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Figure. 5.4. Xenograft Tumor-Derived Cells Do Not Exhibit the ‘Warburg Effect’. 
(A) Glycolytic stress data for the control WTHBF-6 cells (C52-2) and Cr(VI)-transformed 
WTHBF-6 cells (T23-3) and xenograft tumor-derived cells (T23-3-X2, T23-3-X3, T23-3-
X4, T23-3-X5, T23-3-X6, and T23-3-X7). (B) Glycolysis, glycolytic capacity, and 
glycolytic reserve for the C52-2, T23-3, T23-3-X2, T23-3-X3, T23-3-X4, T23-3-X5, T23-
3-X6, and T23-3-X7 cells. (C) Glycolytic stress test data for C52-2 cells and Cr(VI)-
transformed WTHBF-6 cells (T73-3) and xenograft tumor-derived cells (T73-3-X2, and 
T73-3-X3). (D) Glycolysis, glycolytic capacity, and glycolytic reserve for the C52-2, T73-
-3, T73-3-X2, and T7-3-X3 cells. (E) Basal glycolysis sand compensatory glycolysis for 
C52-2, T23-3, T23-3-X2, T23-3-X3, T23-3-X4, T23-3-X5, T23-3-X6, and T23-3-X7 cells. 
(F) Basal glycolysis sand compensatory glycolysis for C52-2, T73-3, T73-3-X2, and T73-
3-X3, cells. (G) Extracellular L-lactate levels for C52-2, T23-3, T23-3-X2, T23-3-X3, T23-
3-X4, T23-3-X5, T23-3-X6, and T23-3-X7 cells. (H) Extracellular L-lactate levels for 
C52-2, T73-3, T73-3-X2, and T73-3-X3 cells. (I) Hexokinase I, Hexokinase II, 
phosphofructokinase (PFKP), pyruvate kinase isozymes M1/M2 (PKM 1/2), PKM 2, 
pyruvate dehydrogenase (PDH), lactate dehydrogenase A and B (LDHA, LDHB) protein 
expressions in the different cells listed above. Histone 3 (H3) was used as a loading control. 
Data are the average of at least three experiments ± the SEM. *P < 0.05 from C52-2. #P < 
0.05 from either T23-3 or T73-3. 
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5.6. Chromate-induced Lung Tumors Do Not Show Increased Lactate Dehydrogenase 

A Protein Expression 

Formalin-fixed lung tissue slides from tumor and normal adjacency obtained from 

a worked exposed to Cr(VI) were subjected to fluorescence immunostaining with 

antibodies against lactate dehydrogenase A (LDHA) in green and DAPI (nuclear control, 

blue). The LDHA expression was not increased in Cr(VI)-tumor lung tissues (Figure 5.29E 

and K) as compared to adjacent normal lung tissues (Figure 5.29B and H). These results 

confirm our cell culture findings and show that LDHA protein expression is not increased 

in Cr(VI)-induced lung tumor tissues.
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Figure 5.5. Chromate Lung Tumors Compared Do Not Show Increased LDHA 
Protein Expression. (A-F) LDHA expression in normal tissue as compared to stage I lung 
tumor tissue (chromate-induced). (G-L) LDHA expression in normal tissue as compared 
to stage II lung tumor tissue (chromate-induced). LDHA expression is in red, DAPI is blue 
and was used for nuclear control. Scale bar is 20 µM.  
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5.7. ATP Production 

Recently, it has been proposed that cancer cells normally do not produce more ATP, 

but rather are upregulating energy metabolism pathways for producing building block for 

cellular components. To tell if Cr(VI)-transformed cells have increased ATP production as 

compared to their passage-matched control cells, we used the ATP production assay on the 

seahorse analyzer to measure the ATP production. Surprisingly the total ATP production 

results were mixed. We observed that the Cr(VI)-transformed BEAS-2B cells had lower 

total ATP production when compared to their passage-matched control BEAS-2B cells 

(Figure 5.6A). Conversely, we found that the Cr(VI)-transformed BEP2D and WTHBF-6 

cells had no differences in their total ATP production when compared to their passage-

matched control cells (Figures 5.6B-C). We continued in the investigation of the ATP 

production assays and measured the ATP production of the xenograft tumor-derived cells 

and compared them to the Cr(VI)-transformed cells (T23-3 and T73-3 cells) and the 

passage-matched control cells (C52-2). When examining the total ATP production, we saw 

a variation between the Xenograft tumor-derived cells (Figure 5.7A-B). Not all of the cell 

lines had increased total ATP production when compared to the passage-matched control 

cells. We found that T23-3-X2, T23-3-X3, T23-3-X4, and T23-3-X6 had increased total 

ATP, while T23-3-X7, T73-3-X3, T73-3-X2, and T73-3-X3 cells had decreased total ATP 

production. Interestingly, the Cr(VI)-transformed cells when used in these experiments 

showed lower total ATP when compared to the passage-matched control cells. This is 

different then what we noted in the section above. We propose this difference is likely due 

to subtle metabolic variations in the cells. It is important to note is the breakdown of their 
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ATP production does not change and matches the glycolysis and mitochondrial respiratory 

results (Wise J et al., 2018).



169 
 

 
 



170 
 

 



171 
 

 
Figure. 5.6. ATP Production of Chromium(VI)-Transformed Cells. (A) Total ATP 
production for the BEAS-2B and B2B-CrT cells as measured by the Seahorse Analyzer. 
(B) Total ATP production for the BEP2D and BPD-CrT cells. (C) Total ATP production 
for the WTHBF-6 Cells (C52-2) and Cr(VI)-transformed WTHBF-6 cells (T23- and T73-
3 cells). Data are the average of at least three experiments ± the SEM. *P < 0.05. 
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Figure 5.7. ATP Production of Xenograft Tumor-Derived Cells. (A) Total 
ATP production for control WTHBF-6 cells (C52-2) and Cr(VI)-transformed 
WTHBF-6 cells (T23-3) and xenograft tumor-derived cells (T23-3-X2, T23-3-X3, 
T23-3-X4, T23-3-X5, T23-3-X6, and T23-3-X7). (B) Total ATP production Total ATP 
production for control WTHBF-6 cells (C52-2) and Cr(VI)-transformed WTHBF-6 cells 
(T73-3) and xenograft tumor-derived cells (T73-3-X2 and T73-3-X3).  Data are the 
average of at least three experiments ± the SEM. *P < 0.05 from C52-2. #P < 0.05 from 
either T23-3 or T73-3. 
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5.8. Importance 

The results from this aim demonstrate that during Cr(VI)-induced carcinogenesis 

(normal cells to malignantly transformed cells), malignantly transformed human lung cells 

due to exposure to Cr(VI) do not exhibit increased anaerobic glycolysis (“Warburg effect”). 

Additionally, these results were not cell type specific (fibroblast versus epithelial cells). 

Also, xenograft tumor-derived cells did not have increased anaerobic glycolysis (“Warburg 

effect”). These data are consistent with results from the chromate-tumor data. The lack of 

observed “Warburg effect” is important, because these data suggest the possibility that not 

all energy metabolism dysfunction occur for all forms of cancer. Further these cells could 

be used to investigate changes independent of the “Warburg effect”. 
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Chapter 6 Discussion 

6.1. Overview 

Hexavalent chromium is a well-established human carcinogen and has been shown 

to cause respiratory cancers including lung cancer. After decades of research, the 

underlying mechanisms for its carcinogenicity remain elusive, though many hypotheses 

have been proposed and multiple pieces of the mechanism are known (Figure 1.4). It is 

clear from the literature that ROS, redox imbalances, Cr(III)-DNA adducts, Cr(III) and 

cellular components interactions, epigenetics, genomic instability, cell death pathway 

evasion, and altered DNA are all key to the mechanism underlying Cr(VI) carcinogenesis. 

However, other hallmarks of cancer such as dysregulated cellular energetics, remain under 

investigated. This project investigated the hypothesis that Cr(VI)-induced transformation 

of human lung cells will cause altered cellular energetics, specifically resulting in 

increased de novo lipogenesis, the “Warburg effect”, and mitochondrial respiratory 

dysfunction. The rational for these aims were the limit of literature on energy metabolism 

in Cr(VI) carcinogenesis and the ability of Cr(VI) to activate upstream pathways of energy 

metabolism. Similarly, some report in the literature suggested acute exposures to Cr(VI) in 

cell culture studies could alter cellular energetics. Therefore we chose to investigate some 

of these prominent energy pathways in carcinogenesis in an applied setting, in Cr(VI)-

induced carcinogenesis. Using the model Cr(VI)-transformed human lung cells, we chose 

to examine three specific aims:  

Specific Aim #1: Cr(VI)-transformed cells exhibit increased de novo lipogenesis, 

which is important to their carcinogenic properties. 

Specific Aim #2: Mitochondrial respiratory dysfunction does not occur during 

Cr(VI)-transformation but rather during tumorigenesis. 



176 
 

Specific Aim #3: Cr(VI)-transformed cells do not exhibit increased anaerobic 

glycolysis or the ‘Warburg effect’. 

In brief, we studied malignant transformed [due to Cr(VI) exposures] human lung 

cells. Human bronchial epithelial airway cells (BEAS-2B cells) were treated to sodium 

chromate for 180 days to induced transformation and we isolated an individual colony from 

soft agar [BEAS-2B Cr(VI)-transformed cells]. Parallel untreated control BEAS-2B cells 

were passaged in parallel. We then compared the results from BEAS-2B Cr(VI)-

transformed cells to two other sets of Cr(VI)-transformed lung cell line sets, human 

bronchial epithelial airway cells (BEP2D cells) and human lung fibroblasts (WTHBF-6 

cells). Further, we also employed a tumor growth assay using the xenograft nude mouse 

model and isolated xenograft tumor-derived cells from the Cr(VI)-transformed fibroblasts. 

We observed increased lipogenesis enzymes and activity in all Cr(VI)-transformed cells as 

compared to their passage-matched control cells. This pathway was demonstrated to be 

important for the Cr(VI)-transformed BEAS-2B cells. We reported no mitochondrial 

respiratory dysfunction in the Cr(VI)-transformed cells as compared to their passage-

matched control cells, but observed mitochondrial respiratory dysfunction in xenograft 

tumor-derived cells. We found no increased anaerobic glycolysis or “Warburg effect” in 

the Cr(VI)-transformed cells or the xenograft-tumor derived cells. Lastly, we found that 

human chromate-induced lung cancer tissues had increased pACLY, ACLY, ACC1, and 

FASN expressions and lung tumor tissues had no change in LDHA expression. These 

results suggest that some energy metabolism changes (reported in cancers) occur from 

Cr(VI)-induced malignant transformation but others require the tumor microenvironment 

and some may not occur during the transformation process. 
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6.2. Chromium and Lipid 

In chapter 3, we reported on lipid metabolism changes in Cr(VI)-induced 

transformation, these results are also summarized in table 6.1. We reported that key 

lipogenesis proteins (ACLY, ACC1, and FASN) were increased in Cr(VI) treated human 

lung cells for 120 h. We observed that key lipogenesis proteins (ACLY, ACC1, and FASN) 

were increased in three sets of Cr(VI)-transformed lung cells when compared to their 

passaged matched control cells. Functionally, we saw these cells were increasing free fatty 

acid levels (palmitate). Additionally, we observed no changes in lipid droplet formation or 

fatty acid oxidation of the Cr(VI)-transformed cells. Lastly, we confirmed this pathway 

was important to Cr(VI)-transformed BEAS-2B cells and these proteins were increased in 

chromate lung tumors. 

Our data in Cr(VI)-transformed cells is consistent with the literature, showing 

cancer cells have increased lipogenesis proteins (Santos and Schulze et al. 2012). Some 

studies have implicated that overexpression of these lipogenesis proteins (ACC1 and 

FASN) are important to the carcinogenesis mechanism and can induce neoplastic cellular 

transformation. In murine skin cells overexpression of ACC1 drove the neoplastic 

transformation of these cells (Li et al., 2016). Further, using withaferin A, the authors were 

able to block the cancer properties from the overexpression of ACC1 (Li et al., 2016). 

Similarly overexpression of RAS or EGFR led to increased FASN in mammary epithelial 

cells which drove neoplastic transformation furthermore, this FASN overexpression has 

been shown to be important to the carcinogenesis of mammary epithelial cells (Yang et al., 

2002).  A study from Vazquez-Martin et al. (2008) reported that overexpression of FASN 

activated the HER1/HER2 tyrosine kinase receptors in human mammary epithelial cells 

and these cells underwent neoplastic transformation. Additionally, Zaytseva et al. (2014) 
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demonstrated that in colorectal cancer cells with a low expression of FASN, overexpression 

of FASN led to increased angiogenesis properties. In prostate epithelial cells 

overexpression of FASN caused neoplastic transformation and transgenic expression of 

FASN in mice resulted in prostate intraepithelial neoplasia (Miigita et al., 2009). 

Our prolonged (120 h) Cr(VI) treatment of human lung cells increased lipogenesis 

protein expressions, pACLY, ACLY, ACC1, and FASN (Figure 3.1.). It appears that there 

is a dose dependent increase, additional work is needed to see if this is also time dependent. 

Guo et al. (2013) reported that acute Cr(VI) treatment of human skin fibroblasts could 

induce SREBP-1 proteins and change the cholesterol profile of these cells. Additionally, it 

has been reported that Cr(VI) induced ROS can cause lipid oxidation, specifically causing 

lipid peroxidation (Leonard et al., 2004). In humans, chromate workers exposed had 

increased lipid peroxidation in their blood plasma (Elis et al., 2001). 

During acute and prolonged exposures to Cr(VI), the cell may respond to upregulate 

lipogenesis related proteins due to endoplasmic reticulum stress, as endoplasmic retriculum 

stress can lead to lipid accumulation (Fang et al., 2013). Along with this, it may be 

upregulating the lipogenesis pathway to increase the amount of free fatty acids to increase 

the amount of saturated and monounsaturated fatty acids to protect against lipid 

peroxidation from the acute toxicity of ROS. Polyunsaturated acyl-chains easily undergo 

peroxidation as compared to saturated and monounsaturated fatty acids. Increased rates of 

de novo lipogenesis in cancer cells has been linked to a high rate of saturated and 

monounsaturated fatty acids (Santos and Schuzle, 2012). However more studies are needed 

to clarify if the cells are upregulating lipid proteins in response to Cr(VI) exposure in order 

to make more saturated and monounsaturated fatty acids. 
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Following neoplastic transformation with Cr(VI), we found that Cr(VI)-

transformed BEAS-2B, BEP2D, and WTHBF-6 cells compared to their passage-matched 

control cells had increased pACLY ACLY, ACC1, FASN protein expression and increased 

free fatty acid levels (palmitic acid). Given, that cancer cells may upregulate de novo 

lipogenesis for energy usage or energy storage, we measured β-oxidation for energy usage 

and lipid droplet formation for energy storage. We saw no increases in either endpoint in 

the Cr(VI)-transformed cells as compared to their passage-matched control cells. 

Additional investigations are needed to determine if these Cr(VI)-transformed cells are 

upregulating de novo lipogenesis for changing the lipid profile or for stabilizing EGFR. 

The literature supports a positive feedback loop between EGFR and FASN 

overexpression in cancer. Specifically, a palmitate attached to the EGFR receptor to 

stabilize it on the membrane and leading to palmitoylation, the EGFR then upregulates the 

FASN and a positive feedback loop is achieved (Ali el al., 2018; Bollu et al., 2015). Cr(VI)-

transformed cells have increased FASN and EGFR expressions and therefore this feedback 

loop may be highly probable. Cancer cells will change the lipid profile of the cellular 

membrane for multiple reasons, one being protection against lipid peroxidation (discussed 

above). Previous reports have implicated lower ROS in Cr(VI)-transformed cells compared 

to passage-matched control cells (Xu et al., 2018), it is possible this is due to a change in 

the lipid profile. Future investigations are aimed at examining these two endpoints in 

Cr(VI)-transformed cells. 

Next, we demonstrated that drug inhibition (C75) of FASN caused FASN protein 

expression, cell proliferation, and soft agar colony formation of Cr(VI)-transformed 

BEAS-2B cells. These results established that increased de novo lipogenesis is important 
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for Cr(VI)-transformed cells and overexpression of FASN is a key protein for some cancer 

properties of these cells. Relat et al. (2012) reported that in A549 cells C75 inhibition 

inhibited FASN and cancer properties of these cells, our data match these results. C75 has 

the potential to have an off target effect on the carnitine transporter and negatively affect 

fatty acid oxidation and therefore is not appropriate for animal studies. These data match 

reports in lung cancer where overexpression of these lipogenesis proteins is seen in lung 

cancer cell lines and in patient tumors (Conde et al; 2007; Hess and Igal 2011; Jin et al., 

2014; Migita et al., 2008; Orita et al., 2007; Osugi et al., 2015; Piyathilake et al., 2000; 

Relat et al., 2012; Visca et al., 2004). From the C75 inhibition data it is not clear if the lack 

of growth in the growth curve experiments is due to cell death or cell cycle arrest. However, 

it has been reported that inhibition of overexpressed FASN in cancer leads to a cytotoxic 

buildup of malonyl-CoA (Swinnen et al., 2006). Additionally, C75 treatment was shown 

to induce apoptosis of human melanoma cells, human breast cancer cells, and  human lung 

cancer cells, (Ho et al., 2007; Puig et al., 2008; Relat et al., 2012). Therefore, it is likely 

that the inhibition of FASN in Cr(VI)-transformed cells is resulting in cell death. Further, 

it has been demonstrated that FASN is important for lung cancer cells’ tumorigenesis (Relat 

et al., 2012). Therefore in our future experiments, we will investigate shRNA knockdown 

of FASN to demonstrate that FASN is important for Cr(VI)-transformed cell 

tumorigenesis. 

 In lung cancer patients overexpression of ACLY and FASN in tumor tissues has 

been observed and associated with a poor post treatment survival rate (Migita et al., 2008; 

Orita et al., 2007; Osugi et al., 2015; Piyathilake et al., 2000; Visca et al., 2004). Similarly, 

increased human lung tumor expression of p-ACC (phoysphoyrlation of ACC1/ACC2 
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leads to inhibition) is linked to increased patient survival (Conde et al; 2007). These studies 

demonstrate that the change in lipogenesis as measured in cell culture studies translates to 

lung cancer patients. We stained tumor and adjacent normal tissue from 2 chromate-

induced lung cancers from chromate workers. One subject was stage I and one subject was 

stage II, both tumors with squamous cells. We observed that total ACLY, pACLY, ACC1, 

and FASN expressions were increased in the Cr-tumor tissue as compared to the normal 

adjacent tissues. We did see the possibility of a link between lung cancer staging and ACC1 

and FASN expressions, unfortunately our sample size for these two stages is 1, and 

therefore a clear link remains unknown.  Furthermore these visual protein expression data 

are important because they demonstrate our cell culture results are consistent with 

chromate-induced lung cancers in humans.  

Additional future studies are needed to investigate the interactions of upstream 

factors and the change in lipogenesis in Cr(VI)-transformed cells. Specifically, the role of 

Nrf2 in the lipogenesis changes needs to be investigated, given that Nrf2 is upstream of 

certian metabolism pathways and that this transcription factor becomes constitutively 

activated in Cr(VI)-transformed cells compared to passage-matched control cells (Kim et 

al.,  2015; Kim et al., 2016; Kitteringham et al., 2008; Pratheeshkumar. et al., 2016; Wang 

Y et al., 2018). When Nrf2 becomes constitutively activated, it plays an oncogenic role in 

cancer development (Wang Y et al., 2018). It is likely that Nrf2 may not properly regulate 

lipid metabolism endpoints as previously described in the literature and may be a major 

cause for lipogenesis enzyme shifts (Kitteringham et al., 2008; Wang Y et al., 2018).  

However, given lipid signaling is different in murine livers as compared to humans, it adds 

further complexity to the role Nrf2 is playing here (Bergen and Mersmann 2005). Lastly, 
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as discussed above, EGFR and FASN form a positive feedback loop in cancer cells and 

this positive feedback loop needs to be investigated in Cr(VI)-transformed lung cells (Ali 

et al., 2018; Bollu et al., 2015). 

In conclusion for lipogenesis endpoints, we found that Cr(VI)-transformed cells 

have increased lipogenesis proteins and increased lipogenesis as compared to passage-

matched control cells. These cells are not producing more lipids for energy usage or energy 

storage. This pathway change is not unique to lung cell type and immortalization factor for 

the lung cell line does not affect the results. Drug inhibition demonstrated that FASN 

overexpression is important for Cr(VI)-transformed cells’ survival and cancer properties. 

Lastly, we saw that pACLY, ACLY, ACC1, and FASN expressions were increased in 

chromate-induced human lung tumors as compared to adjacent normal lung tissue. 

Increased lipogenesis and associated enzymes may be a potential therapeutic target in 

Cr(VI)-induced lung carcinogenesis.
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Table 6.1 Results of Lipogenesis Experiments 

Endpoint 
120 h 

Cr(VI) 
Exposure 

BEAS-2B 
Cr(VI) 

Transformed 
Cells 

BEP2D 
Cr(VI) 

Transformed 
Cells 

WTHBF-6 
Cr(VI) 

Transformed 
Cells 

Chromate 
Lung 

Tumors 

Growth in Agar --- Yes Yes Yes --- 

pACLY/ACLY 
Expressions Increased Increased Increased Increased Increased 

FASN Expression Increased Increased Increased Increased Increased 

ACC1 Expressions Increased Increased Increased Increased Increased 

Fatty Acid Oxidation --- No Change No Change No Change --- 

Lipid Droplets --- No Change No Change No Change --- 

FASN inhibition – 
Soft Agar Colonies --- Decreased --- --- --- 

FASN Inhibition Cell 
Growth --- Decreased --- --- --- 
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6.3. Chromium and Mitochondria 

In chapter 4, we reported on mitochondrial respiratory changes in Cr(VI)-induced 

transformation, these results are also summarized in table 6.2. Interestingly, we found that 

xenograft tumor-derived cells have mitochondrial respiratory dysfunction but Cr(VI)-

transformed cells did not exhibit mitochondrial respiratory dysfunction. 

Currently, there is limited literature on the role of mitochondrial dysfunction during 

the process of malignant cell transformation. In one report, it was shown that human skin 

fibroblasts treated with a high concentration (5 µM) of Cr(VI) generated a small number 

of cell populations that were resistant to Cr(VI) toxicity and survived this acute high Cr(VI) 

treatment. These survivor cells exhibited no mitochondrial DNA damage compared to 

control passage-matched cells. Interestingly, these cells had a decreased spare respiratory 

capacity compared to control (Nickens et al., 2012). It is important to note that it was a 

very small number of cells that had resistance to high dose acute Cr(VI) exposure. 

Additionally, in Cr(VI)-transformed cells, we did not observe major changes in their spare 

respiratory capacity as was found with skin fibroblasts in the aforementioned study. There 

are a couple of possible explanations for these differences: (1) the previous study focused 

on acute, high-Cr(VI) exposures and the respiration change could be related to survival 

during acute Cr(VI) exposure; and (2) another report found that human lung fibroblasts and 

skin fibroblasts have different sensitivities to acute Cr(VI) exposures (Xie et al., 2015). 

In chapter 4, we reported on mitochondrial respiration endpoints in multiple sets of 

Cr(VI)-transformed lung cells as compared to their passage-matched control cells. We also 

described the same mitochondrial respiration endpoints of xenograft tumor-derived cells. 

It was found previously, that Cr(VI) cancer stem-like cells had decreased oxygen 

consumption when compared to passage-matched control BEAS-2B cells and BEAS-2B 
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Cr-(VI)-transformed cells (Dai et al., 2017). It is recognized from multiple studies that 

cancer stem cells have different metabolism compared to cancer cells, which would explain 

the difference in results obtained from Cr(VI) cancer stem-like cells and our current results 

(Deshmukh et al., 2016; Dong et al., 2017; Peiris-Pagès et al., 2016). Another report found 

that acute exposures to Cr(VI) could cause mitochondrial dysfunction (Abreu et al., 2013), 

this difference from our results could be due to toxicity of Cr(VI) at 48 h. Further, these 

mitochondrial dysfunction response may represent a survival response to acute Cr(VI) 

toxicity or the changes reported are early response part of Cr(VI)-induced carcinogenic 

mechanism. 

Our results indicate that mitochondrial respiration is not affected negatively after 

malignant transformation from Cr(VI) exposures, as evident from comparing Cr(VI)-

transformed lung cells to their passage-matched control cells. We found a general trend 

that some of Cr(VI)-transformed cells have increased coupled respiration, yet some Cr(VI)-

transformed cells do not. The differences in some of the respiration functions between the 

transformed cells could be due to some mitochondrial changes in the cells that are not 

uniform during cellular transformation and other metabolic endpoints (e.g., increased 

lipogenesis, mitochondrial membrane potential, alterations to mitochondrial complexes, 

and mitochondrial DNA changes) may also be involved. We reported that xenograft tumor-

derived cells had significant inhibition of their max mitochondrial respiration (following 

FCCP treatment) and their spare respiratory capacities. These xenograft tumor-derived 

cells also had decreased coupling efficiency, another important endpoint showing 

mitochondrial respiratory dysfunction, as it shows these cells are making less ATP to total 

oxygen used. Interestingly, xenograft tumor-derived cells have increased coupled 
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respiration compared to their Cr(VI)-transformed cells. Contrary to these results, one 

xenograft tumor-derived cell line (T23-3-X2) showed increased mitochondrial respiration, 

providing evidence that not every cell from a tumor undergoes mitochondrial dysfunction. 

These data indicate that cellular transformation does not cause mitochondrial dysfunction, 

rather it may be due to the tumor microenvironment.  

Ethidium bromide treatment of immortalized prostate epithelial cells caused a 

depletion of mitochondrial DNA, which is critical factor in various cancer endpoints (e.g. 

glycolytic metabolism, migration, and survival (Moro et al., 2009). Mutations in 

mitochondrial DNA were found in patient-derived pancreatic cancer cell lines and further 

examination of the metabolic profiling led to the finding that complex I, III, and IV were 

inhibited in some of these patient-derived pancreatic cell lines (Hardie et al., 2017).  In the 

same study, the Hardie et al. (2017) showed that, that in the patient-derived pancreatic cell 

lines (with complex I inhibition) oxygen consumption was lower than immortalized 

pancreatic cells. These patient-derived xenografts cell line results are in agreement with 

our results using the xenograft tumor-derived cells. In human lung cells (BEAS-2B) 

chronically (6 month) exposed to arsenic were reported to have mitochondrial dysfunction. 

Additionally, the authors measured the endpoints of gene expressions and found multiple 

genes associated with mitochondrial dysfunction were lower in the chronically arsenic-

treated cells compared to the passage-matched control BEAS-2B cells. Specifically, the 

expressions of genes associated with the electron transport chain were lower (Stueckle et 

al., 2012). Although the authors did not isolate a single phenotype in their study of chronic 

arsenic treatment, these data do indicate a possible difference in mitochondrial response 

between arsenic and chromium. However, it is possible that there may be mitochondrial 
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gene changes in Cr(VI)-transformed cells, but more investigations are warranted to confirm 

this. 

Even though there was no mitochondrial respiratory dysfunction in Cr(VI)-

transformed cells, other endpoints of mitochondrial dysfunction may be present, including 

mitochondrial DNA damage, mitophagy dysfunction, and mitochondrial membrane 

potential changes. However, respiration is unaffected in these cells so it is plausible that 

the mitochondrial membrane potential is also unaffected. Additional studies are warranted 

to examine the cause of mitochondrial respiration changes in the xenograft tumor-derived 

cells. Specifically, Nrf2 role in mitochondrial changes needs to be studied, given that Nrf2 

is upstream of many metabolism pathways and Nrf2 becomes constitutively activated in 

Cr(VI)-transformed cells compared to passage-matched control cells (Kim et al., 2015, 

2016; Pratheeshkumar et al., 2016, 2017; Wang Y et al., 2018). Nrf2 when constitutively 

activated, will play an oncogenic role in cancer development. It is likely that Nrf2 may not 

properly regulate its metabolism endpoints and may be a major contributing factor for 

metabolism shifts (Wang Y et al., 2018). Further investigation on the changes in the 

mitochondrial membrane potential, mitochondrial DNA and mitophagy (mitochondria 

autophagy) during Cr(VI)-transformation and in Cr(VI)-transformed cell tumorigenesis 

remains to be investigated. 

The results from the chapter 4 demonstrate that during the early stages of metal-

induced carcinogenesis (normal cells to malignantly transformed cells) malignantly 

transformed human lung cells [due to exposure to Cr(VI)] do have mitochondrial 

respiratory dysfunction. As with the lipogenesis results, these results were not cell type 

specific (fibroblast versus epithelial cells). In the later stages of metal-induced 
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carcinogenesis (transformed cells to tumor) we observed mitochondrial respiratory 

dysfunction. Thus, these results suggest that mitochondrial respiratory dysfunction occurs 

late in Cr(VI)-induced carcinogenesis.
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 Table 6.2 Results of Mitochondria Respiration Experiments 

Endpoint 

BEAS-2B 
Cr(VI) 

Transformed 
Cells 

BEP2D Cr(VI) 
Transformed 

Cells 

WTHBF-6  
Cr(VI) 

Transformed 
Cells 

Xenograft 
Tumor-
derived 

Cells 

Growth in Nude Mice Yes Yes Yes --- 

Basal Respiration No Difference No Difference No Difference Decreased 

Maximal Respiration No Difference No Difference No Difference Decreased 

Spare Respiratory 
Capacity No Difference No Difference No Difference Increased 

Proton Leak No Difference No Difference No Difference Decreased 

Non-Mitochondrial 
Respiration No Difference No Difference No Difference Decreased 

Coupled Respiration No Difference No Difference No Difference Decreased 

Coupling Efficiency No Difference No Difference No Difference Decreased 
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