasts should be treated with MG-132 in combination with BMP-2 to 

determine whether Rad levels are rescued, and analysis of Rad mRNA 

expression in BMP-treated cells should also be performed.  

The potential significance of the interaction between Rad and Smad proteins 

identified in Figure 3.7 is intriguing, especially in light of the recent reports of Rad 

binding to and regulating the DNA binding of other transcription factors [40, 41].  

The observation that Rad associates with R-Smads but not with Smad4 suggests 

two potential models.  First, Rad may associate with the R-Smad proteins in a 

manner that displaces Smad4, thereby inhibiting Smad dimerization and 

downstream transcriptional activation.  Alternatively, Rad may associate with the 

R-Smad/Smad4 complex through a direct association with the R-Smad, but we 

could not identify an interaction between Rad and Smad4 because of limiting 

endogenous R-Smad levels.  In this case, co-overexpression of the R-Smad (1 or 

3) along with Rad and Smad4 would be expected to allow co-

immunoprecipitation of Rad and Smad4 that was not observed in our studies.  

The potential impact of Rad on BMP/Smad signaling needs to be investigated 

further.  Preliminary studies suggest no change in BMP-responsive luciferase 

activity in Rad-/- osteoblasts compared to WT, and both genotypes were 

comparably responsive to BMP-2 stimulation in this assay (data not shown).  We 
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also fail to see a significant change in total Smad levels in Rad-/- hearts compared 

to WT (data not shown).  Zhang and colleagues did, however, find an increase in 

Smad3 expression in cardiac myocytes after infection with Rad adenovirus, along 

with a trend towards increased transcription from a Smad reporter construct [41]. 

Hence, the significance of the Rad-Smad interaction remains unclear.  

While the work presented in this chapter identifies Smurf1 as a novel regulator of 

Rad protein levels, Smurf1 may not be the only E3 ubiquitin ligase that regulates 

Rad stability.  Enigma has also been shown to bind c-Cbl and MDM2 and to 

regulate their E3 ubiquitin ligase activities [185, 186]; thus, future studies 

investigating the ability of these E3 ligases to target Rad are worthwhile.  Studies 

determining the specificity of the Enigma interaction and Smurf1 regulation to 

Rad are also of interest.  Each of the RGK proteins co-immunoprecipitates with 

Enigma and is down regulated by Smurf1 (Figures 3.1 and 3.5), but it remains 

unclear whether each of the RGKs binds to Enigma with the same affinity.  To 

date Rad is the only RGK protein for which ubiquitin modification has been 

identified, but further studies are necessary to determine whether modulation of 

the other RGK proteins by Smurf1 is ubiquitin-dependent and which lysine 

residue(s) are required. It is also unclear whether interactions with Enigma have 

additional functions beyond scaffolding RGKs to an E3 ubiquitin ligase enzyme.  

The reason for the specificity of RGKs for Enigma, and not the other PDZ-LIM 

family scaffolds that were investigated, also requires further assessment. 
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In the next chapter, we will also see that Enigma alters Rad phosphorylation 

status; hence, while we have uncovered a novel interaction between Rad and 

Enigma that likely plays an important regulatory role, there is much that remains 

to be determined. 
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Figure 3.1: RGK subfamily proteins co-immunoprecipitate with Enigma 

HEK293 cells were transfected with HA-tagged RGK proteins (Rem, Rad, Gem, 

or Rem2) and either Flag-tagged Enigma, ENH1, Cypher, or empty vector. 

Immunoprecipitation with anti-Flag antibody and Western blotting with 

biotinylated anti-HA antibody indicates that each of the RGK proteins interacts 

with Enigma, but not ENH1 or Cypher.  Immunoprecipitates were probed with 

anti-Flag antibody to confirm expression and pull down of PDZ-LIM proteins, and 

whole lysates were probed with anti-HA antibody to confirm equal loading of HA-

Rad. Results are representative of three independent experiments. 
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Figure 3.2: Rad interaction with Enigma is independent of the PDZ domain 

Panel A) Schematic showing the domain structure of Enigma and of the 

truncation mutants generated for domain binding analysis.  

Panel B) HA-Rad co-immunoprecipitates with Flag-Enigma WT and the ΔPDZ 

mutant but not with the ΔLIM1-3 mutant, suggesting that Rad may interact with 

Enigma through one or more of the LIM domains. Results are representative of 

three independent experiments. 
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Figure 3.3: Rad protein levels are elevated in the hearts of Enigma-/- mice 

Panel A) Rad protein levels normalized to Gapdh are higher in hearts from 4-

week-old male Enigma-/- mice compared to WT littermate controls. N=4 mice per 

genotype, * p<0.05 by Student’s t test. 

Panel B) Rad mRNA levels normalized to Gapdh are not significantly different in 

hearts from 4-week-old male Enigma-/- mice compared to WT littermate controls.  

N=3 mice per genotype. 
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Figure 3.4: Smurf1 overexpression results in Rad ubiquitination and 

turnover 

Panel A) HEK293 cells were transfected with HA-tagged Rad and Myc-tagged 

EV, Smurf1, or Smurf2. Overexpression of Smurf1, but not Smurf2, in HEK293 

cells results in a significant decrease in HA-Rad levels. * p<0.05 compared to 

Myc-EV by Student’s t test.  

Panel B) HEK293 cells were transfected with HA-tagged Rad, Flag-tagged EV or 

Smurf1, and Myc-tagged ubiquitin. Treatment of HEK293 cells with 10 µm MG-

132 for 16 hours prior to lysis protects Rad from Smurf1-mediated down-

regulation.  Immunoprecipitation of HA-Rad WT and immunoblotting with anti-

Myc antibody demonstrates ubiquitination of Rad protein when Smurf1 is 

overexpressed.  
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Figure 3.5: Smurf1 overexpression results in lower levels of RGK proteins 

Overexpression of Myc-Smurf1, but not Smurf2, in HEK293 cells results in a 

decrease in the levels of other HA-tagged RGK proteins, Rem and Gem, in 

addition to Rad.  Another small GTPase, Rin, was used as a negative control and 

does not appear to be modulated by Smurf1 overexpression.  
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Figure 3.6: Smurf1-mediated Rad turnover requires Lys204 

Panel A) Overexpression of Flag-Smurf1 WT, but not the catalytically inactive 

mutant C699A, results in a decrease in Rad protein levels.  

Panel B) Mutation of the proposed ubiquitination site Lys204 to arginine results in 

protection of Rad from Smurf1-mediated turnover.  

Panel C) Quantitation of the results of three independent experiments. * p<0.05 

compared to Flag-EV by Student’s t test.  
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Figure 3.7: Rad co-immunoprecipitates with Smad1 and Smad3 

HEK293 cells were transfected with HA-tagged Rad WT and Flag-tagged empty 

vector, Smad1, Smad3, Smad4, or Enigma (positive control). Co-

immunoprecipitation analysis indicated that Rad associates with the receptor-

associated Smads (Smad1 and 3), but not the co-Smad4 protein. 
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Figure 3.8: Bone morphogenetic protein stimulation results in decreased 

Rad levels 

Panel A) HEK293 cells were transfected with HA-tagged Rad WT and Flag-

tagged empty vector (left) or Enigma (right).  Cells were serum-starved prior to 

stimulation with 100 ng/mL BMP-2 for one hour.  BMP-2 treatment resulted in a 

decrease in Rad levels that was rescued when Enigma was overexpressed. 

Panel B) Primary mouse calvarial osteoblasts were stimulated with 100 ng/mL 

BMP-2 or vehicle for one week, refreshing media every other day prior to 

harvest.  Western blotting analysis indicated that Rad and Smad1 levels are 

decreased after prolonged BMP-2 stimulation.  Results of two independent 

isolations are shown. 
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Figure 3.9: Proposed model in which Enigma serves as a scaffold for 

Smurf1 and Rad GTPase 

Panel A) Proposed model in which Enigma serves as a scaffold to facilitate 

Smurf1-mediated Rad ubiquitination and turnover 

Panel B) This model would suggest that Enigma deletion would result in 

uncoupling of Smurf1 and Rad, and thus less efficient Rad ubiquitination. 

Panel C) This model may also suggest that Enigma overexpression may 

sequester overexpressed Rad away from limiting amounts of endogenous 

Smurf1, thus resulting in less efficient Rad ubiquitination and turnover. 
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Chapter 4 

 

Regulation of Rad phosphorylation by ββ-adrenergic signaling 

Introduction 

RGK (Rad, Rem, Rem2, and Gem/Kir) proteins, and Rad in particular, have 

established roles in voltage-dependent calcium channel (VDCC) control [11, 12], 

cytoskeletal remodeling [19], cardiac contractility [104, 136], and more recently, 

tumorigenesis [24-28, 30, 32, 34, 38, 39] and stem cell differentiation [44, 45].  

As detailed in Chapter 3, an outstanding issue in the RGK field that is central to 

this thesis is how these proteins are regulated, since evidence for nucleotide-

dependent control is lacking [11]. In addition to regulation at the level of 

expression, whether by transcriptional or post-transcriptional mechanisms 

explored in Chapter 3, phosphorylation also represents a novel means of 

regulation for RGK subfamily G-proteins [49, 64, 98, 116, 118, 121]. Early in vitro 

studies revealed that Rad protein is phosphorylated at multiple serine (Ser) 

residues by a variety of kinases including protein kinase A (PKA), protein kinase 

C (PKC), calmodulin-dependent protein kinase II (CaMKII), and casein kinase II 

[49].  Previous studies in our laboratory and others have shown that RGK 

proteins are subject to phosphorylation-dependent 14-3-3 binding [109, 113, 

118], and studies across the RGK family indicate that phosphorylation can 

regulate the subcellular localization [16, 109, 113] and the biological functions of 
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these proteins [64, 98, 121].  Some issues that remain unclear, however, are the 

nature of the upstream pathways that mediate RGK phosphorylation and the 

interplay of complex phosphorylation at multiple residues in RGK proteins, some 

of which are conserved across the family and others of which are unique.  

The only report to date of RGK phosphorylation impacting VDCC regulation is the 

recent finding that Rem phosphorylation at Ser18 by protein kinase D1 (PKD1) in 

the α1-adrenergic signaling cascade inhibited Rem-mediated blockade of calcium 

channel current [64]. The α1-adrenergic receptor is a G-protein coupled receptor 

(GPCR) that signals through Gq to activate phospholipase C, which cleaves 

phosphatidyl inositol 4,5-bisphosphate (PIP2) lipids to generate the second 

messenger molecules inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) 

[195].  IP3 binds to receptors on the endoplasmic reticulum to induce intracellular 

calcium release, while DAG activates PKC, PKD1, and downstream signaling 

[195].  In addition to activation of the α1-adrenergic receptor with phenylephrine, 

PKC can be activated downstream using phorbol esters such as phorbol 12-

myristate 13-acetate (PMA).  Jhun and colleagues showed convincingly that 

activation of this pathway, and specifically of PKD1, resulted in Rem 

phosphorylation and reversal of Rem-mediated calcium channel inhibition, while 

the Rem S18A point mutant was resistant to these treatments [64].  Notably, 

phosphorylated Ser18 is the N-terminal binding site for 14-3-3 within Rem [118]; 

however, the contribution of 14-3-3 binding to the reversal of channel block with 

Rem Ser18 phosphorylation is unclear.   
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While a role for Rem Ser18 phosphorylation in VDCC regulation has been 

documented [64], the impact of phosphorylation on the VDCC regulatory function 

of other RGK proteins remains to be tested.  Notably, the N-terminal extensions 

of RGK proteins are not well conserved across the family (see Figure 1.1), and 

we hypothesized that different kinase cascades could be involved in the 

regulation of distinct RGK proteins.  In this vein, intersections between Rad and 

the β-adrenergic signaling pathway have been reported in the literature [86, 104, 

131].  Briefly, β-adrenergic receptors are also GPCRs, but they signal through Gs 

to activate adenylyl cyclase, which converts adenosine triphosphate (ATP) to 

cyclic adenosine monophosphate (cAMP) to activate PKA and downstream 

signaling [196].  Experimentally, activation of the β-adrenergic receptor can be 

achieved using isoproterenol (ISO), and stimulation of cells with forskolin serves 

to activate adenylyl cyclase and PKA downstream of the receptor.  The first 

connection between Rad and β-adrenergic signaling in the literature was a report 

that overexpression of Rad in cardiac myocytes rendered the cells unresponsive 

to β-adrenergic stimulation of the calcium channel, as treatment with the general 

β-adrenergic agonist isoproterenol failed to elicit an increase in calcium current or 

calcium transients [86].  Additionally, we have reported that Rad-/- cardiac 

myocytes and whole hearts exhibit a phenotype that mirrors constitutive 

β−adrenergic activation [104, 131].   

Interestingly, β-adrenergic agonism is known to result in phosphorylation of the L-

type calcium channel complex as well as an increase in calcium current (ICa) in 
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cardiac myocytes [197, 198] .  Traditionally, these two downstream events were 

thought to be linked; that is, phosphorylation of the calcium channel CaV1.2 and 

CaVβ2a subunits was thought to induce a conformational change that allowed for 

an increase in calcium current.  Notably, however, a number of recent studies 

have indicated that the mechanism underlying the β-adrenergic increase in ICa 

may not be this simple [199-201].  Ser1928 phosphorylation within the C-

terminus of CaV1.2 was the main event thought to afford increased ICa following 

β-adrenergic stimulation, and this residue was also the first to be excluded, as 

calcium current in cardiac myocytes from CaV1.2 S1928A mutant mice retained 

responsiveness to β-adrenergic stimulation [199]. Ganesan et al. demonstrated 

that the C-terminus of CaV1.2, but not Ser1928, was necessary for β-adrenergic 

stimulation of the channel [200]; this observation is intriguing, as RGK proteins 

associate with the C-terminus of CaV1.2 [107]. Subsequently, deletion of the C-

terminal phosphorylation sites in the CaVβ2a subunit and mutations of the 

phosphorylation sites Ser1512 and Ser1570 in CaV1.2 did not abolish 

responsiveness to β-adrenergic stimulation [201].  These findings called into 

question the basic mechanism for elevated calcium current downstream of β-

adrenergic receptor activation. This new uncertainty in the mechanism for β-

adrenergic increases in ICa, coupled with the Rad-/- phenotype of tonic β-

adrenergic drive in the absence of stimulus, led to an intriguing but provocative 

model in which Rad may function as a brake on a subset of calcium channels 

that can be reversed following β−adrenergic stimulation through Rad 
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phosphorylation to allow an acute rise in ICa. In other words, Rad phosphorylation 

would be equivalent to loss of Rad function with respect to calcium current.  

The physiological significance of Rad phosphorylation and the stimuli mediating 

phosphorylation of N-terminal serine residues in Rad have not been studied. In 

this chapter, the role of Rad phosphorylation at Ser39, the N-terminal 14-3-3 

binding site, will be interrogated. Specifically, the hypothesis that β−adrenergic 

signaling promotes Rad phosphorylation and subsequent reversal of calcium 

channel inhibition will be tested. While the data presented here are still 

preliminary, I have included them in this dissertation in order to document the 

progress we have made so far in understanding the regulatory role of Rad Ser39 

phosphorylation as well as to highlight areas for future study. 

Results 

Generation of an antibody to detect Rad phosphorylation at Ser39 

In order to characterize the stimuli that may induce Rad phosphorylation, an 

antibody was raised against a peptide corresponding to Rad phosphorylated at 

Ser39.  This residue is equivalent to Rem Ser18 in terms of 14-3-3 binding [118]. 

The Rad anti-phospho-Ser39 (Rad pSer39) antibody was tested to confirm its 

specificity for phosphorylated Ser39 relative to other serine residues in the Rad 

protein, as well as its specificity for Rad relative to other RGK subfamily proteins 

(Figure 4.1).  Western blotting analysis indicates that the antibody recognizes 

Rad phosphorylated at Ser39, as the S39A phosphorylation deficient mutation 
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was not recognized (Figure 4.1). Mutation of Ser272 and Ser301 to alanine also 

reduced immunoreactivity with the Rad pSer39 antibody (Figure 4.1), suggesting 

the possibility of Ser272 and/or Ser301 phosphorylation cross-reactivity, or 

perhaps of coordinated phosphorylation of these more C-terminal residues and 

Ser39. The latter is almost certainly true in the case of Ser301, as 14-3-3 dimers 

bind to phosphorylated Ser39 and Ser301 in Rad protein; hence, Rad S301A has 

diminished binding to 14-3-3, rendering Rad phosphorylation at Ser39 less 

protected from phosphatase activity in the S301A mutant compared to wildtype 

Rad.  The Rad pSer39 antibody was specific to Rad, as it did not detect Rem, the 

long isoform of Rem2 (Rem2L), or Gem (Figure 4.1).  Finally, this analysis 

suggested that under conditions of serum starvation, there remains a basal level 

of Rad Ser39 phosphorylation in HEK293 cells (Figure 4.1). 

ββ-adrenergic stimulation results in phosphorylation of Rad 

The Rad pSer39 antibody was next used to examine the stimuli capable of 

regulating Rad phosphorylation.  HEK293 cells were transfected with HA-tagged 

Rad WT and serum starved prior to stimulation with various agonists.  As seen in 

Figure 4.1, treatment with isoproterenol, a β-adrenergic agonist, appears to 

increase Rad Ser39 phosphorylation in HEK293 cells. Activation of the α-

adrenergic kinase PKC using the phorbol ester PMA failed to induce 

phosphorylation of Rad (Figure 4.2) at concentrations that successfully resulted 

in Rem phosphorylation in prior studies in our laboratory (data not shown).  

Notably, robust and time-dependent phosphorylation of Rad at Ser39 in HEK293 
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cells was observed following treatment with forskolin (Figure 4.2), which 

activates adenylyl cyclase downstream of the β-adrenergic receptor and thereby 

increases intracellular cAMP levels and triggers PKA activation. Preliminary 

studies suggest that these effects of isoproterenol and forskolin are also 

observed in cardiac myocytes, as stimulation of wildtype fetal ventricular 

myocytes with either of these agonists induced a robust increase in Rad Ser39 

phosphorylation (Figure 4.3).  This experiment needs to be repeated with better 

quality total Rad immunoblotting as well as with a loading control so that 

quantification and statistical analysis can be performed. Furthermore, preliminary 

studies suggest that Rad Ser39 phosphorylation is also elevated in hypertensive 

human hearts (Figure 4.4), a condition associated with up regulation of β-

adrenergic signaling, but we acknowledge the need for a loading control in these 

studies. Together, these data suggest that Rad Ser39 phosphorylation may be 

accomplished downstream of the β- rather than α-adrenergic signaling pathway. 

Rad phosphorylation at Ser39 may weaken its association with CaVββ2a 

The impact of Rad phosphorylation at Ser39 on its interaction with the CaVβ2a 

subunit of the L-type calcium channel complex was next assessed by a series of 

co-immunoprecipitation experiments.  First, Rad Ser39 was mutated to alanine 

(S39A) so that this residue could not be phosphorylated or to aspartate (S39D) to 

mimic the size and charge of a phosphorylated serine at this position using site 

directed mutagenesis. The S39A mutation thus results in a phosphodeficient Rad 

protein with a reduced ability to bind 14-3-3 dimers [16], while the S39D mutation 
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generates a phosphomimetic protein that we hypothesized might display 

stimulus-independent 14-3-3 association.  HEK293 cells were co-transfected with 

HA-tagged Rad WT, S39A, or S39D and Flag-tagged CaVβ2a or empty vector as 

a control.  Cell lysates were subjected to Flag immunoprecipitation, and co-

immunoprecipitated HA-tagged Rad proteins were detected by Western blotting.  

Mutation of Ser39 to alanine had no effect on Rad binding to the CaVβ2a subunit 

of the calcium channel; however, the phosphomimetic S39D mutation resulted in 

a reduction in CaVβ2a association by ~50% (Figure 4.5), suggesting that 

phosphorylation of this residue may promote dissociation of Rad from the 

calcium channel complex, perhaps due to enhanced 14-3-3 binding. 

To probe the role of phosphorylation in regulation of the Rad-CaVβ association 

further, co-immunoprecipitation of Rad and CaVβ2a was assessed in the 

presence and absence of phosphatase inhibitor in the cell lysis buffer.  The lysis 

buffer used in the co-immunoprecipitations in Figure 4.5 lacked both EGTA, 

which chelates calcium ions, and β-glycerophosphate, a phosphatase inhibitor.  

In preliminary experiments, addition of EGTA to the lysis buffer had no effect on 

the Rad-CaVβ2a association; however, phosphatase inhibition using β-

glycerophosphate appears to reduce Rad association with CaVβ2a (Figure 4.6), 

further suggesting that Rad phosphorylation may reduce its association with the 

calcium channel complex either directly or through displacement by 14-3-3 

binding. 



	
   101 

To probe for a role of PKA in modulating the interaction between Rad and 

CaVβ2a, HEK293 cells were pre-treated with H-89 to block PKA activity prior to 

and during transfection with HA-tagged Rad WT and Flag-tagged CaVβ2a or 

empty vector. In the setting of PKA inhibition, which decreases Rad 

phosphorylation, Rad association with CaVβ2a is enhanced (Figure 4.7).  Taken 

together, the three different co-immunoprecipitation based experiments shown 

here suggest that Rad phosphorylation at Ser39 may be inversely related to its 

relative association with CaVβ2a and that further studies are warranted to confirm 

this notion. 

Rad phosphorylation at Ser39 promotes 14-3-3 association 

The impact of Rad phosphorylation at Ser39 on 14-3-3 association was also 

probed by co-immunoprecipitation.  First, HEK293 cells were transfected with 

HA-tagged Rad WT, S39A, S39D, or empty vector as a control along with GST-

tagged 14-3-3.  Cell lysates were subjected to immunoprecipitation with anti-HA 

antibody, and co-immunoprecipitated GST-14-3-3 was detected by Western 

blotting.  Mutation of Ser39 to alanine a in a reduction in Rad association with 14-

3-3 as has been reported [16], while the S39D mutant associated with 14-3-3 

more strongly than WT (Figure 4.8). Similarly, stimulation of the cells with 

forskolin prior to harvest and immunoprecipitation resulted in an increase in Rad 

WT association with 14-3-3 but had no effect on S39A or S39D association with 

14-3-3 (Figure 4.8), representing the first report of RGK association with 14-3-3 

in response to a stimulus. These results suggest that Rad Ser39 phosphorylation 
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promotes 14-3-3 association.  Coupled with the observation that phosphorylated 

Rad seems to have a reduced interaction with CaVβ2a (Figures 4.5, 4.6, and 

4.7) suggests a potential mechanism in which 14-3-3 binding may displace 

phosphorylated Rad from the calcium channel complex. 

Enigma overexpression promotes Rad Ser39 phosphorylation  

Given the established association between Rad and Enigma (see Chapter 3) and 

a literature indicating that Enigma and related proteins bind to a variety of 

kinases through their C-terminal LIM domains [172, 176-179], I next asked 

whether Enigma might modulate Rad phosphorylation. Interestingly, 

overexpression of Enigma alone was sufficient to increase Rad Ser39 

phosphorylation without any additional stimulus (Figure 4.9). In fact, Enigma 

overexpression resulted in Rad Ser39 phosphorylation nearly as robust as that 

observed following stimulation with isoproterenol, a β-adrenergic receptor agonist 

(Figure 4.9).  

Enigma associates with CaV1.2  

The Enigma subfamily proteins Enigma homolog protein (ENH) and Cypher have 

been reported to bind to and regulate voltage-dependent calcium channels [176-

179], but the potential interaction between Enigma and CaV1.2 has not been 

previously examined. HEK293 cells were transfected with an HA-tagged CaV1.2 

C-terminal construct comprising amino acids 1507-2171 along with Flag-tagged 

EV or Enigma.  Co-immunoprecipitation analysis revealed a novel interaction 
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between Enigma and the CaV1.2 C-terminus (Figure 4.10A).  Further 

investigation of the Enigma-CaV1.2 association by co-immunoprecipitation 

narrowed down the region of CaV1.2 required for Enigma binding to amino acids 

1507-1906 and suggested that the PDZ domain of Enigma is not required for the 

interaction with CaV1.2 (Figure 4.10B). Thus, Enigma, like ENH and Cypher, 

associates with the calcium channel CaVα1 subunit, and we hypothesized that 

Enigma may therefore contribute to the regulation of Rad-mediated VDCC 

control.  

Enigma overexpression does not alleviate Rad-mediated calcium channel 

inhibition 

Since Rem phosphorylation at Ser18 was reported to reverse its calcium channel 

inhibitory activity [64], Enigma overexpression was used as a means of 

enhancing Rad Ser39 phosphorylation (Figure 4.9) to ask whether Rad-

mediated calcium current blockade may be altered by increased Rad Ser39 

phosphorylation. To this end, HEK293 cells were transfected with GFP-tagged 

CaV1.2 (calcium channel α subunit), a dual expression vector for RFP and 

CaVβ2a (allowing transfected cells to be readily identified), and either HA- and 

Flag-tagged empty vectors as a control to establish basal calcium current, HA-

tagged wildtype Rad and empty vector to reproduce published work that Rad 

overexpression blocks calcium current [12], or HA-Rad WT and Flag-Enigma to 

ask whether Enigma overexpression and increased Rad Ser39 phosphorylation 

would alter Rad-dependent current block.  While Rad overexpression resulted in 
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a complete block of calcium current, co-overexpression of Enigma failed to 

reverse channel inhibition (Figure 4.11) despite the observed increase in Rad 

Ser39 phosphorylation.  Thus, further studies of the role of Enigma in the 

regulation of Rad-mediated VDCC control, as well as more direct analysis of the 

impact of Rad phosphorylation on VDCC regulation, are needed.  

Discussion 

In addition to their regulation through expression levels, RGK subfamily proteins 

have long been known to be subject to complex phosphorylation [49], and more 

recently Rem Ser18 phosphorylation was shown to regulate Rem-dependent 

calcium current blockade in vitro [64].  The idea that phosphorylation of RGK 

proteins could provide an acute increase in calcium current in response to an 

upstream stimulus is intriguing. Given the linkage between Rad and β-adrenergic 

signaling in the literature [86, 104, 131] and the absence of a mechanism to 

explain the acute rise in calcium current following β-adrenergic receptor 

stimulation [199-201], the studies in this chapter aimed to explore the contribution 

of the β−adrenergic signaling cascade to Rad phosphorylation at Ser39 as well 

as the significance of Rad phosphorylation to protein-protein interactions and 

calcium current regulation. While many of the results are still preliminary, the 

data in this chapter suggest that β-adrenergic agonism results in Rad Ser39 

phosphorylation and that phosphorylation at this site promotes 14-3-3 binding 

while potentially weakening the association between Rad and the calcium 

channel CaVβ2a subunit.  We also find that Enigma overexpression promotes 
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Rad Ser39 phosphorylation but is not sufficient to alter Rad-mediated VDCC 

blockade; however, we do establish a novel interaction between Enigma and the 

CaV1.2 C-terminus that suggests that further study of the role of Enigma in the 

regulation of Rad and VDCCs is warranted. 

While Rem is subject to phosphorylation downstream of α-adrenergic signaling 

and PKD1 activation [64], Rad phosphorylation is more robust following 

stimulation of the β-adrenergic receptor, likely via PKA-dependent signaling, as 

shown in Figures 4.1-4.3.  This specificity of signaling is not surprising, as there 

is an overall lack of sequence conservation in the N-terminal regions of RGK 

subfamily GTPases where these serine residues are found that suggests 

differential kinase control. For instance, the PKD1 consensus motif (L-X-R-X-X-

S*) [202] is present in the sequence preceding Rem Ser18 but is not found 

upstream of Rad Ser39, as the important -5 position leucine is instead located at 

the -4 position in the Rad sequence (Figure 4.12). Notably, this idea of 

differential regulation of RGK subfamily proteins may extend to Gem and Rem2 

as well, as the degree of conservation in the sequences surrounding the N-

terminal 14-3-3 binding sites of these two RGKs are even more divergent than 

Rem and Rad (Figure 4.12). 

A series of co-immunoprecipitation experiments in Figures 4.5-4.8 suggested 

that Rad Ser39 phosphorylation may disrupt the interaction between Rad and 

CaVβ2a while enhancing the interaction between Rad and 14-3-3.  The model 

that logically extends from these data is that upon phosphorylation, 14-3-3 
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binding displaces Rad from CaVβ2a and the calcium channel complex (Figure 

4.13).  Consistent with such a model, 14-3-3 binding has been reported to 

modulate the subcellular distribution of RGK proteins [16, 109, 113]. This notion 

is complicated, however, by the many functions of the C-terminus of RGK 

proteins.  14-3-3 dimers bind to N- and C-terminal phospho-serine residues in 

RGK proteins (Ser39 and Ser301 in Rad), and 14-3-3 binding to the phospho-

Ser301 residue impedes importin binding and nuclear trafficking [116, 117].  14-

3-3 binding also interferes with PIP lipid binding and likely with plasma 

membrane targeting of RGKs as a result [106].  Hence, it is difficult to distinguish 

whether 14-3-3 binding might have a direct or indirect role.   

In contrast to our proposed model, Jhun and colleagues suggested a different 

mechanism after demonstrating that Rem Ser18 phosphorylation reversed VDCC 

blockade.  Jhun et al. instead proposed that overexpressed Rem binds to and 

sequesters VDCCs in the endoplasmic reticulum, with phosphorylation of Rem at 

Ser18 releasing VDCCs to traffic appropriately to the plasma membrane, thereby 

increasing calcium current [64]. This model set forth by Jhun et al., although 

untested, is reminiscent of reports in which RGK proteins inhibit calcium current 

by binding to and sequestering CaVβ subunits away from the CaVα1 pore-forming 

subunit to interfere with trafficking of the channel complex to the plasma 

membrane [14, 16, 64, 90, 109].  In contrast to these reports, studies in our 

laboratory and others suggest that RGK proteins can act as inhibitors of calcium 

channels resident at the plasma membrane [12, 13, 15, 103, 106, 110, 111]. We 

have also shown that RGK proteins lacking the C-terminal region that directs 
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membrane association fail to block calcium current and that addition of a 

membrane-targeting sequence to truncated RGK proteins restores VDCC current 

inhibition [110].  Furthermore, the affinity of CaVβ subunits for CaV1.2 far exceeds 

that for RGK proteins [15], and the RGK and CaV1.2 binding sites on CaVβ are 

distinct [15].  Indeed, we have demonstrated that CaVβ2a can simultaneously 

associate with both CaV1.2 and RGK proteins [15].  Coalesced, these data 

oppose the idea that Rad blocks calcium current through sequestration of CaVβ 

and dysregulation of VDCC trafficking.   

To test the model we propose in Figure 4.13 and ask whether 14-3-3 binding is 

necessary for the decrease in association with CaVβ2a following phosphorylation 

of Rad, the co-immunoprecipitation experiments in this chapter could be 

repeated using the Rad S301A mutant that is null for 14-3-3 binding.  In 

particular, a dual Rad S39D/S301A mutant could be probed for CaVβ2a 

association, with the expectation that the phosphomimetic mutation at Ser39 

would no longer result in dissociation of Rad from CaVβ2a when combined with 

the S301A mutation if 14-3-3 binding is necessary to displace Rad from the 

calcium channel.  Alternatively, this mutant would be indistinguishable from the 

Rad S39D single point mutant if, instead, Rad Ser39 phosphorylation disrupts 

association with CaVβ2a through a conformational change in Rad protein without 

the necessity of 14-3-3 binding. 
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The data in the previous chapter identified a novel interaction between Rad and 

Enigma that may modulate Rad ubiquitination and turnover, and in the present 

chapter the interaction with Enigma is also shown to enhance Rad 

phosphorylation (Figure 4.9).  Enigma and the related proteins ENH and Cypher 

bind to a variety of kinases including PKA, PKC, and PKD1 [172, 176-179]; 

hence, it follows that Enigma could serve as a scaffold for kinase recruitment to 

promote Rad phosphorylation.  Alternatively, we cannot exclude a model in which 

Enigma overexpression may result in more Rad phosphorylation at Ser39 

through binding to and protecting this phosphorylated residue from phosphatase 

activity.  This alternative model could be tested by asking whether Rad S39A 

associates with Enigma as well as wildtype Rad, with the expectation that this 

phosphorylation-deficient mutant would exhibit weaker association with Enigma if 

Enigma promotes Rad phosphorylation through protection of the phospho-serine 

residue.  A second means of testing this alternative model could utilize 

phosphatase treatment to determine whether Enigma overexpression is indeed 

protective of Rad Ser39 phosphorylation. Finally, identification of the subdomain 

of Enigma required for interaction with Rad, as was proposed in Chapter 3, would 

allow us to determine whether the Rad-Enigma association is necessary for the 

increase in Rad phosphorylation that is observed.  We could also then 

overexpress the minimal Rad binding region of Enigma to differentiate between 

the two models described above.  Namely, if Enigma acts as a scaffold for Rad 

and its kinase, overexpression of the minimal Rad binding domain of Enigma 

should abolish the increase in phosphorylation observed with Enigma 
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overexpression.  Conversely, if Enigma increases Rad phosphorylation via 

protection of this phospho-serine residue from phosphatase activity, then the 

minimal binding domain should still be effective in increasing Rad 

phosphorylation. 

A novel interaction between Enigma and CaV1.2 is reported in Figure 4.10.  The 

related PDZ/LIM proteins ENH1 and Cypher have been reported to bind to 

calcium channel CaVα1 subunits, although there has been debate as to which 

domain of these proteins is required for calcium channel association, and the 

region of the CaVα1 subunit that associates with these proteins has never been 

analyzed [176-179].  Here, Enigma is demonstrated to associate with the C-

terminal region of CaV1.2, specifically the region between amino acids 1507-

1906, in a PDZ-independent fashion.  The association between Enigma and the 

calcium channel suggested that Enigma likely has a regulatory role in the 

function of Rad in VDCC control. 

Having observed that Enigma overexpression promotes Rad Ser39 

phosphorylation, Enigma overexpression was used as a “stimulus” to probe for 

the role of Rad phosphorylation on its ability to block calcium current.  Unlike 

Rem Ser18 phosphorylation [64], inducing Rad Ser39 phosphorylation through 

Enigma overexpression had no effect on calcium current (Figure 4.11).  On one 

level, these data suggest that Rad phosphorylation may not regulate its calcium 

channel inhibitory activity; however, there are caveats to such a conclusion. First, 

the electrophysiology experiment described here required transfection of four 
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plasmids: GFP-CaV1.2, RFP/CaVβ2a, EV or Rad, and EV or Enigma.  Since each 

recording represents an individual cell, this analysis assumed that each cell 

expressed all four plasmids.  While selecting for GFP+/RFP+ cells ensured that 

every cell that was recorded should have contained a functional calcium channel 

complex, it cannot be known for certain that every cell expressed both Enigma 

and Rad, potentially confounding the results.  To ask more directly whether Rad 

Ser39 phosphorylation modulates its calcium channel inhibition, further 

electrophysiology experiments should probe whether Rad S39D/E mutants are 

as effective as Rad WT at inhibiting calcium current.  Similarly, stimulation with 

isoproterenol or forskolin or transfection of constitutively active PKA could 

provide additional means of testing this hypothesis.  Second, it is possible that 

phosphorylation of Rad at a different residue, or at multiple residues, may afford 

regulation of calcium current. Rad is subject to complex phosphorylation at a 

number of sites including threonine-2 (Thr2), Ser26, Thr27, Ser39, Thr52, Ser79, 

Ser105, Ser214, Ser257, Ser273, Ser290, Ser299, and Ser301 [49, 203-209]; 

thus, interrogation of the role of phosphorylation of one residue in the regulation 

of Rad is likely a gross over-simplification of the potential for kinase regulation in 

vivo.  While use of the RadpSer39 antibody suggested that β-adrenergic 

stimulation and Enigma overexpression promote Rad phosphorylation at Ser39, it 

is unclear whether these conditions alter phosphorylation of additional sites in the 

Rad protein.  Moreover, Ser39 was chosen for analysis as the N-terminal 14-3-3 

binding site within Rad and thus as the analogous residue to Rem Ser18 

reported in the study by Jhun et al [64].  However, Jhun and colleagues only 
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speculated but did not establish that 14-3-3 binding was important for the 

modulation of Rem-mediated channel block following Ser18 phosphorylation [64].  

While Rad Ser39 is analogous to Rem Ser18 with respect to 14-3-3 binding, an 

alignment of the amino acid sequences of Rem and Rad indicates that Rad 

Ser26 corresponds more directly to Rem Ser18.  An alternative hypothesis, then, 

is that while β-adrenergic stimulation may regulate Rad Ser39 phosphorylation 

and 14-3-3 binding, Rad phosphorylation at Ser26 could afford regulation of 

calcium channel blockade in a manner similar to Rem Ser18 phosphorylation and 

in a manner that does not require 14-3-3 binding.  In this case, the stimuli 

responsible for regulating Rad phosphorylation at Ser26, and potentially at other 

residues, would require further investigation. Electrophysiology experiments 

probing the ability of additional phosphomimetic Rad mutants to inhibit calcium 

current may provide further insight as well. Finally, the potent calcium channel 

blockade established upon Rad overexpression also makes this experiment 

difficult to interpret.  It is plausible that even in a setting in which phosphorylated 

Rad is displaced from the calcium channel and no longer an effective inhibitor of 

current, the degree of Rad overexpression is sufficient that another Rad protein 

quickly takes its place and blocks calcium current.   

In summary, the studies in this chapter provide preliminary evidence that β-

adrenergic signaling may regulate Rad Ser39 phosphorylation and that this 

phosphorylation event may modulate Rad interactions with CaVβ2a and 14-3-3.  

The experiments in this chapter should be repeated more rigorously to confirm 

these conclusions.  The functional significance of Rad phosphorylation at Ser39 
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and other residues and the role of Rad in β-adrenergic signaling remain unclear 

and require further study.  Data from our laboratory suggest that deletion of Rad 

in cardiac myocytes results in a phenotype that mirrors β-adrenergic agonism of 

the calcium channel in the absence of stimulus [104, 131].  Rad deletion also 

renders cardiac myocytes nearly insensitive to further β-adrenergic stimulation of 

the calcium channel [104], suggesting that Rad plays a functional role in this 

pathway.  Although CaV1.2 and CaVβ2a are phosphorylated downstream of β-

adrenergic activation, calcium channel phosphorylation appears to be 

dispensable for the increase in calcium current that is triggered through this 

pathway [199-201]; hence the potential role of Rad phosphorylation, re-

localization, or turnover in response to β-adrenergic signaling remains a possible 

hypothesis for the increase in calcium current downstream of β-adrenergic 

signaling.  
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Figure 4.1: Rad phospho-Ser39 antibody validation 

HEK293 cells were transfected with HA-tagged empty vector (EV) or Rad WT, 

S26A, S39A, S272A, or S301A mutants in order to validate the specificity of the 

rabbit antibody raised against Rad phospho-serine 39 in collaboration with 21st 

Century Bio.  Cells were also transfected with the β2 adrenergic receptor (β2AR) 

and stimulated with isoproterenol (ISO, 100 ng/mL) as an agonist to promote Rad 

phosphorylation.  In the last three lanes, HEK293 cells were transfected with HA-

tagged Rem, Rem2L (long isoform), and Gem in order to validate that the 

antibody does not cross-react with other RGK subfamily proteins. 
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Figure 4.2: Forskolin treatment increases Rad Ser39 phosphorylation in 

HEK293 cells 

HEK293 cells transfected with HA-tagged Rad were starved prior to stimulation 

with 1 µM phorbol 12-myristate 13-acetate (PMA) to activate PKC in the α-AR 

pathway or 1 µM forskolin to activate PKA in the β-AR pathway.  Unlike Rem, 

Rad is phosphorylated downstream of PKA, not PKC. Results are representative 

of three independent experiments.  * p<0.05 relative to unstimulated by Student’s 

t test. 
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Figure 4.3: ββ-adrenergic stimulation of fetal ventricular cardiomyocytes 

induces Rad Ser39 phosphorylation 

Ventricular cardiomyocytes were isolated from fetal wildtype mice at embryonic 

day 18 and stimulated with vehicle, isoproterenol (100 ng/mL), or forskolin (1 µM) 

for the indicated amounts of time. Western blotting analysis suggests that 

treatment with either of these activators of the β-adrenergic signaling cascades 

may result in an increase in Rad Ser39 phosphorylation.  



	
   116 

.  

 
 

Figure 4.4: Rad Ser39 phosphorylation is elevated in human heart samples 

from patients with a history of hypertension 

Human heart samples were homogenized, and Rad phosphorylation levels were 

assessed by Western blotting and normalized to total Rad levels.  Samples from 

patients with a history of hypertension (HTN) exhibited significantly higher levels 

of Rad Ser39 phosphorylation/total Rad relative to non-hypertensive (non-HTN) 

controls.  ** p<0.01 relative to non-HTN by Student’s t test. 
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Figure 4.5: Phosphomimetic mutation of Rad at Ser39 decreases its 

association with CaVββ2a 

HEK293 cells were transfected with Flag-tagged CaVβ2a along with HA-tagged 

Rad WT, S39A, or S39D. Co-immunoprecipitation analysis suggests that the 

phosphomimetic S39D mutation results in weaker association with CaVβ2a. 

Results are representative of three independent experiments, * p<0.05 compared 

to Rad WT by Student’s t test.  
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Figure 4.6: Phosphatase inhibition may decrease the interaction between 

Rad and CaVββ2a 

HEK293 cells were transfected with Flag-tagged CaVβ2a along with HA-tagged 

Rad WT.  Co-immunoprecipitation was performed with standard IP buffer or with 

the addition of 50 mM β-glycerophosphate to inhibit phosphatases or 2 mM 

EGTA to chelate calcium.  Addition of β-glycerophosphate appears to result in 

loss of association between Rad and CaVβ2a.  
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Figure 4.7: Inhibition of PKA may enhance Rad interaction with CaVββ2a 

HEK293 cells were transfected with HA-tagged Rad and Flag-tagged EV (lane 1) 

or CaVβ2a (lanes 2-5) and subjected to immunoprecipitation with an anti-Flag 

antibody.  Pre-treatment with the PKA inhibitor H-89 appears to result in an 

increase in the association between Rad and CaVβ2a. Results of two 

independent experiments are shown here. 
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Figure 4.8: Rad phosphorylation at Ser39 promotes 14-3-3 association  

HEK293 cells were transfected with GST-tagged 14-3-3 and HA-tagged empty 

vector (EV) or HA-tagged Rad WT, S39A, or S39D.  Cells were starved in serum-

free media and treated with 1 µM forskolin or vehicle prior to harvest.  Co-

immunoprecipitation analysis suggests that forskolin stimulation to induce 

phosphorylation of Rad WT at Ser39 or phosphomimetic mutation of Ser39 to 

aspartic acid strengthens the association between Rad and 14-3-3. Results are 

representative of three independent experiments. 
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Figure 4.9: Enigma overexpression increases Rad Ser39 phosphorylation 

HEK293 cells were transfected with HA-tagged Rad WT and Flag-tagged empty 

vector or Enigma.  48 hours after transfection, cells were serum-starved and 

treated with 100 ng/mL isoproterenol or vehicle for 15 minutes. Western blotting 

analysis indicates that Enigma overexpression is sufficient to increase Rad Ser39 

phosphorylation without an additional stimulus. Results are representative of 

three independent experiments. 

 
  



	
   122 

 

 
 
 

Figure 4.10: Enigma associates with the C-terminus of CaV1.2  

Panel A) HEK293 cells were transfected with HA-tagged CaV1.2 C-terminus 

(amino acids 1507-2171) and either Flag-tagged Enigma WT, ΔPDZ, ΔLIM1-3, or 

empty vector.  Immunoprecipitation with anti-Flag antibody and Western blotting 

with biotinylated anti-HA antibody indicate that the CaV1.2 C-terminus forms a 

complex with Enigma that does not require the PDZ domain.  

Panel B) HEK293 cells were transfected with HA-tagged CaV1.2 C-terminus 

constructs (amino acids 1507-2171, 1507-1906, or 1906-2171) and Flag-tagged 

Enigma or empty vector and subjected to immunoprecipitation with anti-Flag 

antibody.  Western blotting with biotinylated anti-HA antibody indicates that the 

interaction between the CaV1.2 C-terminus and Enigma requires amino acids 

1507-1906.  Results are representative of three independent experiments. 



	
   123 

  
 

Figure 4.11: Enigma overexpression does not alleviate Rad-mediated 

calcium channel blockade 

HEK293 cells were transfected with full-length rabbit GFP-tagged CaV1.2, a dual 

expression vector containing RFP and CaVβ2a, HA-tagged empty vector or Rad 

WT, and Flag-tagged empty vector or Enigma.  Cells expressing the calcium 

channel complex alone had detectable inward calcium current that was 

completely blocked by Rad overexpression.  Overexpression of Enigma with Rad 

did not rescue calcium channel blockade. N=3-8 cells per group. 
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Figure 4.12: Alignment of N-terminal 14-3-3 binding sites across the RGK 

subfamily 

The lack of conservation in the amino acid sequences surrounding the N-terminal 

14-3-3 binding sites across the RGK subfamily suggests that distinct upstream 

stimuli and kinases may mediate phosphorylation of the different GTPases in the 

family. 
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Figure 4.13: Proposed model in which phosphorylated Rad is displaced 

from the calcium channel complex via 14-3-3 binding 

Panel A) In its non-phosphorylated state, Rad binds to the C-terminus of CaV1.2 

and to the accessory CaVβ subunit of calcium channels resident at the plasma 

membrane and blocks calcium current. 

Panel B) Upon phosphorylation at Ser39 (and Ser301, the other 14-3-3 binding 

site), 14-3-3 dimers bind to phosphorylated Rad, potentially displacing it from the 

calcium channel complex.  Further studies are needed to determine whether Rad 

Ser39 phosphorylation can reverse calcium channel blockade. 
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Chapter 5 

 

Rad GTPase is essential for the regulation of bone density and bone 

marrow adiposity in mice 

 

Introduction 

While frequently studied in the context of calcium channel modulation in excitable 

cells, the recent surge in reports of Rad expression changes in non-excitable cell 

types suggests that our analysis of the physiological functions of Rad should be 

expanded.  Specifically, RGK (Rad, Rem, Rem2, and Gem/Kir) subfamily 

proteins have recently been implicated in the regulation of cell differentiation [42-

45].  Rem2, an RGK family protein that is primarily expressed in the nervous 

system, is highly expressed in embryonic stem cells and plays a key role in 

ectoderm differentiation and neuronal development [42, 43].  Similarly, gene co-

regulation mapping studies have suggested a likely role for Rad in embryonic 

stem cell differentiation [45]. Importantly for the work in this chapter, Satija and 

colleagues reported that lithium treatment of human mesenchymal stem cells 

(MSCs) to enhance osteogenic differentiation elicited a robust increase in Rad 

expression [44]. Notably, siRNA-mediated Rad silencing reversed the osteogenic 

priming effect of lithium [44]; hence, Rad may play a role in the regulation of 

osteogenesis that requires further investigation. 
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Although it is often erroneously thought of as a static support structure, the 

skeleton is a living, highly dynamic tissue with a number of important functions in 

the body [141].  Best known for its roles in supporting the weight of the body and 

in facilitating movement, the skeleton also provides protection for vital organs 

including the brain, bone marrow, and spinal cord.  Moreover, the bone marrow is 

the site of blood cell production and is also the site for storage of a fat depot 

known as bone marrow adipose tissue (BMAT) [210]. Finally, the skeleton plays 

a crucial role in overall mineral homeostasis in the body, acting as a storage 

reservoir for calcium and phosphate. Remodeling of the bone tissue allows 

mobilization of these minerals as needed by the body [141]. Calcium 

homeostasis is critical to overall health, as the body uses calcium for muscle and 

heart contraction, neurotransmission, hormone secretion, and blood clotting 

[100].  

Osteoporosis is a disease of low bone mass and deterioration of bone tissue 

leading to structural fragility and increased risk of fractures [211].  According to 

the National Osteoporosis Foundation, 54 million adults age 50 and over in the 

United States are affected by osteoporosis and low bone mass, amounting to 

over half of the total US adult population in that age category [211].  Interestingly, 

many conditions that can induce bone loss, such as estrogen insufficiency, 

anorexia, disuse, and hind limb unloading, are accompanied by increased bone 

marrow adipose tissue (BMAT) [212, 213]. In patients with osteoporosis, bone 

marrow adiposity is significantly increased, and bone formation rates are 

inversely related to BMAT levels [214, 215].  BMAT has gained recent interest as 
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a distinct fat depot that appears to have roles regulating bone homeostasis, 

hematopoiesis, and metabolism, and it is well established that adipokines and 

free fatty acids released by adipocytes can modulate bone remodeling and 

hematopoiesis [210].  BMAT constitutes 70% of the adult bone marrow volume 

on average and represents about 10% of total body adipose in humans [216], yet 

its origin and physiological functions remain to be fully characterized. 	
  

Mesenchymal stem cells (MSCs) present in the bone marrow are the precursors 

for osteoblasts, chondrocytes, and white and brown adipocytes [146]. One 

mechanism that has been proposed to explain the often-inverse relationship 

between bone density and bone marrow adiposity is a shift in mesenchymal 

progenitors toward more adipogenic differentiation at the expense of osteoblast 

formation, but much remains to be determined [217].  The transcriptional 

programs that drive MSCs to adopt these two cell fates are well characterized, 

with CCAAT-enhancer binding protein- α (C/EBP-α) and peroxisome proliferator-

activated receptor γ2 (PPARγ2) initiating expression of genes associated with 

mature adipocytes [218], and Runt-related transcription factor 2 (Runx2) and the 

downstream osteoblast-specific transcription factor osterix/Sp7 required for 

osteogenic differentiation [151, 219].  However, there is some debate as to 

whether bone marrow adipocytes are derived from the same precursors as 

gonadal and intramuscular adipose.  Unexpectedly, and in contrast to white and 

brown adipocytes, bone marrow adipocytes were recently found to express 

osterix/Sp7 [220], suggesting that MSCs directed toward an osteogenic fate may 

be re-allocated toward an adipogenic one. Similarly, lineage tracing studies 
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performed in mT/mG mice expressing a floxed, membrane-targeted tdTomato 

cassette (mT) upstream of an eGFP cassette (mG), which allows excision of mT 

and expression of membrane-targeted green fluorescent protein (GFP) when 

Cre-recombinase is expressed, demonstrated that bone marrow adipocytes 

traced in Osterix-cre:mT/mG mice [221].  Hence, while more studies are 

necessary, bone marrow adipocytes are unique in their expression of the 

osteoblast-specific transcription factor Osterix and thus may not follow the 

traditional adipogenic differentiation pathway.  

In addition to the report of increased Rad expression during the osteogenic 

differentiation of MSCs [44], the interaction between Rad and Enigma that was 

demonstrated in Chapter 3 also points to a potential role for Rad in osteogenesis.  

Enigma is also referred to as LIM mineralization protein (LMP) in the bone 

literature [222] and has an established function in bone mineralization as its 

name suggests. Multiple studies have demonstrated that Enigma/LMP 

overexpression induces mineralization of calvarial cells in vitro and bone 

formation in vivo [223-229].  Similarly, loss of Enigma/LMP expression prevents 

in vitro osteoblast differentiation [223] and periodontal ligament cell 

mineralization [230], and LMP-/- mice have lower bone density compared to WT 

[160].  The osteoinductive effects of Enigma/LMP are thought to involve both the 

regulation of bone morphogenetic protein (BMP) expression [231-233] as well as 

regulation of BMP responsiveness through modulation of Smad ubiquitin 

regulatory factor 1 (Smurf1) E3 ubiquitin ligase activity [184, 188].   
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Given the importance of the balance between osteogenesis and adipogenesis in 

human disease, coupled with the report of Rad up regulation during osteogenic 

priming of MSCs [44] and our observation of a novel interaction between Rad 

and Enigma/LMP (see Chapter 3), the goal of the work in this chapter is to 

characterize the effects of Rad deletion on bone homeostasis and bone marrow 

adiposity in vivo and on osteoblast function in vitro using global Rad-knockout 

(Rad-/-) mice.  I will test the hypothesis that genetic deletion of Rad results in low 

bone mass through a decrease in bone formation by osteoblasts and ultimately 

postulate that Rad might be one of the elusive upstream regulators of the switch 

between osteogenesis and adipogenesis. 

Results 

Rad-/- mice are small and weigh less than WT 

Because of a routine observation during maintenance of the Rad-/- mouse line 

that these mice tended to appear smaller in size than WT counterparts, the 

weights and lengths of these mice were quantified.   At four months of age, both 

male and female Rad-/- mice weighed significantly less than WT (Table 5.1).  The 

lengths of male mice were measured at four months of age, and Rad-/- mice were 

shorter in length than WT (Table 5.1).  Lengths and weights were also quantified 

at neonatal day one, and again Rad-/- mice weighed significantly less and were 

shorter than WT (Table 5.1). 
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No gross skeletal abnormalities in the absence of Rad 

To assess skeletal development at a gross level, skeletons were isolated from 

one-day-old WT and Rad-/- neonates and sequentially stained with Alcian blue 

and Alizarin Red S, which mark cartilage in blue and bone in reddish-purple, 

respectively.  This analysis indicated no gross abnormalities in Rad-/- skeletal 

development (Figure 5.1). 

Lower trabecular and cortical bone density in Rad-/- mouse femora 

To explore the impact of Rad deletion on bone density, WT and Rad-/- femora 

from both male and female mice were analyzed by microcomputed tomography 

(µCT) in collaboration with the µCT Core Laboratory at Rush University. Rad-/- 

femora from female mice exhibited a significantly lower trabecular bone volume 

fraction and trabecular number, with a parallel increase in trabecular spacing 

relative to WT controls (Figure 5.2 and Table 5.2).  A similar trend was observed 

in male Rad-/- femora (Figure 5.2). Trabecular thickness was not significantly 

different from WT.  Rad-/- femora also exhibited a significantly lower cortical bone 

area and thickness than WT, whereas the medullary area was significantly higher 

when compared to WT controls (Figure 5.2 and Table 5.2). Taken together, 

these data suggest that Rad GTPase contributes to the maintenance of normal 

bone density.  
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Rad-/- femora have altered mechanical properties  

To determine whether the decrease in bone density in Rad-/- femora changed the 

mechanical properties of these bones, four-point bending analysis was 

performed by our collaborators at Indiana University School of Medicine.  Rad-/- 

femora displayed a significant mechanical phenotype, including a significantly 

lower cortical bone ultimate force, stiffness, work to yield, ultimate stress, and 

elastic modulus compared to femora from WT controls (Figure 5.3 and Table 

5.3). Total displacement, toughness, and total strain were all significantly higher 

in the absence of Rad (Table 5.3). These data indicate that Rad loss results in a 

unique mechanical phenotype characterized by weaker and more elastic bones, 

which is consistent with the lower bone density evident from µCT analysis. 

Rad deletion enhances osteoclast differentiation in vitro 

A decrease in bone density and strength could occur via an increase in bone 

resorption by osteoclasts, a decrease in bone formation by osteoblasts, or a 

combination of the two.  To determine the impact of Rad deletion on osteoclast 

differentiation, mononuclear cells were isolated from the spleens of WT and   

Rad-/- mice and treated with M-CSF and RANKL to stimulate their differentiation 

toward multinucleated osteoclasts. Staining for tartrate-resistant acid 

phosphatase (TRAP) and counting TRAP+ multinucleated cells (MNCs) indicated 

that loss of Rad significantly enhanced osteoclast differentiation in vitro (Figure 

5.4). 
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Osteoclast surface is not higher in Rad-/- femora in vivo 

To examine whether the lower bone density of Rad-/- femora resulted from an 

increase in osteoclast numbers in vivo, we performed TRAP staining at the distal 

femur of 4-month-old animals.  Osteoclast surface was unchanged in male Rad-/- 

animals, and a small but significant decrease in osteoclast surface was observed 

in the distal femora of female Rad-/- mice compared to WT (Figure 5.5).  These 

data suggest that, despite the increase in in vitro osteoclastogenesis that was 

observed in Figure 5.4, the low bone density phenotype of Rad-/- mice is not 

likely to arise solely from increased osteoclast numbers. 

Lower bone formation rate in Rad-/- femora 

The reduction in osteoclast surface in Rad-/- femora, coupled with the report of a 

role for Rad in osteogenic priming of MSCs [44], suggested that altered 

osteoblast function might also contribute to the lower bone density observed in 

Rad-/- mice.  To test this notion, dynamic histomorphometry was used to 

determine the rate of bone formation in WT and Rad-/- femora in vivo.  In 

trabecular bone at the distal femur, a significantly lower mineral apposition rate 

(MAR) but a higher percent mineralizing surface (MS/BS) was observed in Rad-/- 

femora compared to WT controls (Figure 5.6 and Table 5.4).  The latter 

observation may arise in part due to the significant decrease in total trabecular 

bone surface at the distal femora of Rad-/- mice compared to WT (Figure 5.6A).  

Normalization of MAR and MS/BS results in a downward trend in bone formation 
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rate (BFR/BS) in trabecular bone of Rad-/- animals compared to WT (Figure 5.6B 

and Table 5.4).  

These parameters were also measured in cortical bone. Consistent with the µCT 

data, histology indicated a significantly lower cortical bone area at the mid-

diaphysis of Rad-/- femora compared to WT (Table 5.4).  The mineralizing 

surface (MS/BS) and bone formation rate (BFR/BS) at the periosteal surface of 

Rad-/- femur diaphyses were significantly lower than in WT, and the periosteal 

mineral apposition rate (MAR) also trended downward in Rad-/- femora (Figure 

5.6B and Table 5.4).  These same measures at the endocortical surface of the 

femur diaphysis trended downward in Rad-/- animals but did not reach 

significance (Table 5.4).  Overall, these data suggest that a decrease in 

osteoblast function may contribute to the lower bone mass observed in Rad-/- 

mice. 

Rad-/- calvarial osteoblast function is blunted in vitro 

To characterize the contribution of Rad GTPase signaling to osteoblast 

differentiation and function in vitro, the phenotype of osteoblasts derived from 

neonatal WT and Rad-/- calvariae was examined.  Immunoblot analysis confirmed 

Rad expression in this cell population (Figure 5.7A).  Consistent with the in vivo 

decrease in bone formation, osteoblast differentiation was impaired in Rad-/- 

calvarial cells as shown by a reduction in alkaline phosphatase activity, an 

enzymatic marker of osteoblast maturation (Figure 5.7B), and a significant 

decrease in mineralization as indicated Alizarin Red S staining (Figure 5.7C) 
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following osteogenic induction. Together these data indicate that osteoblast 

development and/or function is diminished in the absence of Rad.   

Higher expression of matrix Gla protein in Rad-/- calvarial osteoblasts 

To examine the molecular mechanisms underlying the decrease in osteoblast 

function upon Rad loss, microarray analysis was performed to compare the gene 

expression profile of naïve calvarial osteoblasts from WT and Rad-/- mice. 

Surprisingly, Rad deficiency had no effect on the expression of the canonical 

osteoblast marker genes Runt-related transcription factor 2 (Runx2), osteocalcin 

(Bglap), or type I collagen (Col1a1) (Figure 5.8A).  Expression of the osteogenic 

transcription factor osterix (Sp7) and of alkaline phosphatase (Alpl) trended 

downwards but did not reach significance (Figure 5.8A). Instead, the profiling 

data indicated that matrix Gla protein (Mgp), a 15-kDa secreted protein that was 

initially isolated and identified from demineralized bovine bone and has since 

been found to inhibit bone mineralization [234-236], was markedly increased in 

Rad-/- calvarial osteoblasts compared to WT (+11.28-fold) (Figure 5.8A). This 

increase in matrix Gla protein (MGP) expression in Rad-/- osteoblasts was 

confirmed by RT-PCR (Figure 5.8B) and suggests a novel means by which Rad 

loss may result in a decrease in osteoblast activity and therefore overall bone 

density.   
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Rad-/- calvarial osteoblasts show a striking adipogenic phenotype 

During the course of culturing primary calvarial cells, a dramatic increase in the 

number of cells that appeared to have lipid droplets was observed in the Rad-/- 

osteoblast preparations after 10-14 days in culture when compared to WT 

osteoblasts.  This observation, coupled with published work indicating that MGP 

not only inhibits mineralization but that its secretion increases ~30-fold during the 

in vitro differentiation of human pre-adipocytes [237], suggested that lower 

osteogenesis following Rad deletion might be linked to increased adipogenic 

differentiation. To test this possibility, WT and Rad-/- calvarial osteoblast 

monolayers were stained with Oil Red O (ORO) on day 14 to confirm that these 

structures were lipid droplets. Consistent with a potential role for Rad in inhibiting 

adipogenesis, the number of ORO-positive cells was significantly higher in Rad-/- 

calvarial cultures compared to WT (Figure 5.9). 

Adipogenic induction of WT osteoblasts causes a decline in endogenous 

Rad levels 

Rad gene expression is increased following lithium stimulation of mesenchymal 

stem cells, which enhances osteogenic differentiation, and Rad silencing has 

been shown to attenuate osteogenic priming [44]. These data prompted 

examination of Rad expression in primary calvarial cells upon adipogenic 

differentiation.  Treatment of WT calvarial osteoblasts with adipogenic media for 

one week resulted in a dramatic loss of endogenous Rad protein (Figure 5.10).  

Together with the data from Satija and colleagues [44], this observation suggests 
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that dynamic control of Rad may play a role in directing differentiation toward the 

osteogenic versus adipogenic lineages.  In addition to Rad down regulation, 

adipogenic treatment of WT calvarial cells generated a phenotype that resembled 

that of Rad-/- osteoblasts without adipogenic induction. Specifically, treatment 

with adipogenic media for one week resulted in the accumulation of ORO+ lipid 

droplets in WT calvarial cultures, a reduction in alkaline phosphatase staining, 

and a significant rise in MGP gene expression (Figure 5.11). 

Increased bone marrow adiposity at the distal femora of Rad-/- mice 

The significant increase in adipogenesis observed in primary Rad-/- calvarial 

osteoblast cultures under normal growth conditions suggested that Rad 

deficiency might alter the in vivo balance of osteoblasts and adipocytes in the 

bone marrow compartment. Von Kossa/MacNeal’s tetrachrome staining of WT 

and Rad-/- distal femora was performed to evaluate the overall cell distribution 

and revealed a significant increase in BMAT at the Rad-/- distal femur compared 

to WT (Figure 5.12).  Rad deletion resulted in significantly higher adipocyte 

numbers as well as significantly larger adipocyte size compared to WT (Figure 

5.1).  Notably, reexamination of TRAP-stained distal femora (Figure 5.4) was 

consistent, with unstained round structures resembling adipocytes frequently 

observed in Rad-/- femora. 
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Total body fat percentage is unchanged in Rad-/- mice 

To determine whether Rad loss results in a global alteration in adipogenesis, 4-

month-old WT and Rad-/- mice were weighed and subjected to EchoMRI body 

composition analysis. These analyses showed that although Rad-/- mice weigh 

less than WT littermates (Table 5.1 and Figure 5.13), there is no significant 

change in body fat percentage upon Rad deletion (Figure 5.13); thus, the 

increase in adipogenesis in Rad-/- mice appears to be specific to BMAT. 

Rad associates with C/EBP proteins 

CCAAT-enhancer binding proteins (C/EBPs) play an important role in adipocyte 

differentiation, with induction of C/EBP-β and -δ observed early in adipogenesis 

and induction of C/EBP-α necessary for terminal adipocyte differentiation [238-

240].  Rad has been reported to bind to C/EBP-δ and to impede its DNA binding 

and its function as a transcription factor in heart tissue [41], and a similar 

regulatory mechanism in osteoblast progenitors could explain the increase in 

adipogenesis observed in the absence of Rad.  Co-immunoprecipitation studies 

in HEK293 cells corroborate the finding that Rad interacts with C/EBP-δ, and 

notably, we also observe co-immunoprecipitation of Rad and the C/EBP-α and 

β isoforms (Figure 5.14), suggesting that regulation of C/EBP activity is an area 

that should be pursued as a potential mechanism for the increased adipogenesis 

and decreased osteogenesis in Rad-/- bone marrow. 
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Discussion 

Bone is a dynamic tissue that undergoes continuous remodeling throughout life 

in response to changing demands on the skeleton and in order to maintain 

mineral homeostasis. Dysregulation of the bone remodeling process is one 

characteristic of age-related osteoporosis. In addition to low bone mass, 

osteoporosis is often characterized by an increase in bone marrow adiposity 

[214].  Osteoblasts and adipocytes share a common mesenchymal stem cell 

precursor [146], but the mechanisms by which these precursors are marked for 

an adipogenic versus an osteogenic cell fate have not been fully elucidated, and 

the literature also suggests potential differences in the origin of bone marrow 

adipocytes compared to white and brown adipocytes [216]. The data in this 

chapter represent the first analysis of the bone physiology of Rad-/- mice and 

demonstrate that Rad GTPase plays an important, previously uncharacterized 

role in the regulation of bone homeostasis in mice.  Deletion of Rad in mice 

results in low bone density owing in part to a lower rate of bone formation in vivo 

and lower osteoblast function in vitro. A concomitant increase in BMAT is also 

observed within Rad-/- femora without obvious expansion of peripheral adipose 

tissue, and adipocytes spontaneously arise in primary cultures from Rad-/- 

calvaria. The work in this chapter suggests that Rad may alter osteogenic versus 

adipogenic lineage commitment, potentially via regulation of matrix Gla protein 

expression.  Endogenous Rad levels are decreased following adipogenic 

treatment of calvarial cells, complementing the previously reported increase in 

Rad expression during osteogenesis.  These observations implicate Rad 
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GTPase as a regulatory protein whose levels can be dynamically modulated to 

control the shift between osteogenesis and adipogenesis, and as such, studies 

into the mechanism of Rad action and regulation may present potential targets 

for osteoporosis research. 

Following the report of a requirement for Rad function in lithium-mediated 

osteogenic priming of MSCs [44], we hypothesized that global Rad-/- mice would 

have lower bone density than WT controls, which was confirmed by µCT analysis 

in Figure 5.2 and Table 5.2.  Further evaluation of these bones to examine their 

mechanical properties in Figure 5.3 and Table 5.3 revealed that while Rad-/- 

femora have significantly lower strength and stiffness, which would typically 

render them more susceptible to fracture, they also have significantly longer 

displacement than femora from WT controls. Hence, Rad-/- femora are 

simultaneously weaker and more elastic, bending under smaller loads than WT 

but not overtly fracturing. Both collagen and water provide plasticity to bone, and 

the contribution of these variables to the Rad-/- mechanical phenotype could be 

explored in the future.   

 
Bone dynamics are controlled by the coordinated actions of osteoclasts and 

osteoblasts, and I sought to define the cell type(s) responsible for the lower bone 

density in Rad-/- mice. Despite the observation of an increase in osteoclast 

differentiation in Rad-/- cells in vitro in Figure 5.4, the in vivo result in Figure 5.5 

Indicates that osteoclast number is not increased in the absence of Rad in 4-

month-old animals.  This observation suggests that an increase in osteoclasts 
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may not be the primary source of the low bone mass seen in Rad-/- animals. 

Further studies should investigate the serum and/or urine levels of bone 

resorption markers such as carboxy-terminal collagen crosslinks (CTX-I) or 

deoxypyridinoline (DPD) to determine whether osteoclast activity is altered in 

these mice.  In addition, investigation of the bone density and osteoclast surface 

area of WT and Rad-/- femora from younger and older mice will also better inform 

the phenotype that we have observed. 

Analysis of osteoblast function in vivo and in vitro suggested that bone formation 

is impaired in Rad-/- mice.  The bone formation rate was significantly lower at the 

periosteal surface of cortical bone and trended downwards at the endocortical 

surface as well as in trabecular bone (Figure 5.6 and Table 5.4), indicating that 

Rad loss might result in decreased osteoblast differentiation and/or function.  In 

vitro calvarial osteoblast assays corroborated this notion, as our studies in 

Figure 5.7 indicated lower alkaline phosphatase activity and decreased 

mineralization in Rad-/- calvarial cells following osteogenic induction compared to 

WT.  Further studies will be important to determine whether the loss of Rad 

impacts osteoblast differentiation, function, or both.  Specifically, isolation of WT 

and Rad-/- MSCs for analysis of their differentiation potential toward the 

osteogenic and adipogenic lineages will be informative.   

Surprisingly, we did not see a change in the expression of canonical osteoblast 

marker genes in Rad-/- calvarial cells in Figure 5.8, as would be expected if 

osteoblast development were hindered in the absence of Rad.  In part this might 
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arise from our study design, using freshly isolated calvarial cells prior to 

osteogenic induction.  It will be important to determine whether Rad deletion 

hinders this gene expression program following osteogenic induction. Our 

microarray analysis did, however, reveal a robust increase in matrix Gla protein 

expression in Rad-/- calvarial cells compared to WT (Figure 5.8).  MGP up-

regulation may provide a novel mechanism for the decrease in osteogenesis as 

well as the increase in adipogenesis observed upon Rad deletion.  MGP has 

been shown to prevent mineralization in the osteoblast-like cell line MC3T3-E1 

[235, 236]. In keeping with its role as an inhibitor of mineralization, transgenic 

mice overexpressing MGP in osteoblasts have low bone density [241], and  

MGP-/- mice exhibit profound calcification of the aorta and other arteries, as well 

as inappropriate calcification of cartilaginous structures like the growth plate and 

the tracheal rings [242, 243].  Interestingly, not only does MGP inhibit 

mineralization, but its secretion is robustly increased during adipocyte 

differentiation, second only to the body fat regulatory hormone leptin [237], and 

we observed induction of MGP gene expression following adipogenic 

differentiation of WT cells in Figure 5.11.  Thus, the elevation in MGP gene 

expression in Rad-/- osteoblasts is likely important to the overall phenotype of 

increased adipogenesis at the expense of osteogenesis.   

While calvarial cells were isolated from WT and Rad-/- mice with the purpose of 

examining osteoblast differentiation and activity, the finding of spontaneous 

adipogenesis in the absence of Rad in Figure 5.9 was unexpected and exciting.  

Moreover, the observations that endogenous Rad expression decreases during 
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adipogenesis of WT calvarial cells in Figure 5.10 and that adipogenic induction 

of WT cells phenocopies Rad-/- cells in Figure 5.11 indicate that Rad may be a 

physiological regulator of the adipogenesis process.  Specifically, our finding that 

Rad levels decrease during adipogenesis complements the report by Satija and 

colleagues that Rad expression is increased during osteogenic priming [44].  The 

observation that Rad deletion increases bone marrow adiposity but not total body 

fat percentage in Figures 5.12 and 5.13 is equally intriguing, as recent studies 

have hinted at differences in the origins of BMAT and peripheral adipose depots 

[216]. The increase in BMAT, but not of peripheral fat, in Rad-/- animals suggests 

that Rad function may serve as a novel regulator of BMAT development and 

regulation.  This possibility is supported by a study showing that Rad protein 

levels in human skeletal muscle are correlated with measures of obesity and 

resting metabolic rate [129].  Taken together, these studies lead to the 

hypothesis that Rad levels may be dynamically regulated at the level of 

expression to modulate cell fate of MSCs or potentially even redirection of 

osteoprogenitors toward an adipogenic differentiation course. We hypothesize 

that higher Rad expression promotes osteogenesis and that lower Rad 

expression promotes adipogenesis, and more specifically, BMAT production.   

Finally, while preliminary, our finding of an interaction between Rad and C/EBP-

α, β, and δ in Figure 5.14 suggests a potential mechanism for the increase in 

adipogenesis observed in the absence of Rad.  C/EBPs are critical for adipocyte 

differentiation [239], and Rad binding to C/EBP-δ in cardiac myocytes has been 

shown to decrease its DNA binding and transcriptional activity [41]. Moreover, 
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preliminary studies suggest that C/EBP protein expression may be higher in  

Rad-/- calvarial cells than WT (data not shown), suggesting that Rad may regulate 

the stability of C/EBP proteins as well.  Future studies should probe for changes 

in C/EBP promoter occupancy or transcriptional activity in Rad-/- calvarial cells 

and following ectopic Rad expression.  A reasonable hypothesis that stems from 

these data is that Rad function may be required for osteogenic differentiation of 

MSCs during adult bone homeostasis via inhibition of C/EBP family proteins, with 

the lack of Rad function promoting adipogenesis through enhanced C/EBP-

dependent transcription.  

Unraveling the pathways that regulate the bifurcation between osteogenic and 

adipogenic differentiation is critical to understanding the disease progression of 

osteoporosis and identifying new therapies, as a shift in this balance favoring 

adipogenesis at the expense of osteogenesis may contribute to the increase in 

BMAT that accompanies low bone density in osteoporotic patients.  The data in 

this chapter suggest that Rad may represent a promising target in regulating this 

balance. 
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Table 5.1: Mouse weights and lengths  
 
Age Genotype Gender Weight (g) Length (cm) 
4 months Wildtype Male 35.9 +/- 0.4 18.4 +/- 0.1 
  Female 26.5 +/- 0.9  
 RadKO Male 32.1 +/- 0.7 *** 17.0 +/- 0.1 *** 
  Female 22.2 +/- 0.4 **  
1 day Wildtype  2.67 +/- 0.06 5.66 +/- 0.06 
 RadKO  2.16 +/- 0.11 *** 5.08 +/- 0.07 *** 
 
** p<0.01, *** p<0.001 compared to WT using Student’s t test 
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Table 5.2: Trabecular and cortical geometry of 4-month-old mouse femora 

from µµCT analysis 

	
  
Distal Femur Wildtype (N=5) RadKO (N=5) 
TV (mm3) 3.26 +/- 0.18 4.65 +/- 0.06 *** 
BV (mm3) 0.32 +/- 0.04 0.22 +/- 0.04 
BV/TV (%) 9.60 +/- 0.88 4.81 +/- 0.80 ** 
Conn.D 109.3 +/- 8.8 27.1 +/- 6.2 *** 
SMI 2.43 +/- 0.09 3.20 +/- 0.08 *** 
Tb.Th (mm) 0.045 +/- 0.002 0.047 +/- 0.002 
Tb.N (1/mm) 3.49 +/- 0.12 2.72 +/- 0.11 ** 
Tb.Sp (mm) 0.29 +/- 0.01 0.37 +/- 0.02 ** 
Ap.Dens 278.6 +/- 9.7 204.5 +/- 11.3 ** 
BS/BV 61.3 +/- 2.2 63.4 +/- 3.3 
DA 1.34 +/- 0.04 1.35 +/- 0.03 
Femoral Midshaft Wildtype (N=5) RadKO (N=5) 
Ct.Ar (mm2) 0.96 +/- 0.02 0.79 +/- 0.02 *** 
Tt.Ar (mm2) 1.45 +/- 0.01 1.81 +/- 0.03 *** 
Ma.Ar (mm2) 0.49 +/- 0.01 1.02 +/- 0.02 *** 
Ct.Th (mm) 0.26 +/- 0.01 0.18 +/- 0.01 *** 
Ct.Ar/Tt.Ar (%) 66.3 +/- 0.8 43.7 +/- 0.6 *** 
Ct.Po (%) 7.9 +/- 0.5 11.2 +/- 0.5 *** 
 
** p<0.01, *** p<0.001 compared to WT using Student’s t test 
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Table 5.3: Whole bone structural and estimated material mechanical 
properties from femoral four-point bending  
 

Femur Wildtype (N=13) RadKO (N=15) 
Yield Force (N) 24.5 +/- 1.2 8.0 +/- 0.4 *** 
Ultimate Force (N) 28.9  +/- 1.6 17.5 +/- 0.7 *** 
Displacement to Yield (mm) 186.9 +/- 4.2 104.0 +/- 5.8 *** 
Postyield Displacement (mm) 165.9 +/- 18.4 810.3 +/- 87.6 *** 
Total Displacement (mm) 352.8 +/- 18.5 914.3 +/- 88.1 *** 
Stiffness (N/mm) 195.7 +/- 8.0 127.2 +/- 5.4 *** 
Work to Yield (mJ) 2.52 +/- 0.16 0.51 +/- 0.05 *** 
Postyield Work (mJ) 4.46 +/- 0.49 10.17 +/- 0.75 *** 
Total Work (mJ) 6.98 +/- 0.52 10.68 +/- 0.75 *** 
Yield Stress (MPa) 258.7 +/- 13.5 74.8 +/- 4.9 *** 
Ultimate Stress (MPa) 301.6 +/- 12.3 160.6 +/- 4.5 *** 
Strain to Yield (mε) 20380.8 +/- 935.8 11527.4 +/- 533.2 *** 
Total Strain (mε) 38517.2 +/- 2681.7 101673.0 +/- 9722.0 *** 
Elastic Modulus (GPa) 14.2 +/- 0.6 7.7 +/- 0.2 *** 
Resilience (MPa) 2.9 +/- 0.3 0.5 +/- 0.1 *** 
Toughness (MPa) 8.3 +/- 0.9 10.8 +/- 0.7 * 
 
* p<0.05, *** p<0.001 compared to WT using Student’s t test 
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Table 5.4: Histomorphometry 
	
  
Distal Femur Wildtype (N=5) RadKO (N=5) 
Trabecular MAR (µm/day) 3.51 +/- 0.26 2.52 +/- 0.18 * 
Trabecular MS/BS (%) 36.6 +/- 1.4 45.2 +/- 0.6 ** 
Trabecular BFR/BS 
(µm3/µm2/year) 

 
470.0 +/- 41.7 

 
417.0 +/- 36.0 

Femur Diaphysis Wildtype (N=5) RadKO (N=5) 
Ct.Ar (mm) 0.92 +/- 0.02 0.74 +/- 0.01 *** 
Periosteal MAR (µm/day) 1.01 +/- 0.07 0.78 +/- 0.08 
Periosteal MS/BS (%) 55.0 +/- 4.8 39.5 +/- 2.3 * 
Periosteal BFR/BS 
(µm3/µm2/year) 

 
204.8 +/- 28.7 

 
114.3 +/- 17.1 * 

Endocortical MAR (µm/day) 1.08 +/- 0.09 0.93 +/- 0.06 
Endocortical MS/BS (%) 76.0 +/- 4.0 69.0 +/- 4.7 
Endocortical BFR/BS 
(µm3/µm2/year) 

 
299.1 +/- 32.8 

 
237.5 +/- 30.4 

 
* p<0.05, ** p<0.01, *** p<0.001 compared to WT using Student’s t test	
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Figure 5.1: No gross alterations in skeletal development in Rad-/- mice 

Skeletons of one-day-old mouse pups were isolated from surrounding tissue and 

stained with Alcian Blue (cartilage, blue) and Alizarin Red S (bone, purple).  

RadKO skeletons appeared smaller than WT, but no profound differences in 

skeletal development were observed.  
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Figure 5.2: Lower trabecular and cortical bone density in Rad-/- mouse 

femora 

Panel A) Representative images from µCT analysis of trabecular bone at the 

distal femora of WT and RadKO mice with accompanying quantification of the 

trabecular bone volume fraction (BV/TV).   

Panel B) Representative images from µCT analysis of cortical bone at the mid-

diaphysis of WT and RadKO mouse femora with corresponding quantification of 

the cortical bone area (Ct.Ar). N=5-15 mice per group, 4 months of age. 

**p<0.01, ***p<0.001 compared to WT by Student’s t test. 
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Figure 5.3: Rad deletion results in altered mechanical properties 

Quantification of mechanical properties obtained from four-point bending analysis 

of WT and RadKO mouse femora. N=13-15 mice per genotype, male, 4 months 

of age. ***p<0.001 compared to WT by Student’s t test. 

  



	
   152 

	
  
	
  
Figure 5.4: In vitro osteoclast differentiation is enhanced in the absence of 

Rad 

Representative images and quantification of tartrate-resistant acid phosphatase 

(TRAP) stained osteoclasts derived from spleen.  The number of TRAP-positive 

multinucleated cells (MNCs, at least three nuclei) was counted in each well of a 

24-well plate. N=3 animals per genotype, male, 2 months of age. *p<0.05 

compared to WT by Student’s t test	
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Figure 5.5: Osteoclast surface is not higher in the absence of Rad 

Tartrate-resistant acid phosphatase (TRAP) staining of WT and RadKO distal 

femur thin sections and corresponding quantification of the percentage of the 

bone surface occupied by osteoclasts (Oc.S/BS). N=5 mice per group, 4 months 

of age. * p<0.05 by Student’s t test. 
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Figure 5.6: Lower bone formation rate in Rad-/- femora 

Panel A) Representative images of calcein double labeling in distal femur 

trabecular bone of WT and RadKO mice (10X).  

Panel B) Mineral apposition rate (MAR), mineralizing surface/bone surface 

(MS/BS), and bone formation rate/bone surface (BFR/BS) in the cortical bone 

(periosteal surface) and trabecular bone of WT and RadKO mice. N=5 mice per 

genotype, female, 4 months of age. * p<0.05, ** p<0.01 compared to WT by 

Student’s t test. 
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Figure 5.7: Rad-/- osteoblast activity is depressed in vitro  

Panel A) Representative immunoblot of WT and RadKO calvarial osteoblast 

lysates confirms Rad expression in these cells. N=3 isolations per genotype. 

Panel B) Representative images of WT and RadKO primary calvarial osteoblasts 

stained for alkaline phosphatase activity after 7 days in osteogenic media. N=4 

isolations per genotype.  

Panel C) Representative images of Alizarin Red S staining of WT and RadKO 

primary osteoblast monolayers following 21 days in mineralizing conditions. 

Staining was quantified by solubilization of the stain in acetic acid, neutralization, 

and optical density measurement at 405 nm. N=3-5 isolations per genotype. 

**p<0.01 compared to WT by Student’s t test. 
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Figure 5.8: Higher expression of matrix Gla protein in Rad-/- osteoblasts  

Panel A) Osteoblast marker gene expression from microarray analysis of WT and 

RadKO primary osteoblasts. N=2 isolations per genotype.  

Panel B) RT-PCR analysis of MGP expression confirms its expression is 

elevated in RadKO osteoblasts compared to WT. N=3 isolations per genotype. 
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Figure 5.9: Loss of Rad results in spontaneous adipogenesis of calvarial 

osteoblasts in vitro 

Representative images of wildtype and RadKO primary calvarial osteoblasts 

stained with Oil Red O (ORO) after 14 days in mineralizing conditions. The 

number of ORO-positive cells was counted for 3 random fields per isolation. N=3-

4 isolations per genotype. * p<0.05 by Student’s t test. 
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Figure 5.10: Adipogenic induction of WT osteoblasts results in a reduction 

in endogenous Rad levels 

WT osteoblasts were maintained in growth media or adipogenic media (AM) for 7 

days and harvested for Western blotting analysis of Rad and Gapdh levels. 

Quantification of Rad levels normalized to Gapdh is shown.  N=3 isolations.         

* p<0.05 by Student’s t test. 
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Figure 5.11: Adipogenic induction of WT cells results in a phenotype 

similar to Rad deletion 

Panel A) Representative images of Oil Red O staining in WT and RadKO primary 

osteoblast monolayers following 14 days in growth (GM) or adipogenic (AM) 

media. Adipogenic treatment of WT and RadKO cells resulted in a marked 

increase in ORO+ cells. N=3 isolations per genotype. 

Panel B) Representative images of alkaline phosphatase activity in WT and 

RadKO primary osteoblast monolayers following 7 days in osteogenic (OM) or 

adipogenic (AM) media. Adipogenic treatment of WT cells reduced alkaline 



	
   160 

phosphatase activity to a level comparable to RadKO basally. N=3 isolations per 

genotype. 

Panel C) RT-PCR analysis of MGP expression levels normalized to 18S RNA. 

RNA was isolated from WT primary osteoblasts after 3 days in growth (GM) or 

adipogenic (AM) media. N=3 isolations. * p<0.05 by Student’s t test. 
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Figure 5.12: Higher bone marrow adiposity at the distal femur of Rad-/- mice 

Representative images of Von Kossa/MacNeal’s staining of thin sections from 

WT and RadKO femora at 5X and 20X magnification. Number of adipocytes per 

20x field and the average adipocyte diameter in pixels were quantified. N=5 mice 

per genotype, female, 4 months of age. * p<0.05, ** p<0.01 by Student’s t test. 
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Figure 5.13: No change in global adiposity in Rad-/- mice  

Echo-MRI analysis of body composition of WT and RadKO mice indicates no 

significant difference in lean or fat mass percentage. N=21 WT, 11 RadKO mice, 

4 months of age, female. 
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Figure 5.14: Rad interacts with C/EBP proteins 

HEK293 cells were transfected with C/EBP α, β, or δ along with HA-tagged Rad 

WT or empty vector as a control. Immunoprecipitation with anti-HA antibody and 

Western blotting with the appropriate C/EBP isoform antibodies indicates that 

each of these three C/EBP isoforms can associate with Rad. Results are 

representative of 2-3 independent experiments. 
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Chapter 6 

 

Discussion 

 

The studies described in this dissertation were performed with two main 

objectives.  The first goal was to identify potential mechanisms for the regulation 

of RGK (Rad, Rem, Rem2, Gem/Kir) subfamily proteins with a particular focus on 

Rad, given that these proteins act as intrinsic negative regulators of calcium 

current yet are highly expressed in excitable cell types such as cardiomyocytes 

and given the unusual characteristics of this subfamily compared to other Ras-

related small GTPases.  The second goal was to explore potential roles of Rad 

beyond voltage-dependent calcium channel (VDCC) regulation in light of the 

increasing number of reports that have found expression of this small GTPase in 

non-excitable cell types.   

Identification of Rad/RGK subfamily regulatory mechanisms: ubiquitination 

and phosphorylation 

The results described herein demonstrate that Rad associates with Enigma, a 

putative scaffolding protein with a PDZ domain and three LIM domains.  This 

Rad-Enigma interaction likely plays a regulatory function, as Enigma is known to 

associate with E3 ubiquitin ligases including Smad ubiquitin regulatory factor 1 

(Smurf1) as well as with protein kinases.  Notably, ectopic Smurf1 expression 
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resulted in ubiquitination and turnover of Rad protein (Figure 3.4), and Enigma 

overexpression resulted in an increase in Rad phosphorylation at Ser39 (Figure 

4.10), suggesting that this protein complex indeed plays a role in regulating post-

translational modifications of the Rad protein.  Two related and interesting 

questions that remain to be answered, then, are which of these proteins form a 

larger complex, and whether the processes of Rad phosphorylation and 

ubiquitination may be linked.  Our studies established that Enigma associates 

with Rad and CaV1.2 through the LIM domains (Figure 3.2 and 4.10), raising the 

possibility of steric clash.  Likewise, it is unclear whether E3 ubiquitin ligases, 

kinases, and RGK proteins may simultaneously bind to Enigma or whether 

binding of some of these components to Enigma may block association of others.  

Furthermore, the idea of sequential control of phosphorylation and ubiquitination 

requires further exploration; perhaps Rad phosphorylation is a prerequisite for 

ubiquitination (Figure 6.1A).  This idea could be tested by asking whether the 

Rad S39A mutant, or potentially other phospho-site mutants, is subject to 

Smurf1-mediated degradation. Alternatively, phosphorylation of Rad could inhibit 

ubiquitination and turnover, since 14-3-3 dimers may impede the availability of 

Rad Lys204 as a substrate for E3 ubiquitin ligases (Figure 6.1B).  Analysis of 

ubiquitination and Smurf1-mediated turnover of Rad S39D/E and other 

phosphomimetic Rad mutants could help to answer this question.  

Although Enigma overexpression had no effect on the calcium channel inhibitory 

property of Rad despite increasing Rad Ser39 phosphorylation, the interaction 

between Enigma and CaV1.2 is likely not coincidental.  A different but attractive 
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hypothesis moving forward is that Enigma may act as a scaffold that tethers Rad 

to the calcium channel, thereby enhancing its ability to block calcium current, 

potentially while also regulating turnover of Rad to fine tune calcium current. It is 

worth noting, however, that pilot echocardiography studies suggest that Enigma-/- 

mice do not display the Rad-/- cardiac phenotype and thus that Enigma is not 

essential for Rad function at the level of heart function (data not shown).  Future 

studies of the role of Enigma in regulating Rad and its control of calcium current 

are needed, particularly Enigma knock down experiments in HEK293 cells to 

determine whether Rad overexpression still abolishes calcium current.  Likewise, 

overexpression of Rad in Enigma-/- cardiac myocytes should be performed to 

determine whether Enigma is required for Rad-mediated inhibition of 

endogenous VDCCs.  Given the roles of Enigma in interacting with Rad and the 

Smurf1 E3 ligase and potentially thereby controlling Rad ubiquitination and 

turnover (Chapter 3), promoting Rad phosphorylation (Figure 4.9), and 

interacting with the calcium channel (Figure 4.10), the role of Enigma in Rad 

regulation is likely complicated.  It is conceivable that Enigma may help to 

localize Rad to the calcium channel while also scaffolding E3 ubiquitin ligases 

and kinases that might control Rad and calcium channel function. 

The findings of an interaction with Enigma and of down regulation in the context 

of ectopic Smurf1 expression were not only demonstrated for Rad, but were 

found to be consistent across the RGK subfamily of GTPases (Figures 3.1 and 

3.5).  These observations suggest that Smurf1 may contribute to proteostatic 

regulation of each of the four RGK proteins.  The subsequent studies performed 
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with Rad warrant repetition with the other RGK subfamily proteins, namely 

determining whether proteasome inhibition abolishes the Smurf1-mediated 

decline in RGK expression and whether Smurf1 overexpression results in an 

increase in ubiquitination of the other RGKs.  While ubiquitination had been 

established as a post-translational modification of Rad protein [123, 124], the 

same has not yet been reported for Gem, Rem, or Rem2.  Hence, should these 

proposed studies indicate that the other RGKs are indeed subject to Smurf1-

mediated ubiquitination, the lysine residue(s) that are involved would require 

elucidation through mass spectrometry analysis or targeted mutagenesis of 

candidate lysine residues.  

The contribution of the interaction between RGKs and Enigma to RGK-mediated 

cytoskeletal modulation is another interesting avenue for future investigation.  

Early work investigating the role of Rad indicated that Rad associates with the 

actin cytoskeleton through an interaction with the actin-binding protein β-

tropomyosin [244]. Interestingly, Enigma has also been reported to localize to the 

actin cytoskeleton and to bind directly to β-tropomyosin through its PDZ domain, 

and a role has been proposed for Enigma as an adaptor protein to guide LIM 

domain-binding proteins to muscle cell actin filaments [245].  Notably, the PDZ 

domains of PDZ-LIM family proteins are highly conserved, and several of these 

related proteins also associate with the cytoskeleton through their PDZ domains 

[246-248]. Rad and Gem modulate the actin cytoskeleton as established 

inhibitors of Rho kinase [19], and overexpression of these RGK proteins leads to 

cell flattening and disassembly of stress fibers and focal adhesions [19, 20, 22]. 
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Similarly, Enigma deletion in mouse embryonic fibroblasts inhibited stress fiber 

formation [249].  While it is unclear whether the roles of RGK proteins and of 

Enigma in the regulation of actin stress fibers are linked, it is notable that Enigma 

deletion, which we observed was correlated with an increase in Rad expression 

in the heart (Figure 3.3), results in a similar phenotype of impaired stress fiber 

formation as does Rad overexpression. Enigma is not the only PDZ-LIM family 

protein associated with the regulation of stress fiber assembly; CLP36 (PDLIM1), 

a protein with a PDZ domain and only one LIM domain, localizes to actin stress 

fibers [248], and its knock down results in the loss of stress fibers and focal 

adhesions with rescue of this phenotype requiring both the PDZ and LIM 

domains [250].  Furthermore, both Rad and Enigma have independently been 

reported to have roles in the translocation of glucose transporters to the plasma 

membrane and glucose uptake in response to insulin, a process that is known to 

involve rearrangement of the actin cytoskeleton [140, 251]. Notably, 

overexpression of full-length Enigma inhibited insulin-stimulated glucose 

transport, while deletion of the LIM domains, which are not required for 

cytoskeletal association but are involved in RGK association (Figure 3.2), 

abolished this effect [251].  In vivo, Rad overexpression in muscle resulted in 

more severe insulin resistance [252], which is consistent with the in vitro 

observation of decreased insulin-stimulated translocation of glucose transporters. 

Rad has also been reported to inhibit glucose transporter translocation in cancer 

cells [24-27]. Taken together, these reports in the literature suggest that the 
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interaction between Rad and Enigma may play a role in the regulation of Rad-

mediated cytoskeletal remodeling in addition to calcium channel modulation.   

Another key untested notion is that ubiquitin-mediated turnover might contribute 

to Rad regulation in the heart, particularly of Rad-mediated VDCC control. 

Should Enigma and Smurf1 play an important role in the regulation of Rad in 

cardiac myocytes, it will be important to consider the role of alternative splicing of 

Enigma in Rad activity.  Full-length Enigma, or LIM mineralization protein-1, 

consists of an N-terminal PDZ domain and 3 C-terminal LIM domains as we have 

described here; however, alternative splicing can result in the generation of a 

shorter LIM mineralization protein-3 isoform that lacks the three LIM domains 

[170].  Since the data suggest that Rad associates via the LIM domains of 

Enigma, the implication is that this alternatively spliced isoform may exclude Rad.  

Interestingly, the related protein Enigma homolog (ENH) is alternatively spliced 

during heart development as well as cardiac hypertrophy [253].  Should the same 

be true for Enigma, this could explain the altered regulation of Rad protein levels 

in heart failure.  In a similar vein, recent studies have reported increases in BMP-

4 and 6 expression and signaling in heart failure [254, 255], presenting another 

potential means for Rad down regulation in this context.  Bone morphogenetic 

protein-2 (BMP-2) was also shown to be required for cardiac contractility [256], 

which is in keeping with the phenotype of enhanced contractility that we observe 

in Rad-/- hearts [104].  While it remains unclear whether the down regulation of 

Rad in the context of heart failure is pathological or compensatory and whether 

proteostatic mechanisms are relevant to this regulation, understanding how Rad 
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levels are modulated and the role of Enigma and Smurf1 in this process could 

afford a potential therapeutic strategy for heart failure patients.  Other interesting 

questions along these lines include whether Enigma or Smurf1 levels are altered 

in heart failure and whether and how the interaction between Rad and Enigma is 

regulated.   

The studies in Chapter 4 of this dissertation suggest that β-adrenergic signaling 

promotes downstream Rad phosphorylation at Ser39 (Figures 4.1-4.4).  While 

we were unable to demonstrate a change in Rad-mediated VDCC blockade in 

response to Rad Ser39 phosphorylation (Figure 4.11), co-immunoprecipitation 

studies suggested that Rad Ser39 phosphorylation may decrease its association 

with the CaVβ2a subunit of the calcium channel and increase its association with 

14-3-3 (Figures 4.5-4.8), and we have proposed studies in the Discussion 

section of Chapter 4 for further analysis of the potential regulatory role of 

phosphorylation in Rad-mediated calcium channel modulation. 

The hypothesis that Rad Ser39 phosphorylation downstream of β-adrenergic 

signaling may abolish its calcium channel inhibitory properties is particularly 

attractive in light of the recent studies showing that mice with calcium channel 

knock-in mutations that eliminate phosphorylation of the channel complex 

through β-adrenergic signaling retain β-adrenergic responsiveness [199-201].   

To determine whether Rad phosphorylation plays a key role in the acute increase 

in calcium current observed following β-adrenergic receptor stimulation, we could 

use CRISPR/Cas9 gene editing technology to mutate the endogenous Rad 



	
   171 

Ser39 to alanine in mice, as we have successfully used this system recently to 

generate a floxed Rad mouse and a Flag-tagged Rad knock-in mouse (data not 

shown). If Rad phosphorylation at Ser39 is necessary for the β-adrenergic 

increases in calcium current, then the Rad S39A knock-in mouse would no 

longer be responsive to isoproterenol.  In contrast, knocking in an S39D/E 

mutation into mice may be expected to generate a cardiac phenotype that mimics 

β-adrenergic activation in the absence of stimulus, similar to what we have 

reported in Rad-/- mice [104, 131]. 

While our preliminary results in Chapter 4 demonstrate Rad Ser39 

phosphorylation downstream of β-adrenergic receptor and adenylyl cyclase 

activation using isoproterenol and forskolin, respectively (Figures 4.1-4.3), the 

endogenous kinase(s) responsible for Rad phosphorylation at this residue have 

not yet been identified. Namely, it is unclear whether PKA directly phosphorylates 

Rad or whether PKA signaling indirectly modulates Rad phosphorylation through 

regulation of downstream kinase(s) or phosphatase(s) that then act upon Rad.  In 

vitro kinase assays would allow determination of a direct role for PKA, while a 

kinase siRNA library could be employed to identify kinase(s) that act upon Rad at 

Ser39. 

Finally, the impact of β-adrenergic stimulation and Rad Ser39 phosphorylation on 

the subcellular localization of Rad has not yet been investigated.  It is worth 

noting that our observation that Rad Ser39 phosphorylation enhances 14-3-3 

binding reproduces what has been previously published [16, 118], but also 



	
   172 

extends those studies as the first report of 14-3-3 association in response to a 

stimulus.  RGK mutants deficient for 14-3-3 binding have altered subcellular 

distributions, and overexpression of 14-3-3 results in cytoplasmic redistribution of 

wildtype RGK proteins [16, 109, 113]. As mentioned above, we have recently 

generated a mouse with a Flag tag introduced in frame at the N-terminus of the 

endogenous Rad gene, and this mouse will be useful in studying the subcellular 

distribution of endogenous Rad protein in different cell types and in response to 

different stimuli, including isoproterenol and forskolin.  In addition, anti-Flag 

immunoprecipitation from heart tissue from these mice coupled with mass 

spectrometry would allow analysis of the endogenous proteins that interact with 

Rad, with the expectation that we would observe co-immunoprecipitated Enigma 

and potentially other protein partners that may give further insight into Rad 

regulation. 

Roles of Rad beyond calcium channel regulation: regulation of bone 

homeostasis 

In Chapter 5, we demonstrated that genetic loss of Rad GTPase results in low 

bone mass accompanied by a dramatic expansion in bone marrow adipose 

tissue (BMAT) that is similar to the presentation of age-related osteoporosis in 

humans.  We also showed that Rad is significantly down regulated during the 

adipogenic differentiation of primary calvarial cells, suggesting that Rad signaling 

may play a previously unrecognized role in directing osteogenic versus 

adipogenic differentiation. 
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An interesting area of future investigation will be the contributions of the known 

functions of Rad GTPase as well as the new insights made about Rad regulation 

in Chapters 3 and 4 of this dissertation to Rad-mediated regulation of bone 

homeostasis (Figure 6.2).  Specifically, Rad-mediated calcium channel inhibition, 

Rad-mediated cytoskeletal modulation through regulation of Rho/ROK signaling, 

the interaction between Rad and Enigma, and the regulation of Rad 

phosphorylation through β-adrenergic signaling could each play a potential role in 

the Rad-/- phenotype of low bone density that we have reported in Chapter 5. 

Does calcium channel regulation contribute to Rad’s role in bone? 

First, the role of Rad as an intrinsic negative regulator of calcium current has not 

yet been probed as a potential mechanism for Rad modulation of bone 

homeostasis.  Importantly, both osteoblasts and osteoclasts express L-type 

VDCCs [257, 258].  Specifically, both mRNA and protein for the CaV1.2 subunit, 

the predominant CaVα subunit in the heart, have been detected in osteoblasts 

[259, 260].  However, since increased calcium current is correlated with an 

increase in bone density and a decrease in bone resorption [257], and we see a 

decrease in bone density in Rad-/- mice where we would expect increased 

calcium current, we do not expect calcium current to play a key role in the low 

bone density phenotype of Rad-/- mice.  Nevertheless, calvarial osteoblasts from 

WT and Rad-/- mice could be isolated and subjected to voltage clamp analysis to 

determine whether calcium current is elevated in the absence of Rad in these 

cells, as we have established for cardiac myocytes [104].  In Chapter 5 of this 



	
   174 

dissertation, we were unable to ask whether the Rad-/- phenotype might be 

complemented upon reintroduction of Rad protein.  In preliminary studies, Rad 

overexpression not only failed to improve the deficit in calcium deposition in   

Rad-/- calvarial cells, but Rad overexpression in WT calvarial cells severely 

inhibited calcium deposition (data not shown). We postulate that Rad 

overexpression in these cells blocked calcium current and therefore interfered 

with osteoblast mineralization, and that Rad deletion likely impairs osteoblast 

differentiation and/or activity through a mechanism that is distinct from calcium 

channel regulation. We have previously demonstrated that the C-terminus of 

RGK proteins is required for calcium channel blockade [12], so we could ask 

whether introduction of Rad ΔΔCT might rescue the mineralization defect in Rad-/- 

calvarial cells.  

Does cytoskeletal reorganization contribute to Rad’s role in bone? 

While work in our laboratory has focused on the function of Rad in VDCC 

regulation [12, 104], the other key physiological role that has been documented 

for Rad is in regulation of cytoskeletal remodeling through regulation of Rho/Rho 

kinase signaling [19] as described in Chapter 1.  Interestingly, Rho signaling 

plays a critical role in osteoclast-mediated bone resorption [261].  During bone 

resorption, osteoclasts undergo ordered cycles of migration and attachment that 

depend upon podosome assembly and disassembly [261].  Podosomes have an 

actin-rich core that is highly sensitive to actin regulatory pathways, including Rho 

signaling, and these structures cluster in a ring around the cell periphery [262].  
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Constitutively active Rho stimulates podosome formation, osteoclast motility, and 

bone resorption, while dominant negative Rho prevents these processes [263].   

Hence, given the role of Rad as an inhibitor of Rho/ROK signaling [19], one 

hypothesis may be that loss of Rad results in enhanced Rho signaling to promote 

osteoclast-mediated resorption and lower bone density.  While such a 

mechanism would fail to explain the decrease in bone formation observed in  

Rad-/- mice, it may be a contributing factor to the overall low bone density 

phenotype.  In Chapter 5, we demonstrated that Rad deletion resulted in 

enhanced osteoclast differentiation in vitro that did not correlate to an increase in 

osteoclast surface area in vivo.  However, future studies are necessary to probe 

the effects of Rad loss on osteoclast activity through either serum or urine 

ELISAs of bone resorption markers.  If these markers are elevated in Rad-/- mice, 

altered Rho/ROK signaling should be considered as a likely contributor.  Finally, 

Rho signaling has been implicated in the cytoskeletal rearrangements necessary 

for mononuclear precursors to migrate and fuse to form multinucleated 

osteoclasts during late stages of osteoclast differentiation [264], so enhanced 

Rho signaling in Rad-/- mononuclear cells could contribute to the increase in 

osteoclast differentiation observed in vitro. 

Does the interaction with Enigma contribute to Rad’s role in bone? 

As outlined in the introduction to Chapter 5, the novel Rad-interacting protein 

Enigma/LIM mineralization protein (LMP) (Chapter 3) has an established role in 

osteoblast differentiation and bone homeostasis that may provide insight into the 
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role of Rad in these processes.  Multiple studies have found that overexpression 

of Enigma/LMP enhances bone formation in vitro and in vivo [223-229]. Notably, 

there are three endogenous splice isoforms of Enigma/LMP [170].  The full-

length, 457 amino acid Enigma-1/LMP-1 protein has a PDZ domain and 3 LIM 

domains [170] and was utilized for the studies in this dissertation.  Enigma-

2/LMP-2 is a 423 amino acid splice variant whose PDZ and LIM domains are 

intact but whose overexpression fails to induce bone formation [222].  

Interestingly, Enigma-3/LMP-3 has only 153 amino acids and lacks all three LIM 

domains, yet it retains the property of bone formation upon overexpression [222].  

Hence, the LIM domains of Enigma/LMP are dispensable for its stimulation of 

bone formation [222].  Since our analyses in Figure 3.2 suggested that the LIM 

domains are required for Rad association with Enigma/LMP, it is possible that 

overexpression of the truncated Enigma-3/LMP-3 protein induces efficient bone 

formation through loss of regulation of Rad turnover.  Studies of these three 

splice isoforms has indicated a 36 amino acid region within the Enigma/LMP 

protein that is necessary for the induction of bone formation [222].  We could ask 

whether the native splice isoform Enigma-2/LMP-2, which is unable to bind to 

Smurf1, also fails to bind to Rad.  Our initial hypothesis is that overexpression of 

full length Enigma (LMP-1) induces bone formation through its ability to bind to 

both endogenous Rad and Smurf1, thereby sequestering these proteins from one 

another on separate Enigma scaffolds upon gross Enigma overexpression 

(Figure 6.3A).   Likewise, overexpression of truncated Enigma lacking the LIM 

domains (LMP-3) may induce bone formation through binding to Smurf1 but not 
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to Rad, again effectively reducing the efficiency of Rad ubiquitination and 

turnover (Figure 6.3C).  In contrast, overexpression of LMP-2 may fail to induce 

bone formation if it cannot bind to either Rad or Smurf1; hence, binding of Rad 

and Smurf1 to endogenous Enigma scaffolds would be unperturbed and Rad 

turnover would not be altered (Figure 6.3B). 

Similarly, the Smurf1 E3 ubiquitin ligase that binds to Enigma and that we have 

demonstrated to regulate Rad ubiquitination and turnover in vitro (Chapter 3) 

plays a critical role in the regulation of osteogenesis through altering BMP/Smad 

signaling [187, 190].  Indeed, the potential contribution of Smurf1-mediated 

regulation of Rad turnover to the Rad-/- low bone density phenotype we have 

observed in Chapter 5 is highlighted by the observation in Figure 5.10 that 

adipogenesis of WT calvarial cells results in a profound decrease in Rad protein 

levels.  Further work is necessary to determine whether this decrease in Rad 

expression is at the transcriptional level, the post-transcriptional level, or a 

combination of the two.  To address this issue, WT calvarial cells could be 

cultured in growth media or adipogenic media as described, followed by RNA 

isolation and qRT-PCR analysis to ask whether Rad mRNA levels are altered in 

this context.  If adipogenic differentiation does not reduce Rad mRNA levels, then 

the decrease in Rad protein levels that we have observed is likely mediated 

through a post-transcriptional mechanism. Administration of proteasome inhibitor 

to WT calvarial cells in combination with the adipogenic media would aid in 

determining whether the decrease in Rad levels during adipogenesis is due to 

increased protein turnover. If proteasome inhibition would render protection of 
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Rad levels during adipogenesis, then we would conclude that Rad is likely 

subject to ubiquitination and proteasomal degradation during adipogenic 

differentiation.  In such a case, the potential role of Smurf1 in regulating Rad 

protein ubiquitination and turnover during the physiological process of 

adipogenesis is an intriguing idea that could be tested by knocking down Smurf1 

expression in these cells and asking whether Rad protein levels are reduced to 

the same extent during adipogenesis.  Similarly, to test the role of Enigma as a 

scaffold that facilitates this process, calvarial osteoblasts should be isolated from 

LMP-/- mice and treated with adipogenic media to ask whether the same decline 

in Rad protein expression is observed.   

Does ββ-adrenergic signaling contribute to Rad’s role in bone? 

The β-adrenergic signaling pathway also has established effects on bone 

homeostasis [265].  Both osteoblasts and osteoclasts express type 2 β-

adrenergic receptors (β2ARs) [266, 267].  Studies in rodents suggest that β-

adrenergic activation results in an increase in osteoclastogenesis and bone 

resorption [267-270], as well as a decrease in osteoblast proliferation [271, 272].  

Conversely, global deletion of the three known β-adrenergic receptor subtypes 

results in an increase in bone mass [273], and β-adrenergic antagonism reduces 

bone loss following ovariectomy [274, 275], the chronic mild stress model of 

depression [276], and mechanical unloading [277].  In humans, some studies 

have correlated βAR-blocker treatment with increased bone density and a 

reduction in the risk of bone fractures [278-280], although not all studies have 
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yielded consistent results making overall conclusions about the effectiveness of 

beta-blockers difficult [281, 282].  Notably, patients with asthma or chronic 

obstructive pulmonary disease (COPD) using βAR agonists had an increased 

risk of bone fracture [283], and a study of pre- and post-menopausal women 

found an inverse correlation between sympathetic activity and bone density 

[284].  These studies collectively suggest that β-adrenergic signaling modulates 

bone homeostasis and raises the question of the role that proteins downstream 

of the β-adrenergic receptor may play in regulating bone formation and 

resorption.  Administration of β-adrenergic agonists or antagonists to WT and 

Rad-/- mice followed by assessment of bone density may provide insight into the 

potential role that this signaling pathway may have in generating the Rad-/- low 

bone density phenotype we have observed. Measurement of circulating 

catecholamine levels in WT and Rad-/- mice by serum ELISA would also provide 

insights into whether sympathetic drive may contribute to the observed 

phenotype.  Finally, the floxed Rad mouse that we have recently generated could 

be used to knock out Rad expression specifically in bone cells to determine 

whether the low bone density phenotype is intact; conversely, if the sympathetic 

nervous system is playing a critical role in generating the phenotype, then 

deletion of Rad specifically in osteoblasts, osteoclasts, adipocytes, or even MSC 

progenitors would be expected to have no effect on bone mineral density.  
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Parathyroid hormone signaling and matrix Gla protein 

While β-adrenergic signaling is one candidate, the upstream pathways involved 

in regulating Rad signaling in bone still require elucidation.  Future studies should 

also aim at determining whether signaling pathways known to direct bone 

marrow mesenchymal cell fate, such as parathyroid hormone (PTH), bone 

morphogenetic protein (BMP), and Wnt signaling, impact Rad expression levels 

and/or Rad function.  Notably, the parathyroid receptor (PTH1R), like the β-

adrenergic receptor, is a G-protein coupled receptor (GPCR) that signals through 

PKA [285].  PTH has complex effects in bone depending on the dose and the 

frequency of administration.  Namely, continuous PTH treatment has a catabolic 

effect in bone through decreased osteoblast activity and increased bone 

resorption by osteoclasts, while intermittent PTH treatment results in increased 

bone formation [286].  PTH been reported to enhance osteoblast differentiation, 

potentially through enhanced BMP signaling [287, 288], and overexpression of 

PTH1R results in an increase in bone formation and a decrease in BMAT [289, 

290].  More recently, Fan et al. has demonstrated that MSC-specific deletion of 

PTH1R results in a phenotype of increased BMAT and decreased bone density 

[291] that bears a resemblance to the Rad-/- bone phenotype described in 

Chapter 5.  PTH administration to WT and Rad-/- calvarial cells, followed by 

assessment of mineralization, alkaline phosphatase activity, and adipogenesis, 

would provide a reasonable pilot study for the role of Rad in PTH-mediated 

osteogenesis.  In addition, serum PTH levels in WT and Rad-/- mice could be 

assessed, as could plasma membrane expression of PTH1R in WT and Rad-/- 
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calvarial cells.  Furthermore, if Rad is required for the increase in osteogenesis 

downstream of PTH signaling, then overexpression of PTH1R in Rad-/- calvarial 

cells would be expected to fail to induce mineralization compared to WT.   

As mentioned above, continuous PTH treatment has an opposing, catabolic 

effect on bone.  Underscoring the potential relevance of altered PTH signaling to 

the Rad-/- bone phenotype, PTH treatment of the osteoblast-like cell line 

MC3T3E1 inhibited mineralization through induction of matrix Gla protein (MGP) 

expression [235, 236].  MGP is a 15-kDa secreted protein that was initially 

isolated and identified from demineralized bovine bone and whose name is 

derived from the presence of several mineral-binding γ-carboxyglutamic acid 

residues within the protein [234].  These modified amino acids, also present in 

osteocalcin or bone Gla protein, are generated via the action of a vitamin K-

dependent γ-carboxylase enzyme on glutamic acid residues [292-294].  These 

Gla residues can bind to calcium and hydroxyapatite [292-294], but the precise 

mechanism by which MGP blocks mineralization remains unclear.  We observed 

significant up regulation of MGP in Rad-/- calvarial osteoblasts at base line and in 

WT calvarial osteoblasts following adipogenic differentiation in Figures 5.8 and 

5.11, suggesting that the role of Rad in PTH signaling should be further explored 

as expressed above.  It would be worthwhile to ask whether PTH stimulation 

might alter Rad phosphorylation and/or ubiquitination and turnover in HEK293 

cells and in primary calvarial osteoblasts.  To probe the importance of the 

elevation in MGP expression to the Rad-/- phenotype of lower mineralization and 

spontaneous adipogenesis in calvarial osteoblast cultures, future studies should 
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aim at knocking down MGP expression in these primary cells to determine 

whether normalization of MGP expression to WT levels may rescue the observed 

phenotype.  Conversely, we could ask whether elevated MGP expression is 

sufficient to drive the Rad-/- phenotype by overexpressing MGP in WT calvarial 

cells and asking whether adipogenesis is enhanced at the expense of 

mineralization. 

Finally, the increase in the expression of MGP, an extracellular matrix protein, in 

Rad-/- calvarial cells is also intriguing in light of recent work suggesting that Rad 

deficiency can lead to increased cardiac fibrosis [41], which arises from excess 

deposition of extracellular matrix (ECM) in the heart. Specifically, loss of Rad 

enhanced C/EBP-δ activity and resulted in an increase in the expression of the 

target gene connective tissue growth factor and an increase in ECM deposition 

[41].  Taken together with our data, this study suggests that one role for Rad 

beyond calcium channel control may be regulation of the ECM.  Indeed, altered 

ECM deposition may explain the unique mechanical phenotype of weaker but 

more elastic bones in Rad-/- mice (Figure 5.3 and Table 5.3).   
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Does Rad regulate transcription? 

Our data that Rad associates with R-Smad proteins (Figure 3.7) and C/EBP 

proteins (Figure 5.14), coupled with the reports that Rad associates with and 

regulates the transcriptional activity of the RelA subunit of NF-kB [40] and 

C/EBP-δ [41] and that Rad resides in the nucleus in certain settings [16, 40, 117], 

suggest that the function of Rad in transcriptional regulation should be further 

explored.   

One intriguing hypothesis that could be tested is that Rad may bind to and 

sequester C/EBP proteins in the cytosol.  In such a model, loss of Rad would 

increase basal C/EBP activity to promote adipogenesis.  Billiard et al. 

demonstrated stimulus-dependent translocation of C/EBP-δ from the cytosol to 

the nucleus in osteoblasts [295].  Notably, this nuclear shuttling of C/EBP-δ 

required PKA activity, but C/EBP-δ was not itself a substrate for PKA [295].  

Conversely, early in vitro kinase assays to characterize Rad phosphorylation 

indicated direct phosphorylation of Rad by PKA at an unknown site [49], and our 

studies in Chapter 4 of this dissertation indicate phosphorylation of Rad at serine-

39 downstream of PKA signaling.  Hence, we propose the idea that Rad may 

sequester C/EBP-δ in the cytoplasm, but that PKA activation may result in Rad 

phosphorylation and disassociation from C/EBP proteins, releasing C/EBPs to 

enter the nucleus and regulate target gene expression. Alternatively, 

phosphorylated Rad may remain associated with C/EBP proteins and may enter 

the nucleus along with C/EBPs, given the presence of NLS sequences within the 
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Rad protein and the reports in the literature of Rad nuclear shuttling [11, 16, 40, 

117].  A first step in testing this model would be to determine whether the 

interaction between Rad and C/EBP-δ is direct or indirect. Next, the co-

immunoprecipitation studies of Rad and C/EBP-δ in HEK293 cells (Figure 5.14) 

should be repeated using a stimulus such as isoproterenol or forskolin to activate 

PKA activity and induce Rad phosphorylation. If PKA-dependent phosphorylation 

of Rad triggers disassociation from C/EBP-δ, then we would expect these stimuli 

to reduce the co-immunoprecipitation of C/EBP-δ  with Rad. Similarly, co-

immunoprecipitation and/or binding of Rad WT with C/EBP-δ could be compared 

to that of phosphodeficient and phosphomimetic Rad mutants at S39 as well as 

other serine residues to establish the effects of Rad phosphorylation on C/EBP 

association as well as which phosphorylation sites are pertinent.  To determine 

the relevance of C/EBP binding in vivo, we could probe for an interaction 

between endogenous Rad and C/EBP isoforms in calvarial cells and determine 

whether adipogenic treatment might abrogate this interaction to promote C/EBP-

dependent gene expression.  Finally, to determine the effects of Rad on C/EBP 

transcriptional activity, chromatin immunoprecipitation experiments could be 

performed to determine the promoter occupancy of C/EBP in WT versus Rad-/- 

calvarial cells, and C/EBP luciferase reporter assays could be utilized as well.  

We could also use the newly generated mouse line with Flag-tagged 

endogenous Rad to ask whether Rad is present at the promoter regions of 

C/EBP-regulated genes as well as to probe the subcellular localization of Rad 

and C/EBP-δ basally and in response to stimuli.  
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Clarifying the Rad-/- low bone density phenotype using conditional Rad-

knockout mice 

While the Rad-/- phenotype of low bone density and high bone marrow adiposity 

is quite striking, the deletion of Rad globally in these mice makes it difficult to 

draw conclusions about the underlying mechanism that drives the phenotype.  

Moreover, our observations that Rad deletion enhances osteoclast differentiation 

(Figure 5.4) and also decreases osteoblast mineralization in vitro (Figure 5.7) 

suggests that changes in both osteoblast and osteoclast activities may contribute 

to the low bone mass in these mice.  We have recently used CRISPR/Cas9 to 

insert loxP sites around exons 2 and 3 of the RRAD gene to generate conditional 

Rad-knockout mice that can be combined with tamoxifen-inducible Cre 

recombinase expression globally or tissue specifically.  These conditional Rad-

knockout mice will allow selective loss of Rad in distinct cell types or lineages to 

probe the contributions of these cell types to the phenotype we have observed.  

For instance, Rad could be selectively deleted in osteoblasts by expressing Cre 

recombinase under the control of the type I collagen promoter (Col1a1-Cre) 

[296], while selective loss of Rad in osteoclasts could be achieved using tartrate-

resistant acid phosphatase- or cathepsin K-driven Cre recombinase expression 

(TRAP-Cre or Ctsk-Cre, respectively) [297]. These mice would facilitate 

interrogation of the individual roles of osteoblasts and osteoclasts in generating 

the phenotype that we observe in the global Rad-/- mouse.  Specifically, we could 

ask whether deletion of Rad in osteoblasts or osteoclasts alone is sufficient to 

recapitulate the low bone mass phenotype that we report in Chapter 5 to 
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determine whether the phenotype results from a decrease in bone formation, an 

increase in bone resorption, or a combination of the two. 

Additionally, the conditional Rad-knockout mice could also be utilized in order to 

characterize the impact of Rad loss on osteogenic and adipogenic differentiation 

of mesenchymal stem cells (MSCs).  Deletion of Rad in MSCs can be achieved 

by crossing the floxed Rad mice with Prx1-Cre animals [298].  We would then 

assess the bone density and bone marrow adiposity of these animals, with the 

expectation that if Rad loss indeed alters the differentiation potential of MSCs to 

favor adipogenesis, then we should observe a similar phenotype of low bone 

mass and high marrow adiposity as with global Rad deletion.  We could also 

isolate MSCs from these animals and assess osteogenic versus adipogenic 

differentiation potential in vitro.  Furthermore, MSC-specific Rad deletion could 

be compared to osteoblast-specific ablation of Rad expression to distinguish 

between the possible effects of Rad on osteoblast differentiation versus mature 

osteoblast function.  Finally, tamoxifen injection of mice at various ages and 

stages in development to induce Cre expression and thus turn off Rad 

expression would allow us to look at the role of Rad in bone development as well 

as in aging. 
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Conclusions 

In this dissertation, we have presented a novel interaction between Rad and 

Enigma that may regulate Rad ubiquitination and turnover, we have 

characterized Rad phosphorylation and altered protein interactions downstream 

of β-adrenergic signaling, and we have demonstrated that Rad deletion in mice 

perturbs bone homeostasis and the bone-fat balance.  Given that Rad, unlike 

most Ras-related small GTPases, has not been shown to be controlled by 

classical GTP/GDP cycling, other mechanisms such as phosphorylation, 

ubiquitination, and alterations in Rad expression levels may represent key means 

of regulation. 
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Figure 6.1: Models to integrate Rad phosphorylation and ubiquitination 

Panel A) In the first model, Rad phosphorylation at Ser39 or other residues may 

facilitate Smurf1-mediated ubiquitination of Rad. 

Panel B) In the second model, Rad phosphorylation at Ser39 (and Ser301), 

which is known to promote 14-3-3 binding, may impede Smurf1-mediated 

ubiquitination of Rad. 
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Figure 6.2: Potential contributors to the Rad-/- phenotype of low bone 

density and high bone marrow adiposity 

A summary of many of the potential mechanisms that may contribute to the 

phenotype of low bone density and high bone marrow adiposity that we have 

reported in Rad-/- mice indicates that more work is needed to understand the role 

of Rad in regulating the bone-fat balance. 
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Figure 6.3: Proposed model for the role of Rad in the osteogenesis induced 

by overexpression of various LMP splice isoforms 

Panel A) Enigma/LMP-1 overexpression induces mineralization.  We propose 

that overexpression of LMP-1 may allow sequestration of Rad and Smurf1 on 

distinct LMP scaffolds to reduce the efficiency of Rad ubiquitination and turnover. 

Panel B) Enigma/LMP-2 overexpression does not induce mineralization and does 

not bind to Smurf1.  We propose that if LMP-2 also fails to bind to Rad, then Rad 

turnover may not be impacted by overexpression of this isoform, as Rad and 

Smurf1 would remain correctly localized to endogenous Enigma/LMP. 

Panel C) Enigma/LMP-3 overexpression induces mineralization, despite the 

absence of LIM domains.  We propose that overexpression of LMP-3 results in 

loss of regulation of Rad turnover through binding to Smurf1 but not Rad, 

sequestering the E3 ubiquitin ligase away from its substrate Rad.  
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Appendix 

List of Abbreviations 

 

AID: CaVα interaction domain 

ALP: Alkaline phosphatase 

AM: Adipogenic medium 

Ap.Dens: Apparent density 

AR: Adrenergic receptor 

ARS: Alizarin Red S 

ATP: Adenosine triphosphate 

BCIP: 5-bromo-4-chloro-3’-indolyphosphate 

BFR/BS: Bone formation rate/bone surface 

BMAT: Bone marrow adipose tissue 

BMP: Bone morphogenetic protein 

BMPRI/II: Bone morphogenetic protein receptor I/II 

BV: Bone volume 

BV/TV: Bone volume fraction 

CaMKII: Ca2+/Calmodulin-dependent protein kinase II 

cAMP: Cyclic adenosine monophosphate 

cDNA: Complementary deoxyribonucleic acid 

C/EBP: CCAAT-enhancer binding protein 

Co-IP: Co-immunoprecipitation 

Conn.D: Connectivity density 
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Co-Smad: Common partner Smad 

CRISPR: Clustered regularly interspaced short palindromic repeats 

Ct.Ar: Cortical bone area 

Ct.Ar/Tt.Ar: Cortical area fraction 

CTGF: Connective tissue growth factor 

Ct.Th: Cortical thickness 

DA: Degree of anisotropy 

DAG: Diacylglycerol 

DEPC: Diethyl pyrocarbonate 

dLS: Double labeled surface 

DMEM: Dulbecco’s Modified Eagle Medium 

DNA: Deoxyribonucleic acid 

DNase: Deoxyribonuclease 

ECM: Extracellular matrix 

EDTA: Ethylene diamine tetraacetic acid 

EGTA: Ethylene glycol tetraacetic acid 

ELISA: Enzyme-linked immunosorbent assay 

ENH: Enigma homolog 

EV: Empty vector 

FBS: Fetal bovine serum 

GAP: GTPase activating protein 

Gapdh: Glyceraldehyde 3-phosphate dehydrogenase 

GDP: Guanosine diphosphate 
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GEF: Guanine exchange factor 

Gem: Gene expressed in mitogen-stimulated T-cells 

GM: Growth medium 

GFP: Green fluorescent protein 

Gmip: Gem-interacting protein 

GPCR: G-protein coupled receptor 

GK: Guanylate kinase 

GSK-3: Glycogen synthase kinase-3 

GST: Glutathione S-transferase 

GTP: Guanosine triphosphate 

HA: Hemagglutinin 

HEK: Human embryonic kidney 

HTN: Hypertension 

HVA: High voltage-activated 

ICa: Calcium current 

IP3: Inositol 1,4,5-trisphosphate 

ISO: Isoproterenol 

kD: Kilodaltons 

Kir: Tyrosine kinase-inducible Ras-like 

LIM: Lin11, Isl-1, Mec-3 

LMP: LIM mineralization protein 

LVA: Low voltage-activated 

Ma.Ar: Medullary area 
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MAPK: Mitogen-activated protein kinase 

MAR: Mineral apposition rate 

Mat.Dens: Material density 

M-CSF: Macrophage colony-stimulating factor 

µCT: Microcomputed tomography 

MEM: Modified Eagle Medium 

MGP: Matrix Gla protein 

MNC: Multinucleated cells 

MRI: Magnetic resonance imaging 

mRNA: Messenger RNA 

MS/BS: Mineralizing surface/bone surface 

MSC: Mesenchymal stem cell 

NBT: Nitro blue tetrazolium 

NFκB: Nuclear factor kappa-light-chain-enhancer of activated B cells 

NLS: Nuclear localization signal 

NMDA: N-methyl D-aspartate receptor 

noLS: Unlabeled surface 

Oc.S/BS: Osteoclast surface/bone surface 

OD: Optical density 

OM: Osteogenic medium 

ORO: Oil Red O 

Osx: Osterix 

PBS: Phosphate buffered saline 
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PCR: Polymerase chain reaction 

PDZ: PSD95, Dlg1, zo-1 

PIP: Phosphatidyl inositol phospholipids 

PIP2: Phosphatidylinositol 4,5-bisphosphate 

PKA: Protein kinase A 

PKC: Protein kinase C 

PKD1: Protein kinase D1 

PMA: Phorbol 12-myristate 13-acetate 

PTH: Parathyroid hormone 

PTH1R: Parathyroid hormone receptor 

Rad: Ras associated with diabetes 

RadpS39: Rad phospho-serine-39 

RANKL: Receptor activator of nuclear factor kappa-B ligand 

Rem(2): Rad- and Gem-like (2) 

RFP: Red fluorescent protein 

RGK: Rad, Rem, Rem2, Gem/Kir 

RNA: Ribonucleic acid 

ROK: Rho kinase 

R-Smad: Receptor-associated Smad 

RT-PCR: Reverse transcriptase-polymerase chain reaction 

Runx2: Runt-related transcription factor 2 

SDS-PAGE: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

SEM: Standard error of the mean 
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SH3: Src homology 3 

sLS: Single labeled surface 

SMI: Structural model index 

Smurf: Smad ubiquitin regulatory factor 

SR: Sarcoplasmic reticulum 

Tb.N: Trabecular number 

Tb.Sp: Trabecular spacing 

Tb.Th: Trabecular thickness 

TGF-β: Transforming growth factor-β 

TRAP: Tartrate-resistant acid phosphatase 

Tt.Ar: Total cross-sectional area 

TV: Total volume 

Ub: Ubiquitin 

VDCC: Voltage-dependent calcium channel 

VKM: Von Kossa/MacNeal’s stain 

WB: Western blot 

WT: Wildtype 
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