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ABSTRACT OF DISSERTATION 

 
 
 

EVALUATING THE MICROBIOME TO BOOST RECOVERY FROM STROKE: THE 
EMBRS STUDY 

 
Accumulating evidence suggests that gut microbes modulate brain plasticity via the 

bidirectional gut-brain axis and may play a role in stroke rehabilitation. A severely 
imbalanced microbial community has been shown to occur following stroke, causing a 
systemic flood of neuro- and immunomodulatory substances due to increased gut 
permeability and decreased gut motility. Here we measure post-stroke increased gut 
dysbiosis and how it correlates with gut permeability and subsequent cognitive 
impairment. 

We recruited 12 participants with acute stroke, 12 healthy control participants, and 18 
participants who had risk factors for stroke, but had not had a stroke. We measured the 
gut microbiome with whole shotgun sequencing on stool samples. We measured 
cognitive and emotional health with MRI imaging and the NIH toolbox. We normalized 
all variables and used linear regression methods to identify gut microbial levels 
associations with cognitive and emotional assessments. 

Beta diversity analysis revealed that the bacteria populations of the stroke group were 
statistically dissimilar from the risk factors and healthy control groups. Relative 
abundance analysis revealed notable decreases in butyrate-producing microbial taxa. The 
stroke group had higher levels of the leaky gut marker alpha-1-antitrypsin than the 
control groups, and roseburia species were negatively correlated with alpha-1-
antitrypsin. Several Actinobacteria species were associated with cerebral blood flow and 
white matter integrity in areas of the brain responsible for language, learning, and 
memory. Stroke participants scored lower on the picture vocabulary and list sorting tests 
than those in the control groups. Stroke participants who had higher levels of roseburia 
performed better on the picture vocabulary task.  

We found that microbial communities are disrupted in a stroke population. Many of 
the disrupted bacteria have previously been reported to have correlates to health and 
disease. This preparatory study will lay the foundation for the development of 
therapeutics targeting the gut following stroke.  
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CHAPTER 1.  BACKGROUND 

1.1 Stroke 

Every year, more than 795,000 people suffer a stroke in the United States.1 Stroke 

is characterized as a neurological deficit caused by an acute focal injury of the central 

nervous system vasculature, including cerebral infarction, intracerebral hemorrhage, and 

subarachnoid hemorrhage.2 The major blood supply to the brain comes from the anterior, 

middle, and posterior cerebral arteries.3 Cerebral infarction is most commonly caused by a 

blockage to the blood supply of the brain in the form of a thrombus or an embolus.4 A 

thrombus is a blood clot consisting of fibrin, platelets, and red blood cells that forms within 

the artery that it is occluding.5  An embolus is a blood clot that travels from another region 

such as the heart or the carotid artery that lodges in the vasculature of the brain.6 When the 

blood supply to the brain is blocked, the downstream tissue is injured by lack of oxygen 

and necrosis ensues.7 Cell apoptosis, excitotoxicity, and the inflammatory response cause 

further damage and result in a loss of function.8   

Thrombus and embolus formation are a natural product of atherosclerosis.9 The 

major risk factors for atherosclerosis include hyperlipidemia, hypertension, cigarette 

smoking, and diabetes.10 Most of these risk factors are more likely in an aging population, 

and stroke is much more prevalent in individuals over 55. According to the Centers for 

Disease Control and Prevention, the chance of having a stroke about doubles every 10 years 

after age 55. There are also several genetic factors that make stroke more likely, including 

the ε4 variant of the apolipoprotein E, a cholesterol carrying protein in the body also 

associated with a higher incidence of Alzheimer’s disease.11 
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1.1.1 Available Stroke Treatments 

The discovery and implementation of tissue plasminogen activator (tPA) therapy 

and endovascular procedures have greatly reduced stroke mortality.12 The first line 

treatment for acute ischemic stroke is tPA; however, it must be given within 4.5 hours of 

the onset of stroke.13 If the stroke is treated within 24 hours of the onset of stroke, 

mechanical thrombectomy can be used to partially or fully remove the offending clot.14 

These treatments are helpful for minimizing the injury caused by the stroke; however, 

many patients do not have access to these treatments and are left with disabilities. It is 

estimated that 26% of survivors of stroke are impaired in activities of daily living and 50% 

have reduced mobility.15 Efforts have been made to investigate therapies that will halt the 

downstream ischemic cascade at the level of various biochemical, metabolic and molecular 

processes in the infarct border zone using neuroprotective agents, but have all failed in 

clinical trials.16  

1.1.2 Rehabilitation following stroke 

Survivors of stroke are often left with severe impairments. There is a period of 

about 3 months following stroke that many survivors will see some spontaneous recovery.17 

The molecular changes underlying this spontaneous recovery include structural changes in 

axons, dendrites, and synapses; increase activation and migration of endogenous neural 

stems; and changes in extracellular matrix, glia, and angiogenesis.18 Therapies following 

stroke are commonly used to supplement this spontaneous recovery.19 Rehabilitation 

therapies such as physical therapy, occupational therapy, and speech therapy are designed 

to induce neuroplasticity in these survivors to promote functional recovery20. Stroke 

survivors spend three weeks on average in an acute rehabilitation facility followed by 
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months of outpatient rehab and follow up. Unfortunately, approximately 40% of stroke 

survivors still remain with moderate to severe impairments that markedly reduce quality of 

life and require special care21.  

1.1.3 Neuroplasticity 

Rehabilitation strategies following stroke attempt to take advantage of the 

principles of neuroplasticity to bring about recovery.22 Neuroplasticity encompasses the 

functional and structural alterations in the brain enabling adaptation to the environment, 

learning, memory, as well as rehabilitation after brain injury.23 Basic principles of 

neuroplasticity include synaptogenesis, neurogenesis, clearance of toxic amyloid beta and 

tau protein aggregates, and neuroprotection.24 There have been many compounds produced 

that have been reported to induce long-lasting neuroplasticity including natural products 

(bilobalides25 and curcumin26) and novel vaccine AADvac127. Activity-dependent 

neuroplasticity is also inducible by regimens of exercises and therapies. Mechanical 

stimulation of brain regions can induce neuroplasticity through therapeutic hypothermia28 

or deep brain stimulation.29  

1.1.4 Markers of Stroke Severity 

Several markers have been developed to monitor stroke severity. Several recovery 

assessments have been created to monitor functional recovery over the course of 

rehabilitation. Among these is the Self-Care Assessment created by the American 

Occupational Therapy Association.30 The Self-Care Assessment determines how 

independently an individual can perform the follow tasks related to daily living (eating, 
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oral hygiene, toilet hygiene, shower/bathe self, upper body dressing, lower body dressing, 

and putting on/taking off footwear).  

In addition to functional assessments, other tools such as magnetic resonance 

imaging can detect neurological recovery following stroke. T1 and T2 structural imaging 

is commonly used to calculate lesion size and location following stroke,31 but advanced 

imaging modalities such as diffusion tensor imaging,32 magnetic resonance spectroscopy,33 

and arterial spin labelling34 can be used to detect white matter integrity, brain metabolites, 

and cerebral blood flow, respectively. 

Finally, the NIH toolbox has been developed to assess cognitive, emotional, and 

sensation function in individuals using validated questionnaires.35 It has been validated for 

use in stroke participants,36 and is an effective way of monitoring additional modalities of 

recovery. 

1.2 Gut Microbiome 

The gut microbiome consists of more than a trillion microbes that dwell in the human 

gut.37 While these microbes include bacteria, archaea, viruses, fungi, and protozoa, the 

bacterial component of the gut microbiome has been the best studied.38 The major bacterial 

phyla that dwell in this community are Firmicutes and Bacteroidetes, with Actinobacteria, 

Proteobacteria, and Verrucomicrobia also making sizable contributions.39 Within these 

phyla, there are approximately 300-500 bacterial species that live in a delicate balance.40 

These bacteria perform many metabolic tasks that are symbiotic to the host organism, 

including breaking down nutrients and producing important vitamins.39 Dysbiosis occurs 

whenever the delicate balance of microbial communities is disrupted and is seen in the 

context of antibiotic therapy, inflammatory bowel diseases, diabetes, and obesity.41 
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The gut microbiome plays many roles in disease. For example, antibiotic therapy can 

lead to a dysbiotic state that allows Clostridium difficile infection to thrive.42 Genome wide 

association studies have linked inflammatory bowel disease with loci that implicate an 

aberrant immune response to the intestinal microbiota.43 Acute gastroenteritis following 

exposure to pathogens can precipitate the development of irritable bowel syndrome, and 

studies have demonstrated changes in the gut microbiome in irritable bowel syndrome 

patients.44 Bacteria causing weight gain are thought to induce the expression of genes 

related to lipid and carbohydrate metabolism thereby leading to greater energy harvest from 

the diet.45 Experiments using gut microbiota transplants to germ-free animal models have 

shown that fatty liver disease development is determined by gut bacteria.46  

Attempts to modulate the gut microbiome typically come in the following 

mechanisms: fecal microbiota transplant, antibiotic administration, probiotic 

administration, dietary modifications, and exercise. Fecal microbiota transplantation is the 

transfer of stool from a healthy donor into the colon of a patient whose disease is a result 

of an altered microbiome, with the goal of restoring the normal microbiota and 

ameliorating the disease.47 Fecal microbiota transplant is already an effective and approved 

therapy for Clostridium difficile infection.48 Antibiotics have the ability to vastly alter the 

composition of the microbiome, with different antibiotics affecting the microbiome in 

different ways.49 Probiotics are live organisms that have demonstrated beneficial effect on 

human health.50 Diet modification has an effect on the microbiome since different bacterial 

species rely on various preferred fuel sources for survival.51 Prebiotic interventions are 

comprised of specific fuel sources that beneficial microbiota prefer; in general, these 
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prebiotic interventions contain some type of dietary fiber.52 Finally, aerobic exercise has a 

positive impact on the microbiome, shifting it towards a more beneficial balance.53  

The composition of the microbiome varies across the lifespan. The infant 

microbiome is thought to initially be colonized by the mother’s vaginal bacteria or her skin 

bacteria, depending on whether the infant was delivered vaginally or by cesarean section.54 

Whether an infant in breastfed or formula-fed continues to modulate the early 

microbiome.55 During adulthood, the microbiome remains relatively stable, like a dynamic 

fingerprint whose ridges sharpen or smooth in response to their environment. The 

microbiome has been shown to remain relatively stable between age 55 and 85, but it tends 

to look different in younger or older groups55.  

The microbiome is typically studied and measured by sequencing the bacteria 

recovered from fresh stool samples. The gut microbiome varies across the length of the 

gastrointestinal tract, looking a little different in the stomach, duodenum and jejunum, 

ileum, and large intestine.56 Additionally, discrete bacterial communities form in the 

different layers of the gastrointestinal tract such as the gut lumen, colonic mucus layers, 

and colonic crypts.57 The fecal microbiome is the best studied partly because of its ease of 

access and partly because a large diversity of microorganisms are known to inhabit the 

colon and to be transferred to the fecal material. The microbiome has frequently been 

sequenced using the highly conserved 16S ribosomal RNA gene.58 This technique allows 

genus-level resolution of the microbiota to be detected. Whole genome shotgun sequencing 

is a newer technique that allows for species-level resolution measurements of the 

microbiome. 
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Once the bacteria have been sequenced, there are various metrics used for comparing 

the microbiome from one sample to another. The most popular metric is called alpha 

diversity, which measures the richness and evenness of a given microbial community. 

Richness measures how many different taxa are present while evenness measures how 

evenly the quantities of one species compare to the quantities of another.59 Another metric 

considers beta diversity, which measures the degree of dissimilarity between one 

community and another.60 Finally, relative abundance is used to measure the taxa as a 

proportion of the community from one sample to another.61  

1.2.1 Gut-Brain Axis 

The microbiome has been shown to affect and be affected by the brain via the 

bidirectional gut-brain axis62. The gut houses the largest collection of neurons outside of 

the central nervous system, the enteric nervous system. These neurons communicate with 

the brain via the vagus nerve superhighway. The brain can send autonomic inputs to the 

gut, modulating gut permeability and gut motility63 and thereby disrupting the microbial 

ecosystem.  

Members of the gut microbiota have been established as potent modulators of 

intestinal, systemic, and central nervous system immune cell function.64 The microbes 

interact with the gut associated lymphoid tissue and the Peyer’s Patches which activate 

cytokines and immune cells which travel systemically through the circulation and impact 

central nervous system function.65 Immune cells in the blood circulation and gut lymphatic 

tissues that have been shaped by immune components including gut microbiota and 

metabolites can infiltrate the brain and, once there, influence neuronal function either 

directly or by modulating the properties of brain-resident immune cells.66 
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Accumulating evidence suggests that gut microbes are modulators of brain plasticity 

via the gut-brain axis.67 The microbiome is an important modulator of tryptophan 

metabolism, which is the precursor of the neurotransmitter serotonin.68 About 95% of the 

serotonin in the body is found in the gut, with the other 5% in the brain.69 In addition to 

tryptophan, other microbial metabolites are important in gut-brain signaling. The most 

important of these appears to be the short chain fatty acids, which are produced during the 

fermentation of partially and nondigestible polysaccharides. In the brain, the short chain 

fatty acids act as histone deacetylase inhibitors regulating gene expression and G-protein 

coupled receptors regulating metabolism and inflammation.70 SCFA supplementation can 

induce cortex connectivity, spine and synapse density, and induce microglial cells to 

contribute to structural and functional remodeling of the brain via recruitment of T cells.71 

Many changes in the brain associated with the gut microbiome and gut disorders 

have been documented with imaging. Ulcerative colitis has been associated with a 

significantly reduced blood oxygen level-dependent signal in the amygdala, thalamic 

regions, and cerebellar regions.72 Irritable bowel syndrome has been associated with long-

term white matter integrity changes in the brain, especially in regions associated with 

integration of sensory information and corticothalamic modulation,73 and lower volumes 

in the bilateral superior frontal gyrus, insula, amygdala, hippocampus, and middle orbital 

frontal gyrus.74  Probiotic administration for 4 weeks has been associated with changes in 

brain activation patterns in response to emotional decision-making tasks.75,76 Short chain 

fatty acids (SCFAs) are known to influence blood brain barrier permeability77 and alter 

cerebral blood flow78. Finally, the gut microbiome is known to influence the transcriptional 
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activity of genes involved in neuronal myelination, thereby altering white matter 

integrity.79 

Other changes in the brain associated with the gut microbiome and gut disorders have 

been documented with functional, cognitive, emotional, and sensation testing. Increased 

proteobacteria and bacteroidetes and decreased firmicutes have been associated with 

poorer early functional outcomes following stroke80 as measured by the modified Rankin 

Scale (mRS). Increased Ruminococcaceae and Lachnospiraceae families have been 

associated with good cognition.81,82 Microbiota-modulated metabolites such as 

cholecystokinin have the ability to impact emotion in the brain.83 The abundance of 

streptococcus species have been associated with feeling more pain.84 

1.2.2 Stroke and the Gut Microbiome 

Animal studies have shown that stroke causes severe gut dysbiosis85. Stress signals 

project from the brain following stroke via the autonomic nervous system (ANS) and the 

hypothalamic pituitary adrenal (HPA) axis which lead to immunomodulation and increased 

gut permeability and decreased gut motility86-88. The microbial communities are 

subsequently disrupted and can cause issues in the context of stroke rehabilitation. The gut 

microbiome can produce neuro- and immunomodulatory substances such as short chain 

fatty acids, tryptophan and indole metabolites, neurotoxins, neurotransmitters, 

lipopolysaccharide (LPS), and peptidoglycan that can act locally on enteric neurons and 

immune populations to modulate distant functions in the CNS89. In the context of stroke, 

gut dysbiosis leads to increased TH1 cells, TH17 cells, γδ-T cells, and monocytes in gut-

associated immune tissues that migrate to the peri-infarct region of the brain and increase 

infarct size90,91. Fecal microbiota transplant can reverse stroke-induced dysbiosis in mice 
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and its negative effects on stroke recovery92,93. Fecal transplant with sodium butyrate can 

also attenuate ischemic stroke injury.71,94-96 Age,97 diet,98-100 and exercise101 modify the 

severity of dysbiosis following stroke. 

Very few human studies have been performed to date to examine the gut-brain axis 

following stroke in a human population. Human studies thus far have suggested that gut 

dysbiosis occurs shortly following stroke at a single time point and that this dysbiosis is 

associated with increased alpha diversity,102 blood Apolipoprotein E,103 IL-6,104 

phenylacetylglutamine,105,106 blood Trimethylamine-N-Oxide,107-111, and risk of 

pneumonia112 and depression113 and decreased HDL114 and butyrate115, plus poor 

functional outcome80,116,117, and 180-day mortality118. The severity of the dysbiosis can be 

modified by features such as enteral nutrition119 and Vitamin B12 deficiency.120 However, 

no human studies have yet been performed to analyze changes in the microbiome over the 

first three-month course of stroke rehabilitation when recovery is known to be the greatest, 

and no human studies have analyzed whether these longitudinal changes correlate with 

increased gut permeability and subsequent recovery as measured by neuroimaging and 

functional testing.  

1.3 Scope of Dissertation 

Novel multimodal rehabilitation approaches are needed to promote plasticity and 

sensorimotor function to help these survivors by combining current rehabilitation therapies 

with other treatments designed to foster neuroplasticity. A baseline understanding of how 

the microbiome is associated with markers of brain health in acute stroke and in community 

dwelling older adults is foundational to this end. We plan to follow two Specific Aims: 
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Specific Aim 1. Analyze dysbiosis in the gut microbiome during first three weeks of 

stroke rehabilitation and associations with functional ability. 

From stool samples, we will measure 1) changes in the gut microbiome using 

metagenomic sequencing and functional analysis of bacterial DNA and 2) intestinal 

inflammation and permeability markers in human subjects during the first three months of 

rehabilitation following ischemic stroke compared to control subjects who demonstrate risk 

factors for, but have not had, a stroke, and healthy controls. We will consider past medical 

history, medication history, diet, racial/ethnic background, and APOE genotype in our 

analysis. We will determine the associations between microbiota composition and markers 

of stroke recovery detectable by functional assessments in the Self Care Assessment and the 

NIH toolbox (cognitive, emotional, and sensation assessments). 

Specific Aim 2. Identify the associations between dysbiosis and downstream 

neuroimaging markers in community dwelling older adults 

We will identify the associations between microbiota composition and markers of brain 

health detectable by MRI imaging including structural imaging, hyperintensities, cerebral 

blood flow, and white matter integrity. 



 
 

CHAPTER 2. MATERIALS AND METHODS 

2.1 Participants 

We recruited 42 Individuals aged 55-85 for this study. Participants were recruited 

according to the incidence of stroke statistics taking into consideration the population 

distribution of Kentucky. According to the Heart Disease and Stroke Statistics-2017 

Update: A Report from the American Heart Association,121 stroke has a higher incidence 

in females than it does in males (54:46 ratio). Additionally, Blacks and Hispanics may be 

more likely to have a stroke than non-Hispanic whites. The Kentucky population 

distribution (Source: US Census 2017 5-Year American Community Survey) is 85.08% 

White Non-Hispanic and 7.88% Black or African American Non-Hispanic.  

We recruited 12 patients in acute stroke rehabilitation care after first time ischemic 

stroke at Cardinal Hill Rehabilitation Hospital. A complete list of inclusion/exclusion 

criteria are in Table 2.1. Participants were required to not have an acute disease of chronic, 

clinically significant (unresolved, requiring on-going medical management or medication) 

pulmonary, gastrointestinal, dermatologic, hepatic or renal functional abnormality. 

Participants were required to not have had cancer or a positive test for HIV, HBV, or HCV. 

Participants were required to not be immunosuppressed or have had major surgery of the 

GI tract in the past five years. We obtained past data, including radiographic studies and 

medical history. These data were used solely for research purposes. Other variables 

including age, gender, marital status, education level, Body Mass Index, Apolipoprotein E 

status, history of conventional vascular risk factors (hypertension, diabetes mellitus, atrial 

fibrillation, hyperlipoproteinemia, and smoking habit), pre-stroke therapy, and acute 
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treatment (i.e., oral anticoagulants, antiplatelet agents, tPA, IV thrombolysis and/or 

mechanical thrombectomy, and/or antibiotics) were recorded for our analyses.  

We recruited 30 patients from the University of Kentucky (UK) Internal Medicine 

clinic to serve as controls. 18 of these participants had not had a stroke but did have 1 or 

more common cardiovascular risk factors for stroke. 12 of these participants had not had a 

stroke or common cardiovascular risk factors for stroke. Participants followed the same 

inclusion/exclusion criteria listed above but must not have had a stroke.  

2.1.1 Recruitment workflow for participants with acute stroke 

Participants from the University of Kentucky (UK) stroke unit were informed of 

the study by the case management team at Cardinal Hill Rehabilitation Hospital upon 

admission. If patient or family gave permission, the case management team alerted study 

personnel to evaluate eligibility. If the patient was eligible, the study personnel approached 

the patient and/or family to explain the study and ask for consent. If the patient and/or 

family consented, the applicant collected demographic information, dietary assessment, 

NIH toolbox assessments, Self-Care Assessment, and oral swab. To retain the participants, 

study personnel placed a purple laminated banner in the patient room alerting hospital staff 

about the research study and alerted the attending physician, case manager, lab manager, 

Cardinal Hill Clinical Research Director, and department chair for Physical Medicine and 

Rehabilitation (PM&R) at Cardinal Hill. Study personnel again collected functional 

recovery assessments at hospital discharge and scheduled a follow-up visit at the UK 

Magnetic Resonance Imaging and Spectroscopy Center (MRISC) at the participants’ 

preferred date and time. An appointment reminder with map and parking instructions was 

given to participants to decrease the chance of a forgotten appointment. Participants were 
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reminded by their preferred method of communication about the follow-up visit. 

Participants returned for a three-month follow-up visit for functional testing assessment, 

imaging, and mail-in kit for final stool sample. When the kit was received in the mail, 

participants received $50 reimbursement to cover time and travel expenses. Due to the 

COVID-19 pandemic, many follow up appointments had to take place via Zoom.  

2.1.2 Recruitment workflow for control participants with no stroke 

Study personnel worked with the Center for Clinical and Translational Research at 

the University of Kentucky to advertise the study to the community. Brochures were placed 

in high traffic areas around campus. Study personnel also set up a profile with 

ResearchMatch that connects interested participants with research studies. When 

participants submitted interest in the research study, study personnel evaluated them for 

eligibility. If potential participants were eligible for the study (see Table 2.2), they were 

scheduled for a visit at UK MRISC for consent at the participants’ preferred date and time. 

An appointment card with map and parking instructions was given to participants to 

decrease the chance of a forgotten appointment. If the participant consented, study 

personnel administered the functional recovery testing and imaging protocol, collected an 

oral swab sample, and provided the participant with a mail-in stool collection kit. The 

participant scheduled a follow-up visit at UK MRISC. Participants were reminded by their 

preferred method of communication about the follow-up visit. When the kit was received 

in the mail, participants received $25 reimbursement to cover time and travel expenses. 

Due to the COVID-19 pandemic, many study visits were held via Zoom.  
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2.2 Study Design 

Participants were followed over the course of three months as we collected the 

following information: 

• Past medical history, medication history, diet, and racial/ethnic background at 

admission using questionnaire and Electronic Health Record 

• APOE genotype at admission using oral swab 

• Cognitive and motor function at baseline, discharge, and 3-month follow-up using 

NIH toolbox and Self-Care Assessment 

• Gut microbiome and permeability markers at admission, discharge, and 3-month 

follow-up using stool samples 

• MRI imaging at 3-month follow-up  

The timeline of study visits and procedures is detailed in Table 2.3. This is a minimal 

risk, category 1 protocol that only includes donating stool and oral swab samples and 

assessing structural and functional outcomes using imaging and standardized cognitive, 

motor, sensory, and emotional measures that are validated against gold standard 

instruments. Any measures with a fall risk were eliminated. The only additional risk 

involved in this research is breach of confidentiality, although all precautions were be made 

to only collect and database de-identified data from the participants. The following was 

collected from participants: 

• Medical History: We obtained past medical history from the electronic health 

record and questionnaire. These data were used solely for research purposes. Each 

individual received a verbal and written explanation of the purposes, procedures, 

and potential hazards of the study, and written consent was obtained. Variables 
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including age, gender, racial/ethnic background, marital status, education level, 

Body Mass Index, history of conventional vascular risk factors (hypertension, 

diabetes mellitus, atrial fibrillation, hyperlipoproteinemia, and smoking habit), pre-

stroke therapy, and acute treatment (i.e., oral anticoagulants, antiplatelet agents, 

tPA, IV thrombolysis and/or mechanical thrombectomy, and/or antibiotics) were 

recorded and used as covariates for our analyses. 

• Food Frequency: The Dietary Screener Questionnaires (DSQ) in the NHANES 

2009-10: DSQ was used to measure dietary intake over the last month. 

• Oral Swab Sample: Oral Swab was used to determine APOE genotype. 

• NIH Toolbox: Cognitive, Motor, Emotional, and Sensation measures from the NIH 

toolbox were performed upon admission and at 3 months follow-up following 

discharge. These tests are standard in the field and take approximately 30 minutes 

to perform. 

• Self-Care CARE Items: Section GG Self-Care Items are routinely used in the 

clinical care of inpatient stroke rehab patients to measure functional recovery. We 

recorded all CARE scores from hospital stay for analysis. 

• Stool Samples: Stool samples were collected at admission, discharge, and 3-month 

follow-up. Samples will be collected, genotyped, and analyzed using methods 

obtained from the International Human Microbiome Standards consortium to 

determine gut microbial biodiversity. 

• Imaging: A follow-up brain scan using MRI was obtained at outpatient follow-up 

visit 3 months following discharge for research purposes.  
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Each individual received a verbal and written explanation of the purposes, procedures, 

and potential hazards of the study, and written consent was obtained. Study personnel 

consented subjects using the University of California, San Diego Brief Assessment of 

Capacity to Consent (UBACC) to ensure capacity. Subjects lacking capacity were allowed 

to enroll and participate in the study if a legal representative authorized it. Signed consent 

was be obtained before definite enrollment of the subject in this study. Subjects were free 

to withdraw from the study at any time. This research had minimal risk. 

Given the broad heterogeneity of the gut microbiome composition among individuals, 

the prospect of performing a true case-control study is not likely. However, the study 

design presented here provides average conglomerates of the gut microbiome in two 

control groups: 1) older adults who have risk factors for stroke but have never had a stroke 

and 2) healthy older adults. These conglomerates were important comparators to gain a 

general idea of which microbial communities are disturbed following stroke and how they 

change over time. All analyses were performed in a quasi-experimental difference-in-

differences fashion122 in which the difference of the outcome measures in the stroke rehab 

group was compared to the difference of the outcome measures in the control groups. The 

repeated-measures design allows each participant to be compared to his or her own 

baseline, which was especially useful to reduce variability in the data since randomization 

was not possible in our setting123.  

 

2.2.1 Stool Sample Collection 

Stool samples were collected in Zymo DNA stabilization solution with sarstedt feces tubes 

from feces catcher placed on toilet seat. 
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2.2.2 Metagenomic Sequencing 

Genomic DNA was extracted from 0.25 grams of stool using ZymoBIOMICS™ DNA 

Mini Kit and shipped to the Genomics and Microbiome core facility at Rush University for 

DNA quantification using fluorometer Qubit 3.0. Libraries were constructed and the PCR 

products purified using 1.0X speed beads and eluted in 15 uL of nuclease-free water and 

quantified by PicoGreen fluorometric assay (100X final dilution). The libraries were 

pooled and loaded onto a high sensitivity chip run on the Caliper LabChipGX (Perkin 

Elmer, Waltham, MA) for size estimation and sequenced using Illumina NextSeq/HiSeq 

platform. 

2.2.3 Metagenomic Bioinformatic Analysis 

Unassembled sequencing reads were analyzed by the Core for Research Informatics at the 

University of Illinois Chicago for microbiome analysis. Alpha diversity, beta diversity, and 

relative abundance counts were calculated. For alpha diversity, raw counts were rarefied 

to 2000k and the Shannon diversity index was calculated using the vegan R package. For 

beta diversity, the Bray-Curtis dissimilarity index was used and a Principal Component 

Analysis (PCA) plot was generated to visualize the diversity. We used MetaPhlAn 

(Metagenomic Phylogenetic Analysis) to profile the composition of microbial 

communities using unique clade-specific marker genes identified from ~17,000 reference 

genomes (~13,500 bacterial and archaeal, ~3,500 viral, and ~110 eukaryotic).124 We used 

MaAsLin2 R package to normalize all microbiome variable and correlate them with 

metadata variable using linear regression models.125 
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2.2.4 Intestinal Inflammation and Permeability Analysis 

We tested stool samples for markers of intestinal inflammation and permeability using 

ELISA. The Biovendor Alpha-1-antitrypsin in stool human ELISA was used to detect fecal 

Alpha-1-Antitrypsin (A1AT), a biomarker of intestinal permeability126-128. It is one of the 

principal serum proteins, and, in the context of intestinal permeability, A1AT can 

extravasate from the serum into the gut and be detected in the feces since it is highly 

resistant to proteolysis in the intestine129. The Biovendor Fecal calprotectin ELISA was 

used to detect fecal calprotectin, a sensitive marker of intestinal inflammation130,131. It 

constitutes up to 60% of the cytosolic proteins in human neutrophil granulocytes, and, in 

the context of intestinal inflammation, activated granulocytes migrating into the intestinal 

wall will overexpress and release calprotectin into feces129.  

2.2.5 Diet Analysis 

We assessed diet history using the Dietary Screener Questionnaire in the National Health 

and Nutrition Examination Survey. We analyzed the results of the survey using SAS 

statistical software to determine estimated intake of fiber, calcium, whole grains, sugar, 

dairy, fruits and vegetables, and sugar sweetened beverages. 

2.2.6 APOE Genotyping 

We collected oral swabs from all participants and placed them in Zymo DNA stabilization 

solution. We sent the oral swabs to the Core for Research Informatics at the University of 

Illinois Chicago for DNA extraction and amplification. The core performed PCR to amplify 
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and measure SNPs rs429358 and rs7412 that define the common allelic variants of 

Apolipoprotein E. 

2.2.7 Imaging Analysis 

MRI images were collected from all participants on a 3T Prisma MR scanner 

(Siemens, Germany) at UK’s Magnetic Resonance Imaging & Spectroscopy Center. We 

collected the following sequences from participants: Turbo Gradient Spin Echo for Arterial 

Spin Labelling, resting state functional magnetic resonance imaging, magnetization-

prepared 180 degrees radio-frequency pulses and rapid gradient-echo, diffusion tensor 

imaging, spectroscopy using chemical shift imaging sLASER sequence with a TE of 40ms, 

and Fluid-attenuated inversion recovery (FLAIR) imaging.  

2.2.7.1 Arterial Spin Labeling 

Quantitative CBF (with units of mL/g per minute) was measured using a pulsed arterial 

spin labeling (PASL) PICORE Q2T sequence with a TR=4400ms and a TE=20.8ms. We 

used FreeSurfer software to process relative cerebral blood flow (relCBF) data produced 

by the Siemens scanner. The automated software provides relCBF averages over the 

FreeSurferColorLUT.txt set of ROIs.  

2.2.7.2 Structural Imaging 

High-resolution, 3D anatomic images were acquired using an MP-RAGE sequence 

[repetition time (TR) = 2530 ms, echo time (TE) = 2.26 ms, flip angle (FA) = 7°, 1 mm 

isotropic voxels, 6:19 min]. We used the FreeSurfer Software Suite to segment and quantify 

brain volumes.  

2.2.7.3 Diffusion Tensor Imaging 
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White matter integrity was measured using an axial double refocused spin echo, echo 

planar imaging 132 Diffusion Tensor Imaging (DTI) sequence with the following 

parameters: TR=3400 ms, TE=71 ms, field of view = 232 mm, 81 slices, 2 mm isotropic 

resolution. The DTI images were acquired with 128 noncollinear encoding directions 

(b=2000 s/mm2) and 6 images without diffusion weighting (b = 0 s/mm2, b0). DTI data 

were analyzed with FSL (Functional MRI of the Brain software library, FMRIB) to 

calculate fractional anisotropy (FA) values. 

2.2.7.4 Fluid-attenuated inversion recovery (FLAIR) imaging 

Hyperintensities were measured with fluid-attenuated inversion recovery (FLAIR) imaging 

[TR=5000ms, TE=388ms, FA=120°, 1mm isotropic voxels, 176 slices.] Vascular 

hyperintensity volumes will be calculated using the WMH cross-sectional kit, a 

combination of several programming tools and software, including Matlab, FSL, SPM, 

FreeSurfer, and Singularity container133,134. 

2.2.7.5 Magnetic Resonance Spectroscopy 

Brain metabolites were measured with a chemical shift imaging (CSI) sequence that 

incorporates localization by adiabatic selective refocusing (LASER) for FOV-reduction135. 

semi-laser sequence [TR=1700ms and TE=40ms]. All MRS slices were placed parallel to 

the anterior commissure-posterior commissure line. The volume of interest was centered 

to the medial to posterior part of the corpus callosum, with with VOI = 80 (l-r) × 80 (a-

p) and field of view (FOV) = 160 × 160 mm3. The acquired matrix size was 10 × 10 × 15 

mm. Two voxels that contained pure white matter were selected from each participant and 

averaged for analysis. Spectra were calculated using LCModel Software136.  
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2.3 Functional Analysis 

Functional analysis was measured using the Self-Care CARE Assessment from Section 

GG of the standardized patient assessment data elements in the following domains: Eating, 

Oral Hygiene, Toileting Hygiene, Shower/Bathe Self, Upper Body Dressing, Lower Body 

Dressing, Putting on/Taking off Footwear.30 Stroke patients were graded on these domains 

for how independently they were able to perform them on a scale from 1 to 6, with 1 being 

dependent and 6 being independent.  

2.4 NIH Toolbox 

Cognitive, Emotional, and Sensation function was measured using assessments from the 

NIH toolbox. The picture vocabulary test was used to measure long-term or crystallized 

memory.137 The list sorting test was used to measure short-term memory, attention, and 

executive function.138 The sadness,139 meaning and purpose,140 self-efficacy,141 and 

support142 questionnaires were used to measure self-reported values of these emotional 

domains. The pain intensity scale143 was used to measure sensation.  

2.5 Statistical Analysis 

All statistical analyses were completed using JMP Statistical Software (SAS, Cary, 

NC, USA) and R Statistical Software125,144 . For all chapters, two-sample t-test and 2-way 

ANOVA were used to determine differences between groups. The MaAsLin 2 R Package 

was used to normalize all variables and employ linear regression analysis to correlate 
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various variables with microbiome measures. 144 A false discovery rate of q<0.25 was used 

in selecting significant variables to correct for multiple comparisons. 
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Table 2.1 Inclusion and Exclusion Criteria used to evaluate eligibility for acute stroke 
patients 

Inclusion Criteria 

• Ischemic stroke (small 

vessel lacunar stroke or 

cortical stroke <70 cc3) 

• Discharged from acute 

stroke service with NIHSS 

of 5-14 (moderate stroke) 

• Has diagnostic stroke MRI 

imaging available 

• Age 55-85 

Exclusion Criteria 

• Any acute disease or chronic, clinically 

significant (unresolved, requiring ongoing 

medical management or medication) lung, 

bowel, skin, liver, kidney, or brain 

abnormality 

• Dementia, Cancer, HIV, hepatitis, 

immunosuppressed, major GI surgery in the 

past 5 years 

• Not MRI compatible 

• Participating in another research study 
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Table 2.2 Inclusion and Exclusion Criteria used to evaluate eligibility for no stroke 
patients with A) risk factors for stroke and B) no risk factors for stroke 

A) 
Inclusion Criteria 

• Age 55-85 
• Has at least one major risk 

factor for stroke (High blood 
pressure, Diabetes, Heart and 
blood vessel diseases, 
High LDL cholesterol levels, 
Smoking, 
Brain aneurysms or 
arteriovenous malformations 
(AVMs), Infections or 
conditions that cause 
inflammation, such as lupus 
or rheumatoid arthritis, birth 
control pills, or hormone 
replacement therapy) 

Exclusion Criteria 
• Any previous stroke 
• Any acute disease or chronic, clinically 

significant (unresolved, requiring 
ongoing medical management or 
medication) lung, bowel, skin, liver, 
kidney, or brain abnormality 

• Dementia, Cancer, HIV, hepatitis, 
immunosuppressed, major GI surgery in 
the past 5 years 

• Not MRI compatible 
• Participating in another research study 

B) 
Inclusion Criteria 

• Age 55-85 
 

Exclusion Criteria 
• Any previous stroke 
• Any acute disease or chronic, clinically 

significant (unresolved, requiring 
ongoing medical management or 
medication) lung, bowel, skin, liver, 
kidney, or brain abnormality 

• Dementia, Cancer, HIV, hepatitis, 
immunosuppressed, major GI surgery in 
the past 5 years 

• Major risk factors for stroke (High blood 
pressure, Diabetes, Heart and blood 
vessel diseases, High LDL 
cholesterol levels, Smoking, 
Brain aneurysms or arteriovenous 
malformations (AVMs), Infections or 
conditions that cause inflammation, such 
as lupus or rheumatoid arthritis, birth 
control pills, or hormone replacement 
therapy)  

• Not MRI compatible 
• Participating in another research study 
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Table 2.3 Timeline of study visits and procedures 
 

  

 Table 1. Timeline of study visits and procedures 
 Participants with Acute Stroke Control Participants (no 

stroke and chronic stroke) 
Procedure Admission Discharge Outpatient follow 

up visit 3 months 
after admission 

Baseline Visit 3-month 
follow 
up visit 

Signing the consent form X   X  
Stool Sample X X X X X 

Mouth Swab Sample X X X X  
MRI Scan   X X  

Functional Recovery Testing X X X X X 



 
 

CHAPTER 3. THE GUT MICROBIOME IS ALTERED IN THE CONTEXT OF 
STROKE AND IS CORRELATED WITH IMPAIRED FUNCTION 

3.1 Introduction 

Over 795,000 people suffer a stroke every year in the United States alone1. Recent 

advances in acute stroke therapies have lowered stroke mortality, but survivors are often 

left severely impaired12. Rehabilitation therapies such as physical therapy, occupational 

therapy, and speech therapy are beneficial for inducing neuroplasticity to overcome these 

impairments20, but over 40% of stroke survivors are left with moderate to severe disabilities 

that markedly reduce quality of life21. Novel multimodal approaches are needed to promote 

plasticity and sensorimotor function through a combination of current rehabilitation 

therapies with other treatments designed to foster neuroplasticity.  

Accumulating evidence from animal studies suggests that gut microbes modulate 

brain plasticity via the bidirectional gut-brain axis and may play a role in stroke 

rehabilitation67. A severely imbalanced microbial community, or dysbiosis, has been 

shown to occur following stroke, causing a systemic flood of neuro- and 

immunomodulatory substances due to increased gut permeability and decreased gut 

motility85. These substances can impact neuroinflammation as commensal bacteria invade 

the bloodstream and as intestinal lymphocytes migrate from gut-associated lymphoid tissue 

to the brain 92. Fecal microbiota transplant has been shown to normalize brain lesion-

induced dysbiosis and to improve stroke outcome in mice92. The microbiome is modifiable 

as it is influenced by environmental factors such as diet and exercise and could potentially 

be a therapeutic target in stroke rehabilitation through nutritional and pharmacological 

interventions and physical therapy89,145. Though it is unknown whether the findings from 
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the bidirectional gut-brain axis in animals translate the same way into humans. Human 

studies thus far have suggested that gut dysbiosis occurs shortly following stroke at a single 

time point and that this dysbiosis is associated with increased blood Apolipoprotein E103 

and IL-6104, and decreased blood Trimethylamine-N-Oxide107 and HDL114, plus poor early 

functional outcomes80, and 180-day mortality118. However, no human studies have been 

performed to analyze changes in the microbiome over the first three-week course of stroke 

rehabilitation and whether these changes correlate with gut permeability and subsequent 

recovery as measured by functional testing, making it difficult to confirm whether the 

microbiome could be a therapeutic target in stroke rehabilitation.  

Several markers have been developed to monitor stroke severity. Several recovery 

assessments have been created to monitor functional recovery over the course of 

rehabilitation. Among these is the Self-Care Assessment created by the American 

Occupational Therapy Association30. The Self-Care Assessment determines how 

independently an individual can perform the following tasks related to daily living: eating, 

oral hygiene, toileting hygiene, shower/bathe self, upper body dressing, lower body 

dressing, and putting on/taking off footwear. The NIH Toolbox has been developed to 

assess cognitive, emotional, and sensation function in individuals using validated 

questionnaires35. Changes in the brain associated with the gut microbiome and gut 

disorders have been documented with functional, cognitive, emotional, and sensation 

testing. Increased Proteobacteria and Bacteroidetes and decreased Firmicutes have been 

associated with poorer early functional outcomes following stroke80 as measured by the 

modified Rankin Scale (mRS). Increased Ruminococcaceae and Lachnospiraceae families 

have been associated with good cognition81,82. Microbiota-modulated metabolites such as 
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cholecystokinin have the ability to impact emotion in the brain83. The abundance of 

Streptococcus species have been associated with heightened sensitivity to pain84. 

Here we document the gut-brain axis changes that occur following stroke in the first three 

weeks of rehabilitation and their associations with functional recovery measures in 12 

stroke participants and 30 community dwelling adults. We measure the gut microbiome 

using whole genome shotgun sequencing on stool samples. We measure Self-Care CARE 

Assessment for function, the picture vocabulary and list sorting tasks for cognition, self-

efficacy, sadness, support, meaning and purpose questionnaires for emotion, and pain 

intensity for sensation. We compare associations of tasks with the microbiome in the stroke 

population and control populations separately to provide a foundational knowledge of how 

the microbiome is associated with functional tasks in healthy and stroke populations. 

3.2 Results 

3.2.1 Participant Characteristics 

We recruited 12 participants from the acute rehabilitation hospital setting upon 

admission and 30 control participants from a community dwelling sample divided into two 

categories: 1) controls at risk for stroke who have not had a stroke and 2) healthy controls. 

Participants were required to not have an acute disease of chronic, clinically significant 

(unresolved, requiring on-going medical management or medication) pulmonary, 

gastrointestinal, dermatologic, hepatic, or renal functional abnormality. Participants were 

required to not have had cancer or a positive test for HIV, HBV, or HCV. Participants were 

required to not be immunosuppressed or have had major surgery of the GI tract in the past 

five years. Participants also had to be MRI compatible. Table 1 describes the basic 
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demographic characteristics of the participants. There were 12 participants in the acute 

stroke group, 18 in the at risk group, and 12 in the healthy control group. Those in the acute 

stroke group were slightly older than those in either control group. The healthy control 

group had a higher percentage of female participants. All of the groups were mostly white, 

with the at risk group containing two black participants and the healthy control group 

containing one Asian participant. The acute stroke group and healthy control group had 

over 20% APOE ε2 carriers while the at risk group contained none. The participants in the 

acute stroke group were less educated than those in the control groups. The healthy group 

had a lower BMI than the stroke group and the at risk control group. The healthy control 

group by definition had no participants with diabetes, hypertension, or hyperlipidemia. 

3.2.2 Stroke microbiome with pro-inflammatory and fewer butyrate producing taxa 

Figure 3.1 shows the alpha diversity of the various groups using the Shannon diversity 

index. The acute stroke group had a diversity of 3.85 ± 0.385, the at risk group had a 

diversity of 3.88 ± 0.273, and the healthy control group had a diversity of 3.81 ± 0.392. 

There were no significant differences between the groups on a pairwise Mann-Whitney test 

with an alpha=0.05. Figure 3.2 shows the beta diversity of the various groups using the 

Bray-Curtis dissimilarity index. An ANOSIM R test reveals a significant dissimilarity 

between the acute stroke and at risk groups (R=0.405, p=0.001) and a significant 

dissimilarity between the acute stroke and healthy control groups (R=0.126, p=0.039). The 

dissimilarity between the at risk and healthy control groups was not significant (R=0.0381, 

p=0.228). Figure 3.3 shows the distribution of the most prevalent bacterial phyla amongst 

the participant groups. The acute stroke group was 39.4% Bacteroidetes, 2.44% 

Verrucomicrobia, 24.3% Proteobacteria, 7.1% Actinobacteria, and 25.2% Firmicutes. The 
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at risk group was 33.1% Bacteroidetes, 1.68% Verrucomicrobia, 21.9% Proteobacteria, 

6.4% Actinobacteria, and 35.5% Firmicutes. The healthy control group was 35.4% 

Bacteroidetes, 3.0% Verrucomicrobia, 25.6% Proteobacteria, 4.7% Actinobacteria, and 

29.7% Firmicutes (Figure 3.3). A detailed analysis of the microbial taxa shows significant 

decreases in butyrate producers (Agathobaculum butyriciproducens, Lawsonibacter 

asaccharolyticus, Anaerostipes hadrus, the genus Roseburia, and Eubacterium rectale 

(Figure 3.4a-e)), secondary bile acid producers (Blautia obeum and the genus 

Ruminococcus (Figure 3.4f,g)), equol producers (Adlercreutzia equolifaciens (Figure 

3.4h)) and sulfate reducers (the family Desulfovibrionaceae (Figure 3.4i)). There was a 

significant increase in several pro-inflammatory taxa, including Clostridium aldenense, 

Clostridium bolteae, the genus Anaeromassilibacillus, Ruthenibacterium lactatiformans, 

and Acidaminoccus intestini (Figure 3.4j-n). 

3.2.3 Stroke dysbiosis is associated with leaky gut markers 

Figure 3.5 shows the average of the leaky gut markers amongst the groups. The 

calprotectin assay is a marker for intestinal inflammation and did not show differences 

among the groups (Figure 3.5a). Alpha-1-antitrypsin is a marker for intestinal permeability 

and was significantly increased in the acute stroke group (Figure 3.5b). Table 3.2 shows 

the associations of alpha-1-antitrypsin with various microbial taxa. The presence of alpha-

1-antitrypsin was inversely associated with several microbial taxa, including Adlercreutzia 

equolifaciens, Lawsonibacter asaccharolyticus, the genus Anaerostipes, Blautia obeum, 

Coprococcus eutactus, Dorea longicatena, Lachnospira pectinoschiza, the genus 

Roseburia, Agathobaculum butyriciproducens, and the genus Ruminococcus. (Figure 
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3.6a-j). Alpha-1-antitrypsin was positively associated with Eggerthella lenta, Clostridium 

bolteae, Anaerotruncus colihominis, and Clostridium leptum. (Figure 3.6k-n).  

3.2.4 Some bacteria are associated with diet 

Figure 3.7 shows the diet composition amongst the different participant groups. The 

stroke group ate significantly less fiber (Figure 3.7a) and fruits and vegetables (Figure 

3.7f) and more sugar sweetened beverages (Figure 3.7g). We correlated diet composition 

with microbial taxa in the stroke group using linear correlation (Table 3.3). We found that 

an increase of fruits and vegetables was associated with a lower abundance of the genus 

Bacteroides, Eisenbergiella massiliensis, and Holdemania filiformis (Figure 3.8a-c) and a 

higher abundance of Ruminococcus torques and Faecalibacterium prausnitzii (Figure 

3.8d,e). A higher intake of vegetables only was associated with an increase in the relative 

abundance of Clostridium bolteae (Figure 3.8f). 

3.2.5 Microbiota are associated with markers of stroke recovery 

3.2.5.1 Functional Testing 

On the GG Self Care Assessment, the stroke group reported an average score of 

25.4 out of 42 on admission to the hospital and an average score of 36.6 on discharge from 

the hospital (Figure 3.9a). Collinsella aerofaciens was positively correlated with self care 

scores (Table 3.4, Figure 3.10a).  

3.2.5.1 Cognitive Testing 

On average, the stroke group scored in the 35th percentile on the picture vocabulary 

test, the at risk group scored in the 52nd percentile, and the healthy control group scored in 
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the 53rd percentile. On the list sorting test, the stroke group scored in the 38th percentile, 

the at risk group scored in the 52nd percentile, and the healthy control group scored in the 

57th percentile (Figure 9b,c). The genus Roseburia was positively correlated with scores 

on the picture vocabulary test for the stroke group (Table 3.4, Figure 3.10b).  

3.2.5.1 Emotional Testing 

On the self-efficacy test, the stroke group scored in the 45th percentile on average, 

the at risk group scored in the 54th percentile on average, and the healthy control group 

scored in the 57th percentile on average (Figure 3.9d). Bacteroides uniformis and Alistipes 

putredinis were positively correlated with self-efficacy score and Escherichia coli was 

negatively correlated with self-efficacy (Table 3.4, Figure 3.10c). On the sadness test, the 

stroke group scored in the 55th percentile on average, the at risk group scored in the 48th 

percentile on average, and the healthy control group scored in the 50th percentile on average 

(Figure 3.9e). On the meaning and purpose test, the stroke group scored in the 44th 

percentile on average, the at risk group scored in the 53rd percentile on average, and the 

healthy group scored in the 52nd percentile on average (Figure 3.9f). The family 

Eubacteriaceae was positively correlated with the score on the meaning and purpose 

questionnaire (Table 3.4, Figure 3.10e). On the support test, the stroke group reported 

support levels in the 47th percentile on average, the at risk group report support levels in 

the 51st percentile on average, and the healthy control group reported support levels in the 

46th percentile on average (Figure 3.9g). From the Actinobacteria phylum, the class 

Coriobacteriia is positively correlated with support. From the Bacteroidetes phylum, the 

family Odoribacteraceae is positively correlated with support. From the Firmicutes 

phylum, the genus Eubacterium, the family Acidaminococcaceae, Roseburia intestinalis, 
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and Phascolarctobacterium faecium are positively correlated with support. From the 

Bacteroidetes phylum, Bacteroides ovatus is negatively correlated with support. From the 

Firmicutes phylum, Erysipelatoclostridium ramosum and Flavonifractor plautii were 

negatively correlated with support. From the Proteobacteria phylum, the family 

Veillonellaceae was negatively correlated with support (Table 3.4, Figure 3.10d).  

3.2.5.1 Sensation Testing 

On the pain questionnaire, the stroke group reported a 4.9 out of 10, the at risk 

group reported a 2 out of 10, and the healthy control group reported a 3.25 out of 10 (Figure 

3.9h). In the stroke group, Alistipes shahii was positively correlated with pain scores 

(Table 3.4, Figure 3.10f). 

3.3 Discussion 

Here we measured the gut microbiome in the first three weeks of rehabilitation following 

stroke and its associations with functional recovery measures in 12 stroke participants and 

30 community dwelling adults. We found significantly lower abundances of butyrate 

producers, secondary bile acid producers, equol producers, and sulfate reducers in the 

stroke group and significantly higher abundances of pro-inflammatory taxa.  

Our work found no significant differences in alpha diversity between groups. This 

is consistent with a previous human study that found no differences in alpha diversity 

between cerebral infarction patients and healthy controls114. However, we did find 

significant dissimilarity between the groups on beta diversity which is consistent with 

previous human studies that found high dissimilarity between ischemic stroke patients and 

healthy controls102,115. A detailed analysis of the relative abundance of the microbial taxa 
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revealed several taxa which were lower in the stroke group compared to either of the 

control groups. Agathobaculum butyriciproducens is a strictly anaerobic and butyric acid-

producing bacteria that has had impressive success in restoring cognition in Alzheimer’s 

disease mouse models146. Anaerostipes hadrus can produce butyrate from carbohydrates 

or lactate147,148 and is often decreased in diabetes149. Eubacterium rectale is also a butyrate 

producer150 responsible for metabolizing dietary plant polysaccharides151; it is increased in 

obesity152 and reduces inflammatory dendritic cells150. Lawsonibacter asaccharolyticus is 

also a butyrate producer153. Blautia obeum is a natural producer of bile salt hydrolases154 

as well as lantibiotics that inhibit the growth of pathogenic bacteria155; it has previously 

been shown to be decreased in acute cerebral infarction156. Roseburia is a butyrate 

producer157 that utilizes acetate 148 and increases serotonin and melatonin and is reduced in 

ulcerative colitis158 and hypertension159; treatment with Roseburia hominis in ulcerative 

colitis has been shown to strengthen gut barrier function and enhance T regulatory cells160. 

Ruminococcus bacteria produce secondary bile acids161. Adlercreutzia equolifaciens is an 

equol producer162 and low abundances have been associated with primary sclerosing 

cholangitis163. Desulfovibrionaceae reduces sulfate164. 

Several bacterial taxa were higher in the stroke group as compared to the control 

groups. Ruthenibacterium lactatiformans is an obligate anaerobe that is a major lactate 

producer and is also found to be increased in patients with multiple sclerosis165. 

Clostridium bolteae is an obligate anaerobe commonly found to be increased in patients 

with autism166, neuromyelitis optica spectrum disorders167, multiple sclerosis168,169, and 

spondyloarthritis170. Acidaminococcus intestini has been associated with a pro-

inflammatory diet171. Increased abundance of the genus Lachnoclostridium is associated 
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with ulcerative colitis172 and obesity173. The genus Anaeromassilibacillus is associated 

with malnutrition174.  

Importantly, the healthy control group contained a significant percentage of APOE 

ε2 carriers, which potentially shapes the gut microbiome characteristics for this group with 

a higher relative abundance of Ruminococcaceae and Gemmiger species and a lower 

abundance of Prevotellaceae species175. 

Alpha-1-antitrypsin can be a marker of increased intestinal permeability when it is 

found in the stool. Calprotectin can be a marker of intestinal inflammation. There was a 

large increase of fecal alpha-1-antitrypsin in our participants with stroke. Gut inflammatory 

and immune responses following stroke are central to this increased gut permeability. The 

bacteria that we found are disrupted following stroke which also correlate with alpha-1-

antitrypsin include increased Clostridium bolteae and decreased Adlercreutzia 

equolifaciens, Anaerostipes, Roseburia, Ruminococcus, Blautia obeum, Agathobaculum 

butyriciproducens, and Lawsonibacter asaccharolyticus. Roseburia has consistently been 

associated with intestinal permeability both as a microbe that bolsters intestinal 

permeability176 and as a microbe that changes in response to changes in the intestinal 

permeability177-179. We did not see a significant increase in calprotectin, likely because it 

is less stable at room temperature180. 

We found that certain dietary features are associated with the abundance of specific 

bacteria. This is congruent with other groups who have found that dietary modification is 

associated with gut microbiome composition181. In our study particularly, we found that 

most of the bacteria which were affected by stroke were not affected by diet, with the 

exception of a positive relationship Clostridium bolteae with vegetable intake. This is 
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interesting since Clostridium bolteae was increased in stroke. There are many studies that 

describe the effects of a vegetarian diet on the microbiome182,183. 

Our results indicate that the participants performed functionally better at discharge 

than at admission to the hospital. This is expected in the rehab setting. The species 

Collinsella aerofaciens was positively correlated with the Self Care Assessment. 

Collinsella aerofaciens is a natural bile salt hydrolase producer154,184 that is naturally 

increased in response to a cow milk supplemented diet185,186. While Collinsella aerofaciens 

is generally considered to be a proinflammatory species that increases gut permeability187, 

it has been associated with healthy clinical outcomes188. While bile acids do not normally 

cross the blood brain barrier, in the context of a leaky blood brain barrier, they can 

accumulate in the hypothalamus and inhibit the hypothalamic-pituitary-adrenal axis, 

thereby suppressing the inflammatory response189,190. 

Participants in the stroke group perform more poorly on cognitive tests compared 

to those in the control groups. Cognitive impairment is common following stroke and is 

often the precursor to dementia and cognitive decline191. Amongst stroke participants, the 

genus Roseburia was positively correlated with performance on the picture vocabulary test. 

Previous groups have seen a correlation of memory performance with Roseburia192,193. It 

is possible that Roseburia enhances memory performance through butyrate production 

since butyrate has been shown to be a cognitive enhancer of a weak memory194. 

We found that the stroke group reported lower self-efficacy than the control groups. 

Bacteroides uniformis and Alistipes putredinis were positively correlated with self-efficacy 

and Escherichia coli was negatively correlated with self-efficacy. The concept of self-

efficacy encapsulates a person’s perception of their capability for performance195. Self-
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efficacy has been shown to be a strong variable in impacting recovery following stroke196. 

While it is not known why these taxa correlate with self-efficacy, it is possible that 

individuals with a higher self-efficacy are more likely to make healthy choices following 

stroke which would correlate with butyrate producing bacteria like Bacteroides uniformis 

as opposed to inflammatory species like Escherichia coli197. The Enterobacteriaceae 

family, which E. coli is from, has previously been reported as being associated with bad 

outcomes in the context of stroke118,198,199. 

We found that the stroke group reported lower meaning and purpose than the 

control groups. The family Eubacteriaceae was positively correlated with scores on the 

meaning and purpose questionnaire. Depression is a common phenomenon following 

stroke200 and is characterized by low purpose in life. Increasing purpose in life has been 

proposed as a possible treatment for stroke201,202. The gut microbiome has previously been 

implicated in the development of post-stroke depression and correlated with dysregulation 

of lipid metabolism113.  

The stroke group reported similar levels of support to those of the control groups. 

The class Coriobacteriia was positively correlated with support. Social isolation stress has 

been shown to alter the gut-brain axis203. The class Coriobacteriia contains many species 

which are equol producers. Since equol producers and butyrate producers are associated 

with social support, it is possible that one mechanism by which people who have strokes 

who have more support do better is mediated by the microbiome. 

The stroke group reported experiencing more pain than the control groups. Pain is 

a very common phenomenon following stroke and can include complex regional pain 

syndrome, musculoskeletal pain, spasticity-related pain, and post-stroke headache204. In 
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the stroke group, Alistipes shahii was positively associated with reported pain. The 

abundance of Alistipes shahii is highly positively correlated with trimethylamine-N-oxide 

(TMAO), a marker of poor cardiometabolic health205. While it is unknown how Alistipes 

shahii is associated with pain, many other studies have linked the microbiome with pain206, 

including other species of Alistipes with pain207. 

While this study provides valuable insights into the associations of the composition 

of bacterial communities in the gut and various markers of stroke recovery, it has many 

limitations. As a prospective case control study, it cannot definitively say that the 

associations are causing stroke recovery to be altered. Future experiments should test the 

associations found here to determine causation. Additionally, our sample consists largely 

of older white adults from Kentucky. Larger studies comprising more diverse populations 

are needed to see whether these associations are generalizable. Furthermore, we used a 

false discovery rate of q<0.25. This means that up to 25% of our found associations may 

be false positives. More targeted experiments are needed in the future to better characterize 

these associations. 

Altogether, we found that stroke was associated with an increase of pro-

inflammatory bacterial taxa and a decrease in taxa that produce butyrate and secondary bile 

acids necessary for healthy metabolic function. This shift towards inflammation is likely 

due to the activation of the sympathetic nervous system and hypothalamic-pituitary-adrenal 

axis in response to the stroke that increase gut permeability and decrease gut motility. 

While this inflammatory shift can help to mitigate the acute effects of stroke in the brain, 

the residual inflammation in the weeks and months following the stroke is likely 

undermining recovery. Previous studies have also found that butyrate-producing bacteria 
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were significantly reduced in cerebral ischemia patients and that this reduction is associated 

with poor outcomes115,208,209. Future studies should explore treatments targeting the 

composition of microbial communities following stroke as a way to boost recovery from 

stroke in combination with other rehabilitation therapies. It is possible that optimizing 

butyrate producers, secondary bile acid producers, equol producers, and sulfate reducers in 

the gut could contribute to creating a rehabilitation environment where recovery is boosted. 
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Table 3.1  Participant Characteristics 
  

Acute Stroke At Risk 
Controls 

Healthy 
Controls 

N 12 18 12 
Age 68.5 ± 12.68 66.33 ± 6.53 64.75 ± 4.75 
Sex (% Female) 83.33% 77.78% 91.67% 
Race (% White) 100.00% 88.89% 91.67% 
         (% Black) 0.00% 11.11% 0.00% 
         (% Asian) 0.00% 0.00% 8.33% 
Genotype (% APOE ε3/ε3) 41.67% 61.11% 41.47% 
                (% APOE ε3/ε4) 33.33% 33.33% 25.00% 
                (% APOE ε4/ε4) 0.00% 5.56% 0.00% 
                (% APOE ε2/ε4) 8.33% 0.00% 0.00% 
                (% APOE ε2/ε3) 16.67% 0.00% 33.33% 
Education 13.27 ± 2.97 16.78 ± 1.52 17.92 ± 2.07 
BMI 29.65 ± 7.78 28.43 ± 5.81 24.72 ± 3.95 
Diabetes 33.33% 16.67% 0% 
Hypertension 75% 72.22% 0% 
Hyperlipidemia 81.82% 50.00% 0% 
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Table 3.2 Microbial Taxa Associated with fecal Alpha-1-Antitrypsin 

Bacteria Coefficient Q-Value 
Taxa Positively correlated with Alpha-1-Antitrypsin 
Eggerthella lenta 0.468 0.1731 
Clostridium bolteae 0.274 0.1814 
Clostridium leptum 0.344 0.2363 
Anaerotruncus colihominis 0.456 0.1814 
   
Taxa negatively correlated with Alpha-1-Antitrypsin 
Adlercreutzia equolifaciens -0.307 0.1731 
Genus Anaerostipes -0.298 0.1731 
Family Lachnospiraceae -0.113 0.2074 
Lachnospira pectinoschiza -0.215 0.1731 
Genus Roseburia -0.42 0.07802 
Roseburia inulinivorans -0.299 0.1731 
Genus Ruminococcus -0.457 0.1814 
Blautia obeum -0.359 0.1440 
Dorea longicatena -0.473 0.1626 
Lawsonibacter asaccharolyticus -0.256 0.1854 
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Table 3.3 Diet Correlates with Microbial Taxa in Stroke Participants 

Stroke Diet Feature Microbial Taxa Coef Q Value 
Fiber None   
Calcium None   
Whole Grains None   
Sugar None   
Dairy None   

Fruits and Vegetables 

Ruminococcus torques 1.00 0.04917 
Eisenbergiella massiliensis -0.301 0.05379 
Faecalibacterium prausnitzii 0.0974 0.04917 
Holdemania filiformis -0.385 0.04917 

 Genus Bacteroides -0.153 0.2464 
Vegetables Only Clostridium bolteae 0.578 0.1554 
Sugar Sweetened Beverages None   
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Marker of Stroke 
Recovery Bacteria Coefficient Q-Value 

Self Care Assessment Collinsella aerofaciens 0.772 0.01921 
Picture Vocabulary Test Genus Roseburia 0.593 0.1546 
List Sorting Test None   

Self-Efficacy 
Questionnaire 

Bacteroides uniformis 0.337 0.2202 
Family Enterobacteriaceae -0.766 0.1747 
Escherichia coli -0.483 0.2202 

Sadness Questionnaire None   
Meaning and Purpose 
Questionnaire Family Eubacteriaceae 1.29 0.1205 

Support Questionnaire 

Class Coriobacteriia 0.299 0.1691 
Family Odoribacteraceae 0.215 0.1888 
Genus Eubacterium 0.870 0.2258 
Family Acidaminococcaceae 0.133 0.2258 
Roseburia intestinalis 0.0584 0.2258 
Phascolarctobacterium faecium 0.0505 0.1691 
Bacteroides ovatus -0.238 0.1888 
Erysipelatoclostridium ramosum -0.375 0.2258 
Flavonifractor plautii -0.437 0.1580 
Family Veillonellaceae -0.683 0.2258 

Pain Self-Rating Alistipes shahii 0.311 0.04039 
 
  

Table 3.4 Microbial Taxa correlated with Markers of Stroke Recovery 
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Figure 3.1 Alpha Diversity amongst the participants groups did not differ on Wilcoxon 
rank sum test 
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  Figure 3.2 Beta Diversity amongst the groups 
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Figure 3.4 Significant Associations of Microbial Taxa with Stroke and At Risk Groups as 
compared to the healthy control group 
The following taxa are lower in the stroke group: A) Agathobaculum butyriciproducens, 
B) Lawsonibacter asaccharolyticus, C) Anaerostipes hadrus, D) Genus Roseburia, E) 
Eubacterium rectale, F) Blautia obeum, G) Genus Ruminococcus, H) Adlercreutzia 
equolifaciens, I) Family Desulfovibrionaceae. The following taxa are higher in the stroke 
group: J) Clostridium aldenense, K) Clostridium bolteae, L) Genus Anaeromassibacillus, 
M) Ruthenibacterium lactatiformans, N) Acidaminococcus intestini 
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Figure 3.5 Leaky Gut Markers were compared amongst the participant groups using 
Kruskal-Wallis Test. 

* p-value < 0.05 

** p-value < 0.01 
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Stars indicate bacteria which were also associated with stroke. Negative associations 
include A) Adlercreutzia equolifaciens, B) Lawsonibacter asaccharolyticus, C) the genus 
Anaerostipes, D) Blautia obeum, E) Coprococcus eutactus, F) Dorea longicatena, G) 
Lachnospira pectinoschiza, H) the genus Roseburia, I) Agathobaculum 
butyriciproducens, and J) the genus Ruminococcus. Positive associations include K) 
Eggerthella lenta, L) Clostridium bolteae, M) Anaerotruncus colihominis, and N) 
Clostridium leptum. 

 
  

Figure 3.6 Microbial Taxa Associated with fecal Alpha-1-Antitrypsin.  
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Figure 3.7 Diet composition amongst the groups.  

Diet was compared between each of the groups using a Wilcoxon rank sum test in 
several components: A) fiber, B) calcium, C) whole grains, D) sugar, E) dairy, F) fruits 

and vegetables, and G) sugar-sweetened beverages 

* p-value < 0.05 

** p-value < 0.01 

*** p-value < 0.001 
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Negative associations with fruits and vegetables are with A) the genus Bacteroides, B) 
Eisenbergiella massiliensis, and C) Holdemania filiformis. Positive associations with 
fruits and vegetables are with D) Ruminococcus torques, E) Faecalibacterium prausnitzii, 
and F) Clostridium bolteae. 

 
  

Figure 3.8 Microbial Taxa Associated with diet in stroke participants.   
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Figure 3.9 Markers of stroke function at baseline and follow up for acute stroke, at risk, 
and healthy participants. 
Assessments include A) Self Care Assessment, B) Picture Vocabulary, C) List 

Sorting, D) Self-Efficacy, E) Sadness, F) Meaning and Purpose, G) Support, and H) Pain 
Intensity.  

* p-value < 0.05 
** p-value < 0.01 
*** p-value < 0.001 
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Association plots depict the correlation between microbial taxa and A) Self Care 
Assessment, B) Picture Vocabulary Test, C) Self-Efficacy, D) Support, E) Meaning and 
Purpose, and F) Pain   

Figure 3.10 Microbial Taxa associations with Markers of Stroke recovery.  
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CHAPTER 4.  GUT MICROBIOME IS ASSOCIATED WITH BRAIN IMAGING IN 
COMMUNITY DWELLING OLDER ADULTS 

4.1 Introduction 

Healthy brain aging is a focus of many older adults trying to avoid age-related 

neuronal diseases. Popular dietary aids, cognitive puzzles, and exercise regimes have all 

been touted as lifestyle interventions to promote healthy aging. The popularity of these 

interventions suggests that there is much interest from the general population to achieve 

healthy aging and there is a need for a better understanding of the connection of these 

interventions with brain health. Accumulating evidence has implicated the gut microbiome 

in brain health. Microbial communities that inhabit the gut communicate with the brain 

through the vagus nerve in the nervous system, the peyers patches in the immune system, 

and metabolites in the circulatory system 62. It is possible that manipulation of the gut 

microbiome could lead to healthier brain aging. 

Many imaging tools have been developed to measure brain health. T1 and T2 

structural imaging is commonly used to calculate brain volume 31, but advanced imaging 

modalities such as diffusion tensor imaging 32, magnetic resonance spectroscopy 33, and 

arterial spin labelling 34 can be used to detect white matter integrity, brain metabolites, and 

cerebral blood flow, respectively. Many changes in the brain associated with the gut 

microbiome and gut disorders have been documented with imaging. Ulcerative colitis has 

been associated with a significantly reduced blood oxygen level-dependent signal in the 

amygdala, thalamic regions, and cerebellar regions 72. Irritable bowel syndrome has been 

associated with long-term white matter integrity changes in the brain, especially in regions 

associated with integration of sensory information and corticothalamic modulation 73, and 
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lower volumes in the bilateral superior frontal gyrus, insula, amygdala, hippocampus, and 

middle orbital frontal gyrus 74.  Probiotic administration for 4 weeks has been associated 

with changes in brain activation patterns in response to emotional decision-making tasks 

75,76. Short chain fatty acids (SCFAs) are known to decrease blood brain barrier 

permeability and cerebral blood flow 77. Finally, the gut microbiome is known to influence 

the transcriptional activity of genes involved in neuronal myelination, thereby altering 

white matter integrity 79. 

 Here we document the association of brain imaging markers with the gut 

microbiome in 30 community dwelling older adults. We measure global and segmented 

brain volume, brain metabolites, cerebral blood flow, and white matter integrity using T1 

MP-RAGE imaging, magnetic resonance spectroscopy, arterial spin labeling, and diffusion 

tensor imaging, respectively. We measure the gut microbiome using whole genome 

shotgun sequencing on stool samples. This analysis of aging subjects is foundational to 

understanding how gut microbes are associated with brain health as detected by imaging.  

4.2 Results 

4.2.1 Participant Characteristics 

We recruited 30 participants aged 55-85 from a community dwelling sample. 

Participants were recruited from Research Match and advertisements posted online and in 

the community by the Center for Clinical and Translational Research at the University of 

Kentucky. Participants were required to not have an acute disease of chronic, clinically 

significant (unresolved, requiring on-going medical management or medication) 

pulmonary, gastrointestinal, dermatologic, hepatic or renal functional abnormality. 
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Participants were required to not have had cancer or a positive test for HIV, HBV, or HCV. 

Participants were required to not be immunosuppressed or have had major surgery of the 

GI tract in the past five years. Participants also had to be MRI compatible. Table 4.1 

describes the major demographic characteristics of our participants known to influence 

brain aging, with a mean age of 65.7, 17.23 years of education, and body mass index (BMI) 

of 26.95. Our population was 83.33% female, 90% white, and 10% had diabetes, 43.33% 

had hypertension, and 30% had hyperlipidemia. 53% were genotype APOE ε3/ε3, 33% 

were ε4 carriers, and 13% were ε2 carriers. 

4.2.2 Microbiome Measurements 

4.2.2.1 Gut microbiome is associated with sex, ApoE Genotype, 
Obesity, Diabetes, Hypertension 

We measured the gut microbiome by performing whole genome shotgun 

sequencing on stool samples from the participants at baseline and at a three month follow 

up. We detected microbial taxa which were significantly associated (q<0.25) with our 

demographic variables using the MaAsLin2 R package 125. While there were no significant 

associations with age, race, education, or hyperlipidemia, significant associations existed 

with sex, ApoE genotype, BMI, diabetes, and hypertension (Table 4.2). Microbial taxa 

were not significantly different between the baseline and three month follow up visit. 

Bacteroides plebeius and Haemophilus parainfluenzae were both significantly higher in 

males than females and the Genus Clostridium was significantly lower (Figure 4.1a-c). 

The firmicutes species Eubacterium eligens, Oscillibacter, and Faecalibacterium 

prausnitzii were all lower in the ApoE ε2/ε3 genotype and the firmicutes species Blautia 

producta, Clostridium citroniae, Clostridium lavalense, and Clostridium symbiosum were 
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all higher (Figure 4.1d-g). In the ApoE ε3/ε4 genotype, the firmicutes species roseburia 

and Holdemania filiformis were lower (Figure 4.1h,i). The Verrucomicrobia species 

Akkermansia muciniphila was lower in obesity and inversely associated with BMI and the 

bacteroidetes species Bacteroides dorei was higher (Figure 4.1j,k). The Proteobacteria 

species Escherichia coli and the Bacteroidetes species Parabacteroides goldsteinii were 

higher in participtants with diabetes (Figure 4.1l,m). The Firmicutes genus 

Phascolarctobacterium was lower in participants with hypertension (Figure 4.1n). 

4.2.2.1 Gut microbiome is associated with calcium intake and 
vegetables intake 

We measured dietary intake over the previous month using the Dietary Screener 

Questionnaires (DSQ) in the National Health and Nutrition Examination Survey 

(NHANES) 2009-10. While there were no significant associations with fiber, whole grain, 

added sugar, dairy, or fruit and vegetables intake, significant associations existed with 

calcium intake (Table 4.3). An increased intake of calcium was associated a higher 

abundance of Bifidobacterium adolescentis, the family Acidaminococcaceae, Eubacterium 

eligens, and Haemophilus parainfluenzae (Figure 4.2a-d) and a lower abundance of 

Clostridium asparagiforme, Eubacterium ventriosum, and Sellimonas intestinalis (Figure 

4.2e-g). 

4.2.3 Imaging Measurements 

We collected brain imaging on our participants to find associations between 

imaging features and markers of brain health as detected by imaging. We measured brain 

volume using structural T1 imaging, brain metabolites using magnetic resonance 
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spectroscopy, cerebral blood flow using arterial spin labeling, and white matter integrity 

using diffusion tensor imaging.  

4.2.3.1 Gut microbiome is associated with Structural Imaging 

Table 4.4 shows the microbial taxa that were associated with structural imaging 

features. Using a False Discovery Rate of 0.25, we found that Bacteroides ovatus was 

associated with the Thalamus Volume (Figure 4.3a) and Bacteroides uniformis was 

associated with White Matter Hypointensities (Figure 4.3b). The Family 

Acidaminococcaceae was positively associated the volume of the Mid Posterior portion of 

the Corpus Callosum (Figure 4.3c).  

4.2.3.2 Gut microbiome is associated with Brain Metabolites 

Table 4.5 shows the microbial taxa that were associated with brain metabolites 

recorded in the white matter of the posterior corpus callosum. Collinsella aerofaciens was 

negatively associated with GABA (Figure 4.4a) and Parasutterella excrementhihomis 

were positively associated with GABA (Figure 4.4b). Alistipes putredinis and the Family 

Acidaminococcaceae were positively associated with Glycerophosphocholine (GPC) 

(Figure 4.4c,d). Ruminococcus lactaris was positively associated with N-acetylaspartate 

and N-acetylaspartylglutamate (NAA+NAAG) (Figure 4.4e) as well as several 

macromoclecules. Streptococcus thermophilus, the Genus Eubacterium, and Eubacterium 

eligens were also associated with several macromolecules. 

4.2.3.3 Equol producers are associated with Cerebral Blood Flow 

Table 4.6 shows the microbial taxa that were associated with cerebral blood flow 

in various brain regions. Several taxa from the Actinobacteria phylum were implicated in 
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cerebral blood flow. These included the family Eggerthellaceae, which is negatively 

correlated with brain regions responsible for language. Specifically, Adlercreutzia 

equolifaciens, Asaccharobacter celatus, Gordonibacter pamelaeae are all negatively 

correlated with language function and the limbic system (Figure 4.5) and Collinsella 

stercoris is positively correlated with language function and the limbic system. The Genera 

Alistipes and Parabacteroides, part of the Bacteroidetes phylum, are negatively correlated 

with cerebral blood flow in basal ganglia regions and hippocampal regions, both implicated 

in learning and memory (Figure 4.6a-c). The phylum Firmicutes is negatively correlated 

with blood flow in the primary auditory cortex. Eubacterium siraeum, a member of the 

phylum, is negatively correlated with the frontal eye fields and the primary somatosensory 

cortex. The genus Haemophilus, and specifically, Haemophilus parainfluenzae, are 

positively correlated with cerebral blood flow in memory and learning areas (Figure 4.6d-

f), while the family desulfovibrionaceae is negatively correlated with blood flow in 

memory and learning areas (Figure 4.6g).  

4.2.3.4 Equol producers are associated with White Matter Integrity 

Table 4.7 shows the microbial taxa that were associated with white matter integrity. 

Several taxa from the Actinobacteria phylum were implicated in white matter integrity. 

These included the family Eggerthellaceae, which is positively correlated with white 

matter tracts in the middle cerebellar peduncle and the left external capsule, which contains 

corticocortical association fibers. Specifically, Adlercreutzia equolifaciens, 

Asaccharobacter celatus, Gordonibacter pamelaeae are also positively correlated with 

several tracts that connects brain regions responsible for language function and the limbic 

system (Figure 4.7). Two members of the phylum Bacteroidetes, Coprobacter fastidiosus 
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and Bacteroides uniformis, are negatively correlated with the superior longitudinal 

fasciculus and the tapetum. The firmicutes phylum has several taxa that are positively 

correlated with white matter tracts, including Eubacterium siraeum, Clostridium innocuum 

(Figure 4.8b), the genus Lactobacillus (Figure 4.8c), Lachnospira pectinoschiza (Figure 

4.8d), Roseburia hominis (Figure 4.8e,f), Monoglobus pectinilyticus, Clostridium 

citroniae, and the Genus Flavonifractor. The firmicutes taxa Streptococcus thermophilus 

and Gemmiger formicilis are negatively correlated with the superior longitudinal fasciculus 

connecting the parietal, occipital, and temporal lobes. 

4.3 Discussion 

Here we measured the gut microbiome of 30 community dwelling older adults and 

made associations with it and the imaging features of structural volume, brain metabolites, 

cerebral blood flow, and white matter integrity. We found that important butyrate 

producers are associated with the volume of the thalamus and corpus callosum which are 

superhighway regions of the brain, responsible for relaying and processing lots of 

information. We also found proinflammatory species to be associated with GABA 

production. Importantly, we found the family eggerthellacaeae to be highly associated 

with cerebral blood flow in areas of the brain related to language, memory, and learning 

and with the white matter integrity of the tracts connecting these areas. 

There were bacterial taxa related to several of the demographic variables including 

sex, ApoE Genotype, BMI, Diabetes, and Hypertension. Males had more Bacteroides 

plebeius and Haemophilus parainfluenzae, and fewer of the genus Clostridium. 

Bacteroides plebeius contains a key enzyme for the digestions of agarose, a polymer 

derived from seaweed used in gelatin, ice cream, and other desserts 210,211. Sex hormones 
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are thought to play a role in microbiome differences between males and females, with 

ovariectomized rats showing higher levels of the genus bacteroides 212. Haemophilus 

parainfluenzae is an infectious species that had lower abundance in conjunction with a 

plant-based diet 213. The ApoE ε2/ε3 genotype had higher lachnoclostridium species and 

lower Eubacterium eligens, Oscillibacter, and Faecalibacterium prausnitzii; the ApoE 

ε3/ε4 genotype had lower roseburia. The ApoE ε4/ε4 genotype had higher Sellimonas 

intestinalis.  Eubacterium eligens and Faecalibacterium prausnitzii both exert anti-

inflammatory effects on the host, suggesting that individuals with ApoE ε2/ε3 genotype 

have less capability or need for these anti-inflammatory effects.214 Roseburia is a famous 

butyrate producer that is decreased in a genotype known for being a risk factor for cognitive 

decline.215. Sellimonas intestinalis is often found increased in inflammatory diseases and 

following recovery from dysbiosis 216. BMI was inversely associated with Akkermansia 

muciniphila and positively associated with Bacteroides cellulosilyticus and Bacteroides 

dorei. A. muciniphila has previously been found decreased in obesity and is thought to be 

protective against metabolic disorders via its excretion of endocannabinoids that control 

inflammation, the gut barrier, and gut peptide secretion 217. B. cellulosilyticus can degrade 

cellulose and produce short chain fatty acids 218. B. dorei can attenuate formation of 

atherosclerotic plaques by inhibiting lipopolysaccharide formation and a pro-inflammatory 

response 219. Diabetes is associated with increased Escherichia coli and Parabacteroides 

goldsteinii. Escherichia coli is a normal gut commensal that has many pathologic variants 

that can cause disease 220. Increases in infectious E. coli have previously been reported in 

diabetes 221. P. goldsteinii has been inversely associated with a high fat diet 222 and is 

thought to have anti-inflammatory properties 223. The genus phascolarctobacterium was 
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decreased in hypertension and is a producer of short chain fatty acids 224 that has previously 

been shown to be decreased in high blood pressure 225. 

We found that certain dietary features are associated with the abundance of specific 

bacteria. This is congruent with other groups who have found that dietary modification is 

associated with gut microbiome composition 181. We found an inverse relationship between 

calcium and Clostridium asparagiforme. C. asparagiforme has also been found to be 

reduced in smokers with hypertension 226. Calcium was positively associated with the 

family Acidaminococcaceae, Eubacterium eligens, and the genera Haemophilus and 

Phascolarctobacterium. Acidaminococcaceae species can produce short chain fatty acids 

224. Eubacterium eligens has anti-inflammatory effects on the host 214. Haemophilus species 

are infectious 227. Phascolarctobacterium species are producers of short chain fatty acids 

224.  While it is unknown how calcium would affect these microbial taxa, it has previously 

been shown that a high calcium diet increases firmicutes species and lactic, acetic, and 

butyric acid levels 228. We found a positive relationship of vegetables with Agathobaculum 

butyriciproducens, a butyrate producer, and a negative effect with Eggerthella lenta, an 

infectious species. There are many studies that describe the positive effects of a vegetarian 

diet on the microbiome by limiting inflammatory species and promoting SCFA-producing 

species 182,183. 

Our results show that Bacteroides ovatus is inversely related to the Thalamus 

Volume and that Bacteroides uniformis is inversely related to White Matter 

Hypointensities. The Thalamus is an important relay station in the brain that communicates 

information from the spinal cord and cerebellum to the cerebral cortex 229. Bacteroides 

ovatus is a commensal microbe that uses various carbohydrates and proteins as its fuel 
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source 230 and is a prominent inducer of IgA 231 and promotes the reparative cytokine IL-

22 232 thereby stimulating epithelial recovery 233. While it is not known why the presence 

of this particular bacteria would inversely correlate with thalamus size, a large thalamus 

size has previously been associated with irritable bowel syndrome 234. A reduced thalamus 

size has been associated with advanced chess players who have a more “streamlined” relay 

station allowing them to process information very quickly 235. White Matter 

Hypointensities are a value automatically detected by FreeSurfer from a T1 image that 

corresponds to the White Matter Hyperintensities typically found from a T2 image 236. 

White matter hyperintensities are a marker of vascular disease in the brain 237 and are often 

associated with cognitive impairment 238. Bacteroides uniformis prefers wheat bran extract 

as a fuel source and is a butyrate producer; it strengthens the first line of immune defense 

against unhealthy diets 239 and improves glucose tolerance 240. While it is not known why 

the presence of Bacteroides uniformis correlates inversely with White Matter 

Hypointensities, this microbe has been associated with increased dopamine transporters 241 

and normalizing the brain reward response to reduce anxiety in rats 242. Interestingly, the 

microbiota-derived phenylacetylglutamine has previously been associated with the amount 

of white matter hyperintensities in the brain 106. The Mid Posterior portion of the Corpus 

Callosum is responsible for connecting portions of the parietal and temporal cortices on 

each side of the brain. Many species of the family Acidaminococcaceae can produce short 

chain fatty acids 224, and it has been found to be increased in Major Depression 243. While 

it is unknown how Acidaminococcaceae can affect the corpus callosum volume, this taxa 

has previously been associated with memory performance 244. 
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We also found several taxa to be associated with metabolites in the corpus callosum. 

GABA is the main inhibitory neurotransmitter in the human brain 245. Collinsella 

aerofaciens is negatively associated with GABA production, and Parasutterella 

excrementhihominis is positively associated with GABA. Collinsella aerofaciens is an 

obligate anaerobe 246,247 and a proinflammatory species associated with Crohn’s Disease 

248,249. Parasutterella excrementhihominis is strictly anaerobic 250 and has been associated 

with impaired GI health 251. While Collinsella aerofaciens and Parasutterella 

excrementhihominis have not previously been identified as GABA producers or 

consumers, bacteroides has been identified as a dominant GABA producer and 

Pseudomonas as a prominent GABA consumer 252. 

We also found Alistipes putredinis and the Family Acidaminococcaceae to be 

positively correlated with Glycerophosphocholine in the corpus callosum. 

Glycerophosphocholine is a precursor to the phospholipids used in lipid bilayers and is a 

natural source of choline 253. Glycerophosphocholine has been associated with white matter 

microstructure and processing speed254. Alistipes putredinis has been shown to be 

protective against ulcerative colitis 255 and is generally associated with a healthy 

microbiome 256. While it is unknown why Alistipes putredinis has a positive association 

with glycerophosphocholine, taxa such as parabacteroides, ruminococcus, and bacteroides 

have been shown to have a positive association with glycerophosphocholine 257. 

We also found Ruminococcus lactaris to be associated with N-acetyl aspartate and 

N-acetyl aspartylglutamate. N-acetyl aspartate correlates with neuronal mitochondrial 

function and survival258, and N-acetyl arpartyl glutamate has procognitive properties259. 

Ruminococcus lactaris is a butyrate producer 260 and is negatively correlated with the 
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inflammatory IL-8 261. A previous group found a link between Ruminococcus and N-

acetylaspartate thought to be mediated by ruminococcus decreasing cortisol, which impacts 

brain N-acetyl aspartate 262. 

Ruminococcus lactaris, Streptococcus thermophilus, and Eubacterium eligens were 

also positively associated with various macromolecules. While the specific identification 

of these macromolecules isn’t defined, S. thermophilus is a popular species found in yogurt 

that is known to decrease uremic toxins 263, and E. eligens has anti-inflammatory properties 

214. 

Several bacteria were also associated with cerebral blood flow in various brain areas. 

The family Eggerthellaceae negatively correlated with cerebral blood flow in the banks of 

the superior temporal sulcus and the left pars triangularis. The superior temporal sulcus is 

commonly referred to as Wernicke’s area as is a central area for speech recognition and 

processing.264 The left pars triangularis is commonly referred to as Broca’s area and is a 

central part for speech production.265 Members of the family Eggerthellaceae are able to 

convert the isoflavone daidzein (a soy product) into equol, an estrogen.266 Specific 

members of this family, including Adlercreutzia equolifaciens, Asaccharobacter celatus, 

and Gordonibacter pamelaeae all have negative associations with these same areas 

responsible for language circuits, in addition to areas of the brain responsible to memory, 

learning, and reward processing. Equol supplementation has been shown to improve long 

and short term memory in rats by increasing brain antioxidant activity and improving blood 

pressure.267,268 Interestingly, equol has previously been reported to increase cerebral blood 

flow in rats.269 Previous studies have implicated a role of soy consumption in regulating 

hypertension via its consumption by the gut microbiome. 270 Collinsella stercoris is also a 
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member of the coriobacteriia class, and positively correlates with cerebral blood flow in 

the same areas of the brain that correlate with language, memory, and learning. 

Interestingly, Collinsella stercoris is also highly positively correlated with Chronic Kidney 

Disease.271 Interestingly, disruptions to the gut microbiome has previously been linked to 

impaired cerebral blood flow via its reduction of endothelial nitric oxide synthase (eNOS) 

activity 272. The genera Alistipes and Parabacteroides, part of the order bacteroidales are 

inversely correlated with cerebral blood flow in the putamen, accumbens, and 

hippocampus, all part of the limbic/rewards circuit. Alistipes species are highly correlated 

with cholesterol levels and are short chain fatty acid producers 273,274. Parabacteroides 

species alter dopaminergic signaling 275 

The phylum firmicutes and, more specifically, the order clostridiales, are inversely 

correlated with blood flow in the left transverse temporal cortex. The transverse temporal 

cortex is the site of the primary auditory cortex. 276 Members of the clostridiales order are 

obligate anaerobes277. Eubacterium siraeum is a member of this order and is positively 

correlated with HDL cholesterol levels 278.  

The genus Haemophilus and the family desulfovibrionaceae are both part of the 

phylum proteobacteria. Haemophilus is infectious and is positively associated with blood 

flow in the cingulate and entorhinal cortices, both part of the limbic system 279. The family 

desulfovribionaceae are sulfate reducing bacteria and are inversely associated with blood 

flow in the limbic system 280.  

The Family eggerthellaceae was also positively correlated with the white matter 

integrity of the middle cerebellar peduncle and the left external capsule, which connects 

the frontal and parietal cortices with the temporal cortex.281 Members of the family 
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eggerthellaceae, including Adlrecreutzia equolifaciens, Asaccharobacter celatus, and 

Gordonibacter pamelaeae have an inverse correlation with these same tracts in addition to 

the pontine crossing trats, the corticospinal tracts, the tapetum, the fornix, and the inferior 

fronto occipital fasciculus. These tracts are important for connecting the structures whose 

blood flow was altered as explained in the previous paragraph. Interestingly, the relative 

abundance of the Actinobacteria phylum has previously been linked to diffusion tensor 

imaging measurements in the thalamus, hypothalamus, and amygdala.282 

The genus Bifidobacterium is comprised of several commensal short chain fatty acid 

producers 283. It is inversely correlated with the white matter integrity of the corticospinal 

tract, while Clostridium innoccuum, an infectious pathogen 284, and the equol producers 

Gordonibacter pamelaeae, Assacharobacter celatus, and Adlercreutzia equolifaciens were 

also positively correlated with the white matter integrity of the corticospinal tract. 

The genus Lactobacillus strengthens the gut barrier 285. It is positively associated with 

white matter integrity in the medial lemniscus along with Lachnospira pectinoschiza, a 

pectin degrading microbe. Monoglobus pectinilyticus also degrades pectin and is positively 

associated with white matter integrity in the superior longitudinal fasciculus 286,287.  

While this study provides foundational understanding of the gut-brain axis, it has 

many limitations. Chief among these is that the observational nature of this study helps us 

to make many associations between gut bacteria and markers of brain health on imaging, 

but we are unable to determine causation. Additionally, the relatively small sample size for 

a human study with a heterogeneous population potentially leaves the study underpowered 

to detect smaller associations and changes in the microbiome. Future work should 

investigate the long-term nature of the gut microbiome following stroke. 
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This foundational study improves scientific knowledge of the bidirectional 

microbiome-brain axis by highlighting the gut microbiome changes associated with 

markers of brain health as detected by imaging. Future studies should examine potential 

mechanisms of association; these mechanisms could be exploited to bolster brain health. 

The gut is much easier to target therapeutically than the brain because the brain is protected 

by the skull and the blood brain barrier. Potential gut microbiome modifiers include dietary 

changes, prebiotics, probiotics, fecal transplants, or other pharmacologic therapies and 

could be developed to bolster brain health. Specific methods to employ would be butyrate 

and equol supplementation and a probiotic intervention of butyrate and equol producers, 

including roseburia. These types of interventions would be easily implemented, would be 

inexpensive, and would provide patients with additional tools to optimize healthy brain 

aging. 
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Table 4.1 Participant Characteristics 
N 30 
Age 65.7 ± 5.79 
Sex (% Female) 83.33% 
Race (% White) 90.00% 
         (% Black) 6.67% 
         (% Asian) 3.33% 
Genotype (% APOE ε3/ε3) 53.33% 
                (% APOE ε3/ε4) 30.00% 
                (% APOE ε4/ε4) 3.33% 
                (% APOE ε2/ε3) 13.33% 
Education 17.23 ± 1.80 
BMI 26.95 ± 5.36 
Diabetes 10.00% 
Hypertension 43.33% 
Hyperlipidemia 30.00% 
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Table 4.2 Microbial Taxa associated with Demographic Features 

 

 

  

 Demographic 
Feature Bacterial Taxa Taxa Key Characteristics β Q-Value 

Age None    

Sex (Male) 

Bacteroides plebeius Metabolizes agarose 0.969 0.01641 

Genus Clostridium Also inhabits female 
reproductive tract -1.12 0.04952 

Genus Haemophilus 
Infectious, inversely 
associated with plant 
based diet 

0.611 0.06091 

Race None    

ApoE ε2 
carriers 

Eubacterium eligens Anti-inflammatory -1.44 0.1697 
Blautia producta  0.587 0.0827 
Genus Lachnoclostridium  1.59 0.1171 
Genus Oscillibacter  -2.75 0.1808 
Faecalibacterium prausnitzii Anti-inflammatory -1.26 0.1808 

ApoE ε4 
carriers 

Genus Roseburia Butyrate producer -0.638 0.2134 
Holdemania filiformis  -0.658 0.2049 

Education None    

Obese 
Akkermansia muciniphila Decreased in obesity -0.663 0.1205 
Bacteroides dorei Anti-inflammatory 1.62 0.0703 

Diabetes 
Escherichia coli 

Normal gut commensal 
with capacity to cause 
extraintestinal infections 

1.76 0.1169 

Parabacteroides goldsteinii Anti-inflammatory 1.34 0.2214 

Hypertension Genus 
Phascolarctobacterium 

Produce SCFAs -1.26 0.06803 

Hyperlipidemia None    
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Table 4.3 Diet correlates with microbial taxa 
  

Diet Feature Microbial Taxa Taxa Key 
Characteristics Coef Q 

Value 
Fiber None    

Calcium 

Clostridium asparagiforme  -
0.247 0.1906 

Family Acidaminococcaceae Produce SCFAs 0.201 0.1906 

Eubacterium eligens Anti-
inflammatory 0.312 0.2166 

Genus Haemophilus 

Infectious, 
inversely 
associated with 
plant based diet 

0.176 0.2166 

Genus Phascolarctobacterium Produce SCFAs 0.203 0.2421 
Whole 
Grains None    

Added 
Sugars None    

Dairy None    
Fruits None    

Vegetables 
Eggerthella lenta Infectious -

0.347 0.1405 

Agathobaculum 
butyriciproducens 

Butyrate 
producer 0.311 0.1405 
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Table 4.4  Microbial taxa associated with imaging features 

  

Microbial Taxa Taxa Key 
Characteristics Imaging Feature Volume Coef Q 

Value 

Bacteroides ovatus 
Induces IgA 
Promotes IL-22 

Thalamus -0.672 0.169 

Bacteroides 
uniformis 

Butyrate 
Producer White Matter Hypointensities -0.376 0.1578 

Family 
Acidaminococcaceae SCFA Producer Corpus Callosum Mid 

Posterior 0.364 0.2157 

 



77 
 

Table 4.5  Microbial taxa associated with brain metabolites 
 

Microbial Taxa Taxa Key 
Characteristics Metabolite Coef Q 

Value 

Collinsella aerofaciens 
Proinflammatory 

Bile-Acid Conjugator 
GABA -

0.357 
0.0615
2 

Parasutterella 
excrementhihominis 

 GABA 0.703 0.0739
1 

Alistipes putredinis  GPC 0.956 0.2127 

Family 
Acidaminococcaceae SCFA Producer GPC 0.338 0.2127 

Ruminococcus lactaris 
Butyrate Producer 

Inhibits IL-8 

NAA+NAAG 0.653 0.0965
8 

MM09 0.688 0.0351
9 

MM12 0.612 0.0916
0 

Streptococcus 
thermophilus 

Decreases uremic 
toxins 

MM09 0.526 0.1315 

MM12 0.547 0.0714
3 

Eubacterium eligens Anti-inflammatory 
MM14+Lip13
a+Lip13b+M
M12 

0.484 0.2314 
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Table 4.6  Microbial Taxa associated with Cerebral Blood Flow 

Microbial Taxa Taxa Key 
Characteristics Perfusion Imaging Feature Coef Q 

Value 

Family 
Eggerthellaceae 

Equol 
Producers 

Banks of Superior Temporal 
Sulcus -0.364 0.1261 

Left Pars Triangularis -0.219 0.09265 

Adlercreutzia 
equolifaciens Equol Producer 

Banks of Superior Temporal 
Sulcus -0.551 0.1261 

Total Middle Temporal Cortex -0.356 0.2146 
Left Pars Triangularis -0.355 0.09821 

Asaccharobacter 
celatus Equol Producer 

Total Banks of Superior 
Temporal Sulcus -0.573 0.07049 

Left Middle Temporal Cortex -0.595 0.0489 
Total Middle Temporal Cortex -0.652 0.01391 
Total Insula -0.527 0.2112 
Left Pars Triangularis Cortex -0.518 0.09265 
Right Pars Opercularis Cortex -0.630 0.02800 

Gordonibacter 
pamelaeae Equol Producer 

Total Putamen -0.577 0.08859 
Left Pars Triangularis Cortex -0.525 0.09265 
Left Posterior Cingulate Cortex -0.594 0.1455 
Total Posterior Cingulate Cortex -0.635 0.0503 

Collinsella stercoris Bile-Acid 
Conjugator 

Right Banks of Superior 
Temporal Sulcus 0.460 0.00409 

Total Middle Temporal Cortex 0.340 0.1678 
Left Pars Triangularis 0.327 0.09401 
Left Transverse Temporal 0.339 0.2098 

Genus Alistipes SCFA Producer Left Putamen -0.485 0.00174 
Left Accumbens area -0.406 0.1063 

Genus 
Parabacteroides 

Alter dopamine 
signaling Right Hippocampus -0.753 0.00210 

Order Clostridiales   Left Transverse Temporal Cortex -0.900 0.2098 

Eubacterium 
siraeum 

Positively 
correlated with 
HDL 
cholesterol 

Total Middle Temporal Cortex -0.715 0.1352 
Right Caudal Middle Frontal 
Cortex -0.770 0.1239 

Right Post Central Cortex -0.674 0.1691 

Genus Haemophilus Infectious Total Rostral Anterior Cingulate 0.267 0.09848 
Total Posterior Cingulate Cortex 0.240 0.1928 

Haemophilus 
parainfluenzae   Right Entorhinal 0.281 0.02571 

Family 
Desulfovibrionaceae Sulfate reducers Right Entorhinal Cortex -0.449 0.1875 

 

 

  



79 
 

 

 

Microbial Taxa Taxa Key 
Characteristics 

White Matter 
Integrity Imaging 
Feature 

Coef Q Value 

Family 
Eggerthellaceae Equol Producers 

Middle Cerebellar 
Peduncle 0.245 0.05163 

Left External Capsule 0.252 0.09284 

Gordonibacter 
pamelaeae Equol Producer 

Middle Cerebellar 
Peduncle 0.720 0.004926 

Pontine Crossing Tract 0.646 0.05013 
Left Corticospinal 
Tract 0.613 0.1115 

Left Tapetum 0.662 0.02824 
Assacharobacter 
celatus Equol Producer Left Corticospinal 

Tract 0.468 0.1821 

Adlercreutzia 
equolifaciens Equol Producer 

Left Corticospinal 
Tract 0.324 0.2284 

Left Fornix 0.396 0.1751 
Left Inferior Fronto 
Occipital Fasciculus 0.437 0.06521 

Genus 
Bifidobacterium SCFA Producer Left Corticospinal 

Tract 
-

0.547 0.1115 

Coprobacter 
fastidiosus  

Right Superior 
Longitudinal 
Fasciculus 

-
0.473 0.2484 

Bacteroides 
uniformis Butyrate Producer Right Tapetum 0.469 0.03213 

Eubacterium 
siraeum 

Positively correlated 
with HDL cholesterol  

Middle Cerebellar 
Peduncle 0.645 0.1392 

Clostridium 
innocuum Infectious Left Corticospinal 

Tract 0.423 0.2468 

Genus 
Lactobacillus Strengthen gut barrier Left Medial 

Lemniscus 0.380 0.2285 

Lachnospira 
pectinoschiza Degrades pectin Left Medial 

Lemniscus 0.296 0.2285 

Roseburia 
hominis Butyrate Producer 

Left Cingulum 0.544 0.09441 
Left Inferior Fronto 
Occipital Fasciculus 0.503 0.06636 

Table 4.7 Microbial taxa associated with white matter integrity 
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Genus 
Streptococcus 

Decreases uremic 
toxins 

Right Superior 
Longitudinal 
Fasciculus 

-
0.416 0.2484 

Monoglobus 
pectinilyticus Degrades pectin 

Right Superior 
Longitudinal 
Fasciculus 

0.609 0.2484 

Tapetum 0.626 0.1934 

Clostridium 
citroniae  

Right Superior 
Longitudinal 
Fasciculus 

0.384 0.2484 

Genus 
Flavonifractor  

Right Superior 
Longitudinal 
Fasciculus 

0.369 0.2484 

Gemmiger 
formicilis  Superior Longitudinal 

Fasciculus 
-

0.447 0.2047 
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Figure 4.1 Microbial taxa associated with demographic features. 
Male sex was associated with higher A) Bacteroides plebeius and B) the genus 
Haemophilus and lower C) genus Clostridium. The Apolipoprotein E (ApoE) ε2 genotype 
was associated with lower D) Eubacterium eligens, E) the genus Oscillibacter, and F) 
Faecalibacterium prausnitzii and higher G) genus Lachnoclostridium. The ApoE ε4 
genotype was associated with lower H) genus Roseburia and I) Holdemania filiformis. 
Obesity was associated with higher J) Bacteroides dorei and lower K) Akkermansia 
muciniphila. Diabetes was associated with higher L) Parabacteroides goldsteinii and M) 
Escherichia coli. Hypertension was associated with lower N) genus 
Phascolarctobacterium. 
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The following taxa were positively associated with calcium intake: A) Bifidobacterium 
adolescentis, B) Eubacterium eligens, C) family Acidaminococcaceae, and D) 
Haemophilus parainfluenzae. The following taxa were negatively associated with 
calcium intake: E) Clostridium asparagiforme, F) Eubacterium ventriosum, and G) 
Sellimonas intestinalis.  

Figure 4.2  Microbial Taxa Associations with Dietary Calcium intake. 
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A) The thalamus volume is positively associated with Bacteroides ovatus abundance. B) 
White Matter (WM) hypointensities are positively associated with Bacteroides uniformis 
abundance. C) The volume of the mid-posterior portion of the corpus callosum 
(CC_Mid_Posterior) is positively associated with the family acidaminococcaceae 
abundance. 

Figure 4.3 Microbial Taxa Associations with Structural Imaging Features.  
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A) GABA is negatively associated with the genus Collinsella and B) positively 
associated with Parasutterella excrementhihominis. C) Glycerophosphorylcholine (GPC) 
is positively associated with Alistipes putredinis and D) the family Acidaminococcaceae. 
E) N-acetyl aspartate (NAA) or N-acetyl aspartyl glutamate (NAAG) is positively 
associated with Ruminococcus lactaris. 
  

Figure 4.4 Notable Microbial Taxa Associations with Brain Metabolites in the white 
matter of the corpus callosum. 
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Eggerthellaceae spp. are negatively associated with CBF in A-C) the banks of the 
superior of the superior temporal sulcus, D-F) the pars triangularis, G,H) the middle 
temporal gyrus, I) the putamen, J) the pars opercularis, K) the insula, and L) the posterior 
cingulate. 

Figure 4.5 Species from the eggerthellaceae family are negatively associated with 
cerebral blood flow (CBF) in language, memory, and limbic brain areas.  
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The genus Alistipes is negatively associated with CBF in the A) Putamen and B) 
Accumbens area. The genus Parabacteroides is negatively associated with CBF in the C) 
Hippocampus. The genus Haemophilus is positively associated with CBF in the D) 
posterior cingulate cortex, E) entorhinal cortex, and F) rostral anterior cingulate cortex. 
The family Desulfovibrionaceae is negatively associated with G) the entorhinal cortex. 
  

Figure 4.6 Notable Microbial Taxa Associations with cerebral blood flow (CBF) in 
limbic and memory regions. 
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Eggerthellaceae spp. Are positively associated with WMI in A) the external capsule, B) 
the middle cerebellar peduncle, C,F,G) the corticospinal tract, D) the tapetum, E) the 
pontine crossing tract, H) the fornix, and I) the Inferior fronto-occipital fasciculus. 

Figure 4.7 Species from the eggerthellaceae family are positively correlated with 
white matter integrity (WMI) in language, memory, and limbic brain circuits. 
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A) The Genus Bifidobacterium is negatively associated with WMI in the corticospinal 
tract. B) Clostridium innocuum is positively associated with WMI in the corticospinal 
tract. C) The Genus Lactobacillus is positively associated with WMI in the medial 
lemniscus. D) Lachnospira pectinoschiza is positively associated with WMI in the medial 
lemniscus. Roseburia hominis is positively associated with WMI in E) the cingulum and 
F) the Inferior fronto-occipital fasciculus. 
 
  

Figure 4.8 Notable Microbial Taxa Associations with cerebral blood flow (CBF) in 
limbic and memory regions.  



90 
 

CHAPTER 5. GENERAL DISCUSSION 

In summary, we found that stroke was associated with an increase of pro-inflammatory 

bacterial taxa and a decrease in taxa that produce butyrate and secondary bile acids 

necessary for healthy metabolic function. Roseburia, an important butyrate producer, had 

a lower relative abundance in association with a leaky gut. In individuals with the APOE 

ε2/ε3 genotype, bacteria with anti-inflammatory properties were reduced and in individuals 

with APOE ε3/ε4 genotype, roseburia was reduced.  

On imaging analysis, we found that butyrate producers are associated with the volume 

of the thalamus and corpus callosum which are superhighway regions of the brain, 

responsible for relaying and processing mass information. Proinflammatory species were 

associated with GABA production. Importantly, the family eggerthellacaeae was highly 

associated with cerebral blood flow in areas of the brain related to language, memory, and 

learning and with the white matter integrity of the tracts connecting these areas.  

Finally, many functional tasks were associated with gut microbiome levels. Recovery 

from stroke was associated with Collinsella aerofaciens, a bile-salt conjugator that may 

inhibit the hypothalamic-pituitary-adrenal axis in the context of a leaky blood brain barrier. 

Long-term memory performance in stroke is associated with roseburia abundance. 

Bacteroides uniformis, a butyrate producer, is positively correlated with self-efficacy, 

while Enterobacteriaceae, a classically inflammatory family, is negatively correlated with 

self-efficacy. Eubacteriaceae is positively associated with meaning and purpose. 

Coriobacteriia, an equol producer, is positively correlated with social support. Alistipes 

shahii, a TMAO producer is correlated with perceived pain. 
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Butyrate-producing bacteria continuously emerged as being decreased in the context 

of stroke and inversely related to stroke severity markers. Previous studies have also found 

a reduction of butyrate-producing bacteria in the context of stroke.208 Butyrate is a histone 

deacetylase inhibitor and a ligand for a subset of G protein-coupled receptors that has the 

power to affect gene expression and have many downstream applications.288 Butyrate 

treatment in stroke has been associated with an increase in the number of cells expressing 

markers of developing and migrating neurons and synaptogenesis.289 In rats, administration 

of butyrate following stroke reduces infarct volume and improves neurological function at 

24 and 72 hours after middle cerebral artery occlusion by ameliorating the apoptosis caused 

by the stroke by binding to G-protein coupled receptors that regulate apoptosis and 

inflammation.95 

While many butyrate producing bacteria appeared important in the context of stroke, 

the genus roseburia was continuously hallmarked as one of the most important butyrate 

producers. We found that roseburia was decreased in our stroke participants in association 

with the leaky gut marker fecal alpha-1-antitrypsin. Additionally, roseburia was decreased 

in individuals with the ApoE ε3/ε4 genotype, a risk factor for severe stroke and post-stroke 

cognitive impairment. Finally, long term memory performance was associated with 

roseburia abundance. A previous study found that individuals with a higher abundance of 

roseburia generally experienced strokes that were more mild compared with their 

counterparts with a lower abundance who experienced more severe strokes, suggesting a 

neuroprotective effect of roseburia.290 Roseburia uses its flagella to penetrate the colonic 

mucus layer to interact with the epithelium and is therefore one of the most abundant 

butyrate-producing bacteria that adhere to intestinal mucin, positioning it well for use as a 
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probiotic.291 Beyond its function as a butyrate producer, roseburia is also a powerful 

stimulator of the gut immune system to produce IL-22, a cytokine involved in wound 

healing and protection against microbes,292,293 and reduce IL-6 and IL-17, both 

proinflammatory factors.294 

A surprising role of members of the class coriobacteriia in the phylum actinobacteria 

was found in our markers of stroke severity. Collinsella aerofaciens was found to be 

positively associated with functional recovery in the rehabilitation setting. It was also found 

to be negatively associated with GABA abundance in the corpus callosum. While C. 

aerofaciens is commonly considered to be a pro-inflammatory species in the context of 

inflammatory bowel disease,248,249  in the context of a leaky blood brain barrier like that 

found in stroke, it has been reported as a bile-salt conjugator that may inhibit the 

hypothalamic-pituitary-adrenal axis via bile acid deposition in the hypothalamus and 

reduce CNS and systemic inflammation.189,190 The family eggerthellaceae containing the 

species Asaccharobacter celatus, Adlercreutzia equolifaciens, and Gordonibacter 

pamelaeae were all inversely associated with cerebral blood flow in brain regions related 

to language, memory, and learning, and positively associated with the white matter 

integrity connecting these regions. Additionally A. equolifaciens was inversely associated 

with leaky gut and coriobacteriia as a whole was positively associated with social support. 

One of the hallmark features of these bacteria is their role as equol producers. Equol is an 

estrogen metabolized from soy that possesses antiatherogenic properties and improves 

arterial stiffness.295 One group found that plasma levels of equol were reduced in response 

to stroke in proportion to the severity of the stroke.296 A separate study found that equol 

administration in rats is able to inhibit the activation of Src and the upregulation of 
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gp91(phox) thought to play a prominent role in mediating ischemic alteration in neurons 

following stroke.297 

While this study provides foundational understanding of the gut-brain axis in the 

context of stroke rehabilitation, it has many limitations. Chief among these is that the 

observational nature of this study helps us to make many associations between gut bacteria 

and markers of stroke severity, but we are unable to determine causation. Additionally, the 

relatively small sample size for a human study with a heterogeneous population potentially 

leaves the study underpowered to detect smaller associations and changes in the 

microbiome. Finally, due to the challenges of the COVID-19 pandemic, many of our stroke 

subjects were lost to follow-up making a longitudinal study challenging. Future work 

should investigate the long-term nature of the gut microbiome following stroke. 

This foundational study improves scientific knowledge of the bidirectional 

microbiome-brain axis by highlighting the gut microbiome changes associated with stroke 

in humans and how these changes are associated with markers of stroke severity. Future 

studies should examine potential therapies targeting the microbiome after stroke in order 

to optimize functional recovery. The gut is much easier to target therapeutically than the 

brain because the brain is protected by the skull and the blood brain barrier. Potential gut 

microbiome modifiers include dietary changes, prebiotics, probiotics, fecal transplants, or 

other pharmacologic therapies and could be developed to target the specific microbial 

community imbalances seen following stroke. Specific methods to employ would be 

butyrate and equol supplementation and a probiotic intervention of butyrate and equol 

producers, including roseburia. These types of interventions would be easily implemented, 
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would be inexpensive, and would provide patients with additional tools to optimize 

neuroplasticity in their difficult rehabilitation journey. 
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CHAPTER 6. [SUPPLEMENT] β-AMYLOID AND TAU DRIVE EARLY 
ALZHEIMER’S DISEASE DECLINE WHILE HYPOMETABOLISM DRIVES 

LATE DECLINE 

6.1 Summary 

Clinical trials focusing on therapeutic candidates that modify β-amyloid (Aβ) have 

repeatedly failed to treat Alzheimer’s disease (AD), suggesting that Aβ may not be the 

optimal target for treating AD. The evaluation of Aβ, tau, and neurodegenerative (A/T/N) 

biomarkers has been proposed for classifying AD. However, it remains unclear whether 

disturbances in each arm of the A/T/N framework contribute equally throughout the 

progression of AD. Here, using the random forest machine learning method to analyze 

participants in the Alzheimer’s Disease Neuroimaging Initiative dataset, we show that 

A/T/N biomarkers show varying importance in predicting AD development, with elevated 

biomarkers of Aβ and tau better predicting early dementia status, and biomarkers of 

neurodegeneration, especially glucose hypometabolism, better predicting later dementia 

status. Our results suggest that AD treatments may also need to be disease stage-oriented 

with Aβ and tau as targets in early AD and glucose metabolism as a target in later AD. 

6.2 Introduction 

Alzheimer’s disease (AD) is the most common form of dementia worldwide and is 

defined biologically as the pathologic deposition of folded β-amyloid (Aβ) plaques and 

hyperphosphorylated neurofibrillary tau tangles in the brain leading to 

neurodegeneration298-300. Clinically, AD presents as a syndrome of progressive episodic 

memory and executive functioning problems across a cognitive continuum ranging through 

cognitively unimpaired (CU), mild cognitive impairment (MCI), and AD. While there are 



96 
 

currently five drugs approved by the FDA to treat the symptoms of AD, there are no 

disease-modifying therapies that alter the course of the disease. Over the past few decades, 

the development of treatments for AD has been largely focused on compounds which aim 

to reduce Aβ plaques, either by directly targeting Aβ itself through antibodies or by 

targeting the enzymes that cleave amyloid precursor protein (APP) to produce it301,302. 

However, clinical trials of drugs targeting Aβ had a 99.6% failure rate between 2002 and 

2012303, and two more Aβ-focused drug trials failed in phase three in 2019304. This failure 

rate is among the highest of any disease area. The high failure rate for AD drug candidates 

focused on Aβ indicates that Aβ may not be the optimal therapeutic target to combat AD.  

Careful analysis of AD biomarkers may give important insights into underlying AD 

pathogenesis and clues about appropriate AD treatments since these biomarkers exist as 

proxies for AD neuropathologic changes. Furthermore, an understanding of how the 

biomarkers correlate with clinical symptoms of AD could inform clinicians making AD 

management decisions to improve patient quality of life. The A/T/N biomarker framework 

promulgated by the National Institute on Aging-Alzheimer’s Association was created to be 

an unbiased classification scheme for the three arms of biomarkers known to underlie AD 

pathology, namely neuropathological loads of Aβ (A) and tau (T), and neurodegeneration 

(N, including hypometabolism and brain atrophy) 305,306. Indeed, some research groups 

have demonstrated that the distribution of tau tangles307 and hypometabolism (due to low 

glucose uptake) are more strongly correlated with cognitive performance than Aβ308. 

Moreover, brain atrophy is also suggested to be highly correlated with AD progression309. 

However, it remains unclear whether disturbances in each arm of the A/T/N framework 

contribute equally to the progression of AD symptoms or if these factors instead have 
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varying impacts at different stages of AD progression. Understanding this stage-dependent 

nature of the biomarkers could lead to important clues in preventing and treating AD.  

In order to determine the nature of the association of AD biomarkers with the 

progression of AD symptoms, in this study we assessed the statistical importance of each 

arm of the A/T/N framework in predicting three progressive clinical statuses of cognitive 

performance: cognitively unimpaired (CU), late mild cognitive impairment (LMCI), and 

AD305. To do so, we used data from the Alzheimer’s Disease Neuroimaging Initiatives 

(ADNI) database, relating to four biomarkers: Aβ (assessed from 18Florbetapir-positron 

emission tomography (PET)), phosphorylated tau (pTau181, assessed from cerebrospinal 

fluid), glucose uptake (assessed from 18fluorodeoxyglucose (FDG)-PET), and volumetric 

measures (assessed from MRI). We used a random forest machine learning algorithm to 

rank the importance of each biomarker in predicting clinical dementia status. We chose the 

random forest machine learning method because it not only has the ability to fit models 

with high prediction accuracy due to its use of multiple decision trees that combine to yield 

a consensus prediction, but also is very interpretable due to its ranking capability of the 

relative importance of predictors used in the classification (AD biomarkers in our case). 

We also analyzed the relationship between A/T/N biomarkers and memory composite and 

executive functioning composite scores in order to assess more directly their association 

with cognitive performance. We show that A/T/N biomarkers have differing contributions 

in predicting clinical dementia status based on the stage of cognitive impairment, with Aβ 

and pTau having higher contribution in predicting early cognitive impairment (LMCI vs 

CU) and glucose uptake having higher contribution in predicting later cognitive 

impairment (AD vs LMCI and AD vs. CU). Our findings could help real-world patient 
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populations by informing clinicians to make AD management decisions according to 

disease stage based on the expression of the relevant A/T/N biomarkers and by informing 

drug development teams to design treatments to target the pathophysiology underlying the 

expression of the biomarkers at the appropriate stage of disease progression.  

6.3 Results 

6.3.1 Participant characterizations and data selection 

Participant data was extracted from the ADNI database for inclusion in the analysis. 

Participants were required to have baseline Aβ imaging biomarkers (from 18Florbetapir 

PET), glucose uptake imaging biomarkers (from 18FDG PET), brain volume imaging 

biomarkers (from T1-weighted structural MRI), and cognitive testing to be included in the 

analysis. Participants with three or more missing values were excluded from the analysis.  

As tau imaging was not available for most participants in the ADNI database, we used a 

phosphorylated tau biomarker (pTau) from cerebrospinal fluid (CSF) as a measure of tau 

levels. These criteria yielded a final sample of 405 participants clinically diagnosed as 

being either cognitively unimpaired (CU; n = 148) or with late mild cognitive impairment 

(LMCI; n = 147) or Alzheimer’s disease (AD; n = 110) (Table 6.1).  

The three study groups were balanced in terms of gender, race, and ethnicity, but 

not age or education, across clinical status, with the AD group being significantly older 

than LMCI subjects and less educated than CU and LMCI subjects; accordingly, we 

adjusted the features for age before applying them to the random forest model since age is 

known to affect brain volumetric measures. Notably, the groups differed in terms of the 

expression of the ε4 allele of apolipoprotein E (APOE ε4), the largest genetic risk factor 

for Alzheimer’s disease310, and cognitive testing scores, with the AD group being 
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significantly more likely to carry APOE ε4 and to have lower cognitive testing scores than 

CU and LMCI subjects. The cognitive tests completed included the Mini-Mental State 

Examination (MMSE), Clinical Dementia Rating Sum of Boxes (CDRSB), Alzheimer’s 

Disease Assessment Scale-Cognitive Subscale (ADAS-cog 13), composite memory score 

(ADNI_MEM), and composite executive functioning score (ADNI_EF). The biomarkers 

were further stratified into 16 features classified according to the A/T/N framework, 

comprising Aβ measures from 6 brain regions (frontal lobe, cingulate gyrus, parietal lobe, 

temporal lobe, precuneus, and hippocampus), glucose uptake (FDG) data from 3 brain 

regions (angular gyrus, temporal lobe, and posterior cingulum), volumetric measures from 

6 regions (ventricles, whole brain, entorhinal cortex, hippocampus, gray matter, white 

matter), and pTau levels from the CSF (Table 6.2). We show the correlation of the 16 

features with each other using a heatmap. It shows that the Aβ measures were highly 

correlated with each other, as were the FDG measures, and the volumetric measures, while  

Aβ and pTau were negatively correlated with FDG and volumetric measures. 

6.3.2 Relative importance of AD biomarkers in early and late AD 

We first sought to determine the relative importance of each biomarker feature in 

predicting clinical dementia status in three participant group pairings: CU vs LMCI, LMCI 

vs AD, and CU vs AD. Table 6.3 shows the descending order ranking of the relative 

importance of the 16 features in predicting clinical dementia status based on the random 

forest method, a machine-learning algorithm that utilizes multiple decision trees to classify 

and rank variables according to their accuracy in predicting outcomes. Notably, the top half 

(top 8) of the features made up the majority of the relative importance (69.1%, 75.45%, 

and 86.74%) for each cognitive state classification. In CU vs LMCI, hippocampal volume 
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ranked highest in relative prediction accuracy with a relative importance of 12.69%, 

followed by four Aβ features, pTau, FDG in the angular gyrus (FDG-Angular), and 

entorhinal cortex volume; thus, features from all three arms of the A/T/N framework were 

represented in the top 8 features in the CU vs LMCI comparison. In contrast, in LMCI vs 

AD, neurodegeneration, i.e., the N component of the framework, dominated the top 8 

features, with all three FDG glucose uptake measurements (temporal lobe = 18.88% 

relative importance) and entorhinal cortex, hippocampal and ventricle volumes 

represented. In particular, the three FDG features were ranked as the top three contributors 

in the LMCI vs AD comparison. Moreover, the contribution of FDG was weighted even 

higher in CU vs AD, with FDG-Angular making up 23.78%, and FDG in the posterior 

cingulum (FDG-CingulumPost) making up 16.99% of the relative importance. Another N 

component, hippocampal volume, also had an increased relative importance in the CU vs 

AD comparison relative to the other comparisons. The findings suggest that, overall, Aβ 

and pTau are important contributors to the progression from normal cognitive functioning 

to LMCI, but that neurodegeneration, especially glucose hypometabolism, emerges as a 

more important contributor when progressing from LMCI to AD. Glucose hypometabolism 

also serves as a prominent distinguishing feature between normal cognitive functioning 

and AD. We replicated our analysis using the SHapley Additive exPlanations (SHAP) 

technique and obtained a feature ranking analysis consistent with those from the random 

forest analysis. 

 

6.3.3 Accuracy of the top 8 features vs all 16 features 

We next determined the prediction accuracy of all 16 features in classifying the 

three participant group pairs. For all 16 features, accuracies of 73.17%, 71.01%%, and 
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90.34% were obtained for the CU vs LMCI, LMCI vs AD, and CU vs AD comparisons, 

respectively (Table 6.4). To ensure that our cognitive status classification model was 

robust, the F1 score was also used to evaluate the precision and recall of the model. The 

results show that the 16 features were able to classify the three group pairs with high 

accuracy. Knowing that the top 8 biomarker features have high relative importance in 

predicting cognitive status, we also explored whether the classification accuracy of the top 

8 features was comparable to that of all 16 features. Using the top 8 features only, 

accuracies of 72.74%, 70.15%, and 91.63% were obtained for the CU vs LMCI, LMCI vs 

AD, and CU vs AD comparisons, respectively, thus confirming that the accuracy of the top 

8 features was similar to that of all 16 features. Figure 6.1 depicts the comparison of the 

receiver operating characteristic curves with five-fold cross validation311 between all 16 

features and between the top 8 features. We found similar results in accuracy when using 

three- and ten-fold cross validations for comparison. The ROCs show that the top 8 features 

performed slightly better than all 16 features in distinguishing CU vs LMCI and LMCI vs 

AD. Precision recall (PR) curves verified similar levels of accuracy. These results suggest 

that there may be feature redundancy present when all 16 features are used to predict 

cognitive state: indeed, we found some of the features to be insignificant for cognitive state 

classification, especially those with the lowest ranking. Our findings suggest that the 

accuracy of the cognitive state prediction model does not depend strictly on the number of 

features used in the model, and that the top 8 features may be sufficient to accurately 

classify the three clinical cognitive statuses. 
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6.3.4 Correlation of AD biomarkers with cognitive performance 

To understand if the Top 8 features in classifying the three participant group pairs are 

associated with performance on memory and executive functioning tests, we performed a 

correlation analysis of each feature on a memory composite score312 and on an executive 

functioning composite score313. These composite scores are validated, psychometrically 

sophisticated composite scores based on the ADNI battery of neuropsychological tests 

described above. Ranking the biomarker features based on their r correlation value, we 

found that the pattern of biomarker correlation with performance on memory and executive 

functioning tests across participant groups was similar to the pattern found in the feature 

ranking analysis. When comparing the CU and LMCI groups (Figure 6.2A), memory 

performance was inversely correlated with Aβ biomarkers, especially Aβ in the temporal 

(Aβ-Temporal), Aβ in the precuneus (Aβ-Precuneus) and Aβ in the frontal lobe (Aβ-

Frontal). Hippocampal volume was also highly positively correlated and pTau was highly 

negatively correlated with memory when comparing CU and LMCI. However, when 

comparing LMCI and AD data (Figure 6.2B), in all three brain areas assessed, glucose 

uptake (FDG) was the feature most highly positively correlated with memory, showing 

larger correlation coefficients (r values) than those in the CU vs LMCI analysis. A similar 

correlation pattern was observed when comparing CU and AD data (Figure 6.2C), with 

the correlation constants being even larger for the FDG measurements than in the LMCI 

and AD comparison. These results suggest that FDG biomarkers become increasingly 

predictive of memory performance as cognitive decline progresses from LMCI to AD. In 

particular, FDG-Angular appears to be an especially important predictor of memory 

function, as it has the highest correlation coefficient of the three FDG biomarkers in these 
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memory correlation analyses. A similar pattern to that observed in the memory 

performance analyses emerged when correlating executive functioning with the top 8 

biomarkers with FDG biomarkers becoming increasingly predictive of executive 

functioning as cognitive decline progresses (Figure 6.3). Notably, however, pTau and Aβ-

Precuneus were more highly correlated with memory than executive functioning in the CU 

vs LMCI group (Figure 6.2A and Figure 6.3A). Interestingly, out of all the features, pTau 

showed the smallest correlation with executive functioning in each group (Figure 6.3, A-

C). 

6.3.5 Biomarker quantification for predicting LMCI and AD 

Having shown through ranking and correlation that the top 8 features from each 

participant group may be used as effective biomarkers to predict disease progression from 

CU to LMCI and AD, we next sought to assess the average values for each biomarker 

feature in each diagnosis group that can be used for the clinical diagnosis of these three 

cognitive statuses. Table 6.5 summarizes the values of each of the top 8 features that can 

be used to distinguish CU, LMCI and AD.  

6.4 Discussion 

We demonstrated three novel aspects in this study. First, we employed AD 

biomarkers from all arms of the newly developed A/T/N framework in a random forest 

machine learning analysis powerful enough to accurately predict an AD diagnosis of CU, 

LMCI, or AD and to rank biomarkers in order of their importance in the prediction. Second, 

we showed that biomarkers from the A/T/N framework have differing importance in 

predicting clinical dementia status across the disease progression, with Aβ and pTau having 

higher importance in predicting early cognitive impairment (CU vs LMCI) and glucose 
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uptake having higher importance in predicting later cognitive impairment (LMCI vs AD 

and CU vs AD) (Figure 6.4). Our findings suggest that Aβ and pTau accumulation 

contribute to the cognitive decline that leads to LMCI, but may not be sufficient to lead to 

clinical AD. Instead, neurodegeneration, especially in the form of glucose 

hypometabolism, appears to be crucial for exacerbating cognitive decline and furthering 

its progression to clinical AD. Additionally, we found that Aβ and pTau are more strongly 

correlated with cognitive performance in LMCI, while glucose hypometabolism is more 

strongly correlated with cognitive performance in AD, with FDG biomarkers becoming 

increasingly predictive of memory and executive functioning as cognitive decline 

progresses. While others have previously documented the temporal ordering of biomarkers 

preceding clinical symptomatology of Alzheimer’s disease314, the real strength of our 

analysis is in creating algorithms for computational analyses that are consistent with 

available clinical and imaging data from data that has been collected over many years. The 

challenge moving forward will be to translate these algorithms into usable tools to that can 

assess the capacity of patients in a clinically-friendly manner. Finally, we demonstrated 

that the top 8 features used in classifying the three participant group pairs were just as 

accurate in predicting clinical dementia status as all 16 features combined. The top 8 

biomarker features that can be used to distinguish between stages of cognitive impairment, 

which may prove useful for the future prediction and diagnosis of LMCI and AD.  

Machine learning techniques have previously been used to predict cognitive status 

in AD using several separate biomarkers, including those measured by FDG-PET 315,316, 

structural MRI 315,317-319, amyloid-PET 317,320,321, and CSF-phosphorylated tau318,319. 

However, this is the first study to our knowledge to combine biomarkers from all arms of 
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the A/T/N framework into one integrated analysis using a machine learning method 

capable of classifying clinical dementia status and ranking the biomarker features 

according to their relative importance in the prediction model. Consistent with our findings, 

a previous study showed that Aβ was more highly associated with cognitive decline in 

cognitively normal participants, while glucose hypometabolism was more closely linked 

with cognitive decline in moderate and later stages of the disease (LMCI/AD) 322. 

Additionally, another study showed that FDG-PET, which assesses glucose uptake, is more 

highly correlated to cognitive ability than Aβ levels in patients with MCI and AD308. These 

studies, in conjunction with our findings strongly support the argument that cognitive 

decline in AD is initially propagated by Aβ and tau aggregation but is further exacerbated 

by glucose hypometabolism as cognitive decline progresses. Our findings could better 

inform clinical AD management decisions and may shift the targets of therapies to treat 

and prevent AD in future drug development. 

We found that Aβ and pTau accumulation are more highly correlated with cognitive 

test scores in the CU vs LMCI comparison than other biomarker features. In particular, Aβ 

deposition in the temporal cortex, precuneus, and frontal cortex, as well as increased 

hippocampal volume, appear to be the most important features in predicting memory and 

executive functioning performance in early stage disease. Indeed, these areas play a central 

role in a wide spectrum of highly integrated tasks that are noticeably disturbed in patients 

with MCI. For example, the temporal cortex is involved in memory, auditory cognition and 

semantics323; the precuneus is involved in visuo-spatial image processing and episodic 

memory retrieval324; the frontal lobe is involved in executive function, attention, memory, 

and language325; and the hippocampus is important for declarative memory326. 
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Additionally, we found that increased levels of pTau were associated with memory 

performance but not executive functioning in LMCI, which is consistent with previous 

findings327. We note that some groups have found a high correlation between tau levels and 

cognitive decline across the entire AD spectrum328,329; even so, our results align with those 

of Mielke et al., who found a significant association between tau and cognitive 

performance in MCI, but a nonsignificant association between these factors in AD330. We 

also noticed that the atrophy of the hippocampus and entorhinal cortex (measures of 

neurodegeneration) were highly correlated in the CU vs LMCI comparison of cognitive 

test scores; in addition to Aβ and pTau burden, brain atrophy in these two regions may thus 

substantially contribute to progression from CU to LMCI status, as other groups have 

reported331. 

We observed that impaired glucose uptake is most highly correlated with cognitive 

test scores in LMCI vs AD and CU vs AD groups. In particular, we found glucose uptake 

in the angular gyrus (FDG-Angular) to be the most important feature for predicting 

memory and executive functioning performance in later stages of AD, which is consistent 

with other groups who have found reduced glucose uptake in the angular gyrus in later 

cognitive decline332. This area is involved in semantic processing, word comprehension, 

number processing, memory retrieval, attention, spatial and social cognition, and 

reasoning333, all of which are known to decline later in disease progression. Sustained 

deficits in glucose uptake in key brain areas dramatically impair cognitive functions by 

reducing proper support of neuronal activity and functional processes334-336, and it is 

therefore unsurprising that we found that impaired glucose uptake is highly correlated with 

advancing cognitive decline. 
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Notably, the individuals with AD that were included in the current study were older 

and less educated than individuals in other groups, and a higher percentage of AD patients 

carried the APOE ε4 allele, the largest genetic risk factor for AD, than LMCI and CU 

patients. Interestingly, all three of these factors are linked to metabolic function337-341. A 

widely accepted cause of the functional losses that accompany aging is decreased brain 

metabolic function.342,343 Indeed, mitochondrial function declines with age in the brain and, 

thus, neural ATP production decreases, which has been proposed to be a major factor in 

the aging-associated loss of brain function337,340,343. Moreover, a recent study demonstrated 

that regional brain metabolism and functional connectivity as measured by fMRI differed 

with years of education338: relative to less educated participants, highly educated 

participants had higher glucose metabolism in the ventral areas of the cerebrum, which are 

mainly involved in memory, language, and neurogenesis, and functional connectivity 

experiments illustrated that the brains of the highly educated individuals were overall more 

efficient and resilient to aging338. The APOE gene plays a role in cholesterol and Aβ 

homeostasis336, and the APOE ε4 allele is the strongest genetic risk factor for AD. Two 

recent studies showed that disturbances in cholesterol metabolism, such as alterations in 

bile acid metabolism, are highly associated with AD344,345. Notably, the bile acid 

composition signatures were much more highly associated with brain hypometabolism and 

atrophy (i.e., the “N” component of the A/T/N framework) than with Aβ and tau. Moreover, 

cross-sectional FDG-PET studies found that cognitively unimpaired carriers of the APOE 

ε4 allele have abnormally low glucose uptake in the same brain regions that show 

hypometabolism in AD patients. Indeed, these metabolic abnormalities were observed in 

late-middle-aged (40-60 years of age) and young (20-39 years of age) APOE ε4 carriers, 
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who had intact memory and were free of Aβ or tau pathology346-350. These neuroimaging 

results suggest that APOE ε4 carriers develop functional brain abnormalities several 

decades before the possible onset of dementia, and the results are in line with our finding 

that a high percentage of those with clinical AD were APOE ε4 carriers. 

There are many plausible reasons to explain why we found glucose 

hypometabolism to be an important biomarker in predicting progressive cognitive decline 

in clinical AD. For example, impairments in brain glucose metabolism are associated with 

insulin resistance, which, in turn, exacerbates Aβ deposition336,351. Indeed, AD is 

characterized by impaired brain insulin signaling352. In line with this finding, type 2 

diabetes mellitus, hyperlipidemia, obesity, and other metabolic diseases increase the risk 

of developing AD309,336. Indeed the metabolic abnormalities present in AD are often 

likened to a form of diabetes of the brain353. The preservation of normal brain glucose 

metabolism is, thus, highly associated with cognitive resilience. A recent study showed 

that FDG-PET uptake in the bilateral anterior cingulate cortex and anterior temporal pole 

was positively associated with global cognition in cognitively unimpaired individuals over 

80 years of age, despite the fact that they were Aβ-positive and APOE ε4-positive341. The 

results also suggest that normal cognitive performance can be preserved even in the 

presence of Aβ and APOE ε4 in 80+ year-old individuals. Another study using deep 

learning methods showed that FDG-PET imaging can be used to predict AD an average of 

75.8 months prior to its final diagnosis with 82% specificity and 100% sensitivity316.  

Taken together, our current findings and those of previous reports suggest that 

maintaining normal brain glucose metabolism is critical for cognitive resilience; therefore, 

therapeutic strategies for preventing or treating AD may need to shift focus from Aβ toward 
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the preservation and restoration of normal brain metabolism. Interventions with this 

therapeutic strategy have been reported that use intranasal insulin administration and a 

ketogenic diet. Specifically, intranasal insulin therapy provides rapid delivery of insulin to 

the central nervous system via bulk flow along olfactory and trigeminal perivascular 

channels without adversely affecting blood insulin or glucose levels and has been shown 

to improve AD symptomology, although individual patient responses may depend on 

gender, APOE genotype and insulin formulation354-356. With regards to the potential 

benefits of a ketogenic diet, ketone bodies can function as an alternative fuel substrate in 

the brain when glucose is unavailable or when glucose metabolism is impaired due to 

insulin resistance340,357-359. One study showed that a ketogenic diet can modulate deposition 

of Aβ and Tau in the CSF of MCI patients in conjunction with its modulation of the gut 

microbiome and the production of short-chain fatty acids360. This finding is consistent with 

an animal study showing that a ketogenic diet enhanced Aβ clearance across the blood-

brain barrier and improved the composition of the gut microbiome361. The gut microbiome 

produces secondary bile acids, and, as mentioned above, alterations of bile acid production 

have been observed in AD patients due to gut microbiome imbalances, suggesting another 

mechanism by which AD patients may benefit from therapeutic strategies aiming to restore 

normal brain metabolism like the ketogenic diet344,345. Another animal study showed that 

by modulating the gut microbiome with a prebiotic diet, mice with the human APOE ε4 

gene had enhanced systemic metabolism and reduced neuroinflammatory gene expression, 

another hallmark of AD pathology362. Collectively, modulating metabolic function and the 

gut microbiome may have a profound impact on reducing the risk of AD. 
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Future efforts should include the continued collection of the A/T/N framework 

biomarkers to fill critical gaps in our understanding of how their expression is associated 

with AD and aging. In our model construction and analysis, we used CSF-pTau to fulfill 

the “T” component of the A/T/N framework306; however, imaging-derived biomarkers 

provide information about the location of the pathology in the brain that CSF-derived 

markers do not305. Therefore, future work is needed to incorporate Tau-PET imaging into 

the model363. In addition, glucose metabolism is tightly coupled with cerebral blood flow 

(CBF)364,365, and neurovascular dysfunction also plays a critical role in cognitive 

impairment; thus, it will also be important to include CBF-MRI measures in the future for 

a more thorough representation of AD pathology. Indeed, Tau and CBF imaging data are 

currently available for only a small subset of the ADNI cohort, and thus could not be 

incorporated into our model. Additionally, while the available dataset from ADNI has more 

male participants, it should be noted that AD disproportionately affects women366. Future 

efforts may be needed to re-evaluate the outcome when data from the female participants 

become more available. 

In summary, we show that A/T/N biomarkers have cognitive impairment stage-

dependent roles in AD, with Aβ and pTau better predicting LMCI and neurodegeneration 

(especially low glucose uptake) better predicting clinical AD. Our findings may partly 

explain the repeated failures of clinical trials attempting to treat AD by modifying the Aβ 

load: it may be too late to gain therapeutic benefit from the treatment of Aβ when patients 

have already progressed to the clinical AD stage. Therefore, our results imply that 

treatments for AD may also need to be disease stage-oriented: Aβ and tau may be 

appropriate targets early in the disease course, but the restoration of brain glucose 
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metabolism should be explored as a treatment strategy for clinical AD. Our findings may 

influence the thinking in the field regarding AD progression and therapeutics. 

6.5 Methods 

6.5.1 Data pre-processing 

Study data were obtained from the ADNI database, a longitudinal multicenter study 

designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early 

detection and tracking of Alzheimer’s disease. Specifically, data were downloaded from 

the ADNI2 dataset within the ADNI database since these data contained all the biomarkers 

of interest for the present study. Specific details about the acquisition of the imaging 

measures have been reported elsewhere367,368. Briefly, all subjects were consented under 

the approval of the IRB at each testing site and scanned at 3T for 3D T1-weighted volume, 

FLAIR, a long TE gradient echo volumetric acquisition for micro hemorrhage detection, 

arterial spin-labeling perfusion, resting state functional connectivity, and diffusion tensor 

imaging; all enrolled subjects were also scanned for [18F]fluorodeoxyglucose PET (FDG-

PET) glucose uptake and  [18F]florbetapir PET for amyloid imaging. The data were merged 

from five subset datasets within the ADNI2 dataset to achieve a final dataset for analysis 

consisting of demographic information, structural MRI volumes, FDG-PET SUVs, 

amyloid-PET SUVs, White Matter Hyperintensities, and CSF-ptau measurements. Age, 

gender, education, APOE ε4 carrier status, cognitive scores, and diagnosis and the 

structural MRI variables of ventricle volume, whole brain volume, entorhinal cortex 

volume, and hippocampal volume were extracted from the ADNIMERGE subset dataset. 

FDG-Angular, FDG-Temporal, and FDG-CingulumPost were extracted from the UC 

Berkeley FDG subset dataset.  Aβ-Frontal, Aβ-Cingulate, Aβ-Parietal, Aβ-Temporal, Aβ-
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Precuneus, and Aβ-Hippocampus were extracted from the UC Berkeley AV45 subset 

dataset. Gray matter volume, White matter volume, and White matter hyperintensity were 

extracted from the UC Davis White Matter Hyperintensity Volumes subset dataset. pTau 

concentration was extracted from the UPENN CSF Biomarkers Elecsys subset dataset. 

Missing values were imputed by selecting the twenty closest patients based on Euclidean 

distance with non-missing values in the same group and averaging these values. Most of 

the missing values appeared in the structural MRI data. Data imputation was performed on 

patients who had less than three missing values. Patients with three or more missing values 

were deleted to avoid bias caused by excessive imputation. 

6.5.2 Machine learning analysis 

The random forest (RF) classification algorithm was used to assess the importance 

of all seventeen biomarker features in predicting the AD clinical diagnosis, as determined 

by the progression of cognitive impairment as a result of the disease process (CU, LMCI, 

or AD) (Table 7.2). The algorithm was chosen, as opposed to other traditional statistical 

(e.g., ANOVA) and machine learning methods, because (i) it is a robust classification 

method and (ii) it enables feature ranking. An RF is trained by fitting multiple decision 

trees, each to a different random subset of the examples and features of the full dataset. 

The predictions of these decision trees are then combined to yield a single consensus 

classification prediction. Given the trained RF, each feature is considered more important 

if decision trees constructed from subsets that include the feature give predictions that are 

more accurate. This is calculated by averaging the out-of-bag accuracy (i.e., the accuracy 

on examples there were not used when training the tree) of the individual decision trees 

that were trained using the corresponding feature.  
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We acknowledge that some of the features (e.g., brain volumetric measures) are 

impacted with age; therefore, we adjusted the feature values for age accordingly. 

Specifically, we used CU group dataset and performed a linear regression with the seven 

brain volumetric measures used in our model as the feature variables and age as the target 

regression variable. We applied the derived beta coefficients from the regression model to 

the brain volumetric measures of the whole dataset and trained these balanced brain 

volumetric measure values in our RF model. In the implementation, we used the function 

sklearn.linear_model.LinearRegression of the ‘scikit-learn’ package to calculate the linear 

regression coefficients between brain volumetric measures and age. 

Figure 6.5A illustrates the workflow of the feature ranking and accuracy 

performance using the random forest machine learning method. K-fold cross validation (k 

= 5) was used to evaluate the performance of the RF classification algorithm in predicting 

the AD clinical diagnosis. Using this strategy, the dataset was randomly partitioned into 5 

equal parts, and 5 RF models were trained, each on a dataset consisting of 4 parts. Each of 

the trained RF models was evaluated based on the prediction performance on the 

corresponding omitted validation set. For evaluation, each complete data copy was 

forwarded into a random forest classifier model utilizing the Python scikit-learn library 

v0.21.3369. All default parameters were used for the 

sklearn.ensemble.RandomForestClassifier function, with the exception of the criterion 

parameter, where we used the entropy option. Specifically, decision trees are classified in 

a binary fashion where the split in the trees are from either true or false responses to feature 

thresholds. The RandomForestClassifier decides the thresholds based on Gini Impurity. 

“Purity” is a measure as to how homogenous the samples are, with “0” as maximal purity, 
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and “1” as maximal impurity. As the decision tree progresses down, the Gini values 

eventually decrease to 0 (Figure 6.5B). Final predictions were calculated and features were 

ranked based on the prediction of the majority of trees within that training dataset. The 

resulting predictions were evaluated on their ability to correctly predict the AD clinical 

diagnosis in the validation dataset.   

The cross-validated model prediction accuracy, receiver operating characteristic 

curve (ROC) and F1 score were used to assess model performance. 

The accuracy is calculated with the following equation [1]: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

    [1] 

where TP = true positives, TN = true negatives, FP = false positives, and FN = false 

negatives.  

The F1 score is calculated by the following equation [2]: 

𝐹𝐹1 = 2 ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

    [2] 

where precision = TP/ (TP+FP) and recall = TP/ (TP+ FN). ROC curves compare the true 

positive rate (TPR) and false positive rate (FPR) at different decision thresholds and are 

often used to judge the performance of binary classifiers. F1 scores combine precision and 

recall and are often used to evaluate models on imbalanced dataset, since it is possible to 

obtain high accuracy on imbalanced datasets simply by predicting the most common class. 

A high F1 score indicates low false positives and low false negatives.  
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6.5.3 Statistics and Reproducibility 

In the Table 6.1, the overall dataset was initially evaluated for group differences in age, gender, 

education, APOE genotype, ethnicity, race, and cognitive test differences using non-parametric 

Kruskal-Wallis tests comparing the groups CU, LMCI, and AD using JMP 1.4 software. -

approximate values and p-values were documented to identify statistical significance. 2 values 

for effect sizes were calculated using the ‘rcompanion’ package in R statistical software.  

To verify the reproducibility of five-fold validation used in the RF analysis, we compared 

the results of accuracy and F1 score from those using three- and ten-fold cross validations. 

To verify the accuracy measurements validated using ROC, we also performed precision 

recall (PR) curves calculation. Precision-Recall Curve is another method to evaluate classification 

models, especially binary classification models where the dataset is imbalanced. The Average of 

Precision (AP) is calculated to determine the average precision score under different possible 

thresholds. We used the scikit learn package sklearn.model_selection.RandomizedSearchCV for 

hyperparameters optimization. The hyperparameters of the RF model is as follows: 

'n_estimators'=3600, 'min_samples_split'=5, 'min_samples_leaf'=8, 'max_features'='auto', 

'max_depth'=50, and 'bootstrap'=False. 

We also used the SHapley Additive exPlanations (SHAP) technique to implement an 

additional feature ranking analysis. In our experiments, we applied the SHAP on Random Forest 

Classifier. Using the SHAP method as a reference for feature ranking analysis, the results showed 

similar feature importance ranking as RF.  

Gradient tree boosting (GTB), another classification method from the scikit-learn package, 

was used as a comparison for the RF classification method. The same tree estimators from the RF 

method were used for GTB with all other default function parameters. The accuracies for the GTB 

method were similar to the RF method. The accuracy of the GTB classifiers were 72.30%, 71.26%, 
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and 91.87% respectively for CU vs LMCI, LMCI vs AD, and CU vs AD clinical diagnosis. The 

model was also trained with 3- and 10-fold cross validation for comparison. There were minor 

difference in the feature rankings estimated using the GTB model as compared to the RF model but 

the same general patterns hold true: Aβ and pTau are important contributors to the prediction of 

early AD decline, but neurodegeneration, especially glucose hypometabolism, is a more important 

predictor of later AD decline.  

6.5.4 Pearson correlation analysis of cognitive performance 

Pearson correlation was used to evaluate linear relationships between individual 

biomarker features and cognitive function using the JMP 1.4 software (Figures 6.2 and 

6.3). Pearson correlation coefficient is calculated by the covariance of two variables over 

the product of their standard deviation. The value range of Pearson correlation coefficient 

is from -1 to 1 with a higher absolute value indicating a stronger association and the sign 

indicating a positive or negative association between the two variables.  

6.5.5 Calculation of biomarker values 

In the Table 6.5, biomarker Values were calculated for the different diagnosis 

groups and compared using two-sided Wilcoxon rank-sum tests. Z-score test statistics were 

calculated using JMP 1.4 software and effect sizes r were calculated with r ( = Z/(√Nobs)). 

Amyloid standard uptake values (SUVs) were intensity normalized to the whole 

cerebellum and volume was normalized by dividing by the region of interest (ROI) in cubic 

centimeters (cm3). FDG SUVs were normalized according to metaROIs described 

elsewhere370. Briefly, a set of pre-defined regions of interest (FDG-ROIs) were developed 

by identifying regions cited frequently in FDG-PET studies of AD and MCI patients. All 

coordinates of significant voxels were transformed into MNI space. Intensity values were 

generated for coordinates that reflected a combination of the Z-scores associated with the 

coordinate. The volumes were intensity normalized using the maximum value, and volume 

was normalized by dividing by the ROI in cubic centimeters (cm3). 
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6.5.6 Data Availability 

The datasets analyzed during the current study are available in the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) respository. 
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 CU LMCI AD 
χ2-
approx 

ε2 

 

P-value 

Subject characteristics    

n 148 147 110    

Age (years) 73.43 ± 
6.29 

71.98 ± 
7.42 

74.46 ± 
8.39 

7.207 0.0178 0.0272* 

Gender (% 
Male) 51% 54% 60% 2.236 0.00554 0.3268 

Education 
(years) 

16.63 ± 
2.53 

16.70 ± 
2.45 

15.61 ± 
2.55 

13.395 0.0332 0.0012* 

APOE ε4 
carriers (%) 27% 57% 69% 53.653 0.133 <0.0001* 

Ethnicity (% 
Hispanic) 5.4% 1.4% 3.6% 3.673 0.00909 0.1594 

Race (% White) 89% 95% 92% 2.799 0.00693 0.2467 

         (% 
Black) 7% 3% 4%    

         (% 
Asian) 2% 1% 4%    

Cognitive data    

MMSE 29.06 ± 
1.14 

27.61 ± 
1.82 

23.14 ± 
2.03 

246.414 0.61 <0.0001* 

CDRSB 0.03 ± 
0.13 

1.71 ± 
1.00 

4.60 ± 
1.61 

351.755 0.871 <0.0001* 

ADAS-cog 13 9.08 ± 
4.58 

18.57 ± 
7.08 

30.16 
± 9.70 

239.827 0.594 <0.0001* 

ADNI_MEM 1.06 ± 
0.63 

-0.03 ± 
0.66 

-0.89 ± 
0.54 

266.260 0.63 <0.0001* 

ADNI_EF 0.94 ± 
0.81 

0.16 ± 
0.85 

-0.83 ± 
0.93 

161.477 0.388 <0.0001* 

Table 6.1 Demographic and cognitive data for the cross-sectional study population 
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Values are displayed as the mean ± SD. The χ2-approx test statistic is calculated from a Kruskal-Wallis test 
comparing the groups CU, LMCI, and AD. ε2 is the effect size calculated from a Kruskal-Wallis test. 
Asterisk (*) next to P-value indicates statistical significance. DF=2 for all comparisons. CU = cognitively 
unimpaired; LMCI = late mild cognitive impairment; AD = Alzheimer’s disease; MMSE = Mini-Mental 
State Examination; CDRSB = Clinical Dementia Rating Sum of Boxes; ADAS-cog = Alzheimer’s Disease 
Assessment Scale-Cognitive Subscale; ADNI_MEM = Composite memory score; ADNI_EF = Composite 
executive functioning score.  
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Data Source Biomarker 
Measure Features 

 

A/T/N  

classification 

Positron 
emission 
tomography  

(PET) 

Amyloid-beta 

(AV45; 
18Florbetapir) 

1. Aβ-Frontal  

 

A 

2. Aβ-Cingulate 

3. Aβ-Parietal 

4. Aβ-Temporal 

5. Aβ-Precuneus 

6. Aβ-Hippocampus 

Glucose uptake 

（18FDG） 

7. FDG-Angular  

 

 

 

N 

8. FDG-Temporal 

9. FDG-CingulumPost 

Magnetic 
resonance 
imaging  

(MRI) 

Volumetric 

measures 

10. Ventricle volume 

11. Whole brain volume 
(WBV) 

12. Entorhinal cortex volume 

13. Hippocampal volume 

14. Gray matter volume 
(GMV) 

15. White matter volume 
(WMV) 

Cerebrospinal 
fluid (CSF) 

phosphor-Tau 
(181P) 

16. Phosphorylated tau 
(pTau) 

T 

18FDG = Fluorodeoxyglucose 

Amyloid-beta measures include Aβ from the frontal lobe (Aβ -Frontal), cingulate cortex (Aβ-Cingulate), 
parietal lobe (Aβ-Parietal), temporal lobe (Aβ -Temporal), precuneus (Aβ -Precuneus), and hippocampus 
(Aβ -Hippocampus). 

Table 6.2 Biomarkers used in the feature analysis 
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Glucose uptake measures include FDG from the angular gyrus (FDG-Angular), temporal lobe (FDG-
Temporal), and posterior cingulum (FDG CingulumPost). 
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CU = cognitively unimpaired; LMCI = late mild cognitive impairment; AD = Alzheimer’s disease 

FDG = fluorodeoxyglucose; GMV = gray matter volume; WMV = white matter volume; WBV = whole 
brain volume 

 

Table 6.3 Ranking of each biomarker feature importance to prediction of diagnosis 
classification from the random forest analysis 

 

 CU vs LMCI LMCI vs AD CU vs AD 

Rank Biomarker 
Feature 

Relative 
Importanc
e 

Biomarker 
Feature 

Relative 
Importanc
e 

Biomarker 
Feature 

Relative 
Importanc
e 

 
 
 
 
Top 
half 

1 Hippocampu
s Volume 12.69%  FDG-

Temporal  18.88% FDG-Angular  23.78% 

2 Aβ-Frontal 11.51% FDG-Angular  17.36% 
FDG-
CingulumPos
t 

 16.99% 

3 Aβ-Temporal  8.57%   
FDG-
CingulumPos
t 

 12.11% Hippocampu
s Volume  12.93% 

4 FDG-Angular 8.32% Hippocampu
s Volume  7.49% FDG-

Temporal  10.00% 

5 
Entorhinal 
Cortex 
Volume 

   7.88%    Aβ-
Precuneus 5.14% Aβ-Temporal  8.11% 

6 Aβ-
Precuneus 7.78% Aβ-Temporal  4.97% Aβ-

Precuneus  6.20% 

7 pTau 7.60% pTau  4.82% 
Entorhinal 
Cortex 
Volume 

 4.81% 

8 Aβ-Cingulate 4.75% 
Entorhinal 
Cortex 
Volume 

4.76% pTau  3.92% 

 Subtota
l  69.1%  75.45%   86.74% 

 
 
 
 
Botto
m 
Half 

9 
Aβ-
Hippocampu
s 

4.48% Aβ-Parietal 4.71% Aβ-Frontal 
 
3.81% 
 

10 Ventricles 4.35% Aβ-Frontal 3.98% Aβ-Parietal  3.32% 

11 
FDG-
CingulumPos
t 

4.29% Ventricles 3.69% 
Aβ-
Hippocampu
s 

 3.17% 

12 GMV 4.20% 
Aβ- 
Hippocampu
s 

3.14% Aβ-Cingulate  0.99% 

13 WMV 3.56% Aβ-Cingulate 2.63% Ventricles  0.65% 

14 FDG-
Temporal 3.48% GMV 2.59% GMV  0.60% 

15 WBV 3.45% WBV 2.46% WMV  0.38% 

16 Aβ-Parietal 3.10% WMV 1.29% WBV  0.32% 

 Subtota
l  30.9%   24.55%  13.26% 

Sum   100%  100%  100% 



123 
 

 

  



124 
 

All 16 features 

 CU vs LMCI LMCI vs AD CU vs AD 

Accuracy (%) 73.17 71.01 90.34 

F1 Score (%) 73.09 70.84 90.32 

Top 8 features 

 CU vs LMCI LMCI vs AD CU vs AD 

Accuracy (%) 72.74 70.15 91.63 

F1 Score (%) 72.59 70.02 91.59 

 

 

  

Table 6.4 Accuracy of all 16 features and of the top 8 features in predicting diagnosis for 
each participant group comparison 
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Features CU LMCI AD A/T/N 
arm 

Aβ-Precuneus (SUV cm-

3) 
0.0715 ± 
0.0154 

0.0873 ± 0.0231 0.107 ± 0.0272 

A 

 Z=5.79, 
p<0.0001** 

r=0.34 

Z=9.89, 
p<0.0001ǂǂ 

r= 0.62 
Aβ-Frontal (SUV cm-3) 0.00949 ± 

0.00187 
0.0114 ± 
0.00260 

0.0129 ± 
0.00286 

 Z=6.75, 
p<0.0001** 

r=0.39 

Z=9.07, 
p<0.0001ǂǂ 

r=0.56 
Aβ-Cingulate (SUV cm-

3) 
0.0692 ± 
0.00111 

0.0787 ± 
0.00181 

0.0892 ± 
0.00192 

 Z=4.87, 
p<0.0001** 

r=0.28 

Z=8.03, 
p<0.0001ǂǂ 

r=0.50 
Aβ-Temporal (SUV cm-

3) 
0.0259 ± 
0.00523 

0.0302 ± 
0.00678 

0.0331 ± 
0.00672 

 Z=6.76, 
p<0.0001** 

r=0.39 

Z=9.92, 
p<0.0001ǂǂ 

r=0.62 
pTau (pg ml-1) 21.50 ± 8.87 29.70 ± 14.01 38.50 ± 16.52 

T  Z=5.62, 
p<0.0001** 

r=0.33 

Z=9.56, 
p<0.0001ǂǂ 

r=0.60 
FDG-Angular (SUV cm-

3) 
1.21 ± 0.104 1.13 ± 0.149 0.956 ± 0.159 

N 

 Z=5.31, 
p<0.0001** 

r=0.31 

Z=11.46, 
p<0.0001ǂǂ 

r=0.71 
FDG-CingulumPost 

(SUV cm-3) 
3.03 ± 0.324 2.84 ± 0.391 2.47 ± 0.343 

 Z=4.72, 
p<0.0001** 

r=0.27 

Z=10.69, 
p<0.0001ǂǂ 

r=0.67 
FDG-Temporal (SUV 

cm-3) 
8.24 ± 0.706 7.78 ± 0.983 6.73 ± 0.924 

 Z=4.54, 
p<0.0001** 

r=0.26 

Z=10.82, 
p<0.0001ǂǂ 

r=0.67 
Hippocampus volume 

(cm3) 
7.49 ± 0.827 6.67 ± 1.11 5.91 ± 0.923 

Table 6.5 Average values of the top 8 biomarker features for each diagnosis group that 
can be used to predict cognitive status 
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 Z=6.62, 
p<0.0001** 

r=0.39 

Z=10.59, 
p<0.0001ǂǂ 

r=0.66 
Entorhinal cortex 

volume (cm3) 
3.85 ± 0.587 3.39 ± 0.710 2.92 ± 0.622 

 Z=5.51, 
p<0.0001** 

r=0.32 

Z=9.40, 
p<0.0001ǂǂ 

r=0.59 
 

Values are displayed as the mean ± SD. 

**P<0.0001 calculated with a Wilcoxon rank-sum test comparing CU vs LMCI 

ǂǂ P<0.0001 calculated with a Wilcoxon rank-sum test comparing CU vs AD 

SUV = standard uptake value; Z = Z-score test statistic for Wilcoxon rank-sum test; r = effect size for 
Wilcoxon rank-sum test 
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Figure 6.1 Receiver operating characteristic (ROC) curves depicting the accuracy of all 16 biomarker 
features (top) vs. the top 8 biomarker features (bottom). 

Comparison of receiver operating characteristic14 curves between all 16 biomarker features (top) and the 
top 8 biomarker features (bottom) from the three diagnosis participant group comparisons: cognitively 
unimpaired (CU) vs. late mild cognitive impairment (LMCI), LCMI vs. Alzheimer’s disease (AD), and CU 
vs. AD. Groundline refers to a model that cannot predict better than random chance. The mean ROC is 
calculated from the average of the five ROC curves produced from the k-fold cross validation. 

  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338410/#CR14
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Scatter plots showing the correlations of the top eight features with performance on composite memory 
tests in each pairwise analysis among the cognitive statuses. (a) CU vs. LMCI. (b) LMCI vs. AD. (c) CU 
vs. AD. The order of the scatter plots in each panel is according to the rank of the r correlation value when 
compared to composite memory score. The x-axis refers to the indicated biomarker score and the y-axis 

Figure 6.2 Correlation of top eight AD biomarkers with composite memory scores. 
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refers to the composite memory score. Each dot refers to the indicated biomarker score and composite 
memory score of a single participant. 
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Scatter plots showing the correlations of the top eight features with performance on composite executive 
functioning tests in each pairwise analysis among the cognitive statuses (a) CU vs. LMCI. (b) LMCI vs. 
AD. (c) CU vs. AD. The order of the scatter plots in each panel is according to the rank of the r correlation 

Figure 6.3 Correlation of top eight AD biomarkers with executive functioning scores. 
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value when compared to composite executive functioning score. The x-axis refers to the indicated 
biomarker score and the y-axis refers to the composite memory score. Each dot refers to the indicated 
biomarker score and composite executive functioning score of a single participant. 
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Diagram depicting the relative importance of biomarkers in predicting AD clinical diagnosis 
(predictability). In early AD, Aβ and pTau deposition in the brain have higher relative importance in 
predicting AD clinical diagnosis. In late disease low glucose uptake in the brain has higher relative 
importance in predicting AD clinical diagnosis. 

  

Figure 6.4 Relative importance of biomarkers predicting AD clinical diagnosis. 
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a Flow chart depicting the analysis used with the random forest method. The AD biomarkers from the 
original dataset were randomly split into five equal-sized subsets. For evaluation, each complete data copy 
was forwarded into a random forest (decision tree; see b) classifier model. Final predictions were 
calculated and features were ranked based on the prediction of the majority of trees within that training 
dataset. b Decision trees are classified in a binary fashion, where the split in the trees are from either true or 
false responses to feature thresholds based on Gini Impurity. “Purity” is a measure homogeneity, with “0” 
as maximal purity, and “1” as maximal impurity. 

 

 

  

Figure 6.5 Flow chart of the random forest method used. 
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CHAPTER 7. [SUPPLEMENT] HUMAN GRAY AND WHITE MATTER 
METABOLOMICS TO DIFFERENTIATE APOE AND STAGE DEPENDENT 

CHANGES IN ALZHEIMER’S DISEASE 

7.1 Summary 

Alzheimer’s disease (AD) is the most common form of dementia with hallmarks of β-

amyloid (Aβ) plaques, tau tangles and neurodegeneration. Studies have shown that 

neurodegeneration components, especially brain metabolic deficits, are more predictable 

for AD severity than Aβ and tau. However, a detailed knowledge of the biochemical 

composition of AD brain tissue vs normal brain tissue remains unclear.  In this study, we 

performed a metabolomics analysis on the brain tissue of 158 community-based older 

adults in the University of Kentucky AD Research Center brain bank to characterize the 

biochemical profiles of brains with and without AD based on white/gray matter type, 

apolipoprotein E genotype (ε3 vs ε4 variants), and disease stage (early vs late) as all these 

factors influence metabolic processes. We also used machine learning to rank the top 

metabolites that separates controls and AD in gray and white matter. Compared with 

control samples, we found that glutamate and creatine metabolism were more important 

for predicting AD in the gray matter, while glycine, fatty acid, pyrimidine, tricarboxylic 

acid (TCA) cycle, and phosphatidylcholine metabolism were more important in the white 

matter. In ε4 carriers, metabolites associated with the TCA cycle and oxidative 

phosphorylation were prominent in advanced stages compared to the early stages. In ε3 

carriers, metabolites associated with oxidative DNA damage, changes in inhibitory 

neurotransmitters, and disruptions of neuronal membranes were prominent in advanced 

stages compared to the early stages. In early disease, ε4 carriers had metabolites related to 
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poor kidney function and altered neuronal sterol metabolism compared to ε3 carriers, but 

there were few differences between genotypes in late disease. Our results indicate that 

metabolism plays a pivotal role in differentiating APOE- and stage-dependent changes in 

AD and may facilitate precision lifestyle and dietary interventions to mitigate AD risk in 

the early stages, especially for ε4 carriers. 

7.2 Introduction 

Alzheimer’s disease (AD) is a leading cause of death and morbidity in the United 

States371. The hallmarks of AD are β-amyloid (Aβ) and tau. However, studies have 

indicated that metabolic dysfunction may play a more pivotal role in the progression of 

AD372. Glucose hypometabolism and mitochondrial dysfunction are well-known features 

of AD372. These irregularities are likely influenced by Apolipoprotein E (APOE) genotype, 

the most common genetic risk factor for AD. APOE is a lipid transport carrier with direct 

impact on metabolism whose function is dependent on the structure of the protein variant 

(whether it is ε2, ε3, or ε4). Those who are carriers of the APOE ε4 allele have two to four-

fold increased risk for developing AD373,374.  

AD progresses differently in the white matter than the gray matter. While most 

research has been focused on reporting changes in the gray matter of cortex, many studies 

are now reporting changes in white matter tracts375. Metabolism is different in gray versus 

white matter due to the unique composition of each type (more lipid metabolism in the 

white matter376 and more glucose metabolism in the gray matter377). There is also evidence 

to suggest that there is more glycolytic metabolism in the white matter and more oxidative 
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metabolism in the gray matter378. Understanding the metabolic demands of the two 

different brain environments could give important clues about the progression of AD. 

A detailed knowledge of the biochemical composition of AD brain tissue vs normal 

brain tissue will be key in understanding the metabolic processes underlying AD. To our 

knowledge, only three reports have been published describing a brain metabolomics 

signature of AD. These reports demonstrated that the top metabolites that classify AD in 

brain tissue include glycerophospholipids, spermidine, sphingolipids, and changes in bile 

acids379-381. These reports analyzed between 15 and 111 samples per group to develop brain 

metabolomics signature based on targeted assays of lipids or bile acids. The analyses were 

based on gray-enriched matter only. While these reports provide an introductory analysis 

of brain metabolomics, a more complete understanding is needed that factors a larger 

patient population, an untargeted assay, and samples that are enriched for both gray and 

white matter. Furthermore, a better understanding of how AD progresses based on APOE 

genotype is needed to eventually develop therapeutics for AD based on precision medicine. 

Here we performed a metabolomics analysis on the brain tissue of a large cohort of 

community-based participants in the University of Kentucky Alzheimer’s Disease 

Research Center (UK-ADRC) brain bank. We used machine learning to identify the 

differences between the biochemical profiles of white-enriched matter and gray-enriched 

matter and identified the metabolites which were the top predictors in differentiating AD 

from normal brain tissue. We proceeded to characterize the biochemical profiles of brains 

with and without AD and other pathologies based on APOE genotype and disease stage.  
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7.3 Methods 

7.3.1 Participant Characteristics 

Details of UK-ADC research volunteers’ recruitment, inclusion/exclusion criteria, and 

clinical and pathological assessments have been described previously382. Briefly, 

community-based older adult volunteers agreed to be followed annually for cognitive, 

physical, and neurological examination and to donate their brain at the time of death. 

Protocols were approved by the UK Institutional Review Board, and all participants 

provided written informed consent. Included subjects were ≥70 years of age at death. 

Research subjects with relatively rare dementia syndromes (e.g. prions, trinucleotide repeat 

diseases, or Frontotemporal lobar degeneration (FTLD)), or any brain tumor were 

excluded. Additionally, since our research questions focused on the association 

between APOE and tau pathology, cases also had to have APOE genotyping available and 

were dichotomized into APOE ε4 carriers and APOE ε3 homozygotes. Demographic 

information included about our participants included age at death (years), sex, race 

(nonwhite or white), and years of education. We describe diagnosed cognitive status 

(normal cognition, impaired not mild cognitive impairment [MCI], MCI, dementia), and 

primary clinical diagnosis (normal cognition, AD, LBD/Parkinson disease; vascular 

disease, other) at the participant’s last visit before death. Using Braak NFT staging383, we 

defined those as early stage with a Braak NFT score 0-III and those as late stage with a 

braak score IV-VI. Participant characteristics are listed in Table 8.1. 

Human brain tissue samples were collected and snap-frozen in liquid nitrogen at brain 

autopsy. For the present study, samples were obtained from Brodmann’s area 9 (the 
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dorsolateral prefrontal cortex) of the left hemisphere of 158 community-based older adult 

volunteers. Brain tissue samples were further dissected into gray-enriched matter and 

white-enriched matter samples, yielding a total of 316 brain samples. The education level 

was the same across stage and genotype. Age differed between only late ε3 and late ε4 

groups (87.97±6.96 vs 82.76±8.45). We profiled the brain tissue metabolomics using 

Metabolon’s (Durham, NC) global screening platform. We separated our analyses by Braak 

NFT stages (early 0-III vs late IV-VI) and APOE genotype (ε3 and ε4) (Table 8.2). 

7.3.2 Metabolon Platform 

We sent samples to Metabolon (Durham, NC) for a global metabolic profile for each 

sample. All samples were maintained at -80oC until processed. Samples were prepared 

using the automated MicroLab STAR® system from Hamilton Company. Proteins were 

precipitated with methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder 

2000) followed by centrifugation.  The resulting extract was divided into five fractions: 

two for analysis by two separate reverse phase (RP)/UPLC-MS/MS methods with positive 

ion mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with 

negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion mode 

ESI, and one sample was reserved for backup. Samples were placed briefly on a 

TurboVap® (Zymark) to remove the organic solvent. 

7.3.2.1 Ultra-high performance Liquid Chromatography-Tandem 
Mass Spectroscopy 

All methods utilized a Waters ACQUITY ultra-performance liquid chromatography 

(UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer 
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interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass 

analyzer operated at 35,000 mass resolution.  The sample extract was dried then 

reconstituted in solvents compatible to each of the four methods. Each reconstitution 

solvent contained a series of standards at fixed concentrations to ensure injection and 

chromatographic consistency.  One aliquot was analyzed using acidic positive ion 

conditions, chromatographically optimized for more hydrophilic compounds. In this 

method, the extract was gradient eluted from a C18 column (Waters UPLC BEH C18-

2.1x100 mm, 1.7 µm) using water and methanol, containing 0.05% perfluoropentanoic acid 

(PFPA) and 0.1% formic acid (FA).  Another aliquot was also analyzed using acidic 

positive ion conditions, however it was chromatographically optimized for more 

hydrophobic compounds.  In this method, the extract was gradient eluted from the same 

afore mentioned C18 column using methanol, acetonitrile, water, 0.05% PFPA and 0.01% 

FA and was operated at an overall higher organic content.  Another aliquot was analyzed 

using basic negative ion optimized conditions using a separate dedicated C18 column.   The 

basic extracts were gradient eluted from the column using methanol and water, however 

with 6.5mM Ammonium Bicarbonate at pH 8. The fourth aliquot was analyzed via negative 

ionization following elution from a HILIC column (Waters UPLC BEH Amide 2.1x150 

mm, 1.7 µm) using a gradient consisting of water and acetonitrile with 10mM Ammonium 

Formate, pH 10.8. The MS analysis alternated between MS and data-dependent MSn scans 

using dynamic exclusion.  The scan range varied slighted between methods but covered 

70-1000 m/z.  

7.3.2.2 Bioinformatics 
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The informatics system consisted of four major components, the Laboratory Information 

Management System (LIMS), the data extraction and peak-identification software, data 

processing tools for QC and compound identification, and a collection of information 

interpretation and visualization tools for use by data analysts.  The hardware and software 

foundations for these informatics components were the LAN backbone, and a database 

server running Oracle 10.2.0.1 Enterprise Edition. 

7.3.2.3 LIMS 

The purpose of the Metabolon LIMS system was to enable fully auditable laboratory 

automation through a secure, easy to use, and highly specialized system.  The scope of the 

Metabolon LIMS system encompasses sample accessioning, sample preparation and 

instrumental analysis and reporting and advanced data analysis.  All of the subsequent 

software systems are grounded in the LIMS data structures.  It has been modified to 

leverage and interface with the in-house information extraction and data visualization 

systems, as well as third party instrumentation and data analysis software. 

7.3.2.4 Data Extraction and Compound Identification 

Raw data was extracted, peak-identified and QC processed using Metabolon’s hardware 

and software.  These systems are built on a web-service platform utilizing Microsoft’s 

.NET technologies, which run on high-performance application servers and fiber-channel 

storage arrays in clusters to provide active failover and load-balancing.  Compounds were 

identified by comparison to library entries of purified standards or recurrent unknown 

entities.  Metabolon maintains a library based on authenticated standards that contains the 

retention time/index (RI), mass to charge ratio (m/z), and chromatographic data (including 
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MS/MS spectral data) on all molecules present in the library.  Furthermore, biochemical 

identifications are based on three criteria: retention index within a narrow RI window of 

the proposed identification, accurate mass match to the library +/- 10 ppm, and the MS/MS 

forward and reverse scores between the experimental data and authentic standards.  The 

MS/MS scores are based on a comparison of the ions present in the experimental spectrum 

to the ions present in the library spectrum.  While there may be similarities between these 

molecules based on one of these factors, the use of all three data points can be utilized to 

distinguish and differentiate biochemicals.  More than 3300 commercially available 

purified standard compounds have been acquired and registered into LIMS for analysis on 

all platforms for determination of their analytical characteristics.  Additional mass spectral 

entries have been created for structurally unnamed biochemicals, which have been 

identified by virtue of their recurrent nature (both chromatographic and mass spectral).  

These compounds have the potential to be identified by future acquisition of a matching 

purified standard or by classical structural analysis. 

7.3.2.5 Metabolite Quantification and Data Normalization 

Peaks were quantified using area-under-the-curve.  For studies spanning multiple days, a 

data normalization step was performed to correct variation resulting from instrument inter-

day tuning differences.  Essentially, each compound was corrected in run-day blocks by 

registering the medians to equal one (1.00) and normalizing each data point proportionately 

(termed the “block correction”; Figure 2).   For studies that did not require more than one 

day of analysis, no normalization is necessary, other than for purposes of data visualization.  

In certain instances, biochemical data may have been normalized to an additional factor 

(e.g., cell counts, total protein as determined by Bradford assay, osmolality, etc.) to account 



142 
 

for differences in metabolite levels due to differences in the amount of material present in 

each sample. 

7.3.3 Statistical and Analytical Methods 

7.3.3.1 Statistical Calculations 

For many studies, two types of statistical analysis are usually performed: (1) significance 

tests and (2) classification analysis.  Standard statistical analyses are performed in 

ArrayStudio on log transformed data.  For those analyses not standard in ArrayStudio, the 

programs R or JMP are used.  Below are examples of frequently employed significance 

tests and classification methods followed by a discussion of p- and q-value significance 

thresholds. 

7.3.3.1 Machine Learning Classification 

Random forest was used as a supervised classification technique to identify the relative 

importance of the different biochemicals in predicting gray-enriched matter vs. white-

enriched matter, Alzheimer’s disease vs control, APOE ε4 vs APOE ε3 genotype in early 

stage and late stage, early stage vs late stage in APOE E4 and APOE E3 genotype, and 

Vascular dementia vs. control based on an ensemble of decision trees. For a given decision 

tree, a random subset of the data with identifying true class information was selected to 

build the tree, and the remaining data, the “out-of-bag” (OOB) variables, were passed down 

the tree to obtain a class prediction for each sample.  This process was repeated thousands 

of times to produce the forest.  The final classification of each sample was determined by 

computing the class prediction frequency (“votes”) for the OOB variables over the whole 

forest. This method is unbiased since the prediction for each sample is based on trees built 
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from a subset of samples that do not include that sample.  When the full forest is grown, 

the class predictions are compared to the true classes, generating the “OOB error rate” as 

a measure of prediction accuracy.  Thus, the prediction accuracy is an unbiased estimate of 

how well one can predict sample class in a new data set.  Random forest has several 

advantages – it makes no parametric assumptions, variable selection is not needed, it does 

not overfit, it is invariant to transformation, and it is fairly easy to implement with R. 

To determine which variables (biochemicals) make the largest contribution to the 

classification, a “variable importance” measure is computed.  We use the “Mean Decrease 

Accuracy” (MDA) as this metric.  The MDA is determined by randomly permuting a 

variable, running the observed values through the trees, and then reassessing the prediction 

accuracy.  If a variable is not important, then this procedure will have little change in the 

accuracy of the class prediction (permuting random noise will give random noise).  By 

contrast, if a variable is important to the classification, the prediction accuracy will drop 

after such a permutation, which we record as the MDA.  Thus, the random forest analysis 

provides an “importance” rank ordering of biochemicals; we typically output the top 30 

biochemicals in the list as potentially worthy of further investigation.  

7.4 Results 

7.4.1 Metabolomics differences in gray and white-enriched matters 

In total, 540 of the 776 detected metabolites were either increased or decreased in the white-

enriched matter vs gray-enriched matter. White-enriched matter has more lipid metabolites 

associated with myelin than gray-enriched matter. 
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Using a random forest analysis, we found that the model was able to predict whether a 

sample was gray-enriched matter or white-enriched matter based on the metabolomics 

profile with 91.77% accuracy (Table 7.3A). Heat map of statistically significant 

biochemicals profiled when comparing groups are labeled as follows: Red and green 

shaded cells indicate p ≤ 0.05 (red specifies that the mean values are significantly higher 

for that comparison; green values significantly lower). The top 10 predictors were all lipids, 

which play a major role in the brain as structural components of membranes and signaling 

molecules. Notably, there was an increase in prominent hexosylceramides, some 

phosphatidylcholines, lysoplasmalogen, some plasmalogens, and phosphatidylserine, 

whereas there was a decrease in other phosphatidylcholines, phosphatidylethanolamine, 

and some plasmalogen metabolites. Most of the observed changes correlated with the 

known differences in white and gray-enriched matter lipid populations due to the diverse 

functions of neuron cell biology. All analyses were performed in both gray-enriched matter 

and white-enriched matter to account for these differences. 

7.4.2 Machine learning to classify AD from normal with metabolomics 

Using random forest analysis, we found that the model predicted whether a sample 

came from AD brain tissue or normal brain tissue based on the metabolomics profile with 

80.0% accuracy in the gray-enriched matter (Table 7.3B) and an 81.54% accuracy in the 

white-enriched matter (Table 7.3C). The top 9 predictors in gray-enriched matter mainly 

consisted of increases in phospholipid and creatine metabolism, and decreases in amino 

acid metabolism, and the monohydroxy fatty acid 13-HODE + 9-HODE. The top 12 

predictors in white-enriched matter mainly consisted of increases in phospholipid 

metabolism and decreases in amino acid metabolism, phosphatidylcholine, and some 
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monohydroxy fatty acids. Glycerophosphocholine is formed in the breakdown of 

phosphatidylcholine and is increased in both the gray-enriched matter and white-enriched 

matter. N-acetylasparagine is a breakdown product of asparagine and is decreased in both 

the gray-enriched matter and white-enriched matter. The human body produces 

dimethylglycine when metabolizing choline into glycine, and it is decreased in the gray-

enriched matter. NAAG is a neuropeptide that is an agonist at mGluR3 receptors and an 

antagonist at NMDA receptors and is decreased in the gray-enriched matter. Pipecolic acid 

originates mainly from the catabolism of dietary lysine by intestinal bacteria rather than by 

direct food intake, and it is decreased in both the gray-enriched matter and the white-

enriched matter. Ureidopropionic acid is a urea compound and is an intermediate in the 

metabolism of uracil; it is decreased in the white-enriched matter. 

Taken together, our findings indicate that glutamate and creatine metabolism are 

more important for predicting disease in the gray matter, and glycine, fatty acid, 

pyrimidine, TCA cycle, and phosphatidylcholine metabolism are more important for 

predicting disease in the white matter. 

7.4.3 Gray and white matter metabolomics between early and late in APOE ε4  

We next investigated the differences between late stage and early stage disease in 

the ε4 genotype (Table 7.4). We found that, compared with the early stage, late-stage 

APOE4 carriers had significantly reduced metabolite levels in the gray matter. Notable 

changes were found in pathways associated with mitochondrial function, glucose 

metabolism, and neurotransmitters, including tricarboxylic acid (TCA) cycle, oxidative 

phosphorylation, pentose metabolism, and acetyl-CoA and glutamate metabolism. We 
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observed lower levels of serine and aspartate, whose declines are known to correlate with 

the amount of Aβ plaques and neuronal pathology384, as well as tyrosine and leucine, which 

are known to reduce atherosclerosis by improving the lipid profile and reducing systemic 

inflammation385. Further, metabolites related to mitigating oxidative stress, such as 

cysteine, arginine, gamma-glutamyl amino acid, pentose were also lower in gray matter in 

the late stage. We also saw lipid decreases in seven lysophospholipid (LPL) species. LPL 

receptor ligands are known to bind to and activate their cognate receptors located in the 

cell membrane with a wide range of effects on the cell; these include the primary effects of 

inhibition of adenylyl cyclase and the release of calcium from the endoplasmic reticulum, 

as well as the secondary effects of preventing apoptosis and increasing cell proliferation386.  

In white matter, reductions were found in biochemicals related to glutamate, 

tyrosine, leucine and methionine/cysteine metabolism.  Interestingly, diacylglycerol was 

increased in the white matter in later disease similar to levels found in the e3 genotype. 

Since diacylglycerol has been shown to reduce atherosclerosis in an APOE-deficient mouse 

model387, the increase in diacylglycerol in the e4 genotype could be a compensatory 

mechanism to combat rising levels of atherosclerosis. 

The results show that with the disease progression, APOE4 carriers had alterations 

in metabolites that are associated with increased Aβ retention, reducing atherosclerosis, 

and the impaired TCA cycle and oxidative phosphorylation.  



147 
 

7.4.4 Gray and white matter metabolomics between early and late in APOE ε3  

We further investigated the differences between late stage and early stage in APOE 

ε3 genotype (Table 7.5). Individuals with ε3 variants had similar changes in the gray and 

white matters.  

However, unlike ε4, which involves mitochondrial and glucose metabolism, 

notable key reductions in ε3 carriers were found in glycolysis, glutamate, tryptophan, and 

tyrosine metabolism. Glutamate is an excitatory neurotransmitter, which plays a critical 

role in learning and memory388 and N-acetyl-aspartyl-glutamate (NAAG) has been shown 

to have precognitive effects by binding to metabotropic glutamate receptors259. Tryptophan 

metabolism is known to be altered in patients with AD389, and tryptophan-derived 

metabolites can inhibit Aβ fibril formation in neurons and neuroblastoma cells390. 

Tryptophan is an essential amino acid and is the precursor of serotonin. Indole-3-propionic 

acid, a tryptophan-derived metabolite, can inhibit Aβ fibril formation in neurons and 

neuroblastoma cells390. Metabolites that play a role in tyrosine metabolism including 

phenol sulfate, phenol glucuronide, and p-cresol glucuronide are associated with 

inflammation391.  We observed lower levels of dimethylglycine, which is linked to 

increased oxidative DNA damage associated with Aβ deposition392, and homocarnosine, 

which is part of the histidine pathway and generally declines with age393. Neuronal 

histamine, phenylalanine, and tryptophan have a role on memory, reinforcement, and 

emotions394-396. We also found lower levels of fatty acids, which are often found as 

oxidized linoleic acid metabolites (OXLAMs) in the serum of AD patients397 and 

phosphatidylcholine, which provides a reservoir of choline that can be used for 

acetylcholine synthesis.  Notable key increases were found in myo-inositol metabolism, 
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urea cycle, lysine, nucleotide sugar, inositol, and phospholipid. Myo-inositol, a 

neuroinflammatory marker, is negatively correlated with visuospatial working memory398. 

Lysine can act as neurotransmitter modulating GABAergic transmission. Phospholipid is 

known to be raised in AD by disrupting neural cell membranes and causing cell death399. 

Taken together, our findings indicate that increases in metabolites linked to 

oxidative DNA damage, changes in inhibitory neurotransmitters, and disruptions of 

neuronal membranes and decreases in metabolites related to acetylcholine synthesis drive 

the differences between early and late stage of AD among APOE ε3 carriers. 

7.4.5 Gray and white metabolomics between APOE ε3 and ε4  

We next compared the differences between APOE ε4 and ε3 carriers at early-stage 

disease (Table 7.6). Notable changes were found in pathways associated with leucine, 

glycine, arginine, gamma-glutamyl amino acid, pentose, and secondary bile acid 

metabolism in APOE ε4 carriers compared to non-carriers. N,N,N-trimethyl-alanylproline 

betaine (TMAP), part of arginine metabolism, was found to be lower in e4, and is 

associated with poor kidney function400. We also found decreases in glutathione, 

commonly decreased with age401, eicosanoid, and sterol - carriers of the APOE ε3/ε4 allele 

are known to exhibit altered neuronal sterol metabolism. 

Unique differences in gray-enriched matter include an amino acid increase of 

histamine and 1-carboxyethylisoleucine (part of isoleucine metabolism), a peptide increase 

of gamma-glutamylisoleucine, a lipid increase of arachidonate (a long chain 

polyunsaturated fatty acid) and docosahexaenoyl ethanolamide (an endocannabinoid 

implicated in the pathology of neurodegenerative diseases). 
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Other differences were found only in the white-enriched matter. Unique differences 

include amino acid decreases in formiminoglutamate (part of histidine metabolism) and 

increases of 2-aminoadipate (part of lysine metabolism), lipid decreases in 1,2-dipalmitoyl-

GPE (a phosphatidylethanolamine) and palmitoyl-docosahexaenoyl-glycerol (a 

diacylglycerol), and increases in 1,2-dioleoyl-GPG (a phosphatidylglycerol), 1-(1-enyl-

oleoyl)-2-oleoyl-GPE (a lysoplasmalogen), glycosyl-N-stearoyl-sphingadienine and 

glycosyl ceramide (both hexosylceramides), sphingomyelin, and sphingosine 1-phosphate. 

Taken together, our findings indicate that increased metabolites in APOE ε4 

carriers related to poor kidney function and altered neuronal sterol metabolism drive the 

differences between the genotypes at early stage.   

There were four detected metabolites that were detected to be increased between 

APOE ε4 and ε3 carriers at late stages of AD. At an alpha=0.01, random chance would be 

expected to generate ~8 significant observations. Since our results do not surpass this 

threshold, our analyses did not identify metabolic differences between ε3 and ε4 carriers 

at late stages of AD. 

7.5 Discussion 

We analyzed frontal cortical tissue from subjects across a spectrum of AD severity, 

with different genotypes (APOE ε3/3 or APOE ε3/4) (summary of results are in Figure 

7.2). We found distinct changes in the white versus gray-enriched matter of subjects as 

demonstrated through peptide alterations and lipid changes that have been associated with 

brain matter. There were increases in phospholipid metabolism and decreases in amino 

acid metabolism in AD brains compared with normal brains. Taken together, our findings 
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indicated that glutamate and creatine metabolism were more important for predicting 

disease in the gray matter, and glycine, fatty acid, pyrimidine, TCA cycle, and 

phosphatidylcholine metabolism are more important for predicting disease in the white 

matter. As disease progressed in the APOE ε4 genotype, brains were characterized by 

decreases in metabolites responsible for reducing atherosclerosis, and the TCA cycle and 

oxidative phosphorylation. With disease progression in the APOE ε3 genotype, brains were 

characterized by increases in metabolites related to oxidative DNA damage, changes in 

inhibitory neurotransmitters, and disruptions of neuronal membranes and decreases in 

metabolites related to acetylcholine synthesis. In early disease, the APOE ε4 genotype was 

associated with increased metabolites related to poor kidney function and altered neuronal 

sterol metabolism, but there were few metabolic differences between APOE ε3 and ε4 

genotypes in more severe AD.  

The major differences between the metabolite composition of white-enriched matter 

and gray-enriched matter were characterized mainly by the metabolite components 

inherent to the myelin sheath present in the white-enriched matter. The myelin sheath is 

mainly comprised of lipids which insulate axons to speed action potentials, and it is not 

surprising that our data show that the top predictors for distinguishing gray-enriched matter 

from white-enriched matter were all lipids. Alpha-hydroxylated cerebrosides are the most 

abundant lipids in the myelin sheath402 and the myelin sheath has a lower 

phosphatidylcholine to phosphatidylethanolamine ratio compared with grey matter due to 

its unique composition of myelin, which are all consistent with our data. It is important to 

separate white-enriched matter from gray-enriched matter in brain metabolomics analyses 
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so that differences found between samples aren’t confounded by the inherent differences 

between tissue types (and sample-to-sample differences in ratios of white and gray matter). 

Previous studies investigating metabolomics changes in AD reported changes in 

phosphatidylcholine and acylcarnitine metabolism403, taurine transport, bile acid synthesis, 

and cholesterol metabolism380,381,404, lipids, sphingolipids (notably GM3 gangliosides) and 

lipid classes previously associated with cardiometabolic disease 

(phosphatidylethanolamine and triglycerides)405,406. Results using Metabolon’s untargeted 

assay showed changes in not only phospholipid, phosphatidylcholine, and fatty acid 

metabolism, but also the TCA cycle, pyrimidine, and several amino acids including 

aspartate, lysine, glycine, glutamate, creatine, histidine. In addition to the lipid changes 

found by others, these important amino acid, energy, and nucleotide changes could give 

important clues about the underlying disease mechanism of AD. 

Separating our analysis by Braak NFT stages and APOE genotype allowed us to 

better understand the nuances of metabolite changes unique to disease stage and genotype. 

As disease progresses in the APOE ε4 carriers, metabolites associated with reducing 

atherosclerosis and the TCA cycle and oxidative phosphorylation appeared to correlate 

with (and perhaps to drive) the differences between early and late stage AD. Previous 

studies have reported that age-related vascular changes accompany or even precede the 

development of AD pathology407, and a plant based diet can reduce atherosclerosis408. 

Further, it has been observed that the TCA cycle can regulate the pathogenesis of 

neuroinflammation and neurodegeneration409. It is interesting that TCA cycle metabolite 

decreases are statistically more significant in the gray matter than the white matter in the 

ε4 genotype, but that the machine learning analysis revealed TCA cycle metabolites to be 
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more important in predicting AD in the white matter. While TCA cycle decreases are more 

commonly seen in late stage gray matter E4 as a whole, when TCA cycle decreases are 

seen in white matter, they are more likely to be predictive of AD, whereas other metabolites 

in the gray matter are more predictive of AD. 

As AD progresses in the APOE ε3 genotype, metabolites linked to oxidative DNA 

damage, changes in inhibitory neurotransmitters, disruptions of neuronal membranes, and 

decreases in metabolites related to acetylcholine synthesis correlated best with the 

differences between early and late stage AD. Oxidative stress may participate in the 

development of AD by promoting Aβ deposition, tau hyperphosphorylation, and the 

subsequent loss of synapses and neurons410. There is evidence that the Mediterranean diet 

is protective against oxidative DNA damage411. There is growing evidence in support of 

GABAergic remodeling in the AD brain, potentially beginning in early stages of disease 

pathogenesis412. Alterations of fatty acids at the level of lipid rafts and cerebral lipid 

peroxidation were found in the early stage of AD413. Cholinergic neurons located in the 

basal forebrain, including the neurons comprising the nucleus basalis of Meynert, are 

severely lost in AD414. 

Separating by APOE genotype was an important part of our analysis as the APOE ε4 

genotype is the most common genetic risk factor for developing AD. At the early stage of 

disease, APOE ε4 carriers differed from APOE ε3/3 in metabolites related to poor kidney 

function and altered neuronal sterol metabolism. Older patients on hemodialysis are at 

substantial risk of diagnosis with dementia and Alzheimer's disease415. APOE ε4-

expressing cultured astrocytes and neurons have reduced cholesterol and phospholipid 

secretion, decreased lipid-binding capacity, and increased intracellular degradation416. This 
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is likely due to the changed domain interaction with cholesterol receptors and less stable 

conformation of the APOE ε4 genotype that changes its involvement in lipid metabolism 

and neurobiology, thereby impacting neuronal repair, remodeling, and degeneration417. 

There were far fewer metabolic differences between APOE ε3 and ε4 genotype in later 

disease stages. It is possible that genotype differences are pronounced during early disease, 

but that the disease course causes both genotypes to exhibit a similar biochemical profile 

as the disease progresses and neurons are lost. These genotype differences should be further 

explored to determine whether precision interventions, like the consumption of inulin or 

the administration of rapamycin, could be implemented for ε4 carriers418,419. 

Taken together, our current findings and those of previous reports suggest that 

maintaining normal brain glucose metabolism is critical for cognitive resilience; therefore, 

therapeutic strategies for preventing or treating AD may need to shift focus from Aβ toward 

the preservation and restoration of normal brain metabolism. Recently, aducanumab, an 

Aβ directed antibody, was granted accelerated approval to verify its clinical benefit for use 

in early AD after decades of failed drugs targeted at Aβ; it is possible that metabolic 

interventions could be used across the disease course to provide clinical benefit to patients. 

Interventions with a metabolic therapeutic strategy have been reported that use intranasal 

insulin administration and a ketogenic diet. With regards to the potential benefits of a 

ketogenic diet, ketone bodies can function as an alternative fuel substrate in the brain when 

glucose is unavailable or when glucose metabolism is impaired due to insulin 

resistance340,357-359. One study showed that a ketogenic diet can modulate deposition of Aβ 

and Tau in the CSF of MCI patients in conjunction with its modulation of the gut 

microbiome and the production of short-chain fatty acids360. This finding is consistent with 
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an animal study showing that a ketogenic diet enhanced Aβ clearance across the blood-

brain barrier and improved the composition of the gut microbiome361.  

The gut microbiome produces secondary bile acids, and, as mentioned above, 

alterations of bile acid production have been observed in AD patients due to gut 

microbiome imbalances, suggesting another mechanism by which AD patients may benefit 

from therapeutic strategies aiming to restore normal brain metabolism like the ketogenic 

diet344,345. Another animal study showed that by modulating the gut microbiome with a 

prebiotic diet, mice with the human APOE ε4 gene had enhanced systemic metabolism and 

reduced neuroinflammatory gene expression, another hallmark of AD pathology362,418. 

Collectively, modulating metabolic function and the gut microbiome may have a profound 

impact on reducing the risk of AD.            

Implication of gut microbiome changes; we have shown that prebiotic diet inulin 

can increase tryptophan and tyrosine level in the APOE3 mice. (our recent inulin study 

shows to reduce DNA damage in the E3 mice).                                                                                                                                                                                                                                                                                                                                                                                                     

Future studies that evaluate the serum of subjects may be helpful to evaluate 

potential systemic metabolomic changes in subjects and if the changes observed here are 

limited to brain tissue. Similarly, analyses of cell-sorted tissue could give additional 

resolution into the results. Furthermore, minimizing drug usage in subjects (about 9% of 

biochemicals in named dataset were pharmaceuticals which included AD therapies such as 

donepezil and memantine and the anti-diabetic medication metformin) may provide some 

additional clarity in the above observations.  
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In conclusion, our study shows that metabolite differences are associated with 

disease stage, genotype, and cognitive decline in AD. Further study in AD metabolomics 

may elucidate new insights into disease mechanism and therapeutics. 
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Number of Participants 158 

Age 85.6 (84.4, 86.9) 

APOE (% ε4 carriers) 36.7% 

Braak Stage 0-3 51.3% 

Braak Stage 4-6 48.7% 

Gender (% Female) 58.9% 

Race (% White) 94.9% 

Race (% Black) 5.1% 

MMSE 22.2 (20.8, 23.6) 

Postmortem Interval 3.7 (3.36, 4.02) 

Consensus Diagnosis (% AD) 10.8% 

Consensus Diagnosis (% Mixed AD) 42.7% 

Consensus Diagnosis (% Other 
Dementia) 

17.2% 

Consensus Diagnosis (% Normal) 29.3% 

TDP-43 (% Positive) 27.9% 

 

  

Table 7.1 Participant Characteristics 
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Table 7.2 Number of samples belonging to APOE genotypes and Braak Stages 

 APOE ε3/ε3 APOE ε3/ε4 Total 

Braak Stage 0-3 64 17 81 

Braak Stage 4-6 36 41 77 

Total 100 58 158 
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A) Gray Matter vs White Matter 
Accuracy: 91.77% 

Rank 
Order 

Super 
Pathway 

Sub Pathway Biochemical Name Fold 
Change 

1 Lipid Hexosylceramides (HCER) glycosyl ceramide (d18:2/24:1, d18:1/24:2)* 2.35 
2 Lipid Phosphatidylcholine (PC) 1,2-dipalmitoyl-GPC (16:0/16:0) 0.38 
3 Lipid Phosphatidylcholine (PC) 1,2-dioleoyl-GPC (18:1/18:1) 2.61 
4 Lipid Lysoplasmalogen 1-(1-enyl-oleoyl)-2-oleoyl-GPE (P-18:1/18:1)* 3.01 
5 Lipid Plasmalogen 1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1)* 2.37 
6 Lipid Hexosylceramides (HCER) glycosyl ceramide (d18:2/25:1, d18:1/25:2) 2.01 
7 Lipid Phosphatidylethanolamine 

(PE) 
1-palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6)* 0.41 

8 Lipid Phosphatidylserine (PS) 1-stearoyl-2-oleoyl-GPS (18:0/18:1) 2.11 
9 Lipid Phosphatidylethanolamine 

(PE) 
1-oleoyl-2-docosahexaenoyl-GPE (18:1/22:6)* 0.54 

10 Lipid Plasmalogen 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0)* 0.58 

B) Gray Matter AD vs Normal 
Accuracy: 80.00% 

Rank 
Order 

Super 
Pathway 

Sub Pathway Biochemical Name Fold 
Change 

1 Lipid Phospholipid Metabolism glycerophosphorylcholine (GPC) 1.51 
2 Amino Acid Alanine and Aspartate Metabolism N-acetylasparagine 0.67 
3 Lipid Fatty Acid, Monohydroxy 13-HODE + 9-HODE 0.50 
4 Amino Acid Lysine Metabolism pipecolate 0.47 
5 Lipid Phospholipid Metabolism glycerophosphoethanolamine 1.26 
6 Amino Acid Glycine, Serine and Threonine Metabolism dimethylglycine 0.58 
7 Amino Acid Glutamate Metabolism N-acetyl-aspartyl-glutamate (NAAG) 0.75 
8 Amino Acid Creatine Metabolism Guanidinoacetate 1.49 
9 Amino Acid Histidine Metabolism N-acetylhistidine 0.57 

C) White Matter AD vs Normal 
Accuracy: 81.54% 

Rank 
Order 

Super 
Pathway 

Sub Pathway Biochemical Name Fold 
Change 

1 Lipid Fatty Acid, Monohydroxy 13-HODE + 9-HODE 0.56 
2 Lipid Phospholipid Metabolism glycerophosphorylcholine (GPC) 1.47 
3 Amino Acid Lysine Metabolism pipecolate 0.48 
4 Amino Acid Glycine, Serine and Threonine Metabolism betaine 0.74 
5 Amino Acid Histidine Metabolism N-acetylhistidine 0.62 
6 Lipid Fatty Acid, Monohydroxy 2-hydroxyheptanoate* 0.81 
7 Lipid Phospholipid Metabolism glycerophosphoethanolamine 1.25 
8 Nucleotide Pyrimidine Metabolism, Uracil containing 3-ureidopropionate 0.56 
9 Energy TCA Cycle 2-methylcitrate/homocitrate 0.80 

10 Lipid Phosphatidylcholine (PC) 1,2-dilinoleoyl-GPC (18:2/18:2) 0.74 
11 Amino Acid Alanine and Aspartate Metabolism N-acetylasparagine 0.69 
12 Amino Acid Glycine, Serine and Threonine Metabolism dimethylglycine 0.59 

Heat map of statistically significant biochemicals profiled when comparing groups are labeled as 
follows: Red and green shaded cells indicate p ≤ 0.05 (red specifies that the mean values are 
significantly higher for that comparison; green values significantly lower). 

Table 7.3 Top ranked biochemicals in (A) predicting gray vs white matter all belong to 
the lipid superclass, (B) in predicting AD vs Normal brain tissue in Gray and (C) White 
Matter 
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E4 Late Stage vs 
Early Stage 

Super 
Pathway 

Sub Pathway Biochemical Name Gray Matter White Matter 

Amino Acid Glycine, Serine and Threonine 
Metabolism 

N-acetylserine 0.84 0.91 

Alanine and Aspartate Metabolism N-acetylasparagine 0.74 0.80 
Glutamate Metabolism N-acetyl-aspartyl-glutamate 

(NAAG) 
0.72 0.70 

Tyrosine Metabolism 4-hydroxyphenylpyruvate 0.81 0.67 
Leucine, Isoleucine and Valine 
Metabolism 

methylsuccinate 0.65 0.70 
methylsuccinoylcarnitine 0.73 0.72 

Methionine, Cysteine, SAM and Taurine 
Metabolism 

cystathionine 0.80 0.72 

Urea cycle; Arginine and Proline 
Metabolism 

N-acetylarginine 0.80 0.93 

Peptide Gamma-glutamyl Amino Acid gamma-glutamylisoleucine* 0.63 0.95 
gamma-glutamylmethionine 0.68 0.73 
gamma-glutamylthreonine 0.81 0.96 

Carbohydrate Pentose Metabolism ribitol 0.73 0.77 
Fructose, Mannose and Galactose 
Metabolism 

galactose 1-phosphate 0.40 1.01 

Energy TCA Cycle fumarate 0.80 0.86 
malate 0.81 0.89 

Oxidative Phosphorylation phosphate 0.94 0.92 
Lipid Fatty Acid Metabolism acetyl CoA 0.69 0.66 

Phospholipid Metabolism choline phosphate 0.83 0.79 
Lysophospholipid (LPL) 1-palmitoleoyl-GPC (16:1)* 0.81 0.94 

1-stearoyl-GPC (18:0) 0.88 0.92 
1-oleoyl-GPC (18:1) 0.82 0.91 
1-linoleoyl-GPC (18:2) 0.79 0.88 
1-arachidonoyl-GPC (20:4n6)* 0.82 1.01 
1-linoleoyl-GPE (18:2)* 0.77 0.94 
1-arachidonoyl-GPE (20:4n6)* 0.80 0.98 

Diacylglycerol palmitoyl-docosahexaenoyl-
glycerol (16:0/22:6) [1]* 

1.26 1.69 

  

Table 7.4 Gray and white matter metabolomics between early and late stage in APOE4 
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Table 7.5 Gray and white matter metabolomics between early and late stage in APOE3 
   

E3 Late Stage vs 
Early Stage 

Super 
Pathway 

Sub Pathway Biochemical Name Gray 
Matter 

White 
Matter 

Amino Acid Glycine, Serine and Threonine 
Metabolism 

N-acetylglycine 1.75 1.62 
dimethylglycine 0.61 0.59 
betaine 0.71 0.69 

Alanine and Aspartate Metabolism N-acetylasparagine 0.69 0.70 
Glutamate Metabolism N-acetyl-aspartyl-glutamate (NAAG) 0.80 0.88 

beta-citrylglutamate 0.73 0.85 
Histidine Metabolism N-acetylhistidine 0.62 0.67 

N-acetyl-3-methylhistidine* 1.48 1.48 
homocarnosine 0.67 0.74 
1-methylhistamine 0.65 0.67 
1-methyl-4-imidazoleacetate 0.63 0.82 

Lysine Metabolism 2-aminoadipate 1.21 1.24 
pipecolate 0.51 0.56 
N-acetyl-2-aminoadipate 1.05 1.15 

Tyrosine Metabolism 3-methoxytyramine sulfate 0.26 0.33 
Tryptophan Metabolism tryptophan betaine 0.45 0.44 

8-methoxykynurenate 0.64 0.67 
5-hydroxyindoleacetate 0.62 0.72 

Urea cycle; Arginine and Proline 
Metabolism 

argininate* 1.21 1.14 

Polyamine Metabolism N-acetylputrescine 0.76 0.74 
N1,N12-diacetylspermine 0.21 0.32 

Glutathione Metabolism S-lactoylglutathione 0.70 0.94 
Carbohydra
te 

Glycolysis, Gluconeogenesis, and 
Pyruvate Metabolism 

fructose 1,6-diphosphate/glucose 1,6-
diphosphate/myo-inositol 
diphosphates 

0.51 0.92 

dihydroxyacetone phosphate (DHAP) 0.57 0.79 
Nucleotide Sugar UDP-galactose 1.51 1.47 

Lipid Long Chain Polyunsaturated Fatty 
Acid (n3 and n6) 

tetradecadienoate (14:2)* 0.75 0.69 

Fatty Acid, Dicarboxylate octadecenedioate (C18:1-DC) 0.55 0.59 
Fatty Acid Metabolism (Acyl 
Carnitine, Short Chain) 

acetylcarnitine (C2) 0.86 0.70 

Fatty Acid Metabolism (Acyl 
Carnitine, Polyunsaturated) 

arachidonoylcarnitine (C20:4) 0.65 0.84 
docosahexaenoylcarnitine (C22:6)* 0.52 0.53 

Fatty Acid, Monohydroxy 2-hydroxyheptanoate* 0.76 0.78 
13-HODE + 9-HODE 0.62 0.54 

Inositol Metabolism myo-inositol 1.15 1.21 
Phospholipid Metabolism glycerophosphorylcholine (GPC) 1.34 1.34 

glycerophosphoethanolamine 1.18 1.20 
Phosphatidylcholine (PC) 1-palmitoyl-2-linoleoyl-GPC 

(16:0/18:2) 
0.96 0.90 

1,2-dilinoleoyl-GPC (18:2/18:2) 0.79 0.62 
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Early Stage 

      E4/E3 Fold Change 
Super Pathway Sub Pathway Biochemical Name Gray Matter White Matter 

Amino Acid Glycine, Serine and 
Threonine Metabolism 

dimethylglycine 0.60 0.57 

Histidine Metabolism formiminoglutamate 0.03 0.02 
histamine 1.28 1.15 
1-methyl-4-imidazoleacetate 0.64 0.53 

Lysine Metabolism 2-aminoadipate 1.27 1.28 
Leucine, Isoleucine and 
Valine Metabolism 

1-carboxyethylisoleucine 1.40 1.22 
methylsuccinate 1.38 1.41 
methylsuccinoylcarnitine 1.36 1.42 

Urea cycle; Arginine and 
Proline Metabolism 

N,N,N-trimethyl-alanylproline 
betaine (TMAP) 

0.52 0.49 

argininate* 1.38 1.29 
Glutathione Metabolism 4-hydroxy-nonenal-glutathione 0.55 0.49 

Peptide Gamma-glutamyl Amino 
Acid 

gamma-glutamylisoleucine* 1.81 1.31 
gamma-glutamylmethionine 1.31 1.24 
gamma-glutamylthreonine 1.54 1.47 

Carbohydrate Pentose Metabolism ribitol 1.30 1.23 
Energy Oxidative Phosphorylation phosphate 1.06 1.09 
Lipid Long Chain 

Polyunsaturated Fatty Acid 
(n3 and n6) 

arachidonate (20:4n6) 1.19 1.09 

Eicosanoid 15-HETE 0.54 0.50 
Endocannabinoid docosahexaenoyl ethanolamide 1.32 0.99 
Phosphatidylethanolamine 
(PE) 

1,2-dipalmitoyl-GPE (16:0/16:0)* 0.94 0.73 

Phosphatidylglycerol (PG) 1,2-dioleoyl-GPG (18:1/18:1) 0.55 1.25 
Lysophospholipid 1-oleoyl-GPC (18:1) 1.11 1.09 

1-palmitoyl-GPS (16:0)* 1.36 0.96 
Sterol 7-hydroxycholesterol (alpha or beta) 0.42 0.42 
Secondary Bile Acid 
Metabolism 

glycodeoxycholate 0.46 0.59 

Late Stage 
   E4/E3 Fold Change 
Super Pathway Sub Pathway Biochemical Name Gray Matter White Matter 
Amino Acid Tryptophan Metabolism indolelactate 2.58 1.76 

Urea cycle; Arginine and 
Proline Metabolism 

homoarginine 1.66 1.53 

Polyamine Metabolism N1,N12-diacetylspermine 6.95 10.26 
Lipid Primary Bile Acid 

Metabolism 
glycochenodeoxycholate 2.67 3.68 

 
  

Table 7.6 Gray and white matter metabolomics between APOE3 and APOE4 at early and 
late stages 
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We took brain tissue from Brodmann Area 9 of 158 participants in the University of 
Kentucky Alzheimer’s Disease Center brain bank. We divided the samples into gray 
matter and white matter and performed untargeted metabolomics. We compared 1) Gray 
matter vs White matter, 2) AD vs control, 3) APOE 4 Early vs Late, 4) APOE 3 Early vs 
Late, and 5) Early and Late APOE 3 vs 4 

 

 

 
 

 

 

 

Figure 7.1 Schematic representation of study design. 
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Overall results from analysis of matter type, disease diagnosis, Braak stage, and APOE 
genotype. 

 

  

Figure 7.2 Schematic representation of overall results. 
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CHAPTER 8. [SUPPLEMENT] GUT MICROBIAL DYSBIOSIS IS CORRELATED 
WITH STROKE SEVERITY MARKERS IN AGED RATS FOLLOWING STROKE 

8.1 Summary 

An imbalanced gut microbial community, or dysbiosis, has been shown to occur 

following stroke. It is possible that this dysbiosis negatively impacts stroke recovery and 

rehabilitation. Species level resolution measurements of the gut microbiome following 

stroke are needed to develop and test precision interventions such as probiotic or fecal 

microbiota transplant therapies that target the gut microbiome following stroke. Previous 

studies have used 16S rRNA amplicon sequencing in young male mice to obtain broad 

profiling of the gut microbiome at the genus level following stroke, but further 

investigations will be needed with whole genome shotgun sequencing in aged rats of both 

sexes to obtain species level resolution in a model which will better translate to the 

demographics of human stroke patients.  

39 aged male and female rats underwent middle cerebral artery occlusion. Fecal samples 

were collected before stroke and three days post stroke to measure gut microbiome. 

Machine learning was used to identify the top ranked bacteria which were changed 

following stroke. MRI imaging was used to obtain infarct and edema size and cerebral 

blood flow (CBF). ELISA was used to obtain inflammatory markers. 

Dysbiosis was demonstrated by an increase in pathogenic bacteria such as Butyricimonas 

virosa (15.52 fold change, p<0.0001), Bacteroides vulgatus (7.36 fold change, p<0.0001), 

and Escherichia coli (47.67 fold change, p<0.0001). These bacteria were positively 

associated with infarct and edema size and with the inflammatory markers Ccl19, Ccl24, 

IL17a, IL3, and complement C5; they were negatively correlated with CBF. Conversely, 
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beneficial bacteria such as Ruminococcus flavefaciens (0.14 fold change, p<0.0001), 

Akkermansia muciniphila (0.78 fold change, p<0.0001), and Lactobacillus murinus (0.40 

fold change, p<0.0001) were decreased following stroke and associated with all the 

previous parameters in the opposite direction of the pathogenic species. There were not 

significant microbiome differences between the sexes. 

The species level resolution measurements found here can be used as a foundation to 

develop and test precision interventions targeting the gut microbiome following stroke. 

Probiotics that include Ruminococcus flavefaciens, Akkermansia muciniphila, and 

Lactobacillus murinus should be developed to target the deficit following stroke to measure 

the impact on stroke severity. 

8.2 Introduction 

Over 795,000 people suffer a stroke every year in the United States alone1. Recent 

advances in acute stroke therapies have lowered stroke mortality, but survivors are often 

left severely impaired12. Rehabilitation therapies are beneficial at inducing neuroplasticity 

to overcome these impairments, but over 40% of stroke survivors are left with moderate to 

severe disabilities that markedly reduce quality of life21. Novel multimodal approaches are 

needed to promote plasticity and sensorimotor function through a combination of current 

rehabilitation therapies with other treatments designed to foster neuroplasticity.  

Accumulating evidence suggests that gut microbes modulate brain plasticity via the 

bidirectional gut-brain axis and may play a role in stroke rehabilitation67. A severely 

imbalanced microbial community, or dysbiosis, has been shown to occur following stroke, 

causing a systemic flood of neuro- and immunomodulatory substances due to increased gut 
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permeability and decreased gut motility85. These substances can impact neuroinflammation 

as commensal bacteria invade the bloodstream and as intestinal lymphocytes migrate from 

gut-associated lymphoid tissue to the brain92. Fecal microbiota transplant has been shown 

to normalize brain lesion-induced dysbiosis and to improve stroke outcome in mice92. The 

microbiome is modifiable as it is influenced by environmental factors such as diet and 

exercise and could potentially be a therapeutic target in stroke rehabilitation through 

nutritional and pharmacological interventions and physical therapy89,145. To our 

knowledge, no studies have measured the species level resolution necessary to develop 

precision interventions such as probiotics or fecal microbiota transplants that target the gut 

microbiota following stroke. Furthermore, no microbiome studies have been performed on 

aged rats of both sexes, which are better matched to the demographics of human stroke 

patient than the young male mice used in most studies. The microbiome changes found in 

this study need to be examined and correlated with clinical imaging markers of stroke and 

inflammatory markers to understand better whether the microbiome could be a therapeutic 

target in stroke rehabilitation. 

Here we identify the gut-brain axis changes that occur following stroke in aged rats using 

high resolution whole genome shotgun sequencing and correlate them with clinical 

imaging markers of stroke including MRI-based infarct size, edema size, and cerebral 

blood flow (CBF) as well as inflammatory markers. We found that microbial communities 

are disrupted in an aged rat population following stroke, showing significantly different 

beta diversity, increased alpha diversity, and changes in the relative abundance of 5 of the 

6 major phyla found in the gut. Changes in thirteen bacterial species as detected by machine 

learning were highly associated with stroke and changes in these species were also 
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associated with increased infarct and edema size and decreased CBF. Changes in the 

microbiome due to stroke were also associated with increases in 49 inflammatory markers.  

8.3 Results 

We performed a middle cerebral artery occlusion on a sample of 39 aged rats of both 

sexes (age 15-18 months). Half of the rats underwent a permanent occlusion and half 

underwent a transient 5-hour occlusion. We analyzed male and female rats. We analyzed 

all rats before and after middle cerebral artery occlusion and considered sex, surgery type, 

and treatment with LIF or PBS in the analysis. We administered a leukemia inhibitory 

factor (LIF) treatment on half of the rats based on previous work suggesting that LIF is an 

anti-inflammatory that regulates the immune/inflammatory response to stroke 420. The rats 

had an average of 96.50 mm3 infarct size, 131.0 mm3 edema size, and 1.31 ml/g/min CBF 

from a permanent occlusion and 31.46 mm3 infarct size, 102.1 mm3 edema size, and 2.16 

ml/g/min CBF from a transient occlusion. Infarct and edema volumes were not 

significantly different between sex, treatment group, or occlusion type. No significant 

difference in CBF was detected between sex or treatment, but, as expected, a significant 

difference occurred between permanent and transient occlusion in CBF (Fig. 8.1). We used 

four tests to determine motor function skills before and after stroke. 76% of the rats circled 

following stroke (Fig. 8.2a), there was a swing bias of 8 (Fig. 8.2b), there was a step bias 

of 9.3 (Fig. 8.2c), and only 26.5% of the rats extended their paw (Fig 8.2d).  

8.3.1 The aged rat gut microbiome is disrupted following stroke 

We performed an analysis on the gut microbial communities of the rats by running 

whole genome shotgun sequencing using DNA quantification services provided by 
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CosmosID. We collected fecal samples 24 hours before stroke and within 72 hours 

following stroke. Comparing the alpha diversity before and after stroke, we found that 

richness and evenness increased from 3.818 on the Shannon diversity index 421 to 4.178 

(Fig. 8.3A). There were no differences in the change of alpha diversity between sex, 

treatment, or occlusion type. Comparing the beta diversity before and after stroke, we 

found that the microbial communities were significantly different between baseline and 

stroke (p=0.0001), but no significant microbial community differences were detected based 

on sex, treatment, or occlusion type. (Fig. 8.3B). 

We investigated specific differences in the relative abundance of the major bacterial phyla 

in the gut (Fig. 8.4). We found increases in proteobacteria and Bacteroidetes and decreases 

in firmicutes, verrucomicrobia, and actinobacteria following stroke. This translates to a 

sharp decrease in the firmicutes to bacteroidetes ratio. Using linear regression, the major 

bacterial phyla predict infarct size with an R2=0.3866 and edema size with an R2=0.6022.  

8.3.2 The top 13 disrupted bacterial species following stroke 

We investigated specific differences in the relative abundance of the major bacterial 

species in the gut. There was a total of 29 species increased and 23 species decreased 

following stroke (Table 8.1). Using random forest machine learning classification, we 

found the most important bacterial species that predict stroke verse baseline with an 

85.14% accuracy. They include an increase in Butyricimonas virosa, Bacteroides vulgatus, 

Escherichia coli, Bacteroides uniformis, Bacteroides dorei, Parabacteroides distasonis, 

and Alistipes indistinctus and a decrease in Ruminococcus flavefaciens, Akkermansia 

muciniphila, Ruminococcus_u_s, [Clostridium] clostridioforme, Lactobacillus murinus, 

and Lachnospiraceae bacterium 3-1. Using linear regression with backwards elimination 
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(Table 8.2), we found that increases in Ruminococcus_u_s and Alistipes indistinctus and 

decreases in Lachnospiraceae bacterium 3-1  predict infarct volume with an R2=0.4433. 

Increases in Butyricinomas virosa, Bacteroides uniformis, and Ruminococcus_u_s and 

decreases in Ruminococcus flavefaciens predict edema with an R2=0.6230. Finally, 

decreases in Alistipes indistinctus predict CBF with an R2=0.1825. 

We investigated potential interactions between bacterial species in predicting infarct 

size, edema size, and CBF. Using a feasible solution algorithm (FSA) for finding 

interactions, we found that decreases in Lachnospiraceae bacterium A2 and Lactobacillus 

murinus predict infarct size, but a combination of the two predicts a dramatic increase in 

the prediction value with an R2=0.6206. Decreases in Lachnospiraceae bacterium A4 and 

Lactobacillus murinus predict edema size, but a combination of the two have stronger 

predictive ability with an R2=0.6454. Decreases in Adlercreutzia equolifaciens and 

Desulfovibrio desulfuricans predict CBF, but again, a combination of the two has a stronger 

prediction with an R2=0.8093.  

8.3.3 Bacterial disruptions following stroke are correlated with stroke severity 

We investigated the correlation of all the bacterial species with infarct size and edema 

size (Table 8.3). Using the MaAsLin 2 R package422, which automatically normalizes and 

transforms all variables in preparation for linear regression, we correlated metagenomic 

sequencing with imaging variables of stroke severity. Twenty-seven bacterial species were 

positively correlated and 19 negatively correlated with infarct volume. Thirty species were 

positively correlated, and 31 species were negatively correlated with edema volume. No 

species were correlated with CBF.  
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8.3.4 Bacterial disruptions following stroke are correlated with inflammation 

We investigated the correlation of all the bacterial species with infarct size and edema 

size (Table 8.3). Using the MaAsLin 2 R package422, which automatically normalizes and 

transforms all variables in preparation for linear regression, we correlated metagenomic 

sequencing with imaging variables of stroke severity. Twenty-seven bacterial species were 

positively correlated and 19 negatively correlated with infarct volume. Thirty species were 

positively correlated, and 31 species were negatively correlated with edema volume. No 

species were correlated with CBF.  

8.4 Discussion 

To our knowledge, we are the first to report on the gut microbial changes with 

species level resolution in aged male and female rats and to correlate these changes with 

clinical MRI imaging markers of stroke and inflammatory markers. Following stroke, we 

found that alpha diversity significantly increased, beta diversity significantly changed, and 

5 of the 6 major bacterial phyla were altered. Using machine learning, the top 13 bacterial 

species that predict whether a sample came from the baseline or post-stroke time point. 

These bacterial species had independent significant correlations with infarct size, edema 

size, and CBF. We also identified several species whose interactions with one another were 

significant in correlating with stroke imaging outcomes. Finally, we found 49 inflammatory 

markers that correlated with the changes in microbiome from stroke. These changes are 

representative of a shift from beneficial to pathogenic bacterial species following stroke 

which results in an increased inflammatory response. 
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Figure 8.5 summarizes the changes in gut microbial communities in response to 

stroke. Following stroke there is a significant shift in the gut microbiome, with alterations 

to 52 major bacterial species. These bacterial fluctuations shift the environment to a more 

inflammatory state that adversely affect injury. The microbial community dysbiosis is 

likely due to the increased gut permeability and decreased gut motility in addition to the 

immunodepression caused by the amplified stress response (increased sympathetic nervous 

system response and hypothalamic-pituitary-adrenal (HPA) axis response) following 

stroke 423. Previous groups have reported a decrease in alpha diversity following stroke in 

a mouse model92 and an increase in a human model 107. Our findings are consistent with 

others who have seen that microbial communities differ before and after stroke based on 

measures of beta diversity 424. We did not find any significant differences in the 

microbiome between males and females. Some groups have found sex differences in the 

microbiome that are largely attributed to hormone differences 425. It is possible that we did 

not see these differences because the female rats we used are aged and reproductively 

senescent. 

We saw increases in proteobacteria following stroke. In previous studies, 

proteobacteria have been associated with increased cognitive impairment following stroke 

198. Dysbiosis related to metabolic disorders, inflammation, and cancer is often related to 

an increase in proteobacteria 426,427. This is possibly due to increased oxygen content in the 

gut following increases in inflammation, providing an optimal environment for these 

facultative anaerobes 428. We also saw decreases in firmicutes and increases in 

bacteroidetes species. Decreased firmicutes have also been associated with Alzheimer’s 

disease 429. Obesity is often characterized by a significantly increased firmicutes to 
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bacteroidetes (F/B) ratio 430; interestingly, our study found that stroke has the opposite 

effect on F/B ratio. Actinobacteria was significantly decreased following stroke. 

Actinobacteria downregulates inflammation by production of IL-4 and IL-13 431 and is 

known to have anti-biofilm properties against pathogenic bacteria 432. It is possible that a 

decrease in actinobacteria allows other pathogenic bacteria to flourish. 

Of the bacteria we found that are increased following stroke, many were of the 

bacteroides species. Bacteroides species have the ability to reduce oxygen levels and 

breakdown food products to liberate fucose and sialic acid residues from glycoproteins that 

can be consumed by other microorganisms, including pathogens. Higher bacteroides 

species are associated with type I diabetes 433. Bacteroides vulgatus and Bacteroides dorei 

reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis 219, but they 

are also associated with insulin resistance, altered bile acid metabolism, and reduced 

interleukin-22 secretion 434. Butyricimonas virosa, Escherichia coli, and Parabacteroides 

distasonis were also elevated following stroke. An increase of Butyricimonas virosa has 

also been seen in divers with high occupational exposure to a hyperoxic environment 435, 

which is very different from the hypoxic environment of stroke. Escherichia coli is a very 

common commensal bacteria that has the potential to cause extraintestinal infections based 

on its genome content and phenotypic traits 220 and is famous for causing post-stroke 

infections, especially pneumonia. Parabacteroides distasonis has been shown to alleviate 

obesity and metabolic dysfunctions via production of succinate and secondary bile acids 

436, which is interesting since stroke is often associated with obesity and metabolic 

dysfunctions. 
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Many bacteria which are generally considered beneficial were decreased following 

stroke including akkermansia, lactobacillus, and ruminococcus species. Akkermansia 

muciniphila is a mucin-degrading bacterium 437 that can be increased with fasting 438 that 

is known to improve host metabolic functions and immune responses 439. Lactobacillus 

murinus can combat inflammaging 440, and a reduction of L. murinus due to high salt 

consumption has been associated with an increase in proinflammatory TH17 cells 441, 

which have been correlated with post stroke dysbiosis and secondary injury 442. 

Lactobacillus reuteri was also significantly reduced following stroke. A randomized 

control trial in children showed administration of L. reuteri as a probiotic to be useful in 

treating constipation in children 443. Constipation is a common morbidity in stroke, and 

administration of this species could help to alleviate symptoms. Ruminococcus flavefaciens 

has also been shown to decrease the therapeutic effects of antidepressants, having 

implications for the treatment of post-stroke depression. 

Many of the bacterial changes were associated with increases in inflammatory 

markers. The major markers that were increased were CCL19, CCL24, IL-17A, IL-3, and 

complement factor C5. CCL19 is a chemokine that is commonly upregulated as a result of 

viral infections444, and attracts dendritic cells and T lymphocytes 445; it promotes thymocyte 

development, secondary lymphoid organogenesis, high affinity antibody responses, 

regulatory and memory T cell function, and lymphocyte egress from tissues organs 

446,447. CCL19 suppresses angiogenesis and can inhibit proliferation, migration, and 

sprouting responses of tumors 448. CCL19 has previously been found to be upregulated 

following stroke after damage to the intestinal epithelium 449 and has been shown to 

facilitate T-cell migration to the insult site and microglial activation following stroke 450. 
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CCL24 plays an important role in pathological processes of skin and lung inflammation 

and fibrosis 451 and regulates inflammatory and fibrotic activities through its receptor, 

CCR3 452. CCR3 is a mediator of neural cell death 453. In host defense, IL-17A has been 

shown to be mostly beneficial against infection caused by extracellular bacteria and fungi 

454 and IL-17A has been shown to be increased following stroke, especially in males 455. 

IL3 is strongly associated with brain volume variation and plays pivotal roles in the 

expansion and maintenance of the neural progenitor pool and the number of surviving 

neurons 456; our work has previously identified IL3 increased in the spleen with our aged 

rat model of  stroke 420. Activation of complement C5 generates the potent anaphylatoxin 

C5a and leads to pathogen lysis, inflammation, and cell damage 457. Activated C5 

complement components are a part of the cerebral tissue inflammation following ischemia 

458. 

This study lays an important foundation upon which precision interventions can be 

developed to target the gut microbiome in stroke rehabilitation. Future studies should 

attempt to manipulate the microbiome to change stroke outcomes. This could be achieved 

through diet interventions, antibiotic therapy, probiotics, or fecal microbiota transplant. For 

example, a future probiotics study should include the use of Ruminococcus flavefaciens, 

Akkermansia muciniphila, and Lactobacillus murinus as these were deficient in our 

population. Stroke severity measures from imaging and inflammatory markers could be 

used as outcomes to compare to the current study. While the present study identified 

associations of various inflammatory markers with changes in gut microbial composition, 

it would also be useful to perform mechanistic studies to determine how the microbiota 

change the expression of these markers and what their downstream effects are. Finally, 
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human studies will be needed to determine whether the microbial changes seen in animals 

following stroke are similar to the changes seen in animals. Such results can then be used 

to alter the gut microbiome to favor positive clinical outcomes after stroke. 

8.5 Methods 

8.5.1 Ethics approval and animals 

Details of ethics approval and animals have been reported previously459. Briefly, aged 

male and female rats (18‐month‐old Sprague‐Dawley rats (ENVIGO, Indianapolis, IN) 

were used for all procedures. The aged female rats on average weighed between 245g and 

425g, and aged male rats approximately weighed between 505g and 705g. The study was 

conducted in accordance with the National Institutes of Health Guide for the Care and Use 

of Laboratory Animals and study protocols were approved by University of Kentucky’s 

(UK) Institutional Animal Care and Use Committee. Reporting in this manuscript follows 

the recommendations in the ARRIVE guidelines. Animals were housed in a climate-

controlled room on a 12‐hr light and dark cycle (0700–1900) with access to food and water. 

Per Division of Laboratory Animal Resources (DLAR) cage requirements at UK’s 

vivarium facility, the animals can be paired in one cage if the animal weight is under 650 

grams. We typically house two animals (males or females) per cage upon arrival to DLAR. 

Once the rats are over 650 grams, they are then split into a separate cage by themselves. 

Fecal samples were collected for all animals at 24 hours before surgery and 72 hours post-

surgery and for 4 animals at 30 days post-surgery. The rats underwent MRI at 72 hours to 

measure infarct and edema volumes and CBF then euthanized.  
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8.5.2 Middle cerebral artery occlusion 

Details of the middle cerebral artery occlusion have been reported previously459. 

Briefly, 22 of the rats received a permanent Middle Cerebral Artery Occlusion (p-MCAO) 

and 17 of the rats received a 5-hour transient Middle Cerebral Artery Occlusion (5t-

MCAO). All animals were induced with oxygen containing 5% isoflurane, then shaved, 

prepped with Hibiclens (chlorohexidine scrub) prior to 70% EtOH and then a betadine 

solution. Maintenance isoflurane was maintained at 2.5% in O2 was delivered via a 

nosecone placed in line with the binner tubeQ (gas delivery tube) of the anesthesia circuit.  

Under bnear sterileQ conditions and with the use of a Zeiss operating microscope (Carl 

Zeiss AG, Gottingen, Germany) at 4 to 25 magnification, the procedure was performed. 

First, the skin was opened with a midline vertical incision, and the underlying 

submandibular gland bluntly dissected in the midline to produce left and right lobes, which 

were retracted laterally. Division of the omohyoid muscle, then dissection medial to the 

right sternocleidomastoid (SCM) muscle was used to expose the common carotid artery 

(CCA), which was separated from the vagus nerve.  Elastic hooks (Lone Star Medical 

Products, Houston, TX, USA) tethered to metal stays on the customized surgery table were 

used to retract the skin and the SCM muscle. In the p-MCAO, a hand-held electrocautery 

(Aaron Medical, St. Petersburg, FL, USA) is used to cauterize the superior thyroid artery 

(STA), a collateral off the ECA, and the occipital artery (OA), a collateral off the ICA. 

Two 5-0 silk sutures (Surgical Specialties, Reading, PA, USA) were used to ligate the 

external carotid artery (ECA) as distal as possible to the ECA/ICA bifurcation, and a 

second tie that was applied just proximal to the first, leaving enough space in between the 

two ties to cut the artery with micro scissors. At this point, blunt dissection was used to 
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isolate the internal carotid artery (ICA) and its collateral, the pterygopalatine artery. Next, 

microvascular aneurysm clips (Mizuho, Beverly, MA, USA) were applied to the CCA and 

the ICA. A 5-0 PDS II monofilament embolus (Ethicon, Cornelia, GA, USA), was 

introduced into an arteriotomy hole–produced with a 26-gauge hypodermic needle–in the 

reflected ECA stump and fed distally into the ICA. At this time, a collar suture at the base 

of the ECA stump was tightened around the embolus, and the ICA clamp was removed. 

The embolus was advanced 20 mm from the carotid bifurcation, with care taken to avoid 

entrance into the pterygopalatine artery.  

For the transient occlusion, the same steps were done as stated with the pMCAO, with 

the exception that Doccol Corporation silicone rubber-coated monofilaments were used for 

the occlusion of the middle cerebral artery (MCA).  Multiple sized Doccol monofilaments 

are used in the MCAO surgery depending on the sex and weight of the rat. Two 18-inch 

length of 5-0 silk suture were used for the ligation of the external carotid artery (ECA) to 

secure the ECA stump, and the entry point of the monofilament into the ECA/ICA 

bifurcation. The third 5-0 silk suture was used to secure the monofilament within the ECA.  

A micro-serrefines arterial clamp (FST, Fine Science Tools, #18055-01) was used to 

occlude the internal carotid artery (ICA) and common carotid artery (CCA) prior to 

advancement of the monofilament into the MCA. After 5 hours, the embolus was gently 

removed and the collar suture at the base of the ECA stump tightened. The skin was closed 

with 3-0 nylon suture (Ethicon, Cornelia, GA, USA), anesthesia discontinued, and the 

animal allowed to recover. Animals used for control underwent a neck dissection and 

coagulation of the external carotid artery, but no manipulation or occlusion of the common 

or internal carotid arteries.  
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8.5.3 Post-surgical fluid management and pain control 

Details of the post-surgical fluid management and pain control have been reported 

previously459. Briefly, immediately post‐operatively the animals received 2 ml of sterile 

saline (0.9%) subcutaneous. An additional 1 ml of saline was given if extra blood loss 

occurred during surgery. The animals were injected with sterile filtered PBS pH 7.4 at 6 

(for the p-MCAO), 24, 48, and 72 hours post‐MCAO. The animals were weighed every 

morning post‐MCAO to determine dehydration. Hydration status was checked by pinching 

up or “tenting” the skin over the nape of the neck. The skin should immediately relax into 

its normal position. If the skin remains tented longer than normal, the rat was deemed 

dehydrated, and saline was given. Per DLAR guidelines, rats can receive up to 10 ml at a 

time and no more than 2 ml at any one location per 6 hr. If warranted, additional saline (1–

2 ml) will be given in addition to 6, 24, 48, and 72 hr. Also, we added an additional water 

bottle in each cage to allow more avail‐ ability to free water for the rats to consume and 

moistened food was provided on the bottom of the cage to encourage feeding and additional 

water intake. Post‐surgical pain control was managed with carprofen, which is based on 

weight of the animal. Animal weights are taken prior to surgery (pMCAO) and daily until 

animals are euthanized at 72 hr. (post MRI). The animals received a dosage of carprofen 

5mg/kg prior to surgery and every 24 hr. for three days post‐pMCAO until 72 hr. when 

they were euthanized (post MRI). Termination of survival criteria include that all animals 

were weighed and monitored, especially for dehydration and pain, each morning post 

surgery. This includes specific attention to the animal as a whole, as well as incision sights. 

If symptoms such as pain, fatigue, loss of energy, excess energy, ruffled hair coat, 

reluctance to move, failure to groom or feed, hypoactivity, hyperactivity, restlessness, self‐



179 
 

trauma, aggressiveness, ataxia, pale mucous membranes, cyanosis, rapid, shallow and/or 

labored breathing, cachexia, porphyria, soiled anogenital area, inactivity, failure to respond 

to stimuli, lack of inquisitiveness, vocalization, and/or hunched posture were observed, the 

research team obtained advice from the vivarium veterinary staff on how best to intervene 

to alleviate discomfort; if that was not possible the animal was euthanatized. Additional 

checks were made in the afternoon if there was any rat of concern. The animals were 

removed from the study if adverse signs persisted despite carprofen and treatment past 24 

hr. If the signs fail to resolve, the vivarium veterinarian was consulted and decided the time 

course when such animals were euthanized. Additionally, weight loss greater than 20% 

(emaciated appearance, rapid weight loss over two days) was considered an endpoint. 

Rapid weight loss was considered greater than 10% a day for two days.  

8.5.4 Microbiome Sequencing 

Fecal samples were collected for all animals at 24 hours before surgery and 72 hours 

post-surgery and for 4 animals at 30 days post-surgery. Genomic DNA were extracted from 

0.25 grams of stool using ZymoBIOMICS™ DNA Mini Kit and shipped to CosmosID for 

DNA quantification using fluorometer Qubit 3.0. Libraries were constructed and the PCR 

products were purified using 1.0X speed beads and eluted in 15 µL of nuclease-free water 

and quantified by PicoGreen fluorometric assay (100X final dilution). The libraries were 

pooled and loaded onto a high sensitivity chip run on the Caliper LabChipGX (Perkin 

Elmer, Waltham, MA) for size estimation and sequenced using Illumina NextSeq/HiSeq 

platform. Unassembled sequencing reads were analyzed by CosmosID bioinformatics 

platform (CosmosID Inc., Rockville, MD) 460-463 for microbiome analysis. Heatmaps, 

stacked bar graphs, and Principal Component Analysis (PCA) plots were generated to 
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visualize the diversity and abundance of each microbial taxa. Alpha- and beta-diversity 

were calculated to determine the number of species present in a cohort and diversity 

similarities between groups. 

8.5.5 Magnetic resonance imaging 

MRI images were acquired on a 7T Bruker Clinscan horizontal bore system (7.0T, 30 

cm, 300 Hz) equipped with a triple‐axis gradient system (630 mT/m and 6,300 T m‐1 s ‐1) 

with a closed cycle. PCASL (pseudo conintous arterial spin labelling) images were 

acquired coronally to determine CBF with a fat saturated, double refocused echo planar 

sequence: TR 4000 ms, TE 26 ms, Matrix 74 x 56, FOV 26 mm x 19.7 mm, Slice 1.2 mm, 

Slices 6, 120 Tagged-Untagged Pairs, 10 M0 Images, Tagging Plane Offset 12mm, Bolus 

duration 1.86sec, Post Labeling Delay 0sec, and Acquisition Time of 10 min. T2 weighted 

images were acquired coronally with a RARE sequence: TR 6000 ms, TE 29 ms, Turbo 

Factor 5, Matrix 190 x 190, FOV 240 mm x 240 mm, Slice 0.4 mm, Slices 44, and 

Acquisition Time of 9 min. Male rats were anesthetized with an average of 2.25% 

isoflurane in oxygen, while female rats were anesthetized with an average of 1.75% 

isoflurane in oxygen using an MRI compatible CWE Inc. equipment (Ardmore, PA). They 

were held in place on a Bruker scanning bed with a tooth bar, ear bars, and tape. Body 

temperature, heart rate, and respiratory rate were continuously monitored throughout the 

MRI scans (SA Instruments, Inc., Stony Brook, NY). The animal's body temperatures were 

maintained at 37°C with a water heating system built into the scanning bed. The scanning 

procedure took approximately 40-60 mins. per animal.  

The MR images were analyzed by a blinded neuroradiologist who visually identified 

infarct volume and edema volume. These volumes were counted, and this number was 
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normalized to the number of images counted to provide a per section count. The volume 

of brain parenchyma demonstrating infarct volume visibly affected was calculated by 

manual segmentation using ITK‐SNAP software464. The volume of brain parenchyma 

visibly affected by T2 hyperintensity (edema volume) was calculated in a similar fashion. 

The data are given as absolute volume in cubic millimeters. The calculation was based on 

all slices from each MR sequence. Cerebral perfusion values of the area of lesion within 

the ipsilateral hemisphere, and the equivalent region within the contralateral hemisphere 

were generated using the quantification as previously described.358,419 

8.5.6 Biochemical analysis 

In following STAIR guidelines, clinically relevant biomarkers were determined in our 

aged male and female rats465. Blood was taken from the jugular vein at three different time 

points: immediately prior to MCAO surgery and 5 mins after reperfusion of the MCA in 

the pMCAO, and 5 hours post MCAO procedure in the 5t-MCAO. Blood was immediately 

placed on ice and centrifuged at 2000 g for 15 minutes. Plasma was extracted and stored 

separately, both pellet and plasma were frozen at -80˚C for later analysis. RNA extraction 

and Amplification followed the methods of Martha et.al 2020466. Briefly, total RNA was 

extracted from the pellet portion via a Nucleospin Blood Kit (Macherey-Nagel, Düren, 

Germany), RNA quantity was estimated using a Qubit 4 Fluorometer (Thermo-Fisher; 

Waltham, MA), cDNA was synthesized using a RT² PreAMP cDNA synthesis Kit from 

Qiagen and expression of 84 genes were measured using an ABI StepOne Plus 

(Germantown, MD) and a RT² Profiler Rat Chemokine and Receptor Array from Qiagen. 

Delta Delta CT was calculated using the fold change of the gene expression measurement 

from pre to 3-day. 



182 
 

8.5.7 Statistical analysis 

Descriptive microbiome analyses were performed with CosmosID bioinformatics 

software to generate alpha diversity, beta diversity, and relative abundance data. Alpha 

diversities amongst groups were compared using Wilcoxon Rank Sum test. Beta diversities 

amongst groups were compared using PermANOVA. Relative abundance data was 

compared to measures of stroke severity as determined by imaging (infarct size, edema 

size, CBF) using general linear models within the MaAsLin 2 R package422. Random forest 

was used to determine top bacterial species that were changed following stroke using the 

randomForest R package467. All imaging variables in the study were transformed to meet 

assumptions of normality. The transformation procedures began with Shapiro‐Wilks and 

for measures with p < 0.05, the variables were square root transformed. A p‐value of 0.05 

was set a priori to determine statistical significance. 
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Bacterial Species Change in Relative Abundance Gram Stain Phylum 

Butyricimonas virosa 15.52 (-) Bacteroides 

Ruminococcus flavefaciens 0.14 (+) Firmicutes 

Akkermansia muciniphila 0.78 (-) Verrucomicrobia 

Bacteroides vulgatus 7.36 (-) Bacteroidetes 

Escherichia coli 47.67 (-) Proteobacteria 

Bacteroides uniformis 5.15 (-) Bacteroidetes 

Bacteroides dorei 5.29 (-) Bacteroidetes 

Ruminococcus_u_s 0.25 (+) Firmicutes 

Parabacteroides distasonis 10.84 (-) Bacteroidetes 

[Clostridium] clostridioforme 0.42 (+) Firmicutes 

Alistipes indistinctus 335.73 (-) Bacteroidetes 

Lactobacillus murinus 0.36 (+) Firmicutes 

Lachnospiraceae bacterium 3-1 0.40 (+) Firmicutes 
    
    

Predictive Accuracy of Random Forest Model: 85.14%  

 
  

Table 8.1 Top 13 bacterial species changes following stroke as detected by random forest 
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Parameter Estimate DF SS F-Ratio P-value 

Predicting Infarct    

Intercept 10.41 1 0 0 1 

Ruminococcus_u_s 5.34 1 201.66 11.85 0.0015 

Alistipes indistinctus 3.05 1 122.20 7.18 0.0112 

Lachnospiraceae bacterium 3-1 -24.97 1 141.01 8.28 0.0068 

Predicting Edema 

Intercept 3.05 1 0 0 1 

Butyricimonas virosa 35.48 1 73.77 5.68 0.0229 

Ruminococcus flavefaciens -6.50 1 276.79 21.30 <0.0001 

Bacteroides uniformis 12.93 1 59.99 4.62 0.0394 

Ruminococcus_u_s 4.92 1 152.28 11.72 0.0016 

Predicting Cerebral Blood Flow 

Intercept 1.48 1 0 0 1 

Alistipes indistinctus -0.46 1 3.53 7.82 0.008 
 
Model parameters selected using backward elimination from top 13 list in Table 1 
 
  

Table 8.2 Linear Regression models predicting infarct, edema, and CBF by top 13 species 
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Bacteria Coefficient Bacteria Coefficient 
Species Increase associated with infarct Species Increase associated with edema 
Alistipes finegoldii 0.32 Alistipes finegoldii 0.35 
Alistipes indistinctus 0.29 Alistipes indistinctus 0.34 
Alistipe sp HGB5 0.33 Alistipes sp HGB5 0.38 
Alistipes timonensis 0.16 Alistipes timonensis 0.17 
Bacteroides caccae 0.29 Bacteroides caccae 0.32 
Bacteroides dorei 0.38 Bacteroides dorei 0.43 
Bacteroides eggerthii 0.30 Bacteroides eggerthii 0.34 
Bacteroides fragilis 0.09 Bacteroides fragilis 0.11 
Bacteroides intestinalis 0.17 Bacteroides intestinalis 0.25 
Bacteroides massiliensis 0.25 Bacteroides massiliensis 0.26 
Bacteroides ovatus 0.10 Bacteroides ovatus 0.12 
Bacteroides sartorii 0.19 Bacteroides rodentium 0.15 
Bacteroides sp 3.1.40A 0.24 Bacteroides sartorii 0.22 
Bacteroides uniformis 0.35 Bacteroides sp 3.1.40A 0.26 
Bacteroides vulgatus 0.47 Bacteroides uniformis 0.41 
Butyricimonas virosa 0.41 Bacteroides vulgatus 0.53 
Desulfovibrio_u_s 0.23 Butyricimonas virosa 0.48 
Enterococcus_u_s 0.15 Desulfovibrio_u_s 0.26 
Enterococcus faecalis 0.22 Enterococcus faecalis 0.26 
Escherichia coli 0.52 Escherichia coli 0.60 
Parabacteroides_u_s 0.33 Parabacteroides_u_s 0.34 
Parabacteroides distasonis 0.49 Parabacteroides distasonis 0.55 
Parabacteroides goldsteinii 0.18 Parabacteroides goldsteinii 0.21 
Parabacteroides merdae 0.13 Parabacteroides merdae 0.17 
Parabacteroides sp D13 0.21 Parabacteroides sp D13 0.24 
Porphyromonas sp 31.2 0.15 Porphyromonas sp 31.2 0.19 
  Proteus mirabilis 0.13 
Species decrease associated with infarct Species decrease associated with edema 
Bifidobacterium animalis -0.21 Bifidobacterium animalis -0.24 
Bifidobacterium bifidum -0.13 Bifidobacterium bifidum  -0.12 
Bifidobacterium pseudolongum -0.14 Bifidobacterium pseudolongum -0.16   
Eubacterium plexicaudatum -0.15 Clostridium saudiense -0.08 
Lachnospiraceae bacterium 10-1 -0.21 Eubacterium plexicaudatum -0.16 
Lachnospiraceae bacterium 28-4 -0.19 Imtechella halotolerans -0.12 
Lachnospiraceae bacterium 3-1 -0.38 Lachnospiraceae bacterium A4 -0.35 
Lachnospiraceae bacterium A2 -0.23 Lachnospiraceae bacterium COE1 -0.26 
Lachnospiraceae bacterium A4 -0.31 Lactobacillus animalis -0.16 
Lachnospiraceae bacterium COE1 -0.23 Lactobacillus johnsonii -0.23 
Lactobacillus murinus -0.37 Lactobacillus murinus -0.42 
Oscillibacter sp 1-3 -0.13 Lactobacillus reuteri -0.20 
Ruminococcus flavefaciens -0.45 Oscillibacter sp 1-3 -0.11 
Clostridium clostridioforme -0.20 Ruminococcus bromii -0.09 
  Ruminococcus flavefaciens -0.56 
  Clostridium clostridioforme -0.20 

P<0.01 for all bacteria 
  

Table 8.3 Correlation of bacterial species with infarct and edema 
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Feature Coef Q value Inflammatory Marker Coef Q Value 

Aerococcus.urinaeequi -0.272821 0.008123 

Ccl11 -0.20556 1.94E-10 
Ccl24 -0.20162 0.004625 
Ccl4 -0.19439 1.15E-06 
Ccl5 -0.19492 2.35E-09 
Ccl6 -0.19490 1.57E-09 
Cxcl9 -0.18666 0.005476 
Cxcr1 -0.19420 0.002162 
Cxcr5 -0.19052 0.000588 
Il10ra -0.19083 0.000597 
IL11 -0.19497 2.08E-10 
Il13 -0.19468 9.21E-08 
Il16 -0.19442 1.19E-06 
Il3 -0.21801 8.19E-07 
Il4 -0.19464 4.19E-07 
RGD1561905 -0.20264 0.003346 

Aerococcus.viridans -0.2502272 0.00710756 

Ccl11 -0.29201 1.94E-10 
Ccl12 -0.27568 1.57E-05 
Ccl2 -0.27670 1.43E-06 
Ccl22 -0.27693 2.58E-09 
Ccl24 -0.28641 0.004625 
Ccl4 -0.27615 1.15E-06 
Ccl5 -0.27689 2.35E-09 
Ccl6 -0.27687 1.57E-09 
Cxcl9 -0.26517 0.005476 
Cxcr1 -0.27587 0.002162 
Cxcr5 -0.27065 0.000588 
Il10ra -0.27109 0.000597 
IL11 -0.27697 2.08E-10 
Il13 -0.27655 9.21E-08 
Il16 -0.27619 1.19E-06 
Il3 -0.30971 8.19E-07 
Il4 -0.27650 4.19E-07 
RGD1561905 -0.28786 0.003346 

Alistipes.indistinctus 0.49548605 0.00010758 Il17a 0.190118 3.32E-05 
Bacteroides.caccae 0.55294244 2.70E-05 Lfng 0.592807 0.008044 

Bacteroides.intestinalis 0.39545256 0.00090266 Ccl19 0.21675248 0.0014087 
Cxcl1 0.23004667 0.00219959 

Imtechella.halotolerans -0.2698021 0.00513494 Tnfrsf11b -0.3915736 7.93E-16 

Parabacteroides.goldsteinii 0.36960675 0.00061701 

Il2rb 0.51806 0.00364866 
Il3 0.55259618 2.34E-20 
Il6st 0.52789004 0.00072493 
Tnfsf4 0.51998756 0.00362087 

Parabacteroides.sp..D13 0.37087382 0.00010987 Ccl24 0.36028464 0.00462557 
Porphyromonas.sp..31_2 0.36233409 0.00022155 Ccl24 0.35003715 0.00462557 

 
Q-Value<0.01 for all bacteria and inflammatory markers 
Negative coefficients for bacteria with negative coefficients for inflammatory markers indicate increase in inflammatory marker 
Positive coefficients for bacteria with positive coefficients for inflammatory markers indicate increase in inflammatory marker  

Table 8.4 Association of Inflammatory Markers and Bacterial Species 
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A) Infarct volume, B) Edema volume, and C) Cerebral Blood Flow (CBF) Mean 
following stroke in overall rats and separated by male, female, LIF, PBS, Permanent, and 
Transient. 

Figure 8.1 Imaging features following stroke 
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Four test were used to measure motor function before and after stroke: A) circling, B) 
elevated body swing test, C) step test, D) paw extension test. 

 
  

Figure 8.2 Motor function skills before and after stroke 
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A) Alpha diversity as measured by the Shannon diversity index detecting species richness 
and evenness is increased following stroke. There is no difference in change across sex, 
treatment, or stroke type. B) Beta Diversity as measured by Bray-Curtis method comparing 
how different samples are 

  

Figure 8.3 Diversity changes following stroke. 
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Relative Abundance shows phyla composition before and after stroke. 

 
  

Figure 8.4 Phyla changes as a result of stroke. 
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Figure 8.5 Summary figure depicting changes in gut microbial communities in response 
to stroke 
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