University of Kentucky UKnowledge

Chemistry Faculty Patents

Chemistry

1-11-2011

Methods and Compositions for Treating Neurological Disorders

Tae H. Ji University of Kentucky

Inhae Ji University of Kentucky

Follow this and additional works at: https://uknowledge.uky.edu/chemistry_patents

Part of the Chemistry Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Ji, Tae H. and Ji, Inhae, "Methods and Compositions for Treating Neurological Disorders" (2011). *Chemistry Faculty Patents*. 33. https://uknowledge.uky.edu/chemistry_patents/33

This Patent is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Chemistry Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

US007867978B2

(12) United States Patent

Ji et al.

(54) METHODS AND COMPOSITIONS FOR TREATING NEUROLOGICAL DISORDERS

- (75) Inventors: **Tae H Ji**, Lexington, KY (US); **Inhae Ji**, Lexington, KY (US)
- (73) Assignee: The University of Kentucky Research Foundation, Lexington, KY (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 310 days.
- (21) Appl. No.: 11/627,005
- (22) Filed: Jan. 25, 2007

(65) **Prior Publication Data**

US 2008/0182784 A1 Jul. 31, 2008

- (51) Int. Cl. *A61K 38/16* (2006.01) (52) U.G. Cl.
- (52) U.S. Cl. 514/17.7; 514/21.3; 530/324

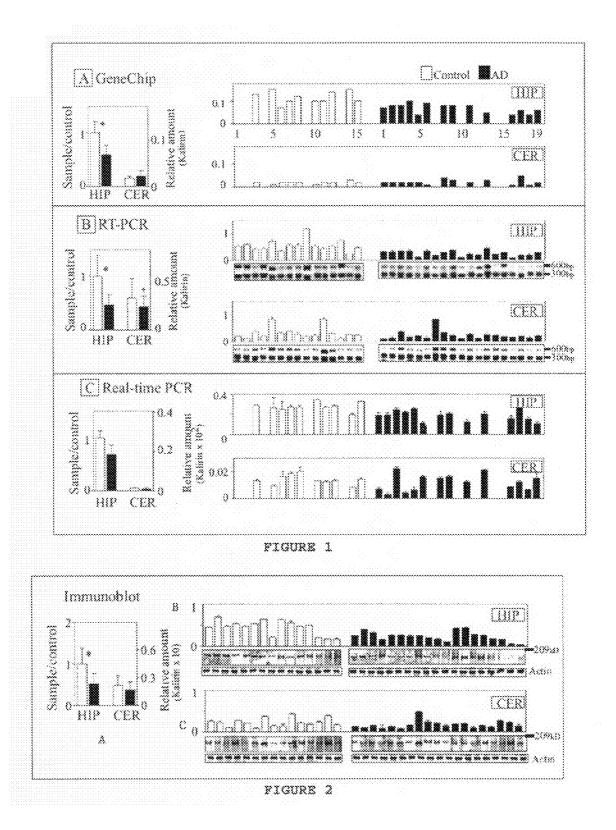
(10) Patent No.: US 7,867,978 B2

(45) **Date of Patent:** Jan. 11, 2011

- (58) **Field of Classification Search** None See application file for complete search history.
- (56) References Cited

PUBLICATIONS

Rudinger. In Peptide Hormones. J.A. Parsons, ed. University Park Press, Baltimore, 1976, pp. 1-7.* Ratovitski et al., JBC, vol. 274, No. 2, Jan. 8, 1999, pp. 993-999.*


* cited by examiner

Primary Examiner—Daniel E Kolker Assistant Examiner—Stephen Gucker (74) Attorney, Agent, or Firm—Crowell & Moring LLP

(57) **ABSTRACT**

This disclosure relates to methods and compositions useful for the treatment of senile dementia. More particularly the disclosure relates to methods and compositions for the treatment of senile dementia related to diabetes.

3 Claims, 7 Drawing Sheets

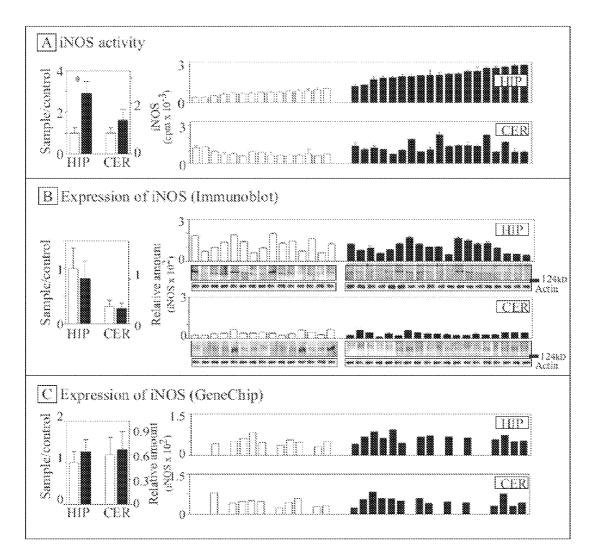
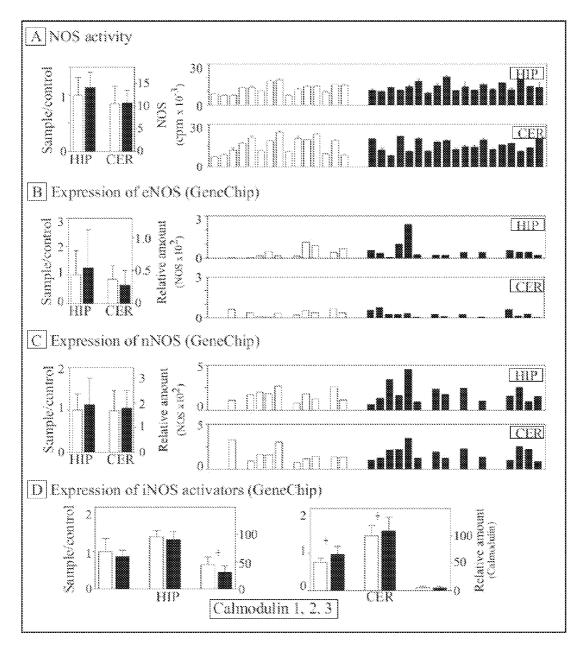
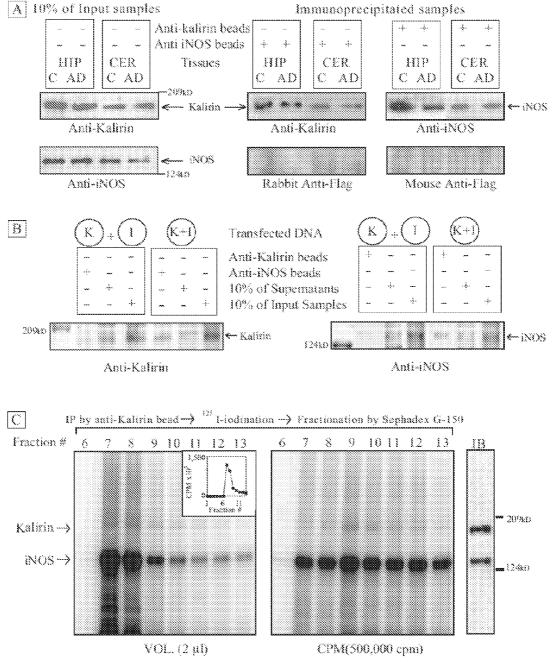
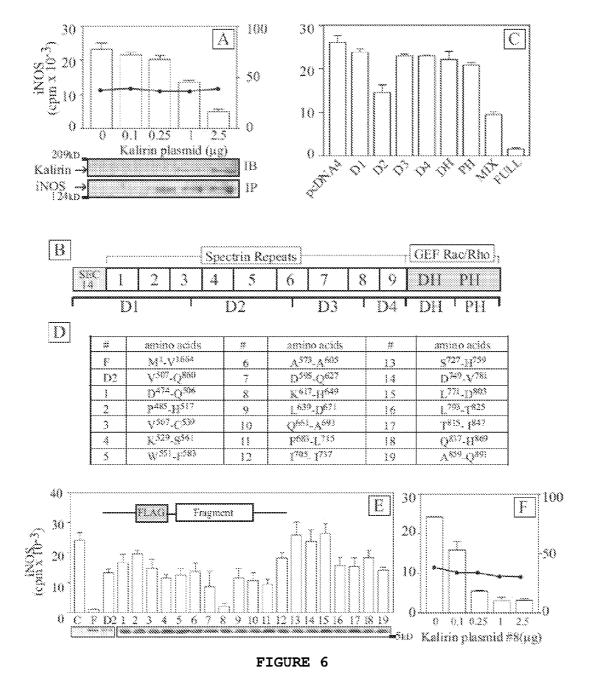
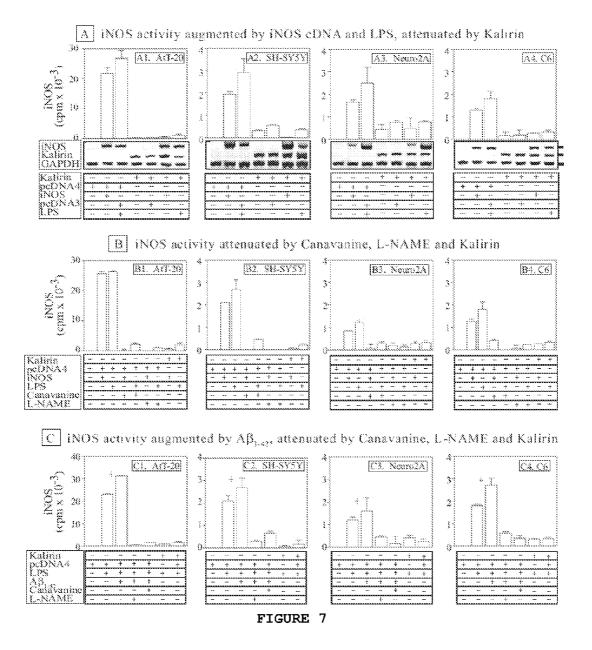


FIGURE 3


FIGURE 4

Sheet 5 of 7

Human Kalirin genomic DNA(Homo sapiens chromosome 3 genomic conting ; gi NT_005612 Region: 30198024..30638214)

FIGURE 8

10

25

50

METHODS AND COMPOSITIONS FOR TREATING NEUROLOGICAL DISORDERS

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was supported in part by Grant Nos. RO1 HD18702 and RO1 GM74101 and 5P50AG05144 awarded by the National Institutes of Health. The government may have certain rights in this invention.

TECHNICAL FIELD

This disclosure relates to methods and compositions useful for the treatment of dementia. More particularly the disclo-15 sure relates to methods and compositions for the treatment of neurodegenerative diseases and disorders including senile dementia and Alzheimer's Disease (AD).

BACKGROUND

Nitric oxide synthase (NOS) is an enzyme which is found in humans. Three isoforms of NOS have been identified. In the body nNOS and eNOS are constitutively expressed in the cells in which they are found. However, iNOS is not constitutively expressed, but is known to be induced by a number of cytokines, lipopolysaccarides (LPS), and other mediators of the inflammatory response. Specifically, iNOS has been associated as indicating certain pathological disease states.

Alzheimer's disease (AD) is the major cause of dementia 30 in the elderly. Although rare genetic forms of AD exist, most patients are classified as having sporadic AD, since no family history is usually identified. Pathologically, AD is characterized by neuronal and synaptic degeneration with an increased number of senile plaques and neurofibrillary tangles com-35 pared to non-demented individuals of comparable age.

The senile plaques, characteristic of Alzheimer's disease, are composed of a central core of aggregated beta-amyloid, a breakdown product of amyloid precursor protein (APP). The neurofibrillary tangles are insoluble intracellular thread-like $_{40}$ structures made up of a hyperphosphorylated form of a protein called tau, which is associated with microtubles.

Early and accurate diagnosis of Alzheimer's disease is important since early intervention may delay or arrest the reversible neuronal damage. Clinical diagnosis is not always 45 accurate since the criteria are relatively subjective and the disease needs to be differentiated from other dementing illnesses.

SUMMARY

The invention provides a method for diagnosing and monitoring senile dementia or other neurodegenerative disease or disorder in a subject comprising detecting a kalirin polypeptide or polynucleotide in a sample derived from the subject, 55 wherein a reduction or mutation in kalirin is indicative of the onset, progress or late stage of dementia.

The invention also provides a method for determine a subject's risk for senile dementia comprising: (a) obtaining a sample derived from a subject; (b) detecting or identifying in ⁶⁰ the sample a kalirin polypeptide or polynucleotide; and (c) comparing the detected amount with an amount detected for a normal control, wherein a reduction in kalirin is indicative or a risk of senile dementia.

The invention further provides a method for suppressing 65 the induction of inducible nitric oxide synthase in a cell comprising contacting said cell with an effective amount of at

least one induction suppressor of inducible nitric oxide synthase, wherein said induction suppressor is selected from the group consisting of a kalirin polynucleotide or oligonucleotide, a kalirin polypeptide, and/or an active fragment of a kalirin polypeptide.

The invention provides a method of inhibiting nitric oxide cytotoxicity comprising contacting a cell capable of producing nitric oxide with a biologically effective amount of an agent comprising a kalirin polynucleotide, a kalirin polypeptide, an active fragment of a kalirin polypeptide and/or a kalirin agonist that regulates inducible nitric oxide synthase under conditions wherein the agent reduces inducible nitric oxide synthase activity.

The invention provides a composition comprising an active fragment of kalirin in a pharmaceutically acceptable carrier.

The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, 20 and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1A-C shows expression of kalirin. Hippocampal and cerebellar specimens are numerically designated as AD 1-19 and control 1-15 throughout the figures and presented in the same order. (A) GeneChip analyses-the mean values of Kalirin, individual values of hippocampal specimens (HIP) and cerebellar specimens (CER). Open bars for control, black bars for AD. The left side "Y" axis represents the ratio of sample/control value, and the right side "Y" axis represents the actual value. The means (bars) and standard deviations (error bars) are presented. HIP=hippocampus and CER=cerebellum. The marked samples show statistically significant differences between AD and control. The samples with significant differences are marked as (*) for p<0.0001 and (+) for 0.05<P>0.0001. Unmarked samples show no significant difference between AD and control. These formats are also used in all of FIGS. 1 and 2. (B) RT-PCR results presented the same as in (A). The upper gel bands represent Kalirin and the lower bands GAPDH. (C) Real time PCR results presented the same as in (A).

FIG. 2A-C shows immunoblots of Kalirin. An equal amount of solubilized proteins from individual specimens was electrophoresed and blotted for Kalirin (upper blots) and actin (lower blots). (A) the mean values, (B) values of individual hippocampal specimens and (C) values of individual cerebellar specimens as described in FIG. 1. The 209 kDa protein marker is indicated.

FIG. 3A-C shows activity and expression of iNOS. (A) The average activities of iNOS for control (open bar) and AD (black bar) hippocampi (HIP) and cerebella (CER). The left side Y axis represents the ratio of AD/control value, and the right side Y axis represents the actual value. The means (bars) and standard deviations (error bars) are presented. The samples with statistically significant differences between AD and control are marked as (*) for p<0.0001 and (+) for 0.05<P>0.0001. HIP=hippocampus and CER=cerebellum. (HIP) The iNOS activity of individual control (open bar) and AD (black bar) hippocampi. The samples were sorted in the order of increasing iNOS activity. (CER) The iNOS activity of individual cerebella as described above. (B) The average concentration of immunoblotted iNOS of hippocampi and cerebella. (HIP) Immunoblotted iNOS (upper blots) and actin (lower blots) concentrations of individual hippocampi. (CER) Immunoblotted iNOS (upper blots) and actin (lower blots) concentrations of individual cerebella. (C). The average amount of iNOS mRNA expression determined by Affymetrix U133A chip. (HIP) iNOS mRNA concentration of individual hippocampi. (CER) iNOS mRNA concentration of individual cerebella.

FIG. **4**A-D shows activity and mRNA expression level of 5 eNOS and nNOS. (A) NOS activities, (B) gene chip data for eNOS and (C) gene chip data for nNOS are presented as described in FIG. **3**C. (D) The average expression levels of calmodulins, putative iNOS activators in the hippocampus in the left panel and those in the cerebellum in the right panel. 10

FIG. 5A-C shows co-immunoprecipitation of Kalirin and iNOS. (A) Left Panels: Ten percent of the pooled samples were solubilized and immunoblotted with anti-Kalirin (upper blot) or anti-iNOS (lower blot). Right Panels: The pooled samples were immunoprecipitated with anti-iNOS beads or 15 anti-Kalirin beads and immunoblotted with anti-Kalirin or anti-iNOS, respectively (upper blots). In addition, the blot was probed with rabbit anti-Flag or mouse anti-Flag, respectively, as the negative immunoblot controls (lower blots). (B) Left Panel: The cells expressing Kalirin (K) and the cells 20 expressing iNOS (I) were combined, solubilized, immunoprecipitated with anti-iNOS beads, and immunoblotted with anti-Kalirin. In addition, 10% of the input and 10% of the supernatant of the immunoprecipitation were immunoblotted with anti-Kalirin. When the cells co-expressing both Kalirin 25 and iNOS (KI) were solubilized, immunoprecipitated with anti-iNOS beads, and immunoblotted with anti-Kalirin, Kalirin was immunoprecipitated. Right Panel: The same as described for the Left Panel, except for that the solubilized samples were immunoprecipitated with anti-Kalirin and 30 immunoblotted with anti iNOS. (C) Autoradiogram of anti-Kalirin immunoprecipitate of AD Hippocampus sample. The pooled AD Hippocampal sample was immunoprecipitated with anti-Kalirin and radio-iodinated. Free iodine was removed by fractionation on a Sephadex G-150 column. An 35 equal volume (Left Panel) or equal CPM (Right Panel) of individual tubes was electrophoresed and autoradiographed. The radioactivities of individual tubes were plotted (inset graph of the Left Panel). Immunoblots of Kalirin and iNOS (as shown in A) are combined to show the band positions of 40 Kalirin and iNOS.

FIG. 6A-F shows identification of Kalirin domain responsible for attenuation of iNOS. (A) Effect of Kalirin plasmid on iNOS. The AtT-20 cell line stably expressing iNOS was transiently transfected with increasing amounts of the pcDNA4 45 carrying the Kalirin-7 cDNA and assayed for iNOS. The cells were solubilized and 10% of the solubilized samples were immunoblotted with anti-Kalirin (upper gel). The rest of the solubilized samples were immunoprecipitated with anti-Kalirin and immunoblotted with anti-iNOS (lower gel). To test 50 for a potential toxic effect of the Kalirin plasmid on the cells, the cells were transiently co-transfected with increasing amounts of the pcDNA4 carrying Kalirin-7 cDNA plus a constant amount of the pRL-TK vector encoding Renilla luciferase, and assayed for iNOS (bar) and luciferase (dotted 55 line). (B) Kalirin comprises a Sec14p-like putative lipid binding domain, nine spectrin-like repeats, tandem DH and pleckstrin homology (PH) domain. (C) A continuous series of Kalirin domains (D1, D2, D3, D4, DH and PH shown in 5C) was subcloned into pcDNA4. When AtT-20 cells stably 60 expressing iNOS were transiently transfected with various pcDNA4 carrying the individual domains of Kalirin-7, iNOS was most notably attenuated by D2. "Mix" stands for the mixture of the domain plasmids and "Full" stands for the plasmid encoding the full length Kalirin-7. (D) D2 domain 65 was further divided into 19 overlapping sections, each comprising 33 amino acids. The cDNAs for the 19 sections were

4

cloned into pcDNA 4. (E) AtT-20 cell line stably transfected with iNOS was transiently transfected with the pcDNA4 carrying individual Kalirin section cDNAs with the Flag epitope and assayed for iNOS. The activities were compared to the activities of nontransfected cells (C), cells transfected with the full length Kalirin-7 (F) and cells transfected with D2. In addition, the cells were solubilized, and 10% of the solubilized samples were electrophoresed on polyacrylamide gel (7.5% gel for C, F and D2, and 15% gel for sections 1-19) and immunoblotted with anti-Flag (lower panel). The blotted bands of C, F and D2 were aligned to those of sections 1-19 to save space. The 5 kD maker is for the sections 1-19. (F) AtT-20 cell line stably expressing iNOS was transiently transfected with increasing amounts of the pcDNA4 carrying Kalirin section 8 cDNA and assayed for iNOS. The cells were also tested for the toxic effect of the plasmid itself by co-transfecting them with a constant amount of the pRL-TK vector encoding Renilla luciferase as described in (5A). The dotted line represents the luciferase activity. The attempt to immunoblot the cells with anti-Kalirin failed to recognize the Kalirin fragments.

FIG. 7A-C shows induction and attenuation of iNOS by LPS (A-C), iNOS plasmid (A-C) and A ß1-42 (C), and attenuation of iNOS by Kalirin (A-C) and inhibitors of NOS (B, C). (A) Induction of iNOS by LPS and iNOS plasmid and attenuation of iNOS by Kalirin in mouse AtT20, human neuroblastoma SH-SY5Y cell line, mouse neuroblastoma Neuro2A cell line, and rat glioma C6 cell line. The cell lines were stably transfected either with pcDNA4 carrying the Kalirin-7 cDNA (denoted as Kalirin) or with empty pcDNA4. The two types of stable cell lines were established and transiently transfected either with pcDNA3 carrying the iNOS cDNA (denoted as iNOS) or empty pcDNA3. Some of the cells were also treated with LPS for 16 h to induce iNOS. In addition, RNAs were extracted from the cells and used to produce the cDNA fragments for iNOS, Kalirin and GAPDH by RT-PCR as shown underneath the bar graph. (B) Attenuation iNOS by NOS inhibitors. The stable cell lines described in A were assayed for iNOS with or without a specific inhibitor for iNOS (Canavanine) or general inhibitor for NOS (L-NAME). (C) Effect of A β 1-42. Stable cell lines described in A were treated with LPS plus A β 1-42 for 16 h and assayed for iNOS.

FIG. **8** shows the upstream regulatory sequence (SEQ ID NO:51) of kalirin 7.

DETAILED DESCRIPTION

As used herein and in the appended claims, the singular forms "a," "and," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a protein" includes a plurality of such proteins and reference to "the cell" includes reference to one or more cells known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice of the disclosed methods and compositions, the exemplary methods, devices and materials are described herein.

The publications discussed above and throughout the text are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior disclosure.

Alzheimer's disease (AD) is the most prevalent adult dementing disorder. The pathological characteristics of AD

are brain atrophy, amyloid plaques and neurofibrillary tangle formation, and neuron and synapse loss. AD is related to a number of factors including the presence of amyloid- β peptide, presenilins 1 and 2, NO and iNOS production and activity (respectively), and apolipoprotein E (ApoE) isoforms, 5 impacting gene expression in AD. The gene expression analysis provided herein of hippocampal and cerebellar specimens of 19 AD in comparison to 15 age- and sex-matched control brains shows many AD-associated differentially expressed genes and expressed sequence tags. Among them is the gene 10 Kalirin, specifically the Kalirin-7 isoform.

Inducible nitric oxide (iNOS) and NO have been shown to be important in AD. High iNOS activity cannot be explained by the expression levels of iNOS mRNA and protein in AD and control hippocampi. For example, iNOS knockout mice 15 are protected from the AD phenotype. Amyloid- β induces iNOS activity and elevated NO levels are globally observed in AD hippocampi compared to normal tissues. However, iNOS protein expression and its enzymatic activity do not show a correlation (FIGS. 3A and 3B), suggesting that iNOS activity 20 is regulated through a mechanism other than expression levels. The importance of other regulatory mechanism is further underscored by the fact that NO levels vary dramatically among various cell lines (FIG. 7). The iNOS activity is ~10 fold higher in AtT-20 cells than other cell lines described in 25 FIG. 7 and ~100 fold higher than HEK293 cells stably expressing iNOS. The under expression of Kalirin-7 correlate with elevated iNOS activity in AD hippocampi, which is higher in all of the 19 AD hippocampal specimens compared with all of the tissue specimens of the 15 control hippocampi, 30 19 AD cerebella and 15 control cerebella.

Kalirin-7 is a cytoplasmic protein of >1,660 amino acids and plays crucial regulatory roles in growth and maintenance of neurons. Kalirin comprises over a dozen alternate splicing forms, all primarily expressed in the brain, particularly in the 35 hippocampus with the most intense expression in neurons; tissue culture studies demonstrate that Kalirin isoforms play crucial roles in neuronal stability and growth. Kalirin is essential for the growth and maintenance of hippocampal pyramidal neuron dendrites and dendritic spines. Originally 40 cloned from rat and human brains, Kalirin plays a role in the huntingtin dependent Ras-related signal pathway and pathogenesis of Huntington's disease, an autosomal dominant neurodegenerative disease that is frequently associated with dementia. Kalirin interacts with a number of cytoplasmic 45 proteins, including the cytoplasmic domain of peptidylglycine α -amidating monooxygenase, huntingtin-associated protein 1 and iNOS. However, there are no prior reports demonstrating a direct role for any Kalirin isoform in any neurodegenerative disorders and other diseases. The regula- 50 tory effect of the Kalirin domain and Kalirin have therapeutic potential in controlling iNOS activity and thus limit AD development. In addition to Kalirin-7, genes for voltagegated Ca^{2+} channel γ -subunit 3 and visinin-like protein 1 (a Ca²⁺ sensor protein) are under-expressed, whereas inositol 55 1,4,5-triphosphate 3-kinase B is over-expressed. Collectively, these differential expression patterns can impair Ca²⁺ homeostasis. In contrast to the differentially expressed genes, housekeeping genes such as ribosomal protein genes are not affected by AD.

Human Kalirin-7 associates with iNOS in the human hippocampus (FIG. 5) and negatively regulates iNOS enzyme activity in neuronal cell lines (FIG. 7), consistent with the observation that rat Kalirin interacts with mouse iNOS, inhibits the dimerization of iNOS and its activity in the mouse cell system. Furthermore, Kalirin-7 ssociates with inducible NO synthase (iNOS) protein in the human hippocampus and

65

6

negatively regulates iNOS enzyme activity. The inhibition is attributed primarily to the ~33 amino acid domain around K⁶¹⁷-H⁶⁴⁹ (SEQ ID NO:3 or SEQ ID NO:2 from amino acid 617 to 649; see FIG. 6), demonstrating that Kalirin 7 is responsible for the negative regulation of iNOS. These results indicate that the elevated NO level in the AD hippocampal specimens is closely correlated with the enhanced iNOS activity and to the under-expression of Kalirin-7. It also provides a simple explanation for the correlation of the low level of neuronal Kalirin and the high activity of iNOS in AD (FIGS. 2 and 3A) that is expressed throughout neuronal and non-neuronal cells as well as aberrant NOS expression in AD. Individual specimens show significant variations in the expression levels of NOS, which could have contributed, along with variant locations of small specimens excised from the hippocampus, to diverse observations on aberrant NOS expression in AD.

The disclosure established the under-expression of Kalirin-7 in AD hippocampus and its role in AD that includes the complex formation with iNOS and deleterious NO in AD brain, further damaging the negative regulation of iNOS activity. The data demonstrate that the regulation of Kalirin 7 expression and decrease in Kalirin-7 expression in AD brain activity in the hippocampus contributes to AD development through iNOS and NO production.

The disclosure demonstrates that the most prevalent isoform of Kalirin in the adult brain, Kalirin-7, is significantly diminished in AD patient brains, both at the mRNA and protein levels. The disclosure further demonstrates a complex of Kalirin-7 with iNOS, with less Kalirin-7 being consumed in this complex with iNOS in AD brain extracts than in control brain extracts. Since the amyloidogenic peptide A β 1-42 induces iNOS in brain and Kalirin normally inactivates some iNOS in brain, the data demonstrate that the decrease in Kalirin-7 expression in AD brain contributes to the increased production of deleterious NO in AD brain, further damaging the AD brain.

Accordingly, the disclosure provides methods and compositions for the treatment of dementia caused by decreased kalirin, increased iNOS activity, and increased NO in neurons. Furthermore, the disclosure provides methods of diagnoses and prognoses of dementia.

In one aspect, the disclosure provides a method of alleviating senile dementia (e.g., AD) comprising contacting a subject with an active fragment of kalirin. In one aspect, the senile dementia is associated with elevated levels of NO. In another aspect, the senile dementia is associated with elevated iNOS activity.

The effectiveness of the method of the disclosure in alleviating senile dementia can be demonstrated using recognized animal models of AD as well as in vitro assays that detect changes in iNOS or NO in a biological sample upon exposure to a test agent (e.g., an active fragment of kalirin).

As used herein, the term "inhibiting senile dementia" or 55 "alleviating senile dementia" refers to any diminution in the severity of senile dementia. In a human subject, an active fragment of kalirin or kalirin therapy reduces the severity of senile dementia such that the subject's suffering or dementia (e.g., duration or severity) is diminished and quality of life is 60 improved. Alternatively, the dementia of a subject may be reduced but may not be readily apparent, under these circumstances, a reduction in NO, iNOS or A β peptides may be indicative of a reduction in the severity of the disorder.

For use in alleviating senile dementia in a human subject, an active fragment of human kalirin such as, for example, SEQ ID NO:3 is used. However, an active fragment derived from another mammalian kalirin polypeptide is useful in alleviating senile dementia according to the method of the disclosure. Thus, for example, an active fragment of mouse kalirin, rat kalirin, guinea pig kalirin or bovine kalirin can be useful in alleviating senile dementia in a subject. As set forth above, the amino acid sequence of an active fragment of 5 kalirin (SEQ ID NO:3), which corresponds to amino acids 617-649 of kalirin, is well conserved among other species. A peptide useful in the methods of the disclosure can include, for example, SEQ ID NOS:3 through 26 (see TABLE above).

"Dementia" and "senile dementia" refer to a decline in 10 cognitive function due to deterioration of neurons and neuronal signaling beyond what is expected due to normal aging. Cognitive areas that are effected include memory, attention, language and problem solving. An affected persons can be disoriented in time and place. Symptoms of dementia can be 15 classified as either reversible or irreversible depending upon the etiology of the disease. Less than 10% of all dementias are reversible. Senile dementia can be caused by a number of diseases and disorder. For example, senile dementia can be caused by Alzheimer's disease, vascular dementia (also 20 known as multi-infarct dementia), including Binswanger's disease, dementia with Lewy bodies (DLB), Alcohol Induced Persisting Dementia, Frontotemporal lobar degeneration (FTLD), including Pick's disease, Frontotemporal dementia (or frontal variant FTLD), Semantic dementia (or temporal 25 variant FTLD), and progressive non-fluent aphasia, to name a few. In some aspect, the senile dementia can be attributed to the activity of induced nitric oxide synthase (iNOS) and the formation of A β secretions. One such pathological conditions associated with A β secretions is Alzheimer's Disease (AD). ³⁰

"Pathological conditions associated with AB secretion" include conditions associated with abnormalities in the APP pathway, including but not limited to, modified APP metabolism or processing of components involved in the APP pathway, for example, abnormal α -, β -, or γ -secretase activity, ³⁵ and/or Aß secretion which may be characterized by the formation of insoluble amyloid deposits (senile plaques), the major component of which is the 40-42 amino acid amyloid beta $(A\beta)$ peptide, a proteolytic product of the amyloid precursor protein (APP). Such conditions include Alzheimer's 40 Disease as well as other conditions characterized by degeneration and eventual death of neurons in brain clusters controlling memory, cognition and behavior. Such conditions may also include, but are not limited to, Parkinson's Disease, tauopathies, prion diseases, frontotemporal dementia, stria- 45 tonigral degeneration, Lewd body dementia, Huntington's disease, Pick's disease, amyloidosis, and other neurodegenerative disorders associated with excess A β production.

A "polynucleotide", as used herein, refers to an oligonucleotide, nucleotide or polynucleotide, and fragments or portions thereof, and to DNA or RNA of genomic or synthetic origin that may be single or double stranded, and represent the sense or antisense strand.

A "cDNA" refers to DNA that is complementary to a portion of messenger RNA (mRNA) sequence and is generally synthesized from an mRNA preparation using reverse transcriptase.

The individual proteins/polypeptides referred to herein include any and all forms of these proteins including, but not

8

limited to, partial forms, isoforms, variants, precursor forms, the full length protein, fusion proteins containing the sequence or fragments of any of the above, from human or any other species. Protein homologs or orthologs which would be apparent to one of skill in the art are included and contemplated by the disclosure. It is also contemplated that the term refers to proteins isolated from naturally occurring sources of any species such as genomic DNA libraries as well as genetically engineered host cells comprising expression systems, or produced by chemical synthesis using, for instance, automated peptide synthesizers or a combination of such methods. Means for isolating and preparing such polypeptides are well understood in the art.

The term "sample" as used herein, is used in its broadest sense. A biological sample from a subject may comprise blood, urine, brain tissue, primary cell lines, immortalized cell lines, or other biological material with which protein activity or gene expression may be assayed. A biological sample may include, for example, blood, tumors or other specimens from which total RNA may be purified for gene expression profiling using, for example, conventional glass chip microarray technologies such as Affymetrix chips, RT-PCR or other conventional methods. In one aspect, a sample comprises cerebral spinal fluid and/or neurological tissue.

A "therapeutically effective amount" is the amount of a polypeptide or polynucleotide of the disclosure sufficient to treat, prevent or ameliorate pathological conditions associated with dementia and/or nitric oxide and/or iNOS production or activity.

A "subject" refers to any human or nonhuman mammal.

The disclosure provides methods and compositions useful in alleviating senile dementia (e.g., AD) resulting from or associated with NO activity or production and/or a reduction in kalirin 7 production or expression.

The method of the disclosure can be useful in alleviating senile dementia regardless of the etiology. For example, a method of the disclosure can be used to alleviate senile dementia resulting from a decrease in kalirin expression, iNOS overexpression, NO production and the like.

An agonist is any molecule that improves the activity of a different molecule; e.g., a hormone, which acts as an agonist when it binds to its receptor, thus triggering a biochemical response, or the production of a heterologous molecule that increase the biological activity in cell. associated with a similar homogenous molecule. For example, a kalirin agonist can be capable of interacting with iNOS.

In one embodiment, a kalirin agonists may be a heterologous kalirin polypeptide or polynucleotide or a kalirin-derived peptide. As used herein, the term "active fragment of kalirin" is synonymous with "kalirin-derived peptide" and "kalirin". A peptide useful in the methods of the disclosure can be derived from kalirin (see, e.g., SEQ ID NO:2). More particularly, the kalirin-derived peptide comprises a fragment of SEQ ID NO:2 containing the sequence ARHLEVRIQD-FVRRVEQRKLLLDMSVSFHTH (residues 3-33 of SEQ ID NO: 3) and peptides having from about 70%, 80%, 85%, 90%, 95%, 98% or 99% identity to the foregoing sequence (including the sequences as set forth in the Table below (SEQ ID NOs:3-26).

Name	GI	1 KAARHLEVRIQDFVRRVEQRKLLLDMSVSFHTH	33
human	118093831 673		705
rat	47933903 599		631

	inued	
- COIL	LIIUCU	Ł

mouse	82959198	617		649
dog	74002910	639		671
puffer fish	47221952	665		697
human	45439359	648	HQDI	679
Chipmpanzee	114599040	895	HQDI	926
COW	76646637	57	HQD	607
rat	109464537	648	HQD	679
mouse	113929148	589	HQD	620
R.J. fowl	118086576	622	HQD	653
dog	74002999	598	HQD	629
zebra fish	94733856	599	HQD	630
Zebra fish	68362538	646	HV.EI	677
puffer fish	47224100	639	HQD	670
puffer fish	47229500	640	HQD	671
puffer fish	47214428	481	D.DS.A.IQLAY	518
Sea Urchin	115739539	38		68
Fruit fly	6708476	644	ELQVGS.AERRRA.I.Y	674
fungi	83767646	194	LR.RQNG.	211
fungi	50257320	140	. KM FN.	154
plant	92889507	200	V	210
bacteria	83999851	424	E.IQ	re435
Query		1	KAARHLEVRIQDFVRRVEQRKLLLDMSVSFHTH	33

An NO inhibiting activity of kalirin can be localized to an 40 approximate 33 amino acid segment of kalirin. An active fragment of Kalirin has about 25 amino acids to about 80 amino acids, but can include the full-length of Kalirin (e.g., SEQ ID NO:2). Typically, an active fragment of kalirin has about 28 amino acids to about 37 amino acids and, more 45 commonly, about 30 amino acids to about 35 amino acids. A 33-mer peptide corresponding to amino acids 617 to 649 of kalirin (SEQ ID NO:2) inhibits NO production and/or iNOS activity.

To determine the percent identity of two amino acid 50 sequences or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison pur- 55 poses). In a one embodiment, the length of a reference sequence aligned for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, but typically at least 70%, 80%, or 90% of the length of the reference sequence. The amino acid residues or nucleotides at corresponding 60 amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid 65 "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a

An NO inhibiting activity of kalirin can be localized to an proximate 33 amino acid segment of kalirin. An active agment of Kalirin has about 25 amino acids to about 80 nino acids, but can include the full-length of Kalirin (e.g.,

The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In a one embodiment, the percent identity between two amino acid sequences is determined using the GAP program in the GCG software package (available at http:-~www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at http:-~www. gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6.

The nucleic acid and protein sequences of the disclosure can further be used as a "query sequence" to perform a search against public databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10.

As used herein, the term "amino acid" refers to one of the twenty naturally occurring amino acids, including, unless stated otherwise, L-amino acids and D-amino acids. The term amino acid also refers to compounds such as chemically modified amino acids including amino acid analogs, naturally occurring amino acids that are not usually incorporated into proteins such as norleucine, and chemically synthesized compounds having properties known in the art to be characteristic of an amino acid, provided that the compound can be substi-5 tuted within a peptide such that it retains its biological activity. For example, glutamine can be an amino acid analog of asparagine, provided that it can be substituted within an active fragment of kalirin that retains its activity in alleviating senile dementia or other iNOS or NO associated disorders. An 10 amino acid also can be an amino acid mimetic, which is a structure that exhibits substantially the same spatial arrangement of functional groups as an amino acid but does not necessarily have both the alpha-amino and alpha-carboxyl groups characteristic of an amino acid. Other examples of 15 amino acids and amino acids analogs are listed in Gross and Meienhofer, The Peptides: Analysis, Synthesis, Biology, Academic Press, Inc., New York (1983).

A kalirin polypeptide or active fragment thereof can be isolated or synthesized using methods well known in the art. 20 Such methods include recombinant DNA methods and chemical synthesis methods for production of a peptide. Recombinant methods of producing a peptide through expression of a nucleic acid sequence encoding the peptide in a suitable host cell are well known in the art and are described, 25 for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Vols. 1 to 3, Cold Spring Harbor Laboratory Press, New York (1989).

Alternatively a kalirin polypeptide or active fragment can be chemical synthesized, for example, by the solid phase 30 peptide synthesis method of Merrifield et al., J. Am. Chem. Soc. 85:2149 (1964). Standard solution methods well known in the art also can be used to synthesize a peptide useful in the disclosure (see, for example, Bodanszky, Principles of Peptide Synthesis, Springer-Verlag, Berlin (1984) and Bodan- 35 szky, Peptide Chemistry, Springer-Verlag, Berlin (1993)). A newly synthesized peptide can be purified, for example, by high performance liquid chromatography (HPLC), and can be characterized using, for example, mass spectrometry or amino acid sequence analysis.

It is understood that modifications can be made to a kalirin polypeptide or active fragment without destroying its biological function. Thus, a modification of an active fragment of kalirin that does not destroy its ability to alleviate senile dementia is within the definition of a kalirin polypeptide. A 45 modification can include, for example, an addition, deletion, or substitution of amino acid residues (e.g., 1 to 10); a substitution of a compound that mimics amino acid structure or function; and addition of chemical moieties such as amino or acetyl groups. The activity of a modified peptide in alleviating 50 senile dementia can be assayed using an animal model of senile dementia.

A particularly useful modification of a kalirin polypeptide is one that confers, for example, increased stability. For example, incorporation of one or more D-amino acids or 55 substitution or deletion of lysine can increase the stability of an active fragment of kalirin by protecting against peptide degradation. The substitution or deletion of a lysine residue confers increased resistance to trypsin-like proteases, as is well known in the art (Partridge, supra (1991)).

60

A useful modification also can be one that promotes peptide passage across the blood-brain barrier, such as a modification that increases lipophilicity or decreases hydrogen bonding. For example, a tyrosine residue added to the C-terminus of a kalirin polypeptide can increase hydrophobicity 65 and permeability to the blood-brain barrier (see, for example, Banks et al., Peptides 13:1289-1294 (1992) and Pardridge,

supra (1991)). A chimeric peptide-pharmaceutical that has increased biological stability or increased permeability to the blood-brain barrier, for example, also can be useful in the method of the disclosure.

As used herein, the term "a senile dementia alleviating amount" or "effective amount" means the amount of a kalirin polypeptide useful for causing a diminution in senile dementia, whether by alleviating senile dementia or by inhibiting the onset of senile dementia or reducing causative agents of dementia (e.g., elevated NO). An effective amount to be administered systemically on a daily basis depends on the body weight of the subject. Typically, an effective amount to be administered systemically on a daily basis is about 0.1 µg/kg to about 1000 µg/kg. More commonly, an effective amount to be administered systemically on a daily basis is about 10 µg/kg to about 100 µg/kg. An effective amount of a peptide for alleviating or inhibiting the onset of dementia can be determined empirically using methods well known to those in the art.

The disclosure provides methods of alleviating dementia (e.g., AD) by administering an effective amount of a kalirin polypeptide (e.g., an active fragment of kalirin) intravenously, intramuscularly, intradermally, subcutaneously, intracranially, intracerebrospinally, topically, orally, transdermally, transmucosally, or intranasally. A pharmaceutically acceptable carrier of well known type can be administered with a kalirin polypeptide. Such carriers include, for example, phosphate buffered saline (PBS).

In one aspect, the method of administration comprises a fusion polypeptide comprising a transduction domain (e.g., a PTD) and an active fragment of kalirin. PTDs are typically cationic in nature. These cationic protein transduction domains track into lipid raft endosomes carrying with them their linked cargo and release their cargo into the cytoplasm by disruption of the endosomal vesicle. Examples of PTDs include AntHD, TAT, VP22, cationic prion protein domains and functional fragments thereof. The disclosure provides methods and compositions that combine the use of PTDs such as TAT and poly-Arg, with an active fragment of kalirin to promote uptake into a cell either in vitro or in vivo.

In general, the transduction domain of the fusion molecule can be nearly any synthetic or naturally-occurring amino acid sequence that can transduce or assist in the transduction of the fusion molecule. For example, transduction can be achieved in accord with the disclosure by use of a protein sequence such as an HIV TAT protein or fragment thereof that is covalently linked at the N-terminal or C-terminal end to an active fragment of kalirin. Alternatively, the transducing protein can be the Antennapedia homeodomain or the HSVVP22 sequence, the N-terminal fragment of a prion protein or suitable transducing fragments thereof such as those known in the art.

The type and size of the PTD will be guided by several parameters including the extent of transduction desired. PTDs will be capable of transducing at least about 20%, 25%, 50%, 75%, 80% or 90% of the cells of interest, more typically at least about 95%, 98% and up to, and including, about 100% of the cells. Transduction efficiency, typically expressed as the percentage of transduced cells, can be determined by several conventional methods.

In one aspect, a PTD useful in the methods and compositions of the disclosure comprise a peptide featuring substantial alpha-helicity. It has been discovered that transduction is optimized when the PTD exhibits significant alpha-helicity. In another embodiment, the PTD comprises a sequence containing basic amino acid residues that are substantially aligned along at least one face of the peptide. A PTD domain of the disclosure may be a naturally occurring peptide or a synthetic peptide.

In yet another embodiment, the PTD domain comprises a peptide represented by the following general formula: 5 B1— X_1 — X_2 — X_3 — B_2 — X_4 — X_5 — B_3 (SEQ ID NO:27) wherein B₁, B₂, and B₃ are each independently a basic amino acid, the same or different; and X₁, X₂, X₃, X₄ and X₅ are each independently an alpha-helix enhancing amino acid the same or different. In another embodiment, the PTD domain is rep- 10 resented by the following general formula: B1— X_1 — X_2 — B_2 — B_3 — X_3 — X_4 — B_4 (SEQ ID NO:28) wherein B₁, B₂, B₃, and B₄ are each independently a basic amino acid, the same or different; and X₁, X₂, X₃, and X₄ are each independently an alpha-helix enhancing amino acid the same or different; and X₁, X₂, X₃, and X₄ are each independently an alpha-helix enhancing amino acid the same or different.

Additionally PTD domains comprise basic residues, e.g., lysine (Lys) or arginine (Arg), and further including at least one proline (Pro) residue sufficient to introduce "kinks" into the domain. Examples of such domains include the transduction domains of prions. For example, such a peptide com- 20 prises KKRPKPG (SEQ ID NO:29).

In another embodiment the PTD is cationic and consists of between 7 and 10 amino acids and has the formula $KX_1RX_2X_1$ (SEQ ID NO:30) wherein X_1 is R or K and X_2 is any amino acid. An example of such a peptide comprises 25 RKKRRQRRR (SEQ ID NO:31).

Additional transducing domains in accord with this invention include a TAT fragment that comprises at least amino acids 49 to 56 of TAT up to about the full-length TAT sequence. A TAT fragment may include one or more amino acid changes sufficient to increase the alpha-helicity of the fragment. In some instances, the amino acid changes introduced will involve adding a recognized alpha-helix enhancing amino acid. Alternatively, the amino acid changes will involve removing one or more amino acids from the TAT fragment the impede alpha helix formation or stability. In a more specific embodiment, the TAT fragment will include at least one amino acid. Typically the TAT fragment will be made by standard peptide synthesis techniques although recombinant DNA approaches may be used in some cases.

Additional transduction proteins (PTDs) that can be used in the compositions and methods of the disclosure include the TAT fragment in which the TAT 49-56 sequence has been modified so that at least two basic amino acids in the sequence 45 are substantially aligned along at least one face of the TAT fragment. Illustrative TAT fragments include at least one specified amino acid substitution in at least amino acids 49-56 of TAT which substitution aligns the basic amino acid residues of the 49-56 sequence along at least one face of the 50 segment and typically the TAT 49-56 sequence.

Also included are chimeric PTD domains. Such chimeric transducing proteins include parts of at least two different transducing proteins. For example, chimeric transducing proteins can be formed by fusing two different TAT fragments, e.g., one from HIV-1 and the other from HIV-2 or one from a prion protein and one from HIV. content to the transducing protein and one from HIV. content to the transducing protein and one from HIV. content to the transducing protein and one from HIV. content to the transducing protein and one from HIV. content to the transducing protein and one from HIV. content to the transducing protein and one from HIV. content to the transducing protein and one from HIV. content to the transducing protein and one from HIV. content to the transducing protein and one from HIV. content to the transducing protein transducing protein and one from HIV. content to the transducing protein transducing protein transducing protein and one from HIV. content to the transducing protein transducing protein transducing protein transducing proteins (transducing proteins). For example, chimeric transducing proteins (transducing proteins), chimeric transducing protei

PTDs can be linked or fused with an active fragment of kalirin. It will be understood that the PTD may be fused to an active fragment of kalirin or the coding sequences for a PTD 60 and the coding sequence for an active fragment of kalirin may be operably linked such that upon expression in a suitable recombinant cell a fusion polypeptide is provided.

As noted, components of the fusion polypeptides disclosed herein, e.g., a PTD and an active fragment of kalirin, can be 65 organized in nearly any fashion provided that the fusion polypeptide has the function for which it was intended. The

fusion polypeptides or chimeric proteins comprising one or more PTDs linked to an active fragment of kalirin may be linked by a peptide linker. Each of the several domains may be directly linked or may be separated by a linker peptide. The domains may be presented in any order Additionally, the fusion polypeptides may include tags, e.g., to facilitate identification and/or purification of the fusion polypeptide, such as a 6xHIS tag (SEQ ID NO: 52).

Peptide linkers that can be used in the fusion polypeptides will typically comprise up to about 20 or 30 amino acids, commonly up to about 10 or 15 amino acids, and still more often from about 1 to 5 amino acids. The linker sequence is generally flexible so as not to hold the fusion molecule in a single rigid conformation. The linker sequence can be used, e.g., to space the PTD domain from an active fragment of kalirin. For example, the peptide linker sequence can be positioned between the protein transduction domain and the kalirin peptide, e.g., to provide molecular flexibility. The length of the linker moiety is chosen to optimize the biological activity of the polypeptide comprising a PTD domain fusion construct and can be determined empirically without undue experimentation. Examples of linker moieties are -Gly-Gly-, GGGGS (SEQ ID NO:32), (GGGGS)_N (SEQ ID NO:33), GKSSGSGSESKS (SEQ ID NO:34), GSTSGSGKSSEGKG (SEQ ID NO:35), GSTSGSGKSSEGSGSTKG (SEQ ID NO:36), GSTSGSGKPGSGEGSTKG (SEQ ID NO:37), or EGKSSGSGSESKEF (SEQ ID NO:38). Linking moieties are described, for example, in Huston et al., Proc. Nat'l Acad. Sci. 85:5879, 1988; Whitlow et al., Protein Engineering 6:989, 1993; and Newton et al., Biochemistry 35:545, 1996. Other suitable peptide linkers are those described in U.S. Pat. Nos. 4,751,180 and 4,935,233, which are hereby incorporated by reference.

An isolated polynucleotide of the disclosure include DNA as well as the corresponding complementary sequences. DNA includes, for example, cDNA, genomic DNA, chemically synthesized DNA, DNA amplified by PCR, and combinations thereof. The polynucleotides of the disclosure include full-length genes or cDNA molecules as well as a combination of fragments thereof. The polynucleotides of the disclosure are typically derived from human sources, but the disclosure includes those derived from non-human species, as well. In one aspect, a polynucleotide of the disclosure comprises (i) a polynucleotide comprising SEQ ID NO:1; (ii) a polynucleotide encoding a polypeptide comprising SEQ ID NO:2; (iii) a polynucleotide encoding an active fragment of SEQ ID NO:2; (iv) a polynucleotide encoding SEQ ID NO:3-25 or 26; (v) a polynucleotide of any one of (i-iv) wherein T can be U; (vi) a complement of any of (i-v); and a polynucleotide that hybridizes to any of (i-vi) under highly stringent conditions and encodes a kalirin polypeptide or active fragment thereof.

An "isolated polynucleotide" is one that has been separated from adjacent genetic sequences present in the genome of the organism from which the polynucleotide was isolated, in the case of polynucleotides isolated from naturally-occurring sources. In the case of polynucleotides synthesized enzymatically from a template or chemically, such as PCR products, cDNA molecules, or oligonucleotides for example, it is understood that the polynucleotides resulting from such processes are isolated polynucleotides. An isolated polynucleotide refers to a polynucleotide in the form of a separate fragment or as a component of a larger polynucleotide construct. In one embodiment, isolated polynucleotides are substantially free from contaminating endogenous material. The polynucleotide typically is derived from DNA or RNA isolated at least once in substantially pure form and in a quantity or concentration enabling identification, manipulation, and recovery of its component nucleotide sequences by standard biochemical methods (such as those outlined in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd sed., Cold 5 Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989)). Such sequences are provided and/or constructed in the form of an open reading frame uninterrupted by internal non-translated sequences, or introns, that are typically present in eukaryotic genes. Sequences of non-translated DNA can be 10 present 5' or 3' from an open reading frame, where the same do not interfere with manipulation or expression of the coding region.

The disclosure also includes polynucleotides that hybridize under moderately stringent conditions, and more typically under highly stringent conditions, to the complement of polynucleotides that encode the Kalirin polypeptides or active fragment described herein (e.g., SEQ ID NO:2 or 3, respectively). The basic parameters affecting the choice of hybridization conditions and guidance for devising suitable condi- 20 tions are set forth by Sambrook, J., E. F. Fritsch, and T. Maniatis (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., chapters 9 and 11; and Current Protocols in Molecular Biology, 1995, F. M. Ausubel et al., eds., John Wiley & Sons, 25 Inc., sections 2.10 and 6.3 6.4), and can be readily determined by those having ordinary skill in the art based on, for example, the length and/or base composition of the DNA. One way of achieving moderately stringent conditions for filter-bound target DNA involves the use of a prewashing solution con- 30 taining 5×SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0), hybridization buffer of about 6×SSC, and a hybridization temperature of about 68° C. (or other similar hybridization solutions, such as one containing about 50% formamide, with a hybridization temperature of about 42° C.), and washing conditions 35 of about 60° C., in 0.5×SSC, 0.1% SDS. "SSC" (1×) is 0.15 M NaCl, 0.015 M Na citrate, pH 7.0. Generally, highly stringent conditions are defined as hybridization conditions as above, but with washing at approximately 68° C., 0.2×SSC, 0.1% SDS. If desired, SSPE (1×SSPE is 0.15M NaCl, 10 mM 40 NaH2PO4, and 1.25 mM EDTA, pH 7.4) can be substituted for SSC in the hybridization and wash buffers, and the SDS can be omitted from any of the above the buffers without affecting the stringency. Washes are performed for 15 minutes after hybridization is complete. Wash temperature and 45 wash salt concentration can be adjusted as necessary to achieve a desired degree of stringency by applying the basic principles that govern hybridization reactions and duplex stability, as known to those skilled in the art and described further below (see, e.g., Sambrook et al., 1989). The hybrid- 50 ization temperature for hybrid duplexes anticipated to be less than 50 base pairs in length optimally is 5 to 10° C. below the melting temperature (Tm) of the duplex, where Tm is determined according to the following equations. For hybrids less than 18 base pairs in length, Tm (° C.)=2(# of A+T bases)+4(# 55 of #G+C bases). For hybrids above 18 base pairs in length, Tm (° C.)=81.5+16.6(log 10 [Na+])+0.41(% G+C)-(600/N), where N is the number of bases in the hybrid, and [Na+] is the concentration of sodium ions in the hybridization buffer ([Na+] for 1×SSC=0.165M). Typically, each such hybridiz- 60 ing polynucleotide has a length that is at least 15 nucleotides (or more typically at least 18 nucleotides, or at least 20 nucleotides, or at least 25 nucleotides, or at least 30 nucleotides, or at least 40 nucleotides, or most commonly at least 50 nucleotides), or at least 25% (at least 50%, or at least 60%, or at 65 least 70%, and most commonly at least 80%) of the length of the polynucleotide of the disclosure to which it hybridizes,

16

and has at least 60% sequence identity (at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 97.5%, or at least 99%, and most preferably at least 99.5%) with the polynucleotide of the disclosure to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

The disclosure also provides genes corresponding to the polynucleotide sequences disclosed herein. "Corresponding genes" or "corresponding genomic polynucleotides" are the regions of the genome that are transcribed to produce the mRNAs from which cDNA polynucleotide sequences are derived and may include contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein, for example, for designing probes or PCR primers. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" or "an isolated genomic polynucleotide" is a genomic polynucleotide that has been separated from the adjacent genomic sequences present in the genome of the organism from which the genomic polynucleotide was isolated.

The isolated polynucleotide of the disclosure may be operably linked to an expression control sequence such as that in the pDC412 or pDC314 vectors, or the pMT2 or pED expression vectors disclosed in Kaufman et al., Polynucleotides Res. 19, 4485 4490 (1991); and Pouwels et al. Cloning Vectors: A Laboratory Manual, Elsevier, N.Y., (1985), in order to produce the polypeptide recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant polypeptides are also known, such as those described in R. Kaufman, Methods in Enzymology 185, 537 566 (1990). As used herein "operably linked" means that the polynucleotide of the disclosure and an expression control sequence are situated within a construct, vector, or cell in such a way that the polypeptide encoded by the polynucleotide is expressed when appropriate molecules (such as polymerases) are present. As one embodiment of the disclosure, at least one expression control sequence is operably linked to the polynucleotide of the disclosure in a recombinant host cell or progeny thereof, the polynucleotide and/or expression control sequence having been introduced into the host cell by transformation or transfection, for example, or by any other suitable method.

As another embodiment of the disclosure, at least one expression control sequence is integrated into the genome of a recombinant host cell such that it is operably linked to a polynucleotide sequence encoding a polypeptide of the disclosure. In a further embodiment of the disclosure, at least one expression control sequence is operably linked to a polynucleotide of the disclosure through the action of a transacting factor such as a transcription factor, either in vitro or in a recombinant host cell.

In addition, a sequence encoding a signal peptide (native or heterologous) that promotes secretion can be incorporated into expression vectors. The choice of signal peptide or leader can depend on factors such as the type of host cells in which the recombinant polypeptide is to be produced. To illustrate, examples of heterologous signal peptides that are functional in mammalian host cells include the signal sequence for interleukin-7 (IL-7) described in U.S. Pat. No. 4,965,195; the signal sequence for interleukin-2 receptor described in Cosman et al., Nature 312:768 (1984); the interleukin-4 receptor signal peptide described in EP 367,566; the type I interleu- 5 kin-1 receptor signal peptide described in U.S. Pat. No. 4,968, 607; and the type II interleukin-1 receptor signal peptide described in EP 460,846. A DNA sequence for a signal peptide (secretory leader) can be fused in frame to the polynucleotide sequence of the disclosure so that the DNA is initially 10 transcribed, and the mRNA translated, into a fusion polypeptide comprising the signal peptide. A signal peptide that is functional in the intended host cells is one that promotes extracellular secretion of the polypeptide in that host cell. The signal peptide is cleaved from the polypeptide upon secretion 15 of polypeptide from the cell. The skilled artisan will also recognize that the position(s) at which the signal peptide is cleaved can differ from that predicted by computer program, and can vary according to such factors as the type of host cells employed in expressing a recombinant polypeptide. A 20 polypeptide preparation can include a mixture of polypeptide molecules having different N-terminal amino acids, resulting from cleavage of the signal peptide at more than one site.

Established methods for introducing DNA into mammalian cells have been described (Kaufman, R. J., Large Scale 25 Mammalian Cell Culture, 1990, pp. 15 69). Additional protocols using commercially available reagents, such as Lipofectamine lipid reagent (Gibco/BRL) or Lipofectamine-Plus lipid reagent, can be used to transfect cells (Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413 7417, 1987). In addition, 30 electroporation can be used to transfect mammalian cells using conventional procedures, such as those in Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2 ed. Vol. 1 3, Cold Spring Harbor Laboratory Press, 1989). Selection of stable transformants can be performed using methods known 35 in the art, such as, for example, resistance to cytotoxic drugs. Kaufman et al., Meth. in Enzymology 185:487 511, 1990, describes several selection schemes, such as dihydrofolate reductase (DHFR) resistance. A suitable strain for DHFR selection is CHO strain DX-B11, which is deficient in DHFR 40 (Urlaub and Chasin, Proc. Natl. Acad. Sci. USA 77:4216 4220, 1980). A plasmid expressing the DHFR cDNA can be introduced into strain DX-B11, and only cells that contain the plasmid can grow in the appropriate selective medium. Other examples of selectable markers that can be incorporated into 45 an expression vector include cDNAs conferring resistance to antibiotics, such as G418 and hygromycin B. Cells harboring the vector can be selected on the basis of resistance to these compounds.

A number of types of cells may act as suitable host cells for 50 expression of a kalirin polypeptide or active fragment thereof. Mammalian host cells include, for example, the COS-7 line of monkey kidney cells (ATCC CRL 1651) (Gluzman et al., Cell 23:175, 1981), L cells, C127 cells, 3T3 cells (ATCC CCL 163), Chinese hamster ovary (CHO) cells, HeLa cells, BHK 55 (ATCC CRL 10) cell lines, the CV1/EBNA cell line derived from the African green monkey kidney cell line CV1 (ATCC CCL 70) as described by McMahan et al. (EMBO J. 10: 2821, 1991), human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, other transformed primate cell lines, 60 normal diploid cells, cell strains derived from in vitro culture of primary tissue, primary explants, HL-60, U937, HaK or Jurkat cells. Alternatively, the polypeptide may be produced in lower eukaryotes such as yeast or in prokaryotes such as bacteria. Suitable yeast strains include Saccharomyces cer-65 Schizosaccharomyces pombe, Kluyveromyces evisiae. strains, Candida spp., Pichia spp. or any yeast strain capable

18

of expressing heterologous polypeptides. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous polypeptides. If the polypeptide is made in yeast or bacteria, it may be necessary to modify the polypeptide produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain a functional Kalirin polypeptide. Such covalent attachments may be accomplished using known chemical or enzymatic methods. The polypeptide may also be produced by operably linking the isolated polynucleotide of the disclosure to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBac® kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), and Luckow and Summers, Bio/Technology 6:47 (1988). As used herein, an insect cell that is modified to express an exogenous polynucleotide of the disclosure is considered "transformed." Cell-free translation systems may also be employed to produce polypeptides using RNAs derived from polynucleotide constructs disclosed herein. A host cell that comprises an isolated polynucleotide of the disclosure, preferably operably linked to at least one expression control sequence, is a "recombinant host cell".

The polypeptide of the disclosure may be prepared by culturing transformed host cells under culture conditions suitable to support expression of the recombinant polypeptide. The resulting expressed polypeptide may then be purified from such culture (i.e., from culture medium or cell extracts) using known purification processes, such as selective precipitation with various salts, gel filtration and ion exchange chromatography. The purification of the polypeptide may also include an affinity column containing agents that will bind to the polypeptide; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearl® or Cibacrom blue 3GA Sepharose®; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography using an antibody that specifically binds one or more Kalirin epitopes.

Alternatively, the polypeptide of the disclosure may also be expressed in a form that will facilitate purification. For example, it may be expressed as a fusion polypeptide, that is, it may be fused with a maltose binding polypeptide (MBP), glutathione-5-transferase (GST), thioredoxin (TRX) or poly-HIS. Kits for expression and purification of such fusion polypeptides are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, N.J.) and InVitrogen, respectively. The polypeptide can also be tagged with a non-Kalirin epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope (FLAG®) is commercially available from Kodak (New Haven, Conn.). Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the polypeptide. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant polypeptide. The polypeptide thus purified is substantially free of other mammalian polypeptides and is defined in accordance with the disclosure as an "isolated polypeptide." The described purification method may be used to isolate Kalirin and Kalirin fragments as well as antibodies that bind to Kalirin polypeptides, fragments, variants, binding partners etc. The polypeptide of the disclosure may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by containing somatic or germ cells 5 into which has been inserted a polynucleotide encoding a human Kalirin polypeptide.

It is also possible to utilize an affinity column comprising a polypeptide capable of binding to Kalirin polypeptides, such as a monoclonal antibody generated against Kalirin or against 10 an antigenic fragment thereof, to affinity-purify expressed Kalirin polypeptides. These Kalirin polypeptides can be removed from an affinity column using conventional techniques, e.g., in a high salt elution buffer and then dialyzed into a lower salt buffer for use or by changing pH or other com- 15 ponents depending on the affinity matrix utilized, or be competitively removed using the naturally occurring substrate of the affinity moiety, such as a polypeptide derived from the disclosure. In this aspect of the disclosure, Kalirin-binding polypeptides, such as the anti-Kalirin antibodies of the dis- 20 closure or other polypeptides that can interact with Kalirin or fragments thereof, can be bound to a solid phase support such as a column chromatography matrix or a similar substrate suitable for identifying, separating, or purifying cells that express polypeptides of the disclosure on their surface. 25 and combinations of fragments thereof, is the use of frag-Adherence of Kalirin-binding polypeptides of the disclosure to a solid phase contacting surface can be accomplished by any means, for example, magnetic microspheres can be coated with these polypeptide-binding polypeptides and held in the incubation vessel through a magnetic field. Suspen- 30 sions of cell mixtures are contacted with the solid phase that has such polypeptide-binding polypeptides thereon. Cells having polypeptides of the disclosure on their surface bind to the fixed Kalirin-binding polypeptide and unbound cells then are washed away. This affinity-binding method is useful for 35 purifying, screening, or separating such Kalirin-expressing cells from solution. Methods of releasing positively selected cells from the solid phase are known in the art and encompass, for example, the use of enzymes. Such enzymes are preferably non-toxic and non-injurious to the cells and are prefer- 40 ably directed to cleaving the cell-surface binding partner. Alternatively, mixtures of cells suspected of containing polypeptide-expressing cells of the disclosure first can be incubated with a biotinylated Kalirin-binding polypeptide of the disclosure. The resulting mixture then is passed through a 45 column packed with avidin-coated beads, whereby the high affinity of biotin for avidin provides the binding of the polypeptide-binding cells to the beads. Use of avidin-coated beads is known in the art. See Berenson, et al. J. Cell. Biochem., 10D:239 (1986). Wash of unbound material and the 50 release of the bound cells is performed using conventional methods.

The polynucleotides encoding the Kalirin polypeptides provided by the disclosure can be used for numerous diagnostic or other useful purposes. The polynucleotides of the 55 disclosure can be used to express recombinant Kalirin polypeptide for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding polypeptide is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in 60 disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled); to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of infor- 65 mation to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of

 $\mathbf{20}$

discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-polypeptide antibodies using DNA immunization techniques; as an antigen to raise anti-DNA antibodies or elicit another immune response, and for use in gene therapy.

Uses of Kalirin polypeptides and fragmented polypeptides include, but are not limited to, the following: purifying polypeptides and measuring the activity thereof; delivery agents; therapeutic and research reagents; molecular weight and isoelectric focusing markers; controls for peptide fragmentation; identification of unknown polypeptides; and preparation of Kalirin-specific antibodies. Any or all polynucleotides suitable for these uses are capable of being developed into reagent grade materials or kit format for commercialization as products. Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

Among the uses of the disclosed Kalirin polynucleotides, ments as probes or primers. Such fragments generally comprise at least about 17 contiguous nucleotides of a DNA sequence. In other embodiments, a DNA fragment comprises at least 30, or at least 60, contiguous nucleotides of a DNA sequence. The basic parameters affecting the choice of hybridization conditions and guidance for devising suitable conditions are set forth by Sambrook et al., 1989 and are described in detail above. Using knowledge of the genetic code in combination with the amino acid sequences set forth above, sets of degenerate oligonucleotides can be prepared. Such oligonucleotides are useful as primers, e.g., in polymerase chain reactions (PCR), whereby DNA fragments are isolated and amplified. In certain embodiments, degenerate primers can be used as probes for non-human genetic libraries. Such libraries would include but are not limited to cDNA libraries, genomic libraries, and even electronic EST (express sequence tag) or DNA libraries. Homologous sequences identified by this method would then be used as probes to identify non-human Kalirin homologues.

The polynucleotides encoding Kalirin polypeptides, and the disclosed fragments and combinations of these polynucleotides, can be used by those skilled in the art as a chromosome marker. In addition, polynucleotides of the disclosure or a fragment thereof can be used as a positional marker to map other genes of unknown location. Useful techniques include, but are not limited to, using the Kalirin polynucleotide sequence or portions thereof, including oligonucleotides, as a probe in various well-known techniques such as radiation hybrid mapping (high resolution), in situ hybridization to chromosome spreads (moderate resolution), and Southern blot hybridization to hybrid cell lines containing individual human chromosomes (low resolution).

The polynucleotides encoding Kalirin polypeptides, and the disclosed fragments and combinations of these polynucleotides can be used by one skilled in the art using well-known techniques to analyze abnormalities associated with the Kalirin gene or variants thereof. By this means, one can distinguish conditions in which this marker is rearranged or deleted and can use this information for diagnosing certain medical disorders. Kalirin DNA furthermore can be used in developing treatments for any disorder mediated (directly or indirectly) by defective, or insufficient amounts of, the genes

40

45

60

corresponding to the polynucleotides of the disclosure. Disclosure herein of native nucleotide sequences permits the detection of defective genes, and the replacement thereof with a normal Kalirin gene using gene therapy techniques known in the art. Defective genes can be detected in in vitro 5 diagnostic assays, and by comparison of a native nucleotide sequence disclosed herein with that of a gene derived from a person suspected of harboring a defect in a Kalirin gene.

In one aspect the disclosure relates to a method to identify modulators useful to treat, prevent or ameliorate pathological 10 conditions associated with excess iNOS activity or NO, including, but not limited to Alzheimer's Disease comprising: a) assaying for the ability of a candidate agent to modulate kalirin activity or production and which can further include b) assaying for the ability of an identified agent to reverse the 15 pathological effects observed in animal models of said conditions and/or in clinical studies with subjects with any one or more of said conditions.

Conventional screening assays (both in vitro and in vivo) may be used to identify agents the modulate kalirin protein ²⁰ activity and/or gene expression. Protein activity levels, e.g., enzymatic activity levels, can be assayed in a subject using a biological sample from the subject using conventional enzyme activity assays (e.g., to determine iNOS activity of NO in a sample). Gene expression (e.g., mRNA levels) may ²⁵ also be determined using methods familiar to one of skill in the art, including, for example, conventional Northern analysis or commercially available microarrays. Additionally, the effect of test agent on protein levels can be detected with an ELISA antibody-based assay or fluorescent labelling reaction 30 assay. These techniques are readily available for high throughput screening and are familiar to one skilled in the art.

Data gathered from these studies would be used to identify kalirin agonists with therapeutic usefulness for the treatment of pathological conditions discussed herein. Such agonists could be further assayed in conventional live animal models familiar to one of skill in the art and/or in clinical trials with humans according to conventional methods to assess the ability of said agent/agonist to treat, prevent or ameliorate any one or more of said conditions in vivo.

In another aspect, the disclosure relates to a method to treat, prevent or ameliorate pathological conditions associated with iNOS activity and NO including, but not limited to, Alzheimer's Disease, comprising administering to a subject in need thereof a pharmaceutical composition comprising an effective amount of a kalirin agonist.

The pharmaceutical compositions can comprise substances that inhibit the expression of other agents associated with the modulation of NO including, iNOS and homologs 50 thereof. Such molecules include ribozymes, antisense oligonucleotides, triple helix DNA, RNA aptamers, siRNA and/or double or single stranded RNA directed to an appropriate nucleotide sequence of nucleic acid encoding, for example, iNOS. These inhibitory molecules may be created using conventional techniques by one of skill in the art without undue burden or experimentation. For example, changes in polynucleotide expression in a cell can be obtained by designing vectors capable of expression of a desired molecule (e.g., a kalirin 7 polynucleotide, antisense iNOS and the like) by operably liking the desired molecule to control regions, i.e. to promoters, enhancers, and introns.

Vectors may be introduced into cells or tissues by many available means, and may be used in vivo, in vitro or ex vivo. For ex vivo therapy, vectors may be introduced into stem cells 65 taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfec-

tion and by liposome injections may be achieved using methods that are well known in the art.

The disclosure also provide methods and compositions for determining diagnosing or determining the risk of a subject for developing senile dementia (e.g., AD). The method comprises monitoring levels of kalirin polypeptides or activity and/or detecting gene expression (mRNA levels) in a subject.

Suitable antibodies for use in diagnostic methods and kits described herein may be obtained from a commercial source or produced according to conventional methods based upon the polypeptide sequence provided herein. Such antibodies may include, but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab')₂ fragments, fragments produced by a Fab expression library, antiidiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.

For the production of antibodies to the polypeptides discussed herein, various host animals may be immunized by injection with the polypeptides, or a portion thereof. Such host animals may include, but are not limited to, rabbits, mice, goats, chicken, and rats. Various adjuvants may be used to increase the immunological response, depending on the host species, including, but not limited to, Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum.

Detection method for use with antibodies are known in the art. For example, antibody detection may be achieved using standard ELISA, FACS analysis, and standard imaging techniques used in vitro or in vivo. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials.

In another aspect, the disclosure provides methods of treating neurodegenerative disorder and/or senile dementia comprising (i) stimulating production of kalirin in vivo and (ii) by gene therapy techniques. Kalirin gene products or therapeutic treatments can be obtained via homologous recombination, or "gene targeting," techniques. Such techniques employ the introduction of exogenous transcription control elements (such as the CMV promoter or the like) in a particular predetermined site on the genome, to induce expression of the endogenous polynucleotide sequence of interest (see, for example, U.S. Pat. No. 5,272,071). The location of integration into a host chromosome or genome can be easily determined by one of skill in the art, given the known location and sequence of the gene. In one embodiment, the disclosure contemplates the introduction of exogenous transcriptional control elements in conjunction with an amplifiable gene, to produce increased amounts of the gene product, again, without the need for isolation of the gene sequence itself from the host cell.

Because mutant or reduced kalirin polypeptide correlates with the excessive accumulation nitric oxide, the regulation of kalirin expression finds use in gene therapy to treat neurodegeneratie diseases associated with excess iNOS activity or NO production. In particular, to reduce the activity of iNOS or nitric oxide production, a functional kalirin gene or a polynucleotide encoding an active fragment of kalirin may be introduced into cells at the sites of excess iNOS activity or NO

production such that the cell expresses a therapeutically effective amount of kalirin polypeptide or active fragment thereof.

Adenoviral, adeno-associated, herpes virus, vaccinia, retroviral, or other viral vectors with the appropriate tropism for 5 cells likely to be involved in neurodegenerative diseases such as AD may be used as a gene transfer delivery system for a therapeutic kalirin genetic construct. Viral vectors which do not require that the target cell be actively dividing, such as adenoviral and adeno-associated vectors, are particularly use-10 ful when the cells are accumulating but not particularly proliferative. Numerous vectors useful for this purpose are generally known (Miller, Human Gene Therapy 15-14, 1990; Friedman, Science 244:1275-1281, 1989; Eglitis and Anderson, BioTechniques 6:608-614, 1988; Tolstoshev and Ander- 15 son, Current Opinion in Biotechnology 1:55-61, 1990; Sharp, The Lancet 337:1277-1278, 1991; Cornetta et al., Nucleic Acid Research and Molecular Biology 36:311-322, 1987; Anderson, Science 226:401-409, 1984; Moen, Blood Cells 17:407-416, 1991; and Miller and Rosman, Biotechniques 20 7:980-990, 1989; Le Gal La Salle et al., Science 259:988-990, 1993; and Johnson, Chest 107:77S-83S, 1995). Retroviral vectors are particularly well developed and have been used in clinical settings (Rosenberg et al., N. Engl. J. Med 323:370, 1990; Anderson et al., U.S. Pat. No. 5,399,346).

By inserting a kalirin polynucleotide or oligonucleotide of interest into the viral vector, along with another gene which encodes the ligand for a receptor on a specific target cell, for example, the vector is now target specific. Viral vectors can be made target specific by attaching, for example, a sugar, a 30 glycolipid, or a protein. Preferred targeting is accomplished by using an antibody to target the viral vector. Those of skill in the art will know of, or can readily ascertain without undue experimentation, specific polynucleotide sequences which can be inserted into the viral genome or attached to a viral 35 envelope to allow target specific delivery of the viral vector containing a kalirin polynucleotide or oligonucleotide, e.g., the human wild-type kalirin polynucleotide.

Since recombinant viruses are defective, they require assistance in order to produce infectious vector particles. This 40 assistance can be provided, for example, by using helper cell lines that contain plasmids encoding all of the structural genes of the virus under the control of regulatory sequences within the viral genome. These plasmids are missing a nucleotide sequence which enables the packaging mechanism to 45 recognize a polynucleotide transcript for encapsidation. These cell lines produce empty virions, since no genome is packaged. If a viral vector is introduced into such cells in which the packaging signal is intact, but the structural genes are replaced by other genes of interest, the vector can be 50 packaged and vector virion produced.

Non-viral approaches may also be employed for the introduction of therapeutic kalirin polynucleotide or oligonucleotide into cells otherwise predicted to have excessive iNOS activity or NO accumulation. For example, kalirin or an active 55 fragment thereof may be introduced by the techniques of colloidal dispersion (Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413, 1987; Ono et al., Neuroscience Lett 117:259, 1990; Brigham et al., Am. J. Med. Sci. 298:278, 1989; Staubinger and Papahadjopoulos, Meth. Enz. 101:512, 1983); asia- 60 lorosonucoid-polylysine conjugation (Wu and Wu, J. Biol. Chem. 263:14621, 1988; Wu et al., J. Biol. Chem. 264:16985, 1989); or, less preferably, microinjection under surgical conditions (Wolff et al., Science 247:1465, 1990).

Colloidal dispersion systems include macromolecule com- 65 plexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed

micelles, and liposomes. Liposomes are artificial membrane vesicles which are useful as delivery vehicles in vitro and in vivo. It has been shown that large unilamellar vesicles (LUV), which range in size from 0.2-4.0 µm can encapsulate a substantial percentage of an aqueous buffer containing large macro molecules. RNA, DNA and intact virions can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley, et al., Trends Biochem. Sci., 6:77, 1981). In addition to mammalian cells, liposomes have been used for delivery of polynucleotides in plant, yeast and bacterial cells. In order for a liposome to be an efficient gene transfer vehicle, the following characteristics should be present: (1) encapsulation of the genes of interest at high efficiency while not compromising their biological activity; (2) preferential and substantial binding to a target cell in comparison to non-target cells; (3) delivery of the aqueous contents of the vesicle to the target cell cytoplasm at high efficiency; and (4) accurate and effective expression of genetic information (Mannino, et al., Biotechniques, 6:682, 1988).

The composition of the liposome is usually a combination of phospholipid, particularly high-phase-transition-temperature phospholipids, usually in combination with steroids, especially cholesterol. Other phospholipids or other lipids may also be used. The physical characteristics of liposomes depend on pH, ionic strength, and the presence of divalent cations.

The targeting of liposomes can be classified based on anatomical and mechanistic factors. Anatomical classification is based on the level of selectivity, for example, organ-specific, cell-specific, and organelle-specific. Mechanistic targeting can be distinguished based upon whether it is passive or active. Passive targeting utilizes the natural tendency of liposomes to distribute to cells of the reticulo-endothelial system (RES) in organs which contain sinusoidal capillaries. Active targeting, on the other hand, involves alteration of the liposome by coupling the liposome to a specific ligand such as a monoclonal antibody, sugar, glycolipid, or protein, or by changing the composition or size of the liposome in order to achieve targeting to organs and cell types other than the naturally occurring sites of localization.

For any of the above approaches, the therapeutic kalirin polynucleotide or oligonucleotide construct is applied to the site where iNOS activity is to be controlled or NO production reduced (for example, by injection), but may also be applied to tissue in the vicinity of the iNOS or NO production or even to a blood vessel supplying the cells where control of iNOS activity or NO production is desired.

In the gene therapy constructs, kalirin polynucleotide or oligonucleotide expression is directed from any suitable promoter (e.g., the human cytomegalovirus, simian virus 40, actin or adenovirus constituative promoters; or the cytokine or metallothionein promoters for activated synoviocyte specific expression). Furthermore, kalirin production may be regulated by any desired mammalian regulatory element. For example, if desired, enhancers known to direct preferential gene expression can be used to direct kalirin expression. Such enhancers include, without limitation, those enhancers which are characterized as tissue or cell specific in their expression.

Alternatively, if a kalirin genomic clone is utilized as a therapeutic construct, kalirin expression is regulated by its cognate regulatory sequences or, if desired, by regulatory sequences derived from a heterologous source, e.g., any of the promoters or regulatory elements described above.

Less preferably, kalirin gene therapy is accomplished by direct administration of a kalirin mRNA to a cell predicted to require iNOS or NO control. This mRNA may be produced and isolated by any standard technique, but is most readily produced by in vitro transcription using a cDNA encoding a kalirin or active fragment under the control of a high efficiency promoter (e.g., the T7 promoter). Administration of kalirin mRNA to accumulated cells is carried out by any of the 5 methods for direct nucleic acid administration described above.

Ideally, the production of a kalirin or active fragment by any gene therapy approach described above results in a cellular level of the polypeptide that is at least equivalent to the 10 normal, cellular level of kalirin in an unaffected individual. Treatment by any kalirin-mediated gene therapy approach may be combined with more traditional therapies.

In yet another aspect, the upstream regulatory region of kalirin may be modified to induce expression of a kalirin 15 polypeptide. In humans kalirin-7 is located 3q21.1-q21.2 on chromosome 3. FIG. **8** provides the upstream regulatory sequence of kalirin 7. In one aspect, the regulatory sequence may be targeted with a heterologous regulatory domain that provides controlled or constitutive expression of kalirin 7 in 20 subjects that have excessive or reduced expression of kalirin 7. For example, where a tissue has excessive iNOS activity or increased NO content, a heterologous regulatory domain may be targeted upstream of kalirin (using the gene therapy techniques described above), such that the downstream kalirin 25 polynucleotide is regulated by the heterologous regulatory domain.

The following examples are intended to illustrate but not limit the disclosure.

EXAMPLE

AD patients and brain specimens-Brain specimens (1.6 cm×0.6 cm×0.5 cm) were obtained from the University of Kentucky Alzheimer's Disease Research Center. All AD 35 patients met standard clinical and neuropathological criteria for the diagnosis of AD. Age- and sex matched control subjects (Table III) were followed longitudinally and showed no evidence of cognitive decline and only age-related brain alterations at autopsy. Hippocampal and cerebellar samples were $_{40}$ removed at autopsy, immediately immersed in liquid N2 and stored at -70° C. The study used 19 AD and 15 control hippocampi and cerebella. The postmortem interval ranged from 2 to 4 h with a mean of 2.9 ± 0.9 . The weights of AD brains were not significantly different from the controls. 45 Since ApoE isoforms, ApoE2 (Cys¹¹²/Cys¹⁵⁸), ApoE3 (Cys¹¹²/Arg¹⁵⁸) and ApoE4 (Arg¹¹²/Arg¹⁵⁸), correlate with late onset AD, they were genotyped. The majority (84%) of the AD patients carried one or both ApoE4 alleles, whereas the majority (67%) of the controls were ApoE3/ApoE3 and 50 27% of the controls carried only one ApoE4 copy. Thus, ApoE typing shows that the samples reflect the general AD and control populations.

RNA extraction—Frozen samples from the hippocampus and cerebellum were thawed, weighed, and placed in 10 55 volumes of Trizol (Invitrogen). They were then homogenized in a micro-homogenizer for three-six 20 s bursts at the maximum speed, which was repeated 3-6 times. Total RNA was extracted from the homogenized tissues and also from transfected cells in Trizol according to the manufacture's instructions (Invitrogen). The RNA concentration was determined by absorption at 260 nm.

Gene expression analysis—Biotinylated cDNA was synthesized from 10 μ g of total RNA, and hybridized to the U133A GeneChip (Affymetrix) at 45° C. for 16 h. The chips were washed, stained, and scanned using an Affymetrix GeneChip scanner. Labeling, hybridization and scanning were carried out according to the manufacturer's protocol. Raw image data were processed and normalized using Microarray Analysis suite 5.0. Data analysis was performed by SAS program version 8.2 and statistical analysis was performed by two-way ANOVA test to determine the p values (significance) of the differences between AD and control values. In addition to the p values, standard deviations among duplicates in repeats of a sample were also calculated.

Quantitative RT-PCR-First strand cDNAs were synthesized from 2 µg of total RNA extract using oligo(dT) and Superscript II reverse transcriptase (Invitrogen). They were amplified by PCR with platinum Taq DNA polymerase (Invitrogen) in 1.5 mM MgCl₂ in the manufacturer's buffer. The PCR regimen consisted of initial denaturation at 94° C. for 2 min, followed by 23-27 cycles 94° C. for 30 s, 58° C.-62° C. for 30 s and 72° C. for 1 min. PCR products were separated on 1.5% agarose gels. PCR was performed at least three times for each sample. GAPDH (accession number M33197) was used as an internal standard and normalization. The PCR products were analyzed on a Typhoon 8600 scanner (Amersham). The following primers were used for PCR; human Kalirin forward primer (5'-CATGCGGGCACCTTCTTTG-3' (SEQ ID NO:39)), human Kalirin reverse primer (5'-GTTTTAT-TGTCTGAGGATGGGG-3' (SEQ ID NO:40)) (in the DH-PH boundary in GEFL), human iNOS forward primer (5'-CTTCAGTATCACAACCTCAGC-3' (SEQ ID NO:41)), human iNOS reverse primer (5'-GATGTGTTCAAA-CATTTCCCGG-3' (SEQ ID NO:42)), GAPDH forward primer (5'-CAACGGATTTGGTCGTATTGG-3' (SEQ ID 30 NO:43)), and GAPDH reverse primer (5'-CAGTGGACTC-CACGACGTACT-3' (SEQ ID NO:44)).

Real-time PCR—Real-time PCR was performed using a BioRad iQ iCycler Detection System (BioRad Laboratories, Ltd) with SYBR green fluorophore (iQ Super-mix, BioRad). Reactions were performed in a total volume of 25 µl including 12.5 µl 2× SYBR Green iQ Super Mix (BioRad), 1 µl of each primer at 10 µM concentration, and 1 µl of the previously reverse-transcribed cDNA template. Thermal cycling conditions were as follows: an initial incubation at 95° C. for 2 min to activate the polymerase followed by 40 cycles of 95° C. for 30 s, 57° C. for 30 s and 72° C. for 30 s, and a final incubation at 72° C. for 1 min. A melt curve analysis was performed following every run to ensure a single amplified product for every reaction. PCR fluorophore acquisition temperatures were set at 1° C. below the melt curve peak. All reactions were performed in duplicate for every sample. The same reference standard dilution series (single cut Kalirin plasmid DNA) was repeated on every experimental plate and quantifications of both the Kalirin and the GAPDH are based on this using iCycler iQ Optical System Software Version 3.0a (BioRad). Duplicate negative controls (no template cDNA) were also run with every experimental plate to assess specificity and indicate potential contamination. GAPDH was used for relative quantification. The forward and reverse primers were 5'-TGGAGAGTCAATGCTCAACG-3' (SEQ ID NO:45) and 5'-GTCTTCTGCAAGGAAGTGGC-3' (SEQ ID NO:46) for human Kalirin (at the 7th spectrin repeat), and 5'-TGCAC-CACCACCAACTGCTTA-3' (SEQ ID NO:47) and 5'-GAG-GCAGGGATGATGTT-3' (SEQ ID NO:48) for human GAPDH. These primers for real-time PCR differ from those used for quantitative RT-PCR, because they were designed by BioRad based on an optimal product length of ~120 bases and optimal sequences for real-time PCR. To test the fidelity of the two different sets of the primers and the PCR methods, the real-time PCR primers were used for quantitative RT-PCR. The results were the same regardless of the primers, verifying the concentrations of mRNAs.

Genomic DNA purification and ApoE typing-Genomic DNA was purified from 25 µg of the brain tissues using QIAamp DNA mini kit (QIAgen) according to the manufacturer's instruction. Twenty five of each genomic DNA sample was amplified using platinum Taq DNA polymerase (Invitro-5 gen) in 1.5 mM MgCl₂ in the manufacturer's buffer. The PCR regimen consisted of initial denaturation at 94° C. for 2 min, 35 cycles of 94° C. for 1 min, 58° C. for 1 min and 72° C. for 2 min, and termination at 72° C. for 10 min. The human ApoE forward primer, 5'-CGGAGGAGACGCGGGCAC-3' (SEQ 10ID NO:49), and ApoE reverse primer, 5'-TCAGTGAT-TGTCGCTGGGCAC-3' (SEQ ID NO:50), were designed to cover the ApoE2, ApoE3 and ApoE4 polymorphism, based on the ApoE gene sequence. PCR products were resolved on 1.5% agarose gels, extracted and purified with QIAquick gel 15 extraction kit (QIAgen) according to the manufacturer's instruction. Purified DNAs were directly sequenced on CEQ 2000 sequencer (Beckman).

Immunoblot and immunoprecipitation—Proteins were extracted. Brain samples were directly solubilized in 10 vol- 20 ume of lysis buffer (50 mM Tris HCl at pH 7.5, 120 mM NaCl, 5 mM EDTA, 1% Nonidet P-40 (0.3 mg/ml), 8 μ g/ml aprotinin, 2 μ g/ml pepstatin A, 2 μ g/ml leupeptin, 1 mM Na₃VO₄, 50 mM NaF and 0.2% of SDS) using Omni 2000 homogenizer (Omni International Inc). The solubilized samples 25 were centrifuged at 15,000×g for 10 min, the supernatants were saved, and protein concentration was measured by the Bradford method. Cultured cells were suspended in another lysis buffer consisting of 100 mM Tris HCl (pH7.5), 150 mM NaCl, 2 mM EDTA, 0.5% of Triton X-100, 1 mM PMSF, 4 30 μ g/ml aprotinin, 1 μ g/ml pepstatin A, 1 μ g/ml leupeptin, 1 mM Na₃VO₄, 50 mM NaF and 0.2% of SDS), and processed.

An equal protein-amount of solubilized supernatants was resolved by SDS-PAGE and blotted onto polyvinylidene difluoride membrane. The membranes were incubated for 1 h in 35 blocking solution containing 3% bovine serum albumin. The membranes were incubated for 1 h with primary antibodies diluted 1:500 in Tris-buffered saline containing 0.1% Tween 20. After washing, membranes were incubated for 1 h in 1:10,000 dilution of secondary antibodies coupled to horseradish peroxidase. Bands were visualized using a chemiluminescent peroxidase substrate (Sigma). Rabbit anti-actin antibodies and mouse anti-Flag M2 antibodies were purchased from Sigma. Blots were scanned, and the band intensity was digitized and quantified using Molecular Dynamics Image 45 Quant 5.1.

The 15,000×g supernatants were sequentially incubated with immunoprecipitation antibody-Sepharose 4B for 4 h at 4° C. (anti-iNOS or anti-Kalirin 7). After washing four times, the Sepharose gels were boiled in SDS and β -mercaptoetha- 50 nol and the samples were electrophoresed. The gel was immunoblotted.

Radio-iodination—The 15,000×g supernatants were individually mixed with 0.2 mCi of Na¹²⁵I in 0.1M NaOH and 7 μ l of chloramine T (1 mg/ml) in 10 mM Na₂HPO₄. After 30 s, 55 7 μ l of sodium metabisulfite (2.5 mg/ml) in 10 mM Na₂HPO₄ (pH 7.4) was introduced to terminate radio-iodination. Radioiodinated proteins were separated from the nonreacted ¹²⁵I on a small Sephadex G-150 column with PBS.

Assays for iNOS and NOS—The hippocampal and cerebellar specimens and the transfected cells were homogenized in 50 mM Tris HCl (pH 7.4), 1 mM EDTA, 0.1 mM tetrahydrobiopterin, 2 mM dithiothreitol, 10% (v/v) glycerol, aprotinin (25 µg/ml), leupeptin (25 µg/ml), 100 µM PMSF, 10 µM FMN, and 10 µM FAD. The homogenates were centrifuged at 2,000×g for 15 min, and the supernatants were assayed for iNOS. iNOS was also assayed in the presence of

10 mM Canavanine (Sigma) or L-NAME (Sigma). The collective activity of NOS (including eNOS, nNOS and iNOS) was determined in an identical fashion to iNOS activity, but in the presence of 1.25 mM Ca²⁺.

Preparation of A β 1-42 peptide—One mM of A β 1-42 (Biosource) was prepared in a capped vial at 37° C. for 5 days, and stored at -20° C. The frozen stock solution was diluted and used at the final concentration of 10 μ M.

Cell culture and transfection—AtT-20 cells (ATCC# CCL-89), SH-SY5Y cells (ATCC# CRL-2266), C6 cells (ATCC# CCL-107) and Neuro-2A cells (ATCC # CCL-131) were cultured according to the supplier's instructions. Each cell line was grown in a 25 cm² flask, stably transfected with pcDNA4 vector carrying Kalirin-7 or pcDNA3 carrying iNOS, using SuperFect transfection reagents (Qiagen) following the manufacture's instructions. Stable cell lines were selected using 0.5 mg/ml of G-418 for pcDNA3 or 0.12 µg/ml of zeocin for pcDNA4.

To induce the iNOS activity, cell lines were transfected with iNOS in pcDNA3 or stimulated with 3 μ g/ml of lipopolysaccharides (LPS) for 12-16 h (27) or 10 μ MA β 1-42 peptide for 18 h. Two different approaches of double transfection with Kalirin-7 and iNOS were used to determine the effects of Kalirin-7 on iNOS. The cell line stably expressing Kalirin-7 was transiently transfected with iNOS, and conversely, the cell line stably expressing iNOS was transiently transfected with increasing amounts of pcDNA4 carrying Kalirin-7 or Kalirin domains.

To test the putative toxic effect of high concentrations of plasmid DNA, up to 2.5 μ g, the *Renilla* luciferase assay (Promega) was used as a transfection reference. The AtT-20 cells stably expressing iNOS were transiently transfected with a constant amount of the pRL-TK vector (Promega) carrying *Renilla* luciferase and increasing amounts of the Kalirin plasmid. The co-transfected cells were assayed for iNOS and luciferase following the manufacturer's instructions.

In this study, specimens of hippocampi and cerebella were examined from 19 Alzheimer's patients in comparison with 15 control tissues from age- and sex-matched individuals. The genotyping results indicate that the AD patients and control subjects reflect the general AD and control populations.

Over-expressed genes and under-expressed in AD hippocampus—The hippocampus is the most sensitive region of the brain to AD, whereas the cerebellum is the least sensitive region of the brain and therefore used for an internal reference. To identify genes aberrantly expressed in the brain tissue of individuals with AD, RNA extracts from the hippocampus and cerebellum of the AD and control brains were analyzed. To enhance the accuracy of the analyses, individual samples, rather than pooled samples, were analyzed.

Gene expression levels of the individual specimens were determined with the Affymetrix HG-U133A GeneChip. The levels of genes expressed in hippocampal specimens of AD were compared with the expression levels in control hippocampal specimens. The resulting expression ratio of AD/control was compared with the ratios of other genes and those of cerebellar specimens. The results of candidate genes were confirmed with quantitative RT-PCR and real time PCR.

In the analysis, marginally expressed genes had a disproportionately high impact on the differential expression ratios between AD and normal samples. To overcome this problem, these marginally expressed genes were excluded and a statistical significance of p<0.01 was used as a criterion for identifying genes with significant expression differences. In addi tion, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was chosen as the internal reference, since the data demonstrated that its expression was one of the highest and invariant regardless of AD, control, hippocampus and cerebellum. The 30

top 15 over-expressed genes and under-expressed hippocampal genes are listed in Tables I-II; additional data on cerebellar over- and under-expressed genes and on constant genes are in IV-VII.

TABLE I

Top 15 Over-expressed genes in AD hippocampi								
			AD hipp	ocampus	Control h			
Gene Name	Unigene	p value	Intensity	Relative intensity	Intensity	Relative intensity	AD/C	
adipocyte enhancer binding protein 1	Hs.118397	4.92E-04	951 ± 582	0.053 ± 0.035	381 ± 113	0.029 ± 0.008	2.24	
Consensus: angiotension receptor-like 1	Hs.9305	3.99E-03	2,794 ± 2,145	0.173 ± 0.133	$1,339 \pm 556$	0.101 ± 0.042	2.09	
annexin A1 (ANXA1)	Hs.78225	1.28E-03	741 ± 465	0.046 ± 0.029	375 ± 174	0.028 ± 0.013	1.97	
chemokine receptoe CXCR4	_	3.06E-06	535 ± 205	0.039 ± 0.013	325 ± 129	0.024 ± 0.010	1.95	
complement subcomponent C1s, a- and b-	Hs.169756	3.67E-04	593 ± 469	0.055 ± 0.029	465 ± 181	0.035 ± 0.014	1.92	
paliadin (KIAA0992)	Hs.194431	6.17E-04	2,634 ± 1,387	0.163 ± 0.086	$1,419 \pm 734$	0.107 ± 0.055	1.86	
Consensus: transcriptional co-activator with PDZ	Hs.24341	2.85E-05	689 ± 257	0.043 ± 0.016	377 ± 158	0.028 ± 0.012	1.83	
lysosomal memorane glycoprotein-2	Hs.8262	3.19E-03	1,335 ± 803	0.083 ± 0.050	755 ± 348	0.057 ± 0.026	1.77	
insitol 1,4,5-trisphosphate 3-kinase B	Hs.78877	1.70E-05	3,077 ± 984	0.191 ± 0.061	1,792 ± 751	0.135 ± 0.057	1.72	
Consensus: KIAA0477 gene product	Hs.129928	1.85E-04	938 ± 360	0.058 ± 0.022	551 ± 187	0.041 ± 0.014	1.70	
Consensus: Caxeolin 1(22 kDa)	Hs.74034	6.73E-04	565 ± 247	0.035 ± 0.015	346 ± 114	0.026 ± 0.009	1.63	
mannosidase, a. class 2A, member 1	Hs.32965	1.36E-03	1,357 ± 604	0.084 ± 0.037	840 ± 404	0.063 ± 0.030	1.62	
Consensus: dimethylarginine	Hs.247362	1.46E-03	639 ± 245	0.040 ± 0.015	399 ± 169	0.030 ± 0.014	1.62	
methylamiohydrolase2								
sushi-repeat-Containing protein	Hs.15154	2.74E-03	563 ± 283	0.054 ± 0.018	545 ± 148	0.041 ± 0.011	1.59	
H2B histone family, member A	Hs.247817	3.04E-04	695 ± 262	0.043 ± 0.016	440 ± 32	0.033 ± 0.007	1.58	

The expression intensities of a gene in AD hippocampaly speciments and control hippocampal specimens were averaged to calculate the means and standard deviations. The ratio of the AD mean/control mean is presented along with the p value of the two sets of intensities. Marginally expressed genes and those with p values ≥ 0.01 were excluded in the analyses for Tables II-V. The relative intensities were calculated by dividing the intensities of a specimen by the intensity of GAPDH (~10,000) of the same specimen, which is one of the highest. The expression intensities of 0.96 for the hippocampus and 0.93 for the cerebellum, and the expression level was one of the highest. Because of these reasons, GAPDH serves as a good internal reference for studies on AD.

Top 15 Under-expressed genes in AD hippocampi.							
			AD hipp	ocampus	Control hip	_	
Gene Name	Unigene	p value	Intensity	Relative intensity	Intensity	Relative intensity	AD/C
differentiation-associated Na-dependent inorganic phosphate cotransporter	Hs.242821	4.61E-06	242 ± 143	0.015 ± 0.009	529 ± 238	0.040 ± 0.018	0.46
Consensus: regulator of G-proten signalling 4	Hs.227571	2.56E-07	1,875 ± 834	0.116 ± 0.052	$4,087 \pm 1,698$	0.308 ± 0.128	0.46
Consensus: hypothetical protein FLJ10649	Hs.8768	2.13E-06	708 ± 285	0.044 ± 0.018	$1,511 \pm 681$	0.114 ± 0.051	0.47
KIAA0985 protein	Hs.21239	3.13E-05	742 ± 338	0.046 ± 0.021	$1,422 \pm 387$	0.107 ± 0.029	0.52
Wnt inhibitory factor-I	Hs.284122	8.43E-05	330 ± 143	0.020 ± 0.009	621 ± 291	0.047 ± 0.022	0.53
calcium channel, voltage-dependent, gamma-subunit 3	Hs.7235	1.05E-04	619 ± 344	0.038 ± 0.021	1,143 ± 526	0.086 ± 0.040	0.54
Consensus: neurofilament, light polypeptide (68 kD)	Hs.211584	4.09E-04	2,292 ± 1,524	0.142 ± 0.095	4,205 ± 1,863	0.317 ± 0.140	0.55
Consensus: hypothetical protein	Hs.302689	5.41E-05	$4,188 \pm 2,003$	0.260 ± 0.124	7,577 ± 3,050	0.570 ± 0.230	0.55
Consensus: somatostatin	Hs.12409	6.21E-04	535 ± 450	0.033 ± 0.028	966 ± 344	0.073 ± 0.026	0.55
potassium voltage-gated channel, subfamily F, member 1 (KCNF1)	Hs.23735	8.44E-03	292 ± 2 00	0.018 ± 0.012	522 ± 377	0.039 ± 0.028	0.56
Consensus: mRNA for C11ORF25 gene	Hs.91791	7.28E-06	770 ± 247	0.048 ± 0.015	$1,378 \pm 571$	0.104 ± 0.043	0.56
visinin-like protein 1	Hs.2288	1.68E-04	$6,337 \pm 2,748$	0.393 ± 0.170	$11,282 \pm 4,093$	0.849 ± 0.308	0.56
Consensus: MADS box transcription enhancer factor2	Hs.78995	4.97E-05	1,553 ± 610	0.096 ± 0.038	2,762 ± 1,243	0.208 ± 0.094	0.56
regulator of G-protein signalling 4	Hs.227571	1.00E-03	576 ± 229	0.036 ± 0.014	$1,006 \pm 583$	0.076 ± 0.044	0.57
Kalirin (huntingtin-associated protein interacting protein)	Hs.8004	1.17E-07	843 ± 255	0.052 ± 0.016	1,432 ± 389	0.108 ± 0.029	0.59

TABLE II

TABLE	III
11 10 000	TTT

	Demongraphy and ApoE Brain Samples									
	Sex		1	АроЕ Тур	e					
	(sample number)	Age	PMI	Brain Weight (g)	E3/E2	E3/E3	E4/E3	E4/E4	E4/E2	
AD	Female (10)	78 ± 6.2	3.2 ± 1.0	1,061.9 ± 167.4	0	2	4	3	1	
	Male (9)	82 ± 7.6	3.0 ± 0.7	1,203.3 ± 126.8	0	1	7	1	0	
Control	Female (7)	85 ± 9.1	3.0 ± 0.8	1,085.7 ± 70.5	0	5	2	0	0	
	Male (8)	85 ± 9.0	2.4 ± 0.7	$1,255.0 \pm 75.5$	1	5	2	0	0	

TABLE IV

			AD cerebellum		Control	_	
Gene Name	Unigene	p value	Intensity	Relative intensity	Intensity	Relative intensity	AD/C
hypothetical protein FLJ21148	Hs.193300	1.85E-03	620 ± 341	0.057 ± 0.031	353 ± 123	0.031 ± 0.011	1.76
Consensus: methionine-tRNA synthetase	Hs.279946	8.71E-04	642 ± 306	0.059 ± 0.028	382 ± 92	0.033 ± 0.008	1.68
hypothetical protein	Hs.273186	1.32E-03	2,699 ± 1,356	0.249 ± 0.125	$1,651 \pm 453$	0.144 ± 0.040	1.63
Telethon_Strait02270_FL142							
inositol hexakisphosphate kinase 2	Hs.323432	2.82E-03	$2,605 \pm 1,383$	0.240 ± 0.128	$1,601 \pm 493$	0.140 ± 0.043	1.63
Homo sapiens KIAA0408 gene product	Hs.118744	1.60E-03	531 ± 215	0.049 ± 0.020	337 ± 101	0.029 ± 0.009	1.58
Consensus: RNA binding motif protein 10	Hs.154583	7.43E-03	$1,382 \pm 699$	0.128 ± 0.064	894 ± 297	0.078 ± 0.026	1.55
Consensus: ESTs	Hs.227170	5.16E-03	$1,149 \pm 552$	0.106 ± 0.051	749 ± 249	0.066 ± 0.022	1.53
Homo sapiens KIAA0445 gene product	Hs.301055	5.86E-03	769 ± 337	0.071 ± 0.031	512 ± 199	0.045 ± 0.017	1.50
Consensus: hypothetical C2H2 zinc finger protein	Hs.165983	9.33E-03	624 ± 257	0.058 ± 0.024	415 ± 201	0.036 ± 0.018	1.50
hypothetical protein FLJ10199	Hs.30925	1.35E-03	620 ± 223	0.057 ± 0.021	419 ± 97	0.037 ± 0.009	1.48
Cadherin	Hs.55173	6.22E-04	685 ± 243	0.063 ± 0.022	466 ± 98	0.041 ± 0.009	1.47
Consensus: KIAA0973 protein	Hs.227489	9.35E-03	849 ± 368	0.078 ± 0.034	587 ± 186	0.051 ± 0.016	1.45
arachidorate 5-lipoxygenase	Hs.89499	3.30E-03	$1,130 \pm 431$	0.104 ± 0.040	785 ± 231	0.069 ± 0.020	1.44
hypothetical protein FLJ11939	Hs.94229	8.40E-05	$1,348 \pm 299$	0.124 ± 0.028	948 ± 194	0.083 ± 0.017	1.42
Consensus: ESTs	Hs.6700	7.69E-04	731 ± 220	0.067 ± 0.020	519 ± 131	0.045 ± 0.011	1.41

TA	ΒL	Æ	V

Top 15 Under-expressed genes in AD cerebella.								
			AD cerebellum		Control c	_		
Gene Name	Unigene	p value	Intensity	Relative intensity	Intensity	Relative intensity	AD/C	
Fork head-like protein	Hs.14845	3.22E-03	429 ± 360	0.040 ± 0.033	751 ± 360	0.066 ± 0.031	0.57	
Consensus: KIAA0679 protein	Hs.5734	4.96E-03	662 ± 468	0.080 ± 0.043	$1,289 \pm 429$	0.113 ± 0.038	0.67	
fibroblast growth factor 14	Hs.197757	7.76E-03	606 ± 386	0.056 ± 0.036	902 ± 301	0.079 ± 0.026	0.67	
gephyrin	Hs.13405	8.67E-03	427 ± 240	0.039 ± 0.022	833 ± 221	0.055 ± 0.019	0.67	
Non-POU-domain-containing,	Hs.172207	5.05E-03	651 ± 312	0.060 ± 0.029	959 ± 375	0.084 ± 0.033	0.68	
octamer-binding								
regulator of G-protein signaling 11	Hs.65756	8.84E-03	437 ± 301	0.040 ± 0.028	644 ± 160	0.056 ± 0.014	0.68	
Consensus: myxoid liposarcoma	Hs.99969	5.40E-03	486 ± 209	0.045 ± 0.019	713 ± 286	0.062 ± 0.025	0.68	
specimens	Hs.283006	8.55E-03	431 ± 264	0.040 ± 0.024	627 ± 227	0.055 ± 0.020	0.69	
phospholipase C, beta 4 (PLCB4)	Hs.285006 Hs.155546	8.33E-03 1.48E-03	431 ± 204 525 ± 225	0.040 ± 0.024 0.049 ± 0.021	$\frac{627 \pm 227}{763 \pm 237}$	0.033 ± 0.020 0.067 ± 0.021	0.69	
ADP-ribosylation factor binding protein GGA2	H8.155540	1.48E-03	323 ± 223	0.049 ± 0.021	103 ± 231	0.067 ± 0.021	0.09	
golgin-67	Hs.182982	6.37E-03	$2,860 \pm 1,555$	0.264 ± 0.153	$4,135 \pm 1,023$	0.362 ± 0.090	0.69	
MDS024 protein	Hs.286122	1.01E-03	534 ± 212	0.049 ± 0.020	772 ± 192	0.068 ± 0.017	0.69	
Non-POU-domain-containing, octamer-binding	Hs.172207	2.68E-03	$1,175 \pm 586$	0.108 ± 0.054	$1,690 \pm 450$	0.148 ± 0.039	0.70	
protein phosphatase 2, regulatory	Hs.155079	5.23E-03	539 ± 105	0.050 ± 0.010	755 ± 200	0.066 ± 0.017	0.71	
subunit B Cytochrome P450 retnoid metabolizing	Hs.91546	4.21E-03	631 ± 279	0.058 ± 0.026	881 ± 197	0.077 ± 0.017	0.72	
protein putative dimethyladenosine transferase	Hs.125819	7.27E-03	406 ± 127	0.038 ± 0.012	562 ± 94	0.049 ± 0.008	0.72	

		AD hip	pocampus	Control l	uppocampus	
Gene Name	Unigene	Intensity	Relative intensity	Intensity	Relative intensity	
ribosomal protein L41 (RPL41)	Hs.324406	21,644 ± 8,112	1.76 ± 0.66	21,608 ± 9,431	1.58 ± 0.69	
Consensus: prostaglandin D2 synthase (21 kD, brain)	Hs.8272	$16,188 \pm 3,657$	$1,32 \pm 0.30$	$16,260 \pm 3,899$	1.19 ± 0.29	
ribosomal protein L3 (RPL3)	Hs.119596	$15,854 \pm 5,384$	1.29 ± 0.44	15,744 ± 4,655	1.15 ± 0.34	
Consensus: clone TCBAP0774	Hs.274472	$9,842 \pm 2,242$	0.80 ± 0.18	$9,816 \pm 1,861$	0.72 ± 0.14	
chaperone protein HSP90 beta	Hs.74335	$8,787 \pm 4,925$	0.72 ± 0.40	$6,780 \pm 2,520$	0.64 ± 0.18	
eukaryotic translation elongation factor 1 gamma	Hs.2166	$8,475 \pm 2,090$	0.69 ± 0.17	$8,515 \pm 2,740$	0.62 ± 0.20	
Consensus: ribosomal protein L22	Hs.99914	$8,118 \pm 2,028$	0.66 ± 0.17	$8,151 \pm 2,649$	0.60 ± 0.19	
Consensus: ribosomal protein L17	Hs.62202	$7,605 \pm 1,911$	0.62 ± 0.16	$7,636 \pm 1,081$	0.56 ± 0.08	
High-mobility group(nonhistone chromosomal) protein 1	Hs.274472	$5,321 \pm 1,024$	0.43 ± 0.08	5,322 ± 1,641	0.39 ± 0.12	
signal recognition particle 14 kD	Hs.180394	$5,105 \pm 911$	0.42 ± 0.07	$5,109 \pm 840$	0.37 ± 0.06	
ribosomal protein L44	Hs.178391	$4,963 \pm 723$	0.40 ± 0.06	$4,981 \pm 1,255$	0.36 ± 0.09	
MM-1 beta	Hs.286856	$4,895 \pm 1,018$	0.40 ± 0.06	$4,901 \pm 1,088$	0.36 ± 0.08	
Consensus: cyclin 1	Hs.79933	$4,577 \pm 1,151$	0.37 ± 0.09	$4,593 \pm 1,070$	0.34 ± 0.08	
Consensus: famesyl-diphosphate famesyltransferase 1	Hs.48876	$4,251 \pm 949$	0.35 ± 0.08	$4,232 \pm 1,929$	0.31 ± 0.14	
Consensus: tetratricopeptide repeat domain 3	Hs.118174	$4,138 \pm 1,490$	0.34 ± 0.12	$4,126 \pm 1,412$	0.30 ± 0.10	

TABLE VI

TABLE VII

		AD ce	rebellum	Control cerebellum		
Gene Name	Unigene	Intensity	Relative intensity	Intensity	Relative intensity	
ribosomal protein L3	_	17,103 ± 3,739	1.66 ± 0.36	17,111 ± 4,199	1.39 ± 0.34	
ribosomal protein L13a	Hs.119122	$16,416 \pm 3,932$	1.60 ± 0.36	$16,381 \pm 3,340$	1.33 ± 0.27	
Beta-actin	_	$13,049 \pm 1,124$	1.27 ± 0.11	$13,102 \pm 1,994$	1.06 ± 0.16	
Similar to ribosomal protein S24	Hs.180450	$12,076 \pm 1,278$	1.17 ± 0.12	$12,059 \pm 1,582$	0.96 ± 0.13	
actin, gamma 1	Hs.14376	$10,382 \pm 1,610$	1.01 ± 0.16	$10,402 \pm 908$	0.84 ± 0.07	
syntaxin binding protein 1	Hs.239356	9,279 ± 947	0.90 ± 0.09	$9,308 \pm 1,138$	0.76 ± 0.09	
ibosomal protein S17	Hs.5174	$8,896 \pm 2,120$	0.87 ± 0.21	$8,860 \pm 1,159$	0.72 ± 0.09	
appothetical protein	Hs.8022	$8,637 \pm 1,927$	0.84 ± 0.19	$8,651 \pm 2,432$	0.70 ± 0.20	
KIAA0802 protein	Hs.27657	$8,050 \pm 1,111$	0.78 ± 0.11	8,078 ± 1,490	0.66 ± 0.12	
Consensus: ribosomal protein S17	Hs.5174	$6,783 \pm 1,613$	0.66 ± 0.16	$6,788 \pm 1,209$	0.66 ± 0.10	
atty acid binding protein 7, brain	Hs.26770	$6,703 \pm 1,509$	0.65 ± 0.15	$6,733 \pm 1,207$	0.55 ± 0.10	
KIAA0275 gene	Hs.74583	6.038 ± 1.139	0.59 ± 0.11	6.058 ± 1.548	0.49 ± 0.13	
ealin (RELN)	Hs.12246	5.944 ± 1.042	0.58 ± 0.10	5.958 ± 631	0.46 ± 0.05	
containing (SORL1)	Hs.278571	5,774 ± 1,122	0.56 ± 0.11	5,797 ± 990	0.47 ± 0.07	
cytochrome c oxidase subunit Vic	Hs.74649	$5,623 \pm 1,327$	0.55 ± 0.13	5,626 ± 776	0.46 ± 0.06	

Differential gene expression in AD cerebella, which is ⁴⁵ distinct from differential gene expression in AD hippocampi—Many genes were differentially expressed in AD and control cerebella (Tables IV-V). However, differences in AD versus control expression in cerebellum were statistically less significant than differentially expressed genes in hippocampus. Genes that were differentially expressed in AD cerebella were markedly different from the genes demonstrating differential expression in AD hippocampi.

Invariant genes—There were 433 genes with an AD/con-55 trol ratio of ~1.0 in the hippocampi and 502 genes in the cerebella, demonstrating that these genes are not being differentially expressed. The top 15 genes are listed in Tables VI-VII, including several ribosomal proteins. GAPDH was also invariant with the AD/control ratio of 0.96 for the hippocampus and 0.93 for the cerebellum. β -actin was invariant but the AD/control ratios somewhat fluctuated between 1.0 and 0.8 depending on the gene chip probes. Also found to be invariant are other common housekeeping genes, such as GAPDH, β -actin, phosphoglycerate kinase 1, peptidylpro-51 lyly isomerase A, β_2 -microglobulin, succinate dehydrogenase, transferrin receptor, aminolevulinate synthase, glucu-

ronidase β , hydroxylmethyl-bilane synthase, hypoxanthine phosphoribosyltransferase β , tubulin β and TATA box binding protein.

Kalirin-7 is markedly and consistently under-expressed in AD hippocampi-The gene with the highest statistical significance from the analysis was Kalirin, with a p-value of 1.17×10^{-7} . Remarkably, it was under-expressed in all of the AD hippocampal specimens compared to the control specimens, except one control hippocampal specimen (FIG. 1A). Kalirin's expression ratio of AD/control was 0.59, which is the 15th most under-expressed gene in the AD hippocampi (FIG. 1A and Table II). Kalirin under-expression was further confirmed by semi-quantitative RT-PCR (FIG. 1B) and real time PCR (FIG. 1C) in these samples. In addition to the under-expressed Kalirin mRNA level, immunoblots identified one form of Kalirin in question as Kalirin-7, the most abundant isoform in adult brain, and showed that the protein expression level for Kalirin-7 was lower in AD hippocampi than control hippocampi (FIG. 2A). The less abundant larger forms of Kalirin are not detected with the antibody used in this work. In contrast to hippocampus, Kalirin mRNA and

protein levels in cerebella did not show significant difference between AD and control specimens (FIGS. 1 and 2).

More active iNOS in AD hippocampus—Kalirin-7 has a number of isoforms consisting of distinct domains, including a lipid binding domain, 9 spectrin like repeats, and a GEF 5 domain. These domains likely interact with various proteins and regulate them, including peptidylglycine α -amidating monooxygenase, huntingtin-associated protein 1 and iNOS. Kalirin is known to inhibit iNOS by forming enzymatically inactive heterodimers with iNOS, in both cultured cells and 10 mouse brain.

iNOS activity was significantly higher in the AD hippocampus than in the control hippocampus (FIG. **3**A). For example, the average activity of iNOS was 2.9 fold higher with p<0.0001 in the AD hippocampus than in the control 15 hippocampus (FIG. **3**A). When the 15 control and 19 AD hippocampal samples were sorted in order of increasing iNOS activity (FIG. **3**A), the AD hippocampi showed higher iNOS activity than control hippocampi. In contrast to hippocampus, the iNOS activity of control and AD cerebella was not 20 significantly different from the control hippocampus value (FIG. **3**A).

Expression of iNOS protein and mRNA in AD and control hippocampus—The increase in the iNOS activity could be due to either higher enzyme concentration or an intrinsically 25 more active enzyme. The expression levels of the iNOS protein varied considerably among the individual hippocampal specimens, regardless of AD and control, and the average expression level of iNOS protein was not significantly different in AD than control (FIG. **3**B). Similarly, individual hippocampal specimens showed notable variations, with the similar average mRNA level in AD and control. Taken together, the results indicate that the higher activity of iNOS in AD hippocampus is not related to expression levels.

Activity and expression of eNOS and nNOS-NO is pro- 35 duced by NO synthases (NOS), and there are three major isozymes, neuronal NOS (nNOS, NOS1), endothelial NOS (eNOS, NOS3) and iNOS(NOS2). The higher iNOS activity in AD hippocampus raises the question whether eNOS and nNOS are more active in AD hippocampus. The collective 40 activity of all NOS was the same in AD hippocampi as in control hippocampi, (FIG. 4A). However, the expression levels of eNOS and nNOS vary significantly among individual specimens, particularly among AD hippocampi (FIGS. 4B and 4C). Their average expression levels were not signifi- 45 cantly different in AD hippocampi than the controls (FIGS. 4B and 4C and Table VII). Furthermore, the results suggest that the expression levels of NOS isoforms alone do not explain their activity. The higher activity of iNOS in AD hippocampi could be attributed to lower inhibitor or higher 50 activator or both. Although little is known about the inhibitors and activators of iNOS in the human hippocampus, calmodulins are thought to activate iNOS in some tissues. However, they do not appear to be involved, because the mRNA levels of calmodulins are similar between AD and control hippoc- 55 ampi as well as between AD and control cerebella (FIG. 4D).

Interaction of Kalirin-7 and iNOS—AD hippocampi, control hippocampi, AD cerebella and control cerebella were solubilized in Triton X-100. An equal protein amount of the hippocampal samples and cerebellar samples was immunoprecipitated with anti-iNOS beads or anti-Kalirin beads. The precipitates were solubilized in SDS and electrophoresed, and the resulting gel was blotted and probed with anti-Kalirin, anti-iNOS or anti-Flag (FIG. **5**A). Kalirin-7 was found in all of the anti-iNOS immunoprecipitates and conversely, iNOS 65 was present in all of the anti-Kalirin immunoprecipitates. In contrast, several nonspecific antibodies did not stain the Kali-

rin and iNOS bands, indicating the specificity of anti-Kalirin and anti-iNOS. These results indicate that Kalirin-7 and iNOS are complexed in the human hippocampus and cerebellum.

However, it was unclear whether the co-immunoprecipitated Kalirin and iNOS is complexed in a cell or during solubilization of Kalirin from one cell and iNOS from another cell. To test these possibilities the cells expressing Kalirin and the cells expressing iNOS were combined, solubilized, immunoprecipitated with anti-Kalirin-beads or anti-iNOS beads, and immuno-blotted (FIG. **5**B). The two proteins were coimmunoprecipitated only when both were coexpressed in a cell, but not when they were expressed in separate cells. The results show that Kalirin and iNOS were complexed in a cell prior to solubilization and that the complex did not take place during the solubilization and immunoprecipitation.

Although the results indicate the association of Kalirin with iNOS, it is not clear whether these two molecules are complexed together with or without other molecules. So supernatants of AD and control hippocampi (500 µg) were immunoprecipitated with anti-Kalirin beads. The precipitate was solubilized in nonionic detergent, radio-iodinated with Na¹²⁵I, and fractionated on a Sephadex G-150 column to remove free 125I-iodine. The fractions were solubilized in SDS under the reducing condition and electrophoresed (FIG. 5C). The radio-iodination labels Tyr residues exposed near the surface of proteins but not those sequestered. The autoradiography of the fractions shows that most of the radioactivity was eluted in a fraction consistent with a >300 kDa complex (s). The autoradiograph showed a major band of iNOS and a minor band of Kalirin. A simplest explanation is that Tyr residues of iNOS are largely accessible to the radio-iodination, significantly more than those of Kalirin, although the inputs and immunoprecipitates of Kalirin and iNOS are similar as shown in FIG. 5A and FIG. 5B. To better assess the protein composition of the tubes, an equal CPM of the tube samples was electrophoresed. The autoradiograph revealed bands of <100 kDa in addition to the iNOS and Kalirin-7 bands. The band profile of all of the tubes is similar, suggesting that the complex contains Kalirin-7, iNOS and other proteins. In addition, the immunoprecipitation data confirm that the level of Kalirin-7 is lower in the AD tissues than in the control tissues, whereas the level of iNOS is not significantly different. Furthermore, iNOS is associated with Kalirin more in control hippocampus than in AD hippocampus, although only a small fraction of either protein is involved in this type of interaction at any given time. These results are consistent with the previous observations of FIGS. 3 and 4.

LPS or transfection with iNOS plasmid induces iNOS activity: Kalirin attenuates iNOS activity in cell lines—The effect of Kalirin-7 on the iNOS activity was examined in four cell lines (FIG. 7). The cells were stably transfected with the zeocin resistant pcDNA4 vector carrying the Kalirin-7 cDNA or empty vector. The level of iNOS protein was then increased in each cell line by transfection with the Geneticin resistant pcDNA3 encoding iNOS, treatment with LPS, or LPS plus A β 1-42. The data show that iNOS activity was always suppressed to basal levels in the presence of Kalirin-7, the specific iNOS inhibitor, Canavanine, or the general inhibitor of NOS, L-NAME. Importantly, A β 1-42 augments iNOS activity was also attenuated by Kalirin, Canavanine and L-NAME.

Attenuation of iNOS is dependent on the concentration of the Kalirin plasmid and Kalirin domain—It is possible that stably expressed or over-expressed Kalirin disrupted the protein processing of iNOS rather than directly inhibiting its enzyme activity. To test this possibility, the AtT-20 cell line stably expressing iNOS encoded in Geneticin resistant pcDNA3 was transiently transfected with increasing amounts of the zeocin resistant pcDNA4 Kalirin-7 vector (FIG. **6**A). Zeocin is considerably harsher than Geneticin and kills most of the cells that were not transfected in 36 h. The surviving 5 co-transfected cell lines expressed increasing concentrations of the Kalirin-7 protein. In parallel, increasing concentrations of the Kalirin-7 protein. In parallel, increasing concentrations of iNOS were co-immunoprecipitated with Kalirin-7 by anti-Kalirin. As a result the iNOS activity decreased. To test the putative toxic effect of the increasing Kalirin-7 plasmid con-10 centrations on cell health, the *Renilla* luciferase assay system (Promega) was used as a transfection reference. The Kalirin plasmid did not impair the synthesis and activity of *Renilla* luciferase (FIG. **6**A, solid line).

Kalirin has multiple domains, consisting of a Sec14p-like 15 putative lipid binding domain, nine spectrin-like repeats, tandem DH and pleckstrin homology (PH) domain as shown in FIG. **6**B. AtT-20 cells stably expressing iNOS were transiently transfected with pcDNA4 carrying different domains of Kalirin 7 cDNA. iNOS activity was attenuated by one 20 Kalirin domain (D2) consisting of the 354 amino acid V⁵⁰⁶-Q⁸⁶⁰ sequence (of SEQ ID NO:2) but not by other domains

SEO ID NO: 1

(FIG. 6C). It suggests that Kalirin specifically attenuated the iNOS activity, and a certain domain(s) of Kalirin was responsible for the suppression. To further define the regulatory site for iNOS, the 418 amino acid D⁴⁷⁴-Q⁸⁹¹ sequence of Kalirin (SEQ ID NO:2) was divided into 19 overlapping sections, each consisting of 33 amino acids (FIG. 6D). When the AtT-20 cells stably expressing iNOS were transiently transfected with the various pcDNA4s carrying individual sections, D2 domain and the wild type Kalirin 7, iNOS was suppressed most effectively by section # 8 (FIG. 6E). The suppression of iNOS was dependent on the concentration of the Kalirin section 8 plasmid, but Renilla luciferase, the internal reference, was not (FIG. 6F). The expression levels of the fragments, D2 and Kalirin 7 were similar according to their immunoblots for the Flag epitope attached at their N-termini (FIG. 6E lower panel). These results indicate the sequence around K⁶¹⁷ AARHLEVRIQDFVRRVEQRKLLLDMSVS-FHTH⁶⁴⁹ (SEQ ID NO:13) is largely, but not exclusively, responsible for the iNOS inhibition and suggests that the peptide mimic alone is capable of the suppression. The results indicate that Kalirin 7, not AKalirin, is responsible for the inhibition.

SEQUENCE LISTING

ATGACGGACCGCTTCTGGGACCAGTGGTATCTCTGGTATCTCCGCTTGCTCCGGCTGCTGGATCGAGGGTCTTT TCGGAATGATGGTTTGAAAGCTTCTGATGTCCTTCCTATCCTAAAGGAAAAGGTGGCCTTCGTGTCTGGGGGGTC GTGATAAGCGAGGGGGGCCCATCCTGACCTTCCCTGCTCGCAGCAATCATGACAGAATAAGACAGGAAGACCTG CGGAAACTCGTGACGTATTTGGCCAGCGTGCCAAGTGAGGACGTGTGCAAACGTGGCTTCACTGTCATCATCATCA CATGCGGGGCTCCAAGTGGGACCTCATCAAGCCCCTCCTCAAAACGCTGCAGGAAGCCTTTCCAGCTGAGATCC ATGTGGCCCTCATCATTAAACCCCGACAACTTCTGGCAGAAACAGAAGACCAACTTTGGCAGCTCCAAATTCATC TTTGAGACGAGCATGGTATCTGTGGAGGGCCTCACAAAGCTGGTGGACCCCTCCCAGCTGACGGAGGAGTTTGA TGGCTCCCTGGACTACAACCATGAGGAGTGGATCGAACTGCGGCTCTCCCTGGAGGAGTTCTTCAACAGCGCCG TGCACCTGCTCTCGCGCCTCGAGGACCTCCAGGAGATGCTAGCCCGGAAGGAGTTTCCTGTGGATGTGGAGGGC TCTCGGCGGCTCATTGACGAACACACACACAGCTCAAGAAAAAGGTGCTGAAGGCCCCTGTGGAGGAGCTGGACCG GGAGGGCAGCGGCTGCTGCAGTGCATCCGCTGCAGCGACGGCTTCTCAGGACGCAACTGCATCCCGGGCAGTG CTGACTTCCAGAGCCTGGTGCCCAAGATCACCAGTCTCCTGGACAAGCTGCACTCCACCCGGCAGCACCTGCAC CAGATGTGGCACGTGCGCAAGCTCAAGCTGGACCAGTGCTTTCAGCTGCGGCTCTTCGAGCAGGATGCTGAGAA GATGTTTGACTGGATAAGCCACAACAAGGAGTTATTCCTCCAGAGCCACACGGAGATCGGAGTCAGCTACCAGT ACGCCCTTGACCTCCAGACGCAGCACCAATCACTTTGCCATGAACTCCATGAATGCCTATGTCAACATCAACCGC ATCATGTCCGTGGCTTCCCGCCTCTCTGAGGCCGGTCATTATGCCTCACAACAAATCAAGCAGATCTCCACCCA GCTGGACCAGGAGTGGAAGAGCTTTGCTGCTGCCCTGGATGAACGCAGCACCATCCTCGCCATGTCTGCTGTGT TCCGAGATGCAAGACCTAGAGCTGGCAATCCACCACCACCAGACCTTGTATGAGCAGGTGACCCAAGCCTACAC AGAGGTCAGCCAGGATGGCAAAGCACTACTTGATGTGCTGCAGCGGCCCCTGAGCCCTGGGAACTCCGAATCCC TCACGGCCACAGCCAACTACTCCAAGGCAGTGCACCAGGTGCTGGACGTGCATGAGGTGTTACATCACCAG CGACGGCTGGAGAGCATCTGGCAGCACCGCAAGGTGCGGCTCCACCAGCGGCTGCAGCTCTGCGTCTTCCAGCA GGATGTACAGCAGGTGTTGGACTGGATTGAAAACCATGGTGAGGCCTTTCTCAGCAAACACACTGGAGTTGGGA AGTCCCTACATCGAGCCCGGGCCCTGCAGAAGAGGCATGATGACTTTGAAGAGTGGCTCAGAATACGTACACC AATGCGGACAAGCTCCTAGAAGCAGCAGCAGCAGTTGGCTCAGACGGGGGAATGTGACCCCCGAGGAGATCTACAA

-continued

GGCAGCTCGACACCTGGAGGTGCGCATCCAAGACTTCGTGCGCAGGGTGGAGCAGCGGAAGCTTCTCCTGGACA TGTCTGTTTCCTTCCACACACACACACACAGAGTTGTGGACATGGAAGACCTTCAGAAGGAGATGTTGGAG GATGTCTGTGCAGATTCTGTGGATGCAGTCCAGGAACTGATCAAACAGTTCCAGCAGCAGCAGACCGCCACTCT GGGAGCCCAGCGAGGCCAGGGACTCGGCTGTGTCCAACAACAACAACACCCCCACAGCAGCTCCATCAGCCACATC GAGTCGGTCCTGCAGCAGCTTGATGATGCCCAGGTGCAGATGGAGGAGCTGTTCCACGAGCGGAAGATCAAGCT GGACATCTTCCTGCAACTGCGCATCTTTGAGCAGTACACCATCGAGGTGACAGCAGAGCTAGACGCCTGGAATG AAGACTTGCTTCGGCAGATGAATGACTTCAACACAGAGGACCTAACCCTGGCAGAACAGCGGCTGCAGCGCCAC ACAGAACGGAAGCTAGCCATGAACAACATGACCTTTGAGGTTATCCAGCAGGGACAGGATCTGCACCAGTACAT CACGGAGGTCCAGGCATCAGGAATTGAGTTGATCTGTGAAAAAGACATTGATCTGGCAGCCCAGGTGCAAGAGT TATTGGAATTTCTCCATGAGAAGCAGCATGAATTGGAGCTCAATGCAGAGCAGACTCATAAGCGGCTAGAGCAG TGGCCATCGAGTCCCTCTTTCATGCCACTTCCTTGCAGAAGACGCACCAGAGTGCCCTGCAGGTACAGCAGAAA GCCGAGGTGCTGCTCCAGGCCGGCCACTACGATGCCGATGCCATCCGGGAATGTGCTGAGAAGGTGGCCCTCCA CTGGCAGCAGCTCATGCTGAAGATGGAAGACCGGCTAAAATTGGTCAATGCCTCTGTGGCCTTTTACAAAACTT CTGAACAGGTGTGTAGTGTCCTGGAGAGGCTTAGAGCAAGAATACCGGAGAGATGAGGACTGGTGGGGGACGA GATAAGCTGGGGCCAGCAGCAGAGATCGACCATGTCATCCCCTCATCAGCAAACATTTGGAACAAAAGGAGGC ${\tt CTTTCTTAAGGCCTGCACCCTGGCTCGGCGGGAATGCTGAGGTGTTTCTCAAGTACATCCACAGGAACAACGTCA}$ AGGGAGAATCGCGTGCTGCATTTCTGGACCTTGAAGAAGCGGCGGTTAGACCAATGCCAGCAATATGTGGTGTT CGAGCGCAGCGCTAAGCAGGCGCTTGACTGGATCCAAGAAACAGGTGAATTTTACCTCTCAACACATACCTCCA AAGGAGAAGGTGAAGCTTCTGATTCAGCTGGCCGATAGCTTTGTGGAAAAAGGCCACATTCATGCCACGGAGAT AAGGAAATGGGTGACCACGGTGGACAAGCACTACAGAGATTTCTCCCCTGAGGATGGGAAAGTACCGATACTCAC TGGAGAAAGCCCTAGGAGTCAACACAGAGGAGATAATAAGGACCTGGAGCTGGATATTATCCCAGCAAGCCTTTCG GATCGGGAGGTCAAGCTGCGGGACGCCAACCACGAAGTCAATGAAGAGAGCGGAAGTCAGCCCGGAAGAAAAGA ATTTATTATGGCTGAACTACTCCAGACAGAGAGAGGCTTATGTAAGGGATTTGCATGAGTGCTTAGAGACCTACC ATCCAAGAGATCTACGATTTCCATAACAACATCTTCCTCAAAGAGCTGGAGAAGTACGAGCAACTGCCTGAGGA ${\tt CCAACCAGCTTATCCTGGAGCATGCGGGCACCTTCTTTGATGAGATACAACAGCGGCATGGTCTGGCCAACTCC}$ ATCTCTTCCTACCTAATTAAGCCTGTCCAAAGGATCACCAAATATCAACTGCTCCTGAAGGAACTTTTAACTTG TTTCAAGTGTGGGACCCGAAGTCGCTGATCCGGAAGGGGCGGGAGCGGCACTTGTTCCTCTTTGAGATCTCCTT GGTTTTTAGCAAGGAGATCAAAGATTCTTCAGGACACACGAAATATGTTTACAAGAACAAGCTACTGACCTCAG AGCTGGGTGTGACCGAGCACGTGGAGGGCGATCCCTGCAAATTCGCCTTGTGGTCTGGGCGCACCCCATCCTCA ${\tt GACAATAAAACAGTGCTGAAAAGCCTCCAACATTGAAACCAAGCAGGAGTGGATCAAGAACATTCGAGAAGTGAT$ TCAAGAAAGGATCATTCACCTGAAAGGAGCCTTTAAAGGAGCCACTTCAGCTCCCCCAAAACACCAGCCAAACAGA

-continued

GGAACAATAGTAAGAGGGATGGAGTGGAGGAGGATATTGACAGCCAGGGGGATGGGAGCAGCCAACCAGACACCATC TCCATTGCTTCTAGGACCTCTCAGAACACAGTGGACAGGGACAGGATGGCAACCTTGTTCCTCGGTGGCACCT GGGACCTGGAGATCCTTTCTCCACTTACGTTTAG

SEO ID NO: 2 1 MTDRFWDQWYLWYLRLLRLLDRGSFRNDGLKASDVLPILKEKVAFVSGGRDKRGGPILTF PARSNHDRIRQEDLRKLVTYLASVPSEDVCKRGFTVIIDMRGSKWDLIKPLLKTLQEAFP 61 AEIHVALIIKPDNFWQKQKTNFGSSKFIFETSMVSVEGLTKLVDPSQLTEEFDGSLDYNH 121 EEWI ELRLSLEEFFNSAVHLLSRLEDLOEMLARKEFPVDVEGSRRLIDEHTOLKKKVLKA 181 PVEELDREGORLLOCIRCSDGFSGRNCIPGSADFOSLVPKITSLLDKLHSTROHLHOMWH 241 (SD 1 domain start site) VRKLKLDOCFOLRLFEODAEKMFDWISHNKELFLQSHTEIGVSYQYALDLQTQHNHFAMN 3.01 361 SMNAYVNINRIMSVASRLSEAGHYASOOIKOISTOLDOEWKSFAAALDERSTILAMSAVF ${\tt HQKAEQFLSGVDAWCKMCSEGGLPSEMQDLELAIHHHQTLYEQVTQAYTEVSQDGKALLD}$ 421 VLQRPLSPGNSESLTATANYSKAVHQVLDVVHEVLHHQRRLESIWQHRKVRLHQRLQLCV 481 (SD 2 domain start site) 541 $\texttt{FQQDVQQVLDWIENHGEAFLSKHTGVGKSLHRARAL} \underline{\texttt{QKRHDDFEEVAQNTYTNADKLLEA}$ ${\tt AEQLAQTGECDPEEIY} KAARHLEVRIQDFVRRVEQRKLLLDMSVSFHTHTKELWTWMEDL$ 601 $\label{eq:cadsvdav} Q \texttt{KEMLEDVCADSVDAVQELIKQFQQQQTATLDATLNVIKEGEDLIQQLRSAPPSLGEPSE}$ 661 **ARDSAVSNNKTPHSSSISHIESVLQQLDDAQVQMEELFHERKIKLDIFLQL**RIFEQYTIE 721 VTAELDAWNEDLLRQMNDFNTEDLTLAEQRLQRHTERKLAMNNMTFEVIQQGQDLHQYIT 781 EVQASGIELICEKDIDLAAQWQELLEFLHEKQHELELNAEQTHKRLEQCLQLRHLQAEVK 841 (SD 3 domain start site) 901 ${\tt QVLGWIRNGESMLNASLVNASSLSEAEQLQREHEQFQLAIESLFHATSLQKTHQSALQVQ}$ QKAEVLLQAGHYDADAIRECAEKVALHWQQLMLKMEDRLKLVNASVAFYKTSEQVCSVLE 961 SLEQEYRRDEDWCGGRDKLGPAAEIDHVIPLISKHLEQKEAFLKACTLARRNAEVFLKYI 1021 HRNNVSMPSVASHTRGPEOOÖXKAILSELLORENRVLHFWTLKKRRLDOCOOYVVFERSAK 1081 (SD 4 domain start site) QALDWIQETGEFYLSTHTSTGETTEETQELLKEYGEFRVPAKQTKEKVKLLIQLADSFVE 1141 KGHIHATEIRKWVTTVDKHYRDFSLRMGKYRYSLEKALGVNTEDNKDLELDIIPASLSDR 1201 EVKLRDANHEVNEEKRKSARKKEFIMAELLQTEKAYVRDLHECLETYLWEMTSGVEEIPP 1261 (DH domain) 1321 GILNKEHIIFGNIQEIYDFHNNIFLKELEKYEQLPEDVGHCFVTWADKFQMYVTYCKNKP DSNQLILEHAGTFFDEIQQRHGLANSISSYLIKPVQRITKYQLLLKELLTCCEEGKGELK 1381 DGLEVMLSVPKKANDAMHVSMLEGFDENLDVQGELILQDAFQVWDPKSEIRKGRERHEFE 1441 (PH domain) 1501 FEISLVFSKEIKDSSGHTKYVYKNKLLTSELGVTEHVEGDPCKFALWSGRTPSSDNKTVL KASNIETKQEWIKNIREVIQERIIHLKGALKEPLQLPKTPAKQRNNSKRDGVEDIDSQGD 1561

1621 GSSQPDTISIASRTSQNTVDSDKDGNLVPRWHLGPGDPFSTYV 1663

SD: Spectrin domain

DH: quanine nucleotide exchange factor domain

PH: phosphosphoinositide binding domain

Although the invention has been described with 65 without departing from the spirit of the invention. reference to the EXAMPLES above, it should be understood that various modifications can be made

Accordingly, the invention is limited only by the following claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 52

<210> SEQ ID NO 1 <211> LENGTH: 4992 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 1

gaaaaggtgg cettegtgte tgggggtegt gataagegag geggaeceat eetgaeette eetgetegea geaateatga eagaataaga eaggaagaee tgeggaaaet egtgaegtat ttggeeageg tgeeaagtga ggaegtgtge aaaegtgget teaetgteat eategaeatg eggggeteea agtgggaeet eateaageee eteetaaa egetgeagga ageettteea getgagatee atgtggeeet eateattaaa eeegaeaaet tetggeagaa acagaagaee aaetttggea geteeaaatt eatetttgag aegageatgg tatetgtgga gggeeteaca aagetggtgg acceeteeea getgaeggag gagtttgatg geteeetgga etaeaaeeat gaggagtgga tegaaetgeg geteteeetg gaggagttet teaaeagee eggeaeetg eteeegegee tegaggaeet eeaggagatg etageeegga aggagttee tgtggatgtg gagggetete ggeggeteat tgaegaaeae acaeagetea agaaaaaggt getgaaggee	60
gaaaaggtgg cettegtgte tgggggtegt gataagegag geggaeceat eetgaeette eetgetegea geaateatga eagaataaga eaggaagaee tgeggaaaet egtgaegtat ttggeeageg tgeeaagtga ggaegtgtge aaaegtgget teaetgteat eategaeatg eggggeteea agtgggaeet eateaageee eteetaaa egetgeagga ageettteea getgagatee atgtggeeet eateattaaa eeegaeaaet tetggeagaa acagaagaee aaetttggea geteeaaatt eatetttgag aegageatgg tatetgtgga gggeeteaca aagetggtgg acceeteeea getgaeggag gagtttgatg geteeetgga etaeaaeeat gaggagtgga tegaaetgeg geteteeetg gaggagttet teaaeagee eggeaeetg eteeegegee tegaggaeet eeaggagatg etageeegga aggagttee tgtggatgtg gagggetete ggeggeteat tgaegaaeae acaeagetea agaaaaaggt getgaaggee	
cctgctcgca gcaatcatga cagaataaga caggaagagacc tgcggaaact cgtgacgtat ttggccagcg tgccaagtga ggacgtgtgc aaacgtggct tcactgtcat catcgacatg cgggggctcca agtggggacct catcaagccc ctcctcaaaa cgctgcagga agcctttcca gctgagatcc atgtggccct catcattaaa cccgacaact tctggcagaa acagaagacc aactttggca gctccaaatt catctttgag acgagcatgg tatctgtgga gggcctcaca aagctggtgg acccctccca gctgacggag gagtttgatg gctccctgga ctacaaccat gaggagtgga tcgaactgcg gctctccctg gaggagttct tcaacagcgc cgtgcacctg ctctcgcgcc tcgaggacct ccatgagaga ctagcccgga aggagtttcc tgtggatgtg gaggagtgcc tcgaggacct ccatgagagatg ctagcccgga aggagttcc tgtggatgtg gaggggctctc ggcggctcat tgacgaacac acacagctca agaaaaaggt gctgaaggcc	120
ttggccagcg tgccaagtga ggacgtgtgc aaacgtggct tcactgtcat catcgacatg cgggggctcca agtgggacct catcaagccc ctcctcaaaa cgctgcagga agcctttcca gctgagatcc atgtgggcct catcattaaa cccgacaact tctggcagaa acagaagacc aactttggca gctccaaatt catctttgag acgagcatgg tatctgtgga gggcctcaca aagctggtgg accectecca gctgacggag gagtttgatg gctcectgga ctacaaccat gaggagtgga tcgaactgcg gctctcectg gaggagttct tcaacagcge cgtgcacctg ctctcgcgcc tcgaggacct ccaggagatg ctagcecgga aggagtttee tgtggatgtg gaggggctete ggcggctcat tgacgaacac acacagetca agaaaaaggt gctgaaggec	180
cgggggttcca agtgggacct catcaagccc ctcctcaaaa cgctgcagga agcctttcca gctgagatcc atgtggccct catcattaaa cccgacaact tctggcagaa acagaagacc aactttggca gctccaaatt catctttgag acgagcatgg tatctgtgga gggcctcaca aagctggtgg acccctccca gctgacggag gagtttgatg gctccctgga ctacaaccat gaggagtgga tcgaactgcg gctctccctg gaggagttct tcaacagcgc cgtgcacctg ctctcgcgcc tcgaggacct ccaggagatg ctagcccgga aggagtttcc tgtggatgtg gaggggctctc ggcggctcat tgacgaacac acacagctca agaaaaaggt gctgaaggcc	240
gctgagatcc atgtggccct catcattaaa cccgacaact tctggcagaa acagaagacc aactttggca gctccaaatt catctttgag acgagcatgg tatctgtgga gggcctcaca aagetggtgg acccctccca gctgacggag gagtttgatg gctccctgga ctacaaccat gaggagtgga tcgaactgcg gctctccctg gaggagttct tcaacagcgc cgtgcacctg ctctcgcgcc tcgaggacct ccaggagatg ctagcccgga aggagtttcc tgtggatgtg gaggggctctc ggcggctcat tgacgaacac acacagctca agaaaaaggt gctgaaggcc	300
aactttggca getecaaatt catetttgag acgageatgg tatetgtgga gggeeteaca aagetggtgg acceeteeca getgaeggag gagtttgatg geteeetgga etaeaaecat gaggagtgga tegaaetgeg geteteeetg gaggagttet teaaeagege egtgeaeetg etetegegee tegaggaeet eeaggagatg etageeegga aggagtttee tgtggatgtg gagggetete ggeggeteat tgaegaaeae acaeagetea agaaaaaggt getgaaggee	360
aagetggtgg accecteeea getgaeggag gagtttgatg geteeetgga etacaaeeat gaggagtgga tegaaetgeg geteteeetg gaggagttet teaaeagege egtgeaeetg etetegegee tegaggaeet eeaggagatg etageeegga aggagtttee tgtggatgtg gagggetete ggeggeteat tgaegaaeae acaeagetea agaaaaaggt getgaaggee	420
gaggagtgga tcgaactgcg gctctccctg gaggagttct tcaacagcgc cgtgcacctg ctctcgcgcc tcgaggacct ccaggagatg ctagcccgga aggagtttcc tgtggatgtg gagggctctc ggcggctcat tgacgaacac acacagctca agaaaaaggt gctgaaggcc	480
ctctcgcgcc tcgaggacct ccaggagatg ctagcccgga aggagtttcc tgtggatgtg gagggctctc ggcggctcat tgacgaacac acacagctca agaaaaaggt gctgaaggcc	540
gagggetete ggeggeteat tgaegaacae acaeagetea agaaaaaggt getgaaggee	600
	660
cetatagaag agetagaeeg agaagageag eggetgetge agtaeateeg etgeagegae	720
	780
ggetteteag gaegeaactg cateceggge agtgetgaet teeagageet ggtgeeeaag	840
atcaccagtc teetggacaa getgeactee acceggeage acetgeacea gatgtggeae	900
gtgcgcaagc tcaagctgga ccagtgcttt cagctgcggc tcttcgagca ggatgctgag	960
aagatgtttg actggataag ccacaacaag gagttattcc tccagagcca cacggagatc 1	020
ggagtcagct accagtacgc ccttgacctc cagacgcagc acaatcactt tgccatgaac 1	080
tccatgaatg cctatgtcaa catcaaccgc atcatgtccg tggcttcccg cctctctgag 1	140
gccggtcatt atgcctcaca acaaatcaag cagatctcca cccagctgga ccaggagtgg 1.	200
aagagetttg etgetgeeet ggatgaaege ageaeeatee tegeeatgte tgetgtgtte 1.	260
caccagaagg ctgagcagtt cctgtcggga gtggatgcct ggtgcaagat gtgcagtgaa 1.	320
ggtggtctgc catccgagat gcaagaccta gagctggcaa tccaccacca ccagaccttg 1.	380
tatgagcagg tgacccaagc ctacacagag gtcagccagg atggcaaagc actacttgat 1	440
gtgetgeage ggeeeetgag eeetgggaae teegaateee teaeggeeae ageeaaetae 1	500
tccaaggcag tgcaccaggt gctggacgtg gtgcatgagg tgttacatca ccagcgacgg 1	560
ctggagagca tctggcagca ccgcaaggtg cggctccacc agcggctgca gctctgcgtc 1	620
ttccagcagg atgtacagca ggtgttggac tggattgaaa accatggtga ggcctttctc 1	680
agcaaacaca ctggagttgg gaagtcccta catcgagccc gggccctgca gaagaggcat 1	740
gatgactttg aagaggtggc tcagaatacg tacaccaatg cggacaagct cctagaagca 1	800
gcagagcagt tggctcagac gggggaatgt gaccccgagg agatctacaa ggcagctcga 1	860
cacctggagg tgcgcatcca agacttcgtg cgcagggtgg agcagcggaa gcttctcctg 1	920
gacatgtetg ttteetteea cacacacace aaagagttgt ggacatggat ggaagaeett 1	980
cagaaggaga tgttggagga tgtctgtgca gattctgtgg atgcagtcca ggaactgatc 2	040

-continued

aaacaattaa	agcagcagca	aaccaccact	ctagatocca	cactcaatot	catcaaqqaa	2100
-	ttatccagca			_		2160
	cggctgtgtc					2220
	tgcagcagct					2280
						2230
	agctggacat					
	agctagacgc					2400
	taaccctggc					2460
-	tgacctttga			-		2520
	catcaggaat					2580
	tattggaatt					2640
	agcggctaga					2700
caggttctgg	gatggatccg	caatggagag	tcaatgetca	acgccagcct	ggtcaatgcc	2760
agctctttgt	cggaagcaga	gcagctgcag	cgggagcacg	agcagttcca	actggccatc	2820
gagtccctct	ttcatgccac	ttccttgcag	aagacgcacc	agagtgccct	gcaggtacag	2880
cagaaagccg	aggtgctgct	ccaggccggc	cactacgatg	ccgatgccat	ccgggaatgt	2940
gctgagaagg	tggccctcca	ctggcagcag	ctcatgctga	agatggaaga	ccggctaaaa	3000
ttggtcaatg	cctctgtggc	cttttacaaa	acttctgaac	aggtgtgtag	tgtcctggag	3060
agcttagagc	aagaataccg	gagagatgag	gactggtgtg	gtggacgaga	taagctgggg	3120
ccagcagcag	agatcgacca	tgtcattccc	ctcatcagca	aacatttgga	acaaaaggag	3180
gcctttctta	aggcctgcac	cctggctcgg	cggaatgctg	aggtgtttct	caagtacatc	3240
cacaggaaca	acgtcagcat	gcccagtgtc	gccagccaca	ctcgggggacc	cgagcaacaa	3300
gtgaaagcca	tcctgagtga	gctcctgcag	agggagaatc	gcgtgctgca	tttctggacc	3360
ttgaagaagc	ggcggttaga	ccaatgccag	caatatgtgg	tgttcgagcg	cagcgctaag	3420
caggcgcttg	actggatcca	agaaacaggt	gaattttacc	tctcaacaca	tacctccact	3480
ggagagacca	cagaggagac	tcaggaactg	ctgaaagaat	atggggaatt	cagggtgcct	3540
gccaagcaaa	caaaggagaa	ggtgaagctt	ctgattcagc	tggccgatag	ctttgtggaa	3600
aaaggccaca	ttcatgccac	ggagataagg	aaatgggtga	ccacggtgga	caagcactac	3660
agagatttct	ccctgaggat	gggaaagtac	cgatactcac	tggagaaagc	cctaggagtc	3720
aacacagagg	ataataagga	cctggagctg	gatattatcc	cagcaagcct	ttcggatcgg	3780
gaggtcaagc	tgcgggacgc	caaccacgaa	gtcaatgaag	agaagcggaa	gtcagcccgg	3840
aagaaagaat	ttattatggc	tgaactactc	cagacagaga	aggcttatgt	aagggatttg	3900
catgagtgct	tagagaccta	cctgtgggaa	atgaccagtg	gtgtggagga	gatccccct	3960
gggateetca	ataaagagca	tatcatcttt	ggcaacatcc	aagagatcta	cgatttccat	4020
aacaacatct	tcctcaaaga	gctggagaag	tacgagcaac	tgcctgagga	tgtgggacac	4080
tgctttgtta	cctgggcaga	caaatttcag	atgtatgtca	cctactgtaa	aaacaagcct	4140
gattccaacc	agcttatcct	ggagcatgcg	ggcaccttct	ttgatgagat	acaacagcgg	4200
catggtctgg	ccaactccat	ctcttcctac	ctaattaagc	ctgtccaaag	gatcaccaaa	4260
tatcaactgc	tcctgaagga	acttttaact	tgctgtgaag	aagggaaagg	ggagctcaag	4320
gatggcctgg	aggtgatgct	cagtgtccca	aagaaagcca	atgatgccat	gcatgtcagc	4380

-continued

											-	con	tin	ued				
atgo	etgga	aag g	ggtto	cgaco	ga ga	aacct	tggat	c gto	gcagę	999 <u>9</u>	agti	cgatt	cct (ccag	gatgco	2	4440	
ttto	caagt	gt g	gggad	cccga	aa gt	ceget	tgato	c cđá	gaago	gggc	aaa	agcgę	gca (cttgi	tcct	2	4500	
tttç	gagat	cct d	cctt	ggttt	t ta	agcaa	aggag	g ato	caaaq	gatt	ctto	cagga	aca	cacga	aaata	2	4560	
gttt	acaa	aga a	acaaç	gctad	ct ga	accto	cagaç	g cto	gggt	gtga	ccga	agcad	gt q	ggago	ggcgai	5	4620	
ccct	gcaa	aat t	cgco	cttgt	cg gt	cctg	ggago	c aco	eccat	cct	caga	acaat	caa a	aacaq	gtgct	9	4680	
aaaç	geete	cca a	acatt	cgaaa	ac ca	aagca	aggag	g tg	gatca	aaga	acat	tcga	aga a	agtga	attcaa	a	4740	
gaaa	aggat	cca t	tcad	cctga	aa aq	ggago	cttta	a aaq	ggago	ccac	ttca	agcto	ccc (caaaa	acacca	a	4800	
gcca	aaca	aga g	ggaad	caata	ag ta	aagaq	gggat	gga	agtgę	gagg	atai	tgad	cag	ccage	ggggat	5	4860	
ggga	agcaç	gee a	aacca	agaca	ac ca	atcto	ccatt	: gct	tcta	agga	cct	ctcaç	gaa (cacaç	gtgga	2	4920	
agto	gacaa	agg a	atggo	caaco	ct tç	gttco	ctcg	g tgo	gcaco	ctgg	gaco	ctgga	aga 1	cctt	tctco	2	4980	
actt	acgt	tt a	ag														4992	
<211 <212 <213	0> SE L> LE 2> TY 3> OF 0> SE	ENGTI IPE : RGANI	H: 16 PRT ISM:	563 Homo	o sa <u>r</u>	piens	3											
Met 1	Thr	Asp	Arg	Phe 5	Trp	Asp	Gln	Trp	Tyr 10	Leu	Trp	Tyr	Leu	Arg 15	Leu			
Leu	Arg	Leu	Leu 20	Asp	Arg	Gly	Ser	Phe 25	Arg	Asn	Asp	Gly	Leu 30	ГЛа	Ala			
Ser	Asp	Val 35	Leu	Pro	Ile	Leu	Lys 40	Glu	Lys	Val	Ala	Phe 45	Val	Ser	Gly			
Gly	Arg 50	Asp	Lys	Arg	Gly	Gly 55	Pro	Ile	Leu	Thr	Phe 60	Pro	Ala	Arg	Ser			
Asn 65	His	Asp	Arg	Ile	Arg 70	Gln	Glu	Asp	Leu	Arg 75	Lys	Leu	Val	Thr	Tyr 80			
Leu	Ala	Ser	Val	Pro 85	Ser	Glu	Asp	Val	Cys 90	Lys	Arg	Gly	Phe	Thr 95	Val			
Ile	Ile	Asp	Met 100	Arg	Gly	Ser	Lys	Trp 105	Asb	Leu	Ile	Lys	Pro 110	Leu	Leu			
Lys	Thr	Leu 115	Gln	Glu	Ala	Phe	Pro 120	Ala	Glu	Ile	His	Val 125	Ala	Leu	Ile			
Ile	Lys 130	Pro	Asp	Asn	Phe	Trp 135	Gln	Lys	Gln	Lys	Thr 140	Asn	Phe	Gly	Ser			
Ser 145	Lys	Phe	Ile	Phe	Glu 150	Thr	Ser	Met	Val	Ser 155	Val	Glu	Gly	Leu	Thr 160			
Lys	Leu	Val	Asp	Pro 165	Ser	Gln	Leu	Thr	Glu 170	Glu	Phe	Asp	Gly	Ser 175	Leu			
Asp	Tyr	Asn	His 180	Glu	Glu	Trp	Ile	Glu 185	Leu	Arg	Leu	Ser	Leu 190	Glu	Glu			
Phe	Phe	Asn 195	Ser	Ala	Val	His	Leu 200	Leu	Ser	Arg	Leu	Glu 205	Asp	Leu	Gln			
Glu	Met 210	Leu	Ala	Arg	Lys	Glu 215	Phe	Pro	Val	Asp	Val 220	Glu	Gly	Ser	Arg			
Arg 225	Leu	Ile	Asp	Glu	His 230	Thr	Gln	Leu	Lys	Lys 235	Lys	Val	Leu	Lys	Ala 240			
Pro	Val	Glu	Glu	Leu 245	Asp	Arg	Glu	Gly	Gln 250	Arg	Leu	Leu	Gln	Суз 255	Ile			
Arg	Cys	Ser	Asp	Gly	Phe	Ser	Gly	Arg	Asn	Cys	Ile	Pro	Gly	Ser	Ala			

-continued

			260					265					270		
Asp	Phe	Gln 275	Ser	Leu	Val	Pro	Lys 280	Ile	Thr	Ser	Leu	Leu 285	Asp	Lys	Leu
His	Ser 290	Thr	Arg	Gln	His	Leu 295	His	Gln	Met	Trp	His 300	Val	Arg	Lys	Leu
Lys 305	Leu	Asp	Gln	Сүз	Phe 310	Gln	Leu	Arg	Leu	Phe 315	Glu	Gln	Asp	Ala	Glu 320
Lys	Met	Phe	Asp	Trp 325	Ile	Ser	His	Asn	Lys 330	Glu	Leu	Phe	Leu	Gln 335	Ser
His	Thr	Glu	Ile 340	Gly	Val	Ser	Tyr	Gln 345	Tyr	Ala	Leu	Asp	Leu 350	Gln	Thr
Gln	His	Asn 355	His	Phe	Ala	Met	Asn 360	Ser	Met	Asn	Ala	Tyr 365	Val	Asn	Ile
Asn	Arg 370	Ile	Met	Ser	Val	Ala 375	Ser	Arg	Leu	Ser	Glu 380	Ala	Gly	His	Tyr
Ala 385	Ser	Gln	Gln	Ile	Lys 390	Gln	Ile	Ser	Thr	Gln 395	Leu	Asp	Gln	Glu	Trp 400
Lys	Ser	Phe	Ala	Ala 405	Ala	Leu	Asp	Glu	Arg 410	Ser	Thr	Ile	Leu	Ala 415	Met
Ser	Ala	Val	Phe 420	His	Gln	Lys	Ala	Glu 425	Gln	Phe	Leu	Ser	Gly 430	Val	Asp
Ala	Trp	Cys 435	Lys	Met	Сүз	Ser	Glu 440	Gly	Gly	Leu	Pro	Ser 445	Glu	Met	Gln
Asp	Leu 450	Glu	Leu	Ala	Ile	His 455	His	His	Gln	Thr	Leu 460	Tyr	Glu	Gln	Val
Thr 465	Gln	Ala	Tyr	Thr	Glu 470	Val	Ser	Gln	Asp	Gly 475	Lys	Ala	Leu	Leu	Asp 480
Val	Leu	Gln	Arg	Pro 485	Leu	Ser	Pro	Gly	Asn 490	Ser	Glu	Ser	Leu	Thr 495	Ala
Thr	Ala	Asn	Tyr 500	Ser	Lys	Ala	Val	His 505	Gln	Val	Leu	Asp	Val 510	Val	His
Glu	Val	Leu 515	His	His	Gln	Arg	Arg 520	Leu	Glu	Ser	Ile	Trp 525	Gln	His	Arg
ГЛа	Val 530	Arg	Leu	His	Gln	Arg 535	Leu	Gln	Leu	Сув	Val 540	Phe	Gln	Gln	Asp
Val 545	Gln	Gln	Val	Leu	Asp 550	Trp	Ile	Glu	Asn	His 555	Gly	Glu	Ala	Phe	Leu 560
Ser	Lys	His	Thr	Gly 565	Val	Gly	Lys	Ser	Leu 570	His	Arg	Ala	Arg	Ala 575	Leu
Gln	Lys	Arg	His 580	Asp	Asp	Phe	Glu	Glu 585	Val	Ala	Gln	Asn	Thr 590	Tyr	Thr
Asn	Ala	Asp 595	Lys	Leu	Leu	Glu	Ala 600	Ala	Glu	Gln	Leu	Ala 605	Gln	Thr	Gly
Glu	Cys 610	Asp	Pro	Glu	Glu	Ile 615	Tyr	Lys	Ala	Ala	Arg 620	His	Leu	Glu	Val
Arg 625	Ile	Gln	Asp	Phe	Val 630	Arg	Arg	Val	Glu	Gln 635	Arg	Lys	Leu	Leu	Leu 640
Asp	Met	Ser	Val	Ser 645	Phe	His	Thr	His	Thr 650	Lys	Glu	Leu	Trp	Thr 655	Trp
Met	Glu	Asp	Leu 660	Gln	Lys	Glu	Met	Leu 665	Glu	Aap	Val	Сүз	Ala 670	Asp	Ser
Val	Aab	Ala 675	Val	Gln	Glu	Leu	Ile 680	ГЛа	Gln	Phe	Gln	Gln 685	Gln	Gln	Thr

-continued

Ala	Thr 690	Leu	Asp	Ala	Thr	Leu 695	Asn	Val	Ile	ГÀа	Glu 700	Gly	Glu	Asp	Leu
Ile 705	Gln	Gln	Leu	Arg	Ser 710	Ala	Pro	Pro	Ser	Leu 715	Gly	Glu	Pro	Ser	Glu 720
Ala	Arg	Asp	Ser	Ala 725	Val	Ser	Asn	Asn	Lys 730	Thr	Pro	His	Ser	Ser 735	Ser
Ile	Ser	His	Ile 740	Glu	Ser	Val	Leu	Gln 745	Gln	Leu	Asp	Asp	Ala 750	Gln	Val
Gln	Met	Glu 755	Glu	Leu	Phe	His	Glu 760	Arg	Lys	Ile	Lys	Leu 765	Asp	Ile	Phe
Leu	Gln 770	Leu	Arg	Ile	Phe	Glu 775	Gln	Tyr	Thr	Ile	Glu 780	Val	Thr	Ala	Glu
Leu 785	Asp	Ala	Trp	Asn	Glu 790	Asp	Leu	Leu	Arg	Gln 795	Met	Asn	Asp	Phe	Asn 800
Thr	Glu	Asp	Leu	Thr 805	Leu	Ala	Glu	Gln	Arg 810	Leu	Gln	Arg	His	Thr 815	Glu
Arg	Lys	Leu	Ala 820	Met	Asn	Asn	Met	Thr 825	Phe	Glu	Val	Ile	Gln 830	Gln	Gly
Gln	Asp	Leu 835	His	Gln	Tyr	Ile	Thr 840	Glu	Val	Gln	Ala	Ser 845	Gly	Ile	Glu
Leu	Ile 850	Cys	Glu	Lys	Asp	Ile 855	Asp	Leu	Ala	Ala	Gln 860	Val	Gln	Glu	Leu
Leu 865	Glu	Phe	Leu	His	Glu 870	Lys	Gln	His	Glu	Leu 875	Glu	Leu	Asn	Ala	Glu 880
Gln	Thr	His	Lys	Arg 885	Leu	Glu	Gln	Cys	Leu 890	Gln	Leu	Arg	His	Leu 895	Gln
Ala	Glu	Val	Lys 900	Gln	Val	Leu	Gly	Trp 905	Ile	Arg	Asn	Gly	Glu 910	Ser	Met
Leu	Asn	Ala 915	Ser	Leu	Val	Asn	Ala 920	Ser	Ser	Leu	Ser	Glu 925	Ala	Glu	Gln
Leu	Gln 930	Arg	Glu	His	Glu	Gln 935	Phe	Gln	Leu	Ala	Ile 940	Glu	Ser	Leu	Phe
His 945	Ala	Thr	Ser	Leu	Gln 950	Lys	Thr	His	Gln	Ser 955	Ala	Leu	Gln	Val	Gln 960
Gln	Lys	Ala	Glu	Val 965	Leu	Leu	Gln	Ala	Gly 970	His	Tyr	Asp	Ala	Asp 975	Ala
Ile	Arg	Glu	Cys 980	Ala	Glu	Lys	Val	Ala 985	Leu	His	Trp	Gln	Gln 990	Leu	Met
Leu	Lys	Met 995	Glu	Asp	Arg		Lуз 1000	Leu	Val	Asn		Ser 1005	Val	Ala	Phe
-	Lys 1010	Thr	Ser	Glu		Val 1015	Суз	Ser	Val		Glu 1020	Ser	Leu	Glu	Gln
Glu 1029	Tyr 5	Arg	Arg		Glu 1030	Asp	Trp	Суз		Gly 1035	Arg	Asp	Lys		Gly L040
Pro	Ala	Ala		Ile L045	Asp	His	Val		Pro L050	Leu	Ile	Ser		His L055	Leu
Glu	Gln		Glu L060	Ala	Phe	Leu		Ala 1065	Суа	Thr	Leu		Arg L070	Arg	Asn
Ala	Glu 1	Val 1075	Phe	Leu	Lys		Ile L080	His	Arg	Asn		Val 1085	Ser	Met	Pro
	Val 1090	Ala	Ser	His		Arg 1095	Gly	Pro	Glu		Gln 1100	Val	ГЛа	Ala	Ile

-continued

Leu Ser Glu Leu 1105	Leu Gln Arg 1110		Val Leu His 1115	Phe Trp Thr 1120
Leu Lys Lys Arg 1	Arg Leu Asp 125	Gln Cys Gln 1130	Gln Tyr Val	Val Phe Glu 1135
Arg Ser Ala Lys 1140	Gln Ala Leu	Asp Trp Ile 1145	Gln Glu Thr	Gly Glu Phe 1150
Tyr Leu Ser Thr 1155		Thr Gly Glu 1160	Thr Thr Glu 1165	
Glu Leu Leu Lys 1170	Glu Tyr Gly 1175	Glu Phe Arg	Val Pro Ala 1180	Lys Gln Thr
Lys Glu Lys Val 1185	Lys Leu Leu 1190		Ala Asp Ser 1195	Phe Val Glu 1200
Lys Gly His Ile 1	His Ala Thr 205	Glu Ile Arg 1210	Lys Trp Val	Thr Thr Val 1215
Asp Lys His Tyr 1220	Arg Asp Phe	Ser Leu Arg 1225	Met Gly Lys	Tyr Arg Tyr 1230
Ser Leu Glu Lys 1235		Val Asn Thr 1240	Glu Asp Asr 1245	
Glu Leu Asp Ile 1250	Ile Pro Ala 1255	Ser Leu Ser	Asp Arg Glu 1260	Val Lys Leu
Arg Asp Ala Asn 1265	His Glu Val 1270		Lys Arg Lys 1275	Ser Ala Arg 1280
Lys Lys Glu Phe 1	Ile Met Ala 285	Glu Leu Leu 1290	Gln Thr Glu	Lys Ala Tyr 1295
Val Arg Asp Leu 1300	His Glu Cys	Leu Glu Thr 1305	Tyr Leu Trp	Glu Met Thr 1310
Ser Gly Val Glu 1315		Pro Gly Ile 1320	Leu Asn Lys 1325	
Ile Phe Gly Asn 1330	Ile Gln Glu 1335	Ile Tyr Asp	Phe His Asr 1340	Asn Ile Phe
Leu Lys Glu Leu 1345	Glu Lys Tyr 1350		Pro Glu Asp 1355	Val Gly His 1360
Cys Phe Val Thr 1	Trp Ala Asp 365	Lys Phe Gln 1370	Met Tyr Val	Thr Tyr Cys 1375
Lys Asn Lys Pro 1380	Asp Ser Asn	Gln Leu Ile 1385	Leu Glu His	Ala Gly Thr 1390
Phe Phe Asp Glu 1395		Arg His Gly 1400	Leu Ala Asr 1405	
Ser Tyr Leu Ile 1410	Lys Pro Val 1415	Gln Arg Ile	Thr Lys Tyr 1420	Gln Leu Leu
Leu Lys Glu Leu 1425	Leu Thr Cys 1430	-	Gly Lys Gly 1435	Glu Leu Lys 1440
Asp Gly Leu Glu 1	Val Met Leu 445	Ser Val Pro 1450	Lys Lys Ala	Asn Asp Ala 1455
Met His Val Ser 1460	Met Leu Glu	Gly Phe Asp 1465	Glu Asn Leu	Asp Val Gln 1470
Gly Glu Leu Ile 1475		Ala Phe Gln 1480	Val Trp Asp 1485	-
Leu Ile Arg Lys 1490	Gly Arg Glu 1495	Arg His Leu	Phe Leu Phe 1500	Glu Ile Ser
Leu Val Phe Ser 1505	Lys Glu Ile 1510		Ser Gly His 1515	Thr Lys Tyr 1520
Val Tyr Lys Asn	Lys Leu Leu	Thr Ser Glu	Leu Gly Val	Thr Glu His

-continued

1525 1530 1535 Val Glu Gly Asp Pro Cys Lys Phe Ala Leu Trp Ser Gly Arg Thr Pro 1545 1550 1540 Ser Ser Asp Asn Lys Thr Val Leu Lys Ala Ser Asn Ile Glu Thr Lys 1555 1560 1565 Gln Glu Trp Ile Lys Asn Ile Arg Glu Val Ile Gln Glu Arg Ile Ile 1570 1575 1580 His Leu Lys Gly Ala Leu Lys Glu Pro Leu Gln Leu Pro Lys Thr Pro 1585 1590 1595 1600 Ala Lys Gln Arg Asn Asn Ser Lys Arg Asp Gly Val Glu Asp Ile Asp 1610 1605 1615 Ser Gln Gly Asp Gly Ser Ser Gln Pro Asp Thr Ile Ser Ile Ala Ser 1620 1625 1630 Arg Thr Ser Gln Asn Thr Val Asp Ser Asp Lys Asp Gly Asn Leu Val 1640 1645 1635 Pro Arg Trp His Leu Gly Pro Gly Asp Pro Phe Ser Thr Tyr Val 1650 1655 1660 <210> SEQ ID NO 3 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 3 Lys Ala Ala Arg His Leu Glu Val Arg Ile Gln Asp Phe Val Arg Arg 5 10 1 15 Val Glu Gln Arg Lys Leu Leu Asp Met Ser Val Ser Phe His Thr 20 25 30 His <210> SEQ ID NO 4 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 4 Lys Ala Ala Arg His Leu Glu Val Arg Ile Gln Asp Phe Val Arg Arg 1 5 10 15 Val Glu Gln Arg Lys Leu Leu Asp Met Ser Val Ser Phe His Thr 2.0 25 3.0 His <210> SEQ ID NO 5 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Rattus norvegicus <400> SEQUENCE: 5 Lys Ala Ala Arg His Leu Glu Val Arg Ile Gln Asp Phe Val Arg Arg 5 10 15 Val Glu Gln Arg Lys Leu Leu Asp Met Ser Val Ser Phe His Thr 25 20 30 His <210> SEQ ID NO 6 <211> LENGTH: 33

<212> TYPE: PRT <213> ORGANISM: Mus musculus

-continued

<400> SEQUENCE: 6 Lys Ala Ala Arg His Leu Glu Val Arg Ile Gln Asp Phe Val Arg Arg 10 1 5 15 Val Glu Gln Arg Lys Leu Leu Asp Met Ser Val Ser Phe His Thr 25 30 2.0 His <210> SEQ ID NO 7 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Canis familiaris <400> SEQUENCE: 7 Lys Ala Ala Arg His Leu Glu Val Arg Ile Gln Asp Phe Val Arg Arg 5 10 15 Val Glu Gln Arg Lys Leu Leu Asp Met Ser Val Ser Phe His Thr 20 25 30 His <210> SEQ ID NO 8 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Tetraodon nigroviridis <400> SEQUENCE: 8 Lys Ala Ala Arg His Leu Glu Val Arg Ile Gln Asp Phe Val Arg Arg 5 10 15 1 Val Glu His Arg Lys Leu Leu Asp Met Ser Val Ser Phe His Thr 20 25 30 His <210> SEQ ID NO 9 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 9 Ala Ala His Gln Leu Glu Asp Arg Ile Gln Asp Phe Val Arg Arg Val 1 5 10 15 Glu Gln Arg Lys Ile Leu Leu Asp Met Ser Val Ser Phe His Thr His 20 25 30 <210> SEQ ID NO 10 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Pan troglodytes <400> SEQUENCE: 10 Ala Ala His Gln Leu Glu Asp Arg Ile Gln Asp Phe Val Arg Arg Val 1 5 10 15 Glu Gln Arg Lys Ile Leu Leu Asp Met Ser Val Ser Phe His Thr His 25 20 30 <210> SEQ ID NO 11 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Bos taurus <400> SEQUENCE: 11

-continued

Ala Ala His Gln Leu Glu Asp Arg Ile Gln Asp Phe Val Arg Arg Val 5 10 1 15 Glu Gln Arg Lys Ile Leu Leu Asp Met Ser Val Ser Phe His Thr His 20 25 30 <210> SEQ ID NO 12 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Rattus norvegicus <400> SEOUENCE: 12 Ala Ala His Gln Leu Glu Asp Arg Ile Gln Asp Phe Val Arg Arg Val 1 5 10 15 Glu Gln Arg Lys Ile Leu Leu Asp Met Ser Val Ser Phe His Thr His 20 25 30 <210> SEQ ID NO 13 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Mus musculus <400> SEQUENCE: 13 Ala Ala His Gln Leu Glu Asp Arg Ile Gln Asp Phe Val Arg Arg Val 1 5 10 Glu Gln Arg Lys Ile Leu Leu Asp Met Ser Val Ser Phe His Thr His 25 20 30 <210> SEQ ID NO 14 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Gallus gallus <400> SEQUENCE: 14 Ala Ala His Gln Leu Glu Asp Arg Ile Gln Asp Phe Val Arg Arg Val 5 10 1 15 Glu Gln Arg Lys Ile Leu Leu Asp Met Ser Val Ser Phe His Thr His 25 20 30 <210> SEQ ID NO 15 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Canis familiaris <400> SEOUENCE: 15 Ala Ala His Gln Leu Glu Asp Arg Ile Gln Asp Phe Val Arg Arg Val 1 5 10 15 Glu Gln Arg Lys Ile Leu Leu Asp Met Ser Val Ser Phe His Ser His 20 25 30 <210> SEQ ID NO 16 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Danio rerio <400> SEQUENCE: 16 Ala Ala His Gln Leu Glu Asp Arg Ile Gln Asp Phe Val Arg Arg Val 10 5 1 15 Glu Gln Arg Lys Val Leu Leu Asp Met Ser Val Ala Phe His Thr His 20 25 30 <210> SEQ ID NO 17 <211> LENGTH: 32

-continued

<212> TYPE: PRT <213> ORGANISM: Danio rerio <400> SEOUENCE: 17 Ala His Arg His Leu Glu Val Arg Val Gln Glu Phe Val Arg Arg Val 1 5 10 15 Glu Gln Arg Lys Leu Leu Asp Ile Ser Val Ser Phe His Thr His 2.0 25 3.0 <210> SEQ ID NO 18 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Tetraodon nigroviridis <400> SEQUENCE: 18 Ala His Gln His Leu Asp Val Arg Ile Gln Asp Phe Val Arg Arg Val 5 10 1 15 Glu Gln Arg Lys Val Leu Leu Asp Met Ser Val Ala Phe His Thr His 20 25 30 <210> SEQ ID NO 19 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Tetraodon nigroviridis <400> SEQUENCE: 19 Ala His Gln His Leu Asp Val Arg Ile Gln Asp Phe Val Arg Arg Val 1 5 10 Glu Gln Arg Lys Val Leu Leu Asp Met Ser Val Ala Phe Gln Thr His 25 20 30 <210> SEQ ID NO 20 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Tetraodon nigroviridis <400> SEQUENCE: 20 Ala Ala Asp His Asp Glu Val Ser Ile Ala Asp Ile Gln Arg Arg Val 1 5 10 15 Glu Gln Arg Lys Leu Leu Asp Leu Ala Val Ser Phe Tyr Thr His 25 20 30 <210> SEQ ID NO 21 <211> LENGTH: 31 <212> TYPE: PRT <213> ORGANISM: Strongylocentrotus purpuratus <400> SEQUENCE: 21 Ala Arg Glu Leu Glu Ala Lys Val Gly Asp Phe Ile Ser Arg Val Ala 5 10 1 15 Gln Arg Arg Gln Leu Leu Val Met Ser Val Ala Phe His Gln His 20 25 30 <210> SEQ ID NO 22 <211> LENGTH: 31 <212> TYPE: PRT <213> ORGANISM: Drosophila melanogaster <400> SEQUENCE: 22 Ala Arg Glu Leu Glu Leu Gln Val Gly Ser Phe Ala Glu Arg Val Glu 5 1 10 15 Gln Arg Arg Arg Arg Leu Asp Met Ala Val Ile Phe Tyr Thr His

-continued 20 25 30 <210> SEQ ID NO 23 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Aspergillus oryzae <400> SEQUENCE: 23 Asp Phe Val Arg Arg Val Leu Arg Arg Arg Leu Leu Gln Asn Met Ser 1 5 10 15 Gly Ser <210> SEQ ID NO 24 <211> LENGTH: 15 <212> TYPE: PRT <213> ORGANISM: Cryptococcus neoformans <400> SEQUENCE: 24 Val Lys Met Val Glu Gln Arg Lys Leu Leu Leu Asp Phe Asn Val 1 5 10 15 <210> SEQ ID NO 25 <211> LENGTH: 11 <212> TYPE: PRT <213> ORGANISM: Medicago truncatula <400> SEQUENCE: 25 Arg Val Glu Gln Val Lys Leu Leu Asp Met 5 10 1 <210> SEQ ID NO 26 <211> LENGTH: 12 <212> TYPE: PRT <213> ORGANISM: Streptomyces tenjimariensis <400> SEQUENCE: 26 Arg Ile Glu Asp Ile Val Arg Gln Val Glu Gln Arg 1 5 10 <210> SEQ ID NO 27 <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (1) <223> OTHER INFORMATION: basic amino acid <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (2)..(4) <223> OTHER INFORMATION: alpha-helix enhancing amino acid <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (5) <223> OTHER INFORMATION: basic amino acid <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (6)..(7) <223> OTHER INFORMATION: alpha-helix enhancing amino acid <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (8) <223> OTHER INFORMATION: basic amino acid <400> SEQUENCE: 27

-continued

Xaa Xaa Xaa Xaa Xaa Xaa Xaa 5 1 <210> SEO ID NO 28 <211> LENGTH: 8 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (1) <223> OTHER INFORMATION: basic amino acid <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (2)..(3) <223> OTHER INFORMATION: alpha-helix enhancing amino acid <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (4)..(5) <223> OTHER INFORMATION: basic amino acid <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (6)..(7) <223> OTHER INFORMATION: alpha-helix enhancing amino acid <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (8) <223> OTHER INFORMATION: basic amino acid <400> SEQUENCE: 28 Xaa Xaa Xaa Xaa Xaa Xaa Xaa 1 5 <210> SEQ ID NO 29 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide <400> SEOUENCE: 29 Lys Lys Arg Pro Lys Pro Gly 1 5 <210> SEQ ID NO 30 <211> LENGTH: 5 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (2) <223> OTHER INFORMATION: Arg or Lys <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (4) <223> OTHER INFORMATION: variable amino acid <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (5) <223> OTHER INFORMATION: Arg or Lys <400> SEQUENCE: 30 Lys Xaa Arg Xaa Xaa 1 <210> SEQ ID NO 31

-continued

<211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide <400> SEQUENCE: 31 Arg Lys Lys Arg Arg Gln Arg Arg Arg 1 5 <210> SEQ ID NO 32 <211> LENGTH: 5 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide <400> SEQUENCE: 32 Gly Gly Gly Gly Ser 1 5 <210> SEQ ID NO 33 <211> LENGTH: 5 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide <400> SEQUENCE: 33 Gly Gly Gly Gly Ser 1 5 <210> SEQ ID NO 34 <211> LENGTH: 12 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide <400> SEQUENCE: 34 Gly Lys Ser Ser Gly Ser Gly Ser Glu Ser Lys Ser 1 5 10 <210> SEQ ID NO 35 <211> LENGTH: 14 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide <400> SEQUENCE: 35 Gly Ser Thr Ser Gly Ser Gly Lys Ser Ser Glu Gly Lys Gly 5 10 <210> SEQ ID NO 36 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide <400> SEQUENCE: 36

-continued

Gly Ser Thr Ser Gly Ser Gly Lys Ser Ser Glu Gly Ser Gly Ser Thr 1 5 10 15
Lys Gly
<210> SEQ ID NO 37 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 37
Gly Ser Thr Ser Gly Ser Gly Lys Pro Gly Ser Gly Glu Gly Ser Thr 1 5 10 15
Lys Gly
<210> SEQ ID NO 38 <211> LENGTH: 14 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 38
Glu Gly Lys Ser Ser Gly Ser Gly Ser Glu Ser Lys Glu Phe 1 5 10
<210> SEQ ID NO 39 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer
<400> SEQUENCE: 39
catgcgggca ccttctttg 19
<210> SEQ ID NO 40 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer
<400> SEQUENCE: 40
gttttattgt ctgaggatgg gg 22
<210> SEQ ID NO 41 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer
<400> SEQUENCE: 41
cttcagtatc acaacctcag c 21
<210> SEQ ID NO 42 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence

	-continued	
<220> FEATURE: <223> OTHER INFORMATION: Description o primer	f Artificial Sequence:	Synthetic
<400> SEQUENCE: 42		
gatgtgttca aacatttccc gg		22
<210> SEQ ID NO 43 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description o primer	f Artificial Sequence:	Synthetic
<400> SEQUENCE: 43		
caacggattt ggtcgtattg g		21
<210> SEQ ID NO 44 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description o primer	f Artificial Sequence:	Synthetic
<400> SEQUENCE: 44		
cagtggactc cacgacgtac t		21
<pre><210> SEQ ID NO 45 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description o primer</pre>	f Artificial Sequence:	Synthetic
<400> SEQUENCE: 45		
tggagagtca atgctcaacg		20
<210> SEQ ID NO 46 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description o primer	f Artificial Sequence:	Synthetic
<400> SEQUENCE: 46		
gtcttctgca aggaagtggc		20
<210> SEQ ID NO 47 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description o primer	f Artificial Sequence:	Synthetic
<400> SEQUENCE: 47		
tgcaccacca ccaactgctt a		21
<210> SEQ ID NO 48 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:		

-continued	
<pre><223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer</pre>	
<400> SEQUENCE: 48	
gaggcaggga tgatgtt 17	
<210> SEQ ID NO 49 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer	
<400> SEQUENCE: 49	
cggaggagac gcgggcac 18	
<210> SEQ ID NO 50 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer	
<400> SEQUENCE: 50	
tcagtgattg tcgctgggca c 21	
<210> SEQ ID NO 51 <211> LENGTH: 2067 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 51	
gtactttgtg aacgaaaaag tactggccac atgtgagcga tggattcttg ttactcgtga 60	
agggagaaac accgggttac ttctctctgg agggaggagg aggggtttgc attcttgtgt 120	
taactacaca ctggagtctt gtccatttaa ggtaataaga aaataatgct aacagagcct 180	
gagaggtagc ttcttgggtg gtgatgtctc tgccgagacc caatgctgcc gtttaagaag 240	
aaaccacaag gcagttgggg ggcagggggca ggcggtggag gttgtgactc tgcttgcttt 300	
ctccctctcc ctccttgctc ctaccccctg gacgtgcctc ctccccagtc tgagttcttc 360	
agaaatctgc accctctctc atcttggagg tataagttcc aaggaagagc tggtgctgag 420	
ggagacatgc ctccagttgc ctgatggaga ccaggaggcc tgggagacca ccattctgtt 480	
aggacagtga gaaggcattg ctggcatggc ctaggctgca cagagctgtg atgaatgtgc 540	
agatggetgt tgggtagttt ttaggettgg agaacaaggt cateetagae etggggaete 600	
ctcaggtttc atttcagtga atagcactcc cagtcacctg ggtcacaggc tggcccactg 660	
taagaggggc tgtgattggg caaggactgg gcaccccgtc atgccccaaa ggccttagac 720	
aatgeecagg ggetgaggte tetgeagett aettttetee ttgeettgaa aataacattg 780	
tatcagggac tcagatgccc ttgcatgttc atttgtctag ttagtaatca ctcgagtaac 840	
tgcgaagttc agggttcttt gagggacaca aagatggagt ttatgggcaa gtaagggaga 900	
agagtcatat acaaaggaga aggtggaatg aaaaaaataa aatataaagg aaggaagatc 960	
agggaagtet geetggatte tgtggeattt gagttatttg ttggaaaaat taggeggatt 1020	
tggccatgat gaggtggaga gtgggggagag catcctattg gcaggaaggg caggagcaaa 1080	
gteetgggga tagaaaaceg tgggatgtat gaatgtgtgg ggaaetgaga gtetggeaag 🛛 1140	

-continued

				0011011	Iucu			
agggagaggg	gttgagaggt	aagggagaac	cttctatcta	ccagtatcta	ccaggtgcaa	1200		
caccagaaac	attatattct	tcttttgctt	tgaggctcac	aaatactgtt	ctctctggtt	1260		
tacagaggag	gaagctgagg	cacatggagc	tgaaaaactt	gatccaggcc	aggcaagtat	1320		
taagtggcaa	ccaggatttg	gacccatgac	tgtgtgactt	caaagcccat	gctgtctcta	1380		
ctataacaaa	ggttccatga	agggacgtag	ggaaaaagga	tctgtggcct	tttaccagtc	1440		
atgcaggtcc	tgcagtcttg	ggcaaggaga	gccagtggtc	cctacagtga	ggcagtgagg	1500		
cagtaacgct	cccaggctcc	tggactggcc	tcaaagtcca	aaatggccga	gcttctggct	1560		
tcccatccca	tattctattg	gaggagccac	tggcctctgg	tgtgggaggt	atggaggcca	1620		
ggatggcagg	agatgctgga	aaaaatttaa	gacatggact	tgactgtgga	ttttcattct	1680		
caagaccact	gcaaacctcg	cgtctttgcg	aaaacccttc	ctgactccct	cccacgcatc	1740		
teegaeetee	ccttgggtcc	aggcaggctc	ggtctgcaca	cggcgttgtt	ctgcacttgt	1800		
tcctttgttg	ctgtgaaacc	ggctcccggc	acagtcagcc	tctgtgtggg	aggactggtg	1860		
gctgtctttg	caggcaggca	tttgcttaga	gcaggctgtg	tgcgagccca	gcgtcaagtg	1920		
attccggcct	cctcgagtca	gcggtggtgg	gatgaggctc	tgccgagggg	actggctgtg	1980		
aaggatgagt	tcagggtggg	atgacggacc	gcttctggga	ccagtggtat	ctctggtatc	2040		
tccgcttgct	ccggctgctg	gatcgag				2067		
<210> SEQ ID NO 52 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic 6x His tag								
<400> SEQUI	ENCE: 52							
His His Hi: 1	s His His H: 5	is						

What is claimed is:

1. A method for suppressing inducible nitric oxide synthase activity in a cell comprising contacting said cell with an effective amount of a kalirin polypeptide wherein the kalirin ⁴⁵ polypeptide is selected from the group consisting of SEQ ID NO: 3 and residues 3-33 of SEQ ID NO: 3, wherein the polypeptide suppresses inducible nitric oxide synthase activity.

ity.
2. A method of inhibiting nitric oxide cytotoxicity com- 50 prising contacting a cell capable of producing nitric oxide

with a biologically effective amount of a kalirin polypeptide wherein the kalirin polypeptide is selected from the group consisting of SEQ ID NO: 3, and residues 3-33 of SEQ ID NO: 3 wherein the polypeptide reduces inducible nitric oxide synthase activity.

3. The method of claim **2**, wherein the polypeptide is formulated in a pharmaceutically acceptable vehicle.

* * * * *