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ABSTRACT OF DISSERTATION

INELASTIC COLLISIONS
IN COLD DIPOLAR GASES

Inelastic collisions between dipolar molecules, assumed to be trapped in a static
electric field at cold (> 10−3K) temperatures, are investigated and compared with
elastic collisions. For molecules with a Λ-doublet energy-level structure, a dipole
moment arises because of the existence of two nearly degenerate states of opposite
parity, and the collision of two such dipoles can be solved entirely analytically in the
energy range of interest. Cross sections and rate constants are found to satisfy simple,
universal formulas. In contrast, for molecules in a Σ electronic ground state, the static
electric field induces a dipole moment in one of three rotational sublevels. Collisions
between two rotor dipoles are calculated numerically; the results scale simply with
molecule mass, rotational constant, dipole moment, and field strength.

It might be expected that any particles interacting only under the influence of the
dipole-dipole interaction would show similar behavior; however, the most important
and general result of this research is that at cold temperatures inelastic rate constants
and cross sections for dipoles depend strongly upon the internal structure of the
molecules. The most prominent difference between the Λ-doublet and rotor molecules
is variation of the inelastic cross section with applied field strength. For Λ-doublet
dipoles, cross sections decrease with increasing field strength. For rotor dipoles, cross
sections increase proportionally with the square of field strength. Furthermore, the
rate constants of the two types of molecules depend very differently on the angular
orientations of the dipoles in the electric field.

KEYWORDS: Molecular Collisions, Inelastic Collisions, Cold Molecules, Dipolar
Molecules, Electrostatically Trapped Molecules
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Chapter 1

Introduction

Bose-Einstein condensates and degenerate Fermi gases are exotic states of matter

that occur when dilute gases are cooled near absolute zero. They were predicted in

the 1920s, but for decades the technology to produce them did not exist. During the

1980s the ability to cool and trap atoms with lasers was developed, finally making it

possible for experimentalists to attempt to turn these theoretical entities into reality.

The first Bose-Einstein condensates (BECs) of dilute atomic gases were created in

the laboratory in 1995 [1, 2], while the first degenerate Fermi gas was produced in

1999 [3]. The field of ultracold atomic physics expanded rapidly after that, with

interest soon turning to the production and study of ultracold molecular gases.

Molecular interactions are much more complicated than those of atoms even at ex-

tremely low temperatures. Molecules have rotational and vibrational degrees of free-

dom that complicate their interactions. Another layer of complexity emerges when the

molecules are polar for then their interactions become long-ranged and anisotropic.

These factors make studies of few and many-body physics with molecules far more

interesting—and difficult—than with atoms. Indeed, just producing molecules below

1 K is challenging.

Much fundamental research, interesting in and of itself, must yet be done to simply

understand how ultracold molecules form and interact. Quantum degenerate gases of

polar molecules, for example, should have very different characteristics compared to

the atomic versions. A Bose-Einstein condensate of polar molecules is expected to be

a quantum fluid sharing properties with both dilute atomic condensates and liquids,

while a degenerate Fermi gas of dipoles might undergo Bardeen-Cooper-Schrieffer

pairing to become a superfluid [8]. Polar molecules also offer interesting effects to

study in ultracold plasmas and might even form entirely new phases of matter. Ul-

tracold molecular gases are not merely a scientific curiosity, however; they also have
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promise as useful tools in a number of different applications.

One of the anticipated practical applications for ultracold polar molecules is quan-

tum computation. If the molecules can be trapped in optical lattices, their electric

dipole moments, aligned parallel or anti-parallel to an external static electric field,

might be used as the quantum bits, i.e. “qubits,” to be manipulated for calcula-

tions [13]. Compared to ultracold samples of neutral atoms, dipoles offer a distinct

advantage. With ultracold polar molecules one still gets long coherence times for a

collection of particles in a restricted number of quantum states, but unlike neutral

atoms, the interactions of the dipoles can readily be tuned with fields to act over rel-

atively long or short distances [8]. This is possible because the strength of the dipole

moment that couples the qubits can be adjusted by an external electric field. In ad-

dition, the molecules have rotationally excited states, and transitions between these

states can be controlled with microwave fields [8]. Further tuning can be achieved

in some molecules because of fine or hyperfine structure or Λ-doublets [8]. Other

versions of quantum computers using ultracold dipoles have been proposed including

dilute gases with rovibronic superpositions serving as the qubits [14] and devices in

which dipoles are trapped near mesoscopic circuit components [15, 16].

Cold chemistry is another field in which ensembles of polar molecules can play a

unique role. Many experiments have achieved some measure of control over reactions

involving single, isolated molecules—namely molecular dissociation and selective bond

breaking, but controlling reactions between two or more molecules has thus far been

unattainable [8]. Much of the difficulty is caused by random thermal motion, which

makes collisions unpredictable and reduces or negates the effects of external fields. As

thermal motion is reduced, it becomes possible to exert more control over reactions

as the collision energy drops below the energy of externally applied electromagnetic

fields. Thermal motion becomes insignificant below about 1 µK, and it is hoped

that lasers and static fields can be used to manipulate reactants into specific reaction

channels [8, 17].

Reducing temperatures into the ultracold regime means that molecular ensembles—

even those with very large molecules—will display purely quantum mechanical be-
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havior. The large de Broglie wavelengths at low temperatures change the dynamics

of chemical reactions as quantum interference and tunneling become dominant [8].

Many-body interactions become more likely, and the geometry of the space in which

the interacting particles is confined might affect how reactions progress [8]. Also,

at higher temperatures the effects of internal degrees of freedom are often obscured

by center-of-mass motion. In the ultracold regime, center of mass motion becomes

insignificant, allowing study and control of more delicate quantum effects [8, 17].

Ultracold molecules could also lead to further development in the areas of precision

measurement and spectroscopy. Ultracold atoms have already sparked a revolution in

this field. Their low temperatures result in a reduced number of populated states in

an ensemble and long coherence times. Ultracold molecules share these characteristics

with atoms but the complex structure of molecules offer additional advantages. The

many combinations of electronic, vibrational, and rotational energy levels offer a series

of precise frequency benchmarks from the microwave through the visible spectrum.

This allows even more precise measurements [8].

In particular, ultracold polar molecules are expected to provide a unique platform

to check for violations of certain symmetries and test predictions of fundamental

physical theories. Tiny deviations from expected values that might be unnoticeable

in a neutral atom can be exaggerated due to the internal structure and interactions

within molecules [8]. Ultracold molecules could be used, for example, to answer the

question of whether or not the electron has an intrinsic dipole moment. The large

internal fields of polar molecules normally create interaction energies 103 times larger

than those of atoms; as a consequence, if electrons do have a dipole moment, there will

be a measurable difference in their energy levels compared to what would be expected

if they do not [18, 19]. A related problem is violation of parity and time-reversal

invariance. In this case polar molecules are useful because the rovibrational spectra

of diatomic molecules are quite sensitive to the effects these symmetry violations have

on the nucleus [8, 20, 21, 22]. Also, certain astronomical measurements [23, 24] have

indicated that fundamental constants, such as the fine-structure constant and the

ratio of proton to electron mass, may have changed significantly during the life of the

3



universe. One way to test this in the laboratory involves simultaneous measurements

of both electronic and vibrational transitions [8, 25].

Before any practical applications can come to fruition experimentalists must mas-

ter techniques to produce, store, and manipulate ultracold polar molecules. Unfortu-

nately, that is still a long way off. Homonuclear molecular condensates were first pro-

duced in 2003 [4, 5], and since then many groups have successfully produced trapped

heteronuclear gases using a number of different methods. While near-degeneracy has

been achieved recently with polar gases [6, 7], true degenerate states have not been

created yet. Part of the problem is that the fundamental mechanics of molecular

gases at these temperatures are still not well understood. Experiments exploring the

dynamics and interactions of the gases are still being performed at higher temper-

atures than are ultimately desired. The lack of good theoretical models for polar

gases at low temperatures is a hindrance to experimental endeavors at controlling

and manipulating them and will delay the anticipated practical applications of this

research field.

It is useful to define two temperature regimes for molecular ensembles: cold and

ultracold. These regimes result from the existence of a natural energy scale, ED,

defined in Chapter 2, associated with the dipole-dipole interaction. (This is analo-

gous to the Rydberg energy scale in systems interacting via the Coulomb potential.)

If the thermal energy kT is less than ED, an ensemble is considered ultracold, and

it will have different properties depending on whether its constituent particles are

fermions or bosons. For thermal energies greater than ED the ensembles are consid-

ered merely “cold.” While the behavior of a cold gas can still exhibit quantum effects,

the molecules can be treated as distinguishable particles, and the quantum statistics

of bosons and fermions can be avoided. The temperature for which a system changes

from cold to ultracold will be different depending upon the mass of the molecules.

The vast majority of experiments using trapped ensembles of polar molecules are still

in the cold rather than the ultracold regime.

The high expectations for ultracold polar molecules in experiments and applica-

tions have created a demand for theoretical support. Theoreticians have met the
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challenge by producing volumes of detailed work. Unfortunately, much of the empha-

sis has been either very specific to particular molecular species under very specific

conditions or has focused on the ultracold regime. A lot of experimental work is still

being done in the cold regime, and much about molecular behavior and interactions in

that arena must yet be explained before experimental energies can be pushed lower.

One of the important questions that must be answered prior to cooling and trapping

cold polar molecules on a large scale is the relative importance of elastic and inelastic

collisions.

The simplest means of trapping a particle with an electric dipole moment is in

an electrostatic trap. In this type of device the particles are confined by means of

a non-uniform, static electric field ~E . Since electric fields satisfy Laplace’s equation,

static field maxima can only occur on the boundaries of an area [11, 12]. That

means electrostatic traps can only be designed to contain particles in an electric

field minimum, and only particles in an internal state that will move toward an

area of relatively weak electric field—so-called “low-field seekers”—can be trapped.

Inevitably, particles in a trapped gas will collide; these collisions can be either elastic

or inelastic. Elastic collisions involve no change in the internal state of the colliding

molecules and are generally desirable. Not only do they serve to keep particles in the

state that can be retained in the trap, but they also facilitate evaporative cooling.

Inelastic collisions occur when one or more of the colliding molecules undergo a change

in internal state. They are generally undesirable because particles that become “high-

field seekers” during the collision will be ejected from the trap. If particles are lost

from the trap at too high a rate the trapped gas will be unstable. On the other hand,

some experiments consist of trapped ensembles interacting with a velocity tuned

molecular beam. In that type of experiment, inelastic collisions will be an important

tool for analyzing the interaction between the beam and the trapped gas [26]. In any

type of experiment utilizing an electrostatic trap, it is necessary to have some idea of

the relative importance of elastic and inelastic collision processes.

The work described in this dissertation is intended to provide a basic foundation

for the theory of inelastic collisions of cold dipolar molecules in an electric field.

5



We limit our investigation to two-body collisions. Since the gases used in cold and

ultracold experiments are relatively diffuse, it can be assumed that negligibly few

collisions will involve more than two molecules. The two colliding molecules with

electric dipole moments ~µ1 and ~µ2 will be aligned in a particular low-field seeking state

prior to the collision. Quantum-mechanical dipoles can align parallel or antiparallel

to an applied electric field ~E . The low-field seeking states are those that are aligned

antiparallel to the field [41]. The dipoles will approach each other on a classical

trajectory with impact parameter ~ρ that is arbitrary with respect to the electric field

direction. It is assumed that the colliding molecules remain separated by a large

enough distance that the dipole-dipole potential is the only interaction involved in

the collision and short-range quantum physics may be ignored. The situation is

illustrated in Figure 1.1. After an elastic collision, both dipoles will still be in the

same low-field seeking state that they started in. If an inelastic collision occurs, one

or both of the dipoles will “flip” into a high-field seeking state.

In the following chapter the theory of elastic collisions between cold dipoles is

introduced for purposes of comparison. In Chapters 3 and 4, models for two different

types of dipoles, i.e. molecules with a Λ-doublet and molecules that can be described

as rigid rotors, are presented and analyzed to compare the relative probabilities for

inelastic and elastic collisions. Chapter 5 describes the numerical work required to

complete the analysis for the rotor dipoles.

Copyright c© Catherine A. Newell 2010
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Figure 1.1: Two dipoles with electric dipole moments µ1 and µ2 colliding in a static
electric field. Prior to the collision both dipoles are aligned antiparallel to the electric
field ~E in a low-field seeking state. ρ is the classical impact parameter.
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Chapter 2

Elastic Collisions of Cold Polar Molecules

The dynamics of a trapped gas depends upon both elastic and inelastic collisions.

Elastic collisions promote evaporative cooling while inelastic collisions contribute to

trap loss. As it will be helpful to compare the relative contributions of elastic and

inelastic rate constants, we will briefly discuss the theory of elastic collisions in the cold

temperature regime before discussing inelastic collisions. This chapter summarizes the

first complete description of elastic collisions of polar molecules at cold temperatures

given by Bohn, Cavagnero, and Ticknor in [27].

2.1 The Elastic Collision Problem

Assume that the collision is between two dipoles aligned in a static electric field ~E .

The dipole-dipole interaction is

V (~R) =
µ1µ2

R3

[

1 − 3(R̂ · Ê)2
]

(2.1)

where ~R is the relative displacement of the two molecules, µ1 and µ2 are their dipole

moments, R̂ = ~R/|~R|, and Ê = ~E/|~E|. This potential diverges at small R. In the

following calculations it is assumed that the vast majority of collisions will occur at

distances where the dipole-dipole potential dominates and the short-range physics

may be neglected.

The Schrödinger equation for the relative motion of the molecules is written
[

− h̄2

2M
∇2

~R
+
µ1µ2

R3

[

1 − 3(R̂ · Ê)2
]

]

ψ = Eψ (2.2)

where M is the reduced mass. This equation can be rescaled in terms of a “dipole

length” D and the “dipole energy” ED discussed in the Introduction. The scale of

the dipole-dipole interaction defines the dipole energy

ED =
µ1µ2

D3
(2.3)
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while D is the distance at which the centrifugal energy h̄2/MD2 is equal to ED

D =
Mµ1µ2

h̄2 (2.4)

If the substitution ~R = D~r and E = ǫED is made, the Schrödinger equation

becomes

[

−1

2
∇2

~r +
1

r3

[

1 − 3(r̂ · Ê)2
]

]

ψ = ǫψ (2.5)

In this form, the Schrödinger equation is dimensionless and independent of M , µ1,

µ2, and E , and its solution will display universal behavior valid throughout the cold

temperature regime. The equation may be solved numerically as discussed in [27],

but a high-energy approximation explicitly shows the universal scaling of the cross

section while allowing the complex interactions at close approach (~r → 0) to be

neglected.

A complete solution of (2.5) was presented in [27], with boundary conditions

applied at small r to account for the unphysical divergence of the potential energy

term at r = 0. Variations of the boundary conditions were used to simulate the

effects of short-ranged interactions on the collision cross sections. A typical result is

displayed in Figure 2.1, which provides a clear indication of the separation of the

cold and ultracold regimes defined in the Introduction.

For the lowest collision energies, elastic cross sections become insensitive to the

energy but are strongly dependent on both the short-range physics and on the indis-

tinguishability of the colliding molecules. This defines the ultracold regime.

At high energies, in contrast, the elastic cross section is inversely proportional to

the collision speed (the red curve labeled “Eikonal” in Figure 2.1) and is independent

of both short-ranged interactions and the indistinguishability of the molecules. This

high-energy regime is referred to as “cold” in this dissertation because it corresponds

to sub-Kelvin temperatures for many molecules of interest.

At still higher energies (not shown in the figure), elastic cross sections will become

comparable to the geometric size of the molecules, and dipole-dipole interactions are

less significant.
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“Ultracold”

“Cold”

Figure 2.1: The total scattering cross section σ/D2 averaged over all incident direc-
tions for two dipoles aligned in a static electric field. The black line is the complete
numerical solution using the close-coupling formalism. The low energy limit is given
by the Born approximation (blue line) and the high-energy limit by the eikonal ap-
proximation. This diagram is based on Figure 1 from Ref. [27].
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2.2 The Eikonal Approximation

The eikonal approximation was originally developed as part of the short-wavelength

approximation for light propagation [29, 30]. In the 1950s it was adopted to solve

particle scattering problems in the high-energy limit, primarily in nuclear physics [28,

31, 32]. In this approximation it is assumed that the potential varies slowly compared

to the wavelength, which leads to the approximate wavefunction

ψ(~r) = ei~k·~reiχ(~ρ) (2.6)

where

χ(~ρ) = −1

k

∫ ∞

−∞
dz V (~ρ, z) (2.7)

is the eikonal phase. In the cylindrical coordinates used in the above equations, the

z-axis is aligned with the average collision momentum, ~kavg = (~ki + ~kf)/2. We can

consider that ρ corresponds to the classical impact parameter, and φ is the azimuthal

angle.

The approximate wavefunction can be used to solve for the eikonal scattering

amplitude

fEi(~kf , ~ki) =
k

2πi

∫

ρ dρ dφ ei~q·~ρ [eiχ(~ρ) − 1] (2.8)

where ~q = ~ki − ~kf is the momentum transfer, and k = |~ki| = |~kf | =
√

2ǫ is the

dimensionless wave number 2πD/λ. The integration here is performed in cylindrical

coordinates in a plane containing ~q but orthogonal to kavg.

We can simplify the expression by defining an x-axis along ~q and letting the y-

axis lie in the direction ~kavg × ~q. So defined, the y-axis is orthogonal to the collision

plane. The impact parameter can then be written as ~ρ = ρ cos(φ)x̂ + ρ sin(φ)ŷ and

~r = ~ρ+ zk̂avg . The eikonal amplitude becomes

fEi(~kf , ~ki) =
k

2πi

∫

ρ dρ dφ eiqρ cos(φ) [eiχ(~ρ) − 1] (2.9)

Once the interaction potential is expressed in cylindrical coordinates

V (~r) =
1

(ρ2 + z2)3/2

[

1 − 3
(~ρ · Ê + zk̂avg · Ê)2

ρ2 + z2

]

(2.10)
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it is not difficult to evaluate the eikonal phase. Setting σ = z/ρ gives

χ = − 1

kρ2

[

∫ ∞

−∞

dσ

(1 + σ2)3/2
− 3(ρ̂ · Ê)2

∫ ∞

−∞

dσ

(1 + σ2)5/2

− 3(k̂avg · Ê)2
∫ ∞

−∞

σ2dσ

(1 + σ2)5/2

]

(2.11)

The integrals evaluate to 2, 4/3, and 2/3 respectively, which gives

χ = − 1

kρ2

[

1 − (k̂avg · Ê)2 − 2(ρ̂ · Ê)2
]

(2.12)

Expressing the electric field direction in terms of the coordinate axes above (x̂ = q̂,

ŷ = k̂avg × q̂, k̂avg)

Ê = sinα cosβx̂+ sinα sin βŷ + cosαk̂avg (2.13)

the phase becomes

χ(ρ, φ) =
2

kρ2
sin2 α cos(2φ− 2β) (2.14)

The eikonal amplitude is then

fEi(~kf , ~ki) =
k

2πi

∫

ρ dρ dφ eiqρ cos(φ)

[

exp

{

i
2

kρ2
sin2 α cos(2φ− 2β)

}

− 1

]

(2.15)

Unfortunately, the integrals become difficult at this point. The solution of this equa-

tion for general ~kf would have to be solved using numerical methods. Because the

eikonal approximation is unitary [31], however, the total cross section can still be

determined using

σtot(k̂i)

D2
=

4π

k
Im(f(k̂i, k̂i)) (2.16)

This equation is the optical theorem [34], which relates total cross section to the

imaginary part of the forward scattering amplitude. When k̂f = k̂i, q is equal to

zero, and the first exponential in (2.15) is equal to one. In addition we can make the

substitution ℓ = kρ to express the resulting integral in terms of the orbital angular

momentum, ℓ. This will prove useful for later analysis. We get

fEi(k̂i, k̂i) =
1

2πik

∫

ℓ dℓ dφ

[

exp

{

i
2k

ℓ2
sin2 α cos(2φ− 2β)

}

− 1

]

(2.17)
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This expression appears to be problematic because when q = 0, x̂ and ŷ are undefined.

That means that β = arctan(ŷ · Ê/x̂ · Ê) is also undefined (although α = arccos(k̂ · Ê)

is defined.) Upon examination, one sees that the azimuthal integral is independent

of β, and the remaining exponential integrates to a Bessel function:

fEi(k̂i, k̂i) =
1

ik

∫

ℓ dℓ

[

J0(
2k

ℓ2
sin2 α) − 1

]

(2.18)

fEi is entirely imaginary, so from the optical theorem

σtot(k̂i)

D2
=

4π

k2

∫ ∞

0
ℓ dℓ

[

1 − J0(
2k

ℓ2
sin2 α)

]

(2.19)

To solve this, let

s =
2vm2µ2

ℓ2
sin2 α, ℓ dℓ = −vm2µ2 sin2 α

ds

s2
(2.20)

so the cross section can be expressed as a dimensionless integral

σEi =
4πµ2 sin2 α

v

∫ ∞

0

ds

s2
[1 − J0(s)] (2.21)

The integral is equal to unity, so

σEi =
4πµ2

v
sin2 α =

4πµ2

v

[

1 − (k̂i · Ê)2
]

(2.22)

which gives a rate constant (K = vσ) of

KEi = 4πµ2 sin2 α = 4πµ2
[

1 − (k̂i · Ê)2
]

(2.23)

In a trapped gas collisions will be random; one must average over incident directions

to get a measurable cross section. This gives the final result

σEi

D2
=

8π

3k
=

4λ

3D
(2.24)

where λ is the wavelength.

The first thing to note about these results is the fact that the cross section is

identically zero when the electric field and the incident direction are aligned. This

would not have a noticeable affect on the behavior of an isolated trapped gas because

the incident direction is random; however, in an experiment that involved a beam of
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dipole molecules passing through a trapped gas, it is possible to orient the incident

direction with respect to the field. In the latter case, a strong dependence on the

relative orientation of the beam and the field could be expected.

The next interesting aspect is the 1/k scaling. This scaling of cross sections with

energy has been suggested before for inelastic collisions in the high-energy limit: Gal-

lagher derived it for Rydberg-Rydberg collisions using the uncertainty principle [33],

DeMille for dipole-dipole collisions in a microwave trap also using the eikonal approx-

imation [35], and Kajita using a renormalized perturbation theory method [36, 37].

Moreover, this result agrees with numerical close-coupling calculations for the tem-

perature range of interest as shown in Figure 2.1. This cross section typifies the

universal behavior of dipole-dipole scattering in the cold regime. The elastic scatter-

ing behavior is dependent only upon the collision energy and the dipole length—not

upon any species-specific characteristics such as dipole moment or mass.

Copyright c© Catherine A. Newell 2010
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Chapter 3

Inelastic Collisions of Cold Two-state Dipoles

The first and simplest model for a dipole describes a molecule with a simplified Λ-

doublet. Such molecules have two nearly degenerate states of opposite parity that

become coupled in the presence of an electric field. Λ-doubling is higher order splitting

superimposed on the rotational structure of a molecule. The energy difference between

the states in a Λ-doublet is on the order of 10−3 Kelvin, which is an order of magnitude

smaller than the energy difference between rotational levels. To exclude transitions

between rotational levels, gases must be cooled to lower temperatures when utilizing

the Λ-doublet energy levels. On the other hand, Λ-doublet molecules are of particular

interest in the study of ultracold gases because very small applied fields can be used

to control and “tune” their dipole moments [47, 8, 38, 39].

In this chapter we calculate inelastic cross sections and rate constants for these

types of molecules at cold temperatures and compare the results with the elastic cross

section from Chapter 2. The content of this chapter was developed for inclusion in

this dissertation although it was published in advance in [40].

3.1 The States of a Single Dipole

Consider a molecule whose electronic angular momentum has a nonzero component

along the molecular symmetry axis, such as a Π or ∆ state. The projection of the

electronic angular momentum along the molecular axis depends upon the direction of

the molecule’s rotation with respect to the axis and can be either positive or negative.

The states corresponding to these two projections are degenerate until the rotation

of the molecule is taken into account. The degeneracy is broken by rotations of

the molecular axis either into or perpendicular to the electronic charge distribution,

producing an energy splitting between the two states. This is called a Λ-doublet [55].
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Because the energy difference between the opposite parity states of a Λ-doublet is

always much smaller than the differences between rotational levels of the molecule, a

smaller field is required to couple these two states than to couple different rotational

levels.[41]

Assume that the molecule has only two characteristics—a pair of opposite par-

ity states in a field-free region that are separated by an energy gap δ and a field-

independent (or “intrinsic”) dipole moment d that couples the two states when E 6= 0.

For simplicity, consider the lowest state |e〉 to have even parity and energy −δ/2 and

the excited state |o〉 to have odd parity and energy +δ/2. Within this representa-

tion of parity eigenstates, the molecular Hamiltonian H0 − ~d · ~E in the presence of a

polarizing field ~E = EÊ is

H =
(−δ/2 −dE
−dE +δ/2

)

= −∆
(

cos γ sin γ
sin γ − cos γ

)

(3.1)

where we have introduced a pair of parameters

∆ = +
√

(δ/2)2 + d2E2 (3.2)

and

γ = tan−1(
2dE
δ

) (3.3)

tan γ will be referred to as the “aspect ratio” because it is the ratio of the energy

difference between the two states in the presence of an electric field and the energy

difference between the states in zero field. (See Figure 3.1.)

In the parity basis, the intrinsic dipole operator coupling opposite parity states is

~d = dÊ =
(

0 d
d 0

)

Ê (3.4)

An alternate basis—the energy basis—results from the diagonalization of the

Hamiltonian. Operators and vectors in this basis will be indicated with a single

prime. The diagonalization yields a pair of states of energy

H′ =
(−∆ 0

0 +∆

)

(3.5)
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according to the prescription

( | − ∆〉 | + ∆〉 ) = ( |e〉 |o〉 )
(

cos(γ/2) − sin(γ/2)
sin(γ/2) cos(γ/2)

)

(3.6)

These states have field-dependent (or “induced”) dipole moments of

µ′ = −dH
′

dE =
(

µ 0
0 −µ

)

(3.7)

where µ = d2E/∆ (which tends to d at high field strengths as shown by equation

(3.2) ). The moment of the lower energy state is aligned with the field axis so that in

an inhomogeneous field the molecule would accelerate in the direction of increasing

field strength; we call this state a “high-field seeker”. Conversely, the moment of the

high-energy state is aligned antiparallel to the field and the molecule is a “low-field

seeker”.

For completeness, we also cite the dipole operator (3.4) in the energy basis:

d′ = d
(

sin γ cos γ
cos γ − sin γ

)

= µ
(

1 δ/2dE
δ/2dE −1

)

(3.8)

We emphasize that d′/µ is dependent on both the field and the gap in this model, a

characteristic not shared by the more complex model presented in the next chapter.

Throughout this dissertation, we will refer to field-dependent dipole moments as

“induced” moments because they vanish in the absence of an external field. Some

references use the term “effective” for the field-dependent dipole moment. We prefer

the term “induced” because it more clearly implies that µ vanishes as E → 0. In

contrast, field-independent moments will be called “intrinsic.” Many references use

the term “permanent” rather than “intrinsic.” Both induced and intrinsic moments

are, in principle, observable.

Finally, it will prove useful to introduce a third representation—the eigendipole

basis [42]—in which the field-dipole interaction alone is diagonal (as if the splitting

of the alternate parity states were zero). Operators and vectors in this basis will be

indicated with a double prime. In the eigendipole basis

( | + d〉 | − d〉 ) =
1√
2

( |e〉 |o〉 )
(

1 −1
1 1

)

= ( | − ∆〉 | + ∆〉 )
(

cos[1
2
(γ − π/2)] sin[1

2
(γ − π/2)]

− sin[1
2
(γ − π/2)] cos[1

2
(γ − π/2)]

)

(3.9)
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Here the dipole operator is diagonal

d′′ =
(

d 0
0 −d

)

(3.10)

while the energy is not

H′′ =
(−dE δ/2
δ/2 dE

)

(3.11)

The three different representations are displayed in Figure 3.1 along with their

diagonal energies. The different descriptions produce distinct dynamical equations

leading to useful approximations for collision processes.

3.2 The States of Two Dipoles

Now that we have defined the states for single dipoles in an electric field, we can

combine them to form two-molecule states in the three representations. The conven-

tion introduced in the previous section—namely, using unprimed operators for the

parity basis, primed operators for the energy basis, and double-primed operators for

the eigendipole basis—will be retained in this section.

No matter which basis we choose, we should recognize that the long-range dipole-

dipole interaction

V (~R) =
1

R3

(

~d1 · ~d2 − 3(~d1 · R̂)(~d2 · R̂)
)

(3.12)

with ~R the relative displacement of the center of mass of the two dipoles, is invariant

under exchange of the locations of the two dipoles. Accordingly, of the four possible

states of a pair of two-state dipoles, we can choose three that are even and one that is

odd under dipole interchange. Because both the Hamiltonian and the dipole-dipole

potential conserve parity, the odd state is not coupled to the others and does not

contribute to inelastic processes; we will ignore it here.

We will form the three remaining states from direct products of independent-

dipole states, and order them in terms of increasing energy: For the parity basis, we

have

|1〉 = |e, e〉
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Figure 3.1: The two-state molecule, in which even |e〉 and odd |o〉 parity states
are coupled by an applied electric field E . Two alternative base pairs, the energy
eigenstates |±∆〉 (blue) and the eigendipole states |±d〉 (dashed) are also displayed.
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|2〉 =
1√
2

(|e, o〉 + |o, e〉)

|3〉 = |o, o〉 (3.13)

where, for example, |e, o〉 = |e〉|o〉. Likewise, in the energy basis, we have

|1〉′ = | − ∆,−∆〉

|2〉′ =
1√
2

(| − ∆,+∆〉 + | + ∆,−∆〉)

|3〉′ = | + ∆,+∆〉 (3.14)

and in the eigendipole basis

|1〉′′ = | + d,+d〉

|2〉′′ =
1√
2

(| + d,−d〉 + | − d,+d〉)

|3〉′′ = | − d,−d〉 (3.15)

The Hamiltonian for the system of two dipoles consists of a kinetic energy of

relative motion, T~R, the internal energies of the field-fixed dipoles, and the dipole-

dipole interaction (3.12):

H = T~R +H(0) + V (~R) (3.16)

where the internal energy of the dipoles is

H(0) = (H1
0 − ~d1 · ~E) + (H2

0 − ~d2 · ~E) (3.17)

and

T~R =
−h̄2

2M
∇2

~R
(3.18)

M is the reduced mass of the pair. Interactions associated with close approach of the

molecules are explicitly disregarded since we seek only to evaluate the contribution

to scattering processes from high partial waves at cold temperatures.

It is an elementary exercise to construct these operators in the three different

representations (3.13), (3.14), and (3.15). In the parity basis, we have

H(0) =







−δ −
√

2dE 0
−
√

2dE 0 −
√

2dE
0 −

√
2dE δ





 (3.19)
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and

V(~R) =
d2

R3

(

1 − 3(R̂ · Ê)2
)







0 0 1
0 1 0
1 0 0





 (3.20)

In the energy basis

H(0)′ =







−2∆ 0 0
0 0 0
0 0 +2∆





 (3.21)

and

V(~R)′ =
d2 sin2 γ

R3

(

1 − 3(R̂ · Ê)2
)

×






1
√

2 cot γ cot2 γ√
2 cot γ cot2 γ − 1 −

√
2 cot γ

cot2 γ −
√

2 cot γ 1





 (3.22)

And in the eigendipole basis

H(0)′′ =







−2dE δ/
√

2 0
δ/
√

2 0 δ/
√

2
0 δ/

√
2 2dE





 (3.23)

and

V(~R)′′ =
d2

R3

(

1 − 3(R̂ · Ê)2
)







1 0 0
0 −1 0
0 0 1





 (3.24)

In the limit of small zero-field splittings, δ → 0, the channels uncouple and are

explicitly diagonal in both the energy and the eigendipole bases (which become iden-

tical). A curious feature of the eigendipole representation is that the extreme states

|1〉′′ and |3〉′′ are not directly coupled, but interact only through the intermediate

state |2〉′′.
In a field free region state |2〉 (expressed in the representation (3.13) of parity

eigenstates) decouples from |1〉 and |3〉 as a consequence of parity conservation. As the

latter two states remain coupled by V (~R), inelastic collisions should be expected even

in the absence of an aligning field, and will require the “flipping” of both dipoles (with

energy defect 2δ). Accordingly, using this simple molecular model, we should expect

that for very low fields “double-flip” processes will dominate “single-flip” processes

despite the lower energy defect (i.e. δ) of the latter.
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Since we will assume that the highest energy state, in which both molecules are

weak-field seekers, is the initial state of the system, we will shift all energies by

E3 = +2∆, and remove it from the equations of motion.

3.3 The Schrödinger Equation in Dimensionless Form

Let us now examine the Schrödinger equation associated with the Hamiltonian (3.16),

expressed here in the energy basis:
[

− h̄2

2M
∇2

~R
− (E ′ + 2∆A′)

]

Ψ(~R)′ = − µ2

R3

(

1 − 3(R̂ · Ê)2
)

B′ Ψ(~R)′ (3.25)

where E ′ = E − 2∆, Ψ is a 3-component column vector,

A′ =







2 0 0
0 1 0
0 0 0





 (3.26)

and

B′ =







1
√

2 cot γ cot2 γ√
2 cot γ cot2 γ − 1 −

√
2 cot γ

cot2 γ −
√

2 cot γ 1





 (3.27)

As in the case of elastic scattering discussed earlier, we can introduce dipole

units by rescaling both the displacement ~R = D~r and the energy E ′ = ǫED, where

D = Mµ2/h̄2 and ED = h̄6/M3µ4, to render (3.25) in the dimensionless form

[

−1

2
∇2

~r −
(

ǫ1 + 2
∆

ED
A′
)]

Ψ(~r)′ = − 1

r3

(

1 − 3(r̂ · Ê)2
)

B′ Ψ(~r)′ (3.28)

Measured in dipole units, and neglecting any contributions from close approach

of the molecules, collision dynamics are independent of M and depend only on the

scale of Figure 3.1 (i.e. ∆/ED) and on the aspect ratio δ/2dE (i.e. cot γ).

3.4 Application of the High-energy Approximation

The solution of equation 3.28 is complicated due to the anisotropy of the dipole-dipole

potential. The interaction couples all like-parity partial waves so that in a partial wave

analysis with polar axis along ~E , (3.28) consists of approximately 3Lmax/2 coupled

second-order differential equations, where Lmax is the maximum angular momentum
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quantum number required for convergence of the cross sections. Furthermore, this set

of equations must be solved for approximately Lmax alternative conserved magnetic

quantum numbers m = Ê · ~L, although this number decreases for particular collision

geometries. Finally, the entire procedure must be repeated for alternative collision

geometries (i.e. ~kinc · ~E) and for each energy of interest.

For purposes of calculation, we define the minimal requirement for use of a high-

energy approximation to be that the de Broglie wavelength be less than the intrinsic

length scale D of the dipole-dipole interaction. That means that collisions will be in

the cold temperature regime when

E ′ > 2π2ED (3.29)

Note that this is precisely the energy range in which the eikonal (or high-energy)

approximation closely reproduced the elastic scattering cross sections in Figure 2.1.

This requirement is therefore equivalent to the definition of “cold” given in the in-

troduction. To estimate Lmax, we note that partial wave contributions to elastic

scattering peak at L ∼
√
k in units of h̄ [27, 44, 45], with the onset of the cold tem-

perature regime at k ∼ 2π. This suggests a minimal requirement of Lmax ∼ 6 at the

onset of the cold temperature regime, and increasing by a factor of 3 for every 10-fold

increase in the collision energy or temperature. Progress has been made in performing

such calculations (often with more realistic molecular models) though most emphasis

has been on energies far colder than suggested by (3.29), and including only a few

partial waves [46, 47, 48, 49].

In contrast, our approach will be to identify the limiting behavior of inelastic cross

sections and rate constants at energies considerably higher than temperatures that

can be considered cold. The second term on the left side of (3.28) can be rewritten

in terms of dimensionless wave numbers

ǫ1 + 2
∆

ED

A′ =







k1
2 0 0

0 k2
2 0

0 0 k3
2





 (3.30)

where k1, k2, and k3 are the de Broglie wave numbers for each of the three energy
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basis states (respectively) far from the scattering region. Explicitly,

k1 =

√

2
(

ǫ+ 4
∆

ED

)

k2 =

√

2
(

ǫ+ 2
∆

ED

)

k3 =
√

2ǫ (3.31)

As collision energy increases beyond the minimal requirement (3.29), the differences

in these three wave numbers becomes small:

k1 = k +
4∆

kED
+ · · ·

k2 = k +
2∆

kED
+ · · ·

k3 =
√

2ǫ = k (3.32)

a requirement satisfied providing E ′ ≫ ∆.

We can thus extract from the wavefunction its dominant phase

Ψ(~r) = ei~k·~rψ(~r) (3.33)

where the magnitude of ~k is simply
√

2ǫ, and its direction, k̂, can be chosen at our

discretion. Schrödinger’s equation (3.28) is then

[

−1

2
∇2

~r − i~k · ∇~r

]

ψ(~r)′ =
[

+2
∆

ED

A′ − 1

r3

(

1 − 3(r̂ · Ê)2
)

B′
]

ψ(~r)′ (3.34)

With the dominant phase extracted, the remaining amplitude ψ(~r) should vary slowly

on the scale of the wavelength 2π/k, in which case its second derivative is negligible:

i~k · ∇~r ψ(~r)′ =
[

−2
∆

ED

A′ +
1

r3

(

1 − 3(r̂ · Ê)2
)

B′
]

ψ(~r)′ (3.35)

Choosing cylindrical coordinates aligned with the k̂ axis, ~r = ~ρ+ zk̂, and expressing

the dipole-dipole potential in more symmetric form gives

ik
∂

∂z
ψ(~ρ, z)′ =

[

−2
∆

ED

A′ +
Tρ2 − 3Czρ+ Lz2

(ρ2 + z2)5/2
B′

]

ψ(~ρ, z)′ (3.36)
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where T , C and L are constants defining the geometric relationships between the

molecule and the field:

T = 1 − 3(ρ̂ · Ê)2

C = 2(ρ̂ · Ê)(k̂ · Ê)

L = 1 − 3(k̂ · Ê)2 (3.37)

The labels of the matrices are intended to suggest when each is dominant: T , the

transverse, is primary during closest approach; L, longitudinal, at large separations;

and C, the cross term, during intermediate parts of the trajectory.

Since the partial derivative with respect to z on the left-hand side of (3.36) is taken

with ~ρ held fixed, ψ varies with ~ρ only parametrically. ~ρ may therefore be regarded

as the classical impact parameter of a rectilinear trajectory [28]. A simple change

of variables, z = kt, then reduces (3.36) to the familiar time-dependent Schrödinger

equation

i
∂

∂t
ψ(~k, ρ̂, τ, t)′ =

[

−2
∆

ED
A′ +

Tτ 2 − 3Ctτ + Lt2

k3(τ 2 + t2)5/2
B′

]

ψ(~k, ρ̂, τ, t)′ (3.38)

where we have replaced ρ by the collision time τ = ρ/k, a measure of the width of

the collision pulse. In the high-energy limit the time-dependent Schrödinger equation

is derived from the time-independent one1.

The time-dependent form of Schrödinger’s equation emphasizes the impulsive na-

ture of the collision process. The pulse has a width τ and a height 1/(kτ)3. The

Massey criterion [43] suggests that the integrated contribution of the potential to the

phase will peak when their product is unity (in scaled units), or when τ ∼ 1/k3/2.

In contrast, the phase contribution of the diagonal energy term in (3.38) will be of

order 2∆τ/ED ∼ (2∆/kED)/
√
k. Comparing this with (3.32), it is clear that the

assumption of a common wave number in all channels is consistent with neglecting

the diagonal energy splittings in (3.38) during the collision process. We now obtain

i
∂

∂t
ψ(~k, ρ̂, τ, t)′ = +

Tτ 2 − 3Ctτ + Lt2

k3(τ 2 + t2)5/2
B′ ψ(~k, ρ̂, τ, t)′ (3.39)

1Most—if not all—quantum mechanics text books show the time-independent equation derived
from the time-dependent one. In fact, Schrödinger himself began with the time-independent version,
and the relationship between the two forms is still a matter of some interest. [50, 51, 52, 53]
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Because the interaction in this simple model is separable into spatial and internal

factors, this equation is solved precisely by diagonalizing B′—that is, by transforming

to the eigendipole basis, where it takes the diagonal form

i
∂

∂t
ψ(~k, ρ̂, τ, t)′′ = +

Tτ 2 − 3Ctτ + Lt2

k3 sin2 γ(τ 2 + t2)5/2
B′′ ψ(~k, ρ̂, τ, t)′′ (3.40)

with

B′′ =







1 0 0
0 −1 0
0 0 1





 (3.41)

Schrödinger’s equation can now be integrated, component by component

ln

[

ψi(t)

ψi(−∞)

]′′

= −iB′′
i,i

∫ t

−∞
ds

Tτ 2 − 3Csτ + Ls2

k3 sin2 γ(τ 2 + s2)5/2
(3.42)

with the result

ψ′′(+∞) = U′′(+∞,−∞)ψ′′(−∞) (3.43)

where the time-evolution operator has the diagonal form

U′′(+∞,−∞) = exp

[

−i 2B′′

τ 2k3 sin2 γ

(

1 − (k̂ · Ê)2 − 2(ρ̂ · Ê)2
)

]

(3.44)

The geometric factors simplify upon introducing spherical-polar coordinates for the

polarizing field direction

Ê = cos θk̂ + sin θ cos φρ̂+ sin θ sinφ(k̂ × ρ̂) (3.45)

so that

U′′(+∞,−∞) = eiB′′χ (3.46)

where χ is simply the elastic eikonal phase (2.14) in the eigendipole representation

χ =
2 sin2 θ cos 2φ

kρ2 sin2 γ
(3.47)

Note that it differs from the eikonal phase for elastic scattering by the factor of

1/ sin2 γ, an effect that can be traced to the occurrence of the intrinsic dipole mo-

ment, as opposed to the induced dipole moment, in 3.24. (Recall that d = µ/ sin γ.)
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Eigendipole states are a mathematical construct, not physical states. Experimental-

ists actually prepare and detect energy states, so (3.46) must be transformed back

into the energy basis, with the result

U′(+∞,−∞) =








cosχ+ i sinχ sin2 γ i√
2
sinχ sin 2γ i sinχ cos2 γ

i√
2
sinχ sin 2γ cosχ+ i sinχ cos 2γ − i√

2
sinχ sin 2γ

i sinχ cos2 γ − i√
2
sinχ sin 2γ cosχ+ i sinχ sin2 γ









(3.48)

Thus, relatively complicated inelastic transition probabilities originate from a sim-

ple mismatch between the creation and detection of energy eigenstates and the free

evolution of eigendipole states.

Assuming that the molecules are polarized and trapped in the low-field seeking

state |3〉′, the probability for a single-flip transition, as a function of impact parameter

ρ, is then

P3→2(ρ) = | − i√
2

sinχ sin 2γ|2

= 2 sin2 γ cos2 γ sin2

[

2 sin2 θ cos 2φ

kρ2 sin2 γ

]

(3.49)

while for a double-flip transition

P3→1(ρ) = |i sinχ cos2 γ|2

= cos4 γ sin2

[

2 sin2 θ cos 2φ

kρ2 sin2 γ

]

(3.50)

The ratio of single to double flip cross sections is therefore

σ3→2

σ3→1
= 2 tan2 γ =

8d2E2

δ2
(3.51)

which indicates the propensity for double-flip transitions in weak fields owing to parity

conservation, as discussed earlier.

Explicit estimation of the cross sections follows from an “incoherent” sum of prob-

abilities over distinct classical paths, i.e.

σ3→2

D2
=
∫

d~ρ P3→2(ρ) =
2π

k
cos2 γ

(

1 − (k̂ · Ê)2
)

(3.52)
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and

σ3→1

D2
=
∫

d~ρ P3→1(ρ) =
π

k
cos2 γ cot2 γ

(

1 − (k̂ · Ê)2
)

(3.53)

As with both the eikonal elastic scattering cross section (2.22) and the eikonal phase

(3.47), these inelastic cross sections vanish when the incident axis is aligned with

the polarizing field. However, as discussed in [27] the high-energy ansatz is weakest

for this collision geometry because of the dominance of states having low magnetic

quantum numbers about the field axis, resulting in severe diffraction of the m = 0

component of the incident wave.

We can also extract a formula for the elastic scattering cross section from (3.48)

to find if the incorporation of inelastic channels causes it to deviate from the result

of the eikonal approximation in [27] and Chapter 2. The amplitude can be rewritten

U3→3 = eiχ − i sinχ cos2 γ (3.54)

and reduces to eiχEi when γ → π/2 (or δ → 0). However, the elastic cross section

cannot be calculated from an incoherent sum of probabilities: since there is no way to

distinguish scattered from unscattered trajectories in the beam, the result would be

infinite. Accordingly, some analysis of the diffraction of the beam is required. This

is accomplished by substituting Ψ(~r) into the integral equation for the scattering

amplitude in the eikonal approximation as suggested in [31]:

fel(~kf , ~ki) =
k

2πi

∫

d~ρ ei~q·~ρ
[

eiχ − 1 − i sinχ cos2 γ
]

(3.55)

This differs from the elastic amplitude calculated using the eikonal approximation in

two ways: the replacement of the eikonal phase with the eigendipole phase, and the

addition of the last term.

The total cross section can then obtained from the optical theorem. Since the

last term in the scattering amplitude is real, it does not contribute; the method for

solving the integrals is the same as used in [27] and in the previous chapter:

σ3→3

D2
=

4π

k
Im(fel(~ki, ~ki)) = 2 Re

∫

d~ρ
[

1 − eiχ
]

=
4π

k sin2 γ

[

1 −
(

k̂i · Ê
)2
]

=
σEi

D2 sin2 γ
(3.56)
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Comparing with (3.52) and (3.53), the ratio of inelastic to elastic cross sections is inde-

pendent of the direction of incidence, with σ3→2/σ3→3 = sin2(2γ)/8 and σ3→1/σ3→3 =

cos4(γ)/4. In the limit of zero applied field, γ → 0, and the double flip cross section

is one-fourth of the elastic cross section.

Averaging the above results over the direction of the polarizing field, and express-

ing them as rate constants in conventional units, we find

K3→2 = vσ3→2 =
4π

3

d2

h̄
sin2 γ cos2 γ

K3→1 = vσ3→1 =
2π

3

d2

h̄
cos4 γ

K3→3 = vσ3→3 =
8π

3

d2

h̄
(3.57)

where v is the incident velocity. To set the scale, note that for a dipole moment

of 1 Debye = 0.39 a.u., K3→3 = 7.8 × 10−9 cm3/s. This corresponds to quite large

cross sections: For example, for a zero-field energy splitting of δ = 4 mK, at an

impact energy of E ′ = 10δ, a molecule of mass 20 amu has a velocity of 3000 cm/s,

corresponding to a cross section of 2.6 × 10−4 (µm)2. Results with similar scaling,

but different magnitudes, were obtained earlier by applying a unitarized version of

perturbation theory [36, 37].

Importantly, the elastic rate constant K3→3 differs from the result of the eikonal

approximation (2.23) in that it depends on the intrinsic rather than the induced dipole

moment. At high collision speeds, it is the intrinsic dipole moment that matters, and

therefore the elastic rate constant is independent of the applied field. Moreover, even

in the absence of a polarizing field the dipole-dipole interaction results in signifi-

cant rate constants for both elastic and inelastic scattering over a broad temperature

range, with the inelastic constant equal to one-quarter of the elastic constant. This

is illustrated in Figure 3.2.

Other important characteristics of the model are displayed in Figure 3.2 , includ-

ing (a) the suppression of single flip transitions at zero field due to parity conservation,

(b) the dominance of single-flip transitions at high field strengths due to their smaller

energy defect, (c) the rapid decline of inelastic processes with increasing field strength,

and (d) a total inelastic rate constant, which peaks at one-quarter of the elastic rate
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Figure 3.2: The ratio of inelastic rate constant to the elastic rate constant, Kelastic,
for various values of the aspect ratio, 2dE/δ.
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constant. For reference, with an electric field of 300 V/cm and a dipole moment of

1 Debye, a molecule with a gap of 4 × 10−3 Kelvin would have an aspect ratio of

2dE/δ = 3.6.

Copyright c© Catherine A. Newell 2010
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Chapter 4

Inelastic Collisions of Cold Rotor Dipoles

This chapter describes cold inelastic collisions of molecules in a Σ state. This type

of molecule is best modeled as a simple rigid rotor. The rotor description with ~ℓ = 1

has three different basis states and is considerably more complicated than the two-

state case. In this chapter we introduce the theoretical structure for the rotor model,

but calculations of cross sections and rate constants must be made numerically. The

numerical analysis is presented in Chapter 5. Again, the content of this chapter

was developed for inclusion in this dissertation although it was published in advance

in [40].

4.1 Rotor Dipoles

Now consider a molecule in a Σ state. In this case the electron distribution is sym-

metric around the molecular axis, and opposite parity states are introduced due to

the rotation of the molecule. Here we represent the molecule as a rigid rotor in a

polarizing field [54, 55], with Hamiltonian

H = B~ℓ 2 − dr̂ · ~E (4.1)

where ~ℓ 2 is the squared angular momentum operator of the rotor, B is the rotational

constant in units of energy, d is the intrinsic dipole moment of the molecule, and r̂

is the direction of both the intrinsic dipole moment and the internuclear axis. ~ℓ 2

has eigenvalues ℓ(ℓ + 1) (ℓ integral), and its eigenstates are the spherical harmonics,

which we denote as |ℓ,m〉. This Hamiltonian is invariant under rotations about the

field axis, so that Ê · ~ℓ is conserved, with integer eigenvalues m. ℓ is not a good

quantum number. As in Chapter 3, we use the word “intrinsic” to describe the field-

independent dipole moment of the molecule; in this case it corresponds to the charge

separation along the molecular axis in a molecule-fixed reference frame.
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Figure 4.1: A model rotor dipole constructed to second-order in the polarizing field
E , for a rigid rotor of rotational constant B. Red lines show states with m = 0, blue
m = ±1, and green m = ±2. The three odd-parity states (ℓ = 1;m = 0,±1) form a
polar multiplet of energy defect ∆. The splitting is produced by electric field coupling
states with different ℓ but the same m.
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The energy spectrum of (4.1) results from the Stark effect [28] and is readily con-

structed to second order in the polarizing field by elementary perturbative methods.

The eigenstate corresponding to ℓ = 0 as E → 0 does not show Stark splitting: for

ℓ = 0 there is only one possible m—namely m = 0—and it is conserved. The state

remains nondegenerate, but molecules in this state are high-field seeking in the pres-

ence of an electric field. Since we require our trapped molecules to be in a low-field

seeking state, we need to consider the states that correspond to ℓ = 1 as E → 0. In the

presence of an electric field the original odd-parity ℓ = 1 state splits into three states

which are a mixture of even and odd parity states. Because the magnetic quantum

number m is conserved, these states are denoted by |m〉. They consist of a single

low-field seeking state

|0〉 =

[

|1, 0〉 − dE
2B

√
3

(

|0, 0〉 − 1√
5
|2, 0〉

)

+ · · ·
]

(4.2)

with energy

E0 = 2B +
d2E2

10B
+ · · · (4.3)

and two degenerate (high-field seeking) states

| ± 1〉 =

[

|1,±1〉 +
dE

4B
√

5
|2,±1〉 + · · ·

]

(4.4)

of energy

E±1 = 2B − d2E2

20B
+ · · · (4.5)

In the presence of a field, these three states form a polar multiplet, with an energy

gap of

∆ =
3d2E2

20B
(4.6)

as displayed in Figure 4.1. We will assume that collision energies are sufficiently low

that transitions cannot be made to any states corresponding to ℓ = 0 or ℓ = 2 as

E → 0. For illustration, the physical attributes of a few molecules are listed in Table

4.1 at a presumed electric field strength of 1kV/cm.
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Let the electric field be aligned with the z-axis. Then the dipole operator in the

basis of our three states (ordered |1〉, |0〉, | − 1〉) is

~d′ = dr̂′ = µ





ẑ







1/2 0 0
0 −1 0
0 0 1/2





 + ǫ̂−







0 5/4 0
0 0 −5/4
0 0 0







+ ǫ̂+







0 0 0
5/4 0 0
0 −5/4 0











 (4.7)

where we use standard polarization unit vectors ǫ̂± = (x̂± iŷ)/
√

2, and where

µ ≡ d2E
5B

(4.8)

is the magnitude of the induced dipole moment of the low-field seeking state |0〉. Note

that

µ′ = −dH
′

dE =







µ/2 0 0
0 −µ 0
0 0 µ/2





 (4.9)

These results indicate that rotor dipoles are both far more complex and far simpler

than the two-state dipoles. They are more complex because the component matrices

dx,dy, and dz do not commute with one another: it is not possible to construct

eigendipole states because the components of ~d′ cannot be simultaneously diagonal-

ized. (Compare 4.7 with 3.4.) As a result, the dipole-dipole interaction operator will

not commute with itself at different times. To see why they are simpler, compare the

energy representations of the dipole operators, (3.8) and (4.7). Since ~d′/µ is entirely

independent of the polarizing field for rotor dipoles, they will display universal be-

havior over a much larger range of field strengths, i.e. there is no analogue to the

aspect ratio δ/2dE for rotor dipoles.

4.2 The States of Two Rotor Dipoles

Nine direct-product states can be formed from a system of two rotor dipoles. The

eigenenergies of the noninteracting Hamiltonian

H(0) =
(

B~ℓ21 − dr̂1 · ~E
)

+
(

B~ℓ22 − dr̂2 · ~E
)

(4.10)
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are displayed in Figure 4.2: The spectrum separates into states which are either even

or odd under exchange of the locations of the two dipoles. The even states are

|1〉 = |0, 0〉 E1 = 4B + 4∆/3

|2〉 = (1/
√

2) (|1, 0〉 + |0, 1〉) E2 = E1 − ∆

|3〉 = (1/
√

2) (| − 1, 0〉 + |0,−1〉) E3 = E1 − ∆

|4〉 = |1, 1〉 E4 = E1 − 2∆

|5〉 = (1/
√

2) (|1,−1〉 + | − 1, 1〉) E5 = E1 − 2∆

|6〉 = | − 1,−1〉 E6 = E1 − 2∆ (4.11)

while for the odd states:

|7〉 = (1/
√

2) (|1, 0〉 − |0, 1〉) E7 = E1 − ∆

|8〉 = (1/
√

2) (| − 1, 0〉 − |0,−1〉) E8 = E1 − ∆

|9〉 = (1/
√

2) (|1,−1〉 − | − 1, 1〉) E9 = E1 − 2∆ (4.12)

where |n〉 is now an arbitrary label. Inelastic collisions can occur among the odd

states, but the odd states are not coupled to the low-field seeking state |1〉, which

we choose as the initial state. We therefore consider transitions among the six even

states. The energy gaps between |1〉 and states |2〉 through |6〉 is either ∆ or 2∆.

States |2〉 and |3〉 are degenerate with energy E1 −∆, and states |4〉, |5〉, and |6〉 are

degenerate with energy E1 − 2∆.

Since we will neglect transitions to states outside of the dipole multiplets, it will

be convenient to shift all energies by E1, and so to remove it from the equations of

motion which follow.

4.3 The Schrödinger Equation in Dimensionless Form

The Schrödinger equation for our system of two rotor dipoles can be written (in the

energy representation)

[

− h̄2

2M
∇2

~R
− (E ′1 + ∆A′)

]

ψ(~R)′ = − µ2

R3
B′(R̂) Ψ(~R)′ (4.13)
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Physical Parameter NaF KF
mass (amu) 42 58
d (debye) 8.16 8.59
B (K) 0.625 0.401
µ (debye) 0.516 0.891
∆ (K) 9.38e-3 1.62e-2
D (µm) 8.35e-2 3.44e-1
ED (K) 3.31e-6 1.41e-7
∆/ED 2.83e+3 1.15e+5
dE/B 0.316 0.519

Table 4.1: Physical parameters of two molecules with rotor-like spectra. The last
six entries for each molecule are field dependent; values are given assuming a field of
strength E = 1 kV/cm.

E1 = 4(B+∆/3) 

∆ 

∆ ∆ 

1 

2 
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3 
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8 

Symmetric States Anti- Symmetric States 

Figure 4.2: The energy spectrum of two noninteracting rotor dipoles. The initial
state, in which both dipoles are weak-field seekers, is labeled E1. Only symmetric
states are coupled to it by dipole-dipole interactions.
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where E ′ = E − 4B − 4∆/3,

A′ =





















0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2





















(4.14)

and

B′ =
1

µ2

(

~d1 · ~d2 − 3(~d1 · R̂)(~d2 · R̂)
)

(4.15)

B′ is a cumbersome 6 × 6 matrix which can be calculated using (4.7); it need not be

evaluated explicitly at this time. A key feature of the model, however, is that after

the extraction of µ2 from the dipole-dipole interaction, B′ depends only on R̂ and on

the orientation unit vectors (ẑ, ǫ̂±) of the dipole states, where ẑ is the direction of the

polarizing field.

Transforming to dipole units, ~R = D~r and E ′ = EDǫ, precisely as done in the

previous chapter, gives the dimensionless form of the Schrödinger equation:
[

−1

2
∇2

~r −
(

ǫ1 +
∆

ED

A′
)]

Ψ(~r)′ = − 1

r3
B′(r̂) Ψ(~r)′ (4.16)

When measurements are made in dipole units, and contributions from close approach

of the molecules are neglected, the collision dynamics of a pair of rotor dipoles are

independent of the reduced mass, and depend solely on the dimensionless ratio ∆/ED.

4.4 Application of the High-energy Approximation

Free relative motion of the rotors, far from the interaction region, is characterized by

three distinct wave numbers

k = k1 =
√

2ǫ

k2 = k3 =

√

2
(

ǫ+
∆

ED

)

≈ k1 +
∆

k1ED
+ · · ·

k4 = k5 = k6 =

√

2
(

ǫ+
2∆

ED

)

≈ k1 +
2∆

k1ED

+ · · · (4.17)

Again, the minimal requirement for the onset of the cold temperature regime is that
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the kinetic energy of relative motion in the initial state (assumed to be the uppermost

state with two weak-field seekers, |0, 0〉) is

E ′ > 2π2ED (4.18)

To extract a common wave number in all channels, however, we make the more

stringent requirement E ′ >> ∆.

These assumptions lead, according to the prescription given in Chapter 2, to the

time-dependent Schrödinger equation

i
∂

∂t
ψ(~k, ρ̂, τ, t)′ =

[

− ∆

ED
A′ +

T′τ 2 − 3C′tτ + L′t2

k3(τ 2 + t2)5/2

]

ψ(~k, ρ̂, τ, t)′ (4.19)

where T′,C′ and L′ are now matrices of the operators

T =
1

µ2

[

~d1 · ~d2 − 3(ρ̂ · ~d1)(ρ̂ · ~d2)
]

C =
1

µ2

[

(ρ̂ · ~d1)(k̂ · ~d2) + (k̂ · ~d1)(ρ̂ · ~d2)
]

L =
1

µ2

[

~d1 · ~d2 − 3(k̂ · ~d1)(k̂ · ~d2)
]

(4.20)

Using (4.7) these may be evaluated explicitly. They are independent of d, µ, and

E and depend only on the orientations of the dipoles relative to the field and the

incident direction.

The ∆/ED term is negligible at sufficiently high energies, at which point (4.19)

has no remaining parameters and collisions of rotor dipoles become truly universal.

The energy at which this occurs varies from one type of molecule to another. To

illustrate this transition to the high-energy limit, we integrated (4.19) numerically

for the specific collision geometry in which the angle of incidence relative to the po-

larizing field is 45◦. For each impact parameter ~ρ, starting in state |1〉, probabilities

for transitions among the 6 states of the model were calculated using Runge-Kutta

propagation (see Chapter 5). These were then integrated over all impact parame-

ters to obtain inelastic cross sections and rate constants. Results for single-flip and

double-flip transitions are shown in Figures 4.3 and 4.4, respectively, where they are

compared with similar calculations that neglect the ∆/ED term in (4.19). Note that
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at sufficiently high incident energies the ∆/ED term in (4.19) is indeed negligible.

Then

i
∂

∂t
ψ(~k, ρ̂, τ, t)′ = +

T′τ 2 − 3C′tτ + L′t2

k3(τ 2 + t2)5/2
ψ(~k, ρ̂, τ, t)′

≡ V′(t)ψ(~k, ρ̂, τ, t)′ (4.21)

which is parameter-free within the three-state rotor model.

We can see now how the inability to construct an eigendipole representation leads

to more complicated dynamics than in the case of the two-state dipoles. While we

can still express ψ(~k, ρ̂, τ, t)′ as

ψ′(~k, ρ̂, τ,+∞) = U′(+∞,−∞)ψ′(~k, ρ̂, τ,−∞) (4.22)

because the time dependence of the interaction does not separate from geometric

factors, V′(t) cannot be rendered in diagonal form at all times, and it is no longer

meaningful to write the solution as

U′(+∞,−∞) = exp
[

−i
∫ +∞

−∞
dt V(t)

]

(4.23)

Results of a numerical solution to (4.21) will be presented in the following chapter. At

this point we will present an approximation method that not only closely approaches

the exact results, but also illustrates the impulsive nature of the collision process.

4.5 Sudden limit

One approach to the solution of (4.21) is to construct the Magnus [56] expansion to

the time-evolution operator

U′(t, t0) = expM′(t, t0) (4.24)

in which M′ is a matrix that is expressed as a series

M′(t, t0) = −i
∫ t

t0
dt1 V′(t1) −

1

2

∫ t

t0
dt1

∫ t1

t0
dt2 [V′(t1),V

′(t2)] + · · · (4.25)

and where higher order terms in the series involve higher order commutators of the

potential matrix with itself at different times. The expansion is predicated upon the
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Figure 4.3: The sum of the rate constants for single flip transitions plotted versus the
collision velocity for KF molecules in a 1 kV/cm electric field. The calculation is for
a particular collision geometry (the incident beam and the polarizing field form an
angle of 45◦), and shows the high-velocity convergence to similar calculations which
neglect the energy gap between the target states.
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notion that for interactions that are strongly pulsed or for short periods of propagation

(t− t0) successive terms in the expansion are of one higher order in the pulse width.

That allows the expansion to be terminated at a specified order without compromising

the unitarity of U′.

Consider now evaluating the Magnus series over the entire duration of the collision

process, from t = −∞ to t = +∞. The scaling of successive terms is elementary: The

N th term contains N powers of the potential, and N factors dt. After setting t = τσ

for each time variable and extracting all powers of τ and k from the various integrals,

one finds that the N th term is proportional to (1/kρ2)N . Since we are interested here

only in the high-energy limit, this suggests retaining only the first term in the series,

which is known as the sudden approximation [56], given by

U′(−∞,∞) = exp
{

−i
∫ ∞

−∞
dt V′(t)

}

= exp

{

−i2(2T′(θ, φ) + L′(θ, φ))

3kρ2

}

(4.26)

where we note explicitly the dependence on the direction of the polarizing field (3.45).

Within the sudden approximation, we see that complicated transition probabilities

result because the sudden eigenstates evolve freely in time while energy eigenstates

are prepared and detected in experiments. Accordingly, U′ is first evaluated by

diagonalizing and exponentiating the 2T′ + L′ operator for each orientation of the

field. The eigenvectors of the diagonalization are then used to transform back to

the energy representation for the calculation of transition amplitudes, precisely as

indicated in Section 2.

Results of these sudden approximation calculations are discussed below, where

they are compared with exact results obtained by direct numerical integration of

(4.21) for each impact parameter and collision geometry.

4.6 Results

The universal characteristics of collisions of rotor dipoles emerge not from the high-

energy limit, but directly from the dimensionless form of (4.13), which indicates that

our calculated cross sections depend only on the ratio ∆/ED. Furthermore, even this
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Figure 4.5: Universal dimensionless angular distributions of inelastic rate constants
of rotor dipoles, plotted as a function of the angle of incidence relative to the field
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dependence vanishes in the high-energy limit. Let us consider what this high-energy

universality implies for our calculated cross sections and rate constants. By changing

variables to t = τσ, one can see directly that (4.21) depends only on the combination

kρ2. Since cross sections are obtained by integrating dimensionless probabilities over

d~ρ = ρ dρ dφ a change of variables s = kρ2 yields (1/2k)
∫

ds P (s). Accordingly,

all cross sections must scale as 1/k at sufficiently high velocities, either in the exact

solutions of (4.19) or in the sudden approximation; i.e. for E ′ >> ∆

σ1→j

D2
=
C1→j(cos θ)

k
(4.27)

where C is a dimensionless function of the angle between the polarizing field and the

beam, cos θ = k̂ · ẑ. This implies rate constants (for final states j 6= 1) in conventional

units (with dimensions [L3/T ])

K1→j =
h̄K

M
σ1→j =

µ2

h̄
C1→j(cos θ) =

d2

25h̄

[

dE
B

]2

C1→j(cos θ) (4.28)

Note that the rate constants all vanish in the absence of a polarizing field, in contrast

to the two-state dipoles of Section 2. For the molecules listed in Table 4.1, assuming a

polarizing field of 1 kV/cm, µ2/h̄ in (4.28) is 2.6×10−10 cm3/s for NaF and 2.75×10−10

cm3/s for KF.

The variation of inelastic rate constants with angle of incidence relative to the

field, embodied by universal dimensionless coefficients C1→j(cos θ), is shown in Figure

4.5. The sum of the coefficients for single-flip and for double-flip transitions is plotted

versus the angle of incidence, revealing a preponderance of double-flip processes for all

geometries. Note that the sudden approximation agrees qualitatively with the exact

numerical results, and agrees quantitatively within 10% when averaged over the angle

of incidence; thereby illustrating the impulsive nature of these inelastic processes.

Figure 4.5 also reveals another qualitative difference with the two-state dipoles

discussed in Chapter 3. While all cross sections (elastic and inelastic) vanish when

k̂i · Ê = 1 for two-state dipoles, the two-flip cross section for rotor dipoles actually

peaks for this collision geometry.

Copyright c© Catherine A. Newell 2010
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Chapter5

Computational Methods and Results for Rotor Dipoles

As discussed in the previous chapter, since the Hamiltonian for the rotor model cannot

be diagonalized at all times, an exact solution requires numerical methods. Well-

established techniques were employed to calculate cross sections and rate constants.

We elaborate here on the methods and compare the results from exact, integrated

solutions of equations (4.19) and (4.21), the sudden approximation, and a unitarized

perturbation approximation. The vast bulk of the author’s efforts in the work for this

dissertation was expended on numerical analysis.

5.1 Preliminaries

To facilitate the solution, we first express (4.19) in the interaction picture where

ψI(~k, ρ̂, τ, t)
′ = exp

{

i
∆

ED

A′t
}

ψ(~k, ρ̂, τ, t)′ (5.1)

This leads to the interaction Hamiltonian

HI(t) = e
−i ∆

ED
A′

[

T′τ 2 − 3C′tτ + L′t2

k3(τ 2 + t2)5/2

]

e
i ∆

ED
A′t

(5.2)

and the modified Schrödinger equation

i
∂

∂t
ψI(

~k, ρ̂, τ, t) = HI(~k, ρ̂, τ, t)ψI(
~k, ρ̂, τ, t) (5.3)

The interaction picture is appropriate for an impulsive potential such as the dipole-

dipole interaction. Expressed in this way, all amplitudes will be constant in time

before and after the collision ”pulse”, i.e. (d/dt)〈· · · |ψI(t)〉 → 0 as |t| → ∞.

It is also useful to use the collision angle

α = arctan t/τ , (5.4)

−π/2 ≤ α ≤ π/2
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rather than the time as the independent variable. Schrödinger’s equation becomes

i
∂

∂α
ψI(α) = HIψI(α) =

1

k3τ 2
e
−i ∆

ED
A′τ tan α

h(α)e
i ∆

ED
A′τ tan α

ψI(α) (5.5)

h(α) = cosα
[

T cos2 α− 3C cosα sinα+ L sin2 α
]

(5.6)

Note that h(α) is independent of both τ and k. When we neglect the ∆/ED term

this equation simply becomes

i
∂

∂α
ψI =

1

k3τ 2
h(α)ψI(α) (5.7)

The resulting dimensionless probability amplitudes will be functions of τ , φ, and θ.

Cross sections are generally defined in terms of the scattering of a uniform beam

of molecules by a fixed target. This requires integrating the probabilities P = |ψ|2

over the area elements d~ρ = ρ dρ dφ = k2τ dτ dφ. To get a total cross section

that accounts for collisions from all directions in a trapped ensemble then requires an

average over θ. Thus

σ =
k2

π

∫

τ dτ dφ dθ P (5.8)

5.2 Exact Numerical Integration

At this point it is possible to proceed to a numerical solution. The first method at-

tempted was fourth-order Runge-Kutta propagation [57]. In this method the interval

−π/2 ≤ α ≤ π/2 is divided into a sufficient number of steps. For each geometry and

for each value of τ , the computational routine then propagates the solution at each

step in the interval beginning in the initial state |1〉 at α = −π/2. In practice it was

found that the solution was very erratic at small τ , and it was necessary to manually

adjust the number of steps in θ from a maximum of 40, 000 at very small τ to a

minimum of 1, 000 at large values of τ . This produced data of probability amplitude

versus collision time τ for both (5.5) and (5.7).

Figures 5.1 and 5.2 show results for dimensionless wave numbers k = 4600 and

46,000, which correspond to velocities of 2900 and 29,000 cm/s or collision energies
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Figure 5.1: τ · probability vs. τ for k = 4600. Results are from the exact numerical
solution of Schrödinger’s equation with ∆/ED = 1.15 × 105 and ∆ set artificially to
0. The collision geometry used is for the incident beam 45◦ from the polarizing field
and the impact parameter at an azimuthal angle of 45◦.
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Figure 5.2: τ · probability vs. τ for k = 46, 000. Results are from the exact numerical
solution of Schrödinger’s equation with ∆/ED = 1.15 × 105 and ∆ set artificially to
0. The collision geometry used is for the incident beam 45◦ from the polarizing field
and the impact parameter at an azimuthal angle of 45◦.
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of about 1 K and 100 K. The results shown are for ∆/ED = 1.15× 105 and for ∆ set

artificially to 0. The collision geometry used is for the incident beam 45◦ from the

polarizing field and an azimuthal angle for the impact parameter of 45◦. The results

are plotted as (τ · P ) vs. τ . This form allows one to visualize the function that is

actually integrated to produce the cross section. Realize that the probability alone

diverges for small τ , but because smaller impact parameters make a correspondingly

small contribution to the cross section, the integrand does actually converge for τ → 0.

Figure 5.2 is above the high-energy limit discussed in Chapter 4. Universal

collision behavior is evident at this energy, and one can see that there is no difference

between the results for finite ∆ and ∆ = 0. The preponderance of double over single

flip transitions is clearly noticeable in the plot. Notice that there is a distinct peak

for both one and two-flip transitions after which the probability decays exponentially.

Prior to the peak value, the probability oscillates rapidly below the unitarity limit,

i.e. P = 1 as τ becomes small. It is this rapid oscillation that makes the numerical

solution difficult and time consuming.

Figure 5.1 is included for reference. Here, the collisions are below the high-energy

limit, and one can see that there is a difference between the finite ∆ and ∆ = 0 cases.

As expected from figures 4.3 and 4.4, peak single flip transitions increase and double

flip transitions decrease as collision energy decreases below the high-energy limit.

After calculating the probability amplitudes, results were integrated over tau and

the azimuthal angle using Simpson’s Rule for the ∆ = 0 case in the high-energy limit.

When divided by the square of the dipole length D and multiplied by k, these results

give C, the universal dimensionless coefficient discussed in Chapter 4 and shown in

Figure 4.5.

5.3 Sudden Approximation

The sudden approximation discussed in Chapter 4 offers two advantages over exact

numerical solution. First, it significantly reduces computing time with relatively

minor qualitative and quantitative differences in results. Secondly, it demonstrates

the impulsive nature of dipole-dipole collisions at cold temperatures.
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Computational analysis using this approximation is straightforward. The require-

ment is to use the time evolution operator 4.26 to find the probability amplitude for

each state at t = ∞ given the initial state |0〉 at t = −∞

〈i|ψ(∞)〉 = 〈i|U(−∞,∞)|0〉 (5.9)

If we let |ν〉 be the basis of eigenstates of the argument of the time evolution operator

〈ν|
∫ π/2

−π/2
dα HI(α)|ν ′〉 = νδνν′ (5.10)

then

〈i|ψ(∞)〉 = Σ〈i|ν〉e−iν〈ν|0〉 (5.11)

We proceed by diagonalizing
∫ π/2
−π/2 dα HI(α) to find the eigenvalues ν and eigen-

vectors |ν〉. The computation of 〈i|ψ(∞)〉 then consists of converting the initial state

|0〉 to the basis |ν〉 and multiplying each term by e−iν . Translating the resulting vector

back into the original basis gives the probability amplitude for each state, 〈i|ψ(∞)〉.
We then follow the same procedure as in the exact case to calculate C as a function

of incident angle.

Figures 5.3 and 5.4 compare results respectively for sudden approximation with

∆/ED = 1.15 × 105, the sudden approximation with ∆ = 0, and the exact solution.

The figures show single-flip and double-flip cases respectively. The calculations are

for k = 46, 000, which is above 2π2ED, the minimal energy for the onset of the cold

temperature regime. One can see that, as with the exact solution, at high energies

the energy gap ∆ makes a negligible contribution to the probabilities. Although the

exact solution and the sudden approximation do not give identical results, as noted

in Chapter 4, they are both qualitatively and quantitatively similar. Double flip

transitions predominate in both cases, and the exact and sudden probability plots

share the general shape of a distinct peak with exponential decay at high τ and rapid

oscillation below the unitarity limit at low τ .

Figures 5.5 and 5.6 show the dependence on the angle between the incident di-

rection and the electric field for one-flip and two-flip cases respectively in the sudden
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Figure 5.3: Sudden approximation for single flip transitions. The sudden approxima-
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Figure 5.4: Sudden approximation for double flip transitions. The sudden approxi-
mation solution with ∆/ED = 1.15 × 105 and ∆ set artificially to 0 are compared to
the exact solution. k is 46,000.
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Figure 5.5: Single flip transitions in the sudden approximation with varying angle of
incidence θ relative to the electric field direction. k is 46,000.
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Figure 5.6: Double flip transitions in the sudden approximation with varying angle
of incidence θ relative to the electric field direction. k is 46,000.

55



approximation. Notice that the sudden approximation gives exactly 0 probability

for single flip transitions for θ = 0 when the incident direction is aligned with the

field direction while the double flip case is maximum. As the angle between ~k and ~E
increases from 0 to π/2 the probability of one flip transitions increases while the prob-

ability for double flip transitions decreases. This reproduces the angular dependence

seen in Figure 4.5.

5.4 Perturbation Theory

An additional analysis of the dipole-dipole collision problem was made using a uni-

tarized perturbation method [36]. The sudden approximation was applied because

the collision process between polar molecules was anticipated to be impulsive. The

sudden approximation appears to give good results, but to be thorough, we wished

to confirm that indeed the interaction was indeed more impulsive than perturbative

in nature.

Perturbation theory relies on the idea that the interaction term V of the full

Hamiltonian is small in comparison to the kinetic and internal energy terms. Then

the actual wave function varies little from the initial state at any time during the

collision process and we can take the solution at t = ∞ to be

〈i|ψ(∞)〉 = 〈i| − i
∫ π/2

−π/2
dα HI(α)|0〉 (5.12)

where HI is defined in 5.5. As can be seen from the form of HI , the probability P will

be proportional to 1/τ 2, so τ · P will be divergent as τ → 0. To avoid this violation

of unitarity, when the calculated probability exceeded 1, it was simply replaced by

1. This choice would be expected to yield poor results at small impact parameters

(small τ) and to overestimate scattering by a factor of at least two. While an arbitrary

choice, it has precedent in [36]. This method at least provides an upper bound on

the probablitiy amplitude for small τ and demonstrates the exponential decay of

amplitude at higher energies where the potential does become perturbative.

Figure 5.7 compares plots of τ ·P at k = 46, 000 for the perturbation method and

for the sudden approximation. Perturbation theory gives correctly the exponential
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decay at large τ , but as expected, gives a large overestimation of transition probability

at small τ . This results in cross sections approximately twice as large as those given

by the exact solution and the sudden approximation. This can be seen in the plot of

C vs. incident angle shown in Figure 5.8. On the other hand, perturbation theory

still demonstrates many of the qualities of the other methods. Double-flip transitions

are still found to be dominant except near θ = π/2 where perturbation theory shows

that single flip transitions become slightly dominant. At θ = 0 as with the sudden

approximation, perturbation theory shows that only double flip transitions occur.

Copyright c© Catherine A. Newell 2010
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Figure 5.8: Universal dimensionless angular distributions of inelastic rate constants
of rotor dipoles, plotted as a function of the angle of incidence relative to the field
axis. The dashed curves were calculated in sudden approximation, the solid curves
are exact numerical results, and the dotted lines give perturbation theory results.
Rate constants are obtained by multiplication of these curves by µ2/h̄ for the dipole
of interest.
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Chapter 6

Summary and Conclusions

It is the complexity of real molecules that makes them exciting from a scientific

point of view and gives them so much promise for practical applications. The two

simple models presented in this dissertation do not even begin to do justice to reality.

They are, however, a starting point.

We began this investigation in the hope that a simple model would produce a

simple result useful to experimentalists as a rule of thumb. There was no intent to

supply detailed results about a particular type of molecule to be used in a particular

experiment. Close-coupling calculations could be, had been, and will continue to be

applied to the problem of molecular scattering to give accurate results for particular

molecular species under particular conditions, but they are time consuming, unwieldy,

and give unique results highly tailored to precise circumstances. Experimentalists

sometimes just wish to have a way to determine approximate scattering rates. They

want general results to help them choose among different molecular species when

planning an experiment, to give them a sense of how difficult it might be to keep

a sample stable in a trap, to provide guidance in deciding if a new idea is worth

pursuing.

Initially, though, the project was intractable. The equations depended upon a

lot of parameters, and it was difficult to identify which variables were responsible

for different behaviors. Simplicity was elusive. Yet as the volume of numerical data

began to pile up, we recognized similar patterns, tantalizing clues that there was

indeed universal behavior hidden beneath the complexity. Eventually it became clear

that translating the equations into dimensionless form was even more important than

applying the high-energy limitation for cold temperatures.

We initially began working with the somewhat more complicated rotor model; the

two-state model was added much later. We recognized that the description of the
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two-state model would be different but that having fewer basis states, it would be

easier. The simplicity of the solution to the two-state molecule and the magnitude of

the difference in scattering behavior at cold temperatures depending on the types of

molecules were surprising, however. Most importantly, the two-state model, with its

explicit solution, shows that cross sections depend on the permanent dipole moment

for the two-state model and that inelastic scattering is greatest at zero field. For

the rotor molecule, rate constants increase as the square of the applied field and the

dependence is upon the field-dependent induced dipole moment, which means that

no inelastic scattering occurs at zero field. In addition, the angular dependence of

the cross sections is totally different for the two models.

It would be interesting to see if the results of these calculations are useful for the

purpose intended. In experiments with molecules whose Stark spectrum is accurately

descibed by the models, the rate constants and cross sections described in this dis-

sertation should be accurate. Many molecules will have more complicated spectra,

however, and it is possible—perhaps even likely—that the complex internal structure

of most molecules is, in fact, not negligible even for gross calculations of scattering

behavior. No doubt, caution should be exercised in accepting the utility of the results

even as a general guide. It would be worthwhile to explore the effects of increasing

layers of complexity such as adding more rovibrational states or including fine or hy-

perfine structure. Will it be possible to assign different molecular species to groups

that share certain general behaviors, or when it comes down to it, is every molecule

unique and unclassifiable for the purpose of low temperature inelastic collisions?

Perhaps the most important conclusion to be drawn from this work is that the

magnitude of a molecule’s dipole moment is not the only characteristic that should

be considered when an experiment is being planned. Molecules can be divided into

at least two categories—those with a Λ-doublet and those in a Σ electronic ground

state—and perhaps others. In regard to inelastic collisions, molecules in the two

categories studied in this dissertation behave very differently at cold temperatures.

Inelastic cross sections and angular distributions for the two types of molecules are

very unlike each other regardless of the dipole moment, so it is to be expected that
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cooling and trapping methods will have to be different for the different categories of

molecule.

One hopes that the basic method applied here will turn out to have application

to more complex and realistic systems. It is expected that a considerable amount

of research will still be done at cold temperatures where the high-energy limit will

apply. Furthermore, the method of dimensional analysis can be expected to ferret out

universal behavior that might otherwise be hidden under a multitude of parameters.

Ultimately, it is the methods that have been applied here rather than the models

themselves that hold the most promise for the problem of cold dipolar scattering.

Copyright c© Catherine A. Newell 2010
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