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ABSTRACT OF DISSERTATION 
 
 
 

ENHANCING DRUG OVERDOSE MORTALITY SURVEILLANCE THROUGH 
NATURAL LANGUAGE PROCESSING AND MACHINE LEARNING 

 
 Epidemiological surveillance is key to monitoring and assessing the health of 
populations. Drug overdose surveillance has become an increasingly important part of 
public health practice as overdose morbidity and mortality has increased due in large part 
to the opioid crisis. Monitoring drug overdose mortality relies on death certificate data, 
which has several limitations including timeliness and the coding structure used to 
identify specific substances that caused death. These limitations stem from the need to 
analyze the free-text cause-of-death sections of the death certificate that are completed by 
the medical certifier during death investigation. Other fields, including clinical sciences, 
have utilized natural language processing (NLP) methods to gain insight from free-text 
data, but thus far, adoption of NLP methods in epidemiological surveillance has been 
limited. Through a narrative review of NLP methods currently used in public health 
surveillance and the integration of two NLP tasks, classification and named entity 
recognition, this dissertation enhances the capabilities of public health practitioners and 
researchers to perform drug overdose mortality surveillance. This dissertation advances 
both surveillance science and public health practice by integrating methods from 
bioinformatics into the surveillance pipeline which provides more timely and increased 
quality overdose mortality surveillance, which is essential to guiding effective public 
health response to the continuing drug overdose epidemic. 
 

KEYWORDS: Machine learning; substance use; drug overdose; surveillance; deep 
learning 
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CHAPTER 1 

Introduction 

 In 2019, there was a total of 70,630 overdose deaths in the United States,1 

increasing from 67,367 overdose deaths 2018.2 Drug overdoses continue to be a major 

cause of morbidity and mortality in the United States,2 in large part due to the opioid 

epidemic.3-5 Evidence from morbidity data indicates that the novel coronavirus pandemic 

has led to increased drug overdoses6 in 2020, suggesting that drug overdose outcomes are 

still rising. Identifying and characterizing the burden of the epidemic is critical to 

developing interventions and guiding policy and funding initiatives to combat this public 

health crisis. Epidemiologists and data scientists working at the state, local, and national 

levels use surveillance data to identify regions with high burdens of overdoses, 

demographic subgroups at disproportionate risk of overdose, and substances involved7 in 

causing morbidity and mortality. Mortality surveillance data has highlighted increases in 

deaths caused by drugs such as fentanyl8,9 and psychostimulants.10 

 Evidence from surveillance data is used to guide public health interventions and 

public safety initiatives. To effectively guide practice, surveillance data must be both 

accurate and timely. With the ever-changing landscape of the drug overdose epidemic,4 

timely data is essential. Public health interventions should be targeted to the specific 

substances causing morbidity and mortality in near-real time, not substances that were 

affecting the community in a year prior. Similarly, accurately identifying what substances 

are causing morbidity and mortality is crucial. Public health interventions for prescription 

opioids may consist of increased analysis of prescription drug monitoring program data11 

to identify and stop “doctor shopping”, while an initiative aimed at illicit opioid mortality 
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may focus more on supply-side interventions and harm reduction. Similarly, interventions 

for preventing opioid overdoses may include expanding access to medication for opioid 

use disorder,12,13 while interventions for misuse of methamphetamine, a substance 

causing increased morbidity and mortality during the opioid crisis,10 would include 

increasing access to cognitive behavioral therapy.14 Without timely and accurate 

surveillance data, actionable evidence for the development of public health initiatives will 

be limited. 

 A current barrier in surveillance of drug overdoses is the reliance on death 

certificate data for mortality surveillance. While death certificates contain detailed 

information about the decedent’s demographics and cause- and manner-of-death, death 

certificates often lag behind other surveillance sources due to both the time a death 

investigation takes15 and the process of adding International Classification of Diseases, 

10th Revision (ICD-10)16 codes to the death certificates. Additionally, medical certifiers 

who complete death certificates for drug overdose deaths in some states are not required 

to have a medical background.17 The medical certifier is charged with completing the 

free-text cause-of-death and description-of-injury sections of the death certificate, from 

which information on what substances caused an overdose death is obtained. Data quality 

stemming from errors or misspellings in these sections present additional challenges in 

using death certificate data. For example, the medical certifier may incorrectly spell the 

name of a specific substance, causing the record to be missed when identifying the 

number of overdoses involving that substance.  

 This dissertation aims to address the existing limitations in epidemiological 

analyses relying on death certificate data by enhancing the timeliness and completeness 
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of the information derived from death certificates to advance drug overdose surveillance 

science. The limitations in timeliness and quality both stem from the need to analyze 

free-text data, specifically, the free-text cause-of-death section of the death certificate that 

is completed by the medical certifier during the death investigation. Free-text data can be 

analyzed through the use of natural language processing (NLP) and machine learning 

(ML) methods. NLP and ML have seen extensive use in clinical sciences18,19 but only 

limited use in public health.20 An example of NLP use in other fields include identifying 

drugs from clinical texts,21-23 which could be similarly adopted to identify drugs from 

death certificate text.  

 With the current limitations of death certificate data stemming from the need to 

analyze free-text, leveraging NLP methods is the next step in advancing public health 

surveillance for drug overdose. NLP provides a suite of methods for transforming 

unstructured, free-text data into “features” which can be fed as variables into classical 

statistical methods as well as ML algorithms. NLP typically leads to extremely high 

dimensional data, necessitating ML models capable of handling high dimensionality to 

analyze. In a typical NLP and ML pipeline, data is split into training and testing sections. 

Free-text training data is processed via NLP methods and the created features are fed into 

an ML model that, using these features, are trained to predict some outcome (y). This 

trained algorithm is then deployed onto the test data, predicting the outcome for each 

record in the test data set. The model is then scored based on how well it performed on 

the test data against a gold standard. The final, trained algorithm can then be used on new 

data to predict the outcome when it is unknown or unavailable.   
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The following chapters address three specific aims for developing and integrating 

NLP and ML models in the public health surveillance pipeline for drug overdose 

mortality to advance surveillance science and improve public health practice through 

more timely and accurate surveillance. These aims seek to advance surveillance science 

through the tenets of integration (applying techniques that emerged from a different field 

allows us to uncover new phenomena, linked to previous work in clinical sciences) and 

development (the methods developed in the dissertation are the first of their kind for 

applying NLP to overdose mortality surveillance, and provide a base for researchers to 

build further NLP models for surveillance), defined as two of the five ways in which 

scientific progress is achieved according to the National Research Council.24 

• Aim 1/Chapter 2: Review the existing literature on NLP and ML use in public 

health surveillance to identify current uses and gaps in the literature, 

• Aim 2/Chapter 3: Develop a machine learning model that can identify drug 

overdose deaths through the analysis of free-text to improve the timeliness of 

surveillance data, and 

• Aim 3/Chapter 4: Advance surveillance science by improving the detection and 

identification of novel drugs and drug misspellings through a state-of-the-art deep 

learning model. 
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CHAPTER 2 

Natural language processing and machine learning methods in public health 

surveillance: a narrative review 

 

Introduction 
Public health surveillance (PHS) is the systematic, ongoing collection of health-

related data and its use to assess the health of populations.25 PHS is critical for detecting 

epidemics,26,27 observing long-term health trends,4,28,29 and detecting emerging threats to 

public health.30,31 For example, surveillance of the substance use epidemic has helped 

reveal the rise in fentanyl and its contribution to overdoses in the United States.8,9 

Traditionally, PHS has relied on structured data sources including death 

certificates,5,7,9,28,29,32-35 hospitalization discharge billing data,36,37 disease registries,38,39 

and systems that track specific conditions, such as mandatory reporting databases.40 Each 

has limitations, including timeliness of death certificate data15,41 and lack of specificity in 

the coding structure in hospital billing data.42,43 To address these limitations, PHS has 

begun to increasingly rely on unstructured data sources for surveillance such as free-text 

chief complaint fields from electronic health record (EHR) and emergency department 

data44,45 and narrative text from emergency medical service reports.46-50 

Natural language processing (NLP) and machine learning (ML) methods have 

been developed and applied in clinical sciences51-53 to analyze free-text data. Broadly, 

NLP consists of methods that enable computers to process and analyze human language. 

ML algorithms can be used to develop predictive models using variables (“features”) 

derived from NLP output. In clinical science, NLP and ML tasks typically focus on 

classification (e.g., identifying reportable cancer cases52) or information extraction (e.g., 
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identification of cardiac risk factors54). Using NLP and ML allows researchers to extract 

information without performing lengthy, manual reviews. Relatively recent advances in 

ML, particularly deep learning, the use of neural networks with multiple hidden layers for 

use on complex, feature-rich data,55 have improved the accuracy of NLP methods.56-59 

Compared to relatively common use in clinical science,18,19 NLP and ML have 

been used more rarely in PHS. Increased integration of NLP and ML into PHS activities 

could advance both the science and practice of surveillance by improving capabilities for 

processing bigger, unstructured data.20 Studies examining NLP and ML in PHS have 

been published in a variety of sources, given the cross-disciplinary nature of these 

methods. This narrative review sought to collect peer-reviewed literature that applied 

NLP and ML in PHS and describes the current state of these techniques’ use in the field 

and their current and potential future contribution of NLP to the assessment and science 

of population health. 

 

Methods 
To identify existing literature for this narrative review, PubMed was searched for 

articles containing all of the following terms: (“public health” AND “surveillance” AND 

“machine learning” AND “natural language processing”). When performed in November 

2019, this search resulted in a total of 82 articles. Inclusion criteria consisted of being 

peer-reviewed and describing either the development or application of an NLP method 

that utilizes ML for PHS purposes. No date cutoff was used to exclude articles.  

Of the 82 articles identified, 14 met inclusion criteria. Most of the 68 articles that 

did not meet inclusion criteria were articles that developed NLP and ML methods, but not 

explicitly for PHS; rather, they mentioned that such a method could be used for PHS in 
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their discussion. Additional reasons for exclusion included articles that applied text-

matching methods (such as regular expressions) to analyze text, but did not apply ML 

algorithms. The included articles’ reference lists were searched for additional candidates, 

resulting in the addition of 8 articles for a total of 22 articles included. An abstraction 

form programmed in REDCap was used to guide information abstraction from the 

articles. Abstracted information included year published, purpose and rationale, ML task 

(the formal purpose of the ML model, in NLP typically classification or information 

extraction), training and testing sample size (the number of records used to develop the 

ML algorithm and the number of records used to validate the model, respectively), 

evaluation metrics, score on final evaluation metric, strengths, limitations, and future 

directions noted by the authors. 

 

Results 
Of the 22 articles included in this narrative review, 12 involved traditional data 

sources41,52,60-69 and 10 involved online media data,70-79 summarized in Tables 1 and 2 

respectively. Studies that applied NLP to traditional PHS data covered several health 

conditions, including autism spectrum disorder (ASD),61,69,70,77 drug overdose,41 

cancer,52,60,62,65,66 and infectious diseases.67 Applying NLP and ML addressed different 

challenges in traditional surveillance, including the absence of a defined surveillance 

definition,63 lengthy reviews required to identify cases,61,69 and enhancing the timeliness 

of reporting.41 Most articles that used online media analyzed Twitter (www.twitter.com) 

data; Twitter is a microblogging website where users post “tweets,” messages containing 

up to 280 characters. Challenges addressed by utilizing NLP on online media included 
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monitoring disease activity in near-real time71,72,75,76,78,79 and monitoring conditions that 

are difficult to track typically.70,73,77 

 

Discussion 
Applying Natural Language Processing to Traditional Public Health Data Sources 

Traditional PHS data that were enhanced with NLP and ML included death 

certificate data and emergency department data, including EHRs and pathology reports. 

Several studies utilized NLP and ML to address time lags present in mortality 

surveillance, which relies on International Classification of Diseases, Tenth Revision 

(ICD-10) codes16 for identification of conditions. To eliminate time lag of ICD-10 coding 

for drug overdose mortality surveillance, Ward et al developed a support vector machine 

(SVM) classifier that utilized features from free-text on an individual’s death certificate 

to classify deaths as drug overdose deaths, achieving an F-score80 of 0.97.41 NLP and ML 

methods have been similarly used on death certificates for cancer surveillance.62,65,66 Butt 

and colleagues66 used previously developed named-entity-recognition tools to extract 

features for ML classifiers to identify death certificates as cancer for reporting cancer 

cases, resulting in an F-score of 0.99. This methodology was then extended65 to 

categorize identified cancers’ ICD-10 codes to determine the type of cancer. While their 

analysis achieved high accuracy on common cancers (which made up 85% of all 

cancers), results were lower on rare cancers. This limitation was further addressed62 by 

developing a hybrid ML and rule-based approach, which achieved an overall F-score of 

0.80. 

NLP and ML have also been utilized on mortality data for general 

surveillance.67,68 Koopman and colleagues67 utilized NLP to extract features for an ML 
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classifier that predicts if a death was caused by diabetes, influenza, pneumonia, or HIV, 

achieving an F-score of 0.96, allowing for faster mortality surveillance. Another study 

developed a deep learning architecture to perform ICD-10 coding of death certificates 

from free-text.68 The final model had an accuracy of 0.76, with infrequently occurring 

ICD-10 codes having poor prediction scores. The authors note that sparse modeling 

methods could improve the prediction on these rarer ICD-10 codes. While this analysis 

had relatively low accuracy, the task of coding every ICD-10 code is ambitious. 

PHS utilizing NLP and ML has also been performed for morbidity surveillance 

using EHRs63,64 and pathology reports.52,60 Surveillance of suicide attempts is difficult 

with structured emergency department data. To address this limitation, Metzger et al64 

utilized text from EHRs to develop features for ML classifiers to identify suicide attempt 

visits. This method had an F-score of 0.953, and authors intend to integrate the model 

into national surveillance. Another analysis of EHR data identified adverse drug events 

utilizing named-entity-recognition and relation extraction.63 This analysis compared 

classical ML methods to a more state-of-the-art, long-short-term memory (LSTM) model, 

with the developed SVM outperforming the LSTM (F-score 0.89), providing evidence 

that traditional ML models can still be utilized for PHS over state-of-the-art methods. 

Finally, text from pathology reports were used in conjunction with NLP and ML for 

reporting to cancer registries. Osborne et al52 developed a ML method to classify 

reportable cancer cases among pathology reports, with a maximum entropy model 

attaining an F-score of 0.85, while Alawad and colleagues60 developed a multi-task 

convolutional neural network to extract case information (histological type, cancer cite, 

etc.) required by cancer registries. While the overall scores for this method were not 
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particularly strong, the study displayed that multi-task convolutional neural networks 

have improved classification performance compared to single-task models, particularly 

for imbalanced data. 

Another application for morbidity surveillance utilized free-text data from the 

Autism and Developmental Disabilities Monitoring network, which are reviewed by 

clinicians to identify ASD cases.69 This is a lengthy process that has led to lagging 

surveillance. In order to address this time lag, Maenner and colleagues69 developed a 

random forest classifier utilizing features from words and phrases from the network’s 

data. Their random forest was trained on 1,162 records from 2008 and tested on 1,450 

records from 2010. Despite this limited training data, their algorithm resulted in an area 

under receiver-operating characteristic curve80 of 0.932. The gold standard method of 

estimating prevalence for ASD results in an estimate of 1.55%, while their ML method 

estimates a prevalence of 1.46%, showing promise for utilizing the method for ASD 

surveillance. Leroy et al61 extended this work by using NLP and ML to extract diagnostic 

criteria for ASD from EHRs; while the evaluation scores were not very high (0.76 and 

0.43 precision and recall scores, respectively) it is clear there is promise for NLP in ASD 

surveillance with additional work needed. 

 

Applying Natural Language Processing to Online Media  

While most analyses of online media utilized social media data,70,72-79 Feldman 

and colleagues71 used news reports to develop a ML classifier to track global infectious 

disease epidemics. Recognizing that media reports often discuss infectious disease 

outbreaks prior to the signal in surveillance systems, their developed algorithm takes 
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news articles that discuss infectious diseases and identifies those that discuss disease 

activity levels. Their ensemble ML model had a final F-score of 0.87, showing potential 

for real-time monitoring of disease activity levels with media reports. Limitations of this 

include potential error in media reports and data is limited by media interest.  

Another study sought to perform PHS on a range of health conditions utilizing 

Twitter data.72 A system called “Crowdbreaks”81 was developed that identifies tweets 

discussing health conditions, then relying on crowdsourcing for annotation. Several built-

in ML models perform surveillance. One task that was explored was performing 

sentiment analysis (classifying a tweet as positive, negative, or neutral) on tweets that 

discussed vaccines, which resulted in precision and recall scores of 0.77. While 

Crowdbreaks is an innovative approach, relying on crowdsourced labels may lead to 

errors in labeling (typically, annotating in studies is performed by multiple trained 

annotators) and a lack of labeled data to train the built-in models. 

Most of the literature that discussed NLP and ML for PHS using social media data 

focused on a specific condition, rather than a range of conditions. To address challenges 

in substance use surveillance, one analysis identified tweets that discuss prescription 

drugs and developed a ML model that identified if the tweet is discussing abuse of the 

prescription.77 This study achieved an F-score of only 0.45 in the highest performing 

SVM, with a relatively small sample size (6,400 tweets). With a larger sample size, state-

of-the-art deep learning models would likely improve classification. Another analysis 

focused on substance use sought to use Twitter and Reddit data to identify individuals to 

target for substance use disorder interventions.70 Reddit (www.reddit.com) is a 

compilation of forums (called “subreddits”) where users can share messages, videos, and 
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other content and have discussions. The classifier developed relied primarily on features 

from lexicons and lookup tables, and as a short report detailed information about the 

modeling strategy is limited. Their final algorithm had an accuracy of 0.90 for identifying 

individuals open to recovery interventions. 

Two other studies utilized Twitter data for maternal and child health surveillance. 

A 2018 analysis identified and characterized tweets discussing birth defects to estimate 

the prevalence of specific birth defects, which are difficult to measure.73 A lexicon and 

rules were developed and bootstrapping methods were used to classify tweets that 

discussed a child with a birth defect and not just discussing birth defects in general. This 

approach resulted in a recall score of 0.95, indicating that expert rules can be utilized 

effectively for text classification. Sarker et al74 sought to identify women who are 

pregnant through user tweets to develop cohort data for drug safety surveillance. Basic 

pattern matching filtered tweets to identify if a user is potentially pregnant, and then 

several ML models were tested utilizing features derived from tweets to determine which 

of the filtered tweets indicated the user is pregnant. Their best performing SVM model 

resulted in an F-score of 0.88, outperforming a neural network.  

One topic that has been extensively explored was the use of Twitter for influenza 

surveillance. A common issue in using Twitter for PHS is filtering tweets that discuss a 

disease but are not talking about an individual having the condition. One analysis 

explored this issue utilizing a two-staged approach of determining if a tweet 1) discusses 

influenza and 2) determining if it is discussing an individual who is infected.78 Their 

method was applied at local and national levels, with counts of ML-model identified 

tweets highly correlated at the week level with counts of influenza-like-illness (ILI) from 
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CDC national surveillance data, but local-level counts not as correlated. Allen et al79 

performed a similar analysis, utilizing an SVM to identify tweets that discussed an 

influenza infection. Their model’s F-score was 0.786, with significant correlation 

between the national ML-model identified rate and the national ILI rate. Similarly to 

Broniatowski et al’s study78 however, regional-level surveillance was less accurate. 

An additional study76 identified if Twitter users misdiagnose themselves with 

influenza to determine if Twitter is a feasible option for influenza surveillance. While 

their study was limited by a small sample size (1,274), the analysis indicated that Twitter 

data incorrectly reports a flu season occurring from late 2011 to early 2012, despite no 

increases in WHO positive influenza counts. A final influenza study75 utilized Twitter 

data to extract topics from tweets that mentioned drugs used to treat influenza. Tweets 

mentioning influenza drugs of interest were identified and then words from the tweet 

were used as features to train ML classifiers that predict if a tweet is indicating 

consumption of the mentioned drug. Their highest performing SVM had an F-score of 

0.82, indicating promise for tracking drug consumption with Twitter. 

A common limitation in studies that use online media is that terminology 

individuals use to indicate health conditions are likely different from medical 

terminology common in PHS. Tweets often contain abbreviations/slang. Additionally, a 

tweet indicating a user has the “flu” may not be discussing influenza at all, as people use 

“flu” to indicate a common cold. These limitations should be addressed as social media is 

used for disease surveillance. Other limitations include private Twitter accounts, whose 

tweets are not available for analysis, and the large samples required for ML models 

which first require annotation. 
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Public Health Implications 

While NLP and ML methods have been used extensively in clinical science to 

analyze free-text data,18,19 they have been used less frequently for PHS despite 

unstructured data becoming more common.20 NLP and ML methods have shown promise 

in studies to enhance surveillance activities, particularly when they focus on a specific 

condition opposed to a variety of conditions,41,62,65,66 but their potential has been largely 

untapped. Further integrating NLP methods into surveillance workflows will advance 

surveillance science and public health practice, with several avenues for advancement 

identified through the review. While Ward et al41 classified deaths as drug overdoses, an 

extension to this method that identifies the drug(s) that caused the death would further 

improve surveillance. Similarly, while detection of cancer-caused deaths had high 

scores,66 there is still opportunity to further improve the classification of rare cancers.62 

New surveillance systems, such as emergency medical services data,44,45 should be 

explored and NLP methods applied to extract information and classify cases.  

There are also gaps in the literature on utilizing social media data for PHS. While 

influenza has been studied relatively extensively,75,76,78,79 there is little literature on other 

infectious diseases. Additionally, given the substance use epidemic occurring in the 

United States, there is opportunity to use social media to track trends related to substance 

use and misuse. Sentiment analysis on tweets that mention specific drugs could create an 

“early warning system” to identify drugs that are rising in use before they appear in 

traditional PHS. 

Overall, most of the literature reviewed utilized traditional ML models opposed to 

deep learning techniques while still achieving high scores. While many of the reviewed 
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articles discussed the development of a process to improve surveillance, some studies 

lacked key information on how these methods were developed. As public health 

researchers begin to use and develop ML models more extensively, care should be taken 

to ensure a thorough description of methods is present in articles, including a step-by-step 

breakdown of the model’s development. For example, common missing details included 

how the model was tuned to select hyperparameter values (cross validation is common 

for traditional methods to avoid overfitting82) and clear indication of whether the training 

and testing data were split to ensure the model is validated on an out-of-sample dataset, 

which could lead to look-ahead bias if it did not occur.83 Table 3 displays facets of ML 

algorithm development that should be included in future research. Another limitation that 

many studies had was sample size. ML models require relatively large amounts of data 

for accurate predictions,84 especially deep learning methods. Finally, most studies 

required manual annotation, which can be a costly, time-consuming process. Contributing 

more resources to manual annotation on PHS data and social media data will be required 

for NLP and ML methods to reach their full potential as a surveillance tool. 

 

Limitations 

A limitation of the narrative review format compared to a structured systematic 

review is that it does not capture detailed information on the number of articles included 

and excluded due to various review criteria, nor does it follow a strict information 

extraction protocol. However, the narrative review format was appropriate for the 

purpose of providing a general overview of the current state of NLP and ML use in PHS 

and identifying future opportunities to use these methods in the field. Another limitation 
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of this review was its narrow search criteria; as a result, some studies that fit the overall 

purpose of this review may have been missed due to the intentionally narrow inclusion 

criteria. Additionally, this review did not examine other text analysis methods (such as 

regular expressions and key word searches) that are more frequently used in PHS for 

analyzing free-text data. A final limitation is that PubMed was the only database 

searched; most if not all articles applying NLP and ML to PHS are likely indexed in 

PubMed, but some candidates may have been missed. As NLP and ML become more 

widely used in PHS, a systematic review of this topic may become warranted. 

 

Conclusions 

While several studies have used NLP and ML methods for PHS, there are 

limitations and gaps that these methods can address. With the increasing size of data and 

unstructured data existing in public health, utilizing NLP and ML methods is essential for 

gaining insights. The overall promise that many studies in this review display indicate 

that NLP and ML have an important place in future PHS. These methods have already 

improved the timeliness of PHS, extracted additional information from data sources, and 

positioned social media as an emerging data source for monitoring disease trends in near-

real time. The continued development and evaluation of these methods will be key to 

PHS moving forward. 
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Table 1: Articles applying NLP to traditional data sources 

Study Condition(s) Description of method ML Task NLP Task Key Findings 
Butt et al 
(2013) 

Cancer death Classify cancer deaths 
from death certificate 
free-text for cancer 
registry reporting 

Binary 
classification 

Extracting stems, 
bigrams, and concept-
based features from free-
text 

Traditional ML method was highly 
accurate for classifying cancer deaths 

Koopman et 
al (2015) 

Deaths 
caused by 
diabetes, 
HIV, 
pneumonia, 
influenza 

Develop a ML model 
that predicts if a death is 
caused by these 
conditions using free-
text 

Multiclass 
classification 

Extracting term and 
concept-based features 
from free-text 

These relatively common conditions 
can have classification high accuracy 
with a single model 

Koopman et 
al (2015) 

Cancer death Classify the ICD-10 
codes of cancer deaths 
from free-text death 
certificates 

Multiclass 
classification 

Extracting term and 
concept-based features 
from free-text 

Common cancers had high accuracy, 
rare cancers had low accuracy 

Osborne et 
al (2016) 

Cancer cases Identify cancer cases 
that are mandatory 
reportable from 
pathology reports 

Binary 
classification 

Extract concept unique 
identifiers from 
pathology reports 

High F-score highlights potential for 
automating reporting processes 

Maenner et 
al (2016) 

Autism 
spectrum 
disorder 

Classify case reports to 
diagnose autism 
spectrum disorder 

Binary 
classification 

Extracting and stemming 
tokens, creating a term-
frequency—inverse 
document frequency 
matrix 

NLP can be used to classify autism in 
reports to estimate prevalence in the 
population 

Metzger et 
al (2017) 

Suicide 
attempts 

Identify suicide 
attempts from 
emergency department 
EHR free-text 

Binary 
classification 

 
 
 

Extracting concept 
unique identifiers from 
free-text 

Pilot study had high accuracy, authors 
seek to deploy as part of a national 
surveillance system 
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Duarte et al 
(2018) 

All-causes of 
death 

Develop a deep learning 
model that classifies the 
ICD-10 cause of death 
from free-text 

Multiclass 
classification 

Creating word 
embeddings for the 
neural network 

Poor prediction scores for infrequently 
occurring ICD-10 codes; models for 
specific conditions are more accurate 

Munkhdalai 
et al (2018) 

Adverse drug 
events 

Using named-entity-
recognition and relation 
extraction, identify 
adverse drug events 
within EHR free-text 

Information 
extraction, 
relationship 
extraction 

Extract token distance 
between entities, 
creating word 
embeddings 

Traditional model outperformed deep 
learning model, indicating that 
traditional ML can be used for PHS 
successfully 

Koopman et 
al (2018) 

Cancer death Develop a hybrid rule-
ML model for increased 
classification accuracy 
of rare cancers 

Multiclass 
classification 

Extracting term and 
concept-based features 
from free-text 

Adding rule-based model to ML 
increases the accuracy of rare cancer 
classification 

Leroy et al 
(2018) 

Autism 
spectrum 
disorder 

Extract diagnostic 
criteria for autism 
spectrum disorder from 
EHRs 

Information 
extraction 

Extract expressions of 
DSM criteria using a 
lexicon 

Extracting specific criteria for autism is 
a more difficult task than classifying 
the disease 

Ward et al 
(2019) 

Drug 
overdose 
death 

Classify deaths caused 
by drug overdoses using 
free-text on death 
certificates 

Binary 
classification 

Extract tokens, bigrams, 
and trigrams from free-
text 

Traditional ML methods can be utilized 
for accurate death certificate 
classification of drug overdose 

Alawad et al 
(2020) 

Cancer Extract required case 
information that cancer 
registries require from 
pathology reports 

Information 
extraction 

Text pre-processing for 
use in several neural 
networks 

Low accuracy scores overall, but study 
demonstrated promise for multi-task 
convolutional neural networks for 
imbalanced data 
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Table 2: Articles applying NLP to online media data sources 

Study Condition(s) Description of 
method 

ML Task NLP Task Key Findings 

Broniatowski 
et al (2013) 

Influenza Two-staged 
approach to identify 
Tweets that mention 
influenza and then 
identify if the tweet 
is discussing an 
infected individual 

Binary 
classification 

Extract words, 
bigrams, trigrams 
from tweets 

Trends in classified tweets followed 
trends in influenza-like illness 
nationally, with less correlation at the 
local level 

Sarker et al 
(2016) 

Prescription 
medication 
abuse 

Given a tweet 
discussing a 
prescription drug, 
classify whether or 
not the tweet is 
discussing abuse of 
the drug 

Binary 
classification 

Stemming, 
extracting n-grams, 
part-of-speech 
tagging 

Developed model has a relatively low 
F-score, but more state-of-the-art 
methods and additional training data 
could improve results 

Mowery 
(2016) 

Influenza Determine if Twitter 
is a feasible source 
for influenza 
surveillance by 
analyzing if users 
misdiagnose 
themselves in tweets 

Binary 
classification 

Extract words and 
bigrams from tweets 

Authors identified a spike in reported 
influenza on Twitter during a period 
without a real spike, suggesting caution 
should be taken when using social 
media for surveillance 

Allen et al 
(2016) 

Influenza Classify tweets that 
discuss an individual 
infected with 
influenza and utilize 
geographic 

Binary 
classification 

Extract words, 
bigrams, and 
trigrams from tweets 

Identified tweet trends were correlated 
with national and local data, but with 
less correlation at the local level 
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information systems 
to normalize tweets 

Kagashe et al 
(2017) 

Influenza Develop a classifier 
that can track 
influenza drug 
consumption from 
tweets 

Binary 
classification 

Parsing tweets for 
dependency features 
to identify words 
with relations to an 
annotated drug 

Study showed promise for tracking user 
drug consumption through tweets, 
which can be used as a proxy for 
influenza surveillance 

Sarker et al 
(2017) 

Pregnancy Using tweets, 
classify if a Twitter 
user is pregnant for 
safety surveillance 

Binary 
classification 

Extract n-grams and 
create word 
embeddings for 
vector representation 
of words, extract 
tweet sentiments 

Traditional ML method outperformed 
deep learning, providing evidence 
traditional ML can still be used for 
accurate classification 

Klein et al 
(2018) 

Birth defects Given a tweet 
discussing a birth 
defect, classify 
whether or not the 
tweet is discussing a 
child with a birth 
defect 

Binary 
classification 

Filtering tweets 
using lexicon 
developed from 
Unified Medical 
Language System 

High evaluation scores indicate 
incorporating rule-based methods can 
lead to successful classification for 
surveillance 

Müller et al 
(2019) 

Various Using crowdsourced 
labeling of tweets, 
monitor changes in 
disease trends and 
beliefs through 
social media 

Several 
including 
classification, 
sentiment 
analysis 

Create word 
embeddings for 
tweets 

An innovative approach, but using 
crowdsourced labels as opposed to train 
annotators may lead to errors 

Feldman et al 
(2019) 

Infectious 
diseases 

Classify news 
articles that discuss 
infectious diseases 
to identify those that 

Binary 
classification 

Extract features from 
news articles for 
supervised ML 

Model has potential for real time 
identification of outbreaks from media 
articles, but is limited by what 
conditions the news media is interested 
in 
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discuss disease 
activity 

Jha, Singh 
(2019) 

Substance use 
disorder 

From Reddit posts 
and tweets, identify 
social media users to 
target for substance 
use recovery and 
interventions 

Binary 
classification 

Sentiment analysis, 
drug term 
identification 

Model developed for Twitter data had 
high accuracy, indicating promise for 
using social media for this task 
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Table 3: Suggested key elements to be reported in publications reporting results of machine learning models applied in public 
health surveillance 
Topic Checklist items 

Dataset description 

 Time period of data collection 
 Total sample size 
 Training sample size 
 Test sample size  
 How train/test split was performed 

Feature engineering 
 Detailed description of how features included in 

the model were developed, including published 
code if privacy restrictions allow 

Algorithms tested 
 Machine learning models used 
 Describe why these specific models were 

selected 

Training process  Describe how model hyperparameters were 
selected and any other tuning steps 

Evaluation criteria 
 List the metrics used for evaluation  
 Describe why these are important for the 

application 
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CHAPTER 3 

Enhancing timeliness of drug overdose mortality surveillance: a machine learning 

approach 

Introduction 
Death certificates (DCs) are the primary source for state and local drug overdose 

(OD) mortality surveillance and are currently the only nationwide source.85 DCs provide 

information about decedents (including demographic information, residence, and place of 

death), cause and manner of death, and substance(s) involved in an OD that are important 

to developing drug OD prevention programs and policies.86,87 In order to design and 

implement effective public health interventions, this information must be available to 

public health practitioners in a timely manner. 

In the case of a suspected drug OD death, a coroner or a medical examiner serving 

the jurisdiction where the death occurred determines the cause-of-death and completes a 

DC.88,89 The DC is then filed (electronically or as a paper copy) with the state office of 

vital statistics (OVS). An electronic record with selected DC fields, including the free 

text information for the cause-of-death,90 is transmitted to the National Center for Health 

Statistics (NCHS) and coded according to the guidelines of the International 

Classification of Diseases, Tenth Revision (ICD-10) to allow standardized classification 

of the causes of death.91-94 A copy of the ICD-10-coded record, containing one 

underlying cause-of-death (UCOD) and up to 20 supplementary causes of death, is sent 

back to the state OVS to be used for epidemiological analysis. There is a significant time 

lag between the day of death and the day when an ICD-10-coded DC record is available 

for identification of a drug OD death (the consensus definition for drug OD mortality 

surveillance is based on the UCOD code in the range X40-X44, X60-X64, X85, or Y10-
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Y1495,96). Spencer et al. reported that only 37.8% of the drug OD death certificates are 

available to NCHS by 13 weeks (vs. 83.9% for overall deaths), mostly due to delays in 

DC completion related to required forensic toxicology analysis.97 Additional time lag is 

acquired at the NCHS as about two-thirds of the deaths with an UCOD of drug OD are 

coded manually, compared to one-fifth of all-cause deaths.7  

 

Motivation 

Understanding the critical role of surveillance data to inform prevention and 

response to the opioid epidemic, the Centers for Disease Control and Prevention (CDC) 

provided dedicated funding to states to build capacity for more timely and comprehensive 

opioid OD surveillance data.98 This paper examines the feasibility of using natural 

language processing (NLP) and machine-learning (ML) methods to identify potential OD 

deaths from free-text DC fields, allowing the identification of potential drug OD deaths 

(and the initiation of gathering of additional medicolegal data for these cases) before the 

DC records are sent to the NCHS for ICD-10 coding. Figure 1 displays the overall 

workflow of the death investigation and public health surveillance approach; the 

proposed method eliminates the time lag associated with steps 3a-7a, replacing these with 

steps 3b and 4b. We chose NLP and ML as the methodological base given they (a) 

provide an intuitive mapping from free text fields to categories using classification 

techniques and (b) are generally more accurate than rule-based systems in data rich 

settings. Our main goal is to build a practical computational solution that can be 

employed by epidemiologists in public health agencies for near real time OD mortality 
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surveillance with reasonably high accuracy. Hence, all the code used in this effort is 

made publicly available: https://github.com/pjward5656/dcnlp. 

 

NLP and ML Background 

Text is ubiquitous in healthcare and biomedicine coming from different sources 

including biomedical literature (journal articles, conference abstracts), clinical notes (e.g., 

discharge summaries and pathology reports), and social media text (e.g., Twitter, Reddit, 

and specialized forums such as the Cancer Survivors Network). Text classification 

methods from NLP and ML have been shown to play a critical role in health and 

biomedical applications especially when structured sources do not fully capture all the 

information necessary. The NLP component deals with extracting interesting “features” 

(independent variables) based on simple n-grams (typically words and two-to-three word 

phrases) and more involved syntactic constructs such as parts-of-speech for each word 

(e.g. noun, adjective) and constituency and dependency parse trees that represent inter-

word grammatical relations within each sentence. The ML component then learns a 

model with these features as independent variables and the category as the outcome 

variable using, typically, hand-coded training data.  

 

A basic text classification problem typically deals with an outcome variable that is 

binary. For example, based on a pathology report can we identify whether a cancer case 

is reportable or not?52 There could also be cases where the problem is multiclass, where 

one of more than two categories ought to be chosen. For instance, in cancer registries, 

certified tumor registrars read pathology reports to code major sites from a list of dozens 

https://github.com/pjward5656/dcnlp
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of such sites and this task can be expedited using automated methods.51 A variant of the 

multiclass problem is ordinal classification, where the categories are ordered in some 

manner specific to the task. Although one class is chosen in ordinal models, errors are 

counted differently based on how far away the prediction is from the true category. As an 

example, in psychiatry a recent shared application53 dealt with assigning symptom 

severity categories (absent, mild, moderate, and severe) based on content in a psychiatric 

evaluation note. Finally, multilabel classification handles scenarios where more than one 

category is typically assigned to each input instance. A use-case is when coders assign 

multiple diagnosis codes99 to electronic medical records for every patient visit. For 

elaborate details of specific applications of NLP in biomedicine, please refer to broad 

reviews.100,101 The problem at hand in this current effort is binary classification to identify 

deaths due to OD based on DC text.  

 

Methods 
Data  

The Kentucky Injury Prevention and Research Center (KIPRC), as bona fide 

agent of the Kentucky Department for Public Health, receives weekly extracts of DCs to 

perform injury surveillance. Coded DCs for years 2017-2018 as of November 1st, 2018 

(n=84,142), were used for this analysis. The ML process requires that the data is split into 

training and testing sets; the coded 2017 DCs (n=48,016) were used as training data and 

the coded 2018 DCs (n=36,126) were used as testing data. In total, 2,478 (2.9%) of the 

DCs were coded as OD deaths based on the ICD-10 code assigned by NCHS in the 

UCOD field.102 These cases were treated as the “true positive” cases when training and 

testing the ML algorithm.  
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Task 

The task for the ML algorithm in this paper is to take an un-coded DC and 

classify it as an “OD death” or “not OD death” using free-text fields. To automate this 

task free-text fields on the DC were used to create features for a classifier. ML algorithms 

require feature vectors to train the model. In this analysis, a feature is a binary [0,1] 

variable created from an aspect of the free-text present on the DC, and a feature vector is 

z-dimensional vector of features where z is the total number of features.  

 

Feature engineering 

DCs in Kentucky are certified by county coroners or physicians depending on the 

manner of death. The certifier completes the cause-of-death section, consisting of an 

“immediate cause” field (“line a”) followed by three sequential fields indicating 

conditions that were “leading to the cause listed in line a” 7. In addition, the certifier may 

also complete two other sections: 1) “other significant conditions contributing (SCC) to 

death but not resulting in the underlying cause” and 2) “describe how the injury 

occurred.” The latter is only completed if the death resulted from an injury.  

These free-text fields (used by the NCHS to assign ICD-10 codes for underlying 

and contributing causes-of-death) were used to create features for the ML algorithm. Two 

different field combinations were examined for this task: 1) all three free-text sections of 

the death certificate and 2) the cause-of-death section and the description of injury 

section. The latter option was considered as ODs and substance use may not cause death 

but may contribute to other types of morbidity that later cause death. Excluding the SCC 
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section may result in better separation between OD deaths and deaths that involved 

substance use or previous ODs. 

 

Certifiers in Kentucky typically do not write in full sentences using grammatically 

or syntactically correct language when completing the DC. The text is often concise. 

Table 4 shows an example of a typical OD DC. Due to these considerations, to simplify 

the task the fields in the training data were combined into one free-text field. All 

punctuation was removed from this field. Using the scikit-learn103 library in Python, this 

field was tokenized into individual words, bigrams (adjacent two-word sequences), and 

trigrams (adjacent three-word sequences), excluding stop words (“the”, “an”, “and”, etc.). 

All free-text in the data exists in fully capitalized form, and the capitalized tokens were 

used, unaltered, for the analysis. Any token appearing less than five times was discarded. 

The 2017 DC data including the SCC field contained 2,184 unique words and 11,261 

bi/tri-grams. When excluding the SCC field, the word and bi/tri-gram list decreased to 

1,820 and 8,029, respectively. Features for each of these words and phrases were then 

created for the model; a feature was given the value of 1 if the word/phrase it represents 

appeared in the text and a value of 0 otherwise. To illustrate, a feature representing the 

bigram “acute cocaine” would be 1 for the DC in Table 1 while a feature for the word 

“poisoning” would be 0.  

 

Classifiers 

Several classification methods were considered and examined for this task. Linear 

support vector machines (SVM), random forests (RF), and multilayer perceptrons (MLP) 
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were tested for this classification task. The SVM approach was selected due to both the 

low computational requirements of this method as well as its use in previous, similar 

classification tasks,65-67 while RFs and MLPs were examined as more complex nonlinear 

methods that may identify additional interaction features compared to the linear SVM. 

Figure 2 shows the overall process used to predict if a DC is an OD using only the free-

text fields. While this classification task was implemented in the Python environment, the 

algorithms tested have well documented and easily programmable methods within the 

e1071 and CARET104 packages in R, making this an accessible method. 

 

Training 

The algorithms were trained on all coded 2017 DCs using 3 times repeated, 

stratified 10-fold cross validation within the scikit-learn Python library. Repeated cross 

validation was selected as it is recommended over other methods for general 

classification use.82 Stratified cross validation was used so that each fold created during 

the procedure would have the same makeup of OD deaths and non-OD deaths that the 

entire dataset has (~97% non-OD, ~3% OD) 105. The cost (regularization) hyperparameter 

of the linear SVM, the maximum depth, number of trees, and maximum number of 

features hyperparameters of the RF, and the hidden layer sizes and alpha (regularization) 

hyperparameters of the MLP were tuned based on F-score, the harmonic mean of positive 

predictive value (PPV) and sensitivity.80 F-score was selected as the tuning metric due to 

the class imbalance in the data; tuning based on accuracy would bias the algorithm to 

correctly classifying non-OD cases, as ~97% of the data are not OD deaths. To tune the 

hyperparameters, potential values were initially selected.. After training on these values, 
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an additional search was performed around the value(s) that the previous step indicated 

was the best value(s) for the hyperparameter(s). This process was repeated subsequent 

times until the ideal hyperparameter value(s) was identified. After this, the entire training 

data was re-trained using the ideal value(s). This tuning approach was implemented as it 

is a straightforward grid-search method commonly used for tuning ML algorithms.106 

 

Testing 

After the learner was trained on the 2017 DC data it was deployed on the 2018 

DC data. The same word/phrase features used in the 2017 DC data were created for the 

2018 DC data. Both free-text field combination algorithms were tested.  

 

Rule-based method 

A final rule-based classification method was also tested for this analysis on the 

2018 DC data. This rule-based method scanned the free text of the DCs for 37 words or 

bigrams that were indicative of an OD death. These words/bigrams were selected from a 

review of OD DCs by epidemiologists with a combined 10 years of experience in OD 

surveillance. For this review, 2017 OD deaths were examined and common tokens 

identified. These words and bigrams are available in Appendix 1. Any DC that contained 

one or more of the words/bigrams in this list were automatically classified as an OD 

death, and any death that did not contain a word/bigram in this list were classified as a 

non-OD death. This rule-based method is a simpler version of previously proposed text-

matching methods,107 and acts as a baseline to compare to the more computationally 

costly ML models.  
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Evaluation 

Methods were evaluated based on their performance on the test data. To compare 

the results of the methods the F-score was calculated along with sensitivity and PPV. For 

this task PPV was considered the most important metric, as large numbers of false 

positives could be problematic when attempting to develop near real-time interventions 

for an OD outbreak. Two-proportion z-tests were performed to test for statistically 

significant differences between the sensitivity and PPV of the best performing ML model 

and rule-based method. 

 

Results 
The model including all three sections had a total of 13,445 features while the 

model excluding the SCC section had a total of 9,849 features. Computing time for 

training the ML models was not significant; even when using stratified 10-fold, 3 times 

repeated cross validation the longest any model took to train was roughly ~3 hours on a 

Windows machine with 32 GB of RAM. Deploying the models on the 2018 data took 

seconds. The rule-based method does not involve any training and produced predictions 

instantly.  

Table 5 displays the F-score, sensitivity, and PPV from the final methods when 

training the models with features constructed from all three sections and Table 6 displays 

the results when training the models with features from the cause-of-death and 

description of injury sections. All of the models were highly specific. Only ~3% of all 

deaths in the data were OD deaths and all of the ML models had high performance in 

identifying deaths that were not OD deaths. The ML models without the SCC section, 
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however, all performed equally or higher than their counterpart ML models with the SCC 

section with regards to sensitivity, PPV, and F-score. The SVM model without the SCC 

section was the best performing model overall, with an F-score of 0.9695, and also 

achieved the highest PPV (0.9622), while the RF model without the SCC section 

achieved the highest sensitivity (0.9803). Table 7 displays the confusion matrix for the 

SVM excluding the SCC section while Table 8 displays the confusion matrix for the rule-

based model excluding the SCC section. 

The rule-based models did not perform as well as their counterpart ML models. 

The rule-based model excluding the SCC section had similar PPV to the ML models 

(0.9504), however this model had lower sensitivity than the ML models (0.9243). The 

rule-based model excluding the SCC section had a higher F-score than the rule based 

model including this section, similar to the results of the ML models. Comparing the best 

performing ML model (SVM, Table 6) to the best performing rule-based model (Rule-

based, Table 6), two-proportion single-tailed z-tests show that the ML model has a 

significantly higher sensitivity (p<0.001) but no statistical difference for PPV (p=0.13). 

 

Discussion 
Model performance 

This paper presents an accessible method to quickly identify OD deaths from free-

text DCs for rapid surveillance purposes. The performance of the ML algorithms 

developed were very high. The F-score of 0.9695 for the best performing model is 

comparable, and in some cases superior, to that of other models for cause-of-death 

classification in the literature,65-68,108 many of which were trained on larger datasets with 

more common causes of death. The ML models performed higher than their counterpart 
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rule-based models, including significantly higher results for sensitivity, providing 

evidence for further increasing the use of ML in public health surveillance over more 

traditional methods.  

Of the methods compared, the ML models that excluded the SCC section 

produced the best performing models, as the ML models that included all three sections 

had more false positives than their counterpart models. This is likely because features that 

identify an OD death when appearing in the description of injury section or the cause-of-

death section have different meaning in the SCC section. For example, the bigram “drug 

overdose” clearly indicates the death was caused by an OD when present in the cause-of-

death section, but when present in the SCC section may indicate that the individual had a 

previous OD event, but it did not directly lead to death. Including the SCC section results 

in a feature space that contains information that is not directly involved in causing death, 

leading to a slightly biased model. Further research should examine including the SCC 

section in a classifier to identify drug-related deaths, which are important for drug-related 

surveillance. 

 

Public health implications 

DC data is the only national source for OD mortality surveillance85 and as such is 

extremely important for understanding the opioid epidemic and developing responses to 

it. These data, however, comes at a non-trivial time lag7,97 that prohibit availability of 

actionable data until several weeks following the event of an OD death. The method 

proposed in the present study eliminates the time lag from transferring DCs between the 

state OVS and the NCHS and the time for ICD-10 coding by the NCHS, thus allowing 
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state or local jurisdictions to process their own mortality data as soon as the DC is 

available in their database with free-text cause-of-death information. This provides more 

timely provisional counts for OD deaths, allowing for detection of overdose death spikes 

and identification of new patterns in contributing drugs in a shorter time window, which 

could be key as novel designer drugs emerge.3,8,109 This could lead to faster mobilization 

of community stakeholders to implement harm reduction strategies, such as targeted 

naloxone distribution to communities. 

An additional application of the ML method developed is its potential use as a 

data quality instrument. While many OD deaths are manually coded at NCHS,7 there is 

still the potential for coding errors to occur. Records that the classifier identifies as OD 

deaths but NCHS codes as non-OD deaths (false positives) can be reviewed by a medical 

examiner to determine if the case is truly a false positive or if the UCOD was coded 

incorrectly. This data quality process will capture OD deaths that previously were not 

identified and lead to more accurate, complete surveillance of the OD epidemic. 

 

Future directions 

To further improve this model, additional feature engineering could be explored. 

This could include adding regular expression features to the model to identify patterns 

that frequently appear on OD DCs. Additionally, more n-gram features (such as non-

adjacent bigrams) could be added to the model. Features that do not arise from NLP that 

use other fields on the DC (demographics, manner of death, place of death, etc.) could 

also be exploited in a future classifier. Part-of-speech tagging and dependency parsing, 

which creates a tree-like structure that explains the grammatical relationships between 
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words in sentences,110 was considered for generating additional features for this analysis. 

Likely because the free-text present on DCs is often not grammatically correct, these 

features did not significantly increase the predictive power of the models. To build a 

simpler model they were excluded from the final analysis. 

Deep neural networks, specifically convolutional neural networks, were 

considered for use in this task as they have been used for classifying free-text DCs.68,108 

Due to the small amount of text present on DCs (some contain only two words) a 

traditional classification method was selected in our effort. Future research should 

examine deep learning methods (particularly the use of pre-trained word embeddings) 

and determine if they have higher performance for this task. In general, however, 

improving performance scores that are already in the high nineties (our F-score was 

0.9695) will be a challenging endeavor that is worth further exploration. Deep learning 

should also be explored in the future for more complicated DC classification tasks, 

particularly multilabel classification of the substances that caused a drug OD death. An 

OD DC may contain no information about the substances causing the drug OD or list 

several substances involved in the death. A deep learning framework that can classify 

drug OD deaths and the substances causing the death from DC free-text would be a 

noteworthy extension to the methods developed in the present study. Since the 

completion of postmortem toxicology alone can delay the completion of the DC for 

weeks, the next step for improved timeliness in OD death surveillance is to expand the 

proposed machine learning models to work directly on medicolegal death investigation 

data, utilizing unstructured data from coroner and medical examiner case management 

systems (e.g., death scene investigation notes, autopsy reports, police reports, coroner 



 

36 
 

notes) thus identifying likely drug overdose cases before the DC is officially filed. As 

these reports typically contain much more free-text than DCs, deep learning models 

should be explored for this process as well.  

 

Strengths and limitations 

The present study has several strengths. A thorough literature review indicates 

that this is the first study of its kind to our knowledge to describe a method for classifying 

OD deaths from free-text DCs using NLP and ML. The design of this experiment mimics 

how the model would be applied in a real-life use case scenario, with features engineered 

from previous year(s) data exploited to classify new data, giving the metrics on the test 

data validity for future use. This setup also adds to the difficulty of the task, as new 

substances that may be important in drug OD classification in a future year may not be 

present in the past year that the algorithm was trained on. Despite this, the ML models 

excluding the SCC field all achieved F-scores above 0.96.  

Another strength of this study is the availability of data for our models to be 

tested on, further research to be performed, and similar algorithms to be developed. A 

major limitation of most ML applications is the large amounts of training data needed 

which coincides with the long, tedious process of labeling training data. Previous years 

coded DCs, however, are readily available for training at most state’s health departments. 

These DCs are ready to be used for training ML models without the typical initial 

requirement of labeling. This labeled data, while not publically available, can be 

requested from states’ OVS for research purposes. In addition, the NCHS operates the 

Research Data Center (RDC) to allow researchers access to restricted-use data. In 2019, 
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the NCHS made available to researchers a Redacted Death Certificate Literal Text File 

(LTF)111 that includes the cause-of-death text record for every U.S. resident death. The 

access to LTF will allow researchers to test our GitHub source code on DC records that 

come from all U.S. jurisdictions. 

The study has some limitations. First, the models were trained on only Kentucky 

DCs, meaning that the model may not perform as well on data from other jurisdictions if 

certifiers use different words or phrases on their DCs. Kentucky, however, has a hybrid-

coroner/medical examiner system with 120 county coroners and deputy coroners who 

certify deaths (per KRS 72.025) along with medical examiners who assist coroners in 

determining the cause and manner of deaths.112 Physicians also certify natural deaths. 

Therefore, there is a diverse group of individuals certifying deaths in Kentucky, meaning 

the language on Kentucky DCs represents a range of medical backgrounds. Another 

limitation, inherent in ML, is the difficulty in diagnosing errors. The models described 

here have features numbering near the 10,000s—determining exactly what features are 

causing the model to incorrectly predict is inherently more difficult than for a simpler 

model with a small number of variables. A detailed error analysis of the SVM model 

excluding the SCC field is available in Appendix 2. 

 

Conclusion 
The present study compares three methods for identifying OD deaths from free-

text DCs using NLP and several ML models as well as a simple rule-based method. 

Classifying OD deaths using free-text would substantially reduce the time it currently 

takes a surveillance systems to identify OD deaths, from several months to a few weeks. 

The described ML methods performed better than the rule-based methods on testing data, 



 

38 
 

providing evidence that ML methods should be implemented in public health surveillance 

tasks, particularly for OD mortality surveillance. The programming code used to develop 

the model is publically available, which can facilitate further testing and development in 

other jurisdictions. Further research is needed to explore the potential for other causes of 

death to be classified using ML methods as well as additional exploration of ML, 

including deep learning, to improve drug-related surveillance
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Figure 1: Certification, registration, and analysis of drug overdose deaths 

 

 

 

 



 

40 
 
  

Figure 2: Example Analytic Pipeline 
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Table 4: Example Death Certificate Free Text 

Field Text  
Immediate cause-of-death ACUTE COCAINE TOXICITY 
Due to (or as a consequence of)  
Due to (or as a consequence of)  
Due to (or as a consequence of)  
Significant conditions 
contributing 

HYPERTENSIVE CARDIOVASCULAR 
DISEASE, OBESITY 

Description of injury ACCIDENTAL OVERDOSE 
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Table 5: Final model results on test data, features from all death certificate sections 

Method PPV Sensitivity F-score 
SVM 0.9549 0.9748 0.9647 
RF 0.9328 0.9748 0.9533 
MLP 0.9518 0.9737 0.9626 
Rule-based 0.9215 0.9265 0.9240 
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Table 6: Final model results on test data, features from cause-of-death and 

description of injury fields 

Method PPV Sensitivity F-score 
SVM 0.9622 0.9770 0.9695 
RF 0.9531 0.9803 0.9665 
MLP 0.9621 0.9737 0.9678 
Rule-based 0.9504 0.9243 0.9372 
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Table 7: Confusion matrix, SVM model, features from cause-of-death and 

description of injury fields 

  UCOD Label  
  Drug OD Not Drug OD Totals 

Predicted 
Label 

Drug OD 891 35 926 
Not Drug OD 21 35,179 35,200 

 Totals 912 35,214 36,126 
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Table 8: Confusion matrix, rule-base model, features from cause-of-death and 

description of injury fields 

  UCOD Label  
  Drug OD Not Drug OD Totals 

Predicted 
Label 

Drug OD 843 44 887 
Not Drug OD 69 35,170 35,239 

 Totals 912 35,214 36,126 
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CHAPTER 4 

Deep neural networks for fine-grained surveillance of overdose mortality  

 

Introduction 
Death certificates (DCs) are the primary data source for drug overdose (OD) 

mortality surveillance, providing information about the cause- and manner-of-death.2,5 

Medical certifiers write the cause-of-death in free-text fields on the DC,7,113 which are 

then used to assign International Classification of Diseases, 10th Revision16 (ICD-10) 

codes by the National Center for Health Statistics (NCHS) to each death certificate.  ICD-

10 codes are used at the national and local levels to calculate OD mortality statistics, to 

monitor trends in the drugs involved in overdoses, and for epidemiological analyses. 

Specifically, ICD-10 codes assigned as an underlying cause-of-death are used to identify 

drug OD deaths and those assigned as supplemental cause-of-death codes (up to 20) are 

used to identify the drug(s) involved in the OD.2,7,102 This process is central to the 

surveillance of drug OD mortality and is the primary way in which OD mortality 

information is reported to communities. 

The ICD-10 classification process of drug overdose deaths (also called drug 

poisoning in the ICD-10 terminology) has limitations, however, including timeliness of 

data,7,15 and the lack of fine-grained granularity in the coding structure of ICD-10 for 

identification of specific drugs contributing to an overdose death.114 Some drugs have 

specific codes (e.g., T40.1 indicates heroin involvement, T40.3 indicates methadone 

involvement), but other drugs of interest do not. For example, ICD-10 code T43.6 

specifies poisoning by “psychostimulants with abuse potential10”, which includes illicit 

substances such as methamphetamine and MDMA in addition to licit substances such as 
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prescription amphetamine but excludes the psychostimulant cocaine, which has its own 

ICD-10 code (T40.5).10 ICD-10 code T40.4 specifies “synthetic narcotics5”, which 

includes fentanyl (prescribed or illicitly manufactured) and fentanyl analogs that have 

been a major cause of drug OD deaths in the United States,4,8,9 but also prescription drugs 

like tramadol. 

This inexhaustive coding structure of ICD-10 has led epidemiologists at the 

national and local levels to rely on text analyses to identify specific drugs involved in OD 

deaths when the codes present are not indicative of a specific drug. In 2015, the Council 

of State and Territorial Epidemiologists (CSTE) released a tool to identify specific drug 

mentions from the free-text cause-of-death section of DCs.115 This tool consisted of a 

SAS program115 that looped through individual words in the cause-of-death section and 

matched the words to a lookup table containing search terms (dug names, metabolites, 

and common misspellings) and a crosswalk to a referent drug. The tool produced a list of 

drugs found in each record. In 2016, the NCHS developed a methodology for identifying 

specific drug involvement from the cause-of-death section that again relied on a lookup-

table.7 This methodology additionally considered contextual information and had a more 

extensive table than the CSTE tool. While these tools presented improvements over using 

ICD-10 codes alone, they were limited by their respective lookup tables, requiring 

frequent updates with novel drugs. Additionally, maintaining every possible misspelling 

or metabolite for substances is a difficult, ongoing, and resource-intensive task. 

Modern approaches within the field of natural language processing (NLP), 

including named entity recognition (NER),116 could be applied in the area of drug 

overdose surveillance to 1) expedite the process for identifying potential drug overdose 



 

48 
 
  

deaths before the ICD-10 coding of the death certificates is completed; and 2) improve 

the identification of specific drug involvement by identifying drug search terms that are 

missing in the lookup tables.  

NER involves tagging particular words as “named entities” (e.g., relevant to 

overdoses, tagging substance names, misspellings, metabolites, and generics as “drug 

entities”) and then training a machine learning (ML) algorithm to identify these entities 

from free-text. This allows for the trained algorithm to predict what word(s) on new DC 

records are drug entities.22,23,117 

Modern NER techniques leverage deep learning21,117-119 methods that involve 

artificial neural networks with several hidden layers. This allows for the model to 

automatically learn complex and robust features that are predictive of outcomes based on 

textual inputs.120 Manual feature engineering that was the hallmark of traditional NLP 

methods gave way to dense neural representations that have been shown to be more 

powerful in information extraction applications, including our current task. An advantage 

of this approach is that NER does not rely on a lookup table to determine which word(s) 

are indicative of a substance, rather, the ML algorithm through training learns which 

words (and surrounding contexts) are indicative of substances. NER has been extensively 

used in clinical science to identify substances in free-text,21-23,117,121 but has not been 

utilized for DCs to our knowledge.   

The present study sought to advance the science and practice of drug OD 

mortality surveillance through the development of a modern NER tool for identifying 

substances on drug OD DCs. Integrating NER methods into the drug OD mortality 

surveillance pipeline will advance surveillance science,24 and in turn enhance public 
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health practice by improving the granularity and timeliness of OD mortality surveillance. 

This study demonstrates how the adaptation of the NER methodology enhances the 

current public health surveillance practice of identification of specific drug involvement 

in ODs.  

 

Methods 
Data 

Data for this study was extracted from the Kentucky Death Certificate Database, 

Kentucky Office of Vital Statistics, Department of Public Health on March 9th, 2020. All 

records coded with the consensus definition for drug OD death2 for years 2014-2019 

were identified and pulled from the database, resulting in a total of n=8,146 OD DC 

records used to develop the NER drug identification tool. Using R,122 the free-text data 

was parsed and reshaped so that every row was one individual element of the free-text 

from the cause-of-death section. To demonstrate, a DC that said “HEROIN, 

FENTANYL, AND OXYCODONE OVERDOSE” was transformed into 7 rows (one for 

each token), corresponding to the elements “HEROIN”, “,”, “FENTANYL”, “,”, “AND”, 

“OXYCODONE”, “OVERDOSE”. This process resulted in a dataset with 95,566 total 

tokens. The text on the death certificates is fully capitalized, and these tokens were used, 

unaltered. 

 

Annotation 

To tag the individual words as drug entities, the dataset was split in half. Two 

trained annotators labeled each split according to the beginning, inside, last, outside, unit 

(BILOU) tagging scheme.123 In the BILOU scheme, a single word that represents an 
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entity is tagged as “U-entity” (unit). An entity that spans numerous tokens is tagged with 

“B-entity” (beginning), “I-entity” (inside), and “L-entity” (last), for the first token in the 

entity, any tokens between the first and last tokens in the entity, and the last token in the 

entity, respectively. Any words that do not represent an entity of interest are tagged with 

“O” (outside). Table 9 shows how a record annotated with the BILOU scheme looks for 

drug entities. Kappa statistics were calculated for each split and for the entire dataset. 

Any disagreements between annotators were identified and resolved at meetings of all 

four annotators to produce the final, annotated dataset.  

 

NER Drug Identification Tool and Modeling strategy 

Development of the NER tool utilized the Flair124 library in Python. Flair is a 

flexible, powerful NLP library that provides a suite of word embeddings125 in addition to 

an easy to navigate modeling framework for programming deep neural networks for NLP 

tasks, including NER. Word embeddings are semantic vector-space representations of 

words. In a typical embedding setting, words that are closely related have similar vector 

representations, which provides a more desirable quality for word-representation in NLP 

tasks compared to simple dictionary-key representations. The Flair library provides both 

previously developed embeddings (such as GloVe125) as well as Flair embeddings,124 

which were developed using a character-level recurrent neural model that is 

contextualized by surrounding text, meaning an individual word can have multiple 

embeddings depending on the context. More recently, Flair embeddings were extended to 

“pooled Flair embeddings,126” which addresses the limitation of producing useful 

embeddings for rarely used words. 
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In general, development of a model in the Flair framework follows the following 

steps: 1) labeled corpus creation, consisting of creating a train-test-validation split and 

pre-processing data to fit into Flair’s framework; 2) choosing word embeddings; 3) 

selecting a model; 4) training the chosen model using the selected embeddings. For the 

present study, two models were developed using this framework, only differing in step 2. 

The n=8,146 DCs were split into training (n=6,108), validation (n=816), and test 

(n=1,222 DCs) sets, roughly a 75%-10%-15% split, respectively. This split was 

performed chronologically; DC records were sorted by date of death, and the first 75% 

were assigned to the training data, the next 10% were assigned to the validation data, and 

the final 15% were assigned to the test data. For word embeddings, a model with GloVe 

embeddings was developed as well as a model using forwards- and backwards-trained 

pooled Flair embeddings. Hypothetically, the contextual Flair embeddings should out-

perform GloVe. Testing the pooled embeddings was of interest as DC text contains 

frequent misspellings as well as rare words such as metabolites of drugs and novel 

substances. The model development pipeline is displayed in Figure 3. 

The modeling framework selected was a bidirectional long-short-term memory 

(BiLSTM) conditional random field (CRF) model. BiLSTM-CRF was selected as it 

achieved state-of-the-art performance in NER tasks previously.119 Flair has a BiLSTM-

CRF model built into the library, which utilizes the PyTorch framework.127 For training, 

the model was set to run for 150 epochs. After each epoch, the model was tested on the 

validation set and the model’s accuracy was calculated. The highest-scoring model on the 

validation set was saved during training and deployed on the test data. Documented code 

for this process is available in Appendix 3. Positive predictive value (PPV), sensitivity, 
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and F-score (harmonic mean of PPV and sensitivity)80 were calculated for each models’ 

performance on the test set for evaluation. High PPV indicates that there are few false 

positives; a PPV of 90% means that 9 out of every 10 entities the model identifies as drug 

entities are truly drug entities. In this example, the false positive rate is 10%. High 

sensitivity indicates that there are few false negatives; a sensitivity of 90% means that 9 

out of every 10 tokens that are truly drug entities are correctly identified as drug entities. 

In this example, the false negative rate is 10%. F-score provides one score to directly 

compare competing models. To demonstrate the advantage of the deep learning approach 

over traditional machine learning methods, a Naïve Bayes model was also developed 

using a dictionary-key representation for words and evaluated on the test data for a 

baseline comparison. 

 

Comparison to lookup table approach 

A widely used methodology for identification of specific drug involvement is 

based on literal text search for drug names, metabolites, and misspellings, cross-walked 

to a “referent drug” and included in a lookup table of search terms. The methodology was 

described and implemented in a CSTE tool115 in 2015. The Kentucky Drug Overdose 

Fatality Surveillance System32 has been updating the initial CSTE dictionary, and the 

current table includes more than 250 referent drugs (Appendix 4). To determine if the 

NER model provides an improvement over current methods, the lookup table approach 

was used to identify drug entities on the test data. Unlike the neural NER model 

developed, the lookup table approach has no false positives (as any word identified from 

the lookup table is already confirmed to be a drug). The number of entities that the best 
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performing BiLSTM-CRF identified that the lookup table did not was calculated to 

display how adding entities identified from the NER model could improve existing 

dictionaries.  

 

Results 
Annotation 

The dataset had a total of n=95,566 tokens that required annotation and each 

token needed to be assigned a BILOU tag as discussed in the Methods. The kappa 

statistic between the first two annotators (first half of the dataset) was 0.996 and between 

the second two annotators (second half of the dataset) 0.973. Overall, the entire dataset 

after annotation had a kappa statistic of 0.983. The kappa values indicate the annotation 

task resulted in “perfect” inter-rater agreement level as per suggested rule of thumb129 

making it a very high-quality dataset. 

 

Modeling 

Table 10 displays the results from the respective BiLSTM-CRF models with the 

basic GloVe embeddings and Flair embeddings as well as the results from the Naïve 

Bayes model. While both deep learning models achieved considerably high performance 

for this task, the model utilizing pooled Flair embeddings performed better, with both 

fewer false positives and false negatives, resulting in higher scores for Flair vs GloVe for 

PPV (99.16% vs  98.63% ), sensitivity (99.10% vs 98.08%) and F-score (99.13% vs 

98.35%). Both deep learning models achieved substantially higher scores than the 

baseline Naïve Bayes model (F-score=15.58%). Figure 4 displays the validation loss 

during training for the pooled Flair model.  
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The BiLSTM-CRF model using pooled Flair embeddings was able to recognize 

drug entities that the lookup table was not. In total, the deep learning approach identified 

168 more entities than the lookup table did. Appendix 5 displays the 130 unique drug 

search terms that the lookup table did not contain that were present in the test data. Many 

of these entities were terms that spanned multiple tokens, such as “DESIGNER 

OPIOIDS”. While the lookup table had the term “OPIOIDS”, the deep learning method 

identified the entity “DESIGNER OPIOIDS”, which provides more information on the 

specific drug than the term “OPIOIDS” alone. Other missed entities included 

misspellings, such as “OXMORPHONE”, “ALPRAZOLM”, and 

“METHAMPHETTAMINE”, which all have the correctly spelled terms in the lookup 

table but not these specific misspellings. Table 11 displays 3 example death certificate 

records and shows the entities identified by each approach. By contrast, there 13 

instances where the opposite occurred, in which the lookup table identified a drug entity 

when the NER model did not.  

 

Discussion 
Model Performance 

This study presents a highly accurate method for identifying drug entities on free-

text drug OD DCs utilizing a modern NLP model. The F-score of 99.13% for identifying 

drug entities achieved in the present study show significant promise for using deep 

learning methods in public health surveillance. The BiLSTM-CRF model leveraging 

pooled Flair embeddings also identified substantially more drug entities than the current 

lookup table for identifying drugs on free-text DCs, clearly displaying that this method is 
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an improvement over currently available surveillance tools. In total, the best deep 

learning approach identified 130 new unique drug entities compared to the lookup table. 

During training, the model achieved lower (better) loss on the validation data than 

the training data, as displayed in Figure 4. This is an unexpected result, as typically 

models will have higher scores on the in-sample training data than the out-of-sample 

validation set. Potential reasons for this include the relatively small sample size of the 

validation set (n=816) compared to the training set (n=6,108). Additionally, it is possible 

that the training data contained more difficult examples for the model to categorize than 

the validation data. A practical reason for this is how the data was split; the training data 

includes the oldest (chronologically) DC records. In Kentucky, public health initiatives 

have worked with medical certifiers to improve DC completion and accuracy for drug 

overdose deaths, so DCs completed earlier in the epidemic may be of lower quality and 

thus more difficult for the model to learn than more recent DCs. 

 

Implications for public health practice 

While knowledge of deep learning methods and NER is not typically part of a 

public health practitioner’s toolkit, epidemiologists working in OD surveillance possess 

knowledge of programming and text analytic tools as they have become required for 

identifying drugs that cause morbidity and mortality in communities.7 The high 

performance achieved by the developed model shows that deep learning should be 

leveraged moving forward in public health practice as a tool to solve challenges that 

appear in free-text data. Epidemiologists working at the state, local, and national levels 

should develop and implement these methods into surveillance pipelines to both improve 
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public health practice and improve surveillance data quality. Neural NLP methods will 

become essential as public health surveillance continues using more data sources that 

contain free-text, including electronic health records,40,49,61,64 emergency medical services 

run data,44,45,130,131 and syndromic surveillance,27,46,48,132 which are used for both drug 

ODs and other health conditions.  

As many jurisdictions performing OD mortality surveillance will not have the 

expertise nor the computational power to develop and test NLP models, the developed 

model can advance surveillance efforts through improvement of the current surveillance 

pipeline. In analysis of Kentucky data alone, the deep learning model identified over 100 

unique drug entities that a lookup table did not contain. Identified entities can be 

extracted from the model’s results and added to the lookup tables of current tools, which 

can be disseminated to jurisdictions to improve identification of specific drugs. This will 

allow for the increased specificity of drug entities that the model provides without 

needing to run a complex model in situations where computational power or expertise is 

limited. With periodic runs on a fresh set of DCs, our model can thus surface new drug 

terms and improve operations in jurisdictions that do not necessarily have the resources 

to train and deploy neural models.  

Integration of additional entities recognized by the model into existing tools in the 

drug OD mortality surveillance workflow will increase the specificity of drugs identified 

on OD DCs through fine-grained spotting, compared to both ICD-10 coding and other 

methods.7 Importantly, ongoing application of the NLP approach as part of the routine 

drug OD surveillance analysis will allow for the detection of novel substances as soon as 

they appear on a death certificate, before the lookup tables are updated with the new 
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substance names. Addition of a new substance to a lookup table depends on 

circumstances within a rapidly changing drug market, which can be demanding, as 

evidenced by the difference in performance between the two lookup table methods tested. 

Since the developed algorithm can utilize context, it has the ability to recognize novel 

drug entities without constant modification of the underlying model. The model’s ability 

to recognize novel entities will provide the opportunity for early warning signals for 

novel substances, and thus faster public health and public safety response. Additionally, 

the increased granularity will provide an overall improvement in surveillance data 

quality, which will lead to more accurate reporting of information to communities and 

stakeholders. The proposed neural NER methods expand our previous work on DC free-

text41 where we developed a NLP algorithm to capture drug OD death cases prior to ICD-

10 coding. In combination, the two NLP algorithms can be added to the routine drug OD 

mortality surveillance tools to improve the early identification of drug OD deaths and 

emerging new drugs of concern, providing opportunities for timelier public health and 

safety response. 

 

Future research 

Future studies should apply the developed model to data from other jurisdictions 

and assess the model’s performance to explore generalizability of the model. This 

generalizability would indicate that the model can be directly integrated into the 

surveillance work of other states and localities without the need for annotation and 

training. Additionally, future research should utilize a similar workflow for identifying 

substances on other surveillance data sources. While it is unlikely that the developed 
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model, due to the nature of DC free-text, would achieve high scores on other free-text 

OD surveillance sources such as emergency medical services run data, future studies 

should explore the use of the Flair library and particularly pooled Flair embeddings for 

drug NER tasks. One limitation of the lookup table approach for identification of drugs 

involved in fatal ODs is the lack of context analysis. For example, if “history of heroin 

abuse” was mentioned on a drug OD death certificate, the lookup table approach as well 

as our currently proposed NLP algorithm would identify the OD death as heroin-

involved. Since NLP methods can be trained to recognize context, a future improvement 

of our NLP algorithm would be the filtering out of the drug entities in situations where 

the drugs were not mentioned as contributory to the OD death. This specific scenario did 

not occur frequently in Kentucky data used to develop the model, but will be an 

important improvement to avoid false positive cases for drug OD involvement of specific 

drugs. 

 

Strengths and limitations 

The developed method has several strengths. First, the developed dataset 

consisted of a large sample (n=8,146) of OD DCs spanning multiple years of data. The 

dataset was annotated by 4 trained annotators, ensuring accurate labels were produced 

which was verified by a high overall kappa statistic (0.983). Another strength of the 

method was the way in which the train-validation-test split was performed. By using 

earlier records for training and validation, and testing on later DCs, the model 

demonstrated that it can use older data to produce accurate predictions on new data, 

mimicking the real-world use-case of the model. The final strength of the model is the 
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high F-score (99.13%) achieved, displaying high accuracy for identifying drug entities on 

free-text DCs. 

The study does have a few limitations. A primary limitation is that the developed 

NER model cannot be used as a stand-alone surveillance tool; rather, it should be 

implemented as an enhancement in current OD mortality surveillance work to improve 

drug identification on death certificates. The lookup table-based methods contain 

crosswalks of drug search terms to their parent drug (for example, misspelling 

“CLONAZPAM” is cross-walked to parent drug “CLONAZEPAM”). Since the NER 

method, by design, recognizes novel entities, these entities are not present in dictionaries 

and their respective crosswalks, and therefore the NER model cannot be used as a 

surveillance tool alone. This limitation is addressed, however, by utilizing the model 

periodically on new data to recognize novel entities and adding these entities to existing 

lookup tables, so that novel entities can be identified by surveillance tools. Further, the 

inclusion of an entity in a lookup table guarantees that it will be recognized on every 

record it appears in, regardless of context—this addresses the rarely occurring scenario 

when a drug entity was not identified by the NER model due to it appearing in different 

context than the model learned. 

An additional limitation is that the entirety of the data used for training the model 

came from Kentucky DCs. The performance of the model on data from other jurisdictions 

should be evaluated. Additionally, the comparison of model performance to performance 

of the lookup table method is conditional on how up-to-date a given lookup table is; other 

jurisdictions may have more complete tables, so the performance improvement from the 

NER model may not be as high as in the present analysis. Another limitation is the 
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complexity of the method and the need for computationally powerful hardware when 

applied to large datasets. Finally, the complexity of the model makes diagnosing errors 

difficult, which is an inherent limitation in most ML applications. 

 

Conclusion 
To our knowledge, this study is the first of its kind to use deep neural networks 

for drug NER on DCs. The highest performing model developed achieved an F-score of 

99.13%, indicating that the method is highly accurate at this task. The high performance 

of the developed model clearly shows that deep learning models should be integrated into 

public health surveillance workflows. Particularly for drug OD mortality surveillance, the 

method could improve surveillance data quality and timeliness, enabling public health 

practitioners to more quickly recognize novel substances and more accurately report data 

to communities. The developed method advances the science of public health 

surveillance by integrating NLP models not currently used in the field into surveillance 

workflows and advance public health practice through enhancing both data quality and 

timeliness of reporting. These surveillance improvements are key in monitoring the 

continuing drug OD epidemic and informing interventions to address this national crisis. 

 

 

 

 

 

 

 



 

61 
 
  

Table 9: Example Annotated Death Certificate Free-text 

Word Tag 
7 B-drug 
- I-drug 
AMINOCLONAZEPAM L-drug 
AND O 
HEROIN U-drug 
OVERDOSE O 
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Figure 3: Flair NLP model development and evaluation for overdose mortality 

surveillance 
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Table 10: Performance of machine learning models on test set 

Method 
Tested 

True Positives False 
positives 

False 
negatives 

PPV Sensitivity F-score 

GloVe 3168 44 62 98.63% 98.08% 98.35% 
Pooled Flair 3201 27 29 99.16% 99.10% 99.13% 
Naïve Bayes 383 1686 2847 18.51% 13.45% 15.58% 
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Figure 4: Validation and Training Loss, Pooled Flair Model 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60

Lo
ss

Epoch

Training Loss Validation Loss



 

65 
 
  

Table 11: Example Classified Death Certificate Records  

Death certificate tokens1 Recognized by the 
lookup table 

Recognized by NER 
model2 

ACUTE   
INTOXICATION   
BY   
THE   
COMBINED   
EFFECTS   
OF   
FENTANYL   
,   
ACETYLFENTANYL   
,   
METHAMPHETTAMINE   
,   
TRAMADOL   
,   
AND   
GABAPENTIN   
SUBSTANCE   
ABUSE   
MULTIPLE   
DRUG   
INTOXICATION   
(   
METHAMPHETIMINE   
,   
CLONAZAPAM   
,   
OXYCODONE   
,   
GABAPENTIN   
)   
MULTIPLE   
DRUG   
INTOXICATION   
ACUTE   
COMBINED   
TOXIC   
EFFECTS   
OF   



 

66 
 
  

[   
METHAMPHETAMINE   
,   
FENTANYL   
,   
HEROIN   
,   
GABAPENTIN   
,   
&   
PARAFLUOROBUTYRYLFENTANYL   
]   
SELF   
ADMINISTRATION   
OF   
ILLICIT   
DRUGS   

1. Highlighted tokens are drug entities; a horizontal line indicates the start of a new death 

certificate record. 
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CHAPTER 5 

Discussion and Conclusions 

This dissertation sought to advance surveillance science and public health practice 

through examining and testing the integration of natural language processing (NLP) and 

machine learning (ML) methods into the drug overdose mortality surveillance workflow. 

A thorough review of the literature found that NLP and ML methods, particularly deep 

learning models, are used scarcely in public health surveillance. However, evidence from 

clinical sciences18,19 indicates that there is untapped potential for NLP and ML methods 

to enhance public health surveillance activities. Applying NLP methods into surveillance 

advances science through the tenets of integration and development24, by leveraging 

techniques used primarily in other disciplines to improve understanding and stimulating 

additional research in the field, respectively. The dissertation focused on advancing 

surveillance practice in drug overdose mortality surveillance in particular as overdose 

mortality is one of the most pressing public health crises the United States has faced in 

recent history,4 with the age-adjusted drug overdose death rate increasing from 20.7 per 

100,000 people in 2018 to 21.6 per 100,000 people in 20191. This dissertation presents 

the development and application of two NLP models that improve drug overdose 

mortality surveillance timeliness and data quality.  

Enhancing timeliness 

 A primary limitation of drug overdose mortality surveillance is the timeliness of 

the data.97 Drug overdose mortality surveillance relies on death certificates, which 

become available to state and local epidemiologists after a substantial time lag 

attributable to the death investigation and the process of death certificate coding at the 
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National Center for Health Statistics (NCHS). Delays in obtaining data limit the ability of 

practitioners to disseminate surveillance data to stakeholders as well as prohibiting timely 

responses to increases in drug overdose mortality. To improve drug overdose mortality 

data timeliness, Chapters 3 and 4 developed classification and named entity recognition 

(NER) models, respectively, that can analyze free-text death certificate data. The 

developed methods eliminate the time required to transfer death certificates between the 

state Office of Vital Statistics (OVS) and the NCHS and the time for NCHS to add 

International Classification of Diseases, 10th Edition16 (ICD-10) codes to the death 

certificate. Utilization of the developed models in tandem to enhance currently existing 

surveillance tools allows for full-scale drug overdose mortality surveillance—both case 

identification and identification of drugs that caused the death—prior to ICD-10 coding. 

 Pre-processing of death certificates using the model developed in Chapter 3 while 

records undergo ICD-10 coding allows public health practitioners to obtain provisional 

counts of overdose deaths more quickly. Faster data can lead to quicker implementation 

of harm reduction strategies, such as targeted naloxone distribution, thereby advancing 

public health practice. Enhancing the timeliness of data through NLP also reflects an 

improvement in the science of surveillance as well. According to the National Research 

Council, two of the five ways in which science can be advanced is by integration (e.g., 

linking insights and methodologies from other fields and levels of analysis) and 

development (e.g., stimulating additional research in the field)24. This dissertation 

accomplishes both by integrating methodologies from other disciplines into public health 

surveillance and by developing a base on which future scientists can build to add further 

NLP methods in surveillance as described in more detail below.  
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Enhancing data quality 

 In addition to timeliness, drug overdose mortality surveillance is also limited by 

weaknesses in data quality. Death certificate data is the only national source for overdose 

mortality surveillance,5 and is the primary source for state and local mortality 

surveillance, making the quality of the data essential so that jurisdictions can provide 

accurate information to communities, promote appropriate evidence-based practices and 

policies, and monitor the impact of interventions and changes in policy. A primary data 

quality limitation in drug overdose mortality surveillance is the coarse granularity of 

information on what substances caused death (e.g., ICD-10 code indicates T43.6, 

“psychostimulants with abuse potential” as the substance, when the specific substance 

involved was methamphetamine). To address this challenge in data quality, the method 

presented in Chapter 4 leverages NLP to identify novel drugs and/or drug misspellings 

currently absent from lookup tables used to determine drugs involved in overdose deaths. 

 Chapter 4 focused on developing a state-of-the art method for identifying drug 

mentions on free-text death certificate data. The developed deep learning model was able 

to identify novel drugs and misspellings that look-up tables traditionally used for 

performing overdose mortality surveillance were unable to identify. The developed 

method improves surveillance data quality by identifying novel drugs and misspellings 

on free-text death certificates that are not present in current lookup tables. These new 

entities can be added to the lookup tables of existing surveillance tools. 

 Adding novel entities identified by the model to the lookup tables of current 

surveillance tools will improve the identification of drugs on the death certificate. The 

ability of the model to learn context enables it to identify novel drugs and misspellings 
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that are not present in the tables currently used. This improved identification ensures that 

jurisdictions are responding to the specific drugs that are causing morbidity and mortality 

in a community. Many jurisdictions will not have the expertise nor the computational 

power to develop and apply NLP models. Therefore, it will be necessary for centers with 

the expertise to periodical run the developed deep learning model on new death 

certificates, add novel entities to lookup tables, and disseminate the updated lookup tables 

to jurisdictions. This process will provide increased specificity of detecting drug entities 

without the need for each jurisdiction to run a complex model. 

 As public health initiatives rely on surveillance data, ensuring that the data is as 

accurate as possible is essential. The enhancement of surveillance data quality through 

the implementation of NLP methods advances public health practice by ensuring that 

decisions are made on accurate, high quality data. Additionally, surveillance science is 

advanced by integration (by applying techniques that emerged from a different field, 

linked to previous work in clinical sciences).24 Applying NLP methods into surveillance 

science are a necessity as unstructured, free-text data sources have become common in 

epidemiological surveillance44,45 and the methods developed for death certificates in the 

present dissertation show promise for utilization of NLP on other sources, further 

advancing surveillance science through the tenet of development.24 

Limitations 

 The contribution of this dissertation to practice and science should be interpreted 

in light of its limitations. Despite the promise for NLP methods described in the narrative 

review, adoption of these methods into surveillance workflows may not be possible in all 

jurisdictions. Epidemiologists working in state and local public health departments may 
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not have the expertise or computing infrastructure needed to implement NLP and ML 

models, including those discussed in Chapters 3 and 4, in their work. However, even in 

these contexts, the NER model from Chapter 4 has value. NER can be used to identify 

new drug entities that can be added to look-up tables that those working in public health 

currently use, allowing them to detect novel substances and identify misspellings that 

were previously missing. Integrating the model presented in Chapter 4 as a tool to 

improve existing drug dictionaries addresses another limitation of this method, as its use 

as a stand-alone surveillance tool is limited since the entities the tool identifies must be 

manually linked to a parent drug. Adding novel entities to a lookup table, which typically 

contain crosswalks to parent drugs, addresses this limitation. 

 Another limitation is that the methods developed were trained using only data 

from Kentucky death certificates. While Kentucky has a robust drug overdose mortality 

surveillance system,32 thereby boosting the rigor of the analyses, it remains unknown 

whether models will be generalizable outside of Kentucky. Death certificate free-text is 

typically short and direct, so it is unlikely that the language used on other jurisdictions’ 

death certificates would differ substantially. A final limitation is the inability to diagnose 

errors in the models’ performance. Complex ML models suffer from the “black box” 

problem,133 which makes identifying why the model incorrectly predicted a response 

difficult due to the large number of inputs and interactions present in the underlying 

model. 

Future research 

 This dissertation highlights the ability of NLP and ML models to advance public 

health practice and surveillance science specifically in the context of drug overdose 
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mortality surveillance. The narrative review showed that despite widespread use in 

clinical sciences there was limited use of NLP methods in public health surveillance, 

despite data sources including free-text elements.20 An additional gap in the use of NLP 

methods in public health was the lack of state-of-the-art models used, indicating that 

current advances in NLP science had not yet been translated to public health practice. 

Implementing deep learning approaches in surveillance, as Chapter 4 of the dissertation 

demonstrates, will improve surveillance data quality and increase case identification.  

 Future research in the field of drug overdose mortality surveillance should test the 

developed models and develop new models on data from additional jurisdictions. 

Demonstrating that the current models can accurately predict labels on data from other 

jurisdictions or training a new model on data from several jurisdictions would eliminate 

the current limitation of having data from only one state present. The latter would also 

increase the sample size used to train the model, which typically will improve model 

performance and lead to a more accurate model overall. Additionally, further 

improvements can be made to the methods developed in Chapters 3 and 4. Additional 

feature engineering, such as non-sequential tokens, could be explored to improve the 

classification model developed in Chapter 3. The model developed in Chapter 4 could be 

improved to learn additional context so that it does not identify drug entities appearing in 

phrases such as “history of heroin abuse” which are not indicative that the drug was 

involved in the overdose death. 

 Finally, there are other surveillance data sources currently used for drug overdose 

mortality surveillance that contain free-text data, including emergency medical services 

data44,45,131 and emergency department syndromic surveillance data.132 Studies should 
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investigate the use of NLP, specifically the Flair124 library used in Chapter 4, as a tool for 

information extraction and classification of these data sources. Adding NLP and ML to 

the surveillance workflow for these sources will improve the quality of drug overdose 

morbidity surveillance in a similar manner to how this dissertation improves the quality 

of drug overdose mortality surveillance. 

Conclusion 

 The work of the present dissertation advances the current state of surveillance 

science and public health practice through the integration of NLP and ML methods that 

are not currently used in the field. Integrating NLP and ML methods into the surveillance 

pipeline enhances both the timeliness and quality of drug overdose mortality surveillance 

data. Timely, accurate data is essential to monitoring the ongoing drug overdose 

epidemic, as it ensures public health and public safety resources are directed at the 

substances currently causing morbidity and mortality in communities. 

 The methods developed had high scores for positive predictive value, sensitivity, 

and F-score. In particular, the sensitivity of the NLP methods was substantially higher 

than those of currently used surveillance tools. This improved sensitivity leads to a low 

false negative rate, meaning more cases that meet case criteria are identified than the 

currently used text-matching methods and look-up tables. Increased case identification 

allows for the collection of additional data sources in a timelier manner which can 

improve the public health response to increases in overdose mortality. 

 NLP and ML methods are under-utilized in public health surveillance overall. 

Implementation of these tools are necessary as the data collected for surveillance 

purposes continues to contain free-text elements. Making accurate insights from free-text 
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data is important to ensure that the public health response is based on the best available 

evidence. This dissertation shows that integrating NLP and ML methods into a 

surveillance workflow can lead to enhancements in both data timeliness and data quality 

and provides an overall advancement to public health practice and surveillance science 

through the development of two highly accurate models that ensure timely, high quality 

data for drug overdose mortality surveillance.  
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APPENDICES 

Appendix 1: Phrase list for rule-based method 

1. Overdose 
2. Polypharmacy 
3. Drug intoxication 
4. Multiple drug 
5. Combined drug 
6. Acute combined 
7. Intoxication drug 
8. Drug toxicity 
9. Acute fentanyl 
10. Fentanyl intoxication 
11. Fentanyl toxicity 
12. Heroin intoxication 
13. Multidrug intoxication 
14. Heroin toxicity 
15. Acute intoxication 
16. Combined effects 
17. Toxic effects 
18. Acute heroin 
19. Multi drug 
20. Multiple drugs 
21. Illicit drugs 
22. Abused fatal 
23. Heroin fentanyl 
24. Intoxication fentanyl 
25. Fentanyl morphine 
26. Intoxication methamphetamine 
27. Acute multidrug 
28. Intoxication heroin 
29. Illicit drug 
30. Acute methamphetamine 
31. Drug fentanyl 
32. Drugs including 
33. Gabapentin drug 
34. Methamphetamine intoxication 
35. Intoxication overdose 
36. Drug heroin 
37. Including heroin 
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Appendix 2: Error analysis 

The false positives and false negatives of the SVM model excluding the SCC 

section were examined manually to determine if a post-processing step after the classifier 

is deployed could be used to improve classification. As Table 4 of the manuscript shows, 

this model had a total of 35 false positives and 21 false negatives on the test data. Of the 

35 false positives, more than 10 appear to be data quality errors in the UCOD field on the 

DC records. These cases have free-text that points to the death being an OD death, but the 

text listed in the UCOD field is not an ICD-10 code.  

Another category of the false positive cases are cases that appear to be OD deaths 

that were wrongly coded at NCHS. Of these cases, several of them mention the term 

“overdose” which likely lead the classifier to predict that these cases are ODs. Other 

cases in this category mention the decedent dying as a result of “drug intoxication” 

(listing a specific drug or indicating multiple drugs) or mention elevated levels of a 

substance in the decedent’s system. Interestingly, most of the cases in these categories list 

other complications, such as “asphyxiation due to drug overdose”, with NCHS then 

coding the cases as an asphyxiation death. However, if the OD was an event that directly 

caused the individual to asphyxiate, these deaths should perhaps be coded as OD deaths. 

This presents another use for this classifier—potentially identifying additional OD deaths 

that were miscoded at NCHS. 

The majority of the other false positives are cases that involve deaths caused by 

chronic drug abuse (not an acute OD event) or an OD exacerbating some sort of 

condition or causing an injury that then leads to death. These cases include examples of 
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an individual overdosing and then falling into a river and drowning, or an individual 

ingesting drugs and aggravating their existing chronic obstructive pulmonary disease. 

The presence of specific words, such as substances and terms like “intoxication”, likely 

lead to the classifier mistaking these for OD deaths. 

Many of the 21 false negatives were cases with a small amount of text that 

contained substances that are rarely seen in OD deaths (such as acetaminophen) or 

contain misspellings. For example, one false negative misspells “toxicity” as “tocicity” 

and others misspell “drug” as “drue.” Employing an automated spell checker when 

preprocessing the text may fix some of these errors. The other false negatives are the 

opposite—well written text that is much longer than what typically appears on a DC. 

Many of these list that the decedent died from a combination of drugs and alcohol, so the 

presence of the word alcohol (or related terms such as ethanol) may signal the classifier 

that the death may be an alcohol related death and not a drug OD death, resulting in 

misclassification. 
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Appendix 3: Flair Modeling Code 

In [1]: 

# Reading in the corpus 
from flair.data import Corpus 
from flair.datasets import ColumnCorpus 
 
columns = {0: "text", 1: "ner"} 
data_folder = "/home/pjwa227/Corpus2/" 
 
corpus: Corpus = ColumnCorpus(data_folder, columns, 
                             train_file = "train.txt",  
                             test_file = "test.txt", 
                             dev_file = "val.txt") 
2020-12-11 09:17:50,035 Reading data from /home/pjwa227/Corpus2 
2020-12-11 09:17:50,036 Train: /home/pjwa227/Corpus2/train.txt 
2020-12-11 09:17:50,036 Dev: /home/pjwa227/Corpus2/val.txt 
2020-12-11 09:17:50,036 Test: /home/pjwa227/Corpus2/test.txt 

In [2]: 

# Quick check 
print(len(corpus.train)) 
 
print(corpus.train[1].to_tagged_string("ner")) 
6108 
INTRAVENTRICULAR HEMORRHAGE COUMADIN <S-DRUG> TOXICITY 

In [3]: 

# Tell flair what tag we want to predict 
tag_type = "ner" 
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) 

In [4]: 

# Load embeddings 
from flair.embeddings import PooledFlairEmbeddings, StackedEmbeddings 
 
embeddings : StackedEmbeddings = 
StackedEmbeddings([PooledFlairEmbeddings("news-forward"), 
                                                    
PooledFlairEmbeddings("news-backward"),]) 

In [5]: 

# Initialize the sequence tagger 
from flair.models import SequenceTagger 
 
tagger : SequenceTagger = SequenceTagger(hidden_size =256, 
                                         embeddings = embeddings, 
                                         tag_dictionary = 
tag_dictionary, 
                                         tag_type = tag_type, 
                                         use_crf = True) 
print(tagger) 
SequenceTagger( 
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  (embeddings): StackedEmbeddings( 
    (list_embedding_0): PooledFlairEmbeddings( 
      (context_embeddings): FlairEmbeddings( 
        (lm): LanguageModel( 
          (drop): Dropout(p=0.05, inplace=False) 
          (encoder): Embedding(300, 100) 
          (rnn): LSTM(100, 2048) 
          (decoder): Linear(in_features=2048, out_features=300, 
bias=True) 
        ) 
      ) 
    ) 
    (list_embedding_1): PooledFlairEmbeddings( 
      (context_embeddings): FlairEmbeddings( 
        (lm): LanguageModel( 
          (drop): Dropout(p=0.05, inplace=False) 
          (encoder): Embedding(300, 100) 
          (rnn): LSTM(100, 2048) 
          (decoder): Linear(in_features=2048, out_features=300, 
bias=True) 
        ) 
      ) 
    ) 
  ) 
  (word_dropout): WordDropout(p=0.05) 
  (locked_dropout): LockedDropout(p=0.5) 
  (embedding2nn): Linear(in_features=8192, out_features=8192, 
bias=True) 
  (rnn): LSTM(8192, 256, batch_first=True, bidirectional=True) 
  (linear): Linear(in_features=512, out_features=8, bias=True) 
  (beta): 1.0 
  (weights): None 
  (weight_tensor) None 
) 

In [7]: 

# Train 
from flair.trainers import ModelTrainer 
trainer : ModelTrainer = ModelTrainer(tagger, corpus) 
 
trainer.train('resources/taggers/pooled_flair_ner', 
              learning_rate=0.1, 
              mini_batch_size=32, 
              max_epochs=150) 
Results: 
- F1-score (micro) 0.9913 
- F1-score (macro) 0.9913 
 
By class: 
DRUG       tp: 3201 - fp: 27 - fn: 29 - precision: 0.9916 - recall: 
0.9910 - f1-score: 0.9913 
2020-12-11 09:42:20,443 -----------------------------------------------
----------------------------------------------------- 

Out[7]: 
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Appendix 4: Drug Overdose Fatality Surveillance System Drug Entities 

25B-NBOME JWH-073 
25C-NBOME JWH-122 
25D-NBOME JWH-210 
25H-NBOME JWH-250 
25I-NBOME LAMOTRIGINE 
3METHYLFENTANYL LAZANDA 
3-METHYLFENTANYL LEVAMISOLE 
3METHYLMORPHINE LEVETIRACETAM 
3-METHYLMORPHINE LEVOFLOXACIN 
3-METHYLTHIOFENTANYL LIDOCAINE 
4_ANPP LOPERAMIDE 
4ANPP LORAZEPAM 
4-ANPP LORAZEPAN 
4-METHOXYBUTYRYLFENTANYL LORCET 
5F-AB-PINACA LORTAB 
5F-ADB LYRICA 
5F-ADB-PINACA M-144 
5F-AMB MAB-CHMINACA 
5F-NNEI MA-CHMINACA 
5F-PB-22 MAM-2201 
5F-THJ MARIJUANA 
6-AM MATRIFEN 
6MAM MAXIDONE 
6-MAM MDMA 
6-MOMOACETYLMORPHINE MDMB-CHMICA 
6-MONACETYLMORPHINE MDMB-FUBINACA 
6-MONOACETYLMOPRHINE MDPV 
6MONOACETYLMORPHINE MDPV 
6-MONOACETYLMORPHINE MEDICATION 
6-MONOACETYMORPHINE MEPERIDINE 
6-MONOACETYTMORPHINE MEPHEDRONE 
6-MONOACEYTLYMORPHIN MEPHEDRONE 
6-MONOACEYTLYMORPHINE MEPROBAMATE 
6-MONOACEYTLYMORPHONE METAHDONE 
6-MONOACTEYLMORPHINE META-METHYMETHOXYACETYL FENTANYL 
7-AMINOCLONAZEAPM METAXALONE 
7AMINOCLONAZEPAM METFORMIN 
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7-AMINOCLONAZEPAM METH 
AB-CHMINACA METHADONE 
AB-FUBINACA METHADOSE 
AB-PINACA METHAMHPETAMINE 
ABSTRAL METHAMPHETAMINE 
ACETAMINOPHEN METHANOL 
ACETYL-ALPHA-METHYLFENTANYL  METHEDRONE 
ACETYLFENTANYL METHEDRONE 
ACID METHOCARBAMOL 
ACRYLFENTANYL METHORPHAN 
ACTIQ METHOTREXATE 
ADB-FUBINACA METHOXETAMINE 
ADBICA METHOXYACETYLFENTANYL 
ADB-PINACA METHOXYBUTYRYLFENTANYL 
ADDERALL METHYLENEDIOXYMETHAM 
AH-7921 METHYLETHCATHINONE 
ALCOHOL METHYLETHCATHINONE 
ALFENTANIL METHYLFENTANYL 
ALPHA-METHYLFENTANYL  METHYLONE 
ALPHA-METHYLTHIOFENTANYL METHYLONE 
ALPHA-PBP METOCLOPRAMIDE 
ALPHA-PPP METONITAZENE 
ALPHA-PVP METOPROLOL 
ALPRAOZOLAM MIRTAZAPINE 
ALPRAZOLAM MIRTAZEPINE 
ALPRAZOLAN MITRAGYNINE 
ALPRAZOLEM MN18 
ALRPAZOLAM MO-CHMINACA 
AMB MOLLY 
AMBIEN MOMOACETYLMORPHINE 
AMIDONE MONACETYLMORPHINE 
AMINOCLONAZEPAM MONOACETYLMOPRHINE 
AMIODARONE MONOACETYLMORPHINE 
AMITRIPTYLINE MONOACETYMORPHINE 
AMLODIPINE MONOACETYTMORPHINE 
AMPHETAMINE MONOACEYTLYMORPHIN 
AMPHETAMINES MONOACEYTLYMORPHINE 
ANEXSIA MONOACEYTLYMORPHONE 
ANPP MONOACTEYLMORPHINE 
ANTICONVULSANT MONOHYDROXYOXCARBAZEPINE 
ANTICONVULSANTS MONOXIDE 
ANTIDEPRESSANT MOPRHINE 
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ANTIDEPRESSANTS MORPHINE 
ANTIPSYCHOTICS MORPHONE 
A-OH-ALPRAOZOLAM MT-45 
A-OH-ALPRAZOLAM NALOXONE 
A-OH-ALPRAZOLAN NALTREXONE 
A-OH-ALPRAZOLEM NARCOTIC 
A-OH-ALRPAZOLAM NARCOTICS 
A-OH-APRAZOLAM NARCOTISM 
APP-FUBINACA N-DESMETHYL-TRAMADOL 
APRAZOLAM NEURONTIN 
A-PVP NEUROSTIL 
ATENOLOL NICOTINE 
BACLOFEN NNEI 
BARBITURATE NORBUPRENORPHINE 
BARBITURATES NORCO 
BENADRYL NORDIAZEPAM 
BENZODIAEPINE NORDOXEPIN 
BENZODIAEPINES NORFENTANYL 
BENZODIAZEPINE NORFLUOXETINE 
BENZODIAZEPINES NORPROPOXYPHENE 
BENZOS NORSERTRALINE 
BENZOYLECGONINE NORTRAMADOL 
BENZOYLECGONINE NORTRIPTYLINE 
BENZTROPINE NORVENLAFAXINE 
BETA-HYDROXY-3-
METHYLFENTANYL  NUPENTIN 
BETA-HYDROXYFENTANYL  OCFENTANIL 
BETA-HYDROXYTHIOFENTANYL O-DESMETHYL-TRAMADOL 
BLEOMYCIN OLANZAPINE 
BRORPHINE ONSOLIS 
BUPHEDRONE OPIATE 
BUPHEDRONE OPIATES 
BUPRENORFINE OPIOID 
BUPRENORPHINE OPIOIDS 
BUPROPION ORPHENADRINE 
BUPROPRION ORTHO-FLUORO FENTANYL 
BUSPIRONE OXAZEAPM 
BUTALBITAL OXAZEPAM 
BUTYLONE OXCARBAZEPINE 
BUTYLONE OXISET 
BUTYRYLFENTANYL OXYCODONE 
CAFFEINE OXYCODONE 
CANNABINOIDS OXYCONTIN 
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CANNABIS OXYCONTIN 
CARBAMAZEPINE OXYCOTIN 
CARBAZEPINE OXYGEN 
CARBON OXYMOPHONE 
CARFENTANIL OXYMORPHONE 
CARFENTANIL OXYNORM 
CARFENTANYL OZAZEPAM 
CARISOPRODOL PALLADONE 
CARISPRODOL PANACET 
CHARCOAL PARA-FLUOROBUTYRYLFENTANYL 
CHLORDIAZEPOXIDE PARA-FLUOROFENTANYL 
CHLORIDE PARA-FLUOROISOBUTYRYLFENTANYL 
CHLOROPHENYLPIPERAZINE PARA-METHYMETHOXYACETYL FENTANYL 
CHLORPHENIRAMINE PAROXETINE 
CHLORPROMAZINE PB-22 
CITALOPRAM PENRAL 
CLOMIPRAMINE PENTEDRONE 
CLONAZEPAM PENTEDRONE 
CLOZAPINE PENTYLONE 
COCAETHYLENE PERCOCET 
COCAINE PERCODAN 
CODEINE PETNYLONE 
CODEINE PHARMACEUTICAL 
COTININE PHARMACOLOGIC 
COUMADIN PHENCYCLIDINE 
CRYSTAL PHENOBARBITAL 
CYANIDE PHENTERMINE 
CYCLOBENZAPRINE PHENYTOIN 
CYCLOPROPYLFENTANYL PIPERACILLIN 
DAMASON-P POLYDRUG 
DARVOCET POLYPHARMACY 
DARVOCET POLYSUBSTANCE 
DARVON POTASSIUM 
DEMEROL PREGABALIN 
DEPRESSANT PRESCRIPTIONS 
DESIPRAMINE PROMETHAZINE 
DESOMORPHINE PROOXYPHENE 
DEXTROMETHORPHAN PROPAFENONE 
DEXTROPROPOXYPHENE PROPANE 
DIACETYLMORPHINE PROPANOLOL 
DIAMORPHINE PROPOFOL 
DIAZDEPAM PROPOFOL 
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DIAZEPAM PROPOSYPHENE 
DICYCLOMINE PROPOXIPHENE 
DIFLUOROETHANE PROPOXITENE 
DIGOXIN PROPOXPHENE 
DIHYDROCODEINE PROPOXTYPHENE 
DIHYDROCODEINONE PROPOXY 
DIHYDROMORPHINONE PROPOXYCODONE 
DILAUDID PROPOXYPHEN 
DILTIAZEM PROPOXYPHENA 
DIPHENHYDRAMINE PROPOXYPHENE 
DISKETS PROPOXYPHERE 
DOLOPHINE PROPOXYPHINE 
DOXEPIN PROPOXZPHENE 
DOXYLAMINE PROPRANOLOL 
DULOXETINE PROPXYPHENE 
DURAGESIC PSEUDOEPHEDRINE 
DURAGESIC PSYCHIATRIC 
DUROGESIC PX1 
EAM-2201 PX2 
ECSTASY PX3 
EDDP QUETIAPINE 
ENDOCET REMIFENTANIL 
ENDODAN ROXICET 
EPHEDRINE ROXICODONE 
EPHEDRINE ROXISET 
ESCITALOPRAM SALICYLATE 
ETHABOL SALICYLATES 
ETHANOL SDB-006 
ETHYLENE SEROQUEL 
ETHYLMETHCATHINONE SERTRALINE 
ETHYLMETHOCATHINONE SUBLIMAZE 
ETHYLONE SUBOXONE 
ETHYLONE SUBSTANCE 
ETIZOLAN SUDAFED 
ETOH SUFENTANIL 
ETOMIDATE TEMAZEPAM 
EXALGO TETRAHYDROCANNABINOL 
FAB-144 TETRAHYDROFURANFENTANYL  
FANATREX THC 
FDU-PB-22 THC-COOH 
FEENTANYL THIOFENTANYL  
FENATNYL THJ 
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FENTANIL THJ-018 
FENTANLY THJ-2201 
FENTANOL TIZANADINE 
FENTANY TOBACCO 
FENTANYL TOLUENE 
FENTANYL TOPIRAMATE 
FENTATYL TRAMADAL 
FENTAYNL TRAMADOL 
FENTNAYL TRAMADONE 
FENTORA TRAMDOL 
FETANYL TRAMEDOL 
FLEPHEDRONE TRAMELL 
FLEPHEDRONE TRAMIDOL 
FLUOROBUTYRYLFENTANYL TRAMODOL 
FLUOROISOBUTYRYLFENTANYL TRAZADONE 
FLUOXETINE TRAZODONE 
FLURAZEPAM TREMEDEL 
FURANYLFENTANYL TREMEDOL 
GABAPENTIN TUSSINEX 
GABAPIN TYLENOL 
GABARONE TYLOX 
GABRION U47700 
GLYCOL U-47700 
GRALISE U-49900 
GUAIFENESIN U-51754 
HALDID UR-144 
HALOPERIDOL VALERYL FENTANYL 
HERION VALIUM 
HEROIN VALPROIC 
HYCODAN VENLAFAXINE 
HYDROCADONE VERAPAMIL 
HYDROCHLOROTHIAZIDE VICIDAN 
HYDROCOCONE VICODIN 
HYDROCODINE VICODIN 
HYDROCODONE WARFARIN 
HYDROCODONE XANAX 
HYDROMORPHINE XANAX 
HYDROMORPHONE XLR-11 
HYDROXYCHLOROQUINE XLR11 
HYDROXYTHIOFENTANYL XLR12 
HYDROXYZINE XLR-12 
HYSINGLA ER XYLAZINE 



 

86 
 
  

IBUPROFEN ZOHYDRO ER 
INSTANYL ZOLPIDEM 
ISOPROPANOL ZYDONE 
ISOPROPYL NALMEFENE 
ISOTONITAZENE QUININE 
JWH-015 SUBLOCADE 
JWH-018 SUBUTEX 
JWH-019 NALBUPHINE 

Appendix 5: Drug entities present in test data not in Drug Overdose Fatality 

Surveillance System Table 

ALPRAZOLM FLOUXETINE 
HYDROCONE NORFLUOXITINE 
METHAMPHETAMINES DEMOXEPAM 
ACETALFENTANYL DESIGNER FENTANYLS 
METHAMPHETTAMINE CANNABOIDS 
IMODIUM 4-AANP 
OYCODONE ACETYLFENTAYL 
TETRAHYDROFURANFENTANYL DESIGNER OPOIDS 
FENANTYL ALPRAZPOAM 
NORIDIAZEPAM BENZO 
ACETYFENTANYL FENTANL 
METHAMPETAMINE 3,4 METHYLENEDIOXY-METHAMPHETAMINE 
INULIN ALPROZOLAM 
INSULIN KETAMINE 
ANDACETYLFENTANY METHOXYCETYFENTANYL 
HYDORCODONE GAHAPENTIN 
BENZO-DIAZEPINES ARIPIPRAZOLE 
INDOMETHACIN DIPHENHYDRA 
FENTANYLN SERTALINE 
BENZODIAZAPENIES VENAFLAXZINE 
4-NAPP BENZOYLECGONINE.QUANT 
THC COOH NITROGLYCERIN 
OPATES METHAMPHRTAMINE 
CODIENE CLONZEPAN 
4-ANNP BENZODIAZIPINE 
AMPHETAIMES BENZODIAPINE 
METHAMPHETIMINE ZANAFLEX 
CLONAZAPAM METHOXYACETYLFENTANY 
CANNABINOID GGABAPENTIN 
7-AMINOCIONAZEPAM HYDROXYAINE 
HYDROOXYZINECAUSING CONTININE 
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ACETYFENTANTANYL O-DESMETHYLVENLAFAXINE 
BUTYRYFENTANYL MEXILETINE 
TOPIRMATE NAPROXEN 
TCC-COOH FANTANYL 
MORPINE ACETYFENTANY 
METHAMPH FLUXETINE 
EFFEXOR ACETLFENTANYL 
PRISTIQ ACETYFENTAN 
FLEXERIL ACETYLFENTANYL1 
OXMORPHONE SODIUM NITRATE 
$-ANPP BUSPRENORPHINE 
OXYCODE WITHACETYLFENTANYL 
METHAPHETAMINE COCAETHYENE 
1,1-DIFLUOROETHANE TRAZODON 
TCH-COOH HYDROX 
DESIGNER OPIOIDS METHANPHETAMINE 
NIFEDIPINE AMPHETATMINE 
ACETYL FENTANYL BENZODIAZOPINE 
AMHPETAMINE METHAMPHETEMINE 
4-AMPP METHANPHETAMINES 
PARAFLUROBUTYRYLFENTANYL ACETTYLFENTANYL 
DESPROPIONYLFENTANYL SODIUM NITRITE 
DESIGNER OPIATE 4NAPP 
4-ANP ACEYLFENTANYL 
OXYCODEONE METHAMPPHETAMINE 
METAMPHETAMINE BUBRENORPHINE 
4ANNP METHAMPHATAMINE 
CRACK COCAINE METHAMPHETAMINR 
OXYCODONC DESIGNER DRUGS 
GABAPCNTIN GABAPENTIN_ 
LOPERAMITE DIIIIIAZEPAM 
IMMODIUM PARAFLUOROBUTYRYLFENTANYL 
OVERDOSE:FENTANYL ACEYTLFENTANYL 
CALCIUM CHANNEL BLOCKER PARA-FLUOROISOBUTYRYL FENTANYL 
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