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ABSTRACT OF DISSERTATION 

 
 

PATHOGENICITY, TOXIGENIC POTENTIAL, AND GENOMICS OF Fusarium 

graminearum AND F. meridionale CAUSING EAR AND STALK ROT OF MAIZE 

 

Gibberella ear (GER) and stalk rot (GSR) diseases of maize in Brazil are caused 

mainly by Fusarium meridionale, a species belonging to the Fusarium graminearum 

species complex (FGSC). Another species within this complex, F. graminearum sensu 

stricto (hereafter F. graminearum), is second in importance on maize, but is the most 

common species found causing Fusarium Head Blight disease of wheat in Brazil. The latter 

species is the predominant cause of GER and GSR in North America, where F. meridionale 

has not been found thus far. In this dissertation I undertook a comparative analysis of 

pathogenic, saprophytic, toxigenic and genomic traits among a collection of strains 

representative of the two species and two hosts of origin to address possible explanations 

for the observed shift in the species dominance between maize and wheat. I initially 

hypothesized that the shift was due to their differential aggressiveness. To address this 

hypothesis, four field trials were conducted at different locations in order to study the 

aggressiveness (percent GER severity) of two F. meridionale and two F. graminearum 

strains, all isolated from maize, on maize hybrids with different levels of resistance. Plants 

were inoculated with single isolates, or with pairs of isolates sequentially and alternately 

at the silking stage. The results indicated that F. meridionale was more aggressive to maize 

than F. graminearum. Fusarium meridionale was also more competitive in ears that were 

co-inoculated with both species. In a second study I used a larger and more representative 

sample of strains of each species, isolated from both maize and wheat, to inoculate maize 

ears and stalks in the field. Consistent with my previous study, I found that F. meridionale 

was, on average, more aggressive than F. graminearum on maize ears. In contrast, F. 

graminearum was slightly more aggressive on maize stalks than F. meridionale. Both 

species contaminated maize ears with trichothecene mycotoxins, but F. graminearum 

strains produced primarily deoxynivalenol (DON) and its acetylated derivative 15ADON, 

whereas F. meridionale strains produced only nivalenol (NIV). The host of origin made no 

difference, and there was a lot of intraspecies variation in GER or GSR severity caused by 

isolates of both species. In a third study, an expanded collection of isolates of the two 

species was compared for 17 additional saprophytic, pathogenic, and toxigenic traits. 

Although there was significant intraspecies variation for most of these traits as well, the 



     

 

strains were strongly structured by species regardless of the host of origin, based on a 

multivariate analysis. Fusarium graminearum was a more aggressive pathogen of wheat, 

and produced primarily DON in rice cultures or in wheat heads. DON is known to be an 

important factor driving aggressiveness of F. graminearum in wheat. On the other hand, 

F. meridionale grew faster in culture. All F. meridionale strains produced mainly NIV both 

in vitro and in planta, with the exception of two strains from maize that produced more 

DON than NIV in wheat heads. In a fourth study, whole genome analysis of selected 

representatives of both species showed that they were genetically divergent, based on 

patterns of conservation of single-nucleotide polymorphisms (SNPs) across alignments. 

There was evidence of frequent outcrossing among strains within both species. The genome 

analysis also provided clear evidence of recombination between the two phylogenetic 

species, indicating that they are not genetically isolated, and thus belong to a single 

biological species. Genetic and phenotypic divergence of F. meridionale and F. 

graminearum may indicate adaptive selection to different environmental niches. The 

results of this study suggest differential aggressiveness and toxigenicity as partial 

explanations for the predominance of F. meridionale on maize and F. graminearum on 

wheat, and they lay a foundation for future studies to explore these associations. 

 

KEYWORDS: Triticum aestivum. Zea mays. Fusarium head blight. Nivalenol. 

Deoxynivalenol.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Franklin Jackson Machado 

 

 

06/22/2020 

               Date 



 

 

RESUMO DA DISSERTAÇÃO 

 
 
 

PATOGENICIDADE, POTENCIAL TOXIGÊNICO, AND GENÔMICA OF Fusarium 

graminearum E F. meridionale CAUSADORES DAS PODRIDÕES DE COLMO E DE 

ESPIGA EM MILHO 

 

No Brasil, as doenças podridão de Gibberella tanto em espigas (GER) como em 

colmos (GSR) de milho são causadas principalmente por Fusarium meridionale, uma 

espécie pertencente ao complexo de espécies de Fusarium graminearum (FGSC). Outra 

espécie dentro deste complexo, F. graminearum sensu stricto (daqui em diante F. 

graminearum), é a segunda em importância no milho, mas é a espécie mais comum 

encontrada causando a doença giberela do trigo no Brasil. A última espécie é a causa 

predominante de GER e GSR na América do Norte, onde F. meridionale ainda não foi 

encontrado. Nesta dissertação, realizei uma análise comparativa de características 

patogênicas, saprofiticas, toxigênicas e genômicas entre uma coleção de isolados 

representativa das duas espécies e dos dois hospedeiros de origem para abordar possíveis 

explicações para a mudança observada na dominância das espécies entre milho e trigo. 

Inicialmente, minha hipótese era de que a mudança se devia à agressividade diferencial. 

Para abordar essa hipótese, foram realizados quatro ensaios de campo em locais diferentes, 

a fim de estudar a agressividade (severidade de GER em porcentagem) de dois isolados de 

F. meridionale e dois de F. graminearum, todas isoladas do milho, em híbridos de 

comerciais de milho com diferentes níveis de resistência. As plantas foram inoculadas com 

pares de isolados de cada espécie, sequencialmente e alternadamente no estágio de 

reprodutivo de emissão de estilo-estigmas. Os resultados indicaram que F. meridionale foi 

mais agressivo ao milho que F. graminearum. Fusarium meridionale também foi mais 

competitivo em espigas co-inoculadas com ambas as espécies. Em um segundo estudo, 

usei uma amostra maior e mais representativa de isolados de cada espécie, obtidos de milho 

ou trigo, para inocular espigas e colmos de milho no campo. Consistente com meu estudo 

anterior, descobri que F. meridionale era, em média, mais agressivo que F. graminearum 

em espigas de milho. Em contraste, F. graminearum foi ligeiramente mais agressivo em 

colmos de milho que F. meridionale. Ambas as espécies contaminaram espigas de milho 

com tricotecenos, mas os isolados de F. graminearum produziram principalmente 

desoxinivalenol (DON) e seu derivado acetilado 15ADON, enquanto os isolados de F. 

meridionale produziram apenas nivalenol (NIV). O hospedeiro de origem não fez 

diferença, e houve muitas variações intra-espécies na severidade de GER ou GSR, causadas 

por isolados de ambas as espécies. Em um terceiro estudo, uma coleção expandida de 

isolados das duas espécies foi comparada acerca de 17 caracteres saprofiticos, patogênicos 

e toxigênicos adicionais. Embora tenha havido variação significativa intra-espécies para a 

maioria dessas características, os isolados foram fortemente estruturados por espécie, 

independentemente do hospedeiro de origem, com base em uma análise multivariada. 

Fusarium graminearum foi um patógeno mais agressivo do trigo, produzido 

principalmente DON em culturas de arroz ou em espigas de trigo. Sabe-se que o DON é 

um fator importante que impulsiona a agressividade de F. graminearum no trigo. Por outro 

lado, F. meridionale cresceu mais rapidamente em cultura. Todos os isolados de F. 



 

 

meridionale produziram principalmente NIV in vitro e in planta, com exceção de dois 

isolados de milho que produziram mais DON que NIV em espigas de trigo. Em um quarto 

estudo, a análise do genoma completo de representantes selecionados de ambas as espécies 

mostrou que eles eram geneticamente divergentes, com base em padrões de conservação 

de polimorfismos de um único nucleotídeo (SNPs) entre alinhamentos. Houve evidências 

de cruzamentos frequentes entre os isolados de ambas as espécies. A análise do genoma 

também forneceu evidências claras de recombinação entre as duas espécies filogenéticas, 

indicando que elas não são geneticamente isoladas e, portanto, pertencem a uma única 

espécie biológica. A divergência genética e fenotípica de F. meridionale e F. graminearum 

pode indicar seleção adaptativa para diferentes nichos ambientais. Os resultados deste 

estudo sugerem agressividade diferencial e toxigenicidade como explicações parciais para 

a predominância de F. meridionale no milho e F. graminearum no trigo, e constituem uma 

base para estudos futuros para explorar essas associações. 

 

PALAVRAS-CHAVE: Triticum aestivum. Zea mays. Giberela do trigo. Nivalenol. 

Desoxinivalenol.  
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CHAPTER 1. LITERATURE REVIEW 

1.1 Overview  

Fusarium head blight (FHB, a.k.a. wheat scab) and Gibberella ear and stalk rot (GER and 

GSR) are fungal diseases with major impacts on wheat and maize yields as well as food 

safety, respectively, worldwide (Goswami and Kistler 2004; Kuhnem et al. 2015; 

Munkvold 2003a). These diseases cause significant economic losses due to reduction in 

grain yield, but they also reduce crop value due to contamination of grain with mycotoxins, 

some of which are regulated for maximum tolerance limits to protect consumers (Goswami 

and Kistler 2004; Mcmullen et al., 2012; Sutton 1982). 

In Brazil, a handful of species within the Fusarium graminearum species complex 

(FGSC) cause all three diseases, but the dominant species varies according to the host 

(Astolfi et al., 2011; Del Ponte et al., 2015; Kuhnem et al., 2016). In maize, F. meridionale 

is found most often causing GER and GSR, and it is also recovered most frequently among 

perithecia produced on maize stubble (Kuhnem et al., 2016). On the other hand, FHB in 

wheat and barley is caused mainly by F. graminearum (Astolfi et al., 2011; Del Ponte et 

al., 2015). Among the toxins produced by FGSC, B-trichothecenes and zearalenone are 

produced in the largest quantities. The B-trichothecenes include deoxynivalenol (DON) 

and nivalenol (NIV), and their respective acetylated forms 3ADON, 15ADON, and 4ANIV 

(Miller and Greenhalgh 1991). While F. graminearum produces either deoxynivalenol 

DON or NIV, depending on the region, F. meridionale is a consistent NIV-producing 

species (Ward et al., 2002; Del Ponte et al., 2015). An individual FGSC strain can be 

assigned to a B-trichothecene chemotype based on the combination of B-trichothecene and 
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acetylate produced in the highest amount (Desjardins 2008; Ward et al. 2008). The most 

common chemotypes are 3ADON or 15ADON (strains produce DON and a smaller 

amount of 3ADON or 15ADON), or NIV. Fusarium graminearum strains affecting cereals 

in Brazil are thus far only of the 15ADON chemotype (Del Ponte et al., 2015; Kuhnem et 

al., 2016). While DON has been confirmed as an important aggressiveness factor for F. 

graminearum spread within wheat heads in several studies (Bai et al. 2002; Desjardins et 

al. 1996; Harris et al. 1999; Maier et al. 2006), the role of NIV in the infection and spread 

of disease in wheat or maize remains unclear (Maier et al. 2006).  

In this dissertation, I tested the hypothesis that host dominance of F. meridionale 

versus F. graminearum in Brazil was related to differential aggressiveness of the two 

species on maize versus wheat. To address this hypothesis, I used a combination of field 

and laboratory studies, and characterized the phenotypes and genotypes of a representative 

group of strains. Results of the study supported the hypothesis: thus, F. meridionale was 

more aggressive and more competitive on maize ears than F. graminearum, whereas F. 

graminearum was more aggressive on point-inoculated wheat heads. However, the high 

degree of intraspecies variation that I observed for aggressiveness and other phenotypes; 

evidence for relationships between host dominance and other factors including fertility, 

toxigenicity, and growth rate; and evidence for recombination among and between the two 

phylogenetic species; suggested that additional factors are also important in structuring the 

populations of F. meridionale and F. graminearum on maize and wheat in Brazil.  
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1.2 Economic impact and management of GER and GSR 

Maize is typically grown in rotation with one or two other crops with little overall 

crop diversity. In Brazil, early-maturing soybean is sown in the beginning of the summer 

cropping season, followed by maize. In southern Brazil, wheat is planted as a winter crop 

following either soybean or maize. Wheat and other small grains are typically cultivated in 

a no-tillage system and FHB is of common occurrence, thus GER and GSR are more 

prevalent in these southern subtropical climates (Del Ponte et al. 2009). Both maize 

diseases are increasing in importance as the application of improved technologies, and 

agronomic practices including irrigation and double-cropping, have expanded (Costa et al. 

2019).  

Multiple species of the FGSC can cause FHB and GER (Goswami and Kistler 2004; 

Kuhnem et al. 2015; Munkvold 2003a). FGSC members produce zearalenone (ZON) in 

addition to the type-B trichothecenes DON and NIV, and all of these compounds are 

extremely harmful for human and animal health (Chen et al. 2019). There are mycotoxin 

limits for maize-based food and feed produced in Brazil, but these include only DON and 

ZON, and not NIV among the FGSG mycotoxins (ANVISA 2011). Although NIV-

producing species are also found associated with wheat, NIV has not been regulated by any 

country so far (Ferrigo et al. 2016; Park et al. 2018). Fungicides are used for management 

of FHB and GER in Brazil, however the unpredictability of fungicide performance for 

disease control (Andriolli et al. 2016), means that breeding for host resistance is a priority 

(Mesterházy et al. 2012). Resistance to GSR and GER in maize is a complex trait that is 

influenced by genetic background and environmental factors, as well as by the pathogen 

population (Mesterházy et al. 2012; Yang et al. 2010). Hybrids differ significantly in 
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resistance to both diseases (Reid and Zhu, 2005). To date, there are no reports of complete 

resistance to GER or GSR, and the mechanisms of quantitative resistance are not well 

understood (Mesterházy et al. 2012). In addition to fungicides and selection of resistant 

cultivars, cultural practices are also recommended to minimize the stresses that increase 

plant susceptibility to fungal invasion (Gatch et al., 2002; Munkvold, 2003b).  

1.3 Disease cycle of GER and GSR  

Members of FGSC survive in residues of graminaceous crops including wheat, 

barley, rye and maize (Leplat et al., 2013; Pereyra & Dill-Macky, 2008). Most FGSC 

members have a broad spectrum of hosts among these graminaceous crops, and also weeds, 

which can contribute to the primary inoculum (Leplat et al. 2013). Non-graminaceous 

weeds and crops such as soybean, sunflower and alfalfa have also been reported as hosts 

for FGSC members (Pereyra and Dill-Macky, 2008). The fungi can overwinter as mycelia 

or as sexual structures called perithecia, from which sexual spores (ascospores) are 

produced and forcibly ejected into the atmosphere (Dufault et al., 2006; Leplat et al., 2013; 

Trail et al., 2005). Asexual spores (macroconidia) are produced in crop debris and in 

infected plant tissues, and are released and dispersed mainly by water splash during rainfall 

or overhead irrigation (Leplat et al. 2013). Infection occurs in high relative humidity 

(>80%) and temperatures ranging from 20º to 30º C (Del Ponte et al., 2004). The primary 

pathway for infection of maize kernels by F. graminearum is via the silks, which are highly 

susceptible during the first 6 days after silk emergence, becoming less susceptible 

thereafter (Munkvold 2003a; Reid and Zhu, 2005). Spores reach maize silks by splashing, 

wind dispersal, or insect vectors (Munkvold 2003a). Some infections can be initiated by 

lepidopteran insect injury to the kernels, but this is a less important pathway than silk 
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infection for GER, in contrast to other maize ear rots (Munkvold 2003a). Gibberella ear rot 

is favored by high levels of moisture around silking, followed by moderate temperatures 

and high rainfall during the maturation period (Munkvold 2003a; Sutton, 1982). FGSC 

members overwintering in infected plant residues can infect maize stalks through natural 

entry points (i.e. nodes), wounds caused by insects or mechanical damage, or by direct 

penetration of the root and stalk (Gatch et al. 2002). Plants are predisposed to stalk rot by 

any stress that reduces the photosynthetic capacity of the plant following anthesis, when 

the developing ear competes with the stalk for carbohydrates (Gatch and Munkvold, 2002; 

Dodd, 1980).  

1.4 Distribution and ecology of FGSC 

Different FGSC members dominate as the cause of FHB, GER, and GSR in 

different regions of the world (Boutigny et al. 2011; Carter et al. 2000; Castañares et al. 

2016; Del Ponte et al. 2015; Gomes et al. 2015, 2016; Kuhnem et al. 2016; Sampietro et 

al. 2011; Umpiérrez-Failache et al. 2013). Fusarium graminearum is the most common 

species causing FHB in wheat and barley worldwide (Del Ponte et al. 2015; Kelly and 

Ward 2018) and is the most frequent cause of GER and GSR in North America. However 

in South America, including Brazil, and in Nepal, F. meridionale is more important as the 

causal agent of GER and GSR (Kuhnem et al. 2016; Sampietro et al. 2011; Desjardins and 

Proctor 2011). Fusarium meridionale is also the second most common species causing 

FHB in wheat in Brazil after F. graminearum, and it is increasing in importance in regions 

where maize is a major crop (Del Ponte et al. 2015). Other Fusarium species, including 

FGSG members (F. graminearum, F. asiaticum, F. boothii, F. cortaderiae, and F. 

austroamericanum) and non-members (F. culmorum, F. cerealis and F. poae), cause GER 



6 

 

and GSR disease in other regions of the world (Basler 2016; Kuhnem et al. 2016; Lee et 

al. 2012; Ndoye et al. 2012). It is unknown why one species tends to dominate among 

isolations from specific cereals in some regions. Possibilities could include differences in 

climate; variation in the microbiome that may incorporate more or different competitors; 

or differences in the cropping systems that may affect opportunities for cross-inoculation. 

Another possibility could be variations in saprophytic fitness in different regions or on 

alternate substrates. For example, F. asiaticum from rice was recovered in higher 

frequencies from rice straw than other FGSC species (Lee et al. 2009), and similarly, F. 

meridionale was the species that was recovered most frequently from maize stubble and 

stalks in Brazil (Kuhnem et al. 2016). It could also reflect competition among species that 

are most prevalent in the various locations (Carter et al., 2002). For example, the most 

common species causing FHB, F. graminearum 15ADON, has been shown to be more 

fertile and more aggressive on wheat compared with other species (Liu et al. 2017; Nicolli 

et al. 2018; Zhang et al. 2016). In South Africa, F. boothii was the only species infecting 

maize ears, while F. graminearum dominated in wheat spikes, which led the authors to 

hypothesize a selective disadvantage for F. graminearum on maize ears relative to other 

FGSC (Boutigny et al. 2011). Fusarium boothii has only recently been reported in North 

America, on wheat (Valverde-Bogantes et al., 2019), and it was shown to be less aggressive 

and toxigenic on wheat than F. graminearum. Fusarium meridionale, which dominates on 

maize in Brazil, has never been found in North America.  

1.5 Genetics and genomics of FGSC 

Another possibility for geographic differences in host dominance could be genetic 

variability among strains of the same species across regions, perhaps as a result of 
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hybridization or divergence due to localized selection. Members of FGSG are homothallic, 

but they can also outcross. Among F. graminearum strains in the laboratory, the rate of 

outcrossing was as high as 35% (Bowden and Leslie 1999) and in China, F. graminearum 

exhibited outcrossing rates of 6 to 20% in the field (Chen and Zhou 2009). High genotype 

diversity among some populations of F. graminearum in North America and Europe has 

led some to suggest that outcrossing is frequent in the field (Walker at al., 2001; Zeller et 

al., 2004; Talas et al., 2012; 2015). Stability among some subpopulations in North America 

has also been observed, suggesting that rates of outcrossing may vary in different locations 

(Goswami and Kistler 2004). The existence of subpopulations that are genotypically and 

phenotypically distinct (aka. genetic drift) could indicate the presence of diversifying 

selection during adaptation to different ecological niches (Kelly and Ward, 2018; 

Valverde-Bogantes et al., 2019).  

Fusarium graminearum can also outcross with other FGSC members in the 

laboratory, e.g. F. asiaticum and F. meridionale, but generally fertility levels are low and 

segregation ratios are skewed (J. F. Leslie, personal communication). To date, only a few 

natural hybrids have been found (O’Donnell et al., 2000; Boutigny et al., 2011). Isolates of 

FGSC are simultaneously assigned to species and trichothecene chemotype by using a 

well-established multi-locus genotyping (MLGT) assay (Ward et al. 2008). Phylogenetic 

studies based on sequencing of multiple genes, and stability of species identified by the 

MLGT assay, suggest that the frequency of interspecies hybridization events has been 

insufficient to oppose isolation by genetic drift (O’Donnell et al., 2008; Starkey et al., 2007; 

Ward et al., 2008; Yli-Mattila et al., 2009). However, given the existence of skewed 

segregation ratios, the identification of hybrids will be more efficiently achieved with the 
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ability to investigate large numbers of markers, i.e. single nucleotide polymorphism (SNP) 

markers, across whole genomes. Until these methods can be applied widely, we may be 

underestimating the degree of interspecies hybridization among members of the FGSC.  

1.6 Hypothesis and objectives of this dissertation  

In spite of significant research attention over the years, diseases caused by members 

of FGSC remain as one of the most serious problems on cereal grains worldwide. Skewed 

host-species associations are common when multiple FGSC species and cereal hosts co-

occur. The case of F. meridionale and F. graminearum on maize and wheat in Brazil is a 

typical example of this (Castañares et al. 2016; Del Ponte et al. 2015; Gomes et al. 2015; 

Kuhnem et al. 2016; Sampietro et al. 2011). It is not clear why these host preferences exist, 

when both species can cause both diseases. It suggests that F. meridionale and F. 

graminearum have distinguishable phenotypes relevant to selection or competition on 

these two hosts. An improved understanding of the host-specific differences in FGSC 

composition is critical for development of more effective genetic or chemical control 

strategies targeting disease and mycotoxin reduction. In this dissertation, I focused on the 

hypothesis that relative dominance of F. meridionale on maize and of F. graminearum on 

wheat in Brazil is due to differing levels of aggressiveness on these hosts. Several studies 

have reported that F. graminearum is more aggressive to wheat compared with other FGSC 

members (Goswami and Kistler 2005; Nicolli et al. 2015, 2018; Spolti et al., 2012; Tóth et 

al. 2005). In my dissertation, I compared aggressiveness to maize, together with 17 other 

pathogenicity and fitness-related traits, among a large collection of strains representing the 

two species and hosts of origin. I tested whether members of the two species were 

distinguishable for many or most of these traits, which would demonstrate biological 
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relevance of the phylogenetic species. I also conducted a preliminary genomic comparison 

of representatives of the two species to determine the degree of genetic divergence, and to 

evaluate the likelihood of admixture due to outcrossing within and between the species.  
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CHAPTER 2. GIBBERELLA EAR ROT IN MAIZE EARS CAUSED BY FUSARIUM 

MERIDIONALE AND F. GRAMINEARUM: A SINGLE VS. SEQUENTIAL 

ALTERNATING SPECIES INOCULATION  

Abstract  

In Brazil, a handful of species within the Fusarium graminearum species complex (FGSC) 

infect cereal crops at relative frequencies that vary according to the host. In maize, F. 

meridionale is the most prevalent FGSC species causing both ear and stalk rots (GER and 

GSR) as well as producing perithecial inoculum on maize stubble. In contrast, another 

species in the FGSC, F. graminearum, is the most common species causing Fusarium head 

blight (FHB) in wheat in the same region. The cause of this difference in dominance is 

unknown but may be related to differences in aggressiveness between the two species on 

the two hosts. A four location-hybrid study was conducted to compare the aggressiveness 

(measure of GER severity) of F. meridionale (Fmer) and F. graminearum (Fgra) strains, 

both isolated from maize. These were inoculated singly or sequentially alternated at the 

silking stage, totaling four treatments: Fgra and Fmer (each inoculated alone, four days 

after silk emergence), and Fgra⇾Fmer and Fmer⇾Fgra (sequentially inoculated, six days 

apart). The mean GER severity was highest in Fmer (52.1%), intermediate in Fmer⇾Fgra 

(40.3%) and Fgra⇾Fmer (38.3%) and lowest in Fgra (23.8%). The production of 

mycotoxins deoxynivalenol (DON), nivalenol (NIV) and zearalenone (ZON) was assessed 

in one experiment. Only NIV was detected in kernels after inoculation of Fmer alone, and 

DON was the only toxin found after inoculation of Fgra. Both NIV and DON (1.2:1 ratio), 

together with ZON, were found in grains harvested from the Fmer⇾Fgra sequential 

treatment. In contrast, only NIV was found in the Fgra⇾Fmer treatment. These results 

suggest that F. meridionale is more aggressive to maize ears than F. graminearum. These 

results also demonstrate the need to focus attention on the presence of NIV in maize grains, 

which is neglected in the current regulatory legislation. 

  

KEYWORDS: Zea mays, Fusarium graminearum species complex, nivalenol, interaction, 

FGSC. 
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2.1 Introduction  

Several species within the Fusarium graminearum species complex (FGSC) are the cause 

of major diseases of winter and summer cereal crops, including Fusarium head blight 

(FHB) in wheat (McMullen et al. 2012) and Gibberella ear rot (GER) and stalk rot (GSR) 

in maize (Goswami and Kistler 2004; Munkvold 2003a). FGSC members are particularly 

common as cereal pathogens in the subtropical climate of southern Brazil where wheat is 

grown during the winter-spring and maize during the summer-fall seasons. GER is favored 

by increased levels of moisture around silking, followed by moderate temperatures and 

high rainfall during the maturation period (Munkvold 2003a; Sutton 1982). Above-normal 

rainfall during El Nino years in the south of Brazil, and an increasing use of irrigation, has 

increased GER risk. As a result, trichothecene mycotoxins typically produced by GER 

pathogens have been found contaminating commercial maize grain (Oliveira et al. 2017). 

Both FHB in wheat and barley and GER of maize are known to reduce yield 

(Duffeck et al. 2019; Munkvold 2003a) but the presence of mycotoxins that accumulate in 

the kernels and reduce product value is of increasing concern to producers (Munkvold et 

al. 2019). FGSC species are known to produce several mycotoxins, but the most important 

ones belong to the B-trichothecene group, including nivalenol (NIV) and deoxynivalenol 

(DON) (Miller and Greenhalgh 1991). These mycotoxins can accumulate in grain at levels 

considered unsafe for both livestock and human consumption, posing a serious threat to 

food safety (Pestka 2010; Rocha et al. 2005). To mitigate the impact on animal and human 

health, maximum tolerated limits have been established for Fusarium mycotoxins in wheat 

and maize grain and byproducts in Brazil and worldwide (ANVISA, 2011; van Egmond et 
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al. 2007). In Brazil, DON, ZON and fumonisins (B1 and B2) are the only mycotoxins that 

are currently regulated for maize (ANVISA, 2011, 2017). 

Host shifts in dominance among different FGSC members have been reported in 

South America (Castañares et al. 2016; Del Ponte et al. 2015; Gomes et al. 2015, 201; 

Kuhnem et al. 2016; Sampietro et al. 2011). For example, F. graminearum of the 15ADON 

genotype is the most prevalent species causing FHB in wheat and barley in South America 

and worldwide (Del Ponte et al. 2015; Kelly and Ward 2018). In Brazil, F. meridionale, a 

NIV-producing species, is the dominant FGSC species in maize, and is also increasing in 

importance in wheat in regions where maize is a major crop (Del Ponte et al. 2015). A few 

other NIV-producing FGSC species have been found in association with GER in maize in 

other regions of the world, usually at minor frequency, including F. asiaticum, F. 

cortaderiae and F. austroamericanum, and also some non-NIV, non-FGSC species (F. 

culmorum, F. cerealis and F. poae) (Basler 2016; Desjardins and Proctor 2011; Kuhnem 

et al. 2016; Lee et al. 2012; Ndoye et al. 2012). 

A recent survey of mycotoxins contaminating maize grains in southern Brazil was 

consistent with previous work suggesting that F. meridionale was the primary maize 

pathogen. The survey found that NIV mycotoxin, which is produced mainly by F. 

meridionale, and rarely by F. graminearum, was present in more samples (76%) than the 

DON mycotoxin (48%), though levels for both were lower than the Brazilian limits of 

contamination for DON (Oliveira et al. 2017). 

Management of GER aims to reduce infection by toxigenic fungi in order to 

suppress mycotoxin production (Munkvold 2003a). The most effective control for GER is 

the use of host genetic resistance. However, breeding for resistance is complicated by the 
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diversity of pathogenic species (Mesterházy et al. 2012; Munkvold 2003a). Complete 

resistance to GER has not been reported and the mechanisms underlying resistance are not 

completely understood (Mesterházy et al. 2012). In fact, when each of the 14-most planted 

maize hybrids in southern Brazil was challenged with F. meridionale, none was resistant 

to GER (Nerbass et al. 2015). The use of foliar fungicides to control maize diseases (Esker 

et al. 2018), including ear rots, has increased in recent years (Andriolli et al. 2016; 

Anderson et al. 2017; Luna and Wise 2015; Fingstag et al. 2019). 

In North America, GER is caused mainly by F. graminearum of the 15ADON 

genotype although the 3ADON genotype can also be an important contributor depending 

on the region (Burlakoti et al. 2017; Kuhnem et al. 2015). The toxin profile of a Fusarium 

species has been considered to influence its pathogenesis (Ward et al. 2002). While DON 

has been confirmed as an aggressiveness factor that facilitates fungus spread within wheat 

heads and, to a lesser extent, in maize ears in several studies (Bai et al. 2002; Desjardins et 

al. 1996; Harris et al. 1999; Maier et al. 2006), the role of NIV in the infection and spread 

of the disease within the maize ear remains unclear (Maier et al. 2006). There are very few 

studies that investigate differential pathogenicity among members of the FGSC with 

different toxin profiles that cause GER. In South Africa, F. boothii, a 15ADON-producing 

species that was dominant on maize (Boutigny et al. 2011), produced more severe 

symptoms and higher levels of mycotoxins compared with DON-producing F. 

graminearum isolates that were highly aggressive to wheat (Beukes et al. 2018). In that 

study, only the F. boothii isolates were obtained from maize, while the F. graminearum 

isolates had been recovered from wheat. Multiple members of the FGSC and of other 

species complexes can co-occur in the same field or even in the same maize ears (Logrieco 
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et al. 2002; Oldenburg et al. 2017; Picot et al. 2012), but the effects of any interspecific 

interaction on disease development are unknown. In this study I tested the hypothesis that 

F. meridionale from maize is more aggressive to maize ears, and produces significant 

levels of NIV trichothecenes, when compared with F. graminearum also obtained from 

maize. Isolates were inoculated singly, and they were also co-inoculated sequentially and 

alternately in order to study any interspecific interactions.  

2.2 Materials and Methods  

2.2.1 Fungal isolates and inoculum preparation 

Two F. graminearum (DON-producing) isolates and two F. meridionale (NIV-producing) 

isolates were selected from a collection obtained from symptomatic maize kernels (Stumpf 

et al. 2013). These isolates had been identified to species as part of a previous study that 

showed the dominance of F. meridionale in Brazilian maize (Kuhnem et al. 2016). 

A spore suspension was prepared by growing isolates individually on potato 

dextrose agar (PDA) for 10 days with a 12-h dark/light cycle. The macroconidia were 

filtered through two layers of cheesecloth to reduce the number of mycelial fragments 

present in the inoculum. The macroconidial suspensions of each isolate were quantified by 

using a hemocytometer. Spore suspensions of the two isolates of each species were diluted 

in sterile water and then mixed in a 1:1 ratio (v/v) to achieve the desired macroconidia 

concentrations (5 × 105 macroconidia/ml) (Reid et al. 1995). 
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2.2.2 Field trial in Southern Brazil (subtropics) 

Field experiments were carried out in a no-till area located in the municipality of Eldorado 

do Sul, Rio Grande do Sul (RS) state, during the 2012 and 2013 growing seasons, and in 

the municipality of Lages, Santa Catarina (SC) state, during the 2012-growing season. The 

locations are ~ 400 km apart. In each location and year, two field trials, sown on different 

dates, were arranged in a 2x5 factorial experiment in a split-plot design with four 

replications. Two ear-rot-susceptible commercial maize hybrids, P30F53 HR® and 

STATUS TL®, were randomly assigned to the main plots, each of which consisted of five 

rows (6-m-long row with 50 cm between rows). The subplot units consisted of five plots 

of one row each, for which five inoculation treatments were randomized. The ten central 

plants of each row were inoculated. All plots were bordered by non-inoculated rows of the 

same maize hybrid (Fig. S2.5). 

 

2.2.3 Field trials in Southeastern Brazil (Tropics) 

One field experiment was conducted at the experimental station at the Universidade 

Federal de Viçosa (20º44’44” S, 42º50’59” W, 661 m above sea level) during the 2017 

winter growing season. Seeds of the maize hybrid RB9004 PRO2® were sown in April that 

year. The field trials were arranged in a randomized complete block design with four 

replications, and each of the treatments was randomly assigned to the experimental units 

(Table 2.1). Each block consisted of an individual row. Each plot consisted of a 5-m-long 

row with 60 cm between rows. The central ten plants in each plot were inoculated. All plots 

were bordered by non-inoculated rows of the same maize hybrid. Plots were fertilized 
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following chemical soil analyses, and sprinkle-irrigated as needed. Weather variables 

(precipitation - rain plus irrigation; maximum, average and minimum relative humidity - 

RH; and maximum, average and minimum temperature) were recorded hourly by an 

automatic meteorological station (Squitter, Squitter Soluções em Monitoramento 

Ambiental, São José dos Campos, São Paulo, Brazil). The station was located within the 

field and data were collected from sowing to maize harvest. Average weather variables are 

presented in Figure S2.6. 

2.3 Inoculation procedures 

The five inoculation treatments are summarized in Table 2.1. Single inoculation treatments 

were made four days after silking (Reid et al. 2002). Plants were individually inoculated 

by injecting the suspensions (2 ml of a 5 × 105 macroconidia/ml solution) into the silk 

channel of the primary ear using a syringe with an obtuse needle (Anderson et al. 2016; 

Reid et al. 1995). In order to determine whether there was a positive or negative interaction 

of the two species in co-inoculations, sequential, alternated inoculations were made six 

days apart. A mock inoculation (sterile distilled water) was included as a negative control. 

Inoculations were followed by three consecutive days of irrigation. When grain moisture 

content reached an estimated 22%, the ten inoculated ears for each treatment were 

handpicked, husked, and the GER severity score on each ear was rated as the percentage 

area of the ear that was symptomatic (Reid et al. 2002). 
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2.3.1 Mycotoxin analysis 

Mycotoxins were measured for the field experiment conducted in Viçosa in 2017. 

Harvested maize ears were dried at 60 °C for five consecutive days, shelled, and grains 

were stored dry at -20 °C until analysis. Mycotoxin in grains was determined by bulking 

the individual ears from each block, which was considered as a replicate. A 10-g sub-

sample of each pooled replicate was ground by using a coffee grinder and then 

homogenized. The ground samples were sent to the Virginia Tech Deoxynivalenol (DON) 

Testing Lab, Blacksburg (Virginia). The amount of DON and each of its acetylated forms 

(15ADON and 3ADON), NIV, and ZON were quantified using a gas chromatography–

mass spectrometry method as described previously (Fuentes et al. 2005; Mirocha et al. 

1998). 

 

2.3.2 Data analysis 

The main and interaction effects of the treatment factors on the response variable were 

evaluated under a linear mixed modelling framework at 5% significance. Trials, maize 

hybrids, and replicates were treated as random effects in our model. The model was 

expanded to account for the main and interaction effects of the species from each host of 

origin. The mixed models were fitted using the lmer function of ‘lme4’ package (Bates et 

al. 2015) of R (R Core Team 2019). The 'emmeans' package (Lenth 2019) was used to 

estimate the back-transformed lsmeans and respective confidence intervals. The function 

cld from ‘multcomp’ R package (Hothorn et al. 2008) was used for multiple comparison 

of treatment means at 5% significance. 
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2.4 Results 

Mean GER severity differed among the treatments (P < 0.001); it ranged from 1% to 100% 

(median = 20%) being lowest and highest in Fgra and Fmer, respectively, compared with 

the other treatments (P < 0.05) (Fig. 2.1). Severity induced by Fmer (52.1%) was two times 

higher than by Fgra (23.8%) (Fig. 2.2). Severity in Fgra⇾Fmer and Fmer⇾Fgra treatments 

did not differ from one another (P = 0.793) but differed from each of the single inoculations 

(Table 2.2). No visible GER symptoms were found in the non-inoculated controls of any 

experiment, suggesting no influence of background inoculum. 

Trichothecene levels in kernels from Fmer and Fgra treatments ranged from 0.50 

to 2.05 μg/g (ppm) respectively (Fig. 2.2B). For the sequential inoculation treatments, 

DON and NIV levels ranged from 0.35 to 3.15 μg/g in the Fgra⇾Fmer treatment. DON 

was detected in only one sample of Fmer⇾Fgra at similar levels with NIV and ZON (0.70 

μg/g, 0.60 μg/g and 0.40 μg/g, respectively). Only NIV was detected in kernels from ears 

inoculated with Fmer, whereas DON was the only mycotoxin detected in kernels from the 

Fgra treatment. In contrast, NIV was more abundant in kernels from ears of the Fgra⇾Fmer 

treatment. Finally, in the Fmer⇾Fgra treatment NIV, DON, and a smaller amount of ZON 

were detected (Fig. 2.3A). Neither 15ADON nor 3ADON were detected in any sample 

(Fig. 3A). There was a positive correlation between NIV production and GER severity 

(Fig. 2.3B).  
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2.5 Discussion  

In this study, I tested the hypothesis that F. meridionale from maize is more aggressive to 

maize ears than maize isolates of F. graminearum. Evidence of potential host preference 

among members of the FGSC has been reported from different parts of the world where 

multiple FGSC species infect different cereal crops (Boutigny et al. 2011; Carter et al. 

2000; Del Ponte et al. 2015; Umpiérrez-Failache et al. 2013; van der Lee et al. 2015). For 

example, differential aggressiveness among FGSC species has been reported for FHB in 

wheat (Goswami and Kistler 2005; Nicolli et al. 2015; Spolti et al. 2012; Tóth et al. 2005). 

In contrast, colonization did not differ between F. meridionale and F. graminearum 

inoculated onto soybean pods in the field (Chiotta et al. 2016). In most of the previous 

studies of GER, F. boothii, the dominant species associated with the disease in South Africa 

and China, produced the same amount of disease as F. graminearum in field experiments 

(Beukes et al. 2018; Gai et al. 2017). One study from China reported that F. boothii from 

maize was similarly aggressive to maize stalks as F. graminearum isolates obtained from 

maize or wheat (Zhang et al. 2016). In the present study, I found that severity was more 

than twice as high when F. meridionale was inoculated singly compared with F. 

graminearum. This supports my hypothesis that F. meridionale is more aggressive to 

maize, which may contribute to its dominance in naturally infected ears and stalks of maize 

in a region where both species co-exist and F. graminearum is dominant in wheat (Kuhnem 

et al. 2016). 

The current work is the first field inoculation study to confirm the ability of F. 

meridionale to produce significant amounts of NIV in maize ears. NIV was recently found 

to be the most common mycotoxin in surveys of commercial maize grain in Brazil (Oliveira 
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et al. 2017), which is consistent with the dominance of this pathogen in causing GER 

epidemics. The higher toxin amount/severity ratio for F. graminearum than F. meridionale 

observed is consistent with reports of the generally high toxigenic potential of F. 

graminearum of the DON type versus the NIV-producing FGSC (Nicolli et al. 2015; Tóth 

et al. 2005). Levels of NIV were correlated with aggressiveness to ears, suggesting that 

NIV plays a role in the process of infection and colonization.  

During sequential co-inoculations, GER severity and NIV production by F. 

meridionale were both reduced if F. graminearum was inoculated following F. meridionale 

at the same infection site. It seems that F. meridionale facilitated F. graminearum infection, 

but its own development was reduced as a result. Previous studies of maize ears inoculated 

with a mix of species suggested that F. graminearum predisposed ear tissues to infection 

by a weaker species, F. verticillioides, in mixed inoculation treatment (Reid et al. 1999). 

The damage caused by the first species to be inoculated may have an effect similar to 

wounding caused by lepidopteran larvae that facilitates colonization by subsequently 

applied inoculum (Picot et al. 2012). However, when F. graminearum was inoculated first 

in my experiments, its growth was apparently ultimately suppressed by the more aggressive 

F. meridionale, evidenced by absence of DON in these samples.  

The collective results of prior extensive surveys of species composition frequency, 

together with the results of the field experiments reported here, suggest that relative 

aggressiveness and a competitive advantage is likely to be one of the drivers shaping FGSC 

composition in maize in Brazil. My findings are important to breeders because they can 

inform the selection of appropriate adapted species to be used as inoculum when screening 

for host resistance. Ideally, further studies should focus on screening of regionally-
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dominant inoculum where the hybrids shall be deployed, as well as testing the significance 

of the species x hybrid interactions using larger number of host genotypes, similar to what 

has been done for wheat genotypes challenged with F. graminearum and F. meridionale 

(Mendes et al. 2018).  
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2.6 Tables 

Table 2.1. Single and sequential inoculation treatments of Fusarium graminearum (Fgra) 

and Fusarium meridionale (Fmer) on maize ears. 

 

Treatmenta Silking + 4 days Silking + 10 days 

Fgrab F. graminearum - 

Fmerc F. meridionale - 

Fgra ⇾ Fmer F. graminearum F. meridionale 

Fmer ⇾ Fgra F. meridionale F. graminearum 

Mock inoculations Water Water 

a All inoculations were done by injecting 2 mL of the macroconidia suspension at 5 × 105 

macroconidia/ml. All isolates were obtained from naturally infected maize kernels (Stumpf 

et al. 2013).  

bMix of two F. graminearum (15ADON) isolates. 

cMix of two F. meridionale (NIV) isolates. 
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Table 2.2. Estimated differences in mean Gibberella ear rot (GER) severity between pairs 

of inoculum treatments of Fusarium graminearum (Fgra) and F. meridionale (Fmer) 

isolates on three different hybrids (P30F53 HR®, STATUS TL® and RB9004 PRO2®) in 

three different field locations in Brazil during 2012, 2013 and 2017 growing seasons in 

Lages-SC, Eldorado do Sul-RS and Viçosa-MG, Brazil. 

 

Contrasts Estimate SEa dfb t.ratio P-valuec 

Fgra - (Fgra⇾Fmer) -14.50 4.87 247 -2.97 0.017 

Fgra - Fmer -28.30 4.66 242 -6.07 < 0.001 

Fgra - (Fmer⇾Fgra) -16.50 4.75 244 -3.47 0.004 

(Fgra⇾Fmer) - Fmer -13.80 4.54 246 -3.05 0.013 

(Fgra⇾Fmer) - (Fmer⇾Fgra) -2.00 4.55 240 -0.44 0.972 

Fmer - (Fmer⇾Fgra) 11.80 4.41 239 2.69 0.038 

aSE = Standard error. 

bDegrees-of-freedom method: Kenward-Roger. 

cP-value adjustment: Tukey method for comparing a family of 4 estimates. 

 

 



24 

 

2.7 Figures  

 

Figure 2.1. Distribution of Gibberella ear rot (GER) severity among the inoculation 

treatments of Fusarium graminearum (Fgra) and F. meridionale (Fgra) isolates on three 

different hybrids (P30F53 HR®, STATUS TL® and RB9004 PRO2®) in three different 

locations in Brazil. The first two maize hybrids were planted during the 2012 growing 

season in Lages Santa Catarina state (SC) and Eldorado do Sul, Rio Grande do Sul state 

(RS), and during the 2013 growing season in Eldorado do Sul, RS. The RB9004 PRO2® 

maize hybrid was cultivated during the 2017 growing season in Viçosa, Minas Gerais state 

(MG). The line within each box represents the median, the top and bottom lines of the 

boxes represent the 75th and 25th percentiles, respectively. The vertical bars extending 

beyond the boxes show the 10th and 90th percentiles, and the dots represent the GER severity 

of each inoculated ear. 
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Figure 2.2. Least square means and confidence intervals from linear mixed analyses of the 

effect of single and sequential inoculation treatments of Fusarium graminearum (Fgra) and 

F. meridionale (Fgra) isolates on Gibberella ear rot (GER) severity of inoculated maize 

ears of three different hybrids (P30F53 HR®, STATUS TL® and RB9004 PRO2®) in three 

different locations in Brazil. Means with the same letters are not significantly different 

from each other based on Tukey test (P = 0.05). 
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Figure 2.3. (A) Mean production of deoxynivalenol (DON), nivalenol (NIV) and 

zearalenone (ZON) and (B) mean Gibberella ear rot (GER) severity and standard error 

resulting from Fusarium graminearum and F. meridionale isolates inoculated onto maize 

ears of hybrid RB9004 PRO2® in single and sequential inoculation treatments in a field 

trial conducted in Viçosa 2017. Numbers represent how many of the four blocks (bulked 

sample of kernels from 10 inoculated ears) had detectable mycotoxins. Measurements of 

15-acetyl-deoxynivalenol (15ADON) and 3ADON, and in the missing blocks, were under 

the limit of detection (< 0.25 μg/g).  
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2.8 SUPPLEMENTARY MATERIAL 

 

Figure S2.4. Distribution of Gibberella ear rot (GER) severity among the inoculation 

treatments of Fusarium graminearum (Fgra) and F. meridionale (Fgra) isolates on three 

different hybrids (P30F53 HR®, STATUS TL® and RB9004 PRO2®) in three different 

locations in Brazil by trial. The first two maize hybrids were planted during the 2012 

growing season in Lages (LG), Santa Catarina state (SC) and Eldorado do Sul (EL), Rio 

Grande do Sul state (RS), and during the 2013 growing season in Eldorado do Sul, RS. The 

RB9004 PRO2® maize hybrid was cultivated during the 2017 growing season in Viçosa 

(VIC), Minas Gerais state (MG). Each data point represents the GER severity in a single 

ear.  
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Figure S2.5. Schematic representation of the trials conducted in Southern Brazil under 

subtropical conditions.  
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Figure S2.6. Daily average of meteorological data recorded by an automatic 

meteorological station located within the field trial conducted in Viçosa, Minas Gerais state 

(MG) during the 2017 growing season. Minimum and maximum air temperature (°C) are 

represented in red and blue solid lines, respectively. Precipitation (rain plus irrigation) is 

represented by vertical bars. The RB9004 PRO2® maize hybrid was planted on April 25, 

inoculated on the 7th of August and harvested on the 25th of September.  
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CHAPTER 3. GIBBERELLA EAR AND STALK ROT CAUSED BY FUSARIUM 

MERIDIONALE AND F. GRAMINEARUM: AGGRESSIVENESS AND MYCOTOXIN 

PRODUCTION 

Abstract  

Gibberella ear (GER) and stalk rot (GSR) of maize in Brazil are caused mainly by 

Fusarium meridionale, while F. graminearum, the dominant pathogen causing Fusarium 

head blight (FHB) in wheat worldwide, is the main contributor to FHB epidemics in the 

same region. One hypothesis for this observed shift in dominance is that F. meridionale is 

more aggressive as a maize pathogen, while F. graminearum is more aggressive as a wheat 

pathogen. A collection consisting of 16 isolates of F. graminearum (12 from wheat and 

four from maize) and 24 isolates of F. meridionale (8 from wheat and 16 from maize) was 

tested for aggressiveness (on ears and stalks) and toxin production (in kernels) in field 

inoculation studies involving four maize hybrids. Field trials were conducted during the 

winter and the summer growing seasons. Ear and stalk inoculations were performed four 

days after silking. Inoculated maize ears and stalks were harvested at R5-R6 and disease 

severity was estimated. The amount of deoxynivalenol (DON) and its acetylated forms 

(15ADON and 3ADON), nivalenol (NIV) and zearalenone (ZON) were quantified in 

harvested grains from one season (summer). Average GER severity induced by F. 

meridionale (13.94%) was twice as high as that produced by F. graminearum (7.15%). 

Host of origin (wheat versus maize) had no significant effect on GER severity. However, 

when comparisons were limited to strains from either wheat or from maize, isolates of F. 

meridionale and F. graminearum from wheat were not significantly different in 

aggressiveness to maize ears, whereas isolates of F. meridionale from maize were twice as 

aggressive as isolates of F. graminearum from maize. There was a lot of variability in GER 

and GSR severity among the isolates of the same species. The GER and GSR severity 

varied from 0.33 to 100% and from 0.005 to 81.17%, respectively. On average, F. 

graminearum (18.40%) was slightly more aggressive than F. meridionale (16.10%) in 

maize stalks, regardless of the hybrid and host of origin. The primary mycotoxins produced 

by F. graminearum in maize ears were DON and 15ADON (7/16 strains), and NIV was 

the only toxin produced by F. meridionale (17/24 strains). Three isolates of each species 

produced ZON. The rest of the strains did not produce detectable mycotoxins. My results 

provide a basis for understanding the epidemiology of both species in Brazil, contributing 

new knowledge to explain the predominance of F. meridionale associated with maize.  

  

KEYWORDS: Zea mays, nivalenol, deoxynivalenol, comparative epidemiology. 
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3.1 Introduction  

Members of the Fusarium graminearum species complex (FGSC) are ascomycete fungi 

that cause Fusarium head blight (FHB) in small grains, and Gibberella ear rot (GER) and 

stalk rot (GSR) on maize. These diseases cause significant reductions in yield and grain 

quality worldwide (Kazan et al. 2012; McMullen et al. 2012). They also pose a threat to 

food safety because of the ability of the causal fungi to produce mycotoxins that 

accumulate in the kernels at unsafe levels for both livestock and human ingestion (Rocha 

et al. 2005; Pestka 2010). The primary toxins produced by FGSC are the B-trichothecenes, 

which include deoxynivalenol (DON) and nivalenol (NIV) (and their acetylated forms), as 

well as zearalenone (ZON) (Miller and Greenhalgh 1991). DON and ZON are proposed to 

act as aggressiveness factors in maize stalks (Quesada-Ocampo et al. 2016), and the 

importance of DON for aggressiveness has been well-established on wheat heads (Bai et 

al. 2002; Desjardins et al. 1996; Maier et al. 2006). DON also reportedly contributes to 

GER severity (Harris et al. 1999). The role of NIV during maize ear and stalk infection is 

less well understood (Maier et al. 2006). 

In Brazil, GER and GSR are more prevalent in the southern subtropical climates 

where small grains are typically cultivated in a no-tillage system, and FHB is of common 

occurrence (Del Ponte et al. 2009). Ear and stalk rots caused by FGSC are increasing in 

importance as the application of improved technologies, and agronomic practices including 

irrigation and double-cropping have expanded (Costa et al. 2019). The recent promulgation 

of mycotoxin limits for maize-based food and feed produced in Brazil (ANVISA 2011), 

and the unpredictability of fungicide performance for disease control (Andriolli et al. 

2016), means that breeding for host resistance is a priority (Mesterházy et al. 2012). 
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Resistance to either GSR or GER in maize is a complex trait that is influenced by genetic 

background and environmental factors, as well as by the pathogen population (Mesterházy 

et al. 2012; Yang et al. 2010). To date, there are no reports of complete resistance to GER 

or GSR, and the mechanisms of quantitative resistance are not completely understood 

(Mesterházy et al. 2012). As discussed in Chapter 1, breeders should include adapted 

strains of regionally dominant species when screening for host resistance. 

The hypothesis that FGSC pathogen species differ in their ability to survive and 

compete in different crops is suggested by the results of surveys in regions where multiple 

FGSC species and cereal hosts occur (Carter et al. 2000; Boutigny et al. 2011; Del Ponte 

et al. 2015; Kuhnem et al. 2016; Umpiérrez-Failache et al. 2013). There are some 

controlled studies that also support this hypothesis: for example, the most prevalent species 

causing FHB, F. graminearum 15ADON, has been shown to be more fit as a pathogen of 

wheat compared with other species (Liu et al. 2017; Nicolli et al. 2018; Zhang et al. 2016). 

In Chapter 1 of my dissertation, I reported that F. meridionale was more aggressive and 

competitive than F. graminearum when it was used to inoculate or co-inoculate maize ears. 

However, the small sample size (two isolates of each species, from only a single host), the 

combining of the isolates, thus masking any intraspecific differences, and the focus on only 

one stage of the cycle (colonization) and one single organ (ears), limited my ability to 

conclude that these differences have a major role in shaping FGSC composition in the field. 

In the current study, the number of isolates was increased, isolates were collected from 

both maize and wheat, isolates were evaluated individually, and their ability to colonize 

stalks was also studied. The main objective of my work here was to compare F. 
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graminearum and F. meridionale aggressiveness on maize ears and stalks, and mycotoxin 

production in ears. 

  

3.2 Materials and Methods 

3.2.1 Collection of isolates 

Forty-one isolates of F. graminearum and F. meridionale that were collected during 

previous surveys from symptomatic maize (Kuhnem et al. 2016) and wheat kernels (Del 

Ponte et al. 2015) were used in these trials. The isolates were previously identified 

simultaneously to species and trichothecene chemotype (Del Ponte et al. 2015, Kuhnem et 

al. 2016). The isolates were recovered from storage and their identities were confirmed by 

using the Fg16F/R primer set (Nicholson et al. 1998) that yields distinct fragment sizes for 

F. meridionale (~500 bp) or F. graminearum (~450 bp) (Astolfi et al. 2011; Castañares et 

al. 2016; Del Ponte et al. 2015; Nicholson et al. 1998). The 40 isolates were selected to be 

representative geographically and for time of sampling. The number of isolates from each 

host and each species was based on the reported frequencies in surveys. Thus a total of 25 

F. meridionale (nine from wheat and 16 from maize) and 16 F. graminearum (12 from 

wheat and four from maize) were selected. The isolates are described in Table S3.1. 

  

3.2.2 Inoculum preparation 

Spore suspensions were prepared by growing the isolates on Spezieller Nahrstoffarmer 

agar (SNA) plates for 10 days at 23 °C with a 12-h dark/light cycle. The macroconidia were 
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filtered through two layers of cheesecloth to reduce the mycelial fragments present in the 

inoculum. The macroconidial suspension was then quantified by using a hemocytometer. 

Sterile water was added to the inoculum to achieve the desired macroconidial concentration 

(2 × 105 macroconidia/ml) (Reid et al. 2002; Kuhnem et al. 2015; Anderson et al. 2016; 

Chungu et al. 1996). 

  

3.2.3 Field experiments 

Field experiments were conducted at the experimental station at the Universidade Federal 

de Viçosa (20º44’44” S, 42º50’59” W, 661 m above sea level) during two growing seasons 

consisting of a winter crop in 2017 and a summer crop in 2018. In each growing season, 

two field trials were sown (60 cm between rows) on different dates three weeks apart and 

with different commercial maize hybrids. During the 2017 growing season, 

SupremoViptera® (Syngenta) and RB9004 PRO2® (KWS sementes) hybrids were sown 

between April and May. The hybrids MG580PW® (Dow AgroSciences) and BM820® 

(Sementes Biomatrix) were planted between October and early-November during the 2018 

growing season. Two trials were planted side-by-side, one for the GER assay and the other 

for the GSR assay. Plants were fertilized following chemical soil analyses, and sprinkler-

irrigated as needed. 

The experiment was laid out in a randomized complete block design with four 

replications. Each block was consisted of three rows. The isolates were randomly assigned 

to the plot (experimental units consisted of a 1-m-long row). The central three plants in 
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each plot were inoculated. All plots were bordered by non-inoculated rows of the same 

maize hybrid. 

  

3.2.4 Inoculation procedures 

GER trials. Plants were inoculated by injecting 2 ml of each spore suspension into the silk 

channel of the primary ear of each plant four days after silk emergence by using a syringe 

with a 5 cm long and 3 mm diameter obtuse needle (Reid et al. 2002) (Fig. 3.1A). Ears 

mock-inoculated with sterile distilled water served as negative controls. The plots were 

irrigated for two consecutive days after inoculation. When plants reached the R5-R6 stage 

(dent to physiological maturity), ears were hand-picked and husked (Fig. 3.1B). GER 

severity was scored visually as the percent symptomatic area of each ear (Reid and Zhu 

2005).  

  

GSR trials. Maize stalks were inoculated four days after silk emergence. One milliliter of 

each inoculum suspension (2 × 105 macroconidia/ml) was injected at a 45° angle downward 

into the middle of the first internode above the uppermost aerial root of each plant by using 

a syringe with an obtuse needle (Reid and Zhu 2005) (Fig. 3.1C). The obtuse needle was 5 

cm long and 3 mm diameter with an opening on the underside near the tip (Reid and Zhu 

2005). A mock inoculation (sterile distilled water) was included as a negative control. 

Plants were irrigated for two consecutive days after inoculation. At the R5-R6 stage (dent 

to physiological maturity), stalks were split longitudinally, and symptomatic internodes 
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were photographed (Fig. 1D). The percent diseased (discolored) area of the internode (Reid 

and Zhu 2005) was measured by using Assess software (Lamari 2002).  

 

3.2.5 Meteorological data 

Weather variables including precipitation (P, rain and irrigation), temperature (T, 

maximum and minimum), and relative humidity (RH), were recorded hourly at the 

experimental site by using an automatic meteorological station (Squitter, Squitter Soluções 

em Monitoramento Ambiental, São José dos Campos, São Paulo, Brazil). The station was 

located within the field, and data were collected from sowing to maize harvest. Daily values 

of the weather variables are presented in Figure S3.6. 

  

3.2.6 Mycotoxin analysis 

Mycotoxins were analyzed in maize hybrid BM820® kernels harvested from the 

experiment conducted in 2018. Harvested ears were dried on a greenhouse bench for five 

days, shelled, and grains were kept at -20 °C until analysis. Mycotoxin was determined by 

bulking grains of all individual ears inoculated with the same isolate. A 10-g sub-sample 

of each pooled replicate was ground by using a coffee grinder and then homogenized. The 

amount of DON and its acetylated forms (15ADON and 3ADON), NIV, and ZON were 

quantified using a gas chromatography–mass spectrometry method as described previously 

(Fuentes et al. 2005; Mirocha et al. 1998). 
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3.2.7 Data analysis 

The effects of the main factors (species and host of origin), and the interaction between 

them, were evaluated in a multilevel nested mixed model framework. Maize hybrids, 

isolates and replicates were treated as random effects. GSR and GER severity data (on a 

percentage scale) were log-transformed (logSEV = log[SEV + 1]) to stabilize variances. 

The mixed model analysis was performed using the lmer function of package ‘lmer4’ 

(Bates et al. 2015) of R (R Core Team 2019). The effects were tested at a 5% significance 

level. The ‘emmeans’ package (Lenth 2019) was used to estimate the least square means 

and respective confidence intervals. The function ‘cld’ from R package ‘multcomp’ 

(Hothorn et al. 2008) was used for comparing the treatment means at 5% significance.  

 

3.3 Results 

3.3.1 Gibberella ear rot 

All isolates were pathogenic to maize ears, but there was a large degree of intraspecies 

variation in symptom severity, and ranges overlapped between the two species (Fig. 3.2). 

Mean severity differed between the species, but was dependent on the host of origin, as 

suggested by the significant interaction term (P = 0.034). The severity of disease was 

similar for isolates from wheat and from maize for F.graminearum (P = 0.079) and for F. 

meridionale (P = 0.25). However, when comparing isolates obtained only from maize, the 

severity was twice as high in ears inoculated with F. meridionale versus F. graminearum 

(P = 0.002). On average, the GER severity on ears inoculated with F. graminearum and F. 

meridionale from maize was 7.2% (± 5.3 standard error [SE]) and 13.9% (± 9.4 SE), 
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respectively (Fig. 3.4A). In contrast, there was no difference in severity between the two 

species when isolates were obtained only from wheat (P = 0.464). In this case, the average 

GER severity was 10.6% (± 7.3 SE) and 11.8% (± 8.1 SE) for F. graminearum and F. 

meridionale, respectively (Fig. 3.4A).  

 

3.3.2 Gibberella stalk rot 

Similar to GER, all isolates were pathogenic to the stalks. Mean GSR severity varied 

among the isolates (P < 0.001), ranging from trace levels to 81.2% (median = 18.5%) (Fig. 

3.3). The interaction tested in the mixed model (species vs host) did not affect the GSR 

severity (P = 0.168). There was no significant difference between isolates from maize 

versus wheat (P = 0.659). However, there was a significant effect of the species, regardless 

of the hybrid or the host from which the isolates had been obtained (P = 0.021). On average, 

F. graminearum was slightly more aggressive on maize stalks (18.4% ± 7.1 SE) than F. 

meridionale (16.1% ± 6.2 SE) (Fig. 3.4B). There was no significant correlation between 

stalk and ear disease severity (ρ = -0.10; P = 0.218).  

 

3.3.3 Mycotoxin analysis 

Not all isolates produced trichothecenes at detectable levels in the composite samples of 

kernels from all replicates. A larger proportion of F. meridionale isolates (17/24) produced 

detectable trichothecenes compared to F. graminearum (7/16). ZON was not detected in 

kernels from any of the ears inoculated with F. meridionale. This mycotoxin was found 
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only in samples of kernels inoculated with three F. graminearum strains from maize, and 

three from wheat (Fig. 3.5).  

NIV was detected only in kernels from ears inoculated with F. meridionale, while 

DON/15ADON were only detected in ears inoculated with F. graminearum. One sample 

of kernels from ears inoculated with a F. graminearum strain from wheat had levels of 

3ADON that were equivalent to 15ADON. This strain produced the highest amount of 

DON overall (DON = 52.15 μg/g) and produced ZON (Fig. 3.5). None of the other F. 

graminearum strains produced detectable 3ADON. On average, F. graminearum strains 

from wheat produced approximately twice as much DON (13.36 μg/g) as those from maize 

(6.45 μg/g). In kernels from ears inoculated with F. meridionale, NIV levels ranged from 

0.25 to 7.00 μg/g across the strains. Isolates from maize produced slightly more NIV (1.80 

μg/g) than isolates from wheat (1.35 μg/g).  

There was a significant correlation between GER severity and DON production by 

F. graminearum isolates (ρ = 0.81; P = 0.027). For F. meridionale isolates, a significant 

positive correlation was also observed between GER severity and NIV production (ρ = 

0.79; P < 0.01) (Fig. 3.5).  

 

3.4 Discussion  

The presence of multiple Fusarium spp. in association with maize ear or stalk symptoms 

is well-known, and the diversity of species varies across regions (Kelly et al. 2017; 

Logrieco et al. 2002; Oldenburg et al. 2017; Picot et al. 2012). In the past, variation in 

species composition in different regions was most often attributed to prevailing weather 
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conditions. Changes or variability in climatic patterns (Vaughan et al. 2016) or introduction 

of highly aggressive species (Ward et al. 2008; Valverde-Bogantes et al., 2019) have also 

been implicated as important drivers of rapid changes in relative dominance of species 

among pathogenic populations. The importance of the host on FGSC composition has 

emerged more recently from work done to identify FGSC in larger collections of strains 

from multiple hosts in the same region (Del Ponte et al. 2015; Gomes et al. 2015; Kuhnem 

et al. 2016). Survey and experimental data (controlled environment and field studies) from 

Brazil have shown that F. meridionale is dominant as a maize pathogen, while F. 

graminearum is dominant as a wheat pathogen in regions where these species and crops 

co-occur. Results of the study reported in this third chapter of my dissertation support the 

hypothesis that increased aggressiveness of F. meridionale to maize ears plays a role in 

host dominance, given that F. meridionale strains caused twice as much GER, on average, 

as F. graminearum. Closer scrutiny of the data revealed that this difference occurred only 

when those strains originated from maize, and not when they came from wheat. This result 

was consistent with my data in Chapter 1, in which a more limited sample of F. meridionale 

strains only from maize were also twice as aggressive as the F. graminearum strains that 

also came from maize. This host effect could be due to differential selection, either 

selection for more aggressive F. meridionale strains by maize, or of more aggressive F. 

graminearum strains by wheat, or a combination of the two.  

The NIV mycotoxin was recently reported for the first time in Brazil and was more 

frequently found than DON in surveys of commercial maize grain (Oliveira et al. 2017). 

Alarmingly, NIV is about 10 times more toxic to animals than DON (Desjardins 2008). 

The results in this chapter confirm the results from Chapter 2, demonstrating that F. 
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meridionale isolates causing GER produce NIV in maize ears. My results support the need 

to expand surveys of NIV in Brazil, and further revise the legislation which currently 

considers only DON and ZON (ANVISA 2011). Fusarium graminearum-inoculated ears 

contained DON and no NIV, but levels of DON were seven times higher than NIV levels. 

In this chapter, evaluation of more isolates, and inoculating separately instead of pooling 

them, showed that both NIV and DON were positively correlated with GER severity. There 

was also a relationship between mycotoxin production and host of origin, with isolates of 

F. graminearum from wheat producing more DON than those from maize, and isolates of 

F. meridionale from maize producing more NIV than the strains from wheat. This implies 

that there is selection for increased mycotoxin levels by these hosts and suggests that NIV 

plays a more important role in colonization of maize versus wheat, while higher levels of 

DON may be more important for wheat colonization. A role for DON in colonization of 

maize is known (Bai et al. 2002; Desjardins et al. 1996; Harris et al. 1999; Maier et al. 

2006). However, the role of NIV mycotoxin in pathogenesis on maize is less understood 

and needs to be further explored. Not all of the strains I tested produced detectable levels 

of mycotoxins in the composite sample of kernels from field inoculations. Low levels of 

mycotoxin were likely undetected in those cases due to technical limitations of the 

sampling and detection methods. The ability of the genotyping to predict the chemotype 

was confirmed in my study (Desjardins 2008; Ward et al. 2008). Thus, DON and 15ADON 

were produced by F. graminearum isolates previously identified as the 15ADON genotype, 

while F. meridionale strains previously identified as the NIV genotype produced only NIV 

mycotoxins. 
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Previous surveys in southern Brazil showed that F. meridionale was much more 

abundant among isolates from perithecia formed on corn stubble in wheat fields, as well as 

from maize plants with stalk rot symptoms (Kuhnem et al. 2016). Its relatively high 

frequency on maize tissues in comparison with F. graminearum suggested a higher ability 

to colonize maize stalks, but this was not confirmed by my data when stalks were 

inoculated with either species under controlled conditions. Intriguingly, it was found that 

F. graminearum was actually more aggressive on stalks than F. meridionale, although the 

difference was very small. In a previous study, differences in aggressiveness were not 

found in a sample of four F. meridionale and two F. graminearum strains inoculated on 

stalks of seedlings (25-day-old plants) in the greenhouse (Kuhnem Júnior et al. 2013). The 

difference in my field study may be related to the influence of environmental factors or 

host age, both of which could increase susceptibility to F. graminearum relative to F. 

meridionale. There may be other reasons for the dominance of F. meridionale on maize 

stalks in the field, including inoculum availability and differential responses to 

environmental factors during perithecial formation or overwintering survival. In the first 

chapter I showed that F. meridionale was more competitive in maize ears during mixed 

infections, and so another explanation for dominance of F. meridionale perithecia on maize 

stalks could be that it outcompetes F. graminearum during stalk colonization when both 

species are present. 

Resistance to GSR and GER in maize is complex, and is influenced by genetic 

background as well as environmental factors (Mesterházy et al. 2012; Yang et al. 2010). 

Previous work has suggested that GSR has a direct relationship with GER, and that 

breeding for resistance should take both diseases into account (Mesterházy et al. 2012). 
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Thus, GSR was shown to enhance development and drying of the ear by interrupting the 

water supply, and this in turn reduced levels of ear rot by more than half (Mesterházy et al. 

2012). My study found no correlation in the degree of aggressiveness of individual isolates 

to ears versus stalks. A previous study also found no correlation between GER and seedling 

blight (Kuhnem et al. 2015). It would be instructive to further explore pathogenicity by 

these two species by using a larger set of maize cultivars, and co-inoculation with both 

diseases at once to study potential interactions. 
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3.5 Figures  

 

Figure 3.1. Procedure used to inoculate maize ears (A) and stalks (C) with Fusarium 

graminearum and F. meridionale isolates, and symptoms of Gibberella ear (B) and stalk 

(D) rot at dent to physiological maturity stage. 

  



45 

 

 

Figure 3.2. Severity of Gibberella ear rot on four different commercial maize hybrids 

(Supremo Viptera®, RB9004 PRO2®, MG580PW®, BM820®) inoculated with 16 isolates 

of F. graminearum (Fgra) or 24 isolates of F. meridionale (Fmer). Data points for the 

isolates obtained from infected maize kernels are shown as red dots, and from symptomatic 

wheat heads as blue dots. The first two maize hybrids were planted during the 2017 

growing season, and the last two were cultivated during the 2018 growing season. The line 

within the box represents the median, whereas the top and bottom lines of the boxes 

represent the 75th and 25th percentiles of the data, respectively. The vertical bars extending 

beyond the boxes represent 10th and 90th percentiles, and the dots represent the mean GER 

severity for each isolate across all inoculated ears. 
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Figure 3.3. Severity of Gibberella stalk rot on four different commercial maize hybrids 

(Supremo Viptera®, RB9004 PRO2®, MG580PW®, BM820®) inoculated with 16 isolates 

of F. graminearum (Fgra) or 24 isolates of F. meridionale (Fmer). Data points for the 

isolates obtained from infected maize kernels are shown as red dots, and from symptomatic 

wheat heads as blue dots. The first two maize hybrids were planted during the 2017 

growing season and the last two were cultivated during the 2018 growing season. The line 

within the box represents the median, whereas the top and bottom lines of the boxes 

represent the 75th and 25th percentiles of the data, respectively. The vertical bars extending 

beyond the boxes represent 10th and 90th percentiles, and the dots represent the mean GSR 

severity for each isolate across all inoculated stalks. 
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Figure 3.4. Least square means and standard error from linear mixed analyses of the effect 

of 16 isolates of F. graminearum (Fgra) or 24 isolates of F. meridionale (Fmer) obtained 

from either wheat or maize on (A) Gibberella ear rot (GER) and (B) Gibberella stalk rot 

(GSR) severity of inoculated maize ears and stalks across four different commercial maize 

hybrids (RB9004 PRO2®, SUPREMO®, BM820® and MG580PW®) in two growing 

seasons in Brazil. The first two maize hybrids were planted during the 2017 growing season 

and the last two were cultivated during the 2018 growing season.  
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Figure 3.5. (A) Mean production of deoxynivalenol (DON), nivalenol (NIV), and 

zearalenone (ZON) and (B) mean Gibberella ear rot (GER) severity (%) and standard error 

of Fusarium graminearum and F. meridionale isolates inoculated onto maize ears of hybrid 

BM820® in a field trial conducted in Viçosa during the 2018 summer season. Values 

represent a bulked sample of kernels from 5-6 inoculated ears. Limit of detection (< 0.25 

μg/g). 
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3.6 SUPPLEMENTARY MATERIAL 

Table S3.1. Summary information for 41 arbitrarily selected isolates representing 

Fusarium graminearum (n = 16) and F. meridionale (n = 25) obtained from naturally 

infected maize kernels and symptomatic wheat heads in surveys of commercial fields in 

southern Brazil from 2009 to 2011. 

Speciesa Id.b Host Year Municipality Statec 

Fgra 188 wheat 2009 Panambi RS 

Fgra 189 wheat 2009 Ijuí RS 

Fgra 190 wheat 2010 Coxilha RS 

Fgra 191 wheat 2007 Cruz Alta RS 

Fgra 192 wheat 2007 Ernestina RS 

Fgra 193 wheat 2010 Tapejara RS 

Fgra 194 wheat 2011 Não-me-Toque RS 

Fgra 195 wheat 2011 Palmeira das Missões RS 

Fgra 196 wheat 2010 Caseiros RS 

Fgra 197 wheat 2010 Coxilha RS 

Fgra 07 wheat 2010 Estação RS 

Fgra 199 wheat 2011 Ijuí RS 

Fgra 15 maize 2011 Bom Jesus RS 

Fgra 205 maize 2011 Vacaria RS 

Fgra 207 maize 2011 Bom Jesus RS 

Fgra 209 maize 2011 Bom Jesus RS 

Fmer 01 wheat 2009 Ernestina RS 

Fmer 02 wheat 2009 Coxilha RS 

Fmer 03 wheat 2007 Nonoai RS 

Fmer 04 wheat 2011 Marau RS 

Fmer 05 wheat 2011 Sertão RS 

Fmer 198 wheat 2010 Água Santa RS 
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Table S3.1. (continued) 

Speciesa Id.b Host Year Municipality Statec 

Fmer 06 wheat 2010 Tapejara RS 

Fmer 08 wheat 2009 Santa Bárbara do Sul RS 

Fmer 21 wheat 2007 Nonoai RS 

Fmer 09 maize 2011 Marechal Cândido Rondon PR 

Fmer 10 maize 2011 Ponta Grossa PR 

Fmer 11 maize 2011 Irati PR 

Fmer 12 maize 2011 Casca RS 

Fmer 13 maize 2011 Eldorado do Sul RS 

Fmer 14 maize 2011 Bom Jesus RS 

Fmer 16 maize 2011 Taguaí SP 

Fmer 17 maize 2011 Paranapanema SP 

Fmer 18 maize 2011 Alambari SP 

Fmer 200 maize 2011 Ponta Grossa PR 

Fmer 201 maize 2011 Ponta Grossa PR 

Fmer 202 maize 2011 Ponta Grossa PR 

Fmer 203 maize 2011 Palmeira PR 

Fmer 204 maize 2011 Palmeira PR 

Fmer 206 maize 2011 Vacaria RS 

Fmer 208 maize 2011 Bom Jesus RS 

 

a Species and trichothecene genotype identified using the multilocus genotype method 

(Ward et al. 2008). Fgra = F. graminearum with 15-acetyl-deoxynivalenol genotype, Fmer 

= F. meridionale with nivalenol genotype. 

b Isolates were obtained either from maize kernels (Kuhnem et al. 2016) or symptomatic 

wheat heads (Del Ponte et al. 2015) in previous surveys.  

c Brazilian states: RS = Rio Grande do Sul, PR = Paraná, SP = São Paulo.  
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Figure S3.6. Daily values of meteorological data recorded by an automatic meteorological 

station located within the field trial. Minimum and maximum air temperature (°C) are 

represented in red and blue solid lines, respectively. Precipitation (rain plus irrigation) is 

represented by vertical bars. During the 2017 growing season, SupremoViptera® 

(Syngenta) and RB9004 PRO2® (KWS sementes) maize hybrids were planted on 4th and 

25th of April, inoculated on 15th of June and 7th of August and harvested on 18th of August 

and 25th of September, respectively. The maize hybrids MG580PW® (Dow AgroSciences) 

and BM820® (Sementes Biomatrix) were planted planted on 25th of October and 20th of 

November 2017, inoculated on 5th of January and 9th of February and harvested on 11th of 

February and 15th of March during the 2018 growing season, respectively. 
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CHAPTER 4. UNRAVELLING SHIFTS IN DOMINANCE OF FUSARIUM MERIDIONALE 

AND F. GRAMINEARUM ON MAIZE VERSUS WHEAT IN BRAZIL: A 

MULTIVARIATE PHENOTYPIC ANALYSIS  

Abstract  

Fusarium head blight (FHB) and Gibberella ear and stalk rot (GER and GSR) are diseases 

of worldwide importance affecting wheat and maize, respectively. In Brazil, a handful of 

Fusarium graminearum species complex (FGSC) members cause these diseases, but the 

dominant species varies according to the host. A comparison of various pathogenic and 

fitness-related traits was undertaken for a large number of strains representative of the two 

species and hosts of origin in order to enhance understanding of host association. A 

collection of 45 strains, including 18 F. graminearum (12 from wheat and six from maize) 

and 27 F. meridionale (nine from wheat and 18 from maize), was compared for 17 

phenotypic traits. Although there was significant intraspecies variation for most traits, 

strains were strongly structured by species regardless of the host of origin, based on a 

multivariate analysis. Fusarium graminearum was a more aggressive pathogen of wheat, 

and produced more abundant macroconidia, perithecia, and ascospores in culture. All F. 

graminearum strains produced primarily deoxynivalenol (DON), and more of its acetylated 

form 15ADON versus 3ADON, in rice cultures or on wheat heads. In contrast, F. 

meridionale grew faster in culture, and all F. meridionale strains produced mainly 

nivalenol (NIV) both in vitro and in wheat heads, with the exception of two strains from 

maize that produced more DON than NIV in planta. Overall, traits related to increased 

sexual or asexual reproduction and aggressiveness to wheat heads contributed the most to 

distinguish isolates of F. graminearum. On the other hand, faster mycelial growth in culture 

and reduced colonization of maize silks was highly associated with F. meridionale strains. 

This study provides a baseline for improving our knowledge of the biology and ecology of 

FGSC species infecting wheat and maize. 

KEYWORDS: Fusarium head blight, Gibberella ear rot, Gibberella stalk rot. 
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4.1 Introduction 

A handful of species of the Fusarium graminearum species complex (FGSC) are pathogens 

of major cereal crops. In wheat and maize, they cause the flowering diseases known as 

Fusarium head blight (FHB) (a.k.a. wheat scab) and Gibberella ear rot (GER), respectively 

(Goswami and Kistler 2004; Kuhnem et al. 2015; Munkvold 2003a). These diseases, 

together with Gibberella stalk rot (GSR) of maize also caused by the same pathogens, cause 

significant economic losses due to grain yield reduction. In addition, the flowering diseases 

degrade crop value via contamination of grain with mycotoxins, including deoxynivalenol 

(DON) which is regulated for maximum tolerance limits (McMullen et al. 2012; Sutton 

1982). Fusarium graminearum is the most common species causing FHB in wheat and 

barley worldwide. This species produces mainly DON, although there are some 

geographically-defined subpopulations that produce more nivalenol (NIV) (Del Ponte et 

al. 2015; Kelly and Ward 2018). Fusarium meridionale strains are typically NIV-

producers, and are regionally important as causal agents of GER and GSR in South 

America (Kuhnem et al. 2016; Sampietro et al. 2011) and Nepal (Desjardins and Proctor 

2011). Fusarium meridionale is also the second most common species causing FHB in 

wheat in Brazil, after F. graminearum (Del Ponte et al. 2015). Several other Fusarium 

species, both NIV-producing (F. graminearum, F. asiaticum, F. cortaderiae, and F. 

austroamericanum) and non-producing (F. culmorum, F. cerealis and F. poae), also cause 

GER and GSR in maize in other regions of the world (Basler 2016; Kuhnem et al. 2016; 

Lee et al. 2012; Ndoye et al. 2012). FGSC members produce zearalenone (ZON) in addition 

to the type-B trichothecenes, and all these compounds are extremely harmful for human 

and animal health (Chen et al. 2019). Maximum limits of DON on grains, food and feed 

are well established for several countries (van Egmond et al. 2007). Although NIV-
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producing species are also found associated with maize and wheat, NIV has not been 

regulated by any country so far (Ferrigo et al. 2016; Park et al. 2018).  

In the first chapter of this dissertation, I demonstrated that a mixture of two F. 

meridionale isolates was twice as aggressive (resulted in higher disease severity) in maize 

ears compared with a mixture of two F. graminearum strains. In the second chapter, the 

sample size was increased (n ≥ 18 strains) for both species, and included isolates from both 

crops. The isolates were also evaluated separately rather than in mixtures. The same pattern 

was confirmed, showing that F. meridionale was, on average, twice as aggressive on ears 

compared with F. graminearum. This could explain the prevalence of this species among 

strains recovered from maize kernels (67%), compared with F. graminearum isolates 

(18%) (Kuhnem et al. 2016). However, F. graminearum was 14% more aggressive to 

maize stalks than F. meridionale, so aggressiveness alone cannot explain the relative over-

representation of F. meridionale (53%) among strains recovered from corn stubble 

(Kuhnem et al. 2016).  

There was substantial intraspecies variation in aggressiveness to maize ears and 

stalks, and the ranges overlapped between the two species. It is important to consider that 

aggressiveness-related traits alone may be insufficient to explain the dominance of one 

species over the other in the field, and that other stages of the disease cycle (e.g. sexual 

reproduction, dispersal, etc.) may also play important roles in shaping species composition. 

Pathogen aggressiveness is a complex trait, not only because of its quantitative inheritance, 

governed by multiple genes with additive effects, but also because it is greatly influenced 

by interaction with environmental factors (Cumagun and Miedaner 2004). The visual 

severity of disease on ears is a consequence of the ability of the pathogen to colonize the 
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ears after inoculation, which can be significantly influenced by environmental conditions. 

For example, previous studies have suggested higher sensitivity to temperature of F. 

meridionale compared with F. graminearum (Kuhnem et al. 2016). This may provide some 

advantage to the latter during mixed infections in warmer environments (Kuhnem et al. 

2016). In vitro studies showed that F. graminearum was able to produce perithecia and 

ascospores faster than other FGSC species in vitro, under optimum and constant 

temperatures (Liu et al. 2017; Nicolli et al. 2018). This may lead to differences in timing 

of inoculum production, which may be important given that these pathogens infect 

specifically during flowering. It is possible that the amount of F. meridionale airborne 

inoculum is higher than F. graminearum during maize flowering. This could be tested by 

collecting airborne spores over the maize canopy. A similar experiment done with wheat 

demonstrated that spores of both species could be collected in the air above the canopy 

during wheat flowering, and that about two-thirds of the airborne inoculum was F. 

graminearum (Del Ponte et al. 2015).  

My goal in this chapter of my dissertation was to more fully characterize the two 

species, and to better understand the biological significance of the phylogenetic species 

designations by conducting a multi-phenotype study of a representative sample of strains 

from both hosts. These comparisons included inoculations of both hosts with the same 

strains, together with a more complete evaluation of other traits that have been related to 

fitness and to the saprophytic stage of the disease cycle (Del Ponte et al. 2015; Gomes et 

al. 2015; Kuhnem et al. 2016; Yang et al. 2018; Zhang et al. 2016). In this chapter, I used 

the same isolates from previous chapters, plus a few additional representatives, to inoculate 

wheat plants. I measured aggressiveness and toxin production in wheat heads, and I also 
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compared in vitro growth, fungicide sensitivity, toxin production, and the production of 

sexual and asexual spores.  

4.2 Materials and Methods  

Forty-five isolates were selected from a larger collection obtained from maize kernels 

(Kuhnem et al. 2016) and symptomatic wheat heads (Del Ponte et al. 2015) during surveys 

of commercial fields in southern Brazil from 2009 to 2011 (Fig. S4.3). Eighteen isolates of 

F. graminearum (12 from wheat and six from maize) and 27 isolates of F. meridionale 

(nine from wheat and 18 from maize) were selected to represent the geographic and 

temporal diversity of the collection (Table S4.31). The isolates were previously assigned 

to species and trichothecene chemotype by a MLGT assay using a Luminex flux cytometer 

(Ward et al. 2008) and had been preserved as a permanent collection for future studies. 

After recovery from storage, the identities of the isolates were confirmed using the 

Fg16F/R primer set (Nicholson et al. 1998). This primer set generates different fragment 

sizes that identify isolates as either F. meridionale (~500 bp) or F. graminearum (~450 bp) 

(Astolfi et al. 2012; Castañares et al. 2016; Del Ponte et al. 2015; Nicholson et al. 1998). 

 

4.2.1 Saprophytic and fitness traits 

Mycelial growth. Three equidistantly positioned colonies were produced by placing 5-μl 

drops of a spore suspension (10,000 macroconidia/ml) onto a 9-cm PDA plate as described 

previously (Zhan and McDonald 2011) with some modifications (Spolti et al. 2014a). The 

media were prepared as a single batch and poured into 9-cm plastic Petri dishes (15 ml). 

Inoculated plates were allowed to dry before being randomly placed in the growth chamber. 
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The cultures were incubated at 23 °C in darkness for 5 days. Radial mycelial growth was 

obtained by averaging two perpendicular measurements. The entire assay was repeated 

three times. 

Asexual spore production. Mycelial plugs from a 5-day-old PDA plate were used to 

inoculate Mung Bean Agar plates (MBA: 40 g of mung bean/liter, placed in boiling 

distilled water for 23 min [~50% of seed pericarps split while cooking] filtered through 

two layers of cheesecloth, adjusted to 1 liter, 15 g of agar) (Evans et al. 2000). Each isolate 

was cultured for seven days at 23 °C under constant lights. Three agar discs (6-mm in 

diameter) were taken from the edges of each colony and added to a microcentrifuge tube 

containing 1 ml of sterile water. Spores were harvested by vortexing each tube for 20 s 

(Nicolli et al. 2018). The macroconidial concentration was quantified by using a 

hemocytometer and expressed as the number of macroconidia per ml. Each plate was 

considered as one replicate (three plates per isolate) and the entire assay was repeated once. 

Sexual fertility. The sexual fertility was assessed based on the ability of each isolate to 

produce perithecia and ascospores on carrot agar following a standard protocol with some 

adaptations (Cavinder et al. 2012). Carrot agar plates (6.0-cm-diameter) were inoculated 

by placing a 5-μl drop of a spore suspension (1 × 104 macroconidia/ml) of each isolate in 

the center. Plates were incubated in a growth room at 23°C under constant luminosity until 

the mycelium reached the edge of the plate (~ 4 days). Aerial mycelia were gently removed 

using a toothpick and then 1 ml of 2.5% Tween 80 in water was distributed with a sterile 

plastic micro-pestle. Plates were returned to the light. At 21 days after induction, perithecia 

were quantified under a stereomicroscope within a 1-cm2 area at two different positions on 

the plate and expressed as mean perithecia per cm2. Ascospore production was measured 
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21 days after induction by applying 5 ml of sterile deionized water and gently rubbing the 

plate surface with a sterile plastic micro-pestle. Ascospore suspensions were filtered 

through two layers of cheesecloth. Ascospore concentration was estimated by using a 

hemocytometer, and expressed as the number of ascospores per ml. Each plate was 

considered as one replicate, and placed on different benches in the growth room (blocks, 

three plates per isolate). The entire assay was performed once.  

 

4.2.2 Pathogenic and toxigenic traits 

Maize silk infection assay. Maize silk infection was assessed by using a standard protocol 

with some modifications (Seong et al. 2005). Susceptible sweet corn hybrid Golden Jubilee 

was sown in the greenhouse to produce fresh ears every week. Briefly, three seeds were 

planted per 25-cm pot filled with a mixture of three parts ProMix BX (Premiere 

Horticulture Ltd., Riviere du Loup, PQ, Canada) and one-part topsoil. Maize plants were 

grown in a greenhouse with a 14 h photoperiod and temperatures ranging from 25 to 28 

°C. Seedlings were thinned to two plants per pot and fertilized weekly with a solution of 

Peters 20-20-20 fertilizer (Scotts-Sierra Horticultural Product Co. Marysville, OH). At the 

silking stage, primary maize ears were harvested, and the exposed portions of silks were 

trimmed off. In the laboratory, 4-5 maize silks were sliced into 5-cm sections and the 

sections were bundled and aligned on a water-soaked Whatman No 1 filter paper. Three 

silk bundles were positioned alongside each other inside a 90-mm petri dish. A mycelial 

agar plug taken from the edge of a 7-day-old culture of each isolate growing on MBA (6-

mm in diameter) was placed upside down covering the lower ends of the silks. 
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Uninoculated MBA plugs were used as negative controls. Plates were placed inside a 

closed plastic box to maintain high humidity. Boxes were incubated in a growth room at 

23 °C under constant light for 4 days. Infection was assessed by measuring the extent of 

tissue discoloration using digital calipers. The entire assay was repeated twice. 

Aggressiveness on wheat heads. Seeds of spring wheat variety Wheaton, which is highly 

susceptible to FHB, were sown in cone containers filled with a mixture of ProMix BX and 

topsoil (3:1). Wheat plants were grown in a greenhouse with a 14 h photoperiod and 

temperatures ranging from 25 to 28 °C. Seedlings were fertilized weekly with a solution of 

Peters 20-20-20 fertilizer (Scotts-Sierra Horticultural Product Co. Marysville, OH) and 

maintained until flowering. A spore suspension was prepared by growing each isolate on 

MBA for 7-14 days under constant lights. The macroconidial suspensions were filtered 

through two layers of cheesecloth. The concentration of each suspension was then 

quantified by using a hemocytometer and adjusted to 1 × 104 macroconidia/ml. The wheat 

heads were inoculated with a 10-μl drop of the spore suspension (1 × 104 macroconidia/ml) 

placed inside each lateral floret of the central spikelet at early- to mid-anthesis. Each head 

was individually covered with a plastic bag for 24 h and maintained in a containment 

growth chamber set for 25 °C and a 14 h photoperiod until harvest (plant maturity). FHB 

severity was assessed at four, seven- and 10-days post-inoculation, and expressed as the 

number of FHB-symptomatic (bleached) spikelets per inoculated spike. Three replicates 

(individual heads) per isolate were included. The experiment was repeated three times.  

Trichothecene production in planta. Harvested wheat heads from the aggressiveness 

assay were dried at room temperature and kept in a cold room (4°C) until analysis. 

Mycotoxin production by each of the 45 isolates was determined by bulking the samples 
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from each experiment and considered each bulked sample as a replicate. The wheat heads 

were ground in a coffee grinder to obtain at least a 5-g sample of each replicate. The ground 

samples were sent to the Virginia Tech Deoxynivalenol (DON) Testing Laboratory, 

Blacksburg (Virginia) where the amount of DON and its acetylated forms (15ADON and 

3ADON), NIV, and ZON were quantified by using a gas chromatography–mass 

spectrometry method as described previously (Fuentes et al. 2005; Mirocha et al. 1998).  

Trichothecene production in rice. Mycotoxin production in rice culture was determined 

by using a standard protocol with some modifications (Spolti et al. 2014b; Puri and Zhong 

2010; Burlakoti et al. 2008; Walker et al. 2001). Rice grains (30 g) were soaked in 13 ml 

of sterile deionized water overnight (~10 h) in a 250-ml Erlenmeyer flask. All flasks were 

autoclaved for 30 minutes and inoculated with 500 μL of a spore suspension (1 × 104 

macroconidia/ml) of each isolate. Three flasks (replicates) were prepared for each isolate, 

and all isolates were cultured at the same time in the same location. The flasks were shaken 

manually every two days so that the fungus evenly colonized the substrate. The cultures 

were incubated for 28 days at 23 °C in the dark. The entire assay was performed once. The 

colonized rice cultures were transferred into a 50-ml centrifuge tube, frozen overnight at -

80 °C, and then lyophilized for 72 h at -40 °C. The rice cultures were ground in a coffee 

grinder and a 5-g sample was sent to the Virginia Tech Deoxynivalenol (DON) Testing 

Laboratory, for mycotoxin analysis. The amounts of DON and its acetylated forms 

(15ADON and 3ADON), NIV, and ZON were quantified by using a gas chromatography–

mass spectrometry method as described previously (Fuentes et al. 2005; Mirocha et al. 

1998). 
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4.2.3 Tebuconazole sensitivity 

Sensitivity to tebuconazole (Folicur 3.6F; 38.7% active ingredient; Bayer CropScience, 

Research Triangle Park, NC), was estimated by measuring radial growth of the isolates on 

PDA adjusted to different fungicide concentrations in three replicates each as described 

previously (Spolti et al. 2012b; Spolti et al. 2014b; Chen et al. 2007). The tested 

concentrations were: 0 (non-amended agar - PDA), 0.5, 1.0, 2.0, 4.0 and 8.0 µg a.i./ml. 

Plates were incubated at 23°C in darkness for 5 days. Colony diameters were measured in 

perpendicular directions using digital calipers, and the original plug diameter was 

subtracted. Effective concentration leading to a 50% reduction of mycelial growth (EC50) 

was calculated based on the linear regression analysis between the relative mycelial growth 

inhibition (percent) and the log-transformed fungicide concentrations. The entire 

experiment was repeated twice. 

 

4.2.4 Data analysis 

All experiments were conducted as a completely randomized design with three replicates. 

Data from assays conducted two or three times were combined for analysis. The overall 

mean and the standard deviation and Cohen’s d were estimated using the ‘effsize’ R 

package (Torchiano 2019). A multivariate analysis of variance (MANOVA) was 

performed. Mycotoxin data were not included in the multivariate analysis because not all 

isolates produced the same mycotoxin. Prior to the analysis, all variables were transformed 

[log(X + 1)] for normality and homoscedasticity. A principal components analysis (PCA) 

was performed using the mean values of the variables for each isolate, averaged over 
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replicates and experiments. The contribution of each variable to each principal component 

was also estimated. A correlogram was made using the overall means for each pair of 

variables using the package ‘corrplot’ (Wei and Simko 2017). The packages ‘FactoMineR’ 

(Lê et al. 2008) and ‘factoextra’ (Kassambara and Mundt 2017) were used for the PCA. 

All analyses were run in R (R Core Team 2019).  

4.3 Results 

4.3.1 Saprophytic and fitness traits 

Fusarium meridionale grew significantly more quickly in vitro than F. graminearum, but 

F. graminearum produced more macroconidia (Table 4.1). All of the F. graminearum 

strains and all but one of the F. meridionale strains, produced perithecia in vitro. In both 

cases, there was substantial intraspecies variation in both perithecial and ascospore 

production (Fig. 4.3A-B). Two F. meridionale isolates produced protoperithecia on carrot 

agar but did not produce ascospores (Fig. 4.3B). Overall, F. graminearum isolates 

produced 2.5 times more perithecia, and 17.5 times more ascospores than F. meridionale 

isolates (Table 4.1). In general, host origin had no significant effect on fertility of either 

species, however, perithecia of F. graminearum from wheat produced significantly more 

ascospores than those from maize; 398.61 ± 378.28 × 104 ascospores/ml (n = 36) versus 

91.39 ± 74.61 × 104 ascospores/ml (n = 18), respectively.  
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4.3.2 Pathogenic traits 

Aggressiveness on maize silks. Mean lesion lengths were 21.97 ± 9.56 mm (n = 36) and 

26.87 ± 9.72 mm (n = 72) for F. graminearum isolates from maize and wheat, respectively. 

Mean lesion lengths for F. meridionale isolates from maize and wheat were 18.81 ± 11.38 

mm (n = 108) and 19.29 ± 11.69 (n = 54) respectively (Fig. 4.4B). On average, the effect 

size when comparing F. meridionale to F. graminearum was considered medium (Cohen’s 

d = 0.58), and the former was 33% less aggressive than the latter (Table 4.2).  

Aggressiveness on susceptible wheat heads. All strains were able to produce typical FHB 

symptoms, but the disease severity at 10 days post inoculation varied greatly among strains 

(Fig. 4.4A), ranging from 9.16 to 40.99%, and from 5.26 to 10.66% for F. graminearum 

and F. meridionale, respectively (Fig. 4.4A). The mean FHB severity for maize isolates of 

F. graminearum was 20.07 ± 18.76% (n = 48) and for wheat isolates it was 26.63 ± 21.20% 

(n = 94). This difference was not statistically different. Within F. meridionale, the mean 

severities for maize and wheat strains were also not statistically different, at 7.20 ± 3.17% 

(n = 142) and 6.67% 1.81 (n = 70), respectively (Fig. 4.4A). On average, F. graminearum 

isolates were significantly more aggressive on wheat heads than F. meridionale isolates, 

causing at least three times more disease (Table 4.2).  

 

4.3.3 Toxigenic traits 

Mycotoxin production in wheat heads. All F. graminearum strains produced primarily 

DON and small amounts of the two acetylated forms (Table 2). DON ranged from 53.64 

to 209.68 μg/g (Fig. 4.5). The chemotype confirmed the previous PCR-genotype analysis: 
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15ADON was 6.5 times higher than 3ADON (Table 4.2). There were seven 15ADON 

strains from maize that produced trace levels of NIV (0.31 μg/g) (Fig. 4.5). Consistent with 

the PCR-genotyping, all F. meridionale isolates produced NIV at levels 17-fold higher than 

F. graminearum isolates. Four F. meridionale strains were also producers of 15ADON and 

DON (Fig. 4.5). Exceptionally, two F. meridionale strains from maize produced even more 

DON than NIV in wheat heads (Fig. 4.5). Neither F. graminearum nor F. meridionale 

isolates produced detectable levels of ZON (Table 4.2).  

Mycotoxin production in rice cultures. All F. graminearum isolates were able to produce 

DON and 15ADON. Most (15 out of 18) isolates also produced 3ADON (Fig. 4.6), and 11 

produced NIV. Three of this last group of 11 were obtained from maize. All isolates 

produced ZON in rice cultures (Table 4.2, Fig. 4.6). All F. meridionale isolates, regardless 

of their host of origin, produced NIV (Fig. 4.6). In addition, one F. meridionale isolate 

from wheat produced DON, one from each host produced 15ADON, and seven from maize 

and five from wheat produced 3ADON (Fig. 4.6). ZON was produced by eight isolates 

from maize and three from wheat (Table 4.2, Fig. 4.6). One F. meridionale isolate from 

wheat produced all four mycotoxins on rice (strain 198, Fig. 4.6). 

 

4.3.4 Tebuconazole sensitivity 

The mean EC50 values ± S.D. (standard deviation) for F. graminearum isolates from maize 

and wheat were 0.84 ± 0.55 μg/ml (n = 12) and 0.50 ± 0.36 μg/ml (n = 24) respectively. 

Only three F. graminearum isolates, all from maize, showed an EC50 higher than 1.0 μg/ml 

(strain ‘211’ = 1.17, ‘15’ = 1.19 and ‘210’ = 1.46 μg/ml) (Fig. 4.7). For F. meridionale, 
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mean EC50 ratings were 0.21 ± 0.16 μg/ml (n = 36) and 0.20 ± 0.13 μg/ml (n = 18) for 

maize and wheat isolates, respectively (Fig. 4.7). All F. meridionale isolates showed an 

EC50 lower than 0.5 μg/ml, with the exception of two maize strains (strain ‘20’ = 0.51 and 

‘09’ = 0.52 μg/ml) (Fig. 4.7). Overall, F. meridionale isolates were three times more 

sensitive to tebuconazole than F. graminearum isolates (Table 4.1).  

 

4.3.5 Overall species related fitness 

Based on MANOVA results, there was weak evidence against the null hypothesis of 

interaction between species and host of origin (P = 0.078), contrasting with a strong effect 

of species (P < 0.001). The correlation analysis showed 75 significant associations (P < 

0.05) over each of the 117 pairwise comparisons for all the 17 variables (Fig. S4.9). 

Overall, FHB severity at 10 dpi was highly associated with DON production in wheat heads 

(Fig. S4.9). NIV production was negatively associated with DON production, either in 

wheat heads or in rice cultures (Fig. S4.9). Mycelial growth was negatively associated with 

all other variables with the exception of NIV production, which was also negatively 

associated with all the other traits. 

The PCA suggested that macroconidial production, aggressiveness to wheat heads 

at 10 dpi, and ascospore production contributed the most for the PC1: 24%, 23% and 16% 

respectively of the total, with 49.4% of all variation explained by this first PC (Fig. 4.8). 

The second PC explained 17.2% of the variation, with aggressiveness on maize silks and 

mycelial growth contributing 51% and 40%, respectively (Fig. 4.8). The third PC explained 

13.6% of the variation among isolates, with a contribution of 44% from the variable 
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tebuconazole sensitivity (EC50) and 34% from perithecial production. Those last two 

parameters were also negatively associated with PC2 (ρ = -0.20 and ρ = -0.13, 

respectively). Interestingly, mycelial growth was the only variable negatively associated 

with the first PC (ρ = -0.57). Cluster analysis showed that strains were generally structured 

by species (Fig S2). Exceptions were four isolates, including one F. graminearum from 

wheat, two F. graminearum from maize, and one F. meridionale from maize, that did not 

group together with the other strains (Fig. S4.10). Clustering was not related to host (wheat 

versus maize) or to geographic origin. 

 

4.4 Discussion  

The work in this chapter confirms that F. graminearum and F. meridionale have distinct 

phenotypes for multiple pathogenicity, fitness, and saprophytic-related traits, thus 

confirming the biological significance of the phylogenetic species identity. My results also 

show that the host of origin has an impact on some, but not all, of the traits investigated, 

suggesting the presence of different selective pressures that are imposed by wheat versus 

maize on populations of the two species.  

My results are consistent with previous studies that have proposed that F. 

graminearum is the most prevalent FHB causal agent in Brazil because it is more 

aggressive on wheat than F. meridionale (Astolfi et al. 2012; Del Ponte et al. 2015; Scoz 

et al. 2009; Nicolli et al. 2018). Fusarium graminearum isolates produced more perithecia, 

ascospores, and macroconidia in culture than F. meridionale isolates, which is also in 

agreement with previous reports (Bowden and Leslie 1999; Liu et al. 2017; Nicolli et al. 
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2018). Wheat isolates of F. graminearum produced more than three times as many 

ascospores per perithecium than maize isolates did, suggesting that there is selection for 

greater ascospore production by the wheat crop for this species. This might relate to the 

known importance of ascospores in the disease cycle of FHB (Leplat et al. 2013; McMullen 

et al. 2012; Pereyra et al. 2004). The results also imply that such high numbers of 

ascospores or conidia are less important for infection of maize ears. Infection of maize may 

be more efficient, perhaps due to a longer infectious period while the silks are exposed, or 

to a larger target area for infection. This would be an interesting topic for further study.  

My study showed that F. meridionale, though it produced fewer sexual and asexual 

propagules, grew faster on PDA. This faster growth rate could be related to the 

competitiveness of F. meridionale versus F. graminearum in maize ears when both species 

are present. Interestingly, a significant correlation has been previously reported between 

mycelial growth on PDA and the production of ascospores on corn stalks (Spolti et al. 

2014a), and this could be related to the prevalence of this species in maize stubble. 

Surprisingly, F. meridionale isolates were less aggressive on maize silks than isolates of 

F. graminearum, regardless of their host of origin. This suggests that the dominance of F. 

meridionale on ears is not due to relative aggressiveness on silks. However, it would be 

interesting to do co-inoculations of silks, given that in the first chapter I observed that F. 

meridionale out-competed F. graminearum on ears, when both species were present.  

The tebuconazole sensitivity for isolates of both species obtained from maize was 

reported for the first time here. Tebuconazole has long been used to manage FHB in wheat, 

but its application to the control of maize diseases is more recent. Although no substantial 

differences were detected among isolates from different hosts, my results showed that F. 
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graminearum isolates overall were less sensitive to tebuconazole than F. meridionale 

isolates, which is in agreement with previous studies of isolates from wheat (Machado et 

al. unpublished, Spolti et al. 2012b; Nicolli et al. 2018; Machado et al. 2017). My findings 

are also consistent with a previous study done under greenhouse conditions, which 

demonstrated a higher fungistatic effect of tebuconazole against F. meridionale compared 

to F. graminearum when inoculated alone or in co-inoculations in wheat heads (Spolti and 

Ponte 2013). It has been suggested that the extended use of this fungicide against F. 

graminearum causing FHB in wheat has imposed selection pressure that has resulted in the 

population becoming less sensitive (Spolti et al. 2012b; Spolti et al. 2014b; Becher et al., 

2010). It is possible that the population of F. meridionale in maize may also become more 

tolerant to fungicides, as use of this and other chemicals for management of maize diseases, 

including GER, becomes more common.  

Results of the PCR-based chemotype assay among more than six hundred isolates 

from Brazil showed that all F. graminearum had the 15ADON genotype and all F. 

meridionale had the NIV genotype (Del Ponte et al. 2015; Kuhnem et al. 2016; Scoz et al. 

2009; Astolfi et al. 2012). As expected, all F. graminearum isolates in my study produced 

large amounts of DON and more of their respective acetylate trichothecene, 15ADON. 

However, detectable trace amounts of 3ADON were also produced either in infected wheat 

heads or in rice cultures. Similarly, F. meridionale isolates produced more NIV. 

Surprisingly, two isolates from maize produced more DON than NIV in wheat heads, 

although these same isolates produced only NIV in maize ears, as reported in Chapter 3 of 

this dissertation. Interestingly these isolates, though they produced as much or more DON 

than some of the F. graminearum isolates, did not cause substantial disease in wheat heads. 
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This indicates that DON production is not sufficient to be an aggressive pathogen of wheat, 

and that other factors associated with F. graminearum are also necessary. It was also very 

interesting to see that the amount and type of mycotoxin produced by each strain varied 

depending on the substrate, implying that there is a regulatory aspect of the environment 

that interacts with the metabolic pathway. NIV strains differ from DON strains in 

possessing functional Tri13 and Tri7 proteins that hydroxylate and acetylate the C4 

position of the trichothecene ring. If these proteins are absent, the pathway is diverted to 

production of DON (Lee et al., 2002; Kimura et al., 2003). The two F. meridionale strains 

that produced more DON than NIV on wheat heads had NIV genotypes, demonstrating that 

NIV chemotyping by genotype may not be accurate for all substrates. Other studies have 

reported a lack of correlation, at times, between mycotoxin genotypes and chemotypes 

(Mugrabi de Kuppler et al. 2011; Spolti et al. 2014a; Sampietro et al. 2012).  

Although there is a large degree of intraspecific variation and overlap between 

species for individual traits, F. meridionale and F. graminearum were distinct from one 

another when all the traits were considered together. Traits related to sexual or asexual 

fertility and aggressiveness to wheat heads contributed the most to distinguish isolates of 

F. graminearum. In contrast, reduced aggressiveness on maize silks and mycelial growth 

were highly related to F. meridionale strains. Previous studies have failed to demonstrate 

these distinctions, leaving the biological significance of the phylogenetic species in some 

doubt (Spolti et al. 2012a; Kuhnem Júnior et al. 2013; Nicolli et al. 2015, 2018). In my 

study, I included a very large number of strains: strain-specific variation in individual traits 

can mask overall variation between species. Though not statistically significant, there is 
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weak evidence supporting a hypothesis of interaction between species and the host of origin 

in overall fitness, which should be more deeply explored in future studies. 

Several traits were significantly correlated with one another. The highest 

correlation was observed between FHB severity and DON production in wheat heads. This 

is not unexpected, because DON is well known to be an aggressiveness factor for F. 

graminearum in wheat (Bai et al. 2002; Desjardins et al. 1996; Harris et al. 1999; Maier et 

al. 2006). DON production in rice culture, on the other hand, did not correlate with DON 

production in planta, suggesting that this trait represents the broader toxigenic potential of 

each isolate (Goswami and Kistler 2005; Walker et al. 2001). NIV production, either in 

planta or in vitro, was negatively associated with all the other traits except for mycelial 

growth. In earlier chapters of my dissertation, I observed that NIV and DON were both 

positively correlated with aggressiveness to maize ears, suggesting that toxin production is 

generally important in pathogenicity to cereals, but that wheat may provide a stronger 

selection than maize for higher levels of mycotoxins. There appeared to be no clustering 

of phenotypes related to geographic origin, thus no evidence for locally specialized 

populations.  

Detailed surveys of the mycotoxins found in maize in Brazil are desperately needed. 

It would also be advisable for breeding programs to use the most aggressive isolates 

representing the fungal population in the region of interest to evaluate resistance in 

breeding lines. Increasing surveillance is needed to avoid the introduction of species into 

other countries, especially in locations where F. meridionale is absent, or not found yet, 

such as the United States and Canada. Likewise, it is critical to adjust the mycotoxin 
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regulations to include NIV as well as DON levels, considering its importance to public 

health. 
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4.5 Tables 

Table 4.1. Summary information of saprophytic traits of 45 Fusarium graminearum and 

F. meridionale isolates obtained from either maize kernels or symptomatic wheat heads in 

Southern Brazil from 2009 to 2011. 

 

  Speciesa   

Trait n F. gra. n F. mer. Cohen’s db 

Mycelial growthc 108 27.49 ± 2.41 162 30.93 ± 3.10 -1.21 

Spore productiond 108 99.89 ± 49.41 162 15.58 ± 28.32 2.21 

Perithecial productione 54 305.31 ± 185.72 81 119.61 ± 103.00 1.31 

Ascospore productionf 54 296.20 ± 343.01 81 16.85 ± 27.49 1.28 

EC50 g 36 0.61 ± 0.45 54 0.21 ± 0.15 1.30 

a Isolates were simultaneously assigned to species and trichothecene genotype using 

MGLT assay (Ward et al. 2008). In total, 18 F. graminearum isolates (n = 6 from maize, n 

= 12 from maize) and 27 F. meridionale isolates (n = 18 from maize, n = 9 from maize) 

isolates were used in this study. Data are shown as means ± standard deviation. 

b Cohen’s d. Small (d > 0.2), medium (d > 0.5), and large (d > 0.8) effect sizes (Gent et al. 

2018). 

c Mycelial growth (mm) were determined on potato dextrose agar (PDA) at 23 °C incubated 

for five days under constant lights. 

d Macroconidial production (×104 macroconidia/ml) on Mung Bean Agar (MBA) at 23 °C 

after seven days of incubation. 

e Perithecial production (perithecia/cm2) on carrot agar (CA) incubated at 23 °C for 21 days 

under constant lights. 

f Ascospores (x104 ascospores/ml) harvested and counted from CA media at the 21st day. 

g Effective concentration of tebuconazole (μg/ml) that reduces 50% of the mycelial growth 

of each of the isolates.  
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Table 4.2. Summary information of pathogenic and toxigenic traits of 45 Fusarium 

graminearum and F. meridionale isolates obtained from either maize kernels or 

symptomatic wheat heads in Southern Brazil from 2009 to 2011. 

  Speciesa   

Trait n F. gra. n F. mer. Cohen’s db 

FHB severity (%)c 142 24.51 ± 20.58 212 7.02 ± 2.80 1.32 

Silk infection (mm)d 108 25.24 ± 9.90 162 18.97 ± 11.45 0.58 

Mycotoxins in plantae           

DON (μg/g) 54 125.51 ± 63.22 81 3.49 ± 6.60 2.34 

15ADON (μg/g) 54 9.28 ± 4.28 81 1.34 ± 2.17 1.90 

3ADON (μg/g) 54 1.42 ± 0.87 81 - -- 

NIV (μg/g) 54 0.31 ± 0.21 81 5.34 ± 3.37 -1.55 

ZON (μg/g) 54 - 81 - - 

Mycotoxins in vitrof           

DON (μg/g) 57 339.17 ± 340.96 78 - -- 

15ADON (μg/g) 57 32.27 ± 27.31 78 - -- 

3ADON (μg/g) 57 3.68 ± 3.79 78 3.02 ± 3.41 -0.18 

NIV (μg/g) 57 7.49 ± 17.49 78 19.72 ± 22.41 -0.57 

ZON (μg/g) 57 233.16 ± 527.75 78 26.99 ± 59.49 0.46 

a Isolates were simultaneously assigned to species and trichothecene genotype using 

MGLT assay (Ward et al. 2008). In total, 18 F. graminearum isolates (n = 6 from maize, n 

= 12 from wheat) and 27 F. meridionale isolates (n = 18 from maize, n = 9 from wheat) 

isolates were used in this study. Data are shown as means ± standard deviation. 

b Cohen’s d. Small (d > 0.2), medium (d > 0.5), and large (d > 0.8) effect sizes (Gent et al. 

2018). 

c FHB severity (%) on ‘Wheaton’ plants inoculated by the single-floret method. Percentage 

of diseased spikelets in inoculated spikes at 10 days post inoculation. 

d Lesion length (mm) on sweet corn hybrid Golden Jubilee silks. 

e Trichothecene amount in grains from entire wheat heads (cv. Wheaton), inoculated in the 

greenhouse and averaged over three heads for each independent experiment; ppm = part 

per million (μg/g of samples). DON = deoxynivalenol; 3ADON = 3-acetyl-DON; 

15ADON = 15-acetyl-DON; NIV = nivalenol. 

f Mycotoxin amount (DON, 15ADON, 3ADON, NIV, and ZON = zearalenone) in rice 

cultures incubated at 23 °C for 28 days.  
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4.6 Figures  

 

Figure 4.1. Geographic origin of 18 Fusarium graminearum isolates (nmaize = 6; nwheat = 

12) and 27 F. meridionale isolates (nmaize = 18; nwheat = 9) obtained from symptomatic wheat 

heads and maize kernels in Southern Brazil from 2009 to 2011. Number associated with 

each datapoint represents the isolate identification in my collection.   
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Figure 4.2. (A) Average radial growth on PDA, and (B) macroconidial production on 

MBA at 23°C of a sample of 45 isolates obtained from wheat heads or maize kernels. In 

total, 18 F. graminearum isolates (nmaize = 6; nwheat = 12) and 27 F. meridionale isolates 

(nmaize = 18; nwheat = 9) were utilized in this work. Datapoints for each isolate, averaged 

over three replicates of two independent experiments combined. 
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Figure 4.3. (A) Perithecial and (B) ascospore production on carrot agar incubated for 

among a sample of 45 isolates obtained from wheat heads or maize kernels. In total, 18 F. 

graminearum isolates (nmaize = 6; nwheat = 12) and 27 F. meridionale isolates (nmaize = 18; 

nwheat = 9) were utilized in this work. Datapoints for each isolate, averaged over three 

replicates of a single experiment. 
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Figure 4.4. Distribution of (A) Fusarium head blight severity (%) on susceptible spring 

wheat variety ‘Wheaton’ plants at 10 days post inoculation, and (B) lesion length on sweet 

corn hybrid Golden Jubilee silks among 18 F. graminearum isolates (nmaize = 6; nwheat = 12) 

and 27 F. meridionale isolates (nmaize = 18; nwheat = 9). Datapoints for each isolate, averaged 

over three replicates of three and two independent experiments combined, respectively. 
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Figure 4.5. Mean production of trichothecenes: deoxynivalenol (DON), 15-acetyl-

deoxynivalenol (15ADON) and 3ADON and nivalenol (NIV) by (A) the 18 Fusarium 

graminearum and (A) 27 F. meridionale isolates inoculated into wheat heads (cv. 

Wheaton). 
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Figure 4.6. Mean production of deoxynivalenol (DON), 15-acetyl-deoxynivalenol 

(15ADON) and 3ADON, nivalenol (NIV) and zearalenone (ZON) by each of the (A) 18 

Fusarium graminearum and (B) 27 F. meridionale isolates in rice cultures. 
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Figure 4.7. Density plots of the effective concentration of tebuconazole that reduces 50% 

of the mycelial growth (EC50) of a sample of 18 F. graminearum isolates (nmaize = 6; nwheat 

= 12) and 27 F. meridionale isolates (nmaize = 18; nwheat = 9). Datapoints for each isolate, 

averaged over the two independent experiments combined. 

  



81 

 

 

Figure 4.8. Scatterplot from the Principal Components Analysis (PCA) of a sample of 18 

F. graminearum isolates (nmaize = 6; nwheat = 12) and 27 F. meridionale isolates (nmaize = 18; 

nwheat = 9) obtained from naturally infected maize kernels and symptomatic wheat heads in 

surveys of commercial fields in southern Brazil from 2009 to 2011. PCA was performed 

using data from a correlation matrix, and the estimated eigenvectors and eigenvalues were 

obtained for each principal component (PC). The first and second PC explained 49.4% and 

17.2% of all the variation among the isolates. Contrib. = contribution (%) of each individual 

isolate in explaining the all variation among them.  
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4.7 SUPPLEMENTARY MATERIAL 

Table S4.3. Summary information of the working collection of 45 arbitrarily selected 

isolates representing Fusarium graminearum (n = 18) and F. meridionale (n = 27) obtained 

from naturally infected maize kernels and symptomatic wheat heads in surveys of 

commercial fields in southern Brazil from 2009 to 2011.  

Speciesa Id.b Host Year Municipality Statec 

Fgra 188 wheat 2009 Panambi RS 

Fgra 189 wheat 2009 Ijuí RS 

Fgra 190 wheat 2010 Coxilha RS 

Fgra 191 wheat 2007 Cruz Alta RS 

Fgra 192 wheat 2007 Ernestina RS 

Fgra 193 wheat 2010 Tapejara RS 

Fgra 194 wheat 2011 Não-me-Toque RS 

Fgra 195 wheat 2011 Palmeira das Missões RS 

Fgra 196 wheat 2010 Caseiros RS 

Fgra 197 wheat 2010 Coxilha RS 

Fgra 07 wheat 2010 Estação RS 

Fgra 199 wheat 2011 Ijuí RS 

Fgra 15 maize 2011 Bom Jesus RS 

Fgra 205 maize 2011 Vacaria RS 

Fgra 207 maize 2011 Bom Jesus RS 

Fgra 209 maize 2011 Bom Jesus RS 

Fgra 210 maize 2009 Vacaria RS 

Fgra 211 maize 2009 Vacaria RS 

Fmer 01 wheat 2009 Ernestina RS 

Fmer 02 wheat 2009 Coxilha RS 

Fmer 03 wheat 2007 Nonoai RS 

Fmer 04 wheat 2011 Marau RS 
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Table S4.3. (continued) 

Speciesa Id.b Host Year Municipality Statec 

Fmer 05 wheat 2011 Sertão RS 

Fmer 198 wheat 2010 Água Santa RS 

Fmer 06 wheat 2010 Tapejara RS 

Fmer 08 wheat 2009 Santa Bárbara do Sul RS 

Fmer 21 wheat 2007 Nonoai RS 

Fmer 09 maize 2011 Marechal Cândido Rondon PR 

Fmer 10 maize 2011 Ponta Grossa PR 

Fmer 11 maize 2011 Irati PR 

Fmer 12 maize 2011 Casca RS 

Fmer 13 maize 2011 Eldorado do Sul RS 

Fmer 14 maize 2011 Bom Jesus RS 

Fmer 16 maize 2011 Taguaí SP 

Fmer 17 maize 2011 Paranapanema SP 

Fmer 18 maize 2011 Alambari SP 

Fmer 200 maize 2011 Ponta Grossa PR 

Fmer 201 maize 2011 Ponta Grossa PR 

Fmer 202 maize 2011 Ponta Grossa PR 

Fmer 203 maize 2011 Palmeira PR 

Fmer 204 maize 2011 Palmeira PR 

Fmer 206 maize 2011 Vacaria RS 

Fmer 208 maize 2011 Bom Jesus RS 

Fmer 19 maize 2009 Caxias do sul RS 

Fmer 20 maize 2009 Boa Vista das Missões RS 

a Species and trichothecene genotype identified using the multilocus genotype method 

(Ward et al. 2008). Fgra = F. graminearum with 15-acetyl-deoxynivalenol genotype, Fmer 

= F. meridionale with nivalenol genotype. 
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b Isolates were obtained either from maize kernels (Kuhnem et al. 2016) or symptomatic 

wheat heads (Del Ponte et al. 2015) in previous surveys.  

c Brazilian states: RS = Rio Grande do Sul, PR = Paraná, SP = São Paulo.   
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Figure S4.9. Pearson’s correlation coefficients for all pairwise comparisons among 

saprophytic and pathogenic phenotypic traits disease-variables. Correlation coefficient was 

calculated using the average each trait per isolate. Negative correlation values are shown 

in red and positive values in blue. Lighter the color closer the correlation values to zero. 

Blanks values are not significant at 95% of confidence.  
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Figure S4.10. Dendrogram for a sample of 18 F. graminearum isolates (nmaize = 6; nwheat = 

12) and 27 F. meridionale isolates (nmaize = 18; nwheat = 9) obtained from naturally infected 

maize kernels and symptomatic wheat heads in surveys of commercial fields in southern 

Brazil from 2009 to 2011 clustered according to their saprophytic and pathogenic traits 

based on the standardized Euclidean distance and the complete linkage method. Isolates in 

the yellow box include members of both species (F. meridionale strain 9 and F. 

graminearum strains 190, 209 and 210). Host origin is indicated by the asterisks, blue for 

maize and yellow for wheat. There is no obvious association with host origin in the 

clustering patterns.  
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F. meridionale F. graminearum
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CHAPTER 5. GENETICS AND GENOMICS USED TO STUDY GENOTYPE-

PHENOTYPE ASSOCIATIONS AMONG MEMBERS OF THE FUSARIUM 

GRAMINEARUM SPECIES COMPLEX 

Abstract  

In this final research chapter of my dissertation, I explored the use of genomics and genetics 

to characterize F. graminearum and F. meridionale, as an extension of my previous 

epidemiological studies. The work in this chapter addressed three major questions. First, I 

analyzed and compared single nucleotide polymorphisms (SNPs) across whole genome 

sequences of representative isolates of the two species, to determine whether the 

phenotypic divergence I had observed between them was associated with genotypic 

divergence. My results clearly demonstrated that F. graminearum and F. meridionale are 

genotypically divergent, and furthermore that host origin does not appear to play a major 

role in population structure for either species. Second, I used these SNPs as markers to 

identify potentially introgressed regions, to determine whether the two species have 

undergone sexual recombination in the field in Brazil. The results provided strong evidence 

for both intraspecies and interspecies recombination. Interestingly, a likely introgression 

of F. graminearum sequence on chromosome 2, including part of the TRI gene cluster that 

is responsible for production of mycotoxin, was detected in a Brazilian F. meridionale 

strain that had produced exceptionally high levels of DON in wheat heads. The introgressed 

region of approximately 160 Kb included about 90 genes, more than half of which have 

been implicated in pathogenicity. Finally, I determined whether SNP association mapping 

could be used to study the inheritance of pathologically-significant traits in controlled 

crosses. For this study, I used progeny from a cross between two strains of F. graminearum 

that had been conducted by a former graduate student. The results revealed an association 

between aggressiveness and a recombination hotspot on chromosome 2. An introgressed 

sequence of approximately 320 kb that co-segregated with high levels of aggressiveness 

included 110 predicted proteins, 40% of which were reportedly associated with 

pathogenicity, and 10% of which were predicted to be secreted, including two putative 

effector proteins. The work described here provides a demonstration of the value of a 

genetic approach to augment and extend our epidemiological studies of these pathogens, 

and serves as a basis for future analysis of selective forces relevant to mechanisms of 

divergence in FGSC.  

 

KEYWORDS: Fusarium graminearum s.s., Fusarium meridionale, recombination 

hotspots, gene flow. 
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5.1 Introduction  

In this dissertation, I have addressed the question of host dominance among strains of 

FGSC on wheat versus maize in Brazil. In Chapter 4, I used principal component analysis 

based on quantification of several pathogenicity- and fitness-related traits to demonstrate 

that phenotypes of co-localized populations of F. graminearum and F. meridionale in 

Brazil are statistically divergent. Several traits were found to be correlated with 

aggressiveness of these species to wheat versus maize, including ascospore production, 

toxin production, and growth rate. Populations of F. graminearum on wheat versus maize 

also diverged in some characters, including fertility and aggressiveness to wheat, and 

production of DON. Overall, however, there was no evidence for partitioning associated 

with the host of origin: instead, the main effect was due to species. In this chapter, I 

explored the use of genomics to characterize and evaluate genetic diversity between and 

within members of the two species, and to compare genetic associations with the 

phenotypic associations I characterized in Chapter 4. Several published studies have 

investigated the genetic structure of FGSC to better understand the connection between 

genotypic and phenotypic variation at the population level (Gale et al., 2011; Lee et al., 

2012; Talas et al., 2011). My first question for this final research chapter was: can the 

phenotypic divergence I observed between the two species be linked to genotypic 

divergence? Phylogenetic species in FGSC are identified by a multigene approach that 

examines and compares only six different sequences, including parts of the TRI gene 

cluster that is involved in production of trichothecene mycotoxins (Ward et al., 2008). Such 

a small number of sequences may not reflect the full extent of genetic divergence among 

and within members of these two phylogenetic species. I chose to apply a whole-genome 

approach focused on analysis of single nucleotide polymorphism (SNP) markers to 
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estimate the degree of genotype diversity among strains of F. graminearum and F. 

meridionale from the Brazilian populations. Recent work using a similar whole genome 

approach showed evidence that population-specific selection pressures have left distinct 

signatures in the genomes of North American F. graminearum isolates (Kelly and Ward, 

2018).  

If there is a high level of genotype divergence between F. meridionale and F. 

graminearum could imply a lack of gene flow between these species due to isolation (i.e., 

genetic drift). Isolation could be due to mating barriers, or it could be due to differential 

selection and adaptation among subpopulations (Nosil et al., 2009). Some members of the 

FGSC can engage in interspecies outcrosses in the laboratory, e.g. F. graminearum with F. 

asiaticum or F. meridionale, but generally fertility levels are low and segregation ratios are 

skewed (Bowden and Leslie, 1999; Fuentes-Bueno, 2012; Summerell and Leslie, 2011; 

Jurgenson, et al., 2002). It remains unclear whether these species outcross in the field. 

Thus, my next question was about the presence of gene flow within and between 

populations of F. meridionale and F. graminearum in Brazil. Using whole genome SNP 

analysis, I conducted an analysis to detect evidence for introgression, to provide insight on 

the ability of F. meridionale and F. graminearum to undergo sexual recombination in the 

field.  

If the evidence suggests that F. meridionale and F. graminearum do recombine in 

the field, and thus that they belong to a single biological species, that means it would be 

possible to use a genetic approach to test whether traits that appear to be under positive 

selection are heritable and actually confer specific adaptive advantages. A genome-wide 

association study (GWAS) would be helpful as a downstream application in which I could 
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associate particular markers with particular phenotypes, as previously described for genes 

harboring SNPs associated with fungicide resistance and aggressiveness in F. 

graminearum (Voss et al. 2010, Cumagun and Miedaner 2004, Talas et al., 2016).  

Several studies have shown that recombination rates vary significantly across the 

F. graminearum chromosomes, with recombination “hotspots” interspersed with regions 

where recombination is less frequent. This is associated with a so-called “two-speed 

genome”, in which some regions, enriched in genes under positive selection that are 

potentially related to pathogenicity, evolve more quickly than others (Laurent et al., 2018; 

Talas and McDonald, 2015; Wang et al. 2017). It has been suggested that recombination 

at these hotspots produces variants with adaptive advantages, contributing to the rapid 

evolution of more aggressive populations under selection. (Cuomo et al. 2007; Laurent et 

al., 2018; Talas and McDonald, 2015, Wang et al. 2017). Crosses of different F. 

graminearum strains in the laboratory can produce transgressive strains that are more 

aggressive and toxigenic than the parents (Cumagun et al., 2004a, b; Cumagun and 

Miedaner, 2004). However, an association of these strains with recombination hotspots has 

never been directly demonstrated. For the third part of this chapter, I used SNP mapping to 

show a link between aggressiveness and a recombination hotspot among progeny of a cross 

that had been made by a former graduate student between two strains of F. graminearum. 

The ability to conduct controlled crosses and develop recombination maps for pathogen 

species improves our ability to predict patterns of gene flow among natural populations, an 

important consideration for epidemiological studies designed to improve deployment of 

host resistance and chemical controls for disease management.  
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5.2 Material and Methods 

5.2.1 Fungal Isolates and Culture 

Nine Brazilian isolates of F. meridionale, and six of F. graminearum, isolated from either 

maize or wheat were chosen for this study. These isolates were representative of the larger 

group that was analyzed in the previous chapters of this dissertation (Table 5.1). Four 

additional genomes were included in the analysis for this chapter. Although a genome 

assembly was available for the strain Gz3639 (Cuomo et al., 2007), it had very low 

coverage and was of poor quality, so I generated a new genome assembly for this strain. 

All isolates were routinely cultured on Mung bean agar (40 g of dried mung beans/liter, 

placed in boiling distilled water for 23 min or until ~50% of the seed pericarps split, 

followed by filtering through two layers of cheesecloth, and adjustment to 1 liter followed 

by addition of 15 g of agar) (Evans et al., 2000) at 23°C under continuous fluorescent light. 

Isolates were never subcultured more than once. 

 

5.2.2 DNA extraction  

To isolate fungal DNA, 80 ml aliquots of YEPD media (20 g dextrose, 10 g Bacto® 

peptone, 3 g yeast extract per L) in 250 ml glass flasks were inoculated with a 5 x 105 

macroconidial suspension obtained from an actively growing culture of each isolate on 

MBA. Inoculated flasks were incubated for 3-5 days at 23 °C with agitation (250 rpm). 

The mycelial mat was collected by vacuum filtration, frozen in liquid nitrogen and 

lyophilized. Lyophilized tissue was pulverized with a sterile plastic pestle. The pulverized 

tissue was mixed with 4 ml of CTAB extraction buffer (20 mls 1 M Tris pH 7.0; 28 mls 5 
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M NaCl; 4 mls 500 mM EDTA pH 8; 2 g CTAB per 100 mls) and incubated at 65 °C for 

30 min. After the samples cooled to room temperature, an equal volume of 

phenol:chloroform:isoamyl alcohol (25:24:1) was added, and the sample was rolled on the 

orbital mixer table for 5 min, followed by centrifugation at 6000 rpm for 15 min. The upper 

aqueous phase was removed to a new tube and the PCI extraction was repeated, followed 

by an extraction with chloroform. The upper aqueous phase was removed to a new tube 

and the DNA was precipitated with 1 volume of isopropanol. The samples were centrifuged 

for 10 min at 13,000 rpm to pellet the DNA. The pellet was washed twice with 70% ethanol. 

After the ethanol washes, the DNA pellet was dried for 10 minutes in a transfer hood, then 

dissolved in 100 μl TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0) + 10 μg RNase A (10 

mg/ml) at room temperature. 

 

5.2.3 Genome sequencing and assembly 

DNA concentration was measured with a Qubit fluorometer, and DNA was sent to the 

Duke Center for Genomic and Computational Biology (Durham, NC) for preparation of 

libraries and Illumina sequencing. Libraries containing 300 bp sheared DNA inserts were 

constructed and the Illumina NextSeq 500 platform was used to generate 150 bp paired-

end reads at ~ 50X coverage.  

Genomes were assembled with a custom bioinformatics pipeline “BioPipe” 

(https://github.com/hain222/bio-pipe), followed by use of the Velvet assembler (Zerbino 

and Birney 2008) via VelvetOptimiser (https://github.com/tseemann/VelvetOptimiser). 

The parameters used were: start kmer value, 99; end kmer value, 149; step size, 4; and with 

https://github.com/hain222/bio-pipe
https://github.com/tseemann/VelvetOptimiser
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the shortPaired setting. A summary of the genome assembly information and statistics are 

presented in (Table 5.2).   

 

5.2.4 Whole-genome alignment and tree building 

The new genome assemblies were compared to one another, and to several reference 

genome assemblies for both species from other locations (Table 5.1), with a custom 

pipeline “iSNPcaller” (https://github.com/drdna/iSNPcaller). The protocol includes blast 

alignment of repeat-masked genomes to generate a pairwise distance matrix. Repetitive 

sequences were masked by subjecting each genome to blast analysis against itself. Blast 

reports were pre-screened using a threshold of 1e-200 to filter out aligned regions 

containing hidden paralogs, or regions that did not uniquely align in each pairwise 

comparison, before SNP calling. SNPs were then identified for each pairwise comparison 

and scaled by the total number of nucleotides aligned after excluding repetitive and 

duplicate regions. This produced a distance metric of SNPs per megabase of uniquely 

aligned DNA. The resulting distance matrix was input into MEGAX (version 10.1.7) 

(Kumar et al., 2018) and a similarity cladogram was generated by using the Neighbor 

Joining program and default parameters. 

 

5.2.5 Haplotype similarity analysis  

Chromosome-level haplotypes were generated by mapping SNPs from iSNPcaller to a fully 

assembled reference genome of the PH-1 strain of F. graminearum (King et al., 2015) 

using custom scripts, followed by data conversion into a format compatible with 
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Choromopainter (https://people.maths.bris.ac.uk/~madjl/finestructure-old/chromopainter 

_info.html) (Lawson et al., 2012). The chromopainter files were used as inputs to custom 

scripts that performed sliding-window analyses of pairwise haplotype similarity in an all-

by-all comparison (window size, 200 SNPs, step size, 40). The final sliding window data 

were imported into a Shiny app (R Core Team 2019: Chang et al., 2019) that runs custom 

R code for plotting haplotype similarity between any given reference strain and all strains 

belonging to a set of user-selected host populations/species (https://github.com/ 

drdna/ShinyHaplotypes). Potential recombination blocks were further investigated by 

manual comparisons with the PH-1 assembly of chromosome 2 (NCBI accession 

HG970333.1). First, each contig of the genome of interest was individually compared to 

the PH-1 genome by using BLASTN. Homologous contigs were annotated by submitting 

them for analysis by FGENESH via the Softberry web interface (softberry.com). Finally, 

the NCBI PH-1 genome browser was used to manually identify and compare the nucleotide 

sequence and proteins encoded within the introgressed region from PH-1 and the strain of 

interest. Individual proteins were further characterized by BLASTP, or via other resources 

including the PHI database for genes implicated in pathogenicity (http://phi-base.org); 

Signal-P 5.0 (http://www.cbs.dtu.dk/services/SignalP/) and Phobius (http://phobius. 

sbc.su.se/) for prediction of subcellular localization; EffectorP 2.0 (effectorp.csiro.au); and 

the F. graminearum genome databases available from the Joint Genome Initiative 

Mycocosm site (https://mycocosm.jgi.doe.gov/Fusgr1/Fusgr1.home.html) and from 

EnsemblFungi (http://fungi.ensembl.org/Fusarium_graminearum/Info/Annotation). Other 

resources included :OmicsDB::Pathogens (https://pathogens.omicsdb.org/); the Fusarium 

Comparative Genomics Platform (http://genomics.fusariumdb.org/); the AntiSMASH 

https://people.maths.bris.ac.uk/~madjl/finestructure-old/chromopainter%20_info.html
https://people.maths.bris.ac.uk/~madjl/finestructure-old/chromopainter%20_info.html
https://github.com/%20drdna/ShinyHaplotypes
https://github.com/%20drdna/ShinyHaplotypes
http://www.softberry.com/
http://www.cbs.dtu.dk/services/SignalP/
https://mycocosm.jgi.doe.gov/Fusgr1/Fusgr1.home.html
http://fungi.ensembl.org/Fusarium_graminearum/Info/Annotation
https://pathogens.omicsdb.org/
http://genomics.fusariumdb.org/
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metabolite cluster predictor (https://fungismash.secondarymetabolites.org/#!/start), 

Fungidb (https://fungidb.org/fungidb/); and the F. graminearum mutant database 

(https://docs.google.com/spreadsheets/d/1ZJXGqvqKi2jVUCkQmxeGvfgf7BKLX1l1-

AR4WqerG0Q/edit#gid=362556506).  

 

5.2.6 Bulk Segregant analysis of marker association with aggressiveness and 

toxigenicity 

A set of 20 transgressive progeny that had been recovered from a cross between two strains 

of F. graminearum, PH-1 and Gz3639 (Bec, 2011), were subjected to a bulk segregant 

analysis to identify chromosome regions that co-segregated with high versus low levels of 

aggressiveness. Genomic DNA was prepared as above from two groups of 10 strains 

representing the least, and the most aggressive towards the susceptible wheat line Pioneer 

2555. The pooled DNA samples were sequenced by using Illumina paired-end sequencing 

at the Texas A&M AgriLife Genomics & Bioinformatics Center (College Station, TX).  

Raw reads were aligned against the PH-1 reference genome (King et al., 2015) by 

using TopHat2 (Trapnell et al., 2009). This tool uses the Bowtie2 alignment engine to map 

reads to the genome assembly. First, BAM files were sorted using Samtools version 1.7 

(Li et al., 2009). Samtools mpileup utility was used to extract information on nucleotide 

variations between sequence samples and the reference genome to generate the ‘.bcf’ 

output files. Variant calling was performed using bcftools utility of Samtools program. The 

final dataset was imported to R and the proportion of reads that mapped to the reference 

versus the alternative allele were calculated per SNP position. The final dataset was used 

to produce figures showing the overall proportion of reads per SNP position that came from 

https://fungismash.secondarymetabolites.org/#!/start
https://fungidb.org/fungidb/
https://docs.google.com/spreadsheets/d/1ZJXGqvqKi2jVUCkQmxeGvfgf7BKLX1l1-AR4WqerG0Q/edit#gid=362556506
https://docs.google.com/spreadsheets/d/1ZJXGqvqKi2jVUCkQmxeGvfgf7BKLX1l1-AR4WqerG0Q/edit#gid=362556506
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the reference genome (PH-1) or were assumed to have come from the alternative parent, 

Gz3639.  

PCR was used to validate a potential recombination hotspot on Chromosome 2. 

Cleavable Amplified Polymorphic Sequences (CAPS) markers were generated by using a 

list of SNPs differentiating the low and high pools from the PH-1 reference genome. Five 

unlinked SNPs that comprised restriction sites were identified, and a ~500 bp segment 

spanning each selected SNP site was amplified by using primer sets that were designed for 

each region (Table 5.4). The thermocycling protocol consisted of initial denaturation for 1 

min at 95°C; followed by 40 cycles of 30 sec denaturation at 95°C, 20 sec annealing at the 

temperature specified in Table 4 for each marker, and 1 min extension at 72°C; and one 

extension cycle for 7 min at 72°C. Ten μL of each PCR amplicon was used for each 

restriction reaction. Restriction reactions used Invitrogen restriction enzymes HindIII, PstI 

and XhoI according to the manufacturer's instructions at 37°C for 2 h. Restriction reactions 

were separated on a 1% agarose gel for analysis. 

I produced a new assembly of the Gz3639 genome for this study to identify the 

specific contigs that matched the PH-1 region of interest on Chromosome 2. Identification 

of homologous contigs, and manual comparison and characterization of genes and proteins, 

was performed as described above.  
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5.3 RESULTS 

5.3.1 Whole-genome alignment and tree building  

Genomes of six representative F. graminearum isolates and nine F. meridionale isolates 

from maize and from wheat were sequenced and assembled (Table 5.2). Assemblies were 

aligned, and the number of SNPs was compared, to produce a whole genome tree (Table 

5.3, Fig. 5.1). The neighbor-joining tree built using “total-genome” pairwise distances 

(Table 5.3) revealed two main clusters that were consistent with the phylogenetic species 

F. graminearum and F. meridionale. Brazilian strains of each species grouped together 

with reference isolates of the same species from North America and from Nepal, 

respectively (Fig. 5.1). The Nepalese strains of F. meridionale occupied a branch within 

the cluster separate from the Brazilian F. meridionale strains. The North American F. 

graminearum strains also occupied a branch apart from the Brazilian strains of F. 

graminearum, indicating that populations of both species are geographically structured at 

a global scale, although there was no evidence for more localized subpopulations. There 

was also no evident relationship with the host of origin for either species.  

 

5.3.2 Haplotype similarity analysis  

 For both F. graminearum and F. meridionale, isolates were characterized by an 

uneven distribution of haplotype divergence. Thus, the ends of each of the chromosomes 

were generally divergent, and there were two or three additional highly polymorphic 

regions per chromosome interspersed with much more conserved regions (Figure 5.2 and 

Figure 5.3). In both cases, individual strains were mosaics of chromosome segments 
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inherited from strains that have different evolutionary histories. These data suggest that 

there has been extensive admixture, probably due to outcrossing, within the Brazilian F. 

graminearum and F. meridionale populations.  

 A likely introgression of F. graminearum DNA was detected in F. meridionale 

strain 10, which originated from maize in Ponta Grossa, Brazil. The block was on 

chromosome 2 and appears to be introgressed from a F. graminearum strain that was very 

similar to the North American strain PH-1 (Fig. 5.4). Contigs from the genome assembly 

for strain 10 were mapped to chromosome 2 of PH-1, and one contig was identified that 

spanned the relevant region, from 5,400,000 to 5,560,000 bp (Fig. 5.5). Contig 111 was 

98% identical to this part of PH-1 chromosome 2, with about 1900 SNPs and 358 small 

indels across the entire 160 Kb (Fig. 5.6). There were no major rearrangements or 

inversions. This sequence in PH-1 is predicted to encode 91 genes, including all but the 

first three genes of the trichothecene metabolite cluster (TRI4, TRI6, TRI5, TRI10, TRI9, 

TRI11, TRI12, TRI13, and TRI14). Several genes downstream of the cluster, including a 

transcription factor (FGSC_03551) (Son et al., 2011), are co-regulated and may also be 

involved in mycotoxin production (Puri et al., 2016). Twenty-two proteins were predicted 

to be secreted, and 18 were predicted to be effectors. Comparisons with the PHI database 

showed that 48 of the 91 proteins had functions in pathogenicity. These included a chitin 

deacetylase (FGSG_03544) expressed during early infection that may be important for 

blocking host recognition (Puri et al., 2016), a triacylglycerol lipase named FGL5 

(FGSG_03583) (Nguyun, 2008), and a regulator of G-protein signaling named FgFlbB 

(FGSG_03597) (Park et al. 2012). Knockout mutations in each of these genes reportedly 

resulted in reductions in pathogenicity of F. graminearum to wheat.  
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 I next identified contigs that matched this region of PH-1 from strain 17 of F. 

meridionale, which doesn’t have the introgression and is similar to the rest of the Brazilian 

F. meridionale strains. The sequence of strain 17 was more divergent from PH-1, including 

almost 4000 SNPs across the approximately 150 Kb of DNA that could be aligned (Fig. 

5.6). More than a quarter of the SNPs (1261) occurred in the region encompassing the TRI 

genes that spans only 16.6 Kb, or about 11% of the total alignment. Nonetheless, the TRI 

proteins of strain 17 were very similar to the PH-1 proteins, ranging from 98% to 100% 

identity at the amino acid level. Most other proteins were similarly conserved, but a few 

were more divergent (ranging from 76-84% identity). These included an unnamed protein 

that is induced during early infection of wheat heads (FGSG_12416), an integral membrane 

protein (FGSG_03561), an efflux pump protein (FGSG_03571), and a predicted effector 

(CEF78399). Knockout mutations of FGSG_12416 and the effector both resulted in 

reductions in aggressiveness to wheat, according to the PHI database. Mutations in the 

other two had no effect.  

 

5.3.3 Bulk Segregant analysis of marker association with aggressiveness and 

toxigenicity   

For this analysis, I mapped SNPs to DNA that was isolated from pools of 10 progeny that 

represented the most, and least aggressive among 96 total progeny of a cross between F. 

graminearum strains PH-1 and Gz3639. In the absence of bias, I would theoretically see a 

50:50 distribution of SNPs from both parents in both pools. However, if genes from one 

parent provided a selective advantage, in this case for aggressiveness, I expected to see that 

parent over-represented among those genes in the highly aggressive pool relative to the 
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low pool. In observing SNP distributions for the two pools, I saw that the distributions 

generally did not have the expected 50:50 representation. Instead, numerous regions of the 

chromosomes were biased toward one parent (especially PH-1) for both pools. For 

example, almost the entire length of chromosome 3 seems to have been inherited from PH-

1 by progeny in both pools. This could be due to contamination of the ascospore progeny 

with ascospores or conidia of PH-1. However, two CAPs markers were shown to follow 

Mendelian segregation patterns among the progeny pools (Bec, 2011), which argues 

against that possibility.   

There were three regions that seemed to be associated with high versus low levels 

of aggressiveness, two on chromosome 2 and one on chromosome 4 (Fig. 5.7, gray 

rectangles). In each case, the highly aggressive strains had inherited these regions from the 

Gz3639 strain. I investigated more closely one introgressed Gz3639 region (~320 kb), 

located on chromosome 2 (from 6,470,806 to 6,823,783 bp) and associated with a 

recombination hotspot. This region was near the previously identified introgression in F. 

meridionale strain 10, but it did not overlap it. Five unlinked SNPs, one at each flanking 

region and three within the region of interest, segregated at similar ratios as the observed 

in the bulk analysis for the highly aggressive progeny (Fig. 5.8; Table 5.5). These findings 

confirmed that this region in the more highly aggressive strains was indeed biased towards 

the Gz3639 parent.  

 Contigs from the newly produced assembly of Gz3639 were mapped to this region, 

and three overlapping contigs were identified that spanned it (Fig. 5.9). This region does 

not include the trichothecene metabolite cluster (Fig. 5.7). The first crossover point was 

located in a highly polymorphic region between a thioredoxin gene and a gene encoding a 
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probable pimeloyl-ACP methyl ester carboxylesterase (6,470,806 to 6,474,246 bp in 

chromosome 2, Fig. 5.10A), while the second crossover point was associated with a large 

inversion at position 6,823,783 bp (Fig. 5.10B).  

 The recombined region included 110 predicted proteins. There were about 1773 

SNPS and several small indels that differentiate the two strains in this region. About half 

the Gz3639 proteins were identical to the PH1 versions. SNPS and indels have produced 

one or more amino acid changes in the remainder (no frameshifts were observed). All but 

six proteins were at least 95 percent identical. About 40% of the genes were potentially 

pathogenicity associated, based on PH1 database matches and about 10% were secreted 

proteins. Two predicted effector proteins were present in Gz3639 but not in PH1. Both of 

these effectors were conserved in other Fusarium strains or species.  

 

5.4 DISCUSSION 

My primary objective in this chapter was to apply genetics and genomics approaches to 

study potential associations between phenotypes and genotypes of isolates of two co-

existing members of the FGSC in Southern Brazil. The delineation of species within F. 

graminearum has been the subject of much discussion, and some controversy, for at least 

two decades. There are at least 16 phylogenetic species that comprise the FGSC 

(O’Donnell et al., 2004; O’Donnell et al., 2008; Sarver et al., 2011; Starkey et al., 2007; 

Yli-Mattila et al., 2009). Since 2004, when lineages were elevated to species rank 

(O’Donnell et al., 2004), some researchers have questioned the significance of these 

phylogenetic species, given the fact that they can all cause the same grain diseases. 

Furthermore, members of different phylogenetic species are interfertile, and thus belong to 
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the same biological species as defined by Mayr (1942): “Species are groups of actually or 

potentially interbreeding natural populations, which are reproductively isolated from other 

such groups”. It has been suggested that the F. graminearum species complex might be in 

the early stages of speciation. Nonetheless, intrinsic reproductive isolation appears to be 

minimal, with patterns of cross fertility that are more strain-specific than lineage-specific 

(Fuentes-Bueno, 2012; Bowden and Leslie, 1999; Jurgenson et al., 2002). This lack of 

intrinsic reproductive barriers suggests to some that these lineages diverged as a result of 

geographic isolation and have been brought together more recently through global trade 

(Fuentes-Bueno, 2012).  

Summerell (2019) in his review about Fusarium status, expresses little doubt that 

the FGSC members are phylogenetically distinct taxa, and that some of those differences 

reflect differences in biology, toxin production, and biogeography. He raises the possibility 

that some taxa may be hybrids, and points to the existence of a small number of apparent 

natural interspecific/interlineage hybrids that have been detected in the field (Boutigny et 

al., 2011; O’Donnell et al., 2000). For example, strain NRRL28721 was suggested to be a 

natural hybrid between F. meridionale and F. asiaticum based on multilocus analysis 

(O’Donnell et al., 2004, Starkey et al., 2007). More recently though, a whole genome 

analysis definitively placed this strain within F. meridionale (Walkowiak et al., 2016), 

indicating that the hybridization is limited in scope and encompasses only the regions that 

are used for multilocus phenotyping. My own results in this chapter confirmed the 

placement of this strain within F. meridionale and suggests that the prior evidence for 

natural hybridization based on multilocus markers may actually be due to an introgression 

block or blocks. Clearly, analyses based on whole genomes are superior to MLGT assays 
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if our goal is to fully describe the degree and effect of hybridization and/or introgression 

among members of the FGSC. For example, a recent study used genomic data from a large 

collection of more than 100 strains to address questions about population structure and 

genetic targets of selection within the F. graminearum population causing FHB in North 

America (Kelly and Ward, 2018). These authors presented evidence that a divergent 

population that produces NX-2 mycotoxin was endemic and may have originated in wild 

grasses (Lofgren et al., 2017). They concluded that this population had experienced a recent 

expansion, and implicated selection as the main force driving this. Signatures of selection 

were found in genes related to host infection, niche competition, and environmental 

adaptation including fungicide resistance and mycotoxin-associated aggressiveness. 

Genomic tools will be very important in enabling us to address these critical questions, and 

consider implications related to competition, selection, and adaptation among pathogen 

populations in the field.  

My results in this chapter and in Chapter 4 demonstrated that F. graminearum and 

F. meridionale are divergent in both phenotype and genotype, implying the existence of 

sympatric or allopatric isolation during their evolutionary history. Very little structure was 

imposed by host species, indicating that the relative host dominance we observe on maize 

versus wheat in Brazil is a result, rather than a cause, of species-related divergence. There 

was some evidence that the species are geographically structured on a continental scale, 

although the sample size is too small to be very confident in this conclusion. Although 

clusters of closely related Brazilian strains were observed within each species, there was 

no correlation with collection locations, suggesting that the populations of both species are 

regional in Brazil. Two Brazilian F. meridionale strains (05 and 09) were divergent from 
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the rest but very similar to one another, even though they had come from different locations 

and from different hosts. This suggests a possibility of an introduction of a different 

genotype into the region from another location. Clearly there is a need to analyze a much 

more extensive sample of strains of both species from across the region to further evaluate 

these conclusions.  

Genome-wide comparisons revealed a high degree of polymorphism among the 

strains within both species in Brazil, and this might be related to the high level of 

phenotypic diversity I also observed among individual strains. Polymorphisms were 

clustered rather than randomly distributed across the chromosomes. Several studies have 

reported a similar “two-speed” genome structure in F. graminearum, in which some 

regions enriched in potential pathogenicity genes that appear to be under positive selection 

are more polymorphic and change more quickly than others (Laurent et al., 2018; Talas 

and McDonald, 2015; Wang et al. 2017). I observed an increase in haplotype divergence 

near the ends of the four chromosomes, and also at two or three internal regions, separated 

by more highly conserved sequences. Those findings agree with previous reports where the 

highest density of polymorphic sites was found in regions near subtelomeres and in similar 

internal locations, especially on Chromosomes 1, 2 and 4 (Kelly and Ward, 2018; Cuomo 

et al., 2007; Walkowiak et al., 2015; Laurent et al., 2018). The significance of the two 

speed genome in pathogen adaptation is still unclear, but polymorphic regions have been 

correlated in a small number of studies with recombination hotspots, and this has led to the 

suggestion that recombination plays a role in “shuffling” these groups of polymorphic 

genes, leading to the generation of new genotypes with novel pathogenic capabilities that 

can be subject to selection (Cuomo et al., 2007).  
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In addition to intraspecies recombination, my analysis also provided strong 

evidence for interspecies recombination and gene flow between F. graminearum and F. 

meridionale in Brazil. Closer investigation of a likely introgression comprising about 160 

Kb on Chromosome 2 from F. graminearum into one F. meridionale isolate (id. 10) 

revealed that it included a portion of the trichothecene metabolism cluster that is involved 

in the production of DON. Interestingly, this strain was one of only two (I didn’t sequence 

the genome of the other) that produced DON in wheat heads, as I reported in Chapter 4. 

Even though it produced as much or more DON as most of the F. graminearum strains, id. 

10 was much less aggressive than those strains and was instead more similar to the other 

F. meridionale strains. This suggests that factors other than DON are necessary for high 

levels of aggressiveness to wheat. The introgressed region includes more than 40 other 

genes that are implicated in pathogenicity, including eight predicted effectors, several 

genes that are known to be co-expressed with the TRI cluster, and many others that are 

expressed during early infection of wheat (Puri et al., 2016). Although the introgressed 

region is quite polymorphic at the nucleotide level between F. graminearum and F. 

meridionale, the proteins are much more conserved, with only five having less than 95% 

identity.  

Associations between loci and phenotypes can be identified on a much larger scale 

with appropriate markers. For example, (Talas et al., 2016) used a genome-wide 

association study (GWAS) to identify a QTL that is strongly associated with azole 

sensitivity in F. graminearum. Genome data facilitate the identification and tracking of 

appropriate markers for this type of analysis. It would be interesting in the future to conduct 

similar studies on F. graminearum and F. meridionale related to traits e.g. fungicide 
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sensitivity, sexual fertility, host aggressiveness, and toxigenicity, that vary between the 

two. These studies would help us understand the role of this variation in determining host 

dominance and population structure across different environments. 

Although correlative studies like GWAS are valuable, they are even more powerful 

when they can be combined with controlled crosses in which patterns of co-segregation of 

traits can be evaluated among progeny. Although laboratory crosses between F. 

graminearum and F. meridionale have been made (Leslie, personal communication), I was 

unfortunately unsuccessful in numerous attempts to make interspecies crosses among my 

strains. As I showed in Chapter 4, and others have also reported (Fuentes-Bueno, 2012), F. 

meridionale is much less fertile than F. graminearum. The relative infertility of F. 

meridionale made it hard to make either intra- or interspecies crosses, although I did see 

increases in the numbers of perithecia when I paired some F. meridionale strains with one 

another.  

Unlike F. meridionale, F. graminearum is highly fertile and relatively easy to cross. 

A former graduate student in the laboratory had made a cross between two strains of F. 

graminearum and evaluated 98 progenies for aggressiveness on a susceptible variety of 

winter wheat (Bec, 2011). She identified transgressive progeny that were significantly 

more aggressive and toxigenic than either parent. I conducted a bulk segregant analysis 

using DNA pools from the ten most aggressive, and ten least aggressive strains from this 

cross. I then applied SNP genotyping in order to identify chromosomal regions that 

appeared to be associated with high levels of aggressiveness and toxigenicity. I identified 

at least three such regions: in each case the highly aggressive progeny had 

disproportionately inherited sequences from the more aggressive and toxigenic Gz3639 
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parent. I investigated one of these regions more closely, because it was associated with a 

recombination hotspot. This is the first direct evidence relating a hotspot to changes in 

pathogenicity among the recombinant progeny. Interestingly, this region was on the same 

arm of chromosome 2 as the introgression I described above in F. meridionale strain id. 

10. This arm of chromosome 2, and chromosome 2 in general, has been shown to be 

particularly enriched in pathogenicity related genes, including the TRI cluster and multiple 

secreted effectors (King et al., 2015, Walkowiak et al., 2016). In this case, the TRI cluster 

was not included, but there were numerous genes implicated in pathogenicity that diverged 

between the two strains, as well as a PKS secondary metabolite cluster that produces 

orsellinic acid, and several predicted effectors that also might be important and would be 

interesting to explore further. Overall, this work showed the potential value of a genetic 

approach in identifying novel genes that may be involved in traits of interest.    

The work in this final research chapter is preliminary, but it serves as a 

demonstration of the application of genetic recombination analyses to dissect the potential 

for the production of more highly adapted strains via recombination. It provides a basis for 

future studies of the selective forces relevant to mechanisms of adaptation and divergence 

within and between these species. A better understanding of the mechanisms that regulate 

host- and location-specific variations in FGSC species composition would help to improve 

disease and mycotoxin management strategies, given that different species within the 

complex differ in fungicide sensitivity and aggressiveness to wheat and maize (Spolti et al. 

2012b; Nicolli et al. 2018; Machado et al. unpublished, Mendes et al. 2018).  
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5.5 TABLES  

Table 5.1. Description of the Fusarium isolates used in this study.  

Species Strain 

ID 

Host Year Location 

City 

Location 

State/ Country 

GenBank 

Accession  

Reference 

Fgra 197 wheat 2010 Coxilha RS TBD This Dissertation 

Fgra 07 wheat 2010 Estação RS TBD This Dissertation 

Fgra 199 wheat 2011 Ijuí RS TBD This Dissertation 

Fgra 15 maize 2011 Bom Jesus RS TBD This Dissertation 

Fgra 205 maize 2011 Vacaria RS TBD This Dissertation 

Fgra 207 maize 2011 Bom Jesus RS TBD This Dissertation 

Fmer 02 wheat 2009 Coxilha RS TBD This Dissertation 

Fmer 05 wheat 2011 Sertão RS TBD This Dissertation 

Fmer 198 wheat 2010 Água Santa RS TBD This Dissertation 

Fmer 08 wheat 2009 Santa Bárbara 

do Sul 

RS TBD This Dissertation 

Fmer 09 maize 2011 Marechal 

Cândido 

Rondon 

PR TBD This Dissertation 

Fmer 10 maize 2011 Ponta Grossa PR TBD This Dissertation 

Fmer 17 maize 2011 Paranapanema SP TBD This Dissertation 

Fmer 200 maize 2011 Ponta Grossa PR TBD This Dissertation 

Fmer 204 maize 2011 Palmeira PR TBD This Dissertation 

Fmer NRRL 28721 maize  NA Nepal GCA_001717825.1 Walkowiak et al. 2016 

Fmer NRRL 28723 maize  NA Nepal GCA_001717855.1 Walkowiak et al. 2016 

Fgra Gz3639 wheat  NA Kansas, USA TBD This Dissertation 

Fgra PH1 maize  NA Michigan, USA GCA_900044135.1 King et al. 2015 

a For Brazilian isolates, species and trichothecene genotype identified using the multilocus 

genotype method (Ward et al. 2008). Fgra = F. graminearum with 15-acetyl-

deoxynivalenol genotype, Fmer = F. meridionale with nivalenol genotype. 

b Brazilian isolates were obtained either from maize kernels (Kuhnem et al. 2016) or 

symptomatic wheat heads (Del Ponte et al. 2015) in previous surveys.  

c Brazilian states: RS = Rio Grande do Sul, PR = Paraná, SP = São Paulo.   
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Table 5.2. Genome and assembly statistics of Fusarium Isolates used in this study. 

 

Strain ID Species Host Genome Size (Mb) N50 (Mb)  Reference 

197 Fgra wheat 37.0 1.86 This study 

07 Fgra wheat 42.1 0.05 This study 

199 Fgra wheat 36.4 0.61 This study 

15 Fgra maize 36.8 0.21 This study 

205 Fgra maize 43.2 0.78 This study 

207 Fgra maize 36.5 1.24 This study 

02 Fmer wheat 36.9 1.64 This study 

05 Fmer wheat 43.1 0.15 This study 

198 Fmer wheat 36.7 0.76 This study 

08 Fmer wheat 36.8 1.40 This study 

09 Fmer maize 37.2 0.23 This study 

10 Fmer maize 36.8 1.74 This study 

17 Fmer maize 36.8 1.72 This study 

200 Fmer maize 36.8 1.08 This study 

204 Fmer maize 36.8 1.26 This study 

NRRL 28721 Fmer maize 36.5 0.11 Walkowiak et al. 2016 

NRRL 28723 Fmer maize 36.4 0.41 Walkowiak et al. 2016 

Gz3639 Fgra wheat 36.5 1.12 This study 

PH1 Fgra maize 38.1 9.39 King et al. 2015 
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Table 5.3. Pairwise distances (number of differences per kilobase) calculated from analysis 

of pairwise BLAST alignments between repeat-masked genomes. 

 

 

 

 NRRL 

28723 

10 207 NRRL 

28721 

197 15 5 17 200 198 2 9 199 8 Gz3639 PH1 205 204 

NRRL28723                   

10 1770                  

207 18418 18756                 

NRRL28721 2175 3116 19764                

197 18425 18763 1804 19771               

15 18427 18766 2180 19773 2188              

5 3179 3517 18532 4525 18539 18541             

17 1823 1617 18809 3169 18816 18819 3570            

200 1826 1620 18812 3172 18819 18822 3573 1570           

198 1848 1815 18834 3194 18841 18844 3595 1868 1871          

2 1759 1552 18745 3105 18752 18754 3506 1502 1329 1804         

9 3216 3554 18569 4562 18576 18578 37 3607 3611 3633 3543        

199 18396 18734 2149 19742 2156 1865 18510 18787 18790 18812 18723 18547       

8 1800 1767 18786 3146 18794 18796 3548 1820 1823 1802 1756 3585 18764      

Gz3639 18466 18805 4666 19813 4673 4675 18581 18858 18861 18883 18794 18618 4643 18835     

PH1 18433 18771 4632 19779 4639 4641 18547 18824 18827 18849 18760 18584 4610 18801 2934    

205 18567 18906 2540 19914 2548 2550 18681 18959 18962 18984 18894 18719 2518 18936 4815 4781   

204 1910 1943 18896 3256 18904 18906 3657 1996 1999 2021 1932 3695 18874 1974 18945 18911 19046   

7 17201 17540 1962 18548 1969 1971 17315 17593 17596 17618 17528 17353 1940 17570 3449 3415 2111 17680 



 

 

 

Table 5.4. List of Cleaved Amplified Polymorphic Sequences (CAPS) markers used to 

confirm the introgressed region of Chromosome 2 in PH1 and Gz3639 progenies. 

 

Marker Restriction 

Enzyme 

Primer sequence (5’ -> 3’) Annealing 

temperature 

Fragment 

size 

Restriction 

site 

Reference 

CAPS_HindIII HindIII 

 

ATCTCGGCACCTTTTTCCTT 

TGAACGAGGGCTAGCAACTT 

57°C 232 6444819 This study  

CAPS2_PstI PstI 
 

GCTTGAGAAACCACTGGCAA 

CCTGTGATGAATGCGACCAG 

62°C 542 6576167 This study 

CAPS2_XhoI XhoI 

 

TTCCCTGCGAACTCTCAAGT 

TTGTTGGAGCTGATGCTCAC 

62°C 207 6693819 This study 

CAPS_XhoI XhoI 

 

AAGCATGATGTTTGGCGCAT 

AAGCATGATGTTTGGCGCAT 

58.8°C 661 6774043 This study 

CAPS2_HindIII HindIII 

 

TAGTCAGTCGCCTCACATCC 

CGGATCTGTCTCACACTCGA 

62°C 528 6883759 This study 
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Table 5.5. Segregation analysis of Cleaved Amplified Polymorphic Sequences (CAPS) 

markers used to validate a potential recombination region in Chromosome 2 in the high 

pool progreny from a cross between PH1 and Gz3639 strains.  

 

Progeny Markersa 

CAPS_HindIII CAPS2_PstI CAPS2_XhoI CAPS_XhoI CAPS2_HindIII 

High Pool      

1517 - - - - - 

1624 + + + + + 

1122 + + + + + 

1621 - - - - - 

1601 - - - - - 

1602 + - - - - 

1607 - - - - - 

1622 + + + + + 

1220 - - - - - 

1614 - - - - + 

PH1:Gz3639 4:6 3:7 3:7 3:7 4:6 

a (+): region from PH1 parent and (-) from Gz3639 parent.  
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Figure 5.1. Neighbor-joining distance tree using pairwise distances (number of differences 

per kilobase) calculated from analysis of pairwise BLAST alignments between repeat-

masked genomes of Fusarium graminearum (Fgra) and F. meridionale (Fmer) isolates. 

Isolates obtained from maize kernels are shown in blue whereas isolates obtained from 

symptomatic wheat heads are presented in yellow.  
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Figure 5.2. Haplotype divergence across the genome of six Fusarium graminearum 

Brazilian strains. Strain id. 197 was compared with all of the other strains to make this plot. 

The patterns of polymorphism were similar no matter which strain was used for the 

comparison. Plot lines were color-coded to identify individual strains as described in Table 

1.  
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Chromosome 3

Chromosome 4
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Figure 5.3. Haplotype divergence across the genome of nine Fusarium meridionale 

Brazilian strains. Strain id. 2 was compared with all of the other strains to make this plot. 

The patterns of polymorphism were similar no matter which strain was used for the 

comparison. Plot lines were color-coded to identify individual strains as described in Table 

1.  
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Figure 5.4. Haplotype divergence across the Chromosome 2 of a Fusarium meridionale 

Brazilian strain (id. 10) showing a potential introgressed region from approximately 

positions 5.4 to 5.55 Mb. Plot lines were color-coded to indicate to six F. graminearum 

(ids. 197, 199, 205, 207, 15, 7) and nine F. meridionale strains (ids. 198, 200, 204, 10, 17, 

2, 5, 8, 9). In Plot A, strain id. 17 has been compared with all the other Brazilian strains 

and we can clearly see the introgression as a purple line, where strain id. 10 matches the F. 

graminearum strains. In Plot B, strain id. 10 has been used for the comparison. The region 

of low similarity to the other F. meridionale strains, and increased similarity with F. 

graminearum strains, is clearly visible. In Plot C, the North American Strain PH-1 has been 

added, and we can see that F. meridionale id. 10 is more similar to PH-1 in this region than 

it is to the Brazilian strains of F. graminearum.  
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Figure 5.5. Blast reports of F. meridionale strain (id.10) contig 111 against the PH1 

reference genome. The introgression region runs from about 5.4 Mb through 5.6 Mb. Note 

the presence of numerous repetitive sequences in this area, beginning at approximately 4.5 

M and ending at around 6.2 Mb. The TRI cluster is located at approximately 5.4 Mb. 
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Figure 5.6. Alignments of F. meridionale strain 10 (A) and 17 (B) with F. graminearum 

strain PH-1 (Query) in the region of the introgression block (5.5 Mb to 5.6 Mb). 
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Figure 5.7. Bulk segregant analysis of SNP marker association with aggressiveness using 

two progeny pools, one consisting of the ten most aggressive strains, and one of the ten 

least aggressive. Regions highlighted by the gray boxes are potential introgressed regions 

in Chromosome 2 and Chromosome 4. Vertical black lines in Chromosome 2 represent the 

position of the TRI cluster in PH1. Dashed lines represent the centromere region in each 

chromosome. 
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Figure 5.8. Position of Cleaved Amplified Polymorphic Sequences (CAPS) markers used 

to validate a potential recombination region in Chromosome 2. Vertical lines represent the 

position for CAPS markers. Blue: CAPS_HindIII; Yellow: CAPS2_PstI; Green: 

CAPS2_XhoI; Black: CAPS_XhoI; Red: CAPS2_HindIII.  
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Figure 5.9. Blast reports of Gz3639 contigs against PH1 reference genome. Dashed line 

represents the centromere, and double line is the TRI cluster.  
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Figure 5.10. Location of the first (A) and second crossover point (B) in Chromosome 2 

obtained from a cross between PH1 and Gz3639 strains. Arrows indicate the approximate 

crossover points.  
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CHAPTER 6. CONCLUDING REMARKS  

This dissertation describes my work as a Dual Degree Doctoral/PhD student at the 

Universidade Federal de Viçosa and the University of Kentucky. I used a combination of 

epidemiological and genetic approaches to address the question of dominance in Brazil of 

F. meridionale on maize, and of F. graminearum on wheat. I began with a hypothesis that 

host dominance was related to relative aggressiveness of the two strains on wheat versus 

maize. Previous studies from the Del Ponte group and others had already provided evidence 

that F. graminearum was more aggressive than F. meridionale and other members of the 

FGSC on wheat, but similar studies on maize had not been done. The results of the field 

studies I reported in my second and third chapters supported my hypothesis, demonstrating 

that, on average, F. meridionale is about twice as aggressive, and more competitive on 

maize ears than F. graminearum. The B-trichothecene mycotoxin NIV was produced by 

F. meridionale strains inoculated onto maize ears, which was a very important observation 

since NIV is highly toxic but not yet regulated in maize food or feed products in Brazil. 

My studies show that it is very important to change that.  

In my study, I included a very large number of individual strains of both species, 

and I also evaluated them individually. It is more common in field pathogenicity 

experiments to look at relatively few strains, or to pool them, as I did in the first chapter of 

my dissertation. Although results in both chapters supported the hypothesis, showing that 

on average F. meridionale was more aggressive than F. graminearum, the results in 

Chapter 3 revealed that there was a lot of intraspecies variation in aggressiveness, and that 

the ranges actually overlapped. That suggests that aggressiveness is not the only factor that 

is important in determining species and population structure in wheat and maize in Brazil. 
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I set out to explore additional potentially important factors in Chapter 4, in which I applied 

a multivariate PCA analysis based on characterization of a variety of other pathogenicity 

and fitness-related phenotypes. I showed that F. graminearum and F. meridionale could be 

differentiated statistically, based on a combination of these traits. The most important for 

differentiating the two species were reproductive fitness, growth rate in culture and on 

maize silks, and aggressiveness to wheat. The primary factor associated with dominance 

of F. meridionale in maize was its faster vegetative growth rate. It is possible that this 

provides F. meridionale with a competitive advantage in maize when both species are 

present, as implied by my results on maize ears reported in Chapter 2. In the future, it will 

be very important to do more co-inoculation studies on a broader range of host tissues to 

study this question of competitive advantage in more detail. My results confirmed previous 

reports that F. graminearum is more aggressive on wheat, and more fit regarding its sexual 

or asexual reproduction in vitro. Although the species identity was much more important 

in structuring the pathogen populations, I did find some evidence that the host (wheat 

versus maize) imposes selection pressures that also have some effect. For example, isolates 

of F. meridionale were more aggressive overall than isolates of F. graminearum on maize 

ears, but when only wheat strains were considered, the difference was not significant. This 

suggests the presence of differential selection due to host, either selection for more 

aggressive F. meridionale strains by maize, or of more aggressive F. graminearum strains 

by wheat, or a combination of the two. My evidence also suggests that wheat selects for 

higher numbers of ascospores and higher levels of mycotoxin. Given that aggressiveness 

to maize ears was correlated with levels of both DON and NIV in my study, populations 
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of F. graminearum in regions where both maize and wheat are grown might become more 

aggressive to maize in time, due to selection by the wheat for higher mycotoxin levels.  

In my final research chapter, I undertook a genomic analysis of the F. meridionale 

and F. graminearum strains that provided further insights. The genome data were 

consistent with the phenotypic data, showing that the two species are divergent, and that 

the host (wheat versus maize) and local origin doesn’t play a major role in structuring the 

populations of either species. Significantly, the genome data provided clear evidence for 

gene flow, both within and between species. One strain of F. meridionale had an 

introgression from F. graminearum that incorporated a portion of the TRI mycotoxin 

cluster. Remarkably, this strain was also one of only two F. meridionale strains that 

produced more DON than NIV in wheat heads, although this was insufficient to allow it to 

be an aggressive pathogen of wheat. This finding indicated that there are factors other than 

DON that are important for aggressiveness to wheat. Analysis of segregation patterns 

among progeny of a laboratory cross of F. graminearum strains supported this, as it 

revealed a novel block of genes on Chromosome 2 associated with high levels of 

aggressiveness that did not include the TRI cluster.  

Genome analysis and bioinformatics were new for me and it was quite a challenge 

for me to learn and apply these methods, since my background is primarily in 

epidemiology. It is important to emphasize that the genetics and genomics analyses 

represent preliminary work, but the methods and findings here provide an important 

foundation for future studies focused on understanding the diversity and evolution of FGSC 

members and the potential role of the host and the crop environment in structuring 

pathogen populations. 
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Overall, my research findings have provided valuable new information regarding 

the importance of FGSC diversity on different hosts for both maize and wheat breeders. 

For the growers, my work implies that FGSC members have the potential to differently 

infect maize and wheat, increasing the risk of NIV contamination, and with important 

implications for the durability of management involving host resistance or fungicide 

treatments. The ability of F. graminearum and F. meridionale to infect both hosts increases 

the level of complexity of management strategies, and reiterates the risks of wheat-maize 

rotations. 

I am grateful for the opportunity to be the first student enrolled in the Dual Degree 

program of UFV and UK. The advantages of this program go far beyond obtaining a Ph.D. 

degree simultaneously from both institutions. The opportunity to step out of my comfort 

zone changed everything for me, and I have had so many new and enriching experiences, 

both personally or professionally. As a student of the Dual Degree program, I enjoyed and 

benefited from the structure and complementary expertise of both research groups, as well 

as the types of academic training that each institution provided. The Dual Degree 

contributed significantly to the advancement of my research, learning and training, and I 

had the opportunity to develop my research using techniques that I would not have had 

access to in Brazil. It was a great opportunity for me to work with this international group 

of professionals who carry out important research on wheat and maize diseases. A 

particularly positive aspect of the program was the national and international meetings that 

I had the chance to attend, including meetings of the NC1183 mycotoxins committee, the 

USWBSI annual meeting, and the APS annual meeting, where I was able to interact with 

a broader group of Fusarium researchers from around the world. I was so grateful for these 
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opportunities to meet scientists whose work I had read so many times. I think that one of 

the biggest challenges of the program for me was to balance the classwork and the research, 

especially because I had only one year to fulfill the UK course and program requirements. 

Unfortunately, time is not a good friend of research, as science never goes as expected. 

People have asked me if it was twice the work, and I would have to say that it was maybe 

more. However, it was not impossible, especially with the support of so many kind people 

at both universities who were willing to help. This experience was very challenging for so 

many reasons, but as Dr. Vaillancourt likes to say, it is a win-win-win situation, and for 

me, it was definitely a big WIN! 

  



128 

 

REFERENCES  

Anderson, N. R., Ravellette, J. D., and Wise, K. A. 2016. Improved method for injecting 

fungal inoculum into corn ears. Plant Health Prog. 17:163–166. 

Anderson, N. R., Romero Luna, M. P., Ravellette, J. D., and Wise, K. A. 2017. Impact of 

foliar fungicides on Gibberella ear rot and deoxynivalenol levels in Indiana corn. 

Plant Health Prog. 18:186–191. 

Andriolli, C. F., Casa, R. T., Kuhnem, P. R., Bogo, A., Zancan, R. L., and Reis, E. M. 2016. 

Timing of fungicide application for the control of Gibberella ear rot of maize. Trop 

Plant Pathol. 41:264–269. 

Anvisa, 2011. Resolução RDC 7. Dispõe sobre limites máximos tolerados (LMT) para 

micotoxinas em alimentos, constante do Anexo desta Resolução. Diário Oficial da 

União; Poder Executivo, de 26 de fevereiro de 2011. 

[http://www.abic.com.br/publique/media/IN07-2011-Ocratoxina.pdf]. Accessed 18 

October 2014. 

Astolfi, P., dos Santos, J., Schneider, L., Gomes, L. B., Silva, C. N., Tessmann, D. J., et al. 

2011. Molecular survey of trichothecene genotypes of Fusarium graminearum 

species complex from barley in Southern Brazil. Int. J. Food Microbiol. 148:197–

201. 

Astolfi, P., Reynoso, M. M., Ramirez, M. L., Chulze, S. N., Alves, T. C. A., Tessmann, D. 

J., et al. 2012. Genetic population structure and trichothecene genotypes of Fusarium 

graminearum isolated from wheat in southern Brazil. Plant Pathol. 61:289–295. 

Bai, G.-H., Desjardins, A., and Plattner, R. 2002. Deoxynivalenol-nonproducing Fusarium 

graminearum causes initial infection, but does not cause disease spread in wheat 

spikes. Mycopathologia. 153:91–98. 

Basler, R. 2016. Diversity of Fusarium species isolated from UK forage maize and the 

population structure of F. graminearum from maize and wheat. PeerJ. 4, p.:e2143. 



129 

 

Bates, D., Mächler, M., Bolker, B., and Walker, S. 2015. Fitting linear mixed-effects 

models using lme4. J. Stat. Softw. 67 Available at: http://www.jstatsoft.org/v67/i01/ 

[Accessed October 4, 2019]. 

Bec, S. 2011. Role of the sexual cycle in development of genotypic and phenotypic diversity 

in Gibberella zeae. PhD dissertation, University of Kentucky. 

Becher, R., Hettwer, U., Karlovsky, P., Deising, H. B., and Wirsel, S. G. R. 2010. 

Adaptation of Fusarium graminearum to tebuconazole yielded descendants 

diverging for levels of fitness, fungicide resistance, virulence, and mycotoxin 

production. Phytopathology 100:444-453. 

Beukes, I., Rose, L. J., van Coller, G. J., and Viljoen, A. 2018. Disease development and 

mycotoxin production by the Fusarium graminearum species complex associated 

with South African maize and wheat. Eur. J. Plant Pathol. 150:893–910. 

Boutigny, A.-L., Ward, T. J., Van Coller, G. J., Flett, B., Lamprecht, S. C., O’Donnell, K., 

et al. 2011. Analysis of the Fusarium graminearum species complex from wheat, 

barley and maize in South Africa provides evidence of species-specific differences 

in host preference. Fungal Genet. Biol. 48:914–920. 

Bowden, R. L., and Leslie, J. F. 1999. Sexual Recombination in Gibberella zeae. 

Phytopathology. 89:182–188. 

Burlakoti, R. R., Ali, S., Secor, G. A., Neate, S. M., McMullen, M. P., and Adhikari, T. B. 

2008. Comparative mycotoxin profiles of Gibberella zeae populations from barley, 

wheat, potatoes, and sugar beets. Appl. Environ. Microbiol. 74:6513–6520. 

Burlakoti, R. R., Tamburic-Ilincic, L., Limay-Rios, V., and Burlakoti, P. 2017. 

Comparative population structure and trichothecene mycotoxin profiling of 

Fusarium graminearum from corn and wheat in Ontario, central Canada. Plant 

Pathol. 66:14–27. 

Carter, J. P., Rezanoor, H. N., Desjardins, A. E., and Nicholson, P. 2000. Variation in 

Fusarium graminearum isolates from Nepal associated with their host of origin. Plant 



130 

 

Pathol. 49:452–460. 

Carter, J. P., Rezanoor, H. N., Holden, D., Desjardins, A. E., Plattner, R. D. and Nicholson, 

P. 2002. Variation in pathogenicity associated with the genetic diversity of Fusarium 

graminearum. European Journal of Plant Pathology 108:573-583. 

Castañares, E., Dinolfo, M. I., Del Ponte, E. M., Pan, D., and Stenglein, S. A. 2016. Species 

composition and genetic structure of Fusarium graminearum species complex 

populations affecting the main barley growing regions of South America. Plant 

Pathol. 65:930–939. 

Cavinder, B., Sikhakolli, U., Fellows, K. M., and Trail, F. 2012. Sexual development and 

ascospore discharge in Fusarium graminearum. J. Vis. Exp. 61:e3895. 

Chang, W., Cheng, J., Allaire, J. J., Xie, Y., and McPherson, J. 2019. shiny: Web 

Application Framework for R. R package version 1.3.2. https://CRAN.R-

project.org/package=shiny. 

Chen, C., Wang, J., Luo, Q., Yuan, S., and Zhou, M. 2007. Characterization and fitness of 

carbendazim-resistant strains of Fusarium graminearum (wheat scab). Pest Manag. 

Sci. 63:1201–1207. 

Chen, Y., and Zhou, M. G. 2009. Characterization of Fusarium graminearum isolates 

resistant to both carbendazim and a new fungicide JS399-19. Phytopathology 

99:441-446. 

Chen, Y., Kistler, H. C., and Ma, Z. 2019. Fusarium graminearum trichothecene 

mycotoxins: biosynthesis, regulation, and management. Annu. Rev. Phytopathol. 

57:15–39. 

Chiotta, M. L., Zanon, M. S. A., Palazzini, J. M., Scandiani, M. M., Formento, A. N., 

Barros, G. G., et al. 2016. Pathogenicity of Fusarium graminearum and F. 

meridionale on soybean pod blight and trichothecene accumulation. Plant Pathol. 

65:1492–1497. 

Chungu, C., Mather, D., Reid, L., and Hamilton, R. 1996. Comparison of techniques for 

https://cran.r-project.org/package=shiny
https://cran.r-project.org/package=shiny


131 

 

inoculating maize silk, kernel, and cob tissues with Fusarium graminearum. Plant 

Dis. 80:81–84. 

Costa, R. V. da, Simon, J., Cota, L. V., Silva, D. D. da, Almeida, R. E. M. de, Lanza, F. E., 

et al. 2019. Yield losses in off-season corn crop due to stalk rot disease. Pesqui. 

Agropecuária Bras. 54. 

Cumagun, C. J. R. and Miedaner, T. 2004. Segregation for aggressiveness and 

deoxynivalenol production of a population of Gibberella zeae causing head blight 

of wheat. European Journal of Plant Pathology 110:789-799. 

Cumagun, C. J. R., Bowden, R. L., Jurgenson, J. E., Leslie, J. F., and Miedaner, T. 2004. 

Genetic mapping of pathogenicity and aggressiveness of Gibberella zeae (Fusarium 

graminearum) toward wheat. Phytopathology 94:520-526. 

Cumagun, C. J. R., Rabenstein, F. and Miedaner, T. 2004. Genetic variation and 

covariation for aggressiveness, deoxynivalenol production and fungal colonization 

among progeny of Gibberella zeae in wheat. Plant pathology 53:446-453.  
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