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Algebraic & Geometric Topology 17 (2017) 3259–3339

Equivariant iterated loop space theory
and permutative G–categories

BERTRAND J GUILLOU

J PETER MAY

We set up operadic foundations for equivariant iterated loop space theory. We start by
building up from a discussion of the approximation theorem and recognition principle
for V–fold loop G–spaces to several avatars of a recognition principle for infinite
loop G–spaces. We then explain what genuine permutative G–categories are and,
more generally, what E1–G–categories are, giving examples showing how they arise.
As an application, we prove the equivariant Barratt–Priddy–Quillen theorem as a
statement about genuine G–spectra and use it to give a new, categorical proof of the
tom Dieck splitting theorem for suspension G–spectra. Other examples are geared
towards equivariant algebraic K–theory.

55P42, 55P47, 55P48, 55P91; 18D10, 18D50

Introduction

Let G be a finite group. We will develop equivariant infinite loop space theory in a
series of papers. In this introductory one, we focus on the operadic equivariant infinite
loop space machine. This is the most topologically grounded machine, as we illustrate
by first focusing on its relationship to V –fold deloopings for G–representations V .
Genuine permutative G–categories and, more generally, E1–G–categories are also
defined operadically. They provide the simplest categorical input needed to construct
genuine G–spectra from categorical input.

For background, naive G–spectra are just spectra with actions by G. They have
their uses, but they are not adequate for serious work in equivariant stable homotopy
theory. The naive suspension G–spectra of spheres Sn with trivial G–action are
invertible in the naive equivariant stable homotopy category. In contrast, for all real
orthogonal G–representations V , the genuine suspension G–spectra of G–spheres SV

are invertible in the genuine equivariant stable homotopy category, where SV is the
one-point compactification of V . Naive G–spectra represent Z–graded cohomology
theories, whereas genuine G–spectra represent cohomology theories graded on the real
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3260 Bertrand J Guillou and J Peter May

representation ring RO.G/. The RO.G/–grading is essential for Poincaré duality and,
surprisingly, for many nonequivariant applications.

The zeroth space E0 D�
1E of a naive �–G–spectrum is an infinite loop G–space

in the sense that it is equivalent to an n–fold loop G–space �nEn for each n � 0.
The zeroth space E0 of a genuine �–G–spectrum E is an infinite loop G–space
in the sense that it is equivalent to a V –fold loop G–space �V E.V / for all real
representations V . The essential point of equivariant infinite loop space theory is
to construct G–spectra from space or category level data. Such a result is called a
recognition principle since it allows us to recognize infinite loop G–spaces when we
see them. A functor that constructs G–spectra from G–space or G–category level
input is called an equivariant infinite loop space machine.

As we shall see, a recognition principle for naive G–spectra is obtained simply by
letting G act in the obvious way on the input data familiar from the nonequivariant
theory. One of our main interests is to construct and apply an equivariant infinite loop
space machine that constructs genuine G–spectra from categorical input.

A permutative category is a symmetric strictly associative and unital monoidal category,
and any symmetric monoidal category is equivalent to a permutative category. The
classifying space of a permutative category A is rarely an infinite loop space, but
infinite loop space theory constructs an �–spectrum KA whose zeroth space is a
group completion of the classifying space BA . A naive permutative G–category
is a permutative category that is a G–category with equivariant structure data. It
is a straightforward adaptation of the nonequivariant theory to construct naive G–
spectra KA from naive permutative G–categories A in such a way that K0A is a
group completion of BA , meaning that .K0A /H is a nonequivariant group completion
of B.A H / for all subgroups H of G.

In this paper, we explain what genuine permutative G–categories are and what E1–G–
categories are, and we explain how to construct a genuine G–spectrum KGA from a
genuine permutative G–category A or, more generally, from an E1–G–category A .
A genuine G–spectrum has an underlying naive G–spectrum, and the underlying
naive G–spectrum of KGA will be KA . Therefore, we still have the crucial group
completion property relating BA to the zeroth G–space of KGA .

We use this theory to show how to construct suspension G–spectra from categorical
data, giving a new equivariant version of the classical Barratt–Priddy–Quillen (BPQ)
theorem for the construction of the sphere spectrum from symmetric groups. In Guillou,
May, Merling and Osorno [13], we shall use this version of the BPQ theorem as input
to a proof of the results from equivariant infinite loop space theory that were promised
in Guillou and May [10], where we described the category of G–spectra as an easily
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understood category of spectral presheaves. Here we use this version of the BPQ
theorem to give a new categorical proof of the tom Dieck splitting theorem for the
fixed-point spectra of suspension G–spectra. The new proof is simpler and gives more
precise information than the classical proof by induction up orbit types.

A complementary interest is to understand the geometry of V –fold loop G–spaces.
As we shall explain in this paper, these interests lead to quite different perspectives.
They are manifested in point-set level distinctions that would be invisible to a more
abstract approach. One way of pinpointing these differences is to emphasize the
distinction between the role played by EV –operads for representations V , which
are the equivariant generalizations of En–operads, and the role played by (genuine)
E1–operads of G–spaces.

An EV –space is a G–space with an action by an EV –operad. We here develop a
machine that constructs V –fold loop G–spaces from EV –spaces. For future perspective,
we envision the possibility of an equivariant version of factorization homology in which
EV –operads will govern local structure of G–manifolds in analogy with the role played
by En–operads in the existing nonequivariant theory. For such a theory, E1–operads
would be essentially irrelevant.

In contrast, for infinite loop space theory, EV –operads serve merely as scaffolding
used to build a machine that constructs genuine G–spectra from E1–G–spaces, which
are spaces with an action by some E1–operad. The classifying G–spaces of genuine
permutative G–categories are examples of E1–G–spaces with actions by a particular
E1–operad PG , but E1–G–spaces with actions by quite different E1–operads
abound. We concentrate on such an operadic machine in this paper. The machine we
concentrate on in the sequels (with Merling and Osorno [31; 12; 13]) makes no use
of EV –operads and does not recognize V –fold loop G–spaces, but it allows a level
of categorical power and multiplicative control that is unobtainable with the machine
built here.

This paper offers a number of variant perspectives on the topics it studies. We give
recognition principles for V –fold loop spaces (Theorem 1.14), for orthogonal G–spectra
(Theorem 1.25 and Definition 2.7) and, preserving space level structure invisible in
orthogonal G–spectra, for Lewis–May G–spectra (Definition 2.11 and Theorem 2.13).
The geometric input data for Theorem 1.14 consists of algebras over the little disks or
Steiner operad, DV or KV . For Theorem 1.25, it consists of compatible algebras over
the KV for all finite-dimensional V .

In both Definitions 2.7 and 2.11, the input data consists of algebras over an E1–operad
of G–spaces. These algebras may come by applying the classifying-space functor B

to algebras over an E1–operad of G–categories. The orthogonal spectrum machine

Algebraic & Geometric Topology, Volume 17 (2017)
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and the Lewis–May spectrum machine are shown to be equivalent by comparing them
both to a machine landing in the SG–modules of Elmendorf, Kriz, Mandell and May
(EKMM) [7] and Mandell and May [19]. In effect, the machines landing in Lewis–May
G–spectra and in SG–modules provide highly structured fibrant approximations of the
machine landing in orthogonal G–spectra. In retrospect, such fibrant approximation is
central to nonequivariant calculational understanding, and one can hope that the same
will eventually prove true equivariantly.

The variants have alternative and contradictory good features, which become particularly
apparent and relevant when specialized to free E1–algebras, where they are all viewed
as giving variants of the equivariant BPQ theorem. Thinking unstably and geometrically,
Theorem 1.21 shows how the machine recognizes V –fold suspensions †V X and shows
that the recognition is precisely compatible with the evident G–homeomorphisms
†V X ^†W Y Š†V˚W Y . Thinking stably and geometrically, Theorems 1.31 and 2.18
show how the machine recognizes orthogonal or Lewis–May suspension G–spectra
†1

G
X . In both cases, the recognition is precisely compatible with the standard G–

isomorphisms †1
G

X ^†1
G

Y Š†1
G
.X ^Y /. However, the meaning of †1

G
is quite

different in the two cases. For orthogonal G–spectra, †1
G

X is cofibrant if G is
cofibrant as a G–space, but it is never fibrant. For Lewis–May or EKMM G–spectra,
†1

G
X is always fibrant and often bifibrant.

Theorems 6.1 and 9.9 show how the machine recognizes suspension G–spectra from
two variant categorical inputs. Here we do not have precise compatibility with smash
products, a failure that will be rectified with a hefty dose of 2–category theory in the
sequel [13], but instead we have structure that allows our new proof of the tom Dieck
splitting theorem.

As already mentioned, there are three sequels to this paper. The first [31] develops a
new version of the Segal–Shimakawa infinite loop space machine and proves among
other things that it is equivalent both to the original Segal–Shimakawa machine and to
the machine landing in orthogonal G–spectra that we develop here. That requires a
generalization of the present machine from operads to categories of operators, about
which we say nothing here. The second [12] gives a multiplicative elaboration of the
Segal–Shimakawa machine, starting from space level input. The third [13] gives a
more categorically sophisticated machine. It starts with more general categorical input
than we deal with here, and it gives new information even nonequivariantly.

Outline We begin with a machine for recognizing iterated equivariant loop spaces
in Section 1. All versions of our iterated loop space machine are based on use of
the Steiner operads, whose equivariant versions have not previously appeared. We
define them and compare them to the little disks operads in Section 1.1. All versions

Algebraic & Geometric Topology, Volume 17 (2017)
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are also based on an approximation theorem, which is explained in Section 1.2. We
use a strengthened version due to Rourke and Sanderson [37], and that allows us to
obtain slightly stronger versions of the recognition principle than might be expected.
The compatibility with smash products of the geometric versions of the recognition
principle is based on pairings between Steiner operads that are defined in Section 1.4;
the relevant definition of a pairing is recalled in Appendix A. The promised variants of
the recognition principle starting from space level input data are given in Sections 1.3,
1.5, 2.2, and 2.3.

Section 2 gives our machines for recognizing infinite loop G–spaces. After recalling
the notion of E1–G–operad and giving some examples in Section 2.1, the orthogonal
and Lewis–May machines are defined and compared in Sections 2.2–2.4. Examples
of E1–G–spaces are given in Section 2.5. General properties that must hold for any
equivariant infinite loop space machine are described in Section 2.6. A recognition
principle for naive G–spectra, with G not necessarily finite, is given in Section 2.7.
An interesting detail there shows how to use the recognition principle to construct
change of universe functors on the space level. The proof uses a double bar construction
described in Appendix B.

The recognition principle starting from categorical input is given in Section 4.5. It is
preceded by preliminaries about equivariant universal bundles and equivariant E1–
operads in Section 3 and by a discussion of operadic definitions of naive and genuine
permutative G–categories in Section 4. In the brief and parenthetical Section 4.4, we
point out how these ideas and our prequel [11] with Merling specialize to give a starting
point for equivariant algebraic K–theory; see also Dress and Kuku [6], Fiedorowicz,
Hauschild and May [9], Kuku [17] and Merling [33]. We give an alternative and
equivalent starting point in the case of G–rings R in Section 8.2.

We give a precise description of the G–fixed E1–categories of free PG–categories
in Section 5. This is a precursor of our first categorical version of the BPQ theorem,
which we prove in Section 6.1, and of the tom Dieck splitting theorem for suspension
G–spectra, which we reprove in Section 6.2.

Changing focus, in Sections 7 and 8 we give three interrelated examples of E1–G–
operads, denoted by VG , V �

G
, and WG , and give examples of their algebras. This

approach to examples is more intuitive than the approach based on genuine permutative
G–categories, and it has some technical advantages. It is new and illuminating even
nonequivariantly. It gives a more intuitive categorical hold on the BPQ theorem than
does the treatment starting from genuine permutative G–categories, as we explain in
Section 9.3. It also gives a new starting point for multiplicative infinite loop space
theory, both equivariantly and nonequivariantly, but that is work in progress.

Algebraic & Geometric Topology, Volume 17 (2017)
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Notational preliminaries A dichotomy between Hom objects with G–actions and
Hom objects of equivariant morphisms, often denoted using a G in front, is omnipresent.
We start with an underlying category V . A G–object X in V can be defined to be
a group homomorphism G! Aut X. We have the category VG of G–objects in V

and all morphisms in V between them, with G acting by conjugation. We denote
the morphism objects of VG simply by V .X;Y /.1 We also have the category GV of
G–objects in V and G–maps in V . Since objects are fixed by G, we see that GV is in
fact the G–fixed category .VG/

G, although we shall not use that notation. Thus the
Hom object GV .X;Y / in V of G–morphisms between G–objects X and Y is the
fixed-point object V .X;Y /G.

One frequently used choice of V is U , the category of unbased (compactly generated)
spaces. We let T denote the category of based spaces. We assume once and for all
that the basepoints � of all given based G–spaces X (or spaces X when G D e ) are
nondegenerate. This means that � ! X is a G–cofibration (satisfies the G–HEP).
It follows that �!X H is a cofibration for all H �G.

By an equivalence f W X ! Y of G–spaces, we understand a G–map whose fixed-
point maps f H W X H ! Y H are weak homotopy equivalences for all subgroups H

of G. When X and Y have the homotopy types of G–CW complexes, such an f is a
G–homotopy equivalence.

By a topological category C, we understand a category internal to U ; thus it has an
object space and a morphism space such that the structural maps I, S, T , and C are
continuous. This is more structure than a topologically enriched category, which would
have a discrete space of objects. We also have the based variant of categories internal
to T , but U will be the default.

We let Cat denote the category of (small) topological categories. As above, starting
from Cat , we obtain the concomitant categories GCat and CatG of G–categories.
A G–category is a topological category equipped with an action of G through natural
isomorphisms. This is the same structure as a category internal to GU . Similarly,
a based G–category is a category internal to GT . That is, an action of G on a
topological category C is given by actions of G on both the object space and the
morphism space such that I, S, T , and C are G–maps. In particular, G can and often
will act nontrivially on the space of objects. That may be unfamiliar (as the referee
noted), but in many of our examples it is essential for proper behavior on passage to
H–fixed subcategories for H �G.

1In [19] and elsewhere, we used the notation VG.X;Y / instead of V .X;Y / , but some readers found
that misleadingly analogous to HomG.X;Y / .

Algebraic & Geometric Topology, Volume 17 (2017)
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For brevity of notation, we shall often but not always write j � j for the composite
classifying-space functor B D jN � j from topological categories through simplicial
spaces to spaces. It works equally well to construct G–spaces from topological G–
categories. We assume that the reader is familiar with operads (as originally defined in
May [21]) and especially with the fact that operads can be defined in any symmetric
monoidal category V . Brief modernized expositions are given in May [27; 28]. Since
it is product preserving, the functor j � j takes operads in Cat or in GCat to operads
in U or in GU , and it takes algebras over an operad C in Cat or in GCat to algebras
over the operad jC j in U or in GU .

To avoid proliferation of letters, we shall write OG for the monad on based G–categories
constructed from an operad OG of G–categories. We shall write OG for the monad
on based G–spaces constructed from the operad jOG j of G–spaces. More generally,
for an operad CG of unbased G–spaces, we write CG for the associated monad on
based G–spaces.

Acknowledgements Guillou thanks Nat Stapleton for very helpful discussions leading
to the rediscovery of the operad PG , which was in fact first defined, but not used, by
Shimakawa [43, Remark, page 255]. May thanks Mona Merling for many conversations
and questions that helped clarify ideas. We both thank the referee for helpful suggestions.
We also thank Anna Marie Bohmann and Angélica Osorno for pointing out a mistake
in the original version. That led to a reworking of this paper and to much of the work
in the sequels [31; 12; 13]. It also led to the long delay in the publication of this paper,
which is entirely due to the authors and not at all to the referee or editors. We thank
them for their patience. Guillou was supported by Simons Collaboration Grant 282316.

1 EV –operads and V –fold loop G–spaces

In this geometrically focused chapter, we first define EV –operads and give two ex-
amples. We then relate EV –spaces to V –fold loop G–spaces via the equivariant
approximation theorem and recognition principle. The approximation theorem shows
how to approximate “free” V –fold loop G–spaces �V†V X in terms of free algebras
DV X or KV X over the EV –operad DV or KV . The recognition principle shows
how to construct V –fold loop spaces from EV –algebras. We elaborate multiplicatively
by showing how machine-built pairings relate to evident pairings between iterated loop
G–spaces. We then give a geometric version of a concrete spacewise infinite loop
G–space machine that does not use E1–operads and is new even nonequivariantly.
This gives a geometric precursor of the BPQ theorem that relates well to smash products.
As already noted, we envision that the theory here can provide the local data for an as
yet undeveloped equivariant factorization homology theory.

Algebraic & Geometric Topology, Volume 17 (2017)
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1.1 The little disks and Steiner operads

Definition 1.1 Let D.V / be the open unit disk in V . A little V –disk is a map
d W D.V /!D.V / of the form d.v/D rvC v0 for some r 2 Œ0; 1/ and some v0 2 V ;
c.d/ D v0 is the center point of d and r is the radius. For g 2 G, we have
.gd/.v/ D rv C gv0 . Define DV .j / to be the G–space of (ordered) j –tuples of
little V –disks whose images have empty pairwise intersections. With the evident
structure maps determined by disjoint union and composites of little disks, the DV .j /

form an operad DV , called the little disks operad.

For a G–space V , let F.V; j /� V j be the configuration space of (ordered) j –tuples
of distinct points of V , with G acting by restriction of the diagonal action on V j. By
convention, F.V; 0/ is a point, the empty 0–tuple of points in V . We are interested
in the special case when V is a real representation of G, by which we understand an
orthogonal action of G on a real inner product space. In contrast to the nonequivariant
case, very little is known about the (Bredon) homology and cohomology of the G–
spaces F.V; j /, but we have the following result.

Lemma 1.2 There is a .G�†j /–homotopy equivalence DV .j /! F.V; j / for each
j � 0.

Proof Choose a decreasing rescaling homeomorphism �W Œ0;1/! Œ0; 1/ and also
denote by � the rescaling homeomorphism V !D.V / that sends v to �.jvj=jvj/v ,
where D.V / is the open unit disc in V . Then � induces a rescaling homeomorphism
�W F.V; j /! F.D.V /; j /. Define a map cW DV .j /! F.D.V /; j / by sending little
disks to their center points. For a point v D .v1; : : : ; vj / in F.D.V /; j /, define

ı.v/D 1
2

min
˚
jvi � vj j

ˇ̌
i ¤ j

	
:

Define sW F.D.V /; j /! DV .j / by s.v/D .d1; : : : ; dj /, where dj .v/D ı.v/vC vi .
Then s and c are .G�†j /–maps, c ı s D id, and there is a .G�†j /–homotopy
hW s ı c' id. If d D .d1; : : : ; dj / 2D.j /, where di.v/D rivCvi , then c.d/D v and
h.d ; t/ has i th little V –disk di.t/ given by di.t/.v/D ..1� t/ı.v/C t ri/vC vi .

The following definition is the equivariant generalization of the usual definition of an
En–operad. We say that a map of operads of G–spaces is a weak equivalence if its j th

map is a weak .G�†j /–equivalence.

Definition 1.3 An operad CG of G–spaces is an EV –operad if there is a chain of
weak equivalences of operads connecting CG to DV .

Algebraic & Geometric Topology, Volume 17 (2017)
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Of course, we could use any operad weakly equivalent to DV as a reference operad in
the definition. As explained in [30, Section 3], for inclusions V �W of inner product
spaces, there is no map of operads DV ! DW that is compatible with suspension, so
that use of the little disks operads is inappropriate for iterated loop space theory. The
Steiner operads remedy the defect and will be used in [31] to compare the operadic and
Segalic equivariant infinite loop space machines. Their equivariant definition is little
different from their nonequivariant definition given in [30], following Steiner [46].

Definition 1.4 Let EV be the space of embeddings V ! V , with G acting by
conjugation, and let EmbV .j / � E

j
V

be the G–subspace of (ordered) j –tuples of
embeddings with pairwise disjoint images. Regard such a j –tuple as an embedding
jV ! V , where jV denotes the disjoint union of j copies of V (where 0V is empty).
The element id in EmbV .1/ is the identity embedding, the group †j acts on EmbV .j /

by permuting embeddings, and the structure maps

 W EmbV .k/�EmbV .j1/� � � � �EmbV .jk/! EmbV .j1C � � �C jk/

are defined by composition and disjoint union in the evident way [30, Section 3]. This
gives an operad EmbV of G–spaces.

Define RV �EV D EmbV .1/ to be the G–subspace of distance-reducing embeddings
f W V ! V . This means that jf .v/ � f .w/j � jv � wj for all v;w 2 V . Define a
Steiner path to be a map hW I !RV such that h.1/D id and let PV be the G–space
of Steiner paths, with action of G induced by the action on RV . Define � W PV !RV

by evaluation at 0; that is, �.h/D h.0/.

Define KV .j / to be the G–space of (ordered) j –tuples .h1; : : : ; hj / of Steiner paths
such that the �.hi/ have disjoint images. The element id in KV .1/ is the constant
path at the identity embedding, the group †j acts on KV .j / by permutations, and
the structure maps  are defined pointwise in the same way as those of EmbV . This
gives an operad of G–spaces, and application of � to Steiner paths gives a map of
operads � W KV ! EmbV . Evaluation of embeddings at 0 2 V gives center point
.G�†j /–maps cW EmbV .j /! F.V; j /.

The Steiner operads KV are reduced, meaning that KV .0/ is a point, and K0 is the
trivial operad with K0.1/ D id and K0.j / D ∅ for j > 1. By pullback along � ,
any space with an action by EmbV inherits an action by KV . As in [21, Section 5],
[24, Section VII.2], or [30, Section 3], EmbV acts naturally on �V X for based
G–spaces X.

Proposition 1.5 [46] There is a weak equivalence of operads �W DV !KV .

Algebraic & Geometric Topology, Volume 17 (2017)



3268 Bertrand J Guillou and J Peter May

Proof For each j , we have a composite .G�†j /–map

c ı� W KV .j /! EmbV .j /! F.V; j /:

Steiner’s nonequivariant proof that cı� is a †j –homotopy equivalence applies to prove
that it is a .G�†j /–homotopy equivalence. The argument is a clever and nontrivial
variant on the proof above for DV , but for us the essential point is that it uses the
metric on V and the contractibility of I and V in such a way that the construction is
clearly G–equivariant.

For a little disk d.v/D rvCv0 , define a path of little disks from d to the identity map
of D.V / by sending s 2 I to the little disk

d.s/.v/D .s� rsC r/vC .1� s/v0:

Conjugating d by the rescaling � of Lemma 1.2 gives a distance-reducing embedding
��1d�W V ! V , and conjugating paths pointwise gives an embedding � of DV as a
suboperad of KV . Composing the inverse .G�†j /–homotopy equivalence F.V; j /!

DV .j / with �W DV .j /!KV .j / gives an inverse .G�†j /–homotopy equivalence to
c ı� , by Steiner’s proof, and it follows that � is a .G�†j /–homotopy equivalence.

Again, one key advantage of the Steiner operads over the little disks operads is that,
for an inclusion V � W of G–inner product spaces, there is an induced inclusion
KV !KW of G–operads such that the map

�V�W �V X !�V�W �V†W �V X Š�W †W �V X

is a map of KV –spaces for any G–space X. Here W �V is the orthogonal complement
of V in W . If f W V !V is a distance-reducing embedding, then f˚idW �V W W !W

is also distance reducing, and this construction induces the inclusion.

1.2 The approximation theorem

Write KV for the monad on based G–spaces associated to the operad KV . For a
G–space X, we have KV X D

F
KV .j /�†j

X j=.�/. If �i W KV .j /!KV .j � 1/

deletes the i th Steiner path and si W X
j�1!X j inserts the basepoint in the i th position,

then .� ik;y/� .k; siy/ for k 2KV .j / and y 2X j�1 . The monad DV arising from
the operad DV is defined the same way.

The unit �W Id! �V†V of the monad �V†V and the action � of KV on the G–
spaces �V†V X induce a composite natural map

˛V W KV X
KV �
����!KV�

V†V X
�
�!�V†V X;
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and ˛V W KV !�V†V is a map of monads whose adjoint defines a right action of KV

on the functor †V , just as in [21]. The restriction to DV gives the corresponding map
˛V W DV X !�V†V X.

The heart of the operadic recognition principle is the approximation theorem that
says that ˛V is a group completion. However, already nonequivariantly, we have two
variants of what it means for a map X ! Y to be a group completion. Recall that
Hopf spaces are spaces with a product with a two-sided unit element up to homotopy.

Definition 1.6 A Hopf space Y is grouplike if �0.Y / is a group. Let X and Y be
homotopy associative and commutative Hopf spaces, where Y is grouplike, and let
f W X ! Y be a Hopf map. Then f is a group completion if f�W �0.X /! �0.Y /

is the Grothendieck construction converting a commutative monoid to an abelian
group and if, for any field of coefficients k , the map of commutative k–algebras
H�.X /Œ�0.X /

�1�!H�.Y / induced by f� is an isomorphism.

The second version of group completion drops the commutativity assumption and lives
in the setting of A1–spaces. For us, an A1–space will mean a space with an action
of the Steiner operad KR . An A1–map will mean either a map homotopic to a map
of KR–spaces or the homotopy inverse of a map of KR–spaces that is an underlying
homotopy equivalence.

Definition 1.7 An A1–map f W X ! Y of KR–spaces is a weak group completion
if it is equivalent under a chain of A1–maps to the natural map �W M !�BM for
some topological monoid M.

The following classical result has several proofs; see [23, Section 15] for discussion in
slightly greater generality.

Theorem 1.8 If a topological monoid M is homotopy commutative, then the natural
map �W M !�BM is a group completion.

Returning to our equivariant context, we have the following definition.

Definition 1.9 A Hopf G–space Y is grouplike if each �0.Y
H / is a group. Let X

and Y be homotopy associative and commutative Hopf G–spaces, where Y is group-
like, and let f W X ! Y be a Hopf G–map. Then f is a group completion if
f H W X H ! Y H is a group completion for all subgroups H of G.

For the equivariant notion of weak group completion, note that if X is a KR–G–space
and H �G is a subgroup, then X H inherits an action of KR .
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Definition 1.10 A map f W X ! Y of KR–G–spaces is a weak group completion
if f H is a weak group completion for all H. By Theorem 1.8, f is then a group
completion if X and Y are homotopy commutative.

In the weak case we require no compatibility between the monoids M.H /'X H as H

varies. Recall that we understand equivalences of G–spaces to mean maps that induce
(weak) equivalences on passage to fixed points and observe that a group completion is
an equivalence if X is grouplike, for example if X is G–connected in the sense that
each X H is (path) connected.

Theorem 1.11 (the approximation theorem) Let V be a representation of G. If X is
G–connected, then ˛V W KV X ! �V†V X is an equivalence. If V contains a copy
of the trivial representation R, then ˛V is a weak group completion. Therefore, if V

contains a copy of R2, then ˛V is a group completion.

We shall not give a proof, only a commentary on the existing proofs. The group comple-
tion version was first proven by Hauschild in his unpublished Habilitationschrift [14],
but the shorter published version [15] restricts to the case X D S0, remarking that the
proof in the general case is essentially the same. Assuming that V contains R1 and
not just R2, Caruso and Waner [3, Theorem 1.18] gave a shorter proof in a paper that
concentrated on compact Lie groups G, rather than just finite groups.

Nonequivariantly, there is a proof by direct calculation due to Fred Cohen [18] and a
geometric proof due to Segal [42]. Starting from Segal’s proof, Rourke and Sanderson
[38; 39; 40] gave an elegant proof using their “compression theorem”. Following up a
suggestion of May, they generalized that proof to give the stated version of the theorem in
[37]. However, their notation is quite different from ours. They never work equivariantly
and focus instead on G–fixed-point spaces. They use the notation �V†V X for the
G–fixed-point space .�V†V X /G. One can replace G by a subgroup H in their proof,
and it works just as well.

All known proofs are manifold-theoretic in nature and start with the G–space FV X of
(unordered) configurations of points in V with labels in X. More precisely, FV X DF

F.V; j / �†j
X j=.�/ is defined in the same way as KV X. In the notation of

[37], their CV X is our .FV X /G. They work with little disks, and their C o
V

X is our
.DV X /G. Their map jV is the restriction to FV .X /

G of our map ˛G
V

.

Translated to our notation, [37, Theorem 1] proves the first statement of Theorem 1.11,
taking X to be G–connected; here there are no Hopf G–space structures in sight. When
W D V ˚R, Rourke and Sanderson observe that .DW X /G is equivalent to a monoid,
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and their [37, Theorem 2] proves that its classifying space is weak homotopy equivalent
to .�V†W X /G. The approximation theorem as stated follows by applying � as in
[37, Corollary 1].

1.3 The recognition principle for V –fold loop spaces

We explain how KV –spaces, which are based spaces with an action of KV , give rise to
V –fold loop spaces. For fixed V , we can work equally well with DV . For compatibility
as V varies, KV is required. The two-sided monadic bar construction is described in
[21; 30] and works exactly the same way equivariantly as nonequivariantly.2 The adjoint
of ˛V gives a right action z̨V W †V KV !†V of the monad KV on the functor †V .

Definition 1.12 Let Y be a KV –space. We define

EV Y D B.†V;KV ;Y /:

We have the diagram of KV –spaces and KV –maps

(1.13) Y
"
 � B.KV ;KV ;Y /

x̨V
��! B.�V†V;KV ;Y /

�
�!�V B.†V;KV ;Y /;

where x̨V D B.˛V ; id; id/ and � will be defined in the following sketch proof, which
is based on arguments in [4; 21; 22].

Theorem 1.14 (from KV –spaces to V –fold loop spaces) The following statements
hold relating a KV –space Y to its V–fold delooping EV Y :

(i) The map " is a G–homotopy equivalence with a natural homotopy inverse � .

(ii) The map x̨V is an equivalence when Y is G–connected and is a weak group
completion when V �R.

(iii) The map � is an equivalence.

Therefore, the composite

(1.15) � D � ı x̨V ı �W Y !�V EV Y

is an equivalence if Y is G–connected, a weak group completion if V � R, and a
group completion if V �R2.

Proof The proof of (i) uses an “extra-degeneracy argument” explained in [21, Proposi-
tion 9.8]; note that the homotopy equivalence � is not a KV –map. For (ii), it is shown
nonequivariantly in [22, Theorem 2.3], that x̨V is an equivalence when Y is connected

2In particular, Reedy cofibrancy (or properness) works the same way; see [31].
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and is a group completion when V DRn with n� 2. We use Theorem 1.11 to improve
on that equivariantly. Geometric realization of simplicial G–spaces commutes with
passage to H–fixed points, so we can work nonequivariantly, one fixed-point space at a
time. If Y is G–connected, each .Kq

V
Y /H is connected, hence x̨H is the realization

of a levelwise equivalence of simplicial spaces and hence an equivalence.

Now assume V �R and let K DKR , with associated monad K . We then have an
inclusion of the nonequivariant A1–operad K in KV and can regard Y and each
.Kq

V
Y /H as a K –space. From here we combine arguments from [21, Section 13] and

the proof of [22, Theorem 2.3] with the Rourke–Sanderson proof of the approximation
theorem. Let M be the associativity operad that defines monoids; we have a weak
equivalence of (G–fixed) operads ıW K !M. For a K –space X, we define a topo-
logical monoid ƒ.X / D B.M ;K ;X /, where the monad M is a K–functor via ı .
We have a zigzag

X
"
 � B.K ;K ;X /

xı
�! B.M ;K ;X /DƒX

in which " is a K –map and a G–homotopy equivalence and xı D B.ı; id; id/ is an
equivalence. Define �.X / D �Bƒ.X / and  D � ı xıW B.K ;K ;X / ! �X. We
view  as a natural choice of a weak group completion. Moreover,  is an equivalence
if X is grouplike. If f W X ! Y is a weak group completion between K –spaces, then
�f is an equivalence. To see this, note that by the definition of weak group completion,
we may assume without loss of generality that f is the map �W M !�BM for some
topological monoid M. It suffices to show that Bƒ.�/W BƒM ! Bƒ.�BM / is an
equivalence. This follows from [47, Proposition 3.9 and Theorem 3.11].

Now consider the following commutative diagram:

Y B.KV ;KV ;Y /
"

oo
x̨V

// B.�V†V;KV ;Y /

B.K ;K ;Y /



��

"

OO

B.B.K ;K ;KV /;KV ;Y /
"
oo

x̨V
//

x

��

"

OO

B.B.K ;K ; �V†V /;KV ;Y /

"

OO

x
��

�Y B.�KV ;KV ;Y /
"

oo
�˛V

// B.��V†V;KV ;Y /

The maps " are G–homotopy equivalences, hence the middle map x D B.; id; id/ is
a weak group completion since  is so. The right map x and the bottom map �˛V

are equivalences since realization preserves levelwise equivalences. Therefore, x̨V is a
weak group completion.
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In (iii), � is an instance of the natural G–map �W j�V Kj ! �V jKj for simplicial
based G–spaces K ; suspensions commute with realization, and the adjoint of � is the
evident evaluation G–map †V j�V Kj Š j†V�V Kj ! jKj. The proof of (iii) is due
to Hauschild [14] and appears in [4, pages 495–496]. We will not repeat the argument,
which reduces the proof to the nonequivariant case treated in [21, Section 12]. The main
equivariant input that allows the reduction is the fact if S.V / is the unit sphere in V ,
then the space MapH .S.V /;Kn/ of H–maps is connected, where Kn D†

V Kn
V

Y is
the G–space of n–simplices of the simplicial G–space B�.†

V;KV ;Y /. This holds
since KJ

n is .dim.V J /�1/–connected for each subgroup J �G, while S.V / regarded
as an H–CW complex only has cells of type H=J � en where n< dim.V J /.

Remark 1.16 Equivariant homotopy theory often admits varying generalizations of
nonequivariant theorems. A very different and very interesting equivariant recognition
principle was proven by Salvatore and Wahl [41].

1.4 The pairing .KV ; KW /!KV˚W and the recognition principle

The general notion of a pairing of operads is recalled in Appendix A. In [21, Proposi-
tion 8.3], a pairing

�W CmX ^CnY !CmCn.X ^Y /

is defined for based spaces X and Y , where Cn denotes the monad on based spaces
induced from the little n–cubes operad Cn . Implicitly, it comes from a pairing of
operads �W .Cm;Cn/!CmCn . The Steiner operad analogue appears in [25, page 337],
and we recall it here.

Proposition 1.17 For finite-dimensional real inner product G–spaces V and W , there
is a unital, associative, and commutative system of pairings

�W .KV ;KW /!KV˚W

of Steiner operads of G–spaces.

Proof The required maps

�W KV .j /�KW .k/!KV˚W .j k/

are given by .c ˝ d/ D e , where, writing c D .f1; : : : ; fj / and d D .g1; : : : ;gk/,
e is the j k–tuple of Steiner paths

.fq;gr /W I !RV �RW �RV˚W
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for 1 � q � j and 1 � r � k , ordered lexicographically. The formulas required in
Definition A.1 are easily verified, as we illustrate in Example A.4.

The pairing is unital in the sense that �W KV .j /ŠK0.1/�KV .j /!KV .j / is the
identity map. It is associative in the sense that the following diagram commutes for a
triple .V;W;Z/ of inner product G–spaces and a triple .i; j ; k/:

KV .i/�KW .j /�KZ .k/
��id

//

id��
��

KV˚W .ij /�KZ .k/

�

��

KV .i/�KW˚Z .j k/
�

// KV˚W˚Z .ij k/

It is commutative in the sense that the following diagram commutes:

KV .j /�KW .k/

t

��

�
// KV˚W .j k/

�.j ;k/

��

KW .k/�KV .j /
�

// KW˚V .kj /

Here t is the interchange map and �.j ; k/ is determined in an evident way by the
interchange map for V and W and the permutation �.j ; k/ of j k–letters.

Passing to monads as in Proposition A.3 below, we obtain a unital, associative, and
commutative system of pairings

(1.18) �W KV X ^KW Y !KV˚W .X ^Y /:

For the unit property, when V D 0 the map �W X ^KW Y !K .X ^Y / is induced
by the maps X �Y j ! .X �Y /j obtained from the diagonal map on X and shuffling.
We have the following key observation. Its analogue for the little cubes operads is [21,
Proposition 8.3].

Lemma 1.19 The following diagram commutes:

KV X ^KW Y
�

//

˛V ^˛W

��

KV˚W .X ^Y /

˛V˚W

��

�V†V X ^�W †W Y
^
// �V˚W †V˚W .X ^Y /

The notion of a pairing of a KV –space X and a KW –space Y to a KV˚W –space Z is
defined in Definition A.2, and we have the following recognition principle for pairings.
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Note that smashing maps out of spheres gives a natural map

�V X ^�W Y !�V˚W .X ^Y /:

Proposition 1.20 A pairing f W X ^Y !Z of a KV –space X and a KW –space Y

to a KV˚W –space Z induces a G–map

Ef W EV X ^EW Y ! EV˚W Z

such that the following diagram commutes:

X ^Y
�^�
//

f

��

�V EV X ^�W EW Y // �V˚W .EV X ^EW Y /

Ef
��

Z
�

// �V˚W EV˚W Z

Proof By convention, K0
V
D Id for any V . Starting at qD 0 with the identity map on

X ^Y , the map � inductively determines a pairing �q for all q , namely the composite

K
q
V

X ^K
q
W

Y
�
�!KV˚W .K

q�1
V

X ^K
q�1
W

Y /
KV˚W �

q�1

���������!K
q
V˚W

.X ^Y /:

The map Ef is the geometric realization of a map of simplicial topological spaces that
is given on q–simplices by

†VK
q
V

X ^†WK
q
W

Y Š†V˚W.K
q
V

X ^K
q
W

Y /
†V˚W�q

�������!†V˚W K
q
V˚W

.X ^Y /:

Commutation with face and degeneracy operators follows from Proposition A.3. The di-
agram in the statement commutes by a diagram chase from Lemma 1.19, Definition A.2,
and the description of � given in (1.15).

We have an unstable precursor of the BPQ theorem.

Theorem 1.21 (the BPQ theorem for V –fold suspensions) For based G–spaces X,
there is a natural G–homotopy equivalence

!W †V X ! EV KV X

such that the following diagram commutes for based G–spaces X and Y :

†V X ^†W Y
!^!

//

Š

��

EV KV X ^EW KW Y

E.�/
��

†V˚W .X ^Y /
!
// EV˚W KV˚W .X ^Y /

Therefore, E.�/ is an equivalence.
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Proof Since EV KV X D B.†V;KV ;KV X /, another extra-degeneracy argument
explained in [21, Proposition 9.8] gives the natural homotopy equivalence ! . For the
diagram, it suffices to prove commutativity of the adjoint diagram, which features two ad-
joint maps X ^Y !�V˚W .�/. These maps are equal by inspection of definitions.

1.5 The geometric recognition principle for orthogonal G –spectra

As in [10], we let GS denote the category of orthogonal G–spectra. Briefly, these
start with IG–spaces E, which are continuous functors EW IG ! TG , where IG

is the category of finite-dimensional G–inner product spaces and linear isometric
isomorphisms, with G acting by conjugation on morphism spaces IG.V;V

0/. The
continuous G–maps EW IG.V;V

0/! TG.E.V /;E.V
0// can be specified via adjoint

evaluation G–maps IG.V;V
0/C ^E.V /!E.V 0/.

An IG–space E is an orthogonal G–spectrum if there exist structure G–maps
†W E.V / ! E.V ˚ W / that give a natural transformation E Z SG ! E ı ˚

of functors IG �IG! TG , where SG D fS
V g is the sphere G–spectrum, Z is the

external smash product specified by .DZE/.V;W /DD.V /^E.W / for IG–spaces
D and E, and ˚W IG�IG!IG is the direct sum of G–inner product spaces functor.
See [19, Section II.2] for details.

Definition 1.22 We define a continuous G–functor K� from IG to G–operads.
It takes a G–inner product space V to the Steiner operad KV . Linear isometric
isomorphisms i W V ! V 0 act by conjugation of embeddings to send RV to RV 0 . The
action extends pointwise to Steiner paths and then applies one at a time to j –tuples
of Steiner paths to give G–maps KV .j / to KV 0.j /. Compatibility with the operad
structure is immediate. Composing with the functor that sends the operad KV to the
associated monad KV on based G–spaces gives a functor K from IG to the category
of monads in the category of IG–spaces. In more detail, for an IG–space X with
V th space X .V /, we have based evaluation G–maps

I .V;V 0/C ^KV X .V /!KV 0X .V 0/:

Using the diagonal action of IG.V;V
0/, we obtain G–maps

IG.V;V
0/�KV .k/�KV .j1/� � � � �KV .jk/�X .V /

��

KV 0.k/�KV 0.j1/� � � � �KV 0.jk/�X .V 0/;

and these give evaluation G–maps

IG.V;V
0/C ^KV KV X .V /!KV 0KV 0X .V 0/:
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The product and unit maps are compatible with these maps in the sense that the following
diagrams commute, where the unlabeled arrows are evaluation G–maps:

(1.23)

IG.V;V
0/C ^X .V /

id^�
��

�
// X .V 0/

�

��

IG.V;V
0/C ^KV X .V / // KV 0X .V 0/

IG.V;V
0/C ^KV KV X .V / //

id^�
��

KV 0KV 0X .V /

�

��

IG.V;V
0/C ^KV X // KV 0X .V 0/

Note that we can regard based G–spaces X as constant IG–spaces, X.V /DX ; the
evaluation G–maps IG.V;V

0/C ^X !X are then the projections.

Definition 1.24 Define a K�–G–space Y to be an IG–space Y with a structure of
KV –algebra on Y .V / for each V together with G–maps i W Y .V /! Y .V ˚W /

such that the following diagrams commute, where the � are monad action maps:

IG.V;V
0/C ^KV Y .V / //

id^�
��

KV 0Y .V
0/

�
��

IG.V;V
0/C ^Y .V / // Y .V 0/

In the second diagram, we identify SV ^SW with SV˚W :

.IG.V;V
0/�IG.W;W 0//C ^Y .V /^SV ^SW //

˚^i^id
��

Y .V 0/^SV 0 ^SW 0

i^id
��

.IG.V ˚W;V 0˚W 0//C ^Y .V ˚W /^SV˚W // Y .V 0˚W 0/^SV 0˚W 0

The first diagram says that � is a map of IG–spaces and, ignoring the sphere coordi-
nates, the second diagram says that i W Y ı�1) Y ı˚ is a natural transformation of
functors IG �IG! TG .

Theorem 1.25 (from K�–G–spaces to orthogonal G–spectra) For a K�–G–space Y ,
the based G–spaces EV Y .V / and the based G–maps

†W EV Y .V /! EV˚W Y .V ˚W /

determined by i W Y ı�1) Y ı˚ specify an orthogonal G–spectrum Egeo
G

Y .
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Proof Regarding the IG.V;V
0/ as constant simplicial G–spaces, we see by diagram

chases from the definitions that the data of the previous definitions determine G–maps

IG.V;V
0/C ^†

V K
q
V

Y .V /!†V 0K
q
V 0

Y .V 0/

and
†W †V K

q
V

Y .V /!†V˚W K
q
V˚W

Y .V ˚W /:

On passage to geometric realization, these give the required IG–space Egeo
G

Y and the
required natural transformation Egeo

G
Y ZSG! Egeo

G
Y ı˚.

Of course, the recognition principle of (1.13) and Theorem 1.14 applies to describe
the relationship between the G–spaces Y .V / and �V .Egeo

G
Y /.V /. The recognition

principle for pairings also adapts directly.

Definition 1.26 Let X , Y , and Z be K�–G–spaces. A pairing

f W X ZY !Z ı˚

is a natural transformation of continuous functors IG �IG ! TG such that each
f W X .V /^Y .W /!Z .V ˚W / is a pairing as in Definition A.2 and the following
diagram commutes for all U;V;W :

(1.27)

X .U /^Y .V /
id^i

//

i^id

��

f

))

X .U /^Y .V ˚W /

f

��

Z .U ˚V /

i

))

X .U ˚W /^Y .V /
f

// Z .U ˚W ˚V /
Z .id˚t/

// Z .U ˚V ˚W /

This diagram expresses that the three composite natural transformations of functors
I 3

G
! TG in sight agree.

The smash product of orthogonal G–spectra is obtained by first applying Day convolu-
tion to the external smash product Z and then coequalizing the action of the sphere
G–spectrum on the two variables. See [19, Section II.3] for details.

Proposition 1.28 A pairing f W X ZY !Z ı˚ of K�–G–spaces induces a map

Egeo
G
f W Egeo

G
X ^Egeo

G
Y ! Egeo

G
Z

of orthogonal G–spectra that is given levelwise by specialization of Proposition 1.20.
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Proof The definition of a pairing immediately implies that f induces an external
pairing

Egeo
G

X ZEgeo
G

Y ! Egeo
G

Z ı˚;

and the diagram (1.27) ensures that the resulting map from the Day convolution to
Egeo

G
Z factors through the coequalizer defining Egeo

G
X ^Egeo

G
Y .

The suspension G–spectrum †1
G

X of a based G–space X is given by the G–spaces
†V X ; its structure maps are the evident identifications †W †V X Š†V˚W X. The
unstable BPQ theorem of Theorem 1.21 leads to the following “geometric” version of
the BPQ theorem.

Definition 1.29 For a based G–space X, define K�X to be the K�–G–space given
by the KV –spaces KV X and the maps i W KV X !KV˚W X induced by the map of
operads KV !KV˚W obtained by sending embeddings eW V !V to e�idW V �W !

V �W .

It is easily verified that K�X is a K�–G–space and the pairings � of (1.18) prescribe
pairings

(1.30) �W K�X ZK�Y !K�.X ^Y / ı˚:

Theorem 1.31 (the geometric BPQ theorem for orthogonal suspension G–spectra)
For based G–spaces X, there is a natural equivalence

!W †1G X ! Egeo
G

K�X

such that the following diagram commutes for based G–spaces X and Y :

†1
G

X ^†1
G

Y

Š

��

!^!
// Egeo

G
K�X ^Egeo

G
K�Y

E
geo
G
.�/

��

†1
G
.X ^Y /

!
// Egeo

G
K�.X ^Y /

Proof The levelwise equivalence follows from Theorem 1.21. For the diagram, the
functor †1

G
is left adjoint to the 0th G–space functor, and inspection of definitions

shows that the adjoint diagram starting with X ^Y commutes.
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1.6 A configuration space model for free KV –spaces

The free KV –spaces KV X can be modeled more geometrically by configuration spaces.
To explain this, we first record the nonequivariant analogue in terms of the little cubes
operads, since that is relevant folklore which is not in the literature.

Consider the little n–cubes operads Cn and their associated monads Cn . Let J D .0; 1/

be the interior of I. We have the configuration spaces F.J n; j / of j –tuples of distinct
points in J n. Sending little n–cubes cW J n! J n to their center points c

�
1
2
; : : : ; 1

2

�
gives a †n–homotopy equivalence f W Cn.j /! F.J n; j /.

For based spaces X, we construct spaces FnX by replacing Cn.j / by F.J n; j / in the
construction of CnX as the quotient of

F
Cn.j /�†j

X j by basepoint identifications;
we now use the evident omit a point projections F.j ; n/!F.j ; n�1/ rather than the
analogous maps Cn.j /! Cn.j � 1/. The maps f induce a homotopy equivalence

f W CnX ! FnX:

That much has been known since [21].

The folklore observation is that although the F.J n; j / do not form an operad, Cn acts
on FnX in such a way that f is a map of Cn–spaces. Indeed, we can evaluate little
n–cubes J n! J n on points of J n to obtain maps

Cn.j /�F.J n; j /! F.J n; j /;

and any reader of [21] will see how to proceed from there. Moreover, we have pairings

�W FmX ^FnY ! FmCn.X ^Y /

defined as in Definition A.2 and Proposition A.3, starting from the maps

F.J n; j /�F.J n; k/! F.J n; j k/

that send .x;y/, where x D .x1; : : : ;xj / and y D .y1; : : : ;yk/, to the set of pairs
.xq;yr /, for 1� q � j and 1� r � k , ordered lexicographically.

Nonequivariantly, we put this together to obtain an analogue of Theorem 1.31, using
the evident variant of the geometric recognition principle that is obtained from the
operads Cn as n varies. Here it is more natural to use symmetric spectra rather than
orthogonal spectra, since it is natural to deal with sequences rather than inner product
spaces. The relationship between the little cubes operads and symmetric spectra is
explained in [19, Section I.8], and we leave details of the relevant retooling of the
previous subsections to the interested reader.
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Theorem 1.32 (the configuration space BPQ theorem for symmetric spectra) For
based spaces X, there is a natural equivalence

!W †1X ! Egeo F�X

such that the following diagram commutes for based spaces X and Y :

†1X ^†1Y

Š

��

!^!
// Egeo F�X ^Egeo F�Y

E
geo
G
.�/

��

†1.X ^Y /
!

// Egeo F�.X ^Y /

For fixed V , the discussion generalizes equivariantly to relate DV X or KV X to FV X

for based G–spaces X. In the case of KV X, we use the time-0 projections from Steiner
paths to embeddings V ! V and the centerpoint map from EmbV .j / to F.V; j /.
Letting V vary, we obtain the following equivariant version of Theorem 1.32.

Theorem 1.33 (the configuration space BPQ theorem for orthogonal G–spectra) For
based G–spaces X, there is a natural equivalence

!W †1G X ! Egeo
G

F�X

such that the following diagram commutes for based G–spaces X and Y :

†1
G

X ^†1
G

Y

Š

��

!^!
// Egeo

G
F�X ^Egeo

G
F�Y

E
geo
G
.�/

��

†1
G
.X ^Y /

!
// Egeo

G
F�.X ^Y /

2 The recognition principle for infinite loop G–spaces

The equivariant recognition principle shows how to recognize (genuine) G–spectra in
terms of category or space level information. It comes in various versions. We shall
give two modernized variants of the machine from [21], differing in their choice of
the output category of G–spectra. In contrast with the previous section, we are now
concerned with infinite loop space machines with input given by E1–G–spaces (or
G–categories) defined over any (genuine) E1–operad. A G–spectrum E is connective
if the negative homotopy groups of each of its fixed point spectra EH are zero, and all
infinite loop space machines take values in connective G–spectra.

As in [10], we let S , Sp , and Z denote the categories of orthogonal spectra [20],
Lewis–May spectra [18], and EKMM S–modules [7]. Similarly, we let GS , GSp
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and GZ denote the corresponding categories of genuine G–spectra from [19], [18],
and again [19]. We start with a machine that lands in GS . It is related to but different
from the geometric machine of the previous section, and it is the choice preferred
in [10] and in the sequels [31; 12; 13]. The sphere G–spectrum SG in GS is cofibrant,
and so are the suspension G–spectra †GX of cofibrant based G–spaces X. We then
give the variant machine that lands in GSp or GZ , where every object is fibrant, and
give a comparison that illuminates homotopical properties of the first machine via its
comparison with the second.

2.1 Equivariant E1–operads

Since operads make sense in any symmetric monoidal category, we have operads of
categories, spaces, G–categories, and G–spaces. Operads in GU were first used in
[18, Chapter VII]. Although we are only interested in finite groups G in this paper, the
following definition makes sense for any topological group G and is of interest in at
least the generality of compact Lie groups.

Definition 2.1 An E1–operad CG of G–spaces is an operad in the cartesian monoidal
category GU such that CG.0/ is a contractible G–space and the .G�†j /–space CG.j /

is a universal principal .G; †j /–bundle for each j � 1. Equivalently, for a subgroup ƒ
of G �†j , the ƒ–fixed-point space CG.j /

ƒ is contractible if ƒ\†j D feg and is
empty otherwise. We say that CG is reduced if CG.0/ is a point.

As is usual in equivariant bundle theory, we think of G as acting from the left and †j

as acting from the right on the spaces CG.j /. These actions must commute and so
define an action of G � †j . We shall say nothing more about equivariant bundle
theory except to note the following parallel. In [21], an operad C of spaces was
defined to be an E1–operad if C .j / is a free contractible †j –space. Effectively,
C .j / is then a universal principal †j –bundle. If we regard each C .j / as a G–trivial
G–space, such an operad is called a naive E1–operad of G–spaces. Analogously, we
have defined genuine E1–operads by requiring the CG.j / to be universal principal
.G; †j /–bundles. That dictates the appropriate homotopical properties of the CG.j /,
and it is only those homotopical properties and not their bundle-theoretic consequences
that concern us in the theory of operads. The bundle theory implicitly tells us which
homotopical properties are relevant to equivariant infinite loop space theory. Our default
is that E1–operads are understood to be genuine unless otherwise specified.

We give two well-known examples. Recall that a complete G–universe U is a G–inner
product space that contains countably many copies of each irreducible representa-
tion of G ; a canonical choice is the sum of countably many copies of the regular
representation �G .
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Example 2.2 (the Steiner operad KU ) Inclusions V �W induce inclusions of operads
KV ! KW . Let KU be the union over V � U of the operads KV , where U is a
complete G–universe.3 This is the infinite Steiner operad of G–spaces. It is an E1–
operad since †j –acts freely on KU .j / and KU .j /

ƒ is contractible if ƒ�G�†j and
ƒ\†j D e . Indeed, such a ƒ is isomorphic to a subgroup H of G via the projection
G�†j!G, and if we let H act on U through the isomorphism, then U is a complete
H–universe and U H is isomorphic to R1 . Therefore, by the proof of Proposition 1.5,
KU .j /

ƒ is equivalent to the configuration space F.R1; j /, which is contractible.

Example 2.3 (linear isometries operad) The equivariant linear isometries operad LU

was first used in [18, Section VII.1] and is defined just as nonequivariantly (eg [30,
Section 2]). The .G�†j /–space LU .j / is the space of linear isometries U j ! U,
with G acting by conjugation, and LU is an E1–operad of G–spaces if U is a
complete G–universe. Indeed, †j acts freely on LU .j / and LU .j /

ƒ is contractible
if ƒ�G�†j and ƒ\†j D e . If ƒŠH and H acts on U through the isomorphism,
then U is a complete H–universe and LU .j /

H is isomorphic to the space of H–
linear isometries U j ! U. The usual argument that L .j / is contractible (eg [24,
Lemma I.1.3]) adapts to prove that this space is contractible.

We define E1–operads in G–categories in Section 3.3 and give examples in Section 4.2
and Section 7.

Remark 2.4 We will encounter one naturally occurring operad that is not reduced.
When an operad C acts on a space X via maps �i and we choose points ci 2 C .i/,
we have a map �0W C .0/!X and the relation

�2.c2I �0.c0/; �1.c1;x//D �1. .c2I c0; c1/;x/

for x 2X. When the C .i/ are connected, this says that �0.c0/ is a unit element for the
product determined by c2 . Reduced operads give a single unit element. The original
definition [21, 1.1] required operads to be reduced.

Lemma 2.5 Let CG be an E1–operad of G–spaces and define C D .CG/
G. Then C

is an E1–operad of spaces. If Y is a CG–space, then Y G is a C –space.

Proof .CG/
G is an operad since the fixed-point functor commutes with products, and

it is an E1–operad since the space CG.j /
G is contractible and †j –free.

3We denoted the nonequivariant version as C in [30], but we prefer the notation KU here.
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2.2 The infinite loop space machine: orthogonal G –spectrum version

In brief, we have a functor EG D ES
G

that assigns an orthogonal G–spectrum EGY

to a G–space Y with an action by some chosen E1–operad CG of G–spaces. We
want to start with CG–algebras and still exploit the Steiner operads, and we use the
product of operads trick recalled in Section 2.3 to allow this; compare [30, Section 9].
For simplicity of notation, define CV D CG �KV . We use the following observation.

Lemma 2.6 If CG is an E1–operad of G–spaces, then the projection

CV .j /D CG.j /�KV .j /!KV .j /

is a .G�†j /–equivalence for each j .

Proof We must show that for each subgroup ƒ � G � †j , the induced map on
fixed points

CG.j /
ƒ
�KV .j /

ƒ
!KV .j /

ƒ

is an equivalence. If ƒ\ feg �†j D feg, then C .j /ƒ ' �, so the projection is an
equivalence. If ƒ contains a nonidentity permutation, then the fixed points on both
sides are empty. Both sides are trivial if j D 0.

We view CG–spaces as CV –spaces for all V via the projections CV ! CG , and CV

acts on V –fold loop spaces via its projection to KV . Write CV for the monad on based
G–spaces associated to the operad CV . The categories of CV –spaces and CV –algebras
are isomorphic. As in the V –fold delooping argument, the unit �W Id!�V†V of the
monad �V†V and the action � of CV on the G–spaces �V†V X induce a composite
natural map

˛V W CV X
CV �
���!CV�

V†V X
�
�!�V†V X;

and ˛V W CV !�V†V is a map of monads whose adjoint defines a right action of CV

on the functor †V .

Definition 2.7 (from CG–spaces to orthogonal G–spectra) Let Y be a CG–space.
We define an orthogonal G–spectrum EGY , which we denote by ES

G
Y when necessary

for clarity. Let
EGY .V /D B.†V;CV ;Y /:

Using the action of isometric isomorphisms on the KV and †V , as in the previous
section but starting with Y regarded as a constant IG–functor, as we can since its
action by CG is independent of V , this defines an IG–space. The structure G–map

� W †W EGY .V /! EGY .V ˚W /
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is the composite

†W B.†V;CV ;Y /Š B.†V˚W;CV ;Y /! B.†V˚W;CV˚W ;Y /:

obtained by commuting †W with geometric realization and using the map of monads
CV !CV˚W induced by the inclusion i W KV !KV˚W .

Just as in (1.13), we have the diagram of CV –spaces and CV –maps

(2.8) Y
"
 � B.CV ;CV ;Y /

x̨
�! B.�V†V;CV ;Y /

�
�!�V B.†V;CV ;Y /;

where x̨ D B.˛; id; id/. Theorem 1.14 applies verbatim, with the same proof. We let
�V D � ı x̨ ı � , where � is the canonical homotopy inverse to ". Then the following
diagram commutes, where z� is adjoint to � :

Y
�V

yy

�V˚W

''

�V EGY .V /
�V z�

// �V˚W EGY .V ˚W /

Therefore, �V z� is a weak equivalence if V � R. If we replace EGY by a fibrant
approximation REGY , there results a group completion �W Y ! .REGY /0 . We shall
shortly use the category Sp to give an explicit way to think about this.

Remark 2.9 Since K0.0/D f�g, K0.1/D fidg, and K0.j /D∅ for j > 1, we have
that C0 is the identity functor if CG.0/D f�g and CG.1/D fidg. In that case,

EGY .0/D B.†0;C0;Y /D B.Id; Id;Y /Š Y:

We comment on an alternative point of view not taken above but relevant below. We can
use the product of operads trick from [21] to replace a CG–space Y by the equivalent
KU –space B.KU ;CU ;Y /, where CU is the monad associated to the E1–operad
CU D CG �KU and from there only use Steiner operads. However, there is a catch.
A KU –algebra Y is a KV –algebra by restriction, but the constant IG–space Y is not
a K�–G–space in the sense of Definition 1.24 since conjugation by isometries is not
compatible with the inclusions used to define KU . Therefore, the B.†V;KV ;Y / do
not define an IG–space. However, ignoring isometries, they do define a coordinate
free G–prespectrum, as defined in [19, II.1.2]. That can be viewed as the starting point
for the alternative machine we construct next.
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2.3 The infinite loop space machine: Lewis–May G –spectrum version

A Lewis–May (henceforward LM) G–spectrum E consists of G–spaces EV for each
finite-dimensional G–inner product subspace V in a complete G–universe U together
with G–homeomorphisms EV ! �W �V EW whenever V � W . For a based G–
space X we define QGX D colim�V†V X. The suspension LM G–spectrum †1

G
X

has V th G–space QG†
V X, and the functor †1

G
is left adjoint to the zeroth space

functor �1
G

. We sometimes change notation to †1
U

and �1
U

, allowing change of
universe. While GSp is not symmetric monoidal, that is rectified by passage to the
SG–modules of [7], at the inevitable price of losing the adjunction; see [30, Section 11].

The operad KU acts on �1
U

E for any LM G–spectrum E. One could not expect such
precise structure when working with orthogonal G–spectra. Nonequivariantly, such
highly structured infinite loop spaces are central to calculations, and it is to be hoped that
the equivariant theory will eventually reach a comparable state. Therefore, it is natural to
want an infinite loop space machine that lands in the category GSp of LM G–spectra.

The operad KU plays a privileged role. As noted above, if CG is an E1–G–operad, we
can convert CG–spaces to equivalent KU –spaces, so that it suffices to build a machine
for KU –spaces. On the other hand, CG spaces inherit actions of CU D CG �KU ,
so that it suffices to build a machine for CU –spaces. To encompass both of these
approaches in a single machine, we suppose given a map (necessarily an equivalence)
of E1–G–operads OG!KU . We can take OG D CU or OG DKU , but both here
and in [12; 13; 31], our primary interest is in CU . Formally, the equivariant theory now
works in the same way as the nonequivariant theory, and we follow the summary in [30,
Section 9]. An early version of this machine is in the paper [4] of Costenoble and Waner.

Scholium 2.10 We must use the Steiner operads KV and KU rather than the little
disks operads DV and DU , which was the choice in [4], and our notion of an E1–
operad of G–spaces should replace the notion of a complete operad used there.

Definition 2.11 (from OG–spaces to Lewis–May G–spectra) Let Y be an OG–space.
We define a LM G–spectrum EGY , which we denote by ESp

G
when necessary for

clarity, by
EGY D B.†1G ;OG ;Y /:

Here OG acts on †1
G

through its projection to KU .

We have the diagram of OG–spaces and OG–maps

(2.12) Y
"
 � B.OG ;OG ;Y /

x̨U
��! B.QG ;OG ;Y /

�
�!�1G B.†1G ;OG ;Y /D�

1
G EGY;

where x̨U D B.˛U ; id; id/. As explained nonequivariantly in [30, Section 9], the
following analogue of Theorem 1.14 holds.
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Theorem 2.13 Let OG be an E1–G–operad with a map of operads OG!KU . The
following statements hold for an OG–space Y :

(i) The map " is a G–homotopy equivalence with a natural homotopy inverse � .

(ii) The map x̨U is an equivalence when Y is connected and is a group completion
otherwise.

(iii) The map � is an equivalence.

Therefore, the composite

� D � ı x̨U ı �W Y !�1G EGY

is an equivalence if Y is grouplike and is a group completion otherwise.

We shall not pursue this variant of the recognition principle in further detail, but we
reemphasize that its much tighter relationship with space level data may eventually aid
equivariant calculation. However, it is worth stating the alternative geometric version
of the stable BPQ theorem to which it leads. Here we specialize to the case OG DKU .
This allows us to use the pairings of Steiner operads described in Section 1.4, which are
not available for other E1–operads. By passage to colimits, we obtain the following
analogue of Proposition 1.17.

Proposition 2.14 For G–universes U and U 0 , there is a unital, associative, and
commutative pairing

�W .KU ;KU 0/!KU˚U 0

of Steiner operads of G–spaces.

Passing to monads, we obtain a unital, associative, and commutative system of pairings

(2.15) �W KU X ^KU 0Y !KU˚U 0.X ^Y /:

Passage to colimits from Lemma 1.19 gives the following analogue of that result.

Lemma 2.16 The following diagram commutes:

KU X ^KU Y
�

//

˛U^˛U

��

KU˚U .X ^Y /

˛U˚U

��

�1
U
†1

U
X ^�1

U
†1

U
Y

^
// �1

U˚U
†1

U˚U
.X ^Y /

The following recognition principle for pairings can by derived from Proposition 1.20
by passage to colimits or can be proven by the same argument as there. We note that
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our definition of the machine EG depends on a choice of complete G–universe U, and
we sometimes write EU to indicate that choice.

Proposition 2.17 A pairing f W X ^Y !Z of a KU –space X and a KU –space Y

to a KU˚U –space Z induces a map

Ef W EU X ZEU Y ! EU˚U Z

of LM G–spectra indexed on U ˚U such that the following diagram commutes:

X ^Y
�^�
//

f

��

�1
U

EU X ^�1
U

EU Y // �1
U˚U

.EU X ZEU Y /

�1
U˚U

Ef

��

Z
�

// �1
U˚U

EU˚U Z

We can internalize the external smash product, as in [18], by choosing a linear isometry
�W U ˚U ! U. Then � induces a change of universe functor �� which allows us to
replace the right arrow by �1

U
��Ef . In the following result we can either stick with

Lewis–May G–spectra or pass to the SG–modules of [7; 19]. We interpret the smash
product according to choice.

Theorem 2.18 (the KU –space BPQ theorem for Lewis–May G–spectra) For based
G–spaces X, there is a natural equivalence

!W †1U X ! EU KU X

such that the following diagram commutes for based G–spaces X and Y :

†1
U

X ^†1
U

Y

Š

��

!^!
// EU KU X ^EU KU Y

E.�/
��

†1
U
.X ^Y /

!
// EU KU .X ^Y /

Sketch proof The first statement is the usual extra-degeneracy argument [21, Proposi-
tion 9.8]. We comment on the diagram. In either GSp or GZ , it is an internalization
of a diagram of G–spectra indexed on U ˚U:

†1
U

X Z†1
U

Y

Š

��

!Z!
// EU KU X ZEU KU Y

E.�/
��

†1
U˚U

.X ^Y /
!
// EU˚U KU˚U .X ^Y /
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The isomorphism on the left is trivial on the prespectrum level (indexing on inner
product G–spaces of the form V ˚W ) and follows on the spectrum level. After
passage to adjoints, to check commutativity it suffices to check starting from X ^Y on
the bottom left, where an inspection of definitions gives the conclusion. If in GSp , this
is internalized by use of a linear isometry �W U˚U !U. If in GZ , this is internalized
by use of the definition of the smash product in terms of the linear isometries operad LU ,
as in [7; 19].

In fact, with the model-theoretic modernization of the original version of the theory
that is given nonequivariantly in [1], one can redefine the restriction of EU to cofibrant
KU –spaces Y to be

EU Y D†1G ˝KU
Y;

where ˝KU
is the evident coequalizer. With that reinterpretation and taking X to be a

G–CW complex, EU KU X is actually isomorphic to †1
G

X .

The nonequivariant statement is often restricted to the case Y DS0. Then KU S0 is the
disjoint union of operadic models for the classifying spaces B†j . Similarly, KU S0 is
the disjoint union of operadic models for the classifying G–spaces B.G; †j /.

2.4 A comparison of infinite loop space machines

We compare the S and Sp machines ES
G

and ESp
G

by transporting both of them to
the category GZ of SG–modules, following [19]. As discussed in [19, Section IV.4]
with slightly different notation, there is a diagram of Quillen equivalences:

GP
L

//

P

��

GSp
`

oo

F

��

GS

U

OO

N
//
GZ

N#
oo

V

OO

Here GP is the category of coordinate-free G–prespectra. The left adjoint N is strong
symmetric monoidal, and the unit map �W X !N#NX is a weak equivalence for all
cofibrant orthogonal G–spectra X. It can be viewed as a fibrant approximation in the
stable model structure on GS . The pair .N;N#/ is a Quillen equivalence with the
positive stable model structure on GS ; see [19, Sections III.4–5].

We can compare machines using the diagram. In fact, by a direct inspection of defini-
tions, we see the following result, which is essentially a reinterpretation of the original
construction of [21] that becomes visible as soon as one introduces orthogonal spectra.
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Lemma 2.19 The functor ESp
G

from CG–spaces to the category GSp of Lewis–May
G–spectra is naturally isomorphic to the composite functor L ıU ıES

G
.

As explained in [19, Section IV.5], there is a monad L on GSp and a category GSpŒL�
of L–algebras. The left adjoint F in the diagram is the composite of left adjoints

LW GSp!GSpŒL� and J W GSpŒL�!GZ :

The functor L ıU W GS !GSp lands naturally in GSpŒL�, so that we can define

MD J ıL ıU W GS !GZ :

By [19, Lemma IV.5.2 and Theorem IV.5.4], M is lax symmetric monoidal and there
is a natural lax symmetric monoidal map ˛W NX !MX that is a weak equivalence
when X is cofibrant. Effectively, we have two infinite loop space machines landing
in GZ , namely N ıES

G
and J ıESp

G
. In view of the lemma, the latter is isomorphic to

M ıES
G

; hence
˛W N ıES

G !M ıES
G Š J ıESp

G

compares the two machines, showing that they are equivalent for all practical purposes.
Homotopically, these categorical distinctions are irrelevant, and we can use whichever
machine we prefer, deducing properties of one from the other.

2.5 Examples of E1–spaces and E1–ring spaces

Many of the examples from the nonequivariant theory generalize directly to the equi-
variant setting. To illustrate the point of using varying E1–operads and their natural
actions on spaces of interest, rather than just using KU , we focus on actions of the
linear isometries operad LU .

Nonequivariantly, taking U Š R1 , a systematic account of naturally occurring ex-
amples of LU –spaces was already given in [24, Section I.1]. It was revisited briefly
in more modern language [30, Section 2]. It includes the infinite classical groups O,
SO, Spin, U, SU, Sp, their classifying spaces, constructed either using Grassmannian
manifolds or the standard classifying-space functor B, and all of their associated infinite
homogeneous spaces. All of these examples are grouplike, and all of them are given
infinite loop spaces by application of the nonequivariant infinite loop space machine.
The discussion in [24; 30] was in terms of inner-product subspaces V of a universe U.
The point to make here is that the entire exposition works verbatim equivariantly, with
the V being G–inner-product subspaces of our complete G–universe U. We give a
brief account to show the idea.
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As explained in [30, Section 2], an IG–FCP (functor with cartesian product) is a
lax symmetric monoidal functor IG ! TG . We say that an IG–FCP is monoid
valued if it factors through the category of equivariant topological monoids and monoid
homomorphisms. The classical groups all give group-valued IG–FCPs:

V 7!O.V /; V 7! SO.V /; V 7! U.C˝R V /; V 7! SU.C˝R V /; etc:

Any IG–FCP X extends to a functor on all isometries (not just isometric isomorphisms)
as follows: an isometry ˛W V ! W yields an identification W Š ˛.V /˚ ˛.V /? .
Then X.˛/ is the composite

X.V /
X .˛/�0
������!X.˛.V //�X.˛.V /?/!X.˛.V /˚˛.V /?/:

Then the colimit X.U / D colimV X.V / inherits an action of LU . The classifying
space BF of a monoid-valued IG–FCP F is an IG–space, and the cited sources
show that F is equivalent to �BF as an LU –space when F is group valued.

The formal structure of the operad pair .KU ;LU / works the same way equivariantly
as nonequivariantly. It is an E1–operad pair in the sense originally defined in [24,
VI.1.2] and reviewed in [30, Section 1] and, in more detail, [29, 4.2]. See Section 7.2
below for an example of an operad pair in G–categories. The action of LU on KU is
defined nonequivariantly in [30, Section 3], and it works the same way equivariantly.

From here, multiplicative infinite loop space theory works equivariantly to construct
E1–ring G–spectra from .KU ;LU /–spaces, alias E1–ring G–spaces, in exactly the
same way as nonequivariantly [24; 30; 29]. In particular, for any LU –algebra X, the
free KU –algebra KU XC is an E1–ring G–space, where XC is obtained from X

by adjoining an additive G–fixed basepoint 0. The group completion ˛U W KU XC!

QGXC is a map of E1–ring G–spaces, and EGKU XC is equivalent to †1
G

XC as
E1–ring G–spectra.

As we intend to show elsewhere, the passage from category level data to E1–ring
G–spaces, in analogy with [26; 29], generalizes to equivariant multicategories.

We remark that the usual construction of Thom G–spectra, such as MOG and MUG ,
already presents them as E1–ring G–spectra, without use of infinite loop space theory,
as was explained and generalized in [18, Chapter X].

2.6 Some properties of equivariant infinite loop space machines

Many properties of the infinite loop space machine EG follow directly from the
group completion property, independent of how the machine is constructed, but it
is notationally convenient to work with the machine ESp

G
, for which � is a natural
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group completion without any bother with fibrant approximation. The results apply
equally well to ES

G
. It is plausible to hope that the group completion property actually

characterizes the machine up to homotopy, as in [32], but the proof there fails equiv-
ariantly. A direct point-set level comparison of our machine with a new version of
the Segal–Shimakawa machine will be given in [31]. We illustrate with the following
two results, some version of which must hold for any equivariant infinite loop space
machine EG . The first says that it commutes with passage to fixed points and the
second says that it commutes with products, both up to weak equivalence.

Theorem 2.20 For CG–spaces Y , there is a natural map of spectra

�W E.Y G/! .EGY /G

that induces a natural map of spaces under Y G

Y G

�

zz

�G

%%

�1E.Y G/ // .�1
G

EGY /G

in which the diagonal arrows are both group completions. Therefore, the horizontal
arrow is a weak equivalence of spaces, and � is a weak equivalence of spectra.

Proof For based G–spaces X, we have natural inclusions CU G .X G/! .CU X /G and
†1.X G/! .†1

G
X /G. For G–spectra E, we have a natural isomorphism �1.EG/Š

.�1
G

E/G. This gives the required natural map of spectra

E.Y G/D B.†1;CU G ;Y G/
�
�! .B.†1G ;CU ;Y //

G
D .EGY /G

and the induced natural map of spaces under Y G. Since the diagonal arrows in the
diagram are group completions, the horizontal arrow must be a homology isomorphism
and hence a weak equivalence. Since our spectra are connective, � must also be a
weak equivalence.

Theorem 2.21 Let X and Y be CG–spaces. Then the map

EG.X �Y /! EGX �EGY

induced by the projections is a weak equivalence of G–spectra.

Proof We are using that the product of CG–spaces is a CG–space, the proof of
which uses that the category of operads is cartesian monoidal. Working in GSp , the
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functor �1
G

commutes with products and passage to fixed points, and we have the
commutative diagram:

.X �Y /H ŠX H �Y H

�H

uu

�H��H

**

.�1
G

EG.X �Y //H // .�1
G

EGX /H � .�1
G

EGY /H

Since the product of group completions is a group completion, the diagonal arrows are
both group completions. Therefore, the horizontal arrow is a weak equivalence. Since
our spectra are connective, the conclusion follows.

2.7 The recognition principle for naive G –spectra

We elaborate on Theorem 2.20. The functor EDEe in that result is the nonequivariant
infinite loop space machine, which is defined using the product of the nonequivariant
Steiner operad K DKU G and the fixed-point operad C D .CG/

G. We may think of U G

as R1 , without reference to U, and start with any (naive) E1–operad C to obtain
a recognition principle for naive G–spectra, which are just spectra with G–actions.
Again we can use either the category S of orthogonal spectra or the category Sp

of Lewis–May spectra, comparing the two by mapping to the category Z of EKMM
S–modules, but letting G act on objects in all three. We continue to write E for this
construction since it is exactly the same construction as the nonequivariant one, but
applied to G–spaces with an action by the G–trivial E1–operad C.

It is worth emphasizing that when working with naive G–spectra, there is no need to
restrict to finite groups. We can just as well work with general topological groups G. The
machine E still enjoys the same properties, including the group completion property.
Working with Lewis–May spectra, the adjunction .†1; �1/ relating spaces and
spectra applies just as well to give an adjunction relating based G–spaces and naive G–
spectra. For based G–spaces X, the map ˛W C X !�1†1X is a group completion
of Hopf G–spaces by the nonequivariant special case since .C X /H DC .X H / and
.�1†1X /H D�1†1.X H /.

Returning to finite groups, we work with Lewis–May spectra and G–spectra in the rest
of this section in order to exploit the more precise relationship between spaces and
spectra that holds in that context. However, the conclusions can easily be transported
to orthogonal spectra. We index genuine G–spectra on a complete G–universe U and
we index naive G–spectra on the trivial G–universe U G Š R1 . The inclusion of
universes i W U G!U induces a forgetful functor i�W GSpU !GSpU G

from genuine
G–spectra to naive G–spectra. It represents the forgetful functor from RO.G/–graded
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cohomology theories to Z–graded cohomology theories. The functor i� has a left
adjoint i� . The following observations are trivial but important.

Lemma 2.22 The functors i�†
1 and †1

G
from based G–spaces to genuine G–

spectra are isomorphic.

Proof Clearly �1�� D �1
G

, since both are evaluation at V D 0, hence their left
adjoints are isomorphic.

Remark 2.23 For G–spaces X, the unit of the .i�; i�/ adjunction gives a natural
map †1X ! i�i�†

1X Š ��†1
G

of naive G–spectra. It is very far from being an
equivalence, as the tom Dieck splitting theorem shows; see Theorem 6.5.

The inclusion of universes i W U G ! U induces an inclusion of operads of G–spaces
�W KU G !KU , where G acts trivially on KU G . The product of this inclusion and the
inclusion �W C D .CG/

G! CG is an inclusion

�W CU G � C �KU G ! CG �KU � CU :

Pulling actions back along � gives a functor �� from CU –spaces to CU G –spaces. The
following consistency statement is important since, by definition, the H–fixed-point
spectrum EH of a genuine G–spectrum E is .i�E/H and the homotopy groups of E

are �H
� .E/� ��.E

H /.

Theorem 2.24 Let Y be a CG–space. Then there is a natural weak equivalence of
naive G–spectra E��Y ! i�EGY .

Proof Again, although we work with ESp
G

, the conclusion carries over to ES
G

. It is
easy to check from the definitions that, for G–spaces X, we have a natural commutative
diagram of G–spaces:

CU G X
˛
//

��

�1†1X

��

CU X
˛
// �1

G
†1

G
X

The vertical arrows both restrict colimits over representations to colimits over trivial
representations. Passing to adjoints, we obtain a natural commutative diagram:

†1
G

CU G X //

��

†1X

��

†1
G

CU X // †1
G

X
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The composite gives a right action of CU G on †1
G

that is compatible with the right
action of CU . Using the natural map †1! i�†1

G
of Remark 2.23, there results a

natural map

�W E��Y D B.†1;CU G ; ��Y /! B.i�†1G ;CU ;Y /Š i�EGY

of naive G–spectra. The following diagram commutes by a check of definitions:

Y

D

��

B.CU G ;CU G ; ��Y /
"
oo

B.˛;id;id/
//

��

B.Q;CU G ;Y /
�
//

��

�1B.†1;CU G ;Y /

�1�

��

Y B.CG ;CG ;Y /
"

oo
B.˛;id;id/

// B.QG ;CU ;Y /
�
// �1

G
B.†1

G
;CU ;Y /

Here the right vertical map is the map of zeroth spaces given by �. Replacing the maps "
with their homotopy inverses, the horizontal composites become group completions.
Therefore, �1� is a weak equivalence, hence so is �.

We also have the corresponding statement for the left adjoint i� of i� . In effect, it
gives a space level construction of the change of universe functor i� on connective
G–spectra. We need a homotopically well-behaved version of the left adjoint of the
functor �� from C –spaces to CG–spaces, and we define it by �!X D B.CG ;C ;X /.

Theorem 2.25 Let X be a C –space. Then there is a natural weak equivalence of
genuine G–spectra EG.i!X /' i�E.X /.

We give the proof in Appendix B, using a construction that is of independent interest.

3 Categorical preliminaries on classifying G–spaces
and G–operads

We recall an elementary functor Cat.EG;�/ from G–categories to G–categories from
our paper [11] with Mona Merling. We explored this functor in detail in the context of
equivariant bundle theory in [11], and we refer the reader there for proofs. In Section 4,
we shall use it to define a certain operad PG of G–categories. The PG–algebras will
be the genuine permutative G–categories.

3.1 Chaotic topological categories and equivariant classifying spaces

For (small) categories A and B, we let Cat.A ;B/ denote the category whose objects
are the functors A !B and whose morphisms are the natural transformations between
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them. When B has a right action by some group …, then Cat.A ;B/ inherits a right
…–action. When a group G acts from the left on A and B, Cat.A ;B/ inherits
a left G–action by conjugation on objects and morphisms. Then GCat.A ;B/ is
alternative notation for the G–fixed category Cat.A ;B/G of G–functors and G–
natural transformations. We have the G–equivariant version of the standard adjunction

(3.1) Cat.A �B;C /Š Cat.A ;Cat.B;C //:

Definition 3.2 For a space X, the chaotic (topological) category EX has object
space X, morphism space X � X, and structure maps I, S, T , and C given by
I.x/ D .x;x/, S.y;x/ D x , T .y;x/ D y , and C..z;y/; .y;x// D .z;x/. For any
point � 2 X, the map �W X ! X �X specified by �.x/ D .�;x/ is a continuous
natural isomorphism from the identity functor to the trivial functor EX !�! EX ,
hence EX is equivalent to �. When X DG is a topological group, EG is isomorphic
to the translation category of G, but the isomorphism encodes information about the
group action and should not be viewed as an identification; see [11, Remark 1.7]. We
say that a topological category with object space X is chaotic if it is isomorphic to EX .

Definition 3.3 Without changing notation, we regard a topological group … as a
topological category with a single object � and morphism space …, with composition
given by multiplication. Then … is isomorphic to the orbit category E…=…, where
… acts from the right on E… via right multiplication on objects and diagonal right
multiplication on morphisms. The resulting functor pW E…!… is given by the trivial
map …!� of object spaces and the map pW …�…!…�…=…Š… on morphism
spaces specified by p.�; �/D ���1 .

Theorem 3.4 [11, Theorem 2.7] For a G–space X and a topological group …,
regarded as a G–trivial G–space, the functor pW E…!… induces an isomorphism of
topological G–categories

�W Cat.EX; E…/=…! CatG.EX;…/:

Therefore, passing to G–fixed-point categories,

.Cat.EX; E…/=…/G Š Cat.EX;…/G Š Cat.EX=G;…/:

The last isomorphism is clear since G acts trivially on …. Situations where G is allowed
to act nontrivially on … are of considerable interest, as we shall see in Section 4.4,
but otherwise they will only appear peripherally in this paper. The paper [11] works
throughout in that more general context. The previous result will not be used directly,
but it is the key underpinning for the results of the next section.
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3.2 The functor Cat.EG;�/

The functor Cat.EG;�/ from G–categories to G–categories is a right adjoint (3.1),
hence it preserves limits and in particular products. The projection EG ! � to the
trivial G–category induces a natural map

(3.5) �W A D Cat.�;A /! Cat.EG;A /:

The map � is not an equivalence of G–categories in general [11, Proposition 4.19], but
the functor Cat.EG;�/ is idempotent in the sense that the following result holds.

Lemma 3.6 For any G–category A ,

�W Cat.EG;A /! Cat.EG;Cat.EG;A //

is an equivalence of G–categories.

Proof This follows from the adjunction (3.1) using that the diagonal EG! EG�EG

is an equivalence with inverse given by either projection and that the specialization of �
here is induced by the first projection.

Lemma 3.7 [11, Lemma 3.7] Let ƒ be a subgroup of G�…. The ƒ–fixed category
Cat.EG; E…/ƒ is empty if ƒ\…¤ e and is nonempty and chaotic if ƒ\…D e .

With G acting trivially on …, let H 1.GI…/ denote the set of isomorphism classes
of homomorphisms ˛W G!…. Equivalently, it is the set of …–conjugacy classes of
subgroups ƒD f.g; ˛.g// j g 2Gg of G �…. Define …˛ �… to be the subgroup of
elements � that commute with ˛.g/ for all g 2G.

Theorem 3.8 [11, Theorems 4.14 and 4.18] For H � G, the H–fixed category
Cat.EG;…/H is equivalent to the coproduct of the groups …˛ (regarded as categories),
where the coproduct runs over Œ˛� 2H 1.H I…/.

Definition 3.9 Define E.G;…/DjCat.EG; E…/j and B.G;…/DjCat.EG;…/j. Let

pW E.G;…/! B.G;…/

be induced by the passage to orbits functor E…!….

Theorem 3.10 [11, Theorems 3.11, 4.23, 4.24] Let … be a discrete or compact Lie
group and let G be a discrete group. Then pW E.G;…/! B.G;…/ is a universal
principal .G;…/–bundle. For a subgroup H of G,

B.G;…/H '
G

B.…˛/;

where the union runs over Œ˛� 2H 1.H I…/.
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3.3 E1–operads of G –categories

The definition of an E1–operad of G–spaces given in Section 2.1 has the following
categorical analogue.

Definition 3.11 An E1–operad OG of (topological) G–categories is an operad in
the cartesian monoidal category GCat such that jOG j is an E1–operad of G–spaces.
We say that OG is reduced if OG.0/ is the trivial category. In practice, the OG.j / are
groupoids.

The proof of Lemma 2.5 works just as well to give the following analogue.

Lemma 3.12 Let OG be an E1–operad of G–categories. Then O D .OG/
G is an

E1–operad of categories. If A is an OG–category, then A G is an O–category.

4 Categorical philosophy: what is a permutative
G–category?

4.1 Naive permutative G –categories

We have a notion of a monoidal category A internal to a cartesian monoidal category V .
It is a category internal to V together with a coherently associative and unital product
A �A ! A . It is strict monoidal if the product is strictly associative and unital. It is
symmetric monoidal if it has an equivariant symmetry isomorphism satisfying the usual
coherence properties. A functor F W A !B between symmetric monoidal categories
is strict monoidal if F.A˝A0/ D FA˝FA0 for A,A0 2 A and FI D J, where I

and J are the unit objects of A and B.

A permutative category is a symmetric strict monoidal category.4 Taking V to be U ,
these are the topological permutative categories. Taking V to be GU , these are the
naive topological permutative G–categories.

Nonequivariantly, there is a standard E1–operad of spaces that is obtained by applying
the classifying-space functor to an E1–operad P of categories. The following
definition goes back to Barratt and Eccles, thought of simplicially [2], and to [22],
thought of categorically.

4In interesting examples, the product cannot be strictly commutative.
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Definition 4.1 We define an E1–operad P of categories. Let P.j /D E†j . Since
†j acts freely and E†j is chaotic, the classifying space jP.j /j is †j –free and
contractible, as required of an E1–operad. The structure maps

 W E†k � E†j1
� � � � � E†jk

! E†j ;

where j D j1C � � �C jk , are dictated on objects by the definition of an operad. If we
view the object sets of the P.j / as discrete categories (identity morphisms only), then
they form the associativity operad M.

We can define M–algebras and P–algebras in Cat or in GCat . In the latter case, we
regard M and P as operads with trivial G–action. The following result characterizes
naive permutative G–categories operadically. The proof is easy [22].

Proposition 4.2 The category of strict monoidal G–categories and strict monoidal G–
functors is isomorphic to the category of M–algebras in GCat . The category of naive
permutative G–categories and strict symmetric monoidal G–functors is isomorphic to
the category of P–algebras in GCat .

The term “naive” is appropriate since naive permutative G–categories give rise to
naive G–spectra on application of an infinite loop space machine. Genuine permutative
G–categories need more structure, especially precursors of transfer maps, to give rise
to genuine G–spectra. Nonequivariantly, there is no distinction.

4.2 Genuine permutative G –categories

The following observation will play a helpful role in our work. Recall the natural map
�W A ! Cat.EG;A / of (3.5).

Lemma 4.3 For any space X regarded as a G–trivial G–space, �W EX!Cat.EG; EX /

is the inclusion of the G–fixed category GCat.EG; EX /.

Proof Since EX is chaotic, functors EG! EX are determined by their object map
G!X and are G–fixed if and only if the object map factors through G=G D �.

Definition 4.4 Let PG be the (reduced) operad of G–categories whose j th G–
category is PG.j /DCat.EG;P.j //, where P.j /D E†j is viewed as a G–category
with trivial G–action and is given its usual right †j –action. The unit in PG.1/ is the
unique functor from EG to the trivial category P.1/DPG.1/. The structure maps 
of PG are induced from those of P, using that the functor Cat.EG;�/ preserves
products. By Theorem 3.10, PG is an E1–operad of G–categories. The natural map �
of (3.5) induces an inclusion �W P D .PG/

G!PG of operads of G–categories.
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Definition 4.5 A genuine permutative G–category is a PG–algebra in GCat . A map
of genuine permutative G–categories is a map of PG–algebras.

We usually call these PG–categories. We have an immediate source of examples.
Let �� be the functor from genuine permutative G–categories to naive permutative
G–categories that is obtained by restricting actions by PG to its suboperad P.

Proposition 4.6 The action of P on a naive permutative G–category A induces an
action of PG on Cat.EG;A /. Therefore, Cat.EG;�/ restricts to a functor from naive
permutative G–categories to genuine permutative G–categories.

Proof This holds since the functor Cat.EG;�/ preserves products.

Proposition 4.7 The map � of (3.5) restricts to a natural map A ! ��Cat.EG;A / of
naive permutative G–categories, and � is an equivalence when A D ��Cat.EG;B/ for
a naive permutative G–category B.

Proof Since � is induced by the projection EG! Efeg D �, the first claim is clear,
and the second holds by Lemma 3.6.

As noted before, the map �W A ! ��Cat.EG;A / is not an equivalence in general
[11, Proposition 4.19]. The PG–categories of interest in this paper are of the form
Cat.EG;A / for a naive permutative G–category A . In fact, we do not yet know how
to construct other examples, although we believe that they exist.

Remark 4.8 Shimakawa [43, page 256] introduced the E1–operad PG under the
name D and demonstrated the first part of Proposition 4.6.

Remark 4.9 One might hope that .Cat.EG;�/; ��/ is an adjoint pair. However,
regarding �� monadically as the forgetful functor from PG–algebras to P–algebras,
its left adjoint is the coend that sends a naive permutative G–category A to the
genuine permutative G–category PG ˝P A , which is the coequalizer in GCat of
the maps PGPA � PGA induced by the action map PA ! A and by the map
PGP ! PGPG! PG induced by the inclusion P ! PG and the product on PG . The
universal property of the coequalizer gives a natural map

z�W PG ˝P A ! Cat.EG;A /

of genuine permutative G–categories that restricts to � on A , but z� is not an isomorphism.
We shall say a bit more about this in Remark 4.20.
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4.3 E1–G –categories

We can generalize the notion of a genuine permutative G–category by allowing the use
of E1–operads other than PG . In fact, thinking as algebraic topologists rather than cat-
egory theorists, there is no need to give the particular E1–operad PG a privileged role.

Definition 4.10 An E1–G–category A is a G–category together with an action of
some E1–operad OG of G–categories. The classifying space BA D jA j is then an
jOG j–space and thus an E1–G–space.

We may think of E1–G–categories as generalized kinds of genuine permutative G–
categories. The point of the generalization is that we have interesting examples of
E1–operads of G–categories with easily recognizable algebras. We shall later define
E1–operads VG , V �

G
, and WG that are interrelated in a way that illuminates the study

of multiplicative structures.

Observe that PG–algebras, like nonequivariant permutative categories, have a canonical
product, whereas E1–G–categories over other operads do not. The general philosophy
of operad theory is that algebras over an operad C in any suitable category V have j –
fold operations parametrized by the objects C .j /. Homotopical properties of C relate
these operations. In general, in an E1 space, there is no preferred choice of a product
on its underlying H–space, and none is relevant to the applications; E1–G–categories
work similarly.

Remark 4.11 Symmetric monoidal categories occur more often “in nature” than
permutative categories. We have not specified a notion of a genuine symmetric monoidal
G–category in this paper. One approach is to apply the construction Cat.EG;�/ to
the tree operad that defines symmetric monoidal categories. Another approach, which
we find more useful, is to define a genuine symmetric monoidal G–category to be a
pseudoalgebra over PG . That approach is developed and applied in the categorical
sequels [12; 13]. We shall not pursue the topic further here. A first comparison
between symmetric monoidal G–categories and (genuine) G–symmetric monoidal
categories, whose definition is a priori quite different, is given in Hill and Hopkins
[16, Section 3.2], but work in progress shows that there is a good deal more to be said
about that comparison and about the comparison between these notions and Tambara
functors that is given in [16, Section 5.1].

Up to homotopy, any two choices of E1–operads give rise to equivalent categories
of E1–G–spaces. To see that, we apply the trick from [21] of using products of
operads to transport operadic algebras from one E1–operad to another. The product
of operads C and D in any cartesian monoidal category V is given by

.C �D/.j /D C .j /�D.j /;
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with the evident permutations and structure maps. With the choices of V of interest to
us, the product of E1–operads is an E1–operad. The projections

C  C �D! D

allow us to construct .C�D/–algebras in V from either C –algebras or D–algebras
in V , by pullback of action maps along the projections.

More generally, for any map �W C !D of operads in V , the pullback functor �� from
D–algebras to C –algebras has a left adjoint pushforward functor �! from C –algebras
to D–algebras. One can work out a homotopical comparison model categorically.
Pragmatically, use of the two-sided bar construction as in [21; 30] gives all that is
needed. One redefines �!X D B.D;C;X /, where C and D are the monads whose
algebras are the C –algebras and D–algebras.5 In spaces, or equally well G–spaces,
�� and �! give inverse equivalences of homotopy categories between C –algebras and
D–algebras when C and D are E1–operads.

Starting with operads in Cat or in GCat we can first apply the classifying-space
functor and then apply this trick. The conclusion is that all E1–categories and E1–
G–categories give equivalent inputs for infinite loop space machines. In particular,
for example, letting OG , PG , and OG �PG denote the monads in the category of
G–spaces whose algebras are jOG j–algebras, jPG j–algebras, and jOG�PG j–algebras,
we see that after passage to classifying spaces, every PG–algebra Y determines an
OG–algebra X D B.OG ;OG �PG ;Y / such that X and Y are weakly equivalent as
.OG�PG/–algebras (and conversely). This says that for purposes of equivariant infinite
loop space theory, PG and any other E1–operad OG can be used interchangeably,
regardless of how their algebras compare categorically.

4.4 Equivariant algebraic K–theory

The most interesting nonequivariant permutative categories are given by categories
A D

F
…n , where f…n j n� 0g is a sequence of groups (regarded as categories with a

single object) and where the permutative structure is given by an associative and unital
system of pairings …m �…n!…mCn . Then the pairings give the classifying space
BA D

F
B…n a structure of topological monoid, and one definition of the algebraic

K–groups of A is the homotopy groups of the space �B.BA /.

Equivariantly, it is sensible to replace the spaces B…n by the classifying G–spaces
B.G;…n/ and proceed by analogy. This definition of equivariant algebraic K–groups
was introduced and studied calculationally in [9]. It is the equivariant analogue of

5Of course, this is an abuse of notation, since �! here is really a derived functor.
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Quillen’s original definition in terms of the plus construction. With essentially the same
level of generality, the analogue of Quillen’s definition in terms of the Q–construction
has been studied by Dress and Kuku [6; 17]. Shimada [44] has given an equivariant
version of Quillen’s “plus D Q” theorem in this context.

Regarding A as a G–trivial naive permutative G–category, we see that the classifying
G–space of the genuine permutative G–category Cat.EG;A / is the disjoint union of
classifying spaces B.G;…n/. Just as nonequivariantly, the functor �B can be replaced
by the zeroth space functor �1

G
EG of an infinite loop G–space machine EG . The

underlying equivariant homotopy type is unchanged. Therefore, we may redefine the
algebraic K–groups to be the homotopy groups of the genuine G–spectrum KGA �

EGBCat.EG;A /. Essentially the same definition is implicit in Shimakawa [43], who
focused on an equivariant version of Segal’s infinite loop space machine. A different
equivariant version of Segal’s machine is developed and compared to Shimakawa’s
in [31]. It is generalized categorically in [12; 13].

Applying the functor Cat.EG;�/ to naive permutative G–categories A with nontrivial
G–actions gives more general input for equivariant algebraic K–theory than has been
studied in the literature. This allows for G–actions on the groups …n , and we then
replace B.G;…n/ by classifying G–spaces B.G; .…n/G/ for the .G; .…n/G/–bundles
associated to the split extensions …n ÌG. Such classifying spaces are studied in [11].
Alternative but equivalent constructions of the associated G–spectra KG.A / are given
in Section 4.5 and Section 8.2 below. The resulting generalization of equivariant
algebraic K–theory is studied in [33].

4.5 The recognition principle for permutative G –categories

We may start with any E1–operad OG of G–categories and apply the classifying-
space functor to obtain an E1–operad jOG j of G–spaces. If OG acts on a category A ,
then jOG j acts on jA j D BA . We can replace jOG j by its product with the Steiner
operads KV or with the Steiner operad KU and apply the functor ES

G
or ESp

G
to obtain

a (genuine) associated G–spectrum, which we denote ambiguously by EG.BA /.

Definition 4.12 Define the (genuine) algebraic K–theory G–spectrum of an OG–
category A by KG.A /D EG.BA /.

We might also start with an operad O of categories such that jOj is an E1–operad of
spaces and regard these as G–objects with trivial action. Following up the previous
section, we then have the following related but less interesting notion.

Definition 4.13 The (naive) algebraic K–theory G–spectrum of an O–category A is
defined by K.A /D E.BA /.
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Until Section 7, we restrict attention to the cases OG DPG and O DP, recalling that
the PG–categories are the genuine permutative G–categories, the P–categories are
the naive permutative G–categories, and the inclusion �W P!PG induces a forgetful
functor �� from genuine to naive permutative G–categories. Since the classifying-
space functor commutes with products, passage to fixed points, and the functors ��,
Theorems 2.20, 2.21, and 2.24 have the following immediate corollaries. The first was
promised in [10, Theorem 2.2].

Theorem 4.14 For PG–categories A , there is a natural weak equivalence of spectra

K.A G/! .KGA /G :

Theorem 4.15 Let A and B be PG–categories. Then the map

KG.A �B/!KGA �KGB

induced by the projections is a weak equivalence of G–spectra.

Theorem 4.16 For PG–categories A , there is a natural weak equivalence of naive
G–spectra K��A ! i�KGA .

The algebraic K–groups of A are defined to be the groups

(4.17) KH
� A D �H

� .K�
�A /Š �H

� .KGA /:

We are particularly interested in examples of the form Cat.EG;A /, where A is a
naive permutative G–category. As noted in Proposition 4.6, we then have a natural map
�W A ! ��Cat.EG;A / of naive permutative G–categories. We can pass to classifying
spaces and apply the functor E to obtain a natural map

(4.18) KA
K�
��!K��Cat.EG;A /

�
��!
'

i�KGCat.EG;A /:

This map is a weak equivalence when �H W A H ! .��Cat.EG;A //H is an equivalence
of categories for all H �G. The following example where this holds is important in
equivariant algebraic K–theory.

Example 4.19 Let E be a Galois extension of F with Galois group G and let G

act entrywise on GL.n;E/ for n� 0. The disjoint union of the GL.n;E/ is a naive
permutative G–category that we denote by GL.EG/. Its product is given by the block
sum of matrices. Write GL.R/ for the nonequivariant permutative general linear
category of a ring R. As we proved in [11, Example 4.20], Serre’s version of Hilbert’s
Theorem 90 implies that

�H W GL.EH /Š GL.EG/
H
! .��Cat.EG;GL.EG//

H
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is an equivalence of categories for H � G. This identifies the equivariant algebraic
K–groups of E with the nonequivariant algebraic K–groups of its fixed fields EH .

Remark 4.20 In the list above of theorems about permutative categories, a conse-
quence of Theorem 2.25 is conspicuous by its absence. Letting �!A � PG ˝P A

denote the left adjoint of �� , as defined in Remark 4.9, one might hope that B�!A is
equivalent as an jPG j–space to �!BA for a naive permutative G–category A . We do
not know whether or not that is true.

5 The free jPG j–space generated by a G–space X

The goal of this section is to obtain a decomposition of the fixed point categories of
free permutative G–categories. This decomposition will be the crux of the proof of the
tom Dieck splitting theorem given in Section 5.2.

5.1 The monads PG and PG associated to PG

Recall that PG is reduced. In fact, both PG.0/ and PG.1/ are trivial categories. As
discussed for spaces in [30, Section 4], there are two monads on G–categories whose
algebras are the genuine permutative G–categories. The unit object of an PG–category
can be preassigned, resulting in a monad PG on based G–categories, or it can be
viewed as part of the PG–algebra structure, resulting in a monad PGC on unbased
G–categories. Just as in [30], these monads are related by

PG.AC/Š PGCA ;

where ACDA t� is obtained from an unbased G–category A by adjoining a disjoint
copy of the trivial G–category �. Explicitly,

(5.1) PG.AC/D
G
j�0

PG.j /�†j
A j :

The term with j D 0 is � and accounts for the copy of � on the left. The unit �W A !
PG.AC/ identifies A with the term with j D 1. The product �W PGPGAC! PGAC
is induced by the operad structure maps  . We are only concerned with based G–
categories that can be written in the form AC .

Since we are concerned with the precise point-set relationship between an infinite loop
space machine defined on G–categories and suspension G–spectra, it is useful to think
of (unbased) G–spaces X as categories. Thus we also let X denote the topological
G–category with object and morphism G–space X and with I, S, T , and C all given
by the identity map X !X ; this makes sense for C since we can identify X �X X

with X. We can also identify the classifying G–space jX j with X.

Algebraic & Geometric Topology, Volume 17 (2017)



3306 Bertrand J Guillou and J Peter May

By specialization of (5.1), we have an identification of (topological) G–categories

(5.2) PG.XC/D
G
j�0

PG.j /�†j
X j :

The following illuminating result gives another description of PG.XC/.

Proposition 5.3 For G–spaces X, there is a natural isomorphism of genuine permuta-
tive G–categories

PG.XC/D
G
j

Cat.EG;E†j /�†j
Xj
!

G
j

Cat.EG; E†j�†j
Xj /DCat.EG;P .XC//:

Proof For each j and for .G�†j /–spaces Y , such as Y DX j, we construct a natural
isomorphism of .G�†j /–categories

Cat.EG; E†j /�Y ! Cat.EG; E†j �Y /:

Here Y is viewed as the constant .G�†j /–category at Y . The target is

Cat.EG; E†j /�Cat.EG;Y /:

Since there is a map between any two objects of EG but the only maps in Y are
identity maps iy W y ! y for y 2 Y , the only functors EG ! Y are the constant
functors cy at y 2Y and the only natural transformations between them are the identity
transformations idy W cy! cy . Sending y to cy on objects and iy to idy on morphisms
specifies an identification of .G�†j /–categories Y ! Cat.EG;Y /. The product of
the identity functor on Cat.EG; E†j / and this identification gives the desired natural
equivalence. With Y DX j, passage to orbits over †j gives the j th component of the
claimed isomorphism of G–categories. It is an isomorphism of PG–categories since
on both sides the action maps are induced by the structure maps of the operad P.

Recall that we write PG for the monad on based G–spaces associated to the operad jPGj.
Thus PG.XC/ is the free jPG j–space generated by the G–space X.

Proposition 5.4 For G–spaces X, there is a natural isomorphism

PG.XC/D
G
j�0

jPG.j /j �†j
X j
Š jPGXCj:

Proof For a .G�†j /–space Y viewed as a G–category, the nerve N Y can be
identified with the constant simplicial space Y� with Yq D Y . The nerve functor N
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does not commute with passage to orbits in general, but arguing as in [11, Section 2.3] we
see that

N.PG.j /�†j
Y /Š .N PG.j //�†j

Y� DN.PG.j /�†j
N Y /:

Therefore, the classifying-space functor commutes with coproducts, products, and the
passage to orbits that we see here.

5.2 The identification of .PG XC/G

The functor j � j commutes with passage to G–fixed points, and we shall prove the
following identification. Let P denote the monad on nonequivariant based categories
associated to the operad P that defines permutative categories.

Theorem 5.5 For G–spaces X, there is a natural equivalence of P–categories

PG.XC/
G
'

Y
.H /

P .EWH �WH X H /C;

where .H / runs over the conjugacy classes of subgroups of G and WH DNH=H.

We are regarding P as the suboperad .PG/
G of PG , and the identification of cate-

gories will make clear that the identification preserves the action by P. Of course,

(5.6) PG.XC/
G
D

G
j�0

.PG.j /�†j
X j /G

and

(5.7) P .EWH �WH X H /C D
G
k�0

E†k �†k
.EWH �WH X H /k :

We shall prove Theorem 5.5 by identifying both (5.6) and (5.7) with a small (but
not skeletal) model FG.X /

G for the category of finite G–sets over X and their
isomorphisms over X. We give the relevant definitions and describe these identifications
here, and we fill in the easy proofs in Sections 5.3 and 5.4.

A homomorphism ˛W G ! †j is equivalent to the left action of G on the set j D

f1; : : : ; j g specified by g � i D ˛.g/.i/ for i 2 j . Similarly, an antihomomorphism
˛W G! †j is equivalent to the right action of G on j specified by i � g D ˛.g/.i/

or, equivalently, the left action specified by g � i D ˛.g�1/.i/; of course, if we set
˛�1.g/D ˛.g/�1 , then ˛�1 is a homomorphism. We focus on homomorphisms and
left actions, and we denote such G–spaces by .j ; ˛/. When we say that A is a finite
G–set, we agree to mean that AD .j ; ˛/ for a given homomorphism ˛W G!†j . That
convention has the effect of fixing a small groupoid GF equivalent to the groupoid of
all finite G–sets and isomorphisms of finite G–sets. By a j –pointed G–set, we mean
a G–set with j elements.
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Definition 5.8 Let X be a G–space and j � 0.

(i) Let FG.j / be the G–groupoid whose objects are the j –pointed G–sets A and
whose morphisms � W A! B are the bijections, with G acting by conjugation.
Then FG.j /

G is the category with the same objects and with morphisms the
isomorphisms of G–sets � W A! B.

(ii) Let FG.j ;X / be the G–groupoid whose objects are the maps (not G–maps)
pW A!X and whose morphisms f W p! q , for qW B!X, are the bijections
f W A! B such that q ıf D p ; the action of G is by conjugation on all maps
p , q , and f . We view FG.j ;X /

G as the category of j –pointed G–sets over X

and isomorphisms of j –pointed G–sets over X.

(iii) Let FG D
F

j�0 FG.j / and FG.X /D
F

j�0 FG.j ;X /.

(iv) Let FP
G
.j / be the full G–subcategory of G–fixed objects of PG.j /=†j and let

FP
G
.j;X / be the full G–subcategory of G–fixed objects of PG.j /�†j

X j. Then

FP
G .j /

G
D .PG.j /=†j /

G and FP
G .j ;X /

G
D .PG.j /�†j

X j /G :

In Section 5.3, we prove that the right side of (5.6) can be identified with FG.X /
G.

Theorem 5.9 There is a natural isomorphism of permutative categories

.PG.XC//
G
D

G
j�0

FP
G .j ;X /

G
Š

G
j�0

FG.j ;X /
G
DFG.X /

G :

We will prove an equivariant variant of this result, before passage to fixed points, in
Theorem 9.6. In Section 5.4, we prove that the right side of (5.7) can also be identified
with FG.X /

G. At least implicitly, this identification of fixed-point categories has been
known since the 1970s; see for example Nishida [36, Appendix A].

Theorem 5.10 There is a natural equivalence of categoriesY
.H /

G
k�0

E†k �†k
.EWH �WH X H /k !

G
j�0

FG.j ;X /
G
DFG.X /

G :

These two results prove Theorem 5.5.

Remark 5.11 With our specification of finite G–sets as AD .j ; ˛/, the disjoint union
of A and B D .k; ˇ/ is obtained via the obvious identification of j tk with j Ck.
The disjoint union of finite G–sets over a G–space X gives FG.X / a structure of
naive permutative G–category. By Theorem 5.9, its fixed-point category FG.X /

G is
a P–category equivalent to .PG.XC//

G. One might think that FG.X / is a genuine
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permutative G–category equivalent to the free PG–category PG.XC/. However, its
H–fixed subcategory for H ¤G is not equivalent to FH .X /

H , and one cannot expect
an action of PG (or any other E1–G–operad) on FG.X /. To see the point, let G

be the quaternion group of order 8: G D f˙1;˙i;˙j ;˙kg, and let X D �. Every
nontrivial subgroup of G contains the center H DZ D˙1. Therefore, the H–set H

cannot be obtained by starting with a G–set (a disjoint union of orbits G=K ) and
restricting along the inclusion H !G.

To compare with our paper [10], we offer some alternative notation.

Definition 5.12 For an unbased G–space X, let EG.X /D E P
G
.X /D PG.XC/. It is a

genuine permutative G–category, and its H–fixed subcategory EG.X /
H is equivalent

to EH .X /
H and therefore to FH .X /

H .

Remark 5.13 In [10], we gave a more intuitive definition of a G–category EG.X /. It
will reappear in Section 9, where it will be given the alternative notation E U

G
.X /. It is

acted on by an E1–operad VG of G–categories, and, again, its fixed-point category
E U

G
.X /H is equivalent to E U

H
.X /H and therefore to FH .X /

H .

5.3 The proof of Theorem 5.9

We first use Theorem 3.8 to identify (5.6) when X is a point. The proof of Theorem 3.8
compares several equivalent categories, and antihomomorphisms appear naturally. To
control details of equivariance, it is helpful to describe the relevant categories implicit
in our operad PG in their simplest forms up to isomorphism. Details are in [11,
Sections 2.1, 2.2, 4.1, 4.2].

Lemma 5.14 The objects of the chaotic .G�†j /–category PG.j / are the functions
�W G ! †j . The (left) action of G on PG.j / is given by .g�/.h/ D �.g�1h/ on
objects and the diagonal action on morphisms. The (right) action of †j is given by
.��/.h/D �.h/� on objects and the diagonal action on morphisms.

Lemma 5.15 The objects of the G–category PG.j /=†j are the functions ˛W G!†j

such that ˛.e/D e . The morphisms � W ˛! ˇ are the elements � 2†j , thought of as
the functions G!†j specified by �.h/D ˇ.h/�˛.h/�1 . The composite of � with
� W ˇ!  is �� W ˛!  . The action of G is given on objects by

.g˛/.h/D ˛.g�1h/˛.g�1/�1:

In particular, .g˛/.e/D e . The action on morphisms is given by

g.� W ˛! ˇ/D � W g˛! gˇ:
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Lemma 5.16 For ƒ�G �†j , the subcategory PG.j /
ƒ is empty if ƒ\†j ¤ e . It

is a nonempty and hence chaotic subcategory of PG.j / if ƒ\†j D e .

Lemma 5.17 The objects of .PG.j /=†j /
G are the antihomomorphisms ˛W G!†j .

Its morphisms � W ˛! ˇ are the conjugacy relations ˇ D �˛��1 , where � 2†j . For
H �G, restriction of functions gives an equivalence of categories

.PG.j /=†j /
H
! .PH .j /=†j /

H :

Now return to a general G–space X. To prove Theorem 5.9, it suffices to prove that
.PG.j / �†j

X j /G is isomorphic to FG.j ;X /
G for all j . Passage to orbits here

means that for � 2PG.j /, y 2X j, and � 2†j (thought of as acting on the left on j

and therefore on j –tuples of elements of X ), .��;y/D .�; �y/ in PG.j /�†j
X j.

Observe that an object .�; z1; : : : ; zj / 2PG.j /�†j
X j has a unique representative

in the same orbit under †j of the form .˛;x1; : : : ;xj / where ˛.e/D e . It is obtained
by replacing � by �� , where � D �.e/�1 , and replacing zi by xi D z�.i/ .

Lemma 5.18 An object .˛;y/ 2 PG.j / �†j
X j, where ˛.e/ D e and y 2 X j, is

G–fixed if and only if ˛W G! †j is an antihomomorphism and ˛.g�1/y D gy for
all g 2G.

Proof Assume that .˛;y/D .g˛;gy/ for all g 2 G. Then each g˛ must be in the
same †j –orbit as ˛ , where ˛ is regarded as an object of PG.j / and not PG.j /=†j ,
so that .g˛/.h/D ˛.g�1h/. Then .g˛/.h/D ˛.h/� for all h 2G and some � 2….
Taking hD e shows that � D ˛.g�1/. The resulting formula ˛.g�1h/D ˛.h/˛.g�1/

implies that ˛ is an antihomomorphism. Now

.˛;y/D .g˛;gy/D .˛˛.g�1/;gy/D .˛; ˛.g/gy/;

which means that ˛.g/gy D y and thus gy D ˛.g�1/y .

Use ˛�1 to define a left action of G on j and define pW j !X by p.i/D xi . Then
the lemma shows that the G–fixed elements .˛;y/ are in bijective correspondence with
the maps of G–sets pW A!X, where A is a j –pointed G–set. Using Lemma 5.17, we
see similarly that maps f W A!B of j –pointed G–sets over X correspond bijectively
to morphisms in .PG.j /�†j

X j /G. These bijections specify the required isomorphism
between FG.j ;X /

G and .PG.j /�†j
X j /G.

5.4 The proof of Theorem 5.10

This decomposition is best proven by a simple thought exercise. Every finite G–set A

decomposes nonuniquely as a disjoint union of orbits G=H, and orbits G=H and G=J
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are isomorphic if and only if H and J are conjugate. Choose one H in each conjugacy
class. Then A decomposes uniquely as the disjoint union of the G–sets AH , where
AH is the set of elements of A with isotropy group conjugate to H. This decomposes
the category GF � .FG/

G as the product over H of the categories GF .H / of finite
G–sets all of whose isotropy groups are conjugate to H.

In turn, GF .H / decomposes uniquely as the coproduct over k � 0 of the categories
GF .H; k/ whose objects are isomorphic to the disjoint union, denoted by kG=H, of k

copies of G=H. Up to isomorphism, kG=H is the only object of GF .H; k/. The auto-
morphism group of the G–set G=H is WH , hence the automorphism group of kG=H

is the wreath product †k

R
WH . Viewed as a category with a single object, we may

identify this group with the category E†k�†k
.WH /k. This proves the following result.

Proposition 5.19 The category GF is equivalent to the categoryY
.H /

G
k�0

E†k �†k
.WH /k :

The displayed category is a skeleton of GF . As written, its objects are sets of num-
bers fkH g, one for each .H /, but they are thought of as the finite G–sets

F
H kH G=H.

Its morphism groups specify the automorphisms of these objects. On objects, the
equivalence sends a finite G–set A to the unique finite G–set of the form

F
.H / kG=H

in the same isomorphism class as A. Via chosen isomorphisms, this specifies the inverse
equivalence to the inclusion of the chosen skeleton in GF .

We parametrize this equivalence to obtain a description of the category GF .X / of
finite G–sets over X. Given any H and k , a k–tuple of elements fx1; : : : ;xkg of X H

determines the G–map pW kG=H !X that sends eH in the i th copy of G=H to xi ,
and it is clear that every finite G–set A over X is isomorphic to one of this form.
Similarly, for a finite G–set qW B!X over X and an isomorphism f W A! B, we
have that f is an isomorphism over X from q to p D q ıf , and every isomorphism
over X can be constructed in this fashion. Since we may as well choose A and B to
be in our chosen skeleton of GF , this argument proves Theorem 5.10.

6 The Barratt–Priddy–Quillen and tom Dieck
splitting theorems

6.1 The Barratt–Priddy–Quillen theorem revisited

The BPQ theorem shows how to model suspension G–spectra in terms of free E1–
G–categories and G–spaces. It is built tautologically into the equivariant infinite loop
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space machine in the same way as it is nonequivariantly [22, Theorem 2.3(vii)] or
[30, Section 10]. The following result works for either EG D ESp

G
or EG D ES

G
, but

note that the interpretation of both the source and target are different in the two cases.
The proof shows consistency with the versions of the BPQ theorem in Theorems 1.31
and 2.18.

Theorem 6.1 (the E1–operad BPQ theorem) For an E1–operad CG of G–spaces
and based G–spaces X, there is a natural weak equivalence of G–spectra

†1G X ! EGCGX:

Proof For ESp
G

, recall that CU D KU � CG . The same formal argument as for
Theorem 2.18 and use of the projections to CG and to KU give equivalences of LM
G–spectra:

†1
G

X //

''

B.†1
G
;CU ;CU X /

��

// B.†1
G
;CU ;CGX /

B.†1
G
;KU ;KU X /

For ES
G

, recall that CV D KV � CG . Analogously to Theorem 1.31, there is an
orthogonal G–spectrum with V th space B.†V;CV ;CV X /. The usual formal argument
and the projections to CG and KV give diagrams

†V X //

''

B.†V;CV ;CV X /

��

// B.†V;CV ;CGX /

B.†V;KV ;KV X /

for all V in which the left horizontal arrow and the vertical arrow are level equivalences
of orthogonal G–spectra, and the right horizontal arrow is a weak equivalence (��–
isomorphism) of orthogonal G–spectra, as we see by forgetting to G–prespectra and
passing to colimits over V � U, where U is a complete G–universe.

Taking Y DXC for an unbased G–space X and using (5.2), we can rewrite this version
of the BPQ theorem using the infinite loop space machine defined on permutative G–
categories.

Theorem 6.2 (the categorical BPQ theorem: first version) For unbased G–spaces X,
there is a natural weak equivalence of G–spectra

†1G XC!KGPG.XC/:
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Remark 6.3 Diagrams showing compatibility with smash products, like those in
Theorems 1.31 and 2.18 are conspicuous by their absence from Theorems 6.1 and 6.2.
A previous version of this article erroneously claimed that the operad P has a self
pairing .P;P/!P induced by the homomorphisms

(6.4) ˝W †j �†k !†jk ;

which are made precise in Appendix A by use of lexicographic ordering. However,
these do not satisfy the condition in Definition A.1(iii); see Counterexample A.5. For
a conceptual understanding of why P cannot have a self-pairing, consider the free
P–algebra P .S0/. This is a model for the groupoid of finite sets. As explained in
[26, Appendix A], a self-pairing on P would give strict distributivity on both sides
in P .S0/. But the lexicographic ordering on j � .k tm/ does not agree with the
lexicographic ordering on .j �k/t .j �m/.

As we explain in [13], the homomorphisms ˝ exhibit a product that exists in any operad.
The categorical operads P and PG are pseudocommutative, meaning that certain
diagrams of functors defined using these products commute up to natural isomorphism.
Putting together Theorem 6.2, the comparison of operadic and Segalic machines
in [31], and 2–category machinery developed in [12], we will obtain multicategorical
generalizations of the missing diagrams in [13], where we complete the proofs from
equivariant infinite loop space theory promised in [10].

6.2 The tom Dieck splitting theorem

The G–fixed-point spectra of suspension G–spectra have a well-known splitting. It is
due to tom Dieck [5] on the level of homotopy groups and was lifted to the spectrum
level in [18, Section V.11]. The tom Dieck splitting actually works for all compact
Lie groups G, but we have nothing helpful to add in that generality. Our group G is
always finite. In that case, we have already given the ingredients for a new categorical
proof, as we now explain.

Theorem 6.5 For a based G–space Y ,

.†1G Y /G '
W
.H /†

1.EWHC ^WH Y H /:

The wedge runs over the conjugacy classes of subgroups H of G, and WH DNH=H.

Theorem 6.5 and the evident natural identifications

(6.6) EWHC ^WH X H
C Š .EWH �WH X H /C

imply the following version for unbased G–spaces X.
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Theorem 6.7 For an unbased G–space X,

.†1G XC/
G
'
W
.H /†

1.EWH �WH X H /C:

Conversely, we can easily deduce Theorem 6.5 from Theorem 6.7. Viewing S0 as f1gC
with trivial G action, our standing assumption that basepoints are nondegenerate gives
a based G–cofibration S0! YC that sends 1 to the basepoint of Y , and Y D YC=S

0 .
The functors appearing in Theorem 6.7 preserve cofiber sequences, and the identifica-
tions (6.6) imply identifications

(6.8) .EWH �WH Y H /C=.EWH �WH f1g/C ŠEWHC ^WH Y H :

Therefore, Theorem 6.7 implies Theorem 6.5.

We explain these splittings in terms of the categorical BPQ theorem. We begin in
the based setting. The nonequivariant case G D e of the BPQ theorem relates to the
equivariant case through Theorem 2.20. Explicitly, Theorems 2.20 and 6.1 give a pair
of weak equivalences

(6.9) .†1G Y /G! .EGCGY /G E..CGY /G/:

Since the functor †1 commutes with wedges, the nonequivariant BPQ theorem gives
a weak equivalence

(6.10)
W
.H /†

1.EWHC ^WH Y H /! EC
�W

.H /.EWHC ^WH Y H /
�
:

If we could prove that there is a natural weak equivalence of C –spaces

.CGY /G 'C
�W

.H /.EWHC ^WH Y H /
�
;

that would imply a natural weak equivalence

(6.11) E..CGY /G/' EC
�W

.H /.EWHC ^WH Y H /
�

and complete the proof of Theorem 6.5. However, the combinatorial study of the
behavior of C on wedges is complicated by the obvious fact that wedges of based
spaces do not commute with products.

We use the following consequence of Theorem 5.5 and the relationship between wedges
and products of spectra to get around this. Recall that PG is the monad on based
G–spaces obtained from the operad jPG j of G–spaces.

Theorem 6.12 For unbased G–spaces X, there is a natural equivalence of jPj–spaces

.PGXC/
G
'

Y
.H /

P .EWH �WH X H /C;

where .H / runs over the conjugacy classes of subgroups of G and WH DNH=H.
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Proof Remembering that jEGjDEG , we see that the classifying space of the category
EWH �WH X H can be identified with EWH �WH X H . The commutation relations
between j � j and the constituent functors used to construct the monads PG on G–
spaces and PG on G–categories make the identification clear.

Remark 6.13 Of course, we can and must replace PG and P by their products with
the equivariant and nonequivariant Steiner operad to fit into the infinite loop space
machine. There is no harm in doing so since if we denote the product operads by OG

and O, as before, the projections OG!PG and O!P induce weak equivalences
of monads that fit into the following commutative diagram:

.OGXC/
G '

//

'

��

Q
.H /O.EWH �WH X H /C

'

��

.PGXC/
G '

//
Q
.H /P .EWH �WH X H /C

The functor †1
G

commutes with wedges, and the natural map of G–spectra

E _F !E �F

is a weak equivalence. Theorems 2.21 and 6.1 have the following implication. We state
it equivariantly, but we shall apply its nonequivariant special case.

Proposition 6.14 For based G–spaces X and Y , the natural map

EGOG.X _Y /! EG.OGX �OGY /

is a weak equivalence of G–spectra.

Proof The following diagram commutes by the universal property of products:

†1
G
.X _Y /

Š

��

// EGOG.X _Y /

��

†1
G

X _†1
G

Y

��

EG.OGX �OGY /

��

†1
G

X �†1
G

Y // EGOGX �EGOGY

All arrows except the upper right vertical one are weak equivalences, hence that arrow
is also a weak equivalence.
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For any nonequivariant E1–operad C, we therefore have a weak equivalence

(6.15) EC
�W

.H /.EWHC ^WH Y H /
�
! E

Y
.H /

C .EWHC ^WH Y H /:

Together with (6.15), Theorem 6.12 and Remark 6.13 give a weak equivalence (6.11)
in the case Y D XC . Together with (6.9) and (6.10), this completes the proof of
Theorem 6.7, and Theorem 6.5 follows.

7 The E1–operads VG , V �
G

, and WG

The operad PG has a privileged conceptual role, but there are other categorical E1–
G–operads with different good properties. We define three interrelated examples. The
objects of the chaotic category PG.j / are functions G ! †j . We give analogous
chaotic G–categories in which the objects are suitable functions between well chosen
infinite G–sets, with G again acting by conjugation. Their main advantage over PG

is that it is easier to recognize G–categories on which they act.

7.1 The definitions of VG and V �
G

We start with what we would like to take as a particularly natural choice for the j th

category of an E1–G–operad. It is described in more detail in [11, Section 6.1].

Definition 7.1 Let U be a countable ambient G–set that contains countably many
copies of each orbit G=H. Let U j be the product of j copies of U with diagonal
action by G, and let jU be the disjoint union of j copies of the G–set U. Here U 0 is
a one-point set, sometimes denoted by 1, and 0U is the empty set, sometimes denoted
by ∅ and sometimes denoted by 0.

Let j D f1; : : : ; j g with its natural left action by †j , written � W j ! j .

Definition 7.2 For j � 0, let zE U
G
.j / be the chaotic .G�†j /–category whose objects

are the pairs .A; �/, where A is a j –element subset of U and �W j !A is a bijection.
The group G acts on objects by g.A; �/ D .gA;g�/, where .g�/.i/ D g � �.i/. The
group †j acts on objects by .A; �/� D .A; � ı�/ for � 2†j . Since zE U

G
.j / is chaotic,

this determines the actions on morphisms.

Proposition 7.3 [11, Proposition 6.3] For each j , the classifying space j zE U
G
.j /j is a

universal principal .G; †j /–bundle.
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Therefore, zE U
G
.j / satisfies the properties required of the j th category of an E1–G–

operad. However, these categories as j varies do not form an operad. The problem is a
familiar one. These categories can be thought of as analogous to configuration spaces.
Just as we fattened up the configuration space models of Section 1.6 to the little discs
operads of Section 1.1, we must fatten up these categories to provide enough room for
an operad structure.

Definition 7.4 We define a reduced operad VG of G–categories. Let VG.j / be the
chaotic G–category whose set of objects is the set of injective functions jU ! U.
Let G act by conjugation and let †j have the right action induced by its left action
on jU. Let id 2 VG.1/ be the identity function U ! U. Define

 W VG.k/�VG.j1/� � � � �VG.jk/! VG.j /;

where j D j1C � � �C jk , to be the composite

VG.k/�VG.j1/� � � � �VG.jk/! VG.k/�VG.
jU; kU /! VG.j /

obtained by first taking coproducts of maps and then composing. Here V .jU; kU /

is the set of injections jU ! kU. The operad axioms [21, Definition 1.1] are easily
verified.

Remembering that taking sets to the free R–modules they generate gives a coproduct-
preserving functor from sets to R–modules, we see that VG is a categorical analogue
of the linear isometries operad LU .

There is a parallel definition that uses products instead of coproducts.

Definition 7.5 We define an unreduced operad xV �
G

of G–categories. Let xV �
G
.j / be

the chaotic G–category whose set of objects is the set of injective functions U j ! U.
Let G act by conjugation and let †j have the right action induced by its left action
on U j. Let id 2 xV �

G
.1/ be the identity function. Define

 W xV �G .k/�
xV �G .j1/� � � � � xV

�
G .jk/! xV �G .j /;

where j D j1C � � �C jk , to be the composite

xV �G .k/�
xV �G .j1/� � � � � xV

�
G .jk/! xV �G .k/�

xV �G .U
j;U k/! xV �G .j /

obtained by first taking products of maps and then composing. Here xV �
G
.U j;U k/ is

the set of injections U j ! U k. Again, the operad axioms are easily verified.
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Observe that the objects of xV �
G
.0/ are the injections from the point U 0 into U and

can be identified with the set U, whereas VG.0/ is the trivial category given by the
injection of the empty set 0U into U. As in Remark 2.4, the objects of the zeroth
category give unit objects for operad actions, and it is convenient to restrict attention to
a reduced variant of xV �

G
.

Definition 7.6 Choose a G–fixed point 1 2 U (or, equivalently, adjoin a G–fixed
basepoint 1 to U ) and also write 1 for the single point in U 0. Give U j, j � 0, the
basepoint whose coordinates are all 1. The reduced variant of xV �

G
is the operad V �

G

of G–categories that is obtained by restricting the objects of the xV �
G
.j / to consist only

of the basepoint-preserving injections U j ! U for all j � 0.

Remark 7.7 If xV �
G

acts on a category A , then V �
G

acts on A by restriction of the
action. However, V �

G
can act even though xV �

G
does not. This happens when the

structure of A encodes a particular unit object and the operad action conditions fail
for other choices of objects in A .

Proposition 7.8 The classifying spaces jVG.j /j, j xV �G .j /j, and jV �
G
.j /j are universal

principal .G; †j /–bundles; hence VG , xV �
G

, and V �
G

are E1–operads.

Proof Since the objects of our categories are given by injective functions, †j acts
freely on the objects of VG.j / and V �

G
.j /. Since our categories are chaotic, it suffices

to show that if ƒ \ †j D feg, where ƒ � G � †j , then the object sets VG.j /
ƒ

and V �
G
.j /ƒ are nonempty. This means that there are ƒ–equivariant injections

jU ! U and U j ! U, and in fact, there are ƒ–equivariant bijections. We have
ƒD f.h; ˛.h// j h 2H g for a subgroup H of G and a homomorphism ˛W H !†j ,
and we may regard U as an H–set via the canonical isomorphism H Š ƒ. Since
countably many copies of every orbit of H embed in U, jU, and U j for j � 1, these
sets are all isomorphic as H–sets and therefore as ƒ–sets.

7.2 The definition of WG and its action on VG

This section is parenthetical, aimed towards work in progress on a new version of
multiplicative infinite loop space theory. The notion of an action of a multiplicative
operad G on an additive operad C was defined in [24, VI.1.6], and .C ;G / was then said
to be an operad pair. This notion was redefined and discussed in [30; 29]. Expressed
in terms of diagrams rather than elements, it makes sense for operads in any cartesian
monoidal category, such as the categories of G–categories and of G–spaces. As is
emphasized in the cited papers, although this notion is the essential starting point for
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the theory of E1–ring spaces, the only interesting nonequivariant example we know is
.K ;L /, where K is the Steiner operad. As pointed out in Section 2.5, this example
works equally well equivariantly.

The pair of operads .VG ;V
�

G
/ very nearly gives another example, but we must

shrink V �
G

and drop its unit object to obtain this.

Definition 7.9 Define WG � V �
G

to be the suboperad such that WG.j / is the full
subcategory of V �

G
.j / whose objects are the based bijections U j ! U. In particular,

WG.0/ is the empty category, so that the operad WG does not encode unit object
information. By the proof of Proposition 7.8, WG.j / for j � 1 is again a universal
principal .G; †j /–bundle. We view WG as a restricted E1–operad, namely one
without unit objects.

Proposition 7.10 The restricted operad WG acts on the operad VG .

Proof We must specify action maps

�W WG.k/�VG.j1/� � � � �VG.jk/! VG.j /;

where j D j1 � � � jk and k � 1. To define them, consider the set of sequences I D

fi1; : : : ; ikg, ordered lexicographically, where 1 � ir � jr and 1 � r � k . For an
injection �r W

jrU ! U, let �ir
W U ! U denote the restriction of �r to the i th

r copy
of U in jrU. Then let

�I D �i1
� � � � ��ik

W U k
! U k :

For a bijection  W U k ! U, define

�. I�1; : : : ; �k/W
jU ! U

to be the injection which restricts on the I th copy of U to the composite

U
 �1

���! U k �I
��! U k  

�! U:

It is tedious but straightforward to verify that all conditions specified in [24, Defini-
tion VI.1.6], [29, Definition 4.2] that make sense are satisfied.6

Remark 7.11 When all ji D 1, so that there is only one sequence I, we can define �
more generally, with V �

G
.k/ replacing WG.k/, by letting

�. I�1; : : : ; �k/W U ! U

6In fact, with the details of [29, Definition 4.2], the only condition that does not make sense would
require �.1/D id 2 VG.1/ , where f1g D W .0/ , and that condition lacks force since it does not interact
with the remaining conditions.
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be the identity on the complement of the image of the injection  W U k ! U and

 .U /
 �1

���! U k �I
��! U k  

�!  .U /

on the image of  . Clearly we can replace VG.1/ by V �
G
.1/ here.

This allows us to give the following speculative analogue of Definition 4.10. An E1–
ring space is defined to be a .C ;G /–space, where .C ;G / is an operad pair such that
C and G are E1–operads of spaces. Briefly, a .C ;G /–space X is a C –space and
a G –space with respective basepoints 0 and 1 such that 0 is a zero element for the
G –action and the action C X !X is a map of G –spaces with zero, where C denotes
the monad associated to the operad C. Here the action of G on C induces an action
of G on the free C –spaces C X, so that C restricts to a monad in the category of G –
spaces. These notions are redefined in the more recent papers [30; 29]. The definitions
are formal and apply equally well to spaces, G–spaces, categories, and G–categories.

Definition 7.12 An E1–ring G–category A is a G–category together with an action
by the E1–operad pair .VG ;WG/ such that the multiplicative action extends from the
restricted E1–operad WG to an action of the E1–operad V �

G
.

The notion of a bipermutative category, or symmetric strict bimonoidal category, was
specified in [24, Definition VI.3.3]. With the standard skeletal model, the direct
sum and tensor product on the category of finite-dimensional free modules over a
commutative ring R gives a typical example. Without any categorical justification,
we allow ourselves to think of E1–ring G–categories as an E1 version of genuine
operadic bipermutative G–categories. A less concrete but more general version of this
notion is defined and developed in [13].

Our notion of an E1–G–category A implies that BA is an E1–G–space. We
would like to say that our notion of an E1–ring G–category A implies that BA is
an E1–ring G–space, but that is not quite true. However, we believe there is a way to
prove the following conjecture that avoids the categorical work of [8; 12; 13; 26; 29].
However, that proof is work in progress.

Conjecture 7.13 There is an infinite loop space machine that carries E1–ring G–
categories to E1–ring G–spectra.

8 Examples of E1 and E1–ring G–categories

We have several interesting examples. We emphasize that these particular constructions
are new even when G D e . In that case, we may take U to be the set of positive
integers, with 1 as basepoint.
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We have the notion of a genuine permutative G–category, which comes with a preferred
product, and the notion of a VG–category, which does not. It seems plausible that
the latter notion is more general, but to verify that we would have to show how to
regard a permutative category as a VG–algebra. One natural way to do so would be to
construct a map of operads VG!PG , but we do not know how to do that. Of course,
the equivalence of VG–categories and PG–categories shows that genuine permutative
categories give a plethora of examples of VG–algebras up to homotopy. However,
the most important examples can easily be displayed directly, without recourse to the
theory of permutative categories.

8.1 The G –category E U
G
D E V

G
of finite sets

Recall Remark 5.13. Intuitively, we would like to have a genuine permutative G–
category whose product is given by disjoint unions of finite sets, with G relating finite
sets (not G–sets) by translations. Even nonequivariantly, this is imprecise due to both
size issues and the fact that categorical coproducts are not strictly associative. We make
it precise by taking coproducts of finite subsets of our ambient G–set U, but we must
do so without assuming that our given finite subsets are disjoint. We achieve this by
using injections jU ! U to separate them. We do not have canonical choices for the
injections, hence we have assembled them into our categorical E1–operad VG . Recall
Definition 7.2 and Proposition 7.3.

Definition 8.1 The G–category zE U
G

of finite ordered sets is the coproduct over n�0 of
the G–categories zE U

G
.n/. The G–category E U

G
DE V

G
of finite sets is the coproduct over

n� 0 of the orbit categories zE U
G
.n/=†n . By Proposition 7.3, BE U

G
is the coproduct

over n� 0 of classifying spaces B.G; †n/. Explicitly, by [11, Lemma 6.5], the objects
of E U

G
are the finite subsets (not G–subsets) A of U. Its morphisms are the bijections

�W A! B ; if A has n points, the morphisms A!A give a copy of the set †n . The
group G acts by translation on objects, so that gAD fga j a 2Ag, and by conjugation
on morphisms, so that g�W gA! gB is given by .g�/.g � a/D g � �.a/.

Proposition 8.2 The G–categories zE U
G

and E U
G

are VG–categories, and passage to
orbits over symmetric groups defines a map zE U

G
! E U

G
of VG–categories.

Proof Define a G–functor
�j W VG.j /� .E

U
G /

j
! E U

G

as follows. On objects, for � 2 VG.j / and Ai 2 Ob E U
G

, 1� i � j , define

�j .�IA1; : : : ;Aj /D �.A1 t � � � tAj /;
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where Ai is viewed as a subset of the i th copy of U in jU. For a morphism

.�I �1; : : : ; �j /W .�IA1; : : : ;Aj /! . IB1; : : : ;Bj /;

where �W � !  is the unique morphism, define �j .�I �1; : : : ; �j / to be the unique
bijection that makes the following diagram commute:

A1 t � � � tAj

�1t���t�j

��

�
// �.A1 t � � � tAj /

�j .�I�1;:::;�j /

��

B1 t � � � tBj
 

//  .B1 t � � � tBj /

Then the �j specify an action of VG on E U
G

.

Since the zE U
G
.n/ are chaotic, to define an action of VG on zE U

G
we need only specify

the required G–functors
z�j W VG.j /� . zE

U
G /

j
! zE U

G

on objects. A typical object has the form .�I .A1; �1/; : : : ; .Aj ; �j // for �i W ni ! Ai .
We have the canonical isomorphism n1 t � � � tnj Š n, where nD n1C � � �C nj , and
z�j sends our typical object to

.�.A1 t � � � tAj /; � ı .�1 t � � � t �j //:

Again, the z�j specify an action. The compatibility with passage to orbits is verified by
use of canonical orbit representatives for objects A that are obtained by choosing fixed
reference maps �AW n!A for each n–point set A�U ; compare [11, Proposition 6.3
and Lemma 6.5].

Remark 8.3 If we restrict to the full G–subcategory of E U
G

of G–fixed sets A of
cardinality n, we obtain an equivalent analogue of the category FG.n/ of Definition 5.8:
these are two small models of the G–category of all G–sets with n elements and
the bijections between them, and they have isomorphic skeleta. Thus the restriction
of E U

G
to its full G–subcategory of G–fixed sets A is an equivalent analogue of FG .

Remember from Remark 5.11 that no E1–operad can be expected to act on FG . The
VG–category E U

G
gives a convenient substitute.

8.2 The G –category GLG .R/ for a G –ring R

Let R be a G–ring, that is a ring with an action of G through automorphisms of R.
We have analogues of Definitions 7.2 and 8.1 that can be used in equivariant algebraic
K–theory. For a set A, let RŒA� denote the free R–module on the basis A. Let G act
entrywise on the matrix group GL.n;R/ and diagonally on Rn. Our conventions on
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semidirect products and their universal principal .G;GL.n;R/G/–bundles are in [11],
and [11, Section 6.3] gives more details on the following definitions.

Definition 8.4 We define the chaotic general linear category eGLG.n;R/. Its objects
are the monomorphisms of (left) R–modules �W Rn!RŒU �. The group G acts on ob-
jects by g�Dgı�ıg�1 . The group GL.n;R/ acts on objects by �� D � ı � W Rn!RŒU �.
Since eGLG.n;R/ is chaotic, this determines the actions on morphisms.

Proposition 8.5 [11, Proposition 6.18] The actions of G and GL.n;R/ on eGLG.n;R/

determine an action of GL.n;R/ Ì G, and the classifying space jeGLG.n;R/j is a
universal principal .G;GL.n;R/G/–bundle.

Definition 8.6 The general linear G–category GLG.R/ of finite-dimensional free
R–modules is the coproduct over n� 0 of the orbit categories eGLG.n;R/=GL.n;R/.
By Proposition 8.5, BGLG.R/ is the coproduct over n � 0 of classifying spaces
B.G;GL.n;R/G/. Explicitly, by [11, Lemma 6.20], the objects of GLG.R/ are the
finite-dimensional free R–submodules M of RŒU �. The morphisms �W M !N are
the isomorphisms of R–modules. The group G acts by translation on objects, so that
gM D fgm jm 2M g, and by conjugation on morphisms, so that .g�/.gm/D �.m/

for m 2M and g 2G.

Proposition 8.7 The G–categories eGLG.R/ and GLG.R/ are VG–categories and
passage to orbits over general linear groups defines a map eGLG.R/! GLG.R/ of
VG–categories.

Proof Define a functor

�j W VG.j /�GLG.R/
j
! GLG.R/

as follows. On objects, for � 2 VG.j / and Mi 2 Ob GLG.R/, 1� i � j , define

�j .�IM1; : : : ;Mj /DRŒ��.M1˚ � � �˚Mj /;

where RŒ��W RŒjU �! RŒU � is induced by �W jU ! U and Mi is viewed as a sub-
module of the i th copy of RŒU � in RŒjU �D

L
j RŒU �. For a morphism

.�I �1; : : : ; �j /W .�IM1; : : : ;Mj /! . IN1; : : : ;Nj /;

define �j .�I �1; : : : ; �j / to be the unique isomorphism of R–modules that makes the
following diagram commute:

M1˚ � � �˚Mj

�1˚���˚�j

��

RŒ��
// RŒ��.M1˚ � � �˚Mj /

�j .�I�1;:::;�j /
��

N1˚ � � �˚Nj
RŒ �

// RŒ �.N1˚ � � �˚Nj /
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Then the �j specify an action of VG on GLG.R/. Since the eGLG.R; n/ are chaotic,
to define an action of VG on eGLG.R/, we need only specify the required G–functors

z�j W VG.j /�eGLG.R/
j
!eGLG.R/

on objects. A typical object has the form .�I �1; : : : ; �j / for �i W Rni !RŒU �, and with
nD n1C � � �C nj , we have that z�j sends it to

RŒ�� ı .�1˚ � � �˚ �j /W R
n
!RŒU �:

Again, the z�j specify an action. The compatibility with passage to orbits is verified
by use of canonical orbit representatives for objects that are obtained by choosing
reference maps �M W R

n!M for each M –dimensional free R–module M �RŒU �;
compare [11, Proposition 6.18, Lemma 6.20].

On passage to classifying spaces and then to G–spectra via our infinite loop space
machine EG , we obtain a model EGBGLG.R/ for the K–theory spectrum KG.R/

of R. The following result compares the two evident models in sight.

Definition 8.8 Define the naive permutative G–category GLG.R/ to be the G–
groupoid whose objects are the n� 0 and whose set of morphisms m! n is empty
if m ¤ n and is the G–group GL.n;R/ if m D n, where G acts entrywise. The
product is given by block sum of matrices. Applying the chaotic groupoid functor
to the groups GL.n;R/ we obtain another naive permutative G–category EGLG.R/

and a map EGLG.R/! GLG.R/ of naive permutative G–categories. Applying the
functor Cat.EG;�/ from Proposition 4.6, we obtain a map of genuine permutative
G–categories Cat.EG; .EGLG.R///! Cat.EG; .GLG.R///.

It is convenient to write GL P
G
.R/ for the PG–category Cat.EG; .GLG.R/// and

GL V
G
.R/ for the VG–category GLG.R/, and similarly for their total space variants

Cat.EG; .EGLG.R/// and eGLG.R/. We have the following comparison theorem.

Theorem 8.9 The G–spectra KGGL P
G
.R/ and KGGL V

G
.R/ are weakly equivalent,

functorially in G–rings R.

Proof We again use the product of operads trick from [21]. Projections and quotient
maps give the following commutative diagram of .PG�VG/–categories:

eGL
P

G .R/

��

eGL
P

G .R/�eGL
V

G .R/

��

oo // eGL
V

G .R/

��

GL P
G
.R/ GL P�V

G
.R/oo // GL V

G
.R/
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The middle term at the top denotes the diagonal product, namelyG
n

eGL
P

G .n;R/�eGL
V

G .n;R/:

The middle term on the bottom is the coproduct over n of the orbits of these products
under the diagonal action of GL.n;R/. The product of total spaces of universal
principal .G;GL.R; n/G/–bundles is the total space of another universal principal
.G;GL.R; n/G/–bundle. Therefore, after application of the classifying-space func-
tor, the horizontal projections display two equivalences between universal principal
.G;GL.R; n/G/–bundles. The conclusion follows by hitting the resulting diagram
with the functor KG defined with respect to .PG�VG/–categories and using evident
equivalences to the functors KG defined with respect to PG–categories and VG–
categories when the input is given by PG or VG–categories.

8.3 Multiplicative actions on E U
G

and GLG .R/

We agree to think of V �
G

–categories as multiplicative, whereas we think of VG–
categories as additive.

Proposition 8.10 The G–category E U
G

is a V �
G

–category.

Proof Define a G–functor

�j W V
�

G .j /� .E
U
G /

j
! E U

G

as follows. On objects, for � 2 V �
G
.j / and Ai 2 EG , 1� i � j , define

�j .�IA1; : : : ;Aj /D �.A1 � � � � �Aj /:

For a morphism

.�I �1; : : : ; �j /W .�IA1; : : : ;Aj /! . IB1; : : : ;Bj /;

define �j .�I �1; : : : ; �j / to be the unique bijection that makes the following diagram
commute:

A1 � � � � �Aj

�1������j

��

�
// �.A1 � � � � �Aj /

�j .�I�1;:::;�j /

��

B1 � � � � �Bj
 

//  .B1 � � � � �Bj /

Then the �j specify an action of V �
G

on E U
G

.

Proposition 8.11 If R is a commutative G–ring, then GLG.R/ is a V �
G

–category.
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Proof Define a functor

�j W V
�

G .j /�GL .R/
j
G
! GLG.R/

as follows. Identify RŒU j � with
N

j RŒU �, where ˝D˝R . On objects, for � 2VG.j /

and R–modules Mi �RŒU �, 1� i � j , define

�j .�IM1; : : : ;Mj /DRŒ��.M1 � � � � �Mj /:

For a morphism

.�I �1; : : : ; �j /W .�IM1; : : : ;Mj /! . IN1; : : : ;Nj /;

define �j .�I �1; : : : ; �j / to be the unique isomorphism of R–modules that makes the
following diagram commute:

M1˝ � � �˝Mj

�1˝���˝�j

��

RŒ��
// �.M1˝ � � �˝Mj /�

�j .�I�1;:::;�j /

��

N1˝ � � �˝Nj
RŒ �

//  .N1˝ � � �˝Nj /

Then the �j specify an action of V �
G

on GLG.R/.

Restricting the action from V �
G

to WG , the examples above and easy diagram chases
prove that the operad pair .VG ;WG/ acts on the categories EG and GLG.R/. This
proves the following result.

Theorem 8.12 The categories E U
G

and GLG.R/ for a commutative G–ring R are
E1–ring G–categories in the sense of Definition 7.12.

Although we have a definition of a genuine permutative G–category, we do not have a
comparably simple definition of a genuine bipermutative G–category. The previous
examples show that we do have examples of E1–ring G–categories. In [13], we
will show how to construct E1–ring G–categories from general naive bipermutative
G–categories, in particular nonequivariant bipermutative categories, and we will show
how to construct genuine commutative ring G–spectra from them.

9 The VG –category E U
G

.X/ and the BPQ theorem

We now return to the categorical BPQ theorem, but thinking in terms of VG–categories
rather than PG–categories. This gives a more intuitive approach to the G–category of
finite sets over a G–space X.
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9.1 The G –category E U
G

.X/ of finite sets over X

Definition 9.1 Let X be a G–space. We define the G–groupoid E U
G
.X /D E V

G
.X / of

finite sets over X. Its objects are the functions pW A!X, where A is a finite subset of
our ambient G–set U. For a second function qW B!X, a map �W p! q is a bijection
�W A! B such that q ı � D p . Composition is given by composition of functions
over X. The group G acts by translation of G–sets and conjugation on all maps in sight.
Thus, for an object pW A!X, we have gpW gA!X given by .gp/.ga/D g.p.a//.
For a map �W p! q , we have g�W gA! gB given by .g�/.ga/D g.�.a//.

To topologize E U
G
.X /, give U and X disjoint basepoints �.7 View the set Ob of

objects of E U
G
.X / as the set of based functions pW UC!XC such that p�1.�/ is the

complement of a finite set A� U. Topologize Ob as a subspace of X UC
C . View the

set Mor of morphisms of E U
G
.X / as a subset of the set of functions �W UC! UC

that send the complement of some finite set A � U to � and map A bijectively
to some finite set B � U. Topologize Mor as the subspace of points .p; �; q/ in
Ob �U UC

C �Ob , where U UC
C is discrete. When X is a finite set and thus a discrete

space (since points are closed in spaces in the category U ), E U
G
.X / is discrete.

Let E U
G
.n;X / denote the full subcategory of E U

G
.X / of maps pW A!X such that A

has n elements. Then E U
G
.X / is the coproduct of the groupoids E U

G
.n;X /.

Proposition 9.2 The operad VG acts naturally on the categories E U
G
.X /.

Proof For j � 0, we must define functors

�j W VG.j /� E U
G .X /

j
! E U

G .X /:

To define �j on objects, let �W jU ! U be an injective function and pi W Ai !X be
a function, 1� i � j , where Ai is a finite subset of U. We define �j .�Ip1; : : : ;pj /

to be the composite

�.A1 t � � � tAj /
��1

���!A1 t � � � tAj
tpi
���!

jX
r
�!X;

where r is the fold map, the identity on each of the j copies of X. To define � on
morphisms, let  W jU ! U be another injective function, and let �W �!  be the
unique map in VG.j /. For functions qi W Bi ! X and bijections �i W Ai ! Bi such
that qi�i D pi , define �j .�I �1; : : : ; �j / to be the unique dotted arrow bijection that

7These basepoints are just a convenience for specifying the topology; they play no other role.
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makes the following diagram commute:

�.A1 t � � � tAj /
��1

//

�.�I�1;:::;�j /

��

A1 t � � � tAj
tpi

))
t�i

��

jX
r
// X

 .B1 t � � � tBj /
 �1

// B1 t � � � tBj

tqi

55

Then the maps �j specify an action of VG on the category E U
G
.X /.

We have a multiplicative elaboration, which is similar to [24, Proposition VI.1.9] but
curiously restricted. Regarding a G–space X as a constant G–category with object
and morphism space both X, it makes sense to speak of an action of the operad V �

G

on the G–category X. For example, V �
G

acts on X if X is a commutative topological
G–monoid. The following result is closely related to Proposition 7.10. It has the minor
advantage that restriction from V �

G
to WG is unnecessary but the major limitation that

it only applies to commutative G–monoids, not to general V �
G

–algebras.

Proposition 9.3 If X is a commutative topological G–monoid, then E U
G
.X / is an

E1–ring G–category.

Proof By analogy with the previous proof, for k � 0, we have functors

�W V �G .k/� E U
G .X /

k
! E U

G .X
k/:

With notation as in the previous proof, on objects .�Ip1; : : : ;pk/ for pr W Ar ! X,
we define �.�Ip1; : : : ;pk/ to be the composite

�.A1 � � � � �Ak/
��1

���!A1 � � � � �Ak

�pk
���!X k �

�!X;

where � is the k–fold product on X. On morphisms .�I �1; : : : ; �k/, where the
�r W pr ! qr are understood to be order preserving, �.�I �1; : : : ; �k/ is defined to be
the unique dotted arrow that makes the following diagram commute:

�.A1 � � � � �Ak/
��1

//

�.�I�1;:::;�k/

��

A1 � � � � �Ak
�pi

))
��i

��

X k �
// X

 .B1 � � � � �Bk/
 �1

// B1 � � � � �Bk

�qi

55

Further details are similar to those in the proof of [24, Proposition VI.1.9] or [30,
Proposition 4.9].
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9.2 Free VG–categories and the VG–categories E U
G

.X/

The categories E U
G
.X / are conceptually simple, and they allow us to give the promised

genuinely equivariant variant of Theorem 5.9. To see that, we give a reinterpretation of
E U

G
.X /. Regarding X as a topological G–category as before, we have the topological

G–category zE U
G
.j /�†j

X j.

Lemma 9.4 The topological G–categories E U
G
.j ;X / and zE U

G
.j /�†j

X j are natu-
rally isomorphic.

Proof For an ordered set AD .a1; : : : ; aj / of points of U, let a point .AIx1; : : : ;xj /

of Ob. zEG.j /�†j
X j / correspond to the function pW A! X given by p.ai/D xi .

Similarly, let a point .�W A! BIx1; : : : ;xj / of Mor. zEG.j /�†j
X j / correspond to

the bijection �W p! q over X, where q�.ai/D p.ai/D xi . Since we have passed
to orbits over †j , our specifications are independent of the ordering of A. These
correspondences identify the two categories.

Recall that we write VG for the monad on based G–categories associated to the
operad VG , we write jVG j for the operad of G–spaces obtained by applying the
classifying-space functor B to VG , and we write VG for the monad on based G–spaces
associated to jVG j. Recall too that XC denotes the union of the G–category X with a
disjoint trivial basepoint category � and that

(9.5) VG.XC/D
G
j�0

VG.j /�†j
X j :

Theorem 9.6 There is a natural map

!W VG.XC/! E U
G .X /

of VG–categories, and it induces a weak equivalence

B!W VG.XC/! BE U
G .X /

of jVG j–spaces on passage to classifying spaces.

Proof Pick any G–fixed point 1 2 U.8 Define an inclusion i W XC ! E U
G
.X / of

based G–categories by identifying � with E U
G
.0;X / and mapping X to E U

G
.1;X / by

sending x to the map 1! x from the 1–point subset 1 of U to X. Since VG.XC/ is

8This must not be confused with the convenience basepoint � used to define the topology.
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the free (based) VG–category generated by XC , the inclusion i induces the required
natural map ! . Explicitly, it is the composite

VG.XC/
VG i
���! VGE U

G .X //
�
�! E U

G .X /:

More explicitly still, let 1� jU be the j –point subset consisting of the elements 1 in
the j summands. Then ! is the coproduct of the maps

!j D ij �†j
idW VG.j /�†j

X j
! zE U

G .j /�†j
X j ;

where ij W VG.j /! zE
U
G
.j / is the .G�†j /–functor that sends an object �W jU ! U

to the set �.1/� U and sends the morphism �W �!  to the bijection

�.1/
��1

���! 1
 
�!  .1/:

Passing to classifying spaces, jij j is a map between universal principal .G; †j /–bundles,
both of which are .G�†j /–CW complexes. Therefore, jij j is a .G�†j /–equivariant
homotopy equivalence. The conclusion follows.

9.3 The categorical BPQ theorem: second version

We begin by comparing Theorem 9.6, which is about G–categories, with Theorems 5.5,
5.9 and 5.10, which are about G–fixed categories. Clearly EG.X /

G is a V –category,
where V D .VG/

G. By Theorem 9.6, it is weakly equivalent (in the homotopical
sense) to the V –category .VGXC/

G. We also have the P–category FG.X /
G, which

by Theorem 5.9 and Remark 5.11 is equivalent (in the categorical sense) to the P–
category .PGXC/

G. Elaborating Remark 8.3, E U
G
.X /G and FG.X /

G are two small
models for the category of all finite G–sets and G–isomorphisms over X and are
therefore equivalent. To take the operad actions into account, recall the discussion in
Section 4.3. We say that a map of topological G–categories is a weak equivalence if
its induced map of classifying G–spaces is a weak equivalence.

Lemma 9.7 The PG–category PGXC and the VG–category VGXC are weakly
equivalent as .PG�VG/–categories. Therefore, the P–category .PGXC/

G and the
V –category .VGXC/

G–categories are weakly equivalent.

Proof The projections

PGXC .PG �VG/.XC/! VGXC

are maps of .PG�VG/–categories that induce weak equivalences of jPG�VG j–spaces
on passage to classifying spaces.

Theorem 9.8 The classifying spaces of the P–category FG.X /
G and the V –

category E U
G
.X /G are weakly equivalent as jP �V j–spaces.
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The conclusion is that, on the G–fixed level, the categories E U
G
.X /G and FG.X /

G can
be used interchangeably as operadically structured versions of the category of finite G–
sets over X. On the equivariant level, E U

G
.X / but not FG.X / is operadically structured.

It is considerably more convenient than the categories PG.XC/ or VG.XC/. With the
notation KGVG.XC/DEGBVG.XC/DEGVG.XC/ and KGE U

G
.X /DEGBE U

G
.X /,

we have the following immediate consequence of Theorems 6.2 and 9.6. It is our
preferred version of the categorical BPQ theorem, since it uses the most intuitive
categorical input.

Theorem 9.9 (categorical Barratt–Priddy–Quillen theorem) For G–spaces X, there
is a composite natural weak equivalence

˛W †1G XC!KGVGXC!KGE U
G .X /:

Remark 9.10 It is not known how the tom Dieck splitting theorem behaves with
respect to the Mackey functor structure on homotopy groups. It seems likely to us that
this could be analyzed using this version of the BPQ theorem and our categorical proof
of the splitting.

Appendix A: Pairings of operads

We recall the following definition from [25, 1.4]. It applies equally well equivariantly.
We write it elementwise, but written diagrammatically it applies to operads in any
symmetric monoidal category V . Write j D f1; : : : ; j g and let

˝W †j �†k !†jk

be the homomorphism obtained by identifying j �k with jk by ordering the set of
j k elements .q; r/, 1� q � j and 1� r � k , lexicographically. More precisely, let
�j ;k W jk! j �k be the lexicographic ordering. Then, given � 2 †j and � 2 †k ,
�˝ � is defined by

jk
�j ;k

���! j �k
���
���! j �k

��1
j ;k

���! jk:

For nonnegative integers hq and ir , let

ıW
G
.q;r/

.hq � ir /!

�G
q

hq

�
�

�G
r

ir

�
be the distributivity isomorphism viewed as a permutation via block and lexicographic
identifications of the source and target sets with the appropriate set n. A little more
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precisely, we define the permutation ı to be the compositeX
q;r

hqir
Š
�! h1i1 th1i2 t � � � thj ik

�t���t�
�����! h1 � i1 t � � � thj � ik

dist
��! .h1 t � � � thj /� .i1 t � � � t ik/

Š
�! h� i

��1
h;i

��! hi :

Definition A.1 Let C, D, and E be operads in a symmetric monoidal category V

(with product denoted by ˝). A pairing of operads

�W .C ;D/! E

consists of maps
�W C .j /˝D.k/! E .j k/

in V for j � 0 and k � 0 such that the diagrammatic versions of the following
properties hold, where c 2 C .j / and d 2 D.k/:

(i) If � 2†j and � 2†k , then

c�� d� D .c� d/.�˝ �/:

(ii) With j D k D 1, we have id� idD id.

(iii) If cq 2 C .hq/ for 1� q � j and dr 2 D.ir / for 1� r � k , then9

 .c� d I �.q;r/cq� dr /D Œ .cI �qcq/�  .d I �r dr /�ı:

When specialized to spaces, the following definition (which is a variant of [25, 1.2])
gives one possible starting point for multiplicative infinite loop space theory.

Definition A.2 Let �W .C ;D/! E be a pairing of operads in V . A pairing of a
C –algebra X and a D–algebra Y to an E –algebra Z is a map f W X ˝Y !Z such
that the following diagram commutes for all j and k , where X j denotes the j th tensor
power in V and we write � generically for action maps:

C .j /˝X j ˝D.k/˝Y k

�
��

�˝�
// X ˝Y

f

��

E .j k/˝ .X ˝Y /jk

id˝f j k

// E .j k/˝Zjk

�

// Z

On the left, � denotes the composite

C .j /˝X j
˝D.k/˝Y k id˝t˝id

������! C .j /˝D.k/˝X j
˝Y k �˝�

����! E .j k/˝Zjk :

9The original definition in [25] had ı on the other side in this condition.
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Here, in elementwise notation,

�..x1˝ � � �˝xj /˝ .y1˝ � � �˝yk//D ..x1˝y1/˝ � � �˝ .xj ˝yk//;

where we order the pairs .xq˝yr /, 1� q � j and 1� r � k , lexicographically.

Letting V be the category of unbased G–spaces, with ˝ D �, but then passing to
monads on based G–spaces, we obtain the following observations.

Proposition A.3 For based G–spaces X and Y , a pairing �W .CG ;DG/ ! EG of
operads of G–spaces induces a natural pairing

�W CGX^DGY !EG.X ^Y /

such that the following diagrams commute:

X ^Y
�^�
//

�
&&

CGX ^DGY

�

��

EG.X ^Y /

CGCGX ^DGDGY
�^�

//

�

��

CGX ^DGY

�

��

EG.CGX ^DGY /
EG�

// EGEG.X ^Y /
�

// EG.X ^Y /

The following diagram commutes for any pairing f W X ˝Y !Z of a CG–algebra X

and a DG–algebra Y to an EG–algebra Z:

CGX ^DGY
�^�

//

�

��

X ^Y

f

��

EG.X ^Y /
EGf

// EGZ
�

// Z

Proof The map � is induced from the map � of the previous definition and the
commutativity of the first two diagrams is checked by chases from Definition A.1. The
commutativity of the second implies that � is a pairing in the sense of Definition A.2.
The commutativity of the third follows from Definition A.2.
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Example A.4 The following commutative diagram, in which we ignore the path space
variable for simplicity, shows that condition (iii) is satisfied by the pairing .KV ;KW /!

KV˚W defined in Proposition 1.17; this completes the proof of that result:

hi�V �W //

ı�id

��

�F
q;r

hqir

�
�V �W

dist
//

t��id

��

F
q;r

.hqir�V �W /

t�

��

tcq˝dr
// j�k�V �W

twist

��

hi�V �W

��id

��

�F
q;r

hq�ir

�
�V �W

dist
//

xı�id

��

F
q;r

.hq�ir�V �W /

t twist

��

j�V �k�W

c�d

��

h�i�V �W //

twist

��

�F
q

hq

�
�

�F
r

ir

�
�V �W

twist

��

F
q;r

.hq�V �ir�W /

xı

��

t.cq�dr /

@@

V �W

h�V �i�W //

�F
q

hq

�
�V �

�F
r

ir

�
�W

dist
//

�F
q

hq�V
�
�

�F
r

ir�W
�tcq

�tdr
//

�F
q

V
�
�

�F
r

W
�c�d

OO
id

>>

The following counterexample was pointed out to us by Anna Marie Bohmann and
Angelica Osorno. Using a more sophisticated categorical framework, we shall explain
how to get around the difficulty in [12; 13].

Counterexample A.5 We show that the pairing (6.4) is not a self-pairing of P. Letting
� 2P.2/ be the transposition � D .12/, we calculate

 .� ˝ � I id2˝ id1; id2˝ id1; id1˝ id1; id1˝ id1/D .1526/.3/.4/

whereas
Œ .� I id2; id1/˝  .� I id1; id1/�ı D .14526/.3/:

In this case ı is the transposition .23/. Thus condition (iii) fails.

Appendix B: The double bar construction and the proof of
Theorem 2.25

The proof of Theorem 2.25 is based on a construction that the senior author has
used for decades in unpublished work and whose algebraic analogue has also long
been used. Heretofore he has always found alternative arguments that avoid its use
in published work, and the topological version seems not to have appeared in print.
The construction works in great generality with different kinds of bar constructions,
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as described in [34; 35; 45], for example. We restrict attention to the monadic bar
construction used in this paper. We shall be informal, since it is routine to fill in the
missing details.

We assume given two monads C and D in some reasonable category U , and we assume
given a morphism of monads �W C !D . We also assume given a right D–functor
†W U ! V for some other reasonable category V . Then † is a right D –functor with
the pullback action

†C !†D!†:

Let X be a C –algebra in U . Reasonable means in particular that we can form “geo-
metric realizations” of simplicial objects X as usual, tensoring X over the category �
with a canonical (covariant) simplex functor from � to U or V .

We assume that the functor D commutes with geometric realization, so that the
realization of a simplicial D –algebra is a D –algebra. Then the bar construction

�!X D B.D;C ;X /

in U specifies an “extension of scalars” functor that converts C –algebras X to D–
algebras in a homotopically well-behaved fashion. Since D acts on †, we have the
bar construction B.†;D; �!X /, and we also have the bar construction B.†;C ;X /,
both with values in V . Under these assumptions, we have the following result.

Theorem B.1 There is a natural equivalence B.†;D; �!X /' B.†;C ;X /.

Proof of Theorem 2.25 We replace U by GU and V by GSp . We take C to be
the monad associated to the operad CU G D .CG/

G �KU G and D to be the monad
associated to CU DCG�KU . We take † to be †1

G
, and we recall that †1

G
D i�†

1 by
Lemma 2.22. By inspection or a commutation of left adjoints argument, the functor i�
commutes with geometric realization. Therefore,

EG.�!X /� B.†1G ;CU ; �!X /' B.†1G ;CU G ;X /Š i�B.†
1;CU G ;X /� i�EX;

where Theorem B.1 gives the equivalence.

Proof of Theorem B.1 We construct the double bar construction

B.†;D;D;C ;X /

as the geometric realization of the bisimplicial object B�;�.†;D;D;C ;X / in V

whose .p; q/–simplex object is †DpDC qX . The horizontal face and degeneracy
operations are those obtained by applying the simplicial bar construction B�.†;D;Y /

to the D –algebras Y DDC qX . The vertical face and degeneracy operations are those
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obtained by applying the simplicial bar construction B�.‡;C ;X / to the C –functors
‡D†DpD . The geometric realization of a bisimplicial object is obtained equivalently
as the realization of the diagonal simplicial object, the horizontal realization of its
vertical realization, and the vertical realization of its horizontal realization. Realizing
first vertically and then horizontally, we obtain

B.†;D;B.D;C ;X //D B.†;D; i!X /:

Realizing first horizontally and then vertically, we obtain the bar construction

B.B.†;D;D/;C ;X /' B.†;C ;X /:

Here B.†;D;D/ is the right C –functor whose value on a C –algebra Y is B.†;D;DY /

with right C –action induced by the C –action C Y ! Y . The equivalence is induced
by the standard natural equivalence B.†;D;DY /!†Y .

Remark B.2 The double bar construction can be defined more generally and symmet-
rically. Dropping the assumption that there is a map of monads C !D , we have that
B.†;D;F ;C ;X / is defined if F is a left D –functor and a right C –functor U!U
such that the following diagram commutes:

DFC //

��

DF

��

FC // F

This can even work when the domain and target categories of F differ but agree with
the categories on which C and D are defined.
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