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ABSTRACT OF THESIS 

DYNAMIC SURFACE WATER-GROUNDWATER EXCHANGE IN TIDAL FRESHWATER 
ZONES: INSIGHTS FROM THE CHRISTINA RIVER BASIN (DELAWARE, USA) 

In coastal rivers, tides can propagate for tens to hundreds of kilometers inland beyond the 
saltwater line. Yet the influence of tides on river-aquifer connectivity and solute transport 
in tidal freshwater zones (TFZs) is largely unknown. We estimate that along the TFZ of 
White Clay Creek (Delaware, USA), more than 17% of river water exchanges through 
hyporheic and riparian storage zones due to tidal pumping alone. Additional hyporheic 
processes such as flow through bedforms likely contribute even more exchange. The 
turnover length associated with the tidal pumping process is 39 km, similar to turnover 
lengths for all hyporheic exchange processes in non-tidal rivers of similar size. Based on 
measurements at a transect of piezometers located 17 km from the coast, tidal pumping 
exchanges 0.44 m3 of water across the bank and 0.49 m3 across the bed per unit river 
length. Exchange fluxes range from -0.81 to 1.68 m d-1 across the bank and -0.84 to 1.88 
m d-1 across the bed. During rising tide, river water infiltrates into the riparian aquifer, 
and the downstream transport rate in the channel is low (1.45 m3 s-1). During falling tide, 
stored groundwater is released to the river, and the downstream transport rate in the 
channel increases by 380%. Tidal bank storage zones may remove nutrients or other 
contaminants from river water and attenuate nutrient loads to coasts. Alternating 
expansion and contraction of aerobic zones in the riparian aquifer likely influence 
contaminant removal along flow paths. A clear need exists to understand contaminant 
removal and other ecosystem services in TFZs and adopt best management practices to 
promote these ecosystem services. 

KEYWORDS: Hyporheic exchange, bank storage, tidal freshwater zone, coastal 
processes, tidal pumping 
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Chapter 1. Introduction 

The mixing of river water and groundwater, or hyporheic exchange, influences 

the fate of nutrients, contaminants and dissolved organic matter in watersheds (Brunke 

and Gonser, 1997; Stanford and Ward, 1988). Hyporheic exchange exposes river water 

to microbially active sediment, providing opportunities for biogeochemical 

transformation of solutes (Findlay, 1995). Hyporheic exchange can be driven by multiple 

mechanisms. Current interactions with bedforms (Thibodeaux and Boyle, 1987; Packman 

et al., 2004; Boano et al., 2007) and meanders (Boano et al., 2006; Kasahara and Hill, 

2007) create pressure gradients along the sediment-water interface that induce exchange. 

Permeability heterogeneity also enhances exchange by deflecting flow upward or 

downward in the bed (Woessner, 2000; Cardenas et al., 2004; Packman et al., 2006). 

Bank storage and release represents another form of hyporheic exchange. Bank storage 

can occur due to storms (Pinder and Sauer, 1971; Bates et al., 2000), dam releases 

(Francis et al., 2010; Sawyer et al., 2009), and snowmelt cycles (Loheide and Lundquist, 

2009). Tides also drive semidiurnal bank storage in coastal rivers and creeks (Wilson and 

Gardner, 2006; Xin et al., 2011). I hypothesize that bank storage in tidal freshwater zones 

can generate magnitudes of hyporheic exchange similar to other hyporheic processes. 

Tides extend inland from the coast for tens to hundreds of kilometers in 

unregulated rivers. The region above the salt wedge where river stage still fluctuates is 

called the tidal freshwater zone (TFZ) (Schuchardt et al., 1993). Large tidal stage 

fluctuations in TFZs should drive significant bank storage, which may influence the 

downstream transport of nutrients and other contaminants. Yet, few studies have 

examined hyporheic exchange or the fate of solutes in TFZs. Bianchin et al. (2011) found 

that tides increased the depth of hyporheic mixing in the TFZ of the Fraser River (British 
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Columbia, Canada). Over a single tidal cycle, river water typically penetrated 15 cm into 

the bed, and enhanced dispersion further increased the depth of solute exchange to 1 m. 

Polycyclic aromatic hydrocarbons (PAHs) in groundwater were found to be degraded by 

aerobic bacteria within the hyporheic zone, reducing concentrations to nondetectable 

levels near the channel (Bianchin et al., 2010). In the TFZ of the Newport River (North 

Carolina), Ensign et al. (2008) showed that overbank flooding during high tide enhanced 

denitrification in floodplain sediments. The influence of these hydrologic and 

geochemical dynamics on downstream water quality remains largely unknown. 

In non-tidal rivers, stage fluctuations and bank storage clearly alter water quality 

(Valett et al., 1996). Anderson et al. (2011) studied heat transport during storms in urban 

watersheds and showed that bank storage decreases stream temperatures and attenuates 

heat pollution from urban runoff. In an agricultural stream, bank storage was shown to 

mobilize atrazine, an herbicide, in a riparian aquifer and release it to the stream 

(Squillance et al., 1993). In a regulated river subject to frequent dam releases, bank 

storage diluted inputs of uranium from the surrounding aquifer (Fritz and Arntzen 2007). 

Bank storage may also alter fluxes of nitrate from groundwater to rivers. Under base flow 

conditions, groundwater-borne nitrate is typically reduced as groundwater flows through 

organic-rich sediments in the riparian aquifer (Bohlke and Denver, 1995; Rivett et al., 

2008; Hill et al., 2000). During bank storage events, groundwater residence times 

temporarily increase, which extends groundwater contact time with microbially active 

organic-rich sediments and may increase removal of groundwater-borne nitrate. Gu et al. 

(2012) showed that bank storage zones are also capable of removing river-borne nitrate. 

Models of reactive nitrogen transport over multiple storm events showed that bank 
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storage zones remove five times more nitrate from surface water than traditional 

streambed storage zones on an annual basis. Nitrate is an important contaminant in 

coastal rivers, since it is often the limiting nutrient that drives eutrophication of coastal 

waters (Ryther and Dunstan, 1971; Turner and Nancy, 1994). Bank storage in TFZs may 

be critical for reducing nitrogen loads to coasts.   

 Given the increasing pressures on TFZs from sea level rise (IPCC, 2014) and dam 

construction (Graf 2006), it is imperative to understand physical processes that control 

the biogeochemical transformation potential of TFZs. My objectives were to quantify 

hyporheic exchange associated with bank storage and characterize potential implications 

for surface water and groundwater quality. I selected a representative transect based on 

surficial geology within an incised TFZ where I monitored hydraulic head over multiple 

tidal cycles and measured basic water quality parameters (specific conductivity, pH, DO) 

in surface water, hyporheic water, and riparian groundwater. I first present observations 

from my TFZ transect. Next, I offer a conceptual model for the influence of river-

groundwater interactions on organic contaminant transport and degradation in TFZs. 

Finally, I suggest best management strategies for TFZs that are intended to promote river-

aquifer connectivity and ecosystem services such as contaminant processing. I 

demonstrate that tidal bank storage within TFZs enhances hydrologic retention and may 

play an important role in transforming contaminants in surface water or groundwater.  

Chapter 2. Study Area 

The field site is located in the TFZ of White Clay Creek (39.701172o,-

75.649987o), a fifth–order river near Wilmington, Delaware (USA), within the Christina 

River Basin Critical Zone Observatory (Figure 2.1). The Christina River Basin Critical 

Zone Observatory is one of ten established critical zone observatories in the United 

3 
 



 

States. Land use within the 277 km2 watershed is predominantly agricultural and 

suburban but additionally includes mature forests and commercial. The site lies 16.9 river 

km from the Delaware river (Figure 2.1). River water remains fully fresh, but tides 

fluctuate by almost a meter twice daily. 

The channel of White Clay Creek is generally incised (Figure 2.2), and 

floodplains remain exposed at high tide similar to other large coastal rivers such as the 

Fraser River, British Columbia (Bianchin et al., 2011). Floodplain connectivity is unlike 

smaller first-order tidal creeks in coastal marshes where the floodplain is inundated at 

high tide (Ensign et al., 2008; Moffett et al., 2012; Wilson and Gardner, 2006). Within 

the channel of White Clay Creek, alternating sandy point bars are common. The primary 

study transect spans one such point bar and the adjacent floodplain of the eastern bank 

(Figure 2.2). Surficial geology is characterized as alluvial at the field site and is the 

primary geology upriver (Ramsey 2005). Downriver, surficial geology is a mix between 

marsh deposits, fill, and sand deposits (Ramsey 2005). Land use on this bank was 

agricultural during colonial times but has since returned to forest (Kim Burdick, personal 

communication). The western bank was not instrumented because it has been reinforced 

with extensive rip rap. A secondary transect was also established 20 m downstream to 

examine longitudinal variations in surface water-groundwater interactions (Figure 2.2a). 
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Figure 2.1. The field site is located on White Clay Creek in Delaware (USA), 17 km  
upstream from the Delaware River. 
  

5 
 



 

 
Figure 2.2. (a) Aerial image (curtesy of Google Earth 2015) and (b) cross section of 
transect in the tidal freshwater zone of White Clay Creek, Christina River Basin Critical 
Zone Observatory (Delaware, USA). Vertical exaggeration in panel (b) is 2.5 and the 
blue arrow refers to downstream flow. 
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Chapter 3. Methods 

3.1. Aquifer Characterization 

Eight cores (2.54 cm outer diameter [o.d.]) were taken along the primary transect 

to constrain floodplain and riverbed hydrostratigraphy and sediment properties. Six cores 

were from the floodplain and two were from the channel point bar. Cores were collected 

using an AMS Sand Sludge Sediment Probe with multiple extensions. Cores were 

immediately sealed and refrigerated until the end of the field season, when they were 

transported on ice to the University of Kentucky.  

Cores were visually described for grain size, color, and composition at 1 cm 

resolution. Based on visual descriptions, thirty 2-cm intervals were selected for bulk 

density (BD), porosity, and grain size analysis from one representative riverbed core and 

one representative floodplain core (Locations B and F, Figure 2.2b). Cores were deemed 

representative based on horizontal continuity from descriptions and location near the 

region of exchange. Samples for BD and porosity were collected from intact cores using 

a 1 ml syringe. Because samples spanned the unsaturated and saturated zones, porosity 

was estimated independently from BD based on plug dry weight and plug volume. 

Sediments from the 2-cm interval surrounding each plug were analyzed for grain size. All 

eight cores were sectioned into 2 cm intervals for archive. 

 Grain size was analyzed using a Malvern Mastersizer 2000 for sediments within 

the range of 0.02-2000 µm. Larger grains were removed by sieving and weighed prior to 

analysis. Only three of the thirty samples contained larger grains. Hydraulic conductivity 

(K) was determined from grain size distributions based on the empirical Hazen equation 

(Hazen, 1893): 

 𝐾𝐾 = 𝐶𝐶(𝑑𝑑10)2,       (1) 
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where C (s-1 cm-1) is a coefficient based on sediment type (Fetter, 2001) and d10 is the 

effective grain size (cm). Sediment type was determine based on its textural classification 

and sorting from visual descriptions. Hydraulic conductivity estimates from the Hazen 

method have been shown to agree well with estimates from other methods at a similar 

site that was primarily comprised of sands (Schultz and Ruppel, 2002). I did not attempt 

to estimate hydraulic conductivity from slug tests in the field, which would have required 

the use of a packer, since piezometers were screened through the water table. 

3.2. Measurement of Groundwater and Hyporheic Dynamics 

Six bank piezometers and one river stage recorder were installed along the 

primary transect to monitor lateral bank storage and release (Figure 2.2, piezometers D 

through H). Four additional piezometers were installed at the secondary transect 

downstream to constrain longitudinal variations in bank storage (Figure 2.2a). Bank 

piezometers were constructed of PVC with 4.5 cm o.d. and were screened through the 

zone of water table fluctuations. The screen interval for all bank piezometers was 1.36 m. 

River stage was additionally monitored with a stilling well by anchoring a 1.36 m 

screened PVC section to a 1.57 m section of casing inserted in the riverbed. Pressure 

sensors (In-Situ Aqua Troll 200s and Schlumberger Divers) were installed in all 

piezometers and were programmed to sample at 15-minute intervals from June 15 to June 

30, 2014 (Figure 3.1). Rates of bank storage and release were calculated using Darcy’s 

law between the riparian aquifer and river using piezometer D (Figure 2.2). 

To monitor groundwater quality, thirteen sampling ports were installed next to 

piezometers at depths between 1.8 and 3 m below ground surface (Figure 2.2). Bank 

ports were installed using an AMS Gas Vapor Probe kit. Individual ports were 
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constructed of a gas vapor tip, fluoropolymer umbrella, and 2 cm #50 screen mesh 

connected to 0.635 cm o.d. polypropylene tubing. 

 Three in-stream piezometer nests were installed in the point bar of the primary 

transect to quantify vertical exchange and sample pore water from the riverbed (Figure 

2.2, piezometer nests A, B, and C). Nests were constructed of 0.635 cm o.d. 

polypropylene tubing strapped to 1.27 cm PVC risers. Tubes were perforated over a 2-cm 

interval and covered with 50 µm nylon mesh. Each nest had ports at 12, 25, 50, 75 and 

100 cm below the riverbed.  Nest C was only inundated at high tide, nest B was mostly 

inundated over the tidal cycle, and nest A was always inundated. Differences in hydraulic 

head between each of the deepest ports (100 cm) and river were measured manually using 

a manometer board at 15-minute intervals on June 18, 2014 (Figure 3.1). Vertical head 

gradients (VHG) were used to calculate exchange rates across the riverbed based on 

Darcy’s law. All piezometers and bank topography were surveyed using a Nikon NPL 

362 Total Station.  

 On June 16, 2014, I measured basic water quality (specific conductivity, 

temperature, pH, and dissolved oxygen) during low and high tide at all ports in the bed 

and banks (Figure 3.1). The multimeter was calibrated the morning of June 16, 2014. 

Pore water was extracted using a peristaltic pump at a slow rate (~50 mL/min) to 

minimize disturbance to hydraulic gradients. One tubing volume was first discarded (60 

mL), and then pore water was pumped into a 70 mL container. Field parameters were 

measured with a Thermo Orion Star A3229 while overflowing the container to minimize 

oxygen transfer from the atmosphere.  
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3.3. Measurement of River Discharge Dynamics 

 To monitor tidal surface water dynamics, river discharge was measured using a 

Teledyne RDI StreamPro Acoustic Doppler Current Profiler at 1-hour intervals on June 

18, 2014 (Figure 3.1). The transect for river discharge measurements was located 

between the primary and secondary piezometer transects (Figure 2.2). Although river 

discharge and other manual measurements such as water quality were made on three 

separate days, I assume that tidal dynamics did not change significantly over the window 

of measurements because river stage fluctuations remained approximately constant 

(Figure 3.1). In other words, I assume that river discharge measurements on June 18, 

2014, were representative of discharge dynamics on the day of water quality 

measurements (June 16, 2014) and vice versa. Significant rainfall occurred over June 10, 

2014 to June 13, 2014, but water table fluctuations had returned to base flow conditions 

by June 16, 2014 (NOAA). Rainfall can be seen to have occurred in Figure 3.1 on June 

19, 2014, but data collection had been completed at this point. From June 19, 2014 to 

June 30, 2014 only water table logs were collected. 
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Figure 3.3.1. Stream stage fluctuations were generally consistent during the study 
interval until June 19th, when rain fell. Pore water was sampled June 16th (a), and stream 
discharge and manometer readings were made on June 18th (c). Hydrologic monitoring at 
the second transect began on June 19th and continued until June 30th (d).  
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Chapter 4. Results 

4.1. Hydrostratigraphy 

Riverbed and floodplain deposits generally consist of a lower sand unit overlain 

by silt and sand layers (Figure 2.2b). The lower sand unit is light tan (10YR 6/6) to 

medium brown (7.5YR 3/3) in color with some orange (5YR 5/6) oxidation staining. 

Grains are predominantly quartz with some potassium feldspar and micaceous minerals 

including muscovite and biotite. Compositions were determined by visual identification 

using an Olympus SZX14 microscope. These sediments are poorly sorted, ranging from 

pea gravel to very fine sand with trace amounts of clay. The three grain size samples 

from the lower sand unit contain on average 24.4 % by volume of gravel (Figure 4.1). 

Average bulk density is 2.34 g cm-3 (range [R]: 2.19-2.50, standard deviation [SD]: 0.1, 

median [MED]: 2.37), and porosity is 0.49 (R: 0.38-0.55, SD: 0.07, MED: 0.46). Average 

hydraulic conductivity is 0.0015 m s-1 (R: 2.66 × 10-5-2.98 × 10-3, SD: .001, MED: 1.78 × 

10-3), typical of unconsolidated sand (Freeze and Cherry, 1979). The recovered thickness 

of the lower sand unit was only ~100 cm, but the full thickness is unknown, since cores 

did not penetrate the base. The lower sand unit is overlain by a silty sand facies that is 

light brown (7.5YR 4/6) in color. Grains are predominantly quartz with some potassium 

feldspar and muscovite. Grains are poorly sorted and include occasional pea gravel. 

Average bulk density is 2.31 g cm-3 (R: 2.31-2.41, SD: 0.05, MED: 2.32) and porosity is 

0.42 (R: 0.41-0.64, SD: 0.12, MED: 0.47). The average hydraulic conductivity is 2.17 × 

10-4 m s-1 (R: 2.2 × 10-5-1.63 × 10-4, SD: .0001, MED: 1.09 × 10-4), and average thickness 

is 50 cm. Hydraulic conductivity is comparable to published values from Fetter (2001). 

The silty sand facies is overlain by a relatively impermeable silt facies. Silts are dark grey 

(2.5Y 4/1) with orange staining (5YR 5/6) and are moderately sorted. The average bulk 
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density is 2.32 g cm-3, average porosity is 0.44, and average hydraulic conductivity is 

1.46 × 10-5 m s-1. Hydraulic conductivity is comparable to published values for silts (10-4-

10-5) from Fetter (2001). The silt facies is 26 cm thick on average and may act as a 

partially confining unit at high tide. The silt facies is overlain by a unit of alternating silty 

sand and sandy silt that is approximately 75 cm thick. Individual layers are approximately 

10 cm thick and generally alternate from tan (10YR 6/6) silty sand to medium brown 

(7.5YR 3/3) sandy silt. Sorting is moderate within individual beds, and macroscopic 

organic matter occurs sporadically throughout the facies. Average bulk density is 2.36 g 

cm-3 (R: 2.31-2.41, SD: 0.05, MED: 2.32), and porosity is 0.44 (R: 0.27-0.53, SD: 0.08, 

MED: 0.41). The average hydraulic conductivity is 2.45 × 10-4 m s-1 (R: 2.37 × 10-4-1.22 

× 10-3, SD: .00033, MED: 1.96 × 10-4), very similar to the published range of silty sands 

(10-5-10-3) by Fetter (2001). The alternating silty sand and sandy silt facies includes one 

relatively thick sand unit of similar composition to the lower sand unit but lacking pea 

gravel. The floodplain sequence is capped by a silty sand unit of similar composition to 

the lower silty sand unit (Figure 2.2b).  

I estimate that the effective hydraulic conductivity is 1.41 × 10-3 m s-1 for the 

saturated floodplain aquifer sequence and 1.09 × 10-3 m s-1 for the riverbed sequence 

(Figure 4.1). The floodplain aquifer value was calculated using the harmonic average of 

the saturated units (lower sand and silty sand facies), since flow in the floodplain aquifer 

is primarily horizontal along hydrostratigraphic units. The riverbed value was calculated 

using the arithmetic average, since flow across the riverbed is primarily vertical across 

hydrostratigraphic units.   
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Cores were not taken at the secondary transect, but sediments were observed to 

have a substantially higher silt fraction during piezometer installation. I did not encounter 

the lower sand unit at the secondary transect, either because it lay below the maximum 

core depth or was locally absent. 

4.2. Surface water dynamics 

Tides fluctuated semidurnally with an average amplitude of 0.75 m over the 

monitoring period (Figure 3.1). River velocity fluctuated with tides but never reversed. 

During rising tide, velocity decreased (Figure 4.2a). During falling tide, velocity 

increased (Figure 4.2b). Changes in velocity were greatest within the thalweg of the river. 

Minimal fluctuation occurred along channel margins and over point bars, which exhibited 

consistently slow velocities. 

The stage-discharge relationship was hysteretic (Figure 4.2c). At low tide, 

discharge was moderate (4.6 m3 s-1). As tide rose, discharge initially decreased with river 

velocity. The lowest discharge (1.45 m3 s-1) occurred around 1.5 hours before high tide. 

River discharge then increased as tide continued to rise. At high tide, river discharge was 

similar to values at low tide (4.6 m3 s-1). As tide fell, river discharge continued to increase 

with river velocity. Peak discharge (6.96 m3 s-1) occurred 1.5 hours after high tide. As 

stage continued to fall, discharge declined again. Average discharge over a single tidal 

cycle was 4.33 m3 s-1. 

4.3 Surface water-groundwater interactions 

Water table elevation fluctuated with tides, and the amplitude of fluctuations 

decreased with distance into the riparian aquifer (Figure 4.3a). At the primary transect, 
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amplitudes were 91%, 57%, 48%, and 11% of the river stage amplitude for piezometers E 

through H, respectively. At the second transect (not shown), amplitudes of water table 

fluctuations were comparatively much smaller (14%, 8%, 5% and 0.1%, in order of 

increasing piezometer distance from the river). During low tide, hydraulic head in the 

bank sloped toward the river (groundwater discharged to the river). As tide increased, 

hydraulic head gradients decreased and then reversed. Infiltration into the bank began 

approximately 3 hours after the start of rising tide and spanned approximately 2 hours. 

Based on Darcy’s Law where q is specific discharge, K is hydraulic conductivity (m s-1), 

and dh/dl is the hydraulic gradient, the instantaneous flow rate across the bank ranged 

from -0.81 to 1.68 m d-1 during the three-day period of intensive monitoring (Figure 

4.3b): 

𝑞𝑞 = −𝐾𝐾 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

.         (2) 

The total bank storage volume was 0.44 m3 per tidal cycle per meter of bank, and the 

average net flux per tidal cycle was 0.43 m3 per unit area of bank (or 0.98 m/d), 

indicating net gaining conditions.  

Vertical head differences in the riverbed also fluctuated with tides (Figure 4.4) 

except at the centermost piezometer A, where the head difference was consistently 

positive. At piezometers B and C during low tide, vertical head differences were positive, 

and flow was upward. With rising tide, the switch to losing conditions (infiltration) 

occurred almost instantly. Tidal hyporheic storage spanned approximately 4.25 hours. 

During falling tide, the hydraulic gradient again reversed (Figure 4.4), indicating a return 

to upward flow and gaining conditions.  Fluxes ranged from -0.66 to 0.38 m d-1 at 
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piezometer B and -0.81 to 1.88 m d-1 at piezometer C. The total hyporheic storage volume 

was 0.49 m3 per tidal cycle. Net flux per tidal cycle was -0.05 m3 at piezometer B and 

0.04 m3 at piezometer C (-0.09 m/d  and 0.11 m/d, respectively). 

4.4 River and Groundwater quality 

At low tide (11:30), specific conductivity in the river was 351.8 µs cm-1, pH was 

7.69, and the DO concentration was 8.75 mg L-1. River parameters were similar at high 

tide (15:30), with specific conductivity essentially unchanged (351.2 µS cm-1), pH 

slightly lower (7.54), and DO slightly higher (9.04 mg L-1). The lower pH and higher DO 

are likely associated with photosynthetic activity. 

Specific conductivity, pH, and DO in pore water were generally lower than river 

water (Figure 4.5). Within the riverbed at low tide, specific conductivity generally 

decreased from 400 to 240 µs cm-1 over the 1-m depth interval, pH decreased from 6.7 to 

5.8, and DO decreased from 1.25 to 0.5 mg L-1. In the floodplain aquifer near the 

riverbank (location E, Figure 4.5), water quality parameters were similar to the shallow 

riverbed: specific conductivity was 260 µs cm-1, pH was 6.4, and DO was 0.65 mg L-1. 

DO farther from the channel near the water table was moderately elevated (location G, 

Figure 4.5). I assume that the deepest port located farthest from the channel (location H, 

Figure 2.2) was representative of the groundwater end member, since water quality 

parameters at that port were more distinct from the river than most other ports, and the 

values did not fluctuate between low and high tide. The specific conductivity there was 

251 µs cm-1, pH was 5.92, and DO concentration was 0.57 mg L-1 (5% of saturation at a 

recorded temperature of 15oC) on average.  
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At high tide, specific conductivity and pH increased slightly near the sediment-

water interface and water table. In the shallow riverbed (< 12 cm deep), DO 

concentrations increased up to 15%. Near the water table at location F, DO 

concentrations increased by ~70%. Also in the floodplain aquifer, a plume of 300-350 µs 

cm-1 water migrated along the sand unit approximately 4 m from the river. pH also 

increased in this zone from 5.9 to ~6.  
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Figure 4.1. (a) Histogram of hydraulic conductivities. (b) Cumulative grain size 
distributions. Dashed lines indicate riverbed samples, and solid lines indicate floodplain 
samples.  
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Figure 4.2. Cross section of stream velocity at (a) high tide and (b) low tide. Discharge 
and stage are hysteretic (c). 
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Figure 4.3. (a) Water level fluctuations in the stream and aquifer. Piezometer locations 
are shown in Figure 1. (b) Darcy flux (black) across the bank. Positive values denote 
groundwater discharge (gaining river conditions). Stream stage is shown in grey for 
reference. 
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Figure 4.4. Vertical head gradients (VHG) within the stream. Positive values indicate 
gaining conditions (upward flow) and negative values indicate losing conditions 
(downward flow). VHG at piezometer A (not shown) was consistently positive and large. 
Stream stage is shown in gray for reference, and numbers 1-4 correspond with Figure 4.2. 
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Figure 4.5. Contoured cross sections for conductivity, pH and DO at low tide (a-c) and 
high tide (d-f).  
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Chapter 5. Discussion 

5.1. Insights from White Clay Creek  

At this site, 17 km inland, tidal stage fluctuations alter groundwater flow and 

water table elevations up to 25 m from the river channel, even though tides do not 

inundate the floodplains. Without tides, groundwater would continuously discharge to the 

river. Tidal bank storage disrupts this steady discharge twice daily. I estimate that the 

bank storage volume is 0.44 m3 per meter of river bank over each tidal cycle. In addition, 

tidal pumping across the bed contributes another 0.49 m3 per meter of river.  

Longitudinal variations in stratigraphy undoubtedly affect bank storage in TFZs. 

Bank storage was reduced at our secondary transect, given the smaller fluctuations in 

water table elevation that I recorded there. The secondary transect was siltier than the 

primary transect and was located farther from the upstream point bar. The primary 

transect may be representative of point bars, while the secondary transect may be 

representative of thalwegs. Within transects, lateral variations in floodplain and riverbed 

stratigraphy also influence bank storage and preferential flow patterns. Sandy layers 

allow river water to penetrate farther into the riparian aquifer into potentially reducing 

zones with little dissolved oxygen (Figure 4.5). At our primary transect, a plume of 

relatively high conductivity and pH preferentially recharged the aquifer at high tide 

through the lower sand unit (Figure 4.5b-c). Based on plume movement, the approximate 

travel distance of river water into the sand unit was 4 m. This lateral transport distance is 

substantially larger than the vertical transport distance into the bed at our site (~0.5 m) 

and in the Fraser River (~1 m) (Bianchin et al., 2011). 
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Given the importance of hydrostratigraphy for exchange processes, the fluxes I 

measured at my primary transect may be representative of a significant portion of the 

TFZ, but not necessarily all of it. The geology at my site is generally consistent with 

geologic descriptions upriver and downriver (alluvial deposits of interbedded sand, 

gravel, silt, and clay) (Ramsey, 2005). A large region of marsh deposits with organic-rich 

clays and silts also exists downriver near Churchman’s Marsh (Figure 2.1, 39.696675°, -

75.625882°). Less permeable sediments in this region may reduce surface water-

groundwater exchange rates, but the larger surface area of the sediment-water interface 

within the marsh may also compensate for the effects of reduced permeability.   

Despite this heterogeneity along the TFZ, I can use calculations at my transect to 

estimate the fraction of surface water that exchanges through the riverbanks and bed 

within the TFZ of White Clay Creek. Assuming a mean river discharge of 4.33 m3 s-1, I 

estimate that 8% of river water cycles through bank storage zones over the 17 km 

distance from the study site to the Delaware River, and 9% of river water cycles through 

the bed due to tidal pumping. This volume is likely an underestimate of total exchange 

rates in the TFZ because the volume exchanged most likely increases in the downstream 

direction as tidal range increases. Additionally, my calculation neglects the storage 

volume upstream of my site because the location of the head of tides is unknown. 

Exchange due to flow through meanders and bedforms or other morphologic features is 

also unknown and has not been included in my estimated exchange rate. Turnover length 

(Ls) can be estimated for the TFZ of White Clay Creek as: 

𝐿𝐿𝑠𝑠 = 𝑄𝑄𝑟𝑟
𝑞𝑞𝑒𝑒𝑒𝑒

 ,         (3) 
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where qex represents the combined exchange rates through the bed and banks per unit 

length of channel, and Qr represents the river discharge (Figure 5.1.1). Turnover length is 

the average distance a water molecule travels in the channel before entering the storage 

zone (Cranswick and Cook 2015). I estimate that Ls is 39 km. Another common metric 

for describing river-groundwater interaction is hydraulic retention (Rh): 

𝑅𝑅ℎ = 𝑡𝑡𝑟𝑟𝑒𝑒𝑟𝑟
𝐿𝐿𝑟𝑟

 ,         (4) 

where tres is the residence time of river water in subsurface or lateral storage zones 

(Figure 5.1.2). Assuming an approximate 2 hour residence time, determined using the 

average period in which the hydraulic gradient was reversed per tidal cycle, the hydraulic 

retention (Rh) is 0.18 s m1. The turnover length and hydraulic retention in this TFZ due to 

tidal pumping are similar to the turnover length and hydraulic retention due to all 

hyporheic processes in similarly sized non-tidal rivers (Cranswick and Cook, 2015). 

Turnover length in this TFZ is slightly higher than average: using the power law 

regression provided by Cranswick and Cook (2015) and the average discharge of the 

river, turnover length would be considered average at 9 km, though values from the 

literature vary widely (Figure 5.1.3). Hydraulic retention is comparable to other published 

values for rivers of variable size. In Pinal Creek, Arizona (a 5th order stream), hydraulic 

retention increased from 0.2 to 8 s m-1 as new vegetation grew and channel friction 

increased (Harvey et al., 2003). In a study of hydraulic retention in first order streams, 

Morrice et al., (1997) found low retention in two streams (0.53 s m-1 in Aspen Creek, 

New Mexico and 1.5 s m-1 in Rio Calaveras, New Mexico) and high retention in a third 

stream (306 s m-1 in Gallina Creek, New Mexico). Climate, topography, and land use 
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vary and will have an impact on hydraulic retention. As more studies publish retention 

values, comparisons between metrics will be more meaningful for given climates, 

topographies and land uses. 

These comparisons suggest that tidal pumping in TFZs provides moderate 

hydrologic storage. Across river networks, storage and exchange rates generally decrease 

with downstream distance, but TFZs may have slightly higher storage for their size due to 

the added contributions of tidal pumping. Across inland rivers, for a 2.5 order of 

magnitude increase in river discharge, only a 1.0 order of magnitude increase in exchange 

is observed, causing a decline in turnover length (Cranswick and Cook, 2015). More 

studies are needed to assess how hyporheic storage in TFZs compares with other lowland 

rivers, and future studies should seek to incorporate estimates of hyporheic exchange 

rates due to other processes such as flow through bedforms.  

Even if hyporheic storage volumes in TFZs are similar to zones along non-tidal 

rivers, the dynamic nature of storage within TFZs is fundamentally different. Bank 

storage events induced by individual floods or seasonal stage fluctuations only occur 

intermittently. Storage events due to upstream dam releases occur repeatedly, but 

magnitudes and frequency vary, and the frequency is usually no more than once daily 

(Fritz and Arntzen, 2007; Sawyer et al., 2009). In contrast, tidal bank storage occurs 

semidiurnally. Even though magnitudes are similar to other bank storage processes 

(Cranswick and Cook, 2015), repetitive tidal action potentially generates more storage 

over annual timescales than other individual processes. Bank storage associated with 

seasonal water table rise in reservoirs has been shown to affect watershed scale flow, and 

may be an exception over yearly time scales (Fryar et al. 2006). 
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With its semidiurnal frequency, hydraulic storage in TFZs is unique from storage 

along other lowland rivers, and the influence of that periodic storage on nitrogen export is 

largely unknown. Long retention times in smaller tributaries have been cited as a major 

determinant in their ability to reduce nitrogen loads, and as channel size increases 

downstream, the nitrogen loss rate declines (Alexander et al., 2000). For example, the 

Mississippi River basin’s small tributaries have a large sediment-to-water interface and 

are estimated to remove more than 90% of nitrogen, while the main stem removes less 

than 10% (Alexander et al., 2000). As river size increases, the ratio of riverbed area to 

river volume decreases, along with the potential for nitrogen removal. However, the long 

transport distances inherent to larger rivers lead to longer residence times, and thus larger 

rivers are still capable of considerable nitrogen retention (e.g. Seitzinger et al., 2002, 

Wollheim et al. 2006). TFZs represent an expansive component of lowland rivers where 

the area of the sediment-water interface enlarges at high tide and residence times 

increase. Thus, tidal rivers may outperform other large rivers in terms of nitrogen 

retention, and their role in nitrogen fluxes to coasts requires further investigation. 

In general, tidal dynamics in TFZs influence hyporheic and groundwater quality 

in numerous ways. My observations at high tide demonstrate that infiltration enhances 

dissolved oxygen transfer to microbially active sediments in the riverbed and banks. 

Tidal water table fluctuations in the riparian aquifer also appear to create a region of 

increased oxygen concentrations farther from the bank near the water table. Water table 

fluctuations have previously been shown to enhance dissolved oxygen in shallow 

groundwater due to imbibition of soil gas (Wheeler, 1999). In the absence of tides, 

oxygen concentrations would likely be uniformly lower in the riverbed and banks, similar 
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to measurements at low tide. If some of the oxygen I observed at low tide was residual 

from surface water or soil gas entrapment that occurred during rising tide, oxygen 

concentrations would be even less in the absence of tides. Thus, tidal fluctuations in the 

TFZ can enhance the aerobic extent of the hyporheic zone and riparian aquifer.  

Oxygen dynamics in the hyporheic zone and riparian aquifer could have several 

implications for contaminant transport. DO concentrations over the threshold of 1 – 1.5 

mg L-1 support aerobic biodegradation of aromatic hydrocarbons (Wilson and Bouwer 

1997). Concentrations above this threshold were consistently observed near the channel 

due to bank storage and near the zone of water table fluctuations over an approximate 

cross-sectional area of 10 m2. These zones would likely be efficient sites of aromatic 

hydrocarbon removal. Bianchin et al. (2006) found a marked decrease in polycyclic 

aromatic hydrocarbons (PAHs) within the aerobic hyporheic zone of a TFZ and attributed 

the apparent removal to a high supply of oxygen associated with tidal pumping.  At my 

site, towards the end of bank storage and start of bank release, DO concentrations began 

to decline, which would presumably facilitate a switch to anaerobic reduction of other 

contaminants such as nitrate. Reduction of nitrate requires the depletion of DO 

(Seitzinger et al., 2006). Regions of low DO would support denitrification near the end of 

bank storage events.   

5.2 Bank Filtration: An analogous process 

 A large volume of literate has been publish on what can be considered an 

analogous process to bank storage, bank filtration. In a similar respect, river water flows 

into the bank due to the hydraulic gradient, though often induced by pumping rather than 
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natural process. Bank filtration has been shown to attenuate contaminants through 

filtration, biodegradation, absorption, chemical precipitation, and redox reactions 

(Hiscock and Grishcek, 2002). Attenuation occurs both in the colmation layer, which is 

the region near the river bed where reduced hydraulic conductivity occurs from the 

clogging of pores, and along the main flow path towards the borehole (Hiscock and 

Grishcek, 2002). In a tidal setting, the colmation layer may be reduced or absent due to 

flushing of the pores from tidal pumping. Similar attenuation processes could occur as 

river water infiltrates into the bank from bank storage, though the colmation layer may be 

reduced. Bank filtration provides an end member in understanding tidal bank storage that 

may allow for further insights into contaminant processing.  

5.3. Conceptual model of solute transport in TFZs 

The timing of surface water-groundwater exchange relative to downstream 

transport has implications for peak periods of solute storage and release along TFZs. 

Under base flow conditions, river discharge is relatively static, providing a steady 

downstream solute transport rate (Figure 5.2.1, T1 through T2). Storage begins after tide 

has begun to rise, when both river velocity and discharge are at their minimum (Figure 

5.1, T3). Solutes that enter the banks at the start of storage would have a longer residence 

time than solutes that enter at the end of storage (up to 2 hours later, in this case) and thus 

a greater potential to be transformed in storage zones. With the start of bank release (T4, 

Figure 5.2.1), the first water to exfiltrate into the channel would resemble recently 

infiltrated surface water that has undergone minimal transformation. As release proceeds 

(T1 again in Figure 5.1), exfiltrating groundwater would be transformed and differ 

chemically from surface water. This transformed water would enter the channel when 
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river discharge is moderate and downstream transport (velocity) is high. Thus, the distinct 

chemical signal of older exfiltrating water would only experience moderate dilution with 

surface water in the channel, and this mixed water would be transported rapidly 

downstream until the start of a new bank storage moment (T3, Figure 5.1). The duration 

of the storage period and extent of chemical transformation should increase in the 

downstream direction as stage fluctuations increase. The significance of bank storage as a 

hyporheic process will therefore vary along the TFZ. 

5.4. Suggestions for best management of TFZs 

TFZs are characterized by unique hydrologic connections, both longitudinally 

along the channel and laterally across the river-aquifer interface, and management 

strategies should seek to preserve this connectivity. Structures such as locks and dams 

limit the upstream extent of tidal fluctuations. The natural lengths of TFZs in unregulated 

rivers are largely unknown and therefore, it is unclear to what extent dams have truncated 

TFZs. Removal of dams would allow tides to propagate farther upstream, extending the 

length of TFZs and increasing hyporheic exchange. To replace traditional dams, new 

green infrastructure designs have increasingly been proposed and implemented. For 

example, on White Clay Creek, a tidal capture structure (TCS) has been installed 

immediately upstream from my study site to augment drinking water supplies under low 

flow conditions. The TCS remains deflated under normal flow conditions to allow for 

fish passage and the upstream propagation of tides. As the trend towards greener 

infrastructure continues, new alternatives to permanent dams and weirs should emerge 

that promote hydrologic connectivity in TFZs. 
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Other measures could also be taken to protect hydrologic connectivity. Alluvial 

riverbeds and banks are often armored with retaining walls, rip rap, and gabion baskets to 

protect property from erosion. Since populations are concentrated along coasts (Crossett 

et al. 2014), TFZs may be more heavily armored than other inland rivers. Retaining walls 

and armoring practices in TFZs decrease river-aquifer connectivity. At my site, armored 

banks would reduce exchange rates by half if lateral connectivity were eliminated, 

leaving only the bed as a storage zone.  Concrete channelization, a common flood 

management approach, also eliminates tidal pumping, since both the bed and banks are 

covered with impervious concrete. New flood management strategies such as compound 

channels are being adopted to reduce flooding while improving hydrologic connectivity 

and restoring ecological process (Tompkins and Kondolf, 2007; Roni et al., 2002). Across 

the country, the National River Restoration Science Synthesis (NRRSS) is cataloguing 

restoration projects, including those in TFZs. However, it remains unclear if current 

restoration efforts are able to restore both the structure and function of streams. In 

summary, a combination of removing dams and concrete channelization, seeking 

alternative green technologies, and reducing armoring practices has the potential to 

restore environmental services provided by TFZs and should be a focus for land 

managers.  

  

31 
 



 

 

Figure 5.1.1. Conceptual sketch of the components of turnover length. 
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Figure 5.1.2. Conceptual sketch of the components of hydraulic retention. 
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Figure 5.1.3. Turnover length (39 km) at White Clay Creek from bank storage compared 
to turnover length from all hyporheic processes from the literature (Cranswick 2015). The 
red star denotes White Clay Creek.  
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Figure 5.2.1. Conceptual model of competition between downstream transport, 
hydrologic retention, and geochemical transformation in a TFZ.  
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Chapter 6. Conclusions 

In the TFZ of White Clay Creek at a site 17 km from the Delaware River, tides 

fluctuate on average 75 cm semidurnally and drive water table fluctuations up to 25 

meters from the banks. Tidal bank storage and release exchanges 0.93 m3 of river water 

per meter of channel during each tidal cycle. Along the entire TFZ, conservative 

estimates indicate that 17% of river water flows through hyporheic storage zones due to 

tidal pumping. Magnitudes of exchange due to tidal pumping are similar to exchange due 

to all hyporheic processes in non-tidal lowland rivers. Tides drive oxygen rich river water 

into the surrounding aquifer, while water table fluctuations aerate shallow groundwater. 

Bank storage water is released during periods of high river velocity and moderate flow, 

transporting potentially transformed water quickly downstream.  

Much coastal river research has focused on pristine marsh creeks with broad tidal 

floodplains. Incised rivers like White Clay Creek are common within urban and 

agricultural land use regions, and I have shown that these incised rivers still have 

tremendous potential to store water and transform contaminants. With at least 17 % of 

river water exchanging through the hyporheic zone and riparian aquifer, such coastal 

reaches can impact river chemistry prior to discharge at the coast. Future research should 

focus on biogeochemical transport and transformations within TFZs. High-resolution, 

longer-term observations of chemical transport along TFZs and within their riparian 

aquifers would provide insights that were not captured by my observations from one 

transect at high and low tide.  TFZs stretch for many kilometers and cover a significant 

proportion of coastal watershed areas. Their potential scaled environmental services are 

unknown and should be the focus of continued research.
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Appendix A. Grain Size Analysis 

37 
 



 

Appendix B. Grain Size Distributions 

Core/ Location C C C C C F F F F F
Depth (cm) 2-4 12-14 20-22 28-30 44-46 6-8 22-24 30-32 36-38 44-46

Volume % <1.096 0.00 0 0 0 0 0 0 0 0 0
Volume % <1.259 0.00 0 0.01 0 0 0 0 0 0 0
Volume % <1.445 0.00 0 0.09 0 0.01 0 0.01 0 0.01 0.01
Volume % <1.66 0.00 0 0.31 0 0.16 0.03 0.1 0 0.09 0.22

Volume % <1.905 0.00 0 0.49 0.08 0.32 0.14 0.19 0 0.17 0.37
Volume % <2.188 0.00 0 0.68 0.12 0.48 0.21 0.28 0.06 0.24 0.53
Volume % <2.512 0.02 0.06 0.86 0.17 0.63 0.28 0.36 0.1 0.31 0.68
Volume % <2.884 0.02 0.09 1.03 0.22 0.78 0.34 0.44 0.12 0.37 0.83
Volume % <3.311 0.05 0.11 1.2 0.27 0.93 0.41 0.52 0.15 0.44 0.97
Volume % <3.802 0.07 0.13 1.38 0.33 1.09 0.48 0.6 0.18 0.5 1.11
Volume % <4.365 0.09 0.16 1.57 0.39 1.25 0.54 0.68 0.22 0.56 1.24
Volume % <5.012 0.10 0.2 1.77 0.45 1.41 0.61 0.78 0.26 0.62 1.38
Volume % <5.754 0.13 0.23 1.99 0.52 1.58 0.68 0.88 0.3 0.68 1.51
Volume % <6.607 0.14 0.27 2.23 0.6 1.75 0.75 0.98 0.35 0.75 1.63
Volume % <7.586 0.16 0.31 2.49 0.68 1.92 0.81 1.1 0.4 0.82 1.74
Volume % <8.71 0.19 0.35 2.76 0.76 2.08 0.87 1.22 0.45 0.88 1.85
Volume % <10 0.21 0.38 3.05 0.85 2.23 0.94 1.35 0.5 0.96 1.95

Volume % <11.482 0.23 0.42 3.36 0.93 2.37 1 1.49 0.55 1.03 2.04
Volume % <13.183 0.27 0.46 3.67 1.02 2.5 1.07 1.65 0.6 1.12 2.14
Volume % <15.136 0.30 0.5 3.98 1.11 2.61 1.16 1.84 0.66 1.22 2.24
Volume % <17.378 0.35 0.57 4.28 1.23 2.73 1.29 2.07 0.74 1.36 2.37
Volume % <19.953 0.42 0.67 4.57 1.38 2.86 1.47 2.35 0.87 1.54 2.53
Volume % <22.909 0.52 0.83 4.83 1.58 3.02 1.73 2.69 1.05 1.78 2.76
Volume % <26.303 0.66 1.05 5.04 1.84 3.23 2.09 3.09 1.31 2.1 3.06

Volume % <30.2 0.84 1.36 5.21 2.18 3.49 2.56 3.56 1.67 2.5 3.46
Volume % <34.674 1.06 1.76 5.3 2.6 3.8 3.14 4.06 2.15 2.99 3.94
Volume % <39.811 1.32 2.24 5.3 3.1 4.16 3.82 4.58 2.73 3.55 4.49
Volume % <45.709 1.61 2.77 5.2 3.64 4.53 4.55 5.05 3.39 4.15 5.07
Volume % <52.481 1.89 3.3 4.98 4.21 4.88 5.27 5.42 4.07 4.73 5.6
Volume % <60.256 2.14 3.76 4.65 4.74 5.15 5.9 5.64 4.73 5.24 6.01
Volume % <69.183 2.33 4.1 4.19 5.18 5.28 6.35 5.67 5.27 5.6 6.23
Volume % <79.433 2.42 4.23 3.62 5.48 5.24 6.57 5.47 5.63 5.77 6.19
Volume % <91.201 2.40 4.15 2.99 5.62 4.99 6.49 5.07 5.75 5.72 5.86

Volume % <104.713 2.26 3.84 2.32 5.58 4.54 6.13 4.52 5.6 5.46 5.2
Volume % <120.226 2.02 3.36 1.68 5.4 3.94 5.54 3.9 5.31 5.03 4.46
Volume % <138.038 1.72 2.81 1.11 5.11 3.26 4.8 3.28 4.85 4.49 3.53
Volume % <158.489 1.41 2.3 0.66 4.77 2.58 4.02 2.75 4.34 3.94 2.62
Volume % <181.97 1.12 1.95 0.34 4.41 1.95 3.27 2.36 3.85 3.42 1.77
Volume % <208.93 0.91 1.86 0.15 4.07 1.44 2.65 2.1 3.47 3 1.1

Volume % <239.883 0.81 2.06 0.05 3.74 1.05 2.15 1.95 3.21 2.66 0.6
Volume % <275.423 0.86 2.54 0.02 3.39 0.79 1.8 1.85 3.06 2.4 0.28
Volume % <316.228 1.09 3.24 0.05 3.02 0.62 1.55 1.76 2.98 2.18 0.09
Volume % <363.078 1.49 4.02 0.09 2.61 0.53 1.37 1.63 2.92 1.97 0.04
Volume % <416.869 2.05 4.73 0.11 2.17 0.46 1.22 1.45 2.83 1.75 0.03
Volume % <478.63 2.75 5.24 0.12 1.71 0.41 1.08 1.21 2.67 1.52 0.04

Volume % <549.541 3.53 5.43 0.11 1.25 0.35 0.92 0.93 2.44 1.26 0.05
Volume % <630.957 4.30 5.27 0.08 0.81 0.28 0.74 0.67 2.15 0.99 0.05
Volume % <724.436 4.96 4.78 0.03 0.43 0.18 0.56 0.35 1.81 0.72 0.04
Volume % <831.764 5.41 4.05 0.02 0.18 0.1 0.39 0.12 1.46 0.45 0.02
Volume % <954.993 5.54 3.21 0 0.07 0.03 0.21 0 1.1 0.31 0
Volume % <1096.478 5.28 2.31 0 0 0 0.05 0 0.74 0.25 0
Volume % <1258.925 4.60 1.43 0 0 0 0 0 0.5 0.19 0
Volume % <1445.44 3.57 0.81 0 0 0 0 0 0.3 0.12 0
Volume % <1659.587 2.08 0.23 0 0 0 0 0 0.11 0.06 0
Volume % <1905.461 0.50 0.05 0 0 0 0 0 0.03 0.01 0

Volume % <2000 21.82 0 0 0 0 0 0 0 0 0  
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Appendix B. (Continued)
Core/ Location F F F F F F F F F F

Depth (cm) 54-56 60-62 74-76 78-80 84-86 96-98
102-
104

112-
114

130-
132

136-
138

Volume % <1.096 0 0 0 0 0 0 0 0 0 0
Volume % <1.259 0.01 0 0 0 0 0 0 0 0 0
Volume % <1.445 0.1 0 0.01 0.01 0.01 0 0.01 0.01 0 0.01
Volume % <1.66 0.32 0 0.12 0.08 0.23 0 0.08 0.25 0 0.26

Volume % <1.905 0.5 0 0.23 0.16 0.38 0.09 0.17 0.42 0.1 0.46
Volume % <2.188 0.69 0 0.33 0.23 0.54 0.14 0.25 0.6 0.16 0.68
Volume % <2.512 0.86 0.05 0.43 0.3 0.7 0.18 0.33 0.77 0.23 0.89
Volume % <2.884 1.02 0.07 0.53 0.37 0.85 0.23 0.41 0.94 0.29 1.1
Volume % <3.311 1.17 0.09 0.62 0.43 1 0.28 0.49 1.1 0.35 1.31
Volume % <3.802 1.33 0.11 0.72 0.5 1.13 0.33 0.57 1.25 0.42 1.51
Volume % <4.365 1.48 0.14 0.83 0.56 1.27 0.38 0.66 1.4 0.49 1.71
Volume % <5.012 1.63 0.17 0.94 0.63 1.39 0.43 0.74 1.54 0.56 1.9
Volume % <5.754 1.8 0.21 1.06 0.7 1.51 0.48 0.82 1.67 0.63 2.09
Volume % <6.607 1.96 0.26 1.19 0.77 1.62 0.53 0.9 1.8 0.7 2.28
Volume % <7.586 2.14 0.31 1.33 0.83 1.73 0.58 0.98 1.93 0.76 2.46
Volume % <8.71 2.33 0.36 1.48 0.89 1.82 0.63 1.04 2.06 0.82 2.63
Volume % <10 2.53 0.4 1.63 0.95 1.92 0.68 1.1 2.19 0.87 2.79

Volume % <11.482 2.74 0.45 1.8 1 2.01 0.73 1.15 2.34 0.92 2.95
Volume % <13.183 2.96 0.49 1.98 1.05 2.11 0.78 1.19 2.5 0.97 3.11
Volume % <15.136 3.19 0.53 2.17 1.11 2.22 0.84 1.22 2.69 1.05 3.26
Volume % <17.378 3.44 0.59 2.4 1.19 2.35 0.93 1.27 2.93 1.18 3.43
Volume % <19.953 3.71 0.68 2.65 1.31 2.52 1.06 1.33 3.2 1.37 3.61
Volume % <22.909 4 0.82 2.95 1.5 2.74 1.24 1.43 3.54 1.65 3.8
Volume % <26.303 4.3 1.03 3.3 1.77 3.02 1.5 1.58 3.92 2.06 4.02
Volume % <30.2 4.61 1.33 3.69 2.16 3.36 1.83 1.79 4.35 2.58 4.25

Volume % <34.674 4.9 1.74 4.13 2.65 3.78 2.24 2.07 4.79 3.22 4.5
Volume % <39.811 5.17 2.26 4.57 3.26 4.24 2.72 2.4 5.22 3.95 4.73
Volume % <45.709 5.36 2.86 4.99 3.93 4.71 3.23 2.78 5.58 4.7 4.93
Volume % <52.481 5.45 3.51 5.32 4.61 5.14 3.74 3.16 5.82 5.4 5.06
Volume % <60.256 5.4 4.13 5.53 5.24 5.47 4.2 3.51 5.88 5.97 5.06
Volume % <69.183 5.17 4.66 5.55 5.71 5.63 4.54 3.79 5.73 6.31 4.92
Volume % <79.433 4.76 5.03 5.36 5.96 5.57 4.74 3.96 5.35 6.38 4.6
Volume % <91.201 4.19 5.19 4.96 5.94 5.26 4.77 4.03 4.76 6.16 4.12

Volume % <104.713 3.48 5.14 4.37 5.64 4.73 4.63 4.01 4 5.67 3.49
Volume % <120.226 2.72 4.92 3.7 5.1 4.02 4.37 3.95 3.16 5 2.79
Volume % <138.038 1.96 4.6 2.99 4.41 3.21 4.03 3.9 2.32 4.24 2.07
Volume % <158.489 1.3 4.29 2.37 3.67 2.43 3.69 3.92 1.57 3.53 1.42
Volume % <181.97 0.77 4.07 1.87 2.97 1.72 3.37 4.03 0.97 2.94 0.87
Volume % <208.93 0.38 3.99 1.54 2.41 1.18 3.11 4.22 0.54 2.52 0.47

Volume % <239.883 0.14 4.05 1.35 2.01 0.8 2.91 4.42 0.26 2.26 0.21
Volume % <275.423 0.01 4.2 1.27 1.79 0.6 2.74 4.56 0.13 2.13 0.04
Volume % <316.228 0 4.35 1.25 1.72 0.53 2.59 4.56 0.07 2.05 0.02
Volume % <363.078 0 4.41 1.24 1.74 0.55 2.45 4.35 0.07 1.98 0.03
Volume % <416.869 0 4.3 1.2 1.8 0.6 2.31 3.92 0.08 1.86 0.04
Volume % <478.63 0 3.97 1.11 1.84 0.63 2.19 3.3 0.1 1.66 0.04

Volume % <549.541 0 3.44 0.97 1.82 0.64 2.12 2.55 0.1 1.4 0.04
Volume % <630.957 0 2.77 0.79 1.72 0.59 2.1 1.78 0.08 1.09 0.03
Volume % <724.436 0 2.05 0.59 1.54 0.5 2.14 0.98 0.04 0.76 0.01
Volume % <831.764 0 1.35 0.39 1.31 0.39 2.19 0.25 0 0.44 0
Volume % <954.993 0 0.62 0.18 1.05 0.27 2.16 0.07 0 0.19 0
Volume % <1096.478 0 0.02 0.04 0.79 0.16 2.08 0 0 0.05 0
Volume % <1258.925 0 0 0 0.54 0.11 1.96 0 0 0 0
Volume % <1445.44 0 0 0 0.28 0.06 1.61 0 0 0 0
Volume % <1659.587 0 0 0 0.05 0.03 0.97 0 0 0 0
Volume % <1905.461 0 0 0 0.01 0.01 0.24 0 0 0 0

Volume % <2000 0 0 0 0 0 0 0 0 0 0   
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Appendix B. (Continued)
Core/ Location F F F F F F F F F F

Depth (cm)
158-
160

168-
170

188-
190

204-
206

216-
218

234-
236

250-
252

268-
270

270-
272

278-
280

Volume % <1.096 0 0 0 0 0 0 0 0.00 0 0.00
Volume % <1.259 0 0.02 0.01 0 0 0.01 0 0.00 0.02 0.00
Volume % <1.445 0 0.15 0.1 0.01 0.01 0.1 0 0.00 0.12 0.00
Volume % <1.66 0 0.42 0.33 0.13 0.07 0.28 0 0.00 0.35 0.00

Volume % <1.905 0.13 0.64 0.53 0.24 0.16 0.43 0 0.00 0.54 0.00
Volume % <2.188 0.19 0.86 0.73 0.35 0.25 0.58 0 0.01 0.73 0.00
Volume % <2.512 0.26 1.08 0.93 0.45 0.33 0.73 0.05 0.03 0.92 0.04
Volume % <2.884 0.32 1.28 1.12 0.55 0.42 0.88 0.08 0.06 1.09 0.06
Volume % <3.311 0.38 1.48 1.32 0.65 0.5 1.03 0.1 0.07 1.26 0.07
Volume % <3.802 0.45 1.68 1.53 0.75 0.59 1.18 0.12 0.10 1.43 0.08
Volume % <4.365 0.52 1.89 1.76 0.85 0.68 1.34 0.15 0.11 1.59 0.10
Volume % <5.012 0.59 2.12 2.01 0.94 0.77 1.51 0.18 0.13 1.77 0.12
Volume % <5.754 0.66 2.36 2.29 1.04 0.87 1.68 0.21 0.15 1.95 0.14
Volume % <6.607 0.72 2.62 2.6 1.13 0.96 1.86 0.24 0.17 2.13 0.16
Volume % <7.586 0.79 2.9 2.93 1.21 1.05 2.04 0.28 0.19 2.32 0.19
Volume % <8.71 0.85 3.19 3.27 1.29 1.14 2.22 0.32 0.21 2.5 0.22
Volume % <10 0.91 3.48 3.62 1.36 1.21 2.41 0.36 0.23 2.68 0.25

Volume % <11.482 0.97 3.77 3.97 1.42 1.29 2.6 0.4 0.26 2.85 0.28
Volume % <13.183 1.03 4.04 4.3 1.48 1.36 2.8 0.44 0.29 3 0.31
Volume % <15.136 1.1 4.27 4.59 1.55 1.43 3.01 0.49 0.33 3.13 0.35
Volume % <17.378 1.2 4.47 4.83 1.65 1.52 3.26 0.57 0.38 3.25 0.40
Volume % <19.953 1.35 4.62 5.01 1.78 1.64 3.52 0.68 0.45 3.35 0.47
Volume % <22.909 1.56 4.71 5.13 1.96 1.81 3.82 0.85 0.55 3.45 0.57
Volume % <26.303 1.86 4.75 5.16 2.22 2.03 4.14 1.09 0.68 3.56 0.71
Volume % <30.2 2.25 4.74 5.11 2.56 2.33 4.47 1.41 0.84 3.69 0.92

Volume % <34.674 2.74 4.68 4.99 2.98 2.71 4.8 1.82 1.03 3.83 1.19
Volume % <39.811 3.31 4.58 4.79 3.46 3.15 5.1 2.32 1.25 3.99 1.52
Volume % <45.709 3.94 4.42 4.52 3.97 3.62 5.32 2.88 1.48 4.15 1.92
Volume % <52.481 4.56 4.21 4.18 4.44 4.08 5.43 3.45 1.70 4.28 2.34
Volume % <60.256 5.12 3.94 3.78 4.82 4.48 5.39 3.99 1.90 4.35 2.76
Volume % <69.183 5.55 3.59 3.32 5.04 4.76 5.19 4.43 2.04 4.31 3.12
Volume % <79.433 5.78 3.18 2.82 5.05 4.88 4.81 4.73 2.11 4.14 3.38
Volume % <91.201 5.79 2.7 2.29 4.84 4.82 4.28 4.85 2.09 3.84 3.49

Volume % <104.713 5.58 2.18 1.76 4.41 4.6 3.62 4.8 1.98 3.4 3.46
Volume % <120.226 5.19 1.67 1.27 3.83 4.25 2.92 4.61 1.80 2.87 3.27
Volume % <138.038 4.68 1.18 0.84 3.19 3.84 2.21 4.34 1.54 2.3 2.96
Volume % <158.489 4.16 0.78 0.51 2.58 3.46 1.57 4.07 1.25 1.76 2.59
Volume % <181.97 3.66 0.46 0.27 2.08 3.15 1.05 3.87 0.96 1.29 2.20
Volume % <208.93 3.25 0.25 0.12 1.74 2.96 0.66 3.77 0.68 0.95 1.87

Volume % <239.883 2.93 0.13 0.09 1.57 2.87 0.39 3.76 0.46 0.73 1.62
Volume % <275.423 2.68 0.07 0.09 1.55 2.86 0.23 3.82 0.34 0.64 1.49
Volume % <316.228 2.47 0.06 0.11 1.64 2.87 0.16 3.89 0.37 0.63 1.50
Volume % <363.078 2.26 0.07 0.14 1.77 2.83 0.15 3.92 0.59 0.68 1.63
Volume % <416.869 2.02 0.08 0.17 1.9 2.71 0.16 3.85 1.06 0.73 1.86
Volume % <478.63 1.75 0.09 0.18 1.98 2.47 0.17 3.66 1.77 0.75 2.16

Volume % <549.541 1.44 0.08 0.18 1.99 2.12 0.18 3.35 2.69 0.73 2.48
Volume % <630.957 1.13 0.05 0.16 1.92 1.7 0.16 2.95 3.74 0.65 2.77
Volume % <724.436 0.82 0.02 0.11 1.79 1.25 0.11 2.49 4.79 0.53 2.97
Volume % <831.764 0.52 0 0.06 1.61 0.81 0.04 2.02 5.67 0.39 3.07
Volume % <954.993 0.25 0 0.05 1.38 0.35 0 1.55 6.18 0.24 3.02
Volume % <1096.478 0.14 0 0.03 1.1 0 0 1.09 6.19 0.14 2.79
Volume % <1258.925 0.1 0 0 0.78 0 0 0.77 5.59 0.04 2.37
Volume % <1445.44 0.07 0 0 0.58 0 0 0.54 4.45 0 1.81
Volume % <1659.587 0.04 0 0 0.34 0 0 0.3 2.63 0 1.04
Volume % <1905.461 0.01 0 0 0.08 0 0 0.07 0.64 0 0.25

Volume % <2000 0 0 0 0 0 0 0 25.81 0 25.65  
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Appendix C. Low Tide Groundwater and Surface Water Chemistry Parameters 

 

Well Depth Time pH
Conductivity 

(µs/cm) DO (mg/L) Temp Co Date
A 0.12 11:19 6.84 473.3 0.33 19.6 6/16/2014
A 0.25 11:16 6.73 406.3 1.26 18.8 6/16/2014
A 0.5 11:14 6.44 330.8 0.64 17.9 6/16/2014
A 0.75 11:12 5.85 226.1 0.64 17.5 6/16/2014
A 1 11:09 5.8 217.7 0.61 16.9 6/16/2014
B 0.12 11:43 6.73 401.8 0.63 19.4 6/16/2014
B 0.25 11:40 6.56 401.9 0.42 19.1 6/16/2014
B 0.5 11:37 6.27 348.2 0.47 19.2 6/16/2014
B 0.75 11:34 5.8 261.2 0.4 17.5 6/16/2014
B 1 11:30 5.77 248 0.48 16.6 6/16/2014
C 0.12 11:59 6.4 330 1.25 20 6/16/2014
C 0.25 11:56 6.21 307.5 1.86 19 6/16/2014
C 0.5 11:54 6.07 278.3 1.27 17.8 6/16/2014
C 0.75 11:52 5.96 263.7 0.31 17.3 6/16/2014
C 1 11:49 5.78 243.1 0.39 16.3 6/16/2014
D 2 10:37 5.88 259.4 3.34 14.8 6/16/2014
D 2.5 10:41 6.38 493 0.64 14.5 6/16/2014
D 3 10:45 5.97 286.5 0.6 13.2 6/16/2014
E 2.5 10:51 5.67 265.9 0.36 12.9 6/16/2014
E 3 10:54 5.94 257.8 0.29 13.1 6/16/2014
F 2.5 11:00 5.64 251.8 0.33 12.2 6/16/2014
F 3 10:58 5.72 226.7 0.5 12 6/16/2014
G 2.5 12:09 5.89 203.2 1.04 17.8 6/16/2014
G 3 12:06 6.29 252.4 2.75 18.9 6/16/2014
H 2.5 12:19 5.97 260.4 0.57 15.2 6/16/2014
H 3 12:16 5.93 250.1 0.58 15.3 6/16/2014
S 11:21 7.69 351.8 8.75 20.6 6/16/2014  
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Appendix D. High Tide Groundwater and Surface Water Chemistry Parameters 
 

Well Depth Time pH
Conductivity 

(µs/cm) DO (mg/L) Temp Co Date
A 0.12 15:34 6.39 341.1 1.44 22.6 6/16/2014
A 0.25 15:32 6.24 314.8 0.85 21.5 6/16/2014
A 0.5 15:28 6.06 279.1 0.35 18.8 6/16/2014
A 0.75 15:25 5.94 260.8 0.3 18.3 6/16/2014
A 1 15:22 5.79 245.2 0.33 17.6 6/16/2014
B 0.12 15:17 6.7 401 0.28 21.1 6/16/2014
B 0.25 15:14 6.51 405.2 0.3 20.1 6/16/2014
B 0.5 15:11 6.24 360.5 1.41 18.7 6/16/2014
B 0.75 15:09 5.77 265 0.3 18.4 6/16/2014
B 1 15:06 5.75 255.7 0.37 18.4 6/16/2014
C 0.12 15:34 6.39 341.1 1.44 22.6 6/16/2014
C 0.25 15:32 6.24 314.8 0.85 21.5 6/16/2014
C 0.5 15:28 6.06 279.1 0.35 18.8 6/16/2014
C 0.75 15:25 5.94 260.8 0.3 18.3 6/16/2014
C 1 15:22 5.79 245.2 0.33 17.6 6/16/2014
D 1.7 15:51 5.85 234.5 5 18 6/16/2014
D 2 15:49 5.95 245.5 1.75 15 6/16/2014
D 2.5 15:46 6.36 486 0.39 14.3 6/16/2014
D 3 15:46 6 289.7 0.87 13.3 6/16/2014
E 2 16:03 5.54 288.5 1.03 14 6/16/2014
E 2.5 15:59 5.64 262.9 0.52 13.7 6/16/2014
E 3 15:55 5.89 257.6 0.41 13.8 6/16/2014
F 2.5 16:08 5.6 252.8 0.4 13.1 6/16/2014
F 3 16:05 5.74 229.2 1.71 13.7 6/16/2014
G 2.5 16:16 5.85 200.5 1.09 16.1 6/16/2014
G 3 16:12 6.17 255.6 1.71 14.3 6/16/2014
H 2.5 16:24 6.03 275.5 0.55 15.3 6/16/2014
H 3 16:20 5.91 251.9 0.56 14.6 6/16/2014
S 15:19 7.54 351.2 9.04 23.4 6/16/2014  
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Appendix E: Piezometer Data 
 

Well D E E G H
Ground (m) -0.07 0.11 -0.09 -0.01 -0.28

Top of Casing (m) 0.49 0.34 0.35 0.58 0.04
Top of Screen 

(m) -1.09 -1.23 -1.23 -0.99 -1.53
Bottom of Screen 

(m) -2.45 -2.59 -2.59 -2.35 -2.89
Top of Casing to 

Top of Screen 
(m) 1.57 1.57 1.57 1.57 1.57

Top of Screen to 
Bottom of Screen 
(m) 1.36 1.36 1.36 1.36 1.36  
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Appendix F: Field Photographs 
 

 
 

Photograph 1: Sampling pore water to describe riparian aquifer chemistry. 
 

 
 

Photograph 2: Sampling of vertical head gradients at low tide using a manometer board. 
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Photograph 3: Using an Acoustic Doppler Current Profiler to collect stream discharge 
over a tidal cycle. 

 

 

Photograph 4: View of the Hale Byrnes House from the field site. 
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Appendix G. Water Table Fluctuation Logs 

Explanation 

 The data set includes all recorded water table and stage fluctuations and is 

included as additional data.  
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