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METHODOLOGY

A technique for approximating transition 
rates from published survival analyses
Markian A. Pahuta1*, Joel Werier2, Eugene K. Wai2,3, Roy A. Patchell4 and Doug Coyle3

Abstract 

Background: Quality-adjusted-life-years (QALYs) are used to concurrently quantify morbidity and mortality within a 
single parameter. For this reason, QALYs can facilitate the discussion of risks and benefits during patient counseling 
regarding treatment options. QALYs are often calculated using partitioned-survival modelling. Alternatively, QALYs can 
be calculated using more flexible and informative state-transition models populated with transition rates estimated 
using multistate modelling (MSM) techniques. Unfortunately the latter approach is considered not possible when 
only progression-free survival (PFS) and overall survival (OS) analyses are reported.

Methods: We have developed a method that can be used to estimate approximate transition rates from published 
PFS and OS analyses (we will refer to transition rates estimated using full multistate methods as true transition rates).

Results: The approximation method is more accurate for estimating the transition rates out of health than the transi-
tion rate out of illness. The method tends to under-estimate true transition rates as censoring increases.

Conclusions: In this article we present the basis for and use of the transition rate approximation method. We then 
apply the method to a case study and evaluate the method in a simulation study.

Keywords: Cancer, Multistate model, Survival analysis, Quality adjusted life year
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Background
Chronic, progressive, and non-communicable diseases 
(such as cancer, diabetes, cardiovascular disease and 
chronic respiratory disorders) are now the leading cause 
of morbidity and mortality around the world. More than 
60% of global deaths are attributable to these types of dis-
eases [1]; consequently these diseases now account for up 
to 50% of the total healthcare budget in some countries 
[2]. Many of these diseases can be conceptualized as con-
sisting of three health states: healthy (h), ill (i), or dead (d) 
(Fig. 1).

Treatment decisions for chronic, progressive, and 
non-communicable diseases are difficult because inter-
ventions can have distinct, and sometimes opposite, 
influences on the probability that a patient experiences 
a given health state. For example, a therapy (e.g. high-
risk cancer surgery) may decrease the risk of death (by 

controlling cancer) but may increase the risk of becom-
ing ill (if a post-operative complication occurs). Quality-
adjusted-life-years (QALYs) can be used to concurrently 
quantify morbidity and mortality within a single param-
eter [3]. For this reason, QALYs may facilitate the dis-
cussion of risks and benefits during patient counseling 
regarding treatment options [4]. QALY calculation 
requires knowledge of state-membership fractions. These 
are the proportion of patients from a defined cohort that 
are in a given health state at a given time t. State-mem-
bership fractions can be calculated using partitioned-sur-
vival modelling or state-transition modelling [5–7].

Partitioned-survival modelling uses data abstracted 
from progression-free survival (PFS) curves and overall 
survival (OS) curves reported in the literature [7]. PFS 
curves show the fraction of the cohort that is healthy over 
time t (PFS(t); OS curves show the fraction of the cohort 
that is alive (either healthy or ill) over time t (OS(t)). Since 
OS curves show the fraction of alive patients, the fraction 
of dead patients is simply 1− OS(t) . The fraction of ill 
(but alive) patients is the difference between the fraction 
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of alive and healthy patients OS(t)− PFS(t) . We will refer 
to state-membership fractions calculated in this way as 
partitioned-survival fractions [5–7]. In contrast, state-
transition modelling applies the results of a multistate 
analysis. For the disease shown in Fig. 1, these techniques 
would be used to estimate the transition rate (i.e. the 
instantaneous risk (or hazard) of moving from one state 
to another) from health to illness ( h → i ), from health 
to death ( h → d ), and from illness to death ( i → d ) [6]. 
Transition rates can be used compute transition prob-
ability matrices to calculate state-membership fractions 
(“multistate fractions”). It is important to recognize that 
state-transition modelling is based on a set of mutually 
exclusive health states (health, illness, death), whereas 
partitioned survival modelling is based on non-mutually 
exclusive health states (health and illness or death for the 
PFS curve, and alive and dead for the OS curve). Parti-
tioned-survival modelling is used when sufficient data for 
state-transition modelling is unavailable.

QALY calculations based on partitioned-survival frac-
tions can suffer from two important limitations that 
result from the fact that (i) the OS analysis does not con-
sider the survival of ill patients separate from healthy 
patients, and (ii) the risk of progressing to illness rather 
than death for healthy patients cannot be determined 
from PFS analysis. The first limitation of partitioned-sur-
vival fractions stems from the difficultly of extrapolating 

partitioned-survival fractions beyond the study’s obser-
vation period [6]. This is a significant deficiency because 
clinical studies often have a limited observation period 
that is of insufficient duration to characterize long-term 
clinical outcomes [8–13]. The second limitation of par-
titioned-survival fractions is that computed QALYs are 
not generalizable to patient cohorts whose baseline frac-
tions of healthy, ill and dead patients differs from those 
of the study cohort [6]. This is because the OS curve 
is a weighted average of OS curves for healthy and ill 
patients; therefore, the shape of the curve will change if 
the baseline ratio of healthy to ill patients differs. These 
two limitations restrict the use of partitioned survival 
fractions for decision analysis. These limitations can be 
avoided by calculating QALYs using multistate fractions. 
Because they are based on granular analyses of all tran-
sitions, multistate fractions have several advantages over 
partitioned-survival fractions. First, they can be reliably 
extrapolated beyond the study observation period [6]. 
Second, they can be used for decision analysis in cohorts 
with baseline characteristics that differ from the original 
study cohort [14].

Unfortunately, one cannot usually calculate transition 
rates using data abstracted from PFS and OS analyses 
[6, 7]. Given the limitations of partitioned-survival frac-
tions and the advantages of multistate fractions, it would 
be helpful to obtain transition rates and calculate the lat-
ter when one only has access to PFS and OS analyses. We 
have developed a method that, under particular condi-
tions, can be used to estimate approximate transition 
rates from published PFS and OS analyses (we will refer 
to transition rates estimated using full multistate meth-
ods as true transition rates).

This article organized as follows. We first present the 
basis for and use of the transition rate approximation 
method. A case study is then reported in which we apply 
transition rate approximation to data from a randomized 
controlled trial (RCT) of treatments for metastatic epi-
dural spinal cord compression (MESCC). We then report 
a simulation study evaluating the accuracy of the approx-
imation method. In the last section we summarize and 
discuss our findings.

Methods
The approximation technique is restricted to three-state 
progressive, time-homogenous Markov disease pro-
cesses such as the one shown in Fig.  1 [15]. Progressive 
means that transitions are irreversible (i.e. cannot return 
to health from illness). Time-homogenous, means that 
transition rates do not change over time. Markov means 
that transition rates do not depend on disease history; 
in other words, the probability that a patient transitions 

Fig. 1 State-transition diagram for illness-death model. 
State-transition diagram for an illness-death model. The model 
consists of three health states: healthy (h), ill (i), and dead (d). Variable 
names adjacent to the solid arrows are transition rates ( �hi , �hd , 
and �id ). This model is said to be “progressive” because transitions 
are irreversible (i.e. unidirectional). The curved arrows indicate that 
individuals can remain in a particular state over time. See text for 
more details
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from state x to state y during a particular time period is 
independent of their previous health state.

The data needed to use the approximation technique 
can be abstracted from most articles reporting PFS and 
OS analyses. The number of patients experiencing an 
event and number of censored patients in both the PFS 
( Ne

pfs and Nc
pfs ) and OS ( Ne

os and Nc
os ) analyses can be 

determined from the article text or patients-at-risk risk 
table. To obtain the remaining data points, PFS and OS 
KM curves need to be digitized. Digitized KM curves can 
then be used to reconstruct individual patient data using 
validated algorithms to determine the event times in the 
PFS and OS analyses [16]. The approximation technique 
requires that we make note of the maximum observation 
time (event or censoring) in the PFS and OS analyses ( τpfs 
and τos respectively). The area under the PFS and OS 
curves ( AUCpfs and AUCos respectively) are calculated by 
summing the area under each step of the KM curve.

We denote h → i , h → d , and i → d transition rates as 
�hi , �hd , and �id . For the time-homogenous disease pro-
cesses (i.e. constant transition rates), exit times from the 
(i) healthy state (i.e. h → i or h → d transition) and (ii) ill 
state (i.e. i → d transition) are exponentially distributed. 
Furthermore, once a patient exits health, the probability 
that they make an h → d transition is

We will refer to ρ as the risk of death for healthy patients. 
As there are only two possible transitions out of health, 
the probability that a transition out of the health state is 
an h → i transition is 1− ρ.

The mean time of exit from the healthy state (i.e. mean 
progression-free survival time) is a biased measure in 
the presence of right censoring [17]. Instead we calcu-
late the restricted mean progression free-survival time 
( RMPFST−τ ) which is interpreted as the mean progres-
sion-free survival time if observation is restricted to a 
truncation time τ [18]. Since the exit time from health is 
exponentially distributed, the RMPFST−τ can be calcu-
lated as

By definition, the area under the PFS curve is equal to 
RMPFST−τ when τ is set to the maximum observation 
time in the PFS analysis, τpfs [19, 20]. Using Formula  1, 
we can then numerically solve for �hi + �hd using stand-
ard algorithmic methods [21]. Simultaneous events in the 
PFS and OS analyses indicate h → d transitions. There-
fore, we can approximate the risk of death for healthy 
patients as

ρ =
�hd

�hi + �hd

(1)RMPFST
−τ

=
1− e−(�hi+�hd)τ

�hi + �hd
.

To approximate �id we need to use information gathered 
from the OS analysis. It is more challenging to define an 
exact formula for the restricted mean overall survival 
time ( RMOST−τ ) than form the RMPFST−τ because 
exit from the alive state (i.e. healthy or ill) is defined by 
a mixture of two exponential distributions: exit from 
health and exit from illness. However, if we know the 
death times oei  and censoring times ocj  for a cohort of 
alive patients, Ne

os who had an observed event, and Nc
os 

who were right censored, we can approximate RMOST−τ 
truncated to τos , RMOST−τos , using inverse probability 
weighting [22]

Next, we determine the total person-time of observation 
in the OS analysis

If censoring times are not denoted on the OS curve, it is 
not possible to determine ocj  . However, we can rearrange 
Formula 3 to yield

If we substitute this relationship into Formula 4 we obtain

We can repeat the same calculations using the corre-
sponding data from the PFS analysis to approximate total 
person-time of observation in the OS analysis, Epfs . We 
then approximate the total person-time of observation in 
the ill state as

If we make the assumption that the number of i → d 
transitions is

(2)ρ ≈
Nsimul

Ne
pfs

.

(3)
RMOST

−τos ≈





�

N
e
os + N

c
os
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os
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N
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(4)Eos =

Ne
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os
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ocj .

Nc
os
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−τos
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os

)

−
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we can compute [23]

Results
MESCC case study
To evaluate whether the approximation method can gen-
erate reasonable results, we compared approximate tran-
sitions rates against a gold standard of true transition 
rates estimated from real study data.

Patchell et al. [24] conducted a randomized controlled 
trial (RCT) comparing modern surgery and radiotherapy 
(mS+RT) versus radiotherapy alone (RT-alone) for the 
treatment of metastatic epidural spinal cord compression 
(MESCC). MESCC occurs when cancer metastasizes to 
the spine which and can lead to loss of ambulation from 
paralysis. MESCC can be modelled as in Fig. 1 if we con-
sider ability to ambulate as the healthy state h and the 
inability to ambulate due to neurologic dysfunction as 
the ill state i. True transition rates were estimated using 
individual patient data provided by the study authors. 
To eliminate the potential for transcription error and 
inaccuracy in individual patient data reconstruction, 
we used actual individual patient data to generate the 
data listed in Table 1. We estimated true transition rates 
using the Bayesian modeling language Stan, [25] run 
through the statistical programming language R (Addi-
tional file 1: Appendix A) [26]. The effect of mS+RT was 

(7)Nid ≈ Ne
os − Nsimul ,

(8)�id ≈
Nid

Eill
.

parametrized as a log-hazard ratio for each RT-alone 
transition rate.

Prior to comparing true and approximate transition 
rates, we conducted non-parametric multistate analysis 
to assess whether our assumed model (progressive, time-
homogenous and Markov) was appropriate for MESCC. 
Non-parametric multistate fractions were estimated 
from individual patient data from the MESCC RCT using 
the etm library [27] run through the statistical program-
ming language R [26]. We compared non-parametric 
multistate fractions and multistate fractions calculated 
from true transition rates. Goodness-of-fit tests for true 
multistate analysis of data observed with exact transition 
times affected by right censoring have not been devel-
oped [5]. We therefore used informal graphical methods.

Plots comparing proper non-parametric multistate 
and proper parametric multistate fractions showed good 
agreement, and no evidence of systematic deviation 
(Figs.  2 and  3). Therefore, a progressive time-homoge-
nous three-state Markov model is appropriate for the 
MESCC RCT data and true transition rates can serve as 
an appropriate comparator to evaluate approximate tran-
sition rates. Calculations for the mS+RT arm are shown 
in Additional file 1: Appendix B.

The true transition rates shown in Table  2 provides 
useful insights into the impact of treatment. mS+RT 
prolongs ambulation with a statistically significant haz-
ard ratio of 0.53 (95% CrI: 0.30, 0.94) on the total tran-
sition rate for exit from the ambulatory state (�hi + �hd) . 
For patients making a transition out of the ambulatory 
state, the risk of death was similar with both treatments: 

Table 1 Data abstracted from MESCC RCT PFS and OS analyses

Description RT-alone arm mS+RT arm

PFS analysis

Ne
pfs Total number of PFS events 17 31

Nc
pfs Total number of patients censored from PFS analysis 5 6

Ne
pfs
∑

i=1

pei

Person-time of PFS observation 7.02 years 27.22 years

τpfs Maximum observation time in the PFS analysis 2.97 years 5.25 years

AUCpfs Area under PFS curve 0.63 1.16

OS analysis

Ne
os Total number of OS events 44 45

Nc
os Total number of patients censored from OS analysis 1 3

τos Maximum observation time in the OS analysis 2.99 years 5.25 years
Ne
os
∑

i=1

oei

Person-time of OS observation 24.17 years 35.89 years

AUCos Area under OS curve 0.62 0.98

Synthesis of PFS and OS analyses

Nsimul Total number of simultaneous events in PFS and OS curves 10 19
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relative risk 1.07 (95% CrI, 0.65 – 1.75). mS+RT tended 
to increase the mortality rate for non-ambulatory 
patients, hazard ratio for �id of 1.61 (95% CrI: 0.89, 2.66), 
but this effect was not statistically significant.

All approximate transition rates lay within the 95% 
credible intervals for true transition rates. There was no 
consistent direction of error indicating the approxima-
tion method does not consistently under-or over-esti-
mate true transition rates.

Simulation study
To assess the validity of the approximation strategy in a 
wider set of conditions, we conducted a simulation study 
to assess the impact of censoring on the accuracy of the 
approximation method for (�hi + �hd) , ρ , and �id.

Data were generated randomly for a three-state pro-
gressive, time-homogenous Markov disease process with 
parameters similar to those for the mS+RT arm from 
the MESCC trial. A simulated cohort of 100 patients, 
75 of which were healthy at baseline, was created with 
�hi = 0.33 , �hd = 0.53 , �id = 3.28 . Events times were 
independently censored using a uniform distribution 
to achieve all combinations of 0, 2, 5, and 10 patients 

censored from the OS and PFS analysis. 100 000 rep-
lications were generated for each set of simulation 
conditions.

We calculated the mean error (ME), mean absolute 
error (MAE), mean percentage error (%ME), and mean 
absolute percentage error (%MAE) for each set of simu-
lation conditions (Tables 3, 4, and 5). ME and %ME are 
a measure of the direction of bias (systematic over- or 
underestimation). MAE and %MAE are a measure of the 
magnitude of error, regardless of direction.

The approximation method tended to underestimate 
(�hi + �hd) and ρ as the censoring rate increased, however 
the bias was small with %ME under 3% in all censoring 
conditions. Even under no censoring, the approxima-
tion method was imprecise with a relatively high MAE 
and %MAE; increasing censoring did not significantly 
decrease precision.

The approximation method tended to underestimate 
�id as the censoring rate increased, however the bias was 
small with %ME under 3% in all censoring conditions. 
Even under no censoring, the approximation method was 
imprecise with a relatively high MAE and %MAE; increas-
ing censoring did not significantly decrease precision.

Fig. 2 Comparison of state-membership fractions, RT-alone arm. State-membership fractions for RT-alone arm. Non-parametric multistate fractions, 
solid black line. Parametric multistate fractions based on true transition rates, small dashed red line
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The approximation method tended to underestimate 
�id as the censoring rate increased, however the bias was 
small with %ME under 3% in all censoring conditions. 
Even under no censoring, the approximation method was 
imprecise with a relatively high MAE and %MAE; increas-
ing censoring did not significantly decrease precision.

Discussion
Although chronic, progressive, and non-communicable 
diseases chronic diseases affect both patients’ survival 
and quality-of-life, interventions may impact on these 
two outcomes differentially. QALYs can simplify deci-
sion-making and counselling regarding treatment options 

Fig. 3 Comparison of state-membership fractions, mS+RT arm. State-membership fractions for arm. Non-parametric multistate fractions, solid 
black line. Parametric multistate fractions based on true transition rates, small dashed red line

Table 2 Comparison of true and approximate transition rates and hazard ratios for MESCC RCT 

CrI, Bayesian credible interval. Error, Approximate − True. % Error, (Approximate − True) ÷ True

Transition rates Hazard ratios

True (95% CrI) Approximate Error % Error True (95% CrI) Approximate Error % Error

RT-alone group

�hi 0.66 (0.27, 1.20) 0.65 − 0.01 − 1.52

�hd 1.00 (0.50, 1.67) 0.92 + 0.08 − 8.00

�id 2.12 (1.40, 2.98) 2.19 + 0.07 + 3.30

mS+RT group

�hi 0.33 (0.17, 0.54) 0.33 0.00 0.00 0.50 (0.21, 1.40) 0.51 + 0.01 + 1.54

�hd 0.53 (0.32, 0.80) 0.52 − 0.01 − 1.89 0.55 (0.26, 1.16) 0.56 + 0.02 + 2.77

�id 3.28 (2.09, 4.69) 3.71 + 0.43 + 13.11 1.61 (0.89, 2.66) 1.62 + 0.08 + 5.22
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[4]. For clinicians and decision makers, QALYs calculated 
using multistate fractions are useful because they can be 
used to extrapolate long-term quality-of-life and to con-
duct rich decision analysis. Unfortunately, one cannot 
usually calculate multistate fractions from PFS and OS 
curves [5–7].

In this paper, we presented a technique for approximat-
ing transition rates, which can be used to calculate multi-
state fractions, from PFS and OS analysis. Our technique 

requires that three elements be abstracted from each of 
the PFS and OS analyses: (i) total number of events, (ii) 
total number of censored patients, and (iii) event times.

Approximate transition rates provide a reasonable 
estimate of true transition rates estimated using full 
multistate methods. For the MESCC RCT case study, all 
approximate transition rates lay within the 95% Bayes-
ian credible intervals for true transition rates. The simu-
lation study indicates that the approximation method is 
relatively unbiased and precise for estimating the transi-
tion rate out of health (�hi + �hd) and the risk of death for 
healthy patients ρ.

It is important to recognize that our techniques only 
apply to a time-homogenous progressive three-state irre-
versible disease process. Time-homogeneity is violated if 
the transition rates change with time (i.e. any paramet-
ric model aside from the exponential) or depend on the 
amount of time spent in the preceding health state (non-
Markov phenomenon) [28]. Irreversibility is violated 
if patients can become healthy after being ill [15]. Our 
approximation approach can be scaled-up to more com-
plex (e.g. reversible transitions, > 3 health states) disease 
models, however, the formulas will become more com-
plex. Furthermore, as was done in this article, it would 
be necessary to validate the scaled-up approximation 
approach to evaluate for bias.

Conclusions
In this paper, we have demonstrated that transition 
rates can be approximated from published PFS and OS 
analyses. The approximation method is more accurate 
for estimating the transition rates out of health than the 
transition rate out of illness. The method tends to under-
estimate true transition rates as censoring increases; 
therefore, approximate transition rates are not a substi-
tute for true transition rates estimated with full multi-
state methods. However, when proper multistate analysis 
is not available, approximate transition rates can guide 
probabilistic modeling and enhance QALY analysis if one 
considers and accounts for the limitations of the approxi-
mation method.

Additional files

Additional file 1: Appendix A. Transition parameters for an illness-death 
model. Appendix B. Multistate estimation of transition rates.

Abbreviations
MAE: mean absolute; %MAE: mean absolute percentage error; ME: mean 
error; %ME: mean percentage error; MESCC: metastatic epidural spinal cord 
compression; mS+RT: modern surgery followed by radiotherapy; OS: overall 
survival; PFS: progression-free survival; QALY: quality-adjusted life-years; RCT : 
randomized controlled trial; RT-alone: radiotherapy alone.

Table 3 Simulation results for (�hi + �hd)

# Censored 
OS

# Censored 
PFS

ME MAE %ME % MAE

0 0 0.00 0.08 0.11 9.34

5 8 − 0.06 0.10 − 7.33 11.19

5 15 − 0.10 0.12 − 12.18 14.09

5 30 − 0.21 0.21 − 24.69 24.86

10 15 − 0.10 0.12 − 11.50 13.70

10 30 − 0.20 0.21 − 23.69 23.93

20 15 − 0.08 0.11 − 9.85 12.74

20 30 − 0.19 0.19 − 22.32 22.65

40 30 − 0.17 0.17 − 19.30 20.01

Table 4 Simulation results for ρ

# Censored 
OS

# Censored 
PFS

ME MAE %ME % MAE

0 0 − 0.00 0.04 − 0.01 7.27

5 8 − 0.00 0.05 − 0.66 7.90

5 15 − 0.00 0.05 − 0.62 8.24

5 30 − 0.00 0.06 − 0.58 9.50

10 15 − 0.01 0.05 − 1.42 8.30

10 30 − 0.01 0.06 − 1.33 9.52

20 15 − 0.02 0.05 − 3.75 8.70

20 30 − 0.02 0.06 − 3.05 9.74

40 30 − 0.06 0.08 − 9.38 12.21

Table 5 Simulation results for �id

# Censored 
OS

# Censored 
PFS

ME MAE %ME % MAE

0 0 0.07 0.41 2.25 12.42

5 8 − 0.41 0.56 − 12.59 17.19

5 15 − 0.55 0.72 − 16.81 21.92

5 30 − 69.35 71.28 − 2114.42 2173.07

10 15 − 0.52 0.70 − 15.96 21.35

10 30 − 0.73 2.36 − 22.13 72.08

20 15 − 4.54 4.60 − 138.32 140.30

20 30 0.79 2.75 24.22 83.88

40 30 − 1.89 1.90 − 57.67 57.88
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