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For this study, parallel transects were established south of the stream at 2-m and 8-m 

distances from top-of-bank along a 650-m straightened stream section (Figures 2.1a and 

2.1b).   

One soil core was collected every 10-m (avoiding an improved stream crossing 

and a channelized drainageway) along each transect in July 2010 using an ATV-mounted 

hydraulic soil corer with 5-cm diameter (Giddings Machine Company, Windsor, CO). 

Cores were divided into 10-cm depth increments, up to a maximum sampling depth of 

70-cm. For the purposes of this study, sampling locations are numbered 1-40, with 

location 1 situated at the most downstream location and location 40 at the most 

upstream location. 

Soil Physical and Chemical Properties 

Soil texture was determined using the micropipette method (Burt et al., 1993; 

Miller and Miller, 1987).  Soil pH was analyzed in 1M KCl (SPAC, 2000b) and nutrient 

content (P, K, Ca, Mg, and Zn) was determined using Mehlich III extraction (SPAC, 2000a; 

SPAC, 2000c). Soil organic carbon was determined via LECO combustion (Nelson and 

Sommers, 1996) and is reported as % C.  

Statistical Analysis 

Means of soil chemical and physical properties were compared for differences 

between transects and among depths using the LSMEANS statement in the GLM 

procedure in SAS 9.2 (SAS, 2010). Least squares means were used to compare means 

among depths due to missing data from some sampling locations. Spearman correlation  
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Figure 2.2.  Sand content (%) along transect 2-m from stream, in 10-cm depth 
increments. Sampling location at 0 equals most downstream location of sampling. Gaps 
in the data indicate a restrictive layer preventing sample collection. 
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Figure 2.3.  Silt content (%) along transect 2-m from stream, in 10-cm depth increments. 
Sampling location at 0 equals most downstream location of sampling. Gaps in the data 
indicate a restrictive layer preventing sample collection. 
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Figure 2.4.  Clay content (%) along transect 2-m from stream, in 10-cm depth 
increments. Sampling location at 0 equals most downstream location of sampling. Gaps 
in the data indicate a restrictive layer preventing sample collection. 
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Figure 2.5.  Sand content (%) along transect 8-m from stream, in 10-cm depth 
increments. Sampling location at 0 equals most downstream location of sampling. Gaps 
in the data indicate a restrictive layer preventing sample collection. 
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Figure 2.6.  Silt content (%) along transect 8-m from stream, in 10-cm depth increments. 
Sampling location at 0 equals most downstream location of sampling. Gaps in the data 
indicate a restrictive layer preventing sample collection. 
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Figure 2.7.  Clay content (%) along transect 8-m from stream, in 10-cm depth 
increments. Sampling location at 0 equals most downstream location of sampling. Gaps 
in the data indicate a restrictive layer preventing sample collection. 
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Table 2.2. Soil chemical properties. Values reported as least squares means; n = number 
of samples. For the same property different letters indicate significant differences 
(P<0.05). *Transect measurements compared among all samples at 2-m and 8-m, 
respectively. 

Depth 
 

n % C pH 
P     

mg kg-1 
K     

mg kg-1 
Ca  

mg kg-1 
Mg  

mg kg-1 
Zn  

mg kg-1 
2-m transect         

  0-10 cm 40 4.93a 6.2a 225a 237a 5031a 169a 5.73a 

10-20 cm 40 2.37b 6.27a,b 212b 131b 5058a 115b 2.58b 
20-30 cm 37 1.95c 6.34b,c 212b 108b,c 5179a 110b 1.78c 

30-40 cm 30 1.81c,d 6.43c 216a,b 101c 5871b 118b 1.72c 

40-50 cm 18 1.44d 6.44c 219a,b 91c 5414a,b 115b 1.65c 

50-60 cm 4 1.34c,d 6.28a,c 218a,b 98b,c 5093a,b 115b 1.55b,c 
60-70 cm 1 1.54b,c,d 6a,b 211a,b 141a,b,c 6046a,b 167a 1.13b,c 
8-m transect         

  0-10 cm 40 4.14a 5.59a 239a 304a 3903a 180a 4.38a 
10-20 cm 40 1.9b 5.54a 244a 176b 3887a 139b 1.74b 

20-30 cm 40 1.59c 5.6a 240a 126c 4054a 134b 1.23c 

30-40 cm 38 1.22d 5.72b 231a,b 106c,d 4367b 134b 1.26c 

40-50 cm 27 1.07d 5.81b 216b 132c 4769c 146b 1.42b,c 
50-60 cm 13 0.94d 6.06c 211b 84c,d 5265d 140b 0.95c 

60-70 cm 4 0.85d 6.38c 234a,b 34d 5453d 117b 1.22b,c 
         
All*         
2 m 170 2.15a 6.36a 217a 112a 5463a 124a 2.39a 
8 m 202 1.81b 5.8b 233b 150b 4467b 142b 1.76b 
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the 8-m transect could be influenced by higher C content in the upper 30-cm, although 

this trend is not reflected in the 2-m transect. Overall, the 2-m transect locations had a 

significantly higher soil pH and greater C content than the 8-m transect locations, which 

suggests that soil pH is not determined by organic matter in this sampling area but 

instead driven by parent material.  

The 2-m transect locations had lower P, K, and Mg but higher Ca and Zn than the 

8-m transect. K, Mg, and Zn concentrations were greatest in the surface depths for both 

transects. Soils in both transects contain P and K levels sufficient for establishing 

vegetation for riparian buffers and filter strips (UK-CES, 2012); this characterization also 

provides an inventory of the potential nutrient load entering streams from sloughing 

stream banks. 

Soil P values along the 2-m transect exhibited few distinct spatial patterns with 

two exceptions: 1) the 10-20 cm depth had a slight increase in soil P at sampling 

locations 25-28 and the 20-30 cm depth had a dramatic decrease in soil P at sampling 

locations 18-21 (Table 2.2, Figure 2.8). Soil P values along the 8-m transect had a greater 

range and exhibited a more pronounced large scale pattern than the 2-m transect. 

Sampling locations 4-5 and 15-18 had a spike in soil P at all depths (Table 2.2, Figure 

2.9), possibly a concentration from weathered phosphatic limestone parent material or 

depositional area of P-rich sediments. 

Both transects showed a decreasing trend of K with depth. The mean surface soil 

K value along the 2-m transect was 237 mg kg-1 with wide spatial variation (Table 2.2, 
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Figure 2.8. Soil P (mg kg-1) along transect 2-m from stream, in 10-cm depth increments. 
Sampling location at 0 equals most downstream location of sampling. Gaps in the data 
indicate a restrictive layer preventing sample collection. 
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Figure 2.9. Soil P (mg kg-1) along transect 8-m from stream, in 10-cm depth increments. 
Sampling location at 0 equals most downstream location of sampling. Gaps in the data 
indicate a restrictive layer preventing sample collection. 
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Figure 2.10). Depths below 20-cm exhibited little spatial variation. Surface soil K values 

along the 8-m transect showed spatial variation similar to that in the 2-m transect 

(Figure 2.11). Soil K transformations can be very complex; soil K can be in solution or 

exchangeable, but more often may be in the mineral form or fixed to soil mineral 

particles (Helmke and Sparks, 1996). Soil moisture conditions play a role in K availability, 

with soil wetness associated with less available K (Chen et al., 1987; Winzeler et al., 

2008) although the opposite is apparent in this case, considering the visually observed 

seasonal wet soil conditions in locations 33-35. Increased soil K in these locations may 

simply be K associated with alluvial soil minerals.  

Percent C significantly decreased with depth to the 20-30 cm depth along the 2-

m transect and to the 30-40 cm depth along the 8-m transect (Table 2.2). When 

considering all depths and all locations, soils along the 2-m transect location had 

significantly greater C content than soils along the 8-m transect location.  A simple 

visualization of the surface depth (0-10 cm) C content along both transects reveals a 

spatial relationship between the two transects (Figure 2.12). The C content in both 

transects follow a similar pattern of variation in locations 1-8 (Figures 2.12, 2.13, and 

2.14, 0-10 cm depth only) and in locations 19-24, such that as C content increased or 

decreased in the 2-m transect so did the C content in the 8-m transect, with the 

magnitude of C content generally being higher in the 2-m transect. The same 

relationship is shown in locations 33-40, although the magnitude of C content was 
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Figure 2.10. Soil K (mg kg-1) along transect 2-m from stream, in 10-cm depth increments. 
Sampling location at 0 equals most downstream location of sampling. Gaps in the data 
indicate a restrictive layer preventing sample collection. 
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Figure 2.11. Soil K (mg kg-1) along transect 8-m from stream, in 10-cm depth increments. 
Sampling location at 0 equals most downstream location of sampling. Gaps in the data 
indicate a restrictive layer preventing sample collection. 



 

 
 

38 

        Figure 2.12.  Soil carbon (%) at 0-10cm depth along both the 2-m and 8-m transects. 
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Figure 3.24. Experimental semivariograms for soil C for both treatment years, 20-30 cm depth.
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subsurface soil C could be a result of sample contamination from surface-deposited 

flooding debris. 

Spatial variability of soil C at the 0-10 cm depth occurred at a range of 

approximately 100-m in 2011; in 2012, spatial variability of soil C occurred at ranges of 

approximately 15-20 m as well as 40-100 m (Figure 3.22). Spatial variability in surface 

soil C has been found at similar ranges (> 100-m) by other researchers, although their 

work did not specifically focus on riparian soils (Cambardella et al., 1994; Zeleke and Si, 

2005); they attributed soil C variability to large-scale processes such as topography and 

soil morphology. The smaller scale variability found in 2012 may be evidence of the 

imposed treatments. At the 10-20 cm depth, spatial variability of soil C occurred at a 

range of 15-20 m in both sampling years (Figure 3.23). At the 20-30 cm depth, spatial 

variability of soil C occurred at multiple ranges (15-20 m and 60-m) in 2011 but occurred 

predominantly at a range of 15-20 m in 2012 (Figure 3.24).  

Roots, MWD, and soil C exhibited multiple scales of spatial variability. It was 

generally observed that these parameters had smaller scales of variability in 2012 than 

2011. The occurrence of spatial variability over shorter lag distances in 2012 compared 

to 2011 suggested that an effect of imposed treatments may be developing over time.  

Studies investigating the spatial distribution of riparian buffer soil properties are 

limited, making it difficult to compare the results of this study to those of other 

researchers. From a study of Rhode Island streams, Blazejewski et al. (2009) suggested 

that flooding and deposition play a significant role in riparian buffer subsoil C spatial 

distribution, especially those associated with alluvial deposits in first- through fourth-
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order streams.  Their study, however, sampled buried A horizons up to 4-m in glacial 

outwash soils. An Iranian study investigated a 92 km2 catchment with multiple 

landforms and found clear spatial patterns in WSA, C, and MWD (Mohammadi and 

Motaghian, 2011) with close spatial relationships between WSA and MWD. The Iranian 

study, however, investigated soil properties on a much larger scale and did not focus 

exclusively on riparian buffers. 

Conclusions 

This study was performed to assess the influence of vegetation management 

strategies on root biomass, soil aggregates, hydraulic conductivity, and soil carbon in a 

riparian buffer. The application of this assessment would be developing riparian buffer 

management recommendations for land managers. While treatment effects are not 

strongly supported after two years of implementation, no negative effects to the 

measured parameters are shown in the data as a result of reduced mowing frequency. 

Furthermore, the transition from existing grassland vegetation to native grasses using 

conventional herbicide methods reduced root biomass during the study period, but did 

not significantly affect soil aggregates or hydraulic conductivity. On the basis of 

maintaining consistent root biomass, the moderate mow treatment appears to be the 

best management choice. Although soil aggregate and hydraulic conductivity data do 

not provide sufficient evidence for a management choice, carbon data indicate that 

managing riparian areas may impact carbon levels over the short term.   

Spatial variability within the study site may be an important factor influencing 

riparian buffer soil properties. Experimental semivariograms provided evidence of 
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spatial structure in root biomass, soil aggregates, and soil C; these parameters do not 

occur randomly across the study site. Spatial variability occurred at multiple scales for 

each parameter. The variability occurred over a shorter lag distance in 2012 than 2011, 

suggesting an effect of imposed treatments slowly developing over time. This 

information should be considered in the experiment design of future studies that assess 

the influences of management strategies on ecosystem properties in this riparian buffer. 

The dynamic nature of riparian ecosystems and the natural complexity of soils, 

coupled with contradictions in the literature regarding land use effects on soil 

properties, make it difficult to establish concrete relationships for vegetation 

management influences on riparian buffer soils. Furthermore, considerable changes in 

soil properties may take long periods to develop, and the treatments established in this 

study may require additional time to exhibit significant differences. Parameters 

measured and sampling timing may not have been sensitive enough to detect changes 

on the temporal microscale. Longer-term study of this riparian buffer is needed to 

provide additional information for more specific management strategy development. 
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Chapter Four 

Summary of Conclusions 

 

Current Study 

This study was developed to: 1) characterize baseline soil physical and chemical 

properties prior to implementing vegetation management strategies in a riparian buffer; 

2) explore and assess spatial processes in a riparian buffer; 3) evaluate the influence of 

mowing and vegetation management strategies on root biomass, soil aggregate size 

distribution and stability, hydraulic conductivity, and soil carbon. Landowners and land 

managers need straightforward maintenance recommendations to maximize riparian 

buffer function in the agricultural landscape. The results of this study are a step toward 

these recommendations. 

Soil characteristics along the 2-m transect location differed significantly from the 

soils along the 8-m transect. The utilization of semivariogram analysis to describe soil 

carbon variability provided explicit information about the range of spatial 

autocorrelation in this riparian environment. Differences in spatial variation between 

the two transects indicate that soil properties closer to the water body may be more 

variable than those further from the stream. Spatial relationships of soil carbon were 

stronger along the 8-m transect than along the 2-m transect, suggesting that managing 

for soil carbon farther from the stream would be less intensive than managing closer to 

the stream because larger land areas could be similarly managed with the same 

expected outcome. This relationship proposes a choice for riparian buffer managers:    
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1) retain more land area for production activities but increase the maintenance intensity 

for a 2-m wide buffer; or 2) reduce land area for production activities and reduce the 

maintenance intensity for an 8-m wide buffer. In addition, this characterization of 

riparian buffer soil properties provides insight into the potential nutrient loading of 

Central Kentucky streams as a result of future sediment loss from sloughing stream 

banks. 

It was difficult to demonstrate the effect of vegetation management strategies 

on soil properties after only two years of implementation. However, carbon data 

indicate that managing riparian areas may alter carbon levels over the short term. There 

were no negative effects such as reduced hydraulic conductivity or loss of aggregate 

structure or stability evident as a result of reduced mowing frequency or native grass 

transition.  Longer-term study of this riparian buffer is needed to provide additional 

information for more specific vegetation management strategy development.  

Spatial variability within the study site may be an important factor influencing 

riparian buffer soil properties. Experimental semivariograms provided evidence of 

spatial structure in root biomass, soil aggregates, and soil C, indicating that these 

parameters do not occur randomly across the study site. Spatial variability occurred at 

multiple scales for each parameter. The variability occurred over a shorter lag distance 

in 2012 than 2011, suggesting an effect of imposed treatments developing over time. 

This information should be considered in the experiment design of future studies that 

assess the influences of management strategies on ecosystem properties in this riparian 

buffer. 
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It is important to note that extrapolation of the relationships found in this study 

should be limited to similar riparian environments. The stable streambank and 

accessible floodplain conditions in this study site likely influenced the results; these 

findings may not be applicable in watersheds where incised channels and inaccessible 

floodplains characterize the stream systems. 

Future Work 

This work, as well as the established experimental site, is a solid building block 

for future riparian buffer research. Two additional studies have developed as a result of 

the current study: 1) a project investigating water quality in the stream as a result of 

imposed treatments; and 2) a study examining denitrification potential within the 

riparian buffer as a result of imposed treatments. 

Future investigations in the established treatment plots of this study could 

include root biomass, soil aggregate distribution and stability, and infiltration studies 

along the 8-m transect in addition to the 2-m transect. Coupling root biomass, soil 

structure, and infiltration data from the 8-m transect with the existing spatial 

relationships found in this study would provide additional information for landowners to 

develop management strategies for desired riparian buffer function. 

Bulk density was not measured in this study, but should be considered in future 

research involving mowing in riparian areas. For studies that may examine the 8-m 

transect, considerations should be made for wheel traffic and clipping deposition 

because mowing patterns may influence the soil and plant characteristics at this 

location. 
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Another consideration for future work should be larger plot size. The 

experimental semivariograms developed in this study indicated that spatial 

autocorrelation exists at a greater range than that of the plot width (10-m) established 

in this study. Therefore, plots could have been larger to aid in the ease of mowing and 

maintenance and better reflect actual practices employed by land managers. 

Hydrologic characteristics of the riparian buffer should be examined in future 

studies. Monitoring the water table could provide useful information in relation to plant 

characteristics, such as root growth dynamics as a function of water table fluctuations. 

The roots in this study were concentrated in the upper 10-cm, which was consistent 

with other riparian buffer studies. One could surmise this phenomenon is a result of 

adequate water and no need for roots to mine deeper in the soil profile for water or 

nutrients. Further research may address water quality implications of superficial root 

systems, and how superficial root systems may affect soil carbon and subsequently 

denitrification potential in riparian buffers. 

Further analysis of the vegetation communities of this study will be conducted, 

and may provide insight into the response of plant types to mowing treatments. This 

type of analysis over a longer period (> 5 years) would provide data comparable to that 

from other riparian buffer studies establishing native grasses. 

Agricultural nonpoint source pollution continues to threaten water resources. 

The utilization and management of riparian buffers has great potential to reduce water 

pollution and provide ecosystem services beyond the realm of this study. In addition to 

longer-term research, educational and policy-driven opportunities are needed to 
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communicate the benefits of riparian buffers as well as motivate land managers to 

utilize them effectively. Riparian buffers play a key role in agroecosystem functions. 
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Appendix. Correlation matrix by depth and transect. 2-m x 8-m comparison in bold. *Correlation significant at p<0.05. 

 
  2-m transect 8-m transect 

  
0-10 cm 10-20 cm 20-30 cm 30-40 cm 40-50 cm 0-10 cm 10-20 cm 20-30 cm 30-40 cm 40-50 cm 

Ca
rb

on
 

2-m 
    

  
     0-10 cm 1.00 

   
  

     10-20 cm 0.21 1.00 
  

  
     20-30 cm 0.13 0.54* 1.00 

 
  

     30-40 cm -0.12 -0.14 -0.18 1.00   
     40-50 cm -0.10 0.18 0.10 0.71* 1.00 
     8-m 

    
  

     0-10 cm -0.08   0.34* 0.34 0.06   0.60* 1.00 
    10-20 cm -0.12 0.22 0.15   0.56* 0.45 0.67* 1.00 

   20-30 cm 0.20   0.33* 0.28 0.27 0.06 0.60* 0.77* 1.00 
  30-40 cm -0.02 0.05 0.25 -0.10  -0.55* 0.39* 0.49* 0.67* 1.00 

 40-50 cm -0.29 0.00 0.04 -0.08 -0.08 -0.14 0.07 -0.13 0.29 1.00 

Sa
nd

 

2-m 
    

  
     0-10 cm 1.00 

   
  

     10-20 cm 0.72* 1.00 
  

  
     20-30 cm 0.17 0.51* 1.00 

 
  

     30-40 cm 0.26 0.09 0.16 1.00   
     40-50 cm -0.10 -0.26 -0.13 0.69* 1.00 
     8-m 

    
  

     0-10 cm -0.07 -0.02 -0.12 0.09  0.45* 1.00 
    10-20 cm 0.30   0.33* 0.10 -0.14 -0.11 0.39* 1.00 

   20-30 cm -0.09 -0.01 -0.13 -0.23 -0.08 0.33* 0.51* 1.00 
  30-40 cm -0.13 -0.01 -0.12 -0.25 0.17 0.27 -0.22 0.34* 1.00 

 40-50 cm -0.22 -0.04 -0.40  -0.45*  -0.57* -0.05 -0.38 -0.34 0.13 1.00 
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Appendix. cont. Correlation matrix by depth and transect. 2-m x 8-m comparison in bold. *Correlation significant at p<0.05. 
    2-m transect 8-m transect 

  
0-10 cm 10-20 cm 20-30 cm 30-40 cm 40-50 cm 0-10 cm 10-20 cm 20-30 cm 30-40 cm 40-50 cm 

Si
lt 

2-m 
    

  
     0-10 cm 1.00 

   
  

     10-20 cm 0.64* 1.00 
  

  
     20-30 cm 0.20 0.40* 1.00 

 
  

     30-40 cm 0.29 0.06 0.28 1.00   
     40-50 cm -0.24 -0.33 -0.09 0.66* 1.00 
     8-m 

    
  

     0-10 cm 0.11 -0.05  0.02 0.12  0.34 1.00 
    10-20 cm   0.34*    0.37*  0.23 -0.30   -0.51* 0.28 1.00 

   20-30 cm 0.07  0.12 -0.10 -0.18 -0.37 0.08 0.57* 1.00 
  30-40 cm -0.09 -0.11 -0.29  0.11  0.32 -0.10 -0.49* 0.02 1.00 

 40-50 cm -0.08  0.18   -0.46* -0.34 -0.41 -0.03 -0.30 -0.29 0.32 1.00 

Cl
ay

 

2-m 
    

  
     0-10 cm 1.00 

   
  

     10-20 cm   0.38* 1.00 
  

  
     20-30 cm -0.22 -0.08 1.00 

 
  

     30-40 cm -0.15 -0.13 0.27 1.00   
     40-50 cm -0.15 -0.22 0.00 0.40 1.00 
     8-m 

    
  

     0-10 cm 0.08  0.10  0.04 -0.14  -0.47* 1.00 
    10-20 cm 0.24  0.20 -0.11   -0.55*  -0.70* 0.38* 1.00 

   20-30 cm 0.23 -0.03  0.11 -0.15 -0.45 -0.07 0.43* 1.00 
  30-40 cm -0.13 0.01  0.08 -0.15 0.49 -0.20 -0.21 0.25 1.00 

 40-50 cm 0.27 -0.28 -0.23  0.17 0.22 0.02 -0.50* -0.12 0.09 1.00 
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