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ABSTRACT OF THESIS 
 
 
 
 

APPLICATION OF THE KALMAN FILTER ON FULL TENSOR GRAVITY DATA AROUND 
THE VINTON SALT DOME, LOUISIANA 

 
Full tensor gravity (FTG) data are known for their high resolution but also for higher 

noise in its components due to the dynamic nature of the platform used for data 
acquisition. Although a review of the literature suggests steady increase in the success of 
gravity gradiometry, we still cannot take advantage of the full potential of the method, 
mostly because of the noise with the same amplitude and wavenumber characteristics as 
the signal that affects these data. Smoothing from common low pass filters removes small 
wavelength features and makes it difficult to detect structural features and other density 
variations of interest to exploration. In Kalman filtering the components of the FTG are 
continuously updated to calculate the best estimation of the state. The most important 
advantage of the Kalman filter is that it can be applied on gravity gradiometry 
components simultaneously. In addition, one can incorporate constraints. We use the 
Laplace’s equation that is the most meaningful constraint for potential field data to 
extract signal from noise and improve the detection and continuity of density variations. 
We apply the Kalman filter on the FTG data acquired by Bell Geospace over the Vinton 
salt dome in southwest Louisiana. 
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CHAPTER 1. INTRODUCTION 

 

For over a century, the Gulf Coast region of the United States has been an active 

producer of oil and gas. Salt dome flanks are one of the most important features in the 

area since they are one of the best known traps of reservoirs in the area (Harrison et al., 

1970; Branson, 1991). The first hydrocarbon exploration started with drilling a well at 

any location that exhibited evidence of a salt dome, such as a depression in the landscape 

or any kind of hydrocarbon seepage at the surface (Owen, 1975). Later, in the 1950’s, the 

exploration method converted to seismic reflection surveys which made subsurface 

imaging possible (Fails, 1995). However, like any other method, seismic exploration has 

some limitations. The issue is that near salt domes due to the steeply dipping salt flanks 

that scatter or absorb seismic energy, imaging becomes difficult (Coburn, 2002).  

Salt domes in the Gulf Coast can continue to produce hydrocarbons. Based on the 

United States Geological Survey estimation, more than 9 billion cubic feet of gas have 

not been recovered from the region (Swanson and Karlsen, 2009). But exploration of 

these reservoirs requires more sophisticated geophysical techniques, such as Vertical 

Seismic Profiling (VSP) (Constance et al., 1999; Kisin, 2003), well log data (Coker, 

2006), conventional gravity (Eti, 2004), and gravity gradiometry (Prutzman, 1998; 

O’Brien et al., 2005). 

Airborne Full Tensor Gravity (FTG) has been proved to be the “preferred technology” 

in both mineral and petroleum exploration projects (Dransfield et al., 2010). It is used in 

hydrocarbon exploration by detecting salt domes, fault blocks or structural closures 

(Murphy and Dickson, 2009). The FTG data collected by Bell Geospace over the Vinton 

Salt dome was as an attempt to measure the gravity field for use at the reservoir level 

(Ennen, 2012). 

Vinton Salt Dome 
The Vinton salt dome has characteristics that made it a typical Gulf Coast salt dome so 

its results can be extended to previously unmapped areas. It is one of the eleven domes in 

the Gulf Coast Region that have salt overhangs (Judson and Stamey, 1933). So if 

applying the Kalman filter on gravity gradiometry over the Vinton dome can be used to 

image reservoirs, then it can be a good sign that the filter can be used on other domes as 
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well. It means that extending field life in the area would be possible (Cossey and Jacobs, 

1992; Hoeve and Borowski, 1988).  Detecting Faults and fractures in the Vinton dome is 

considered critical because formations adjacent to the dome have been fractured through 

faulting and are the focuses of companies trying to find resources to produce in the 

region. On the other, it has been investigated by different geophysical techniques. So, the 

result of filtered FTG can be compared with the previous techniques.  

Full Tensor Gradiometry (FTG) Method  

A review of literature suggests steady increase in the success of gravity gradiometry 

and the method is now accepted as an exploration tool (DiFrancesco et al., 2009).  While 

Gravity potential can be represented in terms of its components Gx, Gy and Gz 

(Stasinowsky, 2010), gradiometers measure the spatial rate of change in these 

components in all three directions and, the term, tensor refers to the elements of the rate 

of the change of the gravity field or gradients of the components. With this explanation, it 

can be easily concluded that gravity gradiometry samples all nine components of the 

gradient for the gravity field (Bell et al., 1997). As the tensor of full gradiometry is 

symmetric, just six components out of nine are unique. Also, considering Laplace’s 

equation, only five of the components are independent.  

The Kalman filter 

The Kalman filter which is introduced by R.E. Kalman and was first published in a 

mechanical engineering journal has been used for five decades. Navigating the Apollo 

spacecraft, predicting short-term stock market fluctuations, and estimating location with 

relatively inexpensive hand-held receivers (global positioning systems) are some of the 

broad applications of the filter. It is recognized as the best performing filter in many 

disciplines. The Kalman filter is believed by some to be the second most important 

algorithm technique ever conceived after the Fast Fourier Transform (Zarchan and 

Musoff, 2000); some even consider it as the greatest discovery of the twentieth century 

(Haykin, 2001).  
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This well-known recursive data processing technique attempts to minimize the mean 

of the squared error between the observations and estimations, not depending on 

wavenumber-based separation of signal and noise. (Maybeck, 1979).   

In this study, the components of the FTG data are processed with the standard and 

extensions of the Kalman filter. All six components will be processed except in 

constrained Kalman filter that the five independent ones are filtered. 

Objective of Study 

The focus of this thesis is to understand how the Kalman filter works, how to find the 

best parameters of the Kalman filter that can reduce the noise, the advantage of Kalman 

filter variations and then implement the filter to improve the signal-to-noise ratio of 

components of Full Tensor Gradiometry (FTG) data of Vinton dome area.  

The other target of this study is to detect and map possible faults and fractures near the 

flanks of the Vinton salt dome using gravity gradiometry data. Mapping these features 

may provide a better understanding of the Vinton salt dome system, and can be applied to 

other salt domes in the Gulf Coast Region. 
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CHAPTER 2. STUDY AREA 

 

Study area 
Vinton dome is located 5 kilometers southwest of Vinton in Calcasieu Parish, 

Louisiana. The morphology of the dome is a minor depression within a raised mound 

filled by Gray Lake (Barton, 1933). Vinton salt dome has accumulated hydrocarbons in 

different types of reservoirs that can be associated with salt domes. It has trapped oil and 

gas in caprock, fault blocks, steeply dipping salt flanks as well as beneath salt overhangs 

(Owen, 1975). Discussion about its occurrence still is unfinished. Some geologists 

believe that it is an attached offshoot of the Louann salt (Coker, 2006) while others 

assume it was emplaced in the Eocene and is not attached to the Louann salt (Eti, 2004). 

The dome is cut by a fault system.  

Early clues that implied the evidence of the salt dome and the probable hydrocarbon 

resources were Oil seepages, sour water and the topographic depression (Thompson and 

Echelberger, 1928, Paine et al., 1968).  

Miocene Fleming and Oligocene Vicksburg formations are the major productive 

formations in the dome. 10 million cubic feet of gas from a depth of 1,060 meters was 

excavated from the one of the largest gas wells in 1911 (Thompson and Eichelberger, 

1928). 

 
 

Figure  2-1: Survey location, Vinton dome location, Northwest Golf of Mexico and Southwest of 
Louisiana. 
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History of the studies  

Over a century, the Gulf Coast region of the United States has been an important area 

in producing oil and gas. Salt dome flanks, are one of the traps that lots of reservoirs in 

the area are accumulated in (Harrison et al., 1970; Branson, 1991). Exploration in the 

area started by drilling wells wherever a hint of a dome was recognized, it could be any 

kind of hydrocarbon seepage at the surface or a depression in the landscape (Owen, 

1975). 

      The Vinton salt dome, located in Calcasieu Parish, Louisiana, is a typical dome of the 

Gulf Coast area. It is considered important because of its oil and natural gas reservoir. 

Due to its size and form, as well as gas and sour water discharge, it always has been 

recognized as the most likely locality for oil exploration in the area (Harris, 1910). W.B. 

Sharp and E. Prather started their explorations by drilling on the dome in 1902 and oil 

was reported in Vinton dome that year (Harris, 1910). Efforts for extraction of oil on 

Vinton dome continued in the following years by Fenneman from 1902 to 1904 

(Fenneman, 1906) and Wilkins, Zeigler and Rowson (Harris, 1910). Study of the Vinton 

dome continued, and research done by Thompson and Eichelberger (1928), Seni and 

Jackson (1983), Breard et al. (1996), Constance et al. (1999), Galloway et al. (2000) and  

Zhou (2006) best illustrate the structure of the Vinton dome. 

Exploration in the 1950’s started with seismic and reflection surveys which were the 

only exploration method to image the subsurface for decades (Fails, 1995), but it has its 

own limitations near salt domes. One limitation is the difficulty in imaging which results 

from steeply dipping salt flanks that scatter or absorb seismic energy (Coburn, 2002). 

Eventually most of the hydrocarbon resources in the Vinton dome were extracted. 

Therefore the United States Geological Survey (USGS) studies proposed still 9 billion 

cubic feet of gas remaines in the region (Swanson and Karlsen, 2009). Most of these 

resources are accumulated in unconventional reservoirs such as the Eocene Jackson Shale 

or formations deeper than 3 km (Swanson and Karlsen, 2009). To recover the remaining 

resources and extend field life, new geophysical techniques are needed.   

Vertical Seismic Profiling (VSP) (Constance et al., 1999; Kisin, 2003), well logging 

(Coker, 2006), conventional gravity (Eti, 2004), and gravity gradiometry (Prutzman, 

1998; O’Brien et al., 2005) are some of the approaches that have been applied to explore 
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possible available resources in the Gulf Coast region. A Full Tensor Gradiometry (FTG) 

survey done by Bell Geospace in July 2008 is one of the attempts to measure the gravity 

field for use at the reservoir level.  

Structure 

The dome has three main structural sections: caprock, dome, and faults (Figure  2-2) 

Caprock: limestone, gypsum, and anhydrite form the caprock, which has a thickness 

of 60 m to 210 m. It is believed that it is formed by either precipitation in place or 

solution of impure salt rock at the top of the dome (Ingram, 1991). 

Dome: it is 3.8 km in height (Eti, 2400). It extends 1,280 meters from north to south 

and 1,520 meters from east to west. It has caused a -26.5 mGal residual gravity anomaly 

in the center (Wilson and Noel, 1983). There is still an argument whether it is attached to 

autochthonous salt. Some models of the gravity of the dome suggest that the salt is not as 

deep as 8 km so it would not be autochthonous (Eti, 2004), while seismic studies does not 

show any subsalt reflection, leads to the interpretation the the dome is attached to the 

Louann salt (Coker, 2006).    

Faults: a counter-regional fault downthrown to the northwest, along with three sets of 

peripheral faults is the main and characteristic fault of the Vinton dome area (Coker, 

2006). It also has an extensive fault-line scarp system radiating from it. This system is 

unique to Vinton in that it is not part of the regional east-west trend in Louisiana. This 

fault-line scarp is considered an indication of salt flowage at depth associated with domes 

(Heinrich, 2005).  
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Figure  2-2: Scheme the diagram of a typical salt dome and reservoirs forming near that 
(Levin, 2006). 

      
Significance of the Vinton dome and availability of model of the Vinton dome area 

 An advantage of the Vinton dome area is that the geological model of the area and the 

cap rock have already been made, and the synthetic gravity signal of the cap rock of 

Vinton dome has been calculated (Murphy, 2004; Ennen, 2012). The full tensor 

gradiometery survey done by Bell Geospace over the Vinton salt dome is important 

because it was a FTG data set collected with the purpose of measuring gravity for 

reservoir levels.   
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CHAPTER 3. FULL TENSOR GRADIOMETERY DATA 

A brief history 

When at the beginning of the 20th century, von Eotvos made the first instrument for 

measuring gravity gradiometry (Domenico, 1994), the innovation was not considered 

practical, although “billions of barrels of oil” discoveries were attributed to the 

instrument. The slow speed of operation was the main reason that caused the rejection of 

the method even though it was extremely sensitive (Lumley et al., 2010). In a very short 

time since its inception, the airborne FTG method has gained prominence (DiFrancesco 

et al., 2009). This prominence can be easily understood from the number of workshops 

focused on the method, increase in the demand, and use and the number of surveys done 

and instruments sold.  

In the 1970’s and 1980’s, Bell Aerospace used the gradiometer instrument as the main 

part of the FTG system in marine applications (Murphy, 2004). Until 2003, Bell 

Geospsace had flown 1202 km for Air-FTG surveys over North America and had 

collected data over 12000 km for commercial purposes in Africa (Hammond and 

Murphy, 2003). By 2004, Murphy claimed more than 60,000 line km of data were 

acquired using both marine and airborne platforms (Murphy, 2004). All of these 

parameters prove a growing trend in using gravity gradiometry and full tensor gravity 

(FTG) data. Figure  3-1 illustrates the cumulative line-kilometers of surveys done based 

on gravity gradiometery for a ten year period from 1999 to 2008 for all gravity 

gradiometry surveys.  

 
Figure  3-1: An upward trend emphasizing the market acceptance of gravity gradiometer 
as an exploration tool. Cumulative line-kilometers of the method in industry airborne and 
marine from 1999 till 2008 (DiFrancesco et al., 2009). 
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The first airborne gravity gradiometry survey started in October 1999 (Van Leeuwen, 

2000). In 2001, Bell Geospace successfully started using an FTG platform on a single 

engine aircraft (Zuidweg and Mumaw, n.d.). Since then the company has flown airborne 

surveys over Africa, New Zealand, Australia, North America, South America and Europe 

(Bell Geospace, Inc., 2008). The Gulf of Mexico, the North Sea, and East Asia are some 

places that are investigated by the marine FTG by Bell Geospace. Companies, like 

ARKeX and Fugro are the other major companies that deal with airborne gravity 

gradiometry data and surveys (DiFrancesco et al., 2009). In 2008, BGI collected FTG 

data over the Vinton dome (Bell Geospace, Inc., 2008) and this is the data set that I 

worked with in my research. 

Today, airborne Full Tensor Gravity (FTG) has been proven to be the “preferred 

technology” in both mineral and petroleum exploration projects (Dransfield et al., 2010). 

It is used in hydrocarbon exploration by detecting salt domes, fault blocks or structural 

closures (Murphy and Dickson, 2009). Other targets investigated with this method are 

base metals, precious metals, kimberlites, and even groundwater exploration (Hammond 

and Murphy, 2003) body (Zuidweg and Mumaw, n.d.).  

There are a few examples of successful application of FTG data in oil and gas 

exploration including detection of salt domes, carbonate platforms and basement 

mapping. Other projects that used FTG methods include surveys in the Faroe-Shetland 

Basin area, Gulf of Mexico, the North Sea, East Asia (Bell Geospace, 2008), Northern 

Perth Basin (Norwest Energy NL), Chirete, Argentina (Dransfield et al., 2010), Ghana 

(Dransfield et al., 2010) and Vinton dome, Louisiana (Dickinson et al., 2009). 

 

What is measured in gravity gradiometry? 
 

Gravity potential is a scalar field, and thus it can be described as a vector. In the 

Cartesian coordinate system, it can be represented in terms of its components Gx, Gy and 

Gz (Stasinowsky, 2010). Gradiometers measure the spatial rate of change in these 

components in all three directions and, the term “tensor” refers to the elements of the rate 

of change of the gravity field or gradients of the components (Figure  3-2).  

9 



Only five components of the gradient tensor are independent. Due to the conservative 

characteristic of the gravity field, it can be shown that gravity gradient tensor is 

symmetric such that Tij=Tji (Murphy, 2004). Considering symmetry in the FTG tensor, 

one expects 6 independent elements in the tensor.  Gravitational potential obeys 

Laplace’s equation; therefore each of the diagonal elements of the tensor is the negative 

of the sum of the two other components (Blakely, 1995). For example, Tzz equals the 

negative sum of Txx and Tyy. Thus, it can be easily concluded that the FTG tensor has five 

independent elements (Murphy, 2004). The unit of gravity gradient is the Eotvos, with 1 

Eo equals to 0.1 mGal/Km, which is equivalent to 10-9 s-2 (Murphy, 2004). 

 

 𝑇𝑇𝑖𝑖𝑖𝑖 = �
𝑻𝑻𝒙𝒙𝒙𝒙 𝑻𝑻𝒙𝒙𝒙𝒙 𝑻𝑻𝒙𝒙𝒙𝒙
𝑻𝑻𝒙𝒙𝒙𝒙 𝑻𝑻𝒙𝒙𝒙𝒙 𝑻𝑻𝒙𝒙𝒙𝒙
𝑻𝑻𝒙𝒙𝒙𝒙 𝑻𝑻𝒙𝒙𝒙𝒙 𝑻𝑻𝒙𝒙𝒙𝒙

� 

Figure  3-2: Schematic diagram showing the conventional gravity measuring one 
component of the gravity field in the vertical direction Gz and the full tensor gravity 
gradiometry components Tij having 9 elements 
(from  http://en.wikipedia.org/wiki/Gravity _gradiometry.) 

 

Each of the five tensor components gives us unique information about the attributes of 

the target. While the horizontal tensor components Txx, Tyy, Txy, Txz and Tyz are used to 

identify edges of the target and lineaments relevant to the structural and/or stratigraphic 

changes as well as the body thickness, Tzz is used for estimating the depth of the target 

(Murphy, 2004; Murphy and Brewster, 2007). They can be interpreted individually or 

combined in certain methods to best extract the pattern of interest (Murphy and Brewster, 
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2007). Table  3-1 shows what each element emphasizes assuming 𝑥𝑥 axis is east-west, 𝑦𝑦 

axis is north-south, and 𝑧𝑧 axis is vertical (Ennen, 2012). 

 
Table  3-1: Six elements of the gradient tensor and what each element highlights (Ennen, 
2012). 

Element Best to emphasize 

𝑇𝑇𝑥𝑥𝑥𝑥 North-South trending features 

𝑇𝑇𝑥𝑥𝑥𝑥 Northeast-Southwest trending features 

𝑇𝑇𝑥𝑥𝑥𝑥 Central axis of a mass 

𝑇𝑇𝑥𝑥𝑥𝑥 East-West trending features 

𝑇𝑇𝑥𝑥𝑥𝑥 Central axis of a mass 

𝑇𝑇𝑥𝑥𝑥𝑥 Edges 

 

How the FTG data are measured 

The Bell Geospace Full Tensor Gravity (FTG) system contains three Gravity Gradient 

Instruments (GGI). Each GGI has a rotating disk with 2 matched pairs of accelerometers 

(Figure 8.3). The gradient tensor can be obtained by observations of the two opposing 

accelerometers and taking into account the distance between them. Therefore the output 

of each GGI is two opposing gradients. The FTG tensor components are obtained by an 

appropriate linear combination of all six GGI outputs (Murphy, 2004) 
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Figure  3-3: Air-FTG instrument: Inside a GGI (top left), three GGIs oriented at 120 
degrees from each other (top right), Bell Geospace FTG system (bottom left) and FTG 
cabinet containing the GGI's and the controlling electronics cabinet (bottom right). 

 

Full tensor gradiometry data versus conventional gravity data 

Due to sampling difficulties of ground surveys and the inherent higher accuracy of the 

full tensor measurement, Full Tensor Gradient (FTG) measurements give us more 

information about the gravity field rather than partial tensor gradient (gz) or a single 

vector field measurement. This means that, in case of a lateral density contrast, 

interpretation of FTG data of sub surface features would be more reliable compared with 

conventional gravity surveys (Murphy, 2004). The conventional gravity measures the 

component of the gravity field (most of the time gz component) whereas gravity 

gradiometer measures the rate of the change in the gravity field in 3 perpendicular 

directions. So the FTG method is able to investigate the high frequency signals that are 

associated with near-surface lateral density variations while conventional vertical gravity 
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instruments cannot detect the lateral variations due to inadequate sampling (Figure  3-4) 

(Murphy, 2004). Higher spatial resolution of FTG method is due to the fact that 

gradiometer signal strength is proportional to 1/r3 where r is distance from the source 

while vertical gravity signal is proportional to 1/r2 (Figure  3-4) (Hammond and Murphy, 

2003). 

 
Figure  3-4: Comparing the Vertical gravity gz and gravity gradient Gzz responses from a point 
source buried at 1 km depth (http://en.wikipedia.org/wiki/Gravity_gradiometry). 

 

The characteristic that makes gradiometers the preferred technology for mineral 

exploration and high resolution oil and gas exploration is its sensitivity at short 

wavelengths. Because of station spacing, the conventional gravity information is limited 

to wavelengths above about 5 km in many places in the world, making them more useful 

in regional studies at basin scale whereas FTG provides dramatically better sensitivity at 

short wavelengths (Figure  3-4) (Dransfield et al., 2010). 

In addition to greater information content and higher resolution, other advantages of 

FTG data over conventional gravity measurements include: improved constraints that 

enable expertise to clear signal from the measured data better (Murphy, 2010), speed of 

data acquisition and ease of covering the area of interest (Fullagar and Pears, 2010). One 

more point worth mentioning here is the high degree of confidence in FTG results: as 

geological signals in this method are extracted from 5 measured independent 

components, the signal is more reliable (Murphy, 2010). 

The most important advantage of the method over the conventional gravimetry method 

is its better sensitivity at short wavelength (Dransfield et al., 2010), which allows it to 

provide higher resolution data. FTG surveys are sometimes preferred to seismic surveys 
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where the seismic method is considered too expensive or technically inadequate, like in 

the sub-salt, sub-basalt or sub-carbonate cases (Zuidweg and Mumaw, n.d). 
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CHAPTER 4. AN INTRODUCTION TO THE KALMAN FILTER 

 

The Kalman filter is an optimal recursive data processing algorithm whose purpose is 

to produce values that tend to be closer to the true values of the measured parameters. 

Determining the “real” state of a physical system or deciding the true value of one of the 

dynamic attributes of a given system from a set of measurements is one of the objectives 

of the filtering process (Moriya, 2010). Suppose that we want to make the best possible 

estimate of a set of parameters that describes the state of a system, but all we have is a set 

of measurements affected by the presence of noise and the state of the system that is also 

perturbed by noise. The only way to get some information from this data set is using a 

filter. 

When working with systems and also in system analysis, one should consider three 

basic sources of uncertainty in determining the actual system behavior. First, the 

mathematical system model is never perfect. For instance, the laws of Newtonian physics 

are accepted approximations to what is actually observed; their accuracy is adequate in 

most instances since we are unaccustomed to physical systems speeds near the speed of 

light. However, for processes closer to the speed of light, this approximation is not valid.  

We should therefore know that our approximated mathematical model can be a source of 

uncertainty especially when dealing with situations closer to the speed of light. Second, 

our own control input is not the only thing that drives the dynamic systems; there are also 

disturbances that we can neither control nor model effectively. Finally, we assume that 

sensors exactly measure our variable of interest, but in fact sensors are imperfect and 

cannot provide complete or accurate data about a system (Maybeck, 1979). A Kalman 

filter is able to tackle uncertainties of these assumptions. Figure  4-1 shows a typical 

Kalman filter application based on different sources of uncertainty involved in a 

measurement. 

In general, we cannot imagine filtering our measurements without any information 

about our system or sensors. However, if we can answer the following three questions; 

(1) What is the system and measurement device dynamics? (2) What is the system noise 

and measurement error? (3) What is the initial condition of the desired variable?, then it 

has been suggested by researchers that the best possible way to determine the true state of 
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a system is by using the Kalman filter (Maybeck, 1979). We also can use the Kalman 

filter and be assured that this filter gives the best results compared to other filters if the 

following three basic assumptions are satisfied: (1) the system is linear; (2) the 

contaminated noise (both system and measurement noise) is white; and (3) the noise has a 

Gaussian distribution (Maybeck, 1979).  

The filter, introduced by R.E. Kalman, in a paper called “A new approach to linear 

filtering and prediction problem” in 1960 in Journal of Basic Engineering, has been used 

for five decades. The Kalman filter is one of those rare topics that has maintained 

continued interest and has also a rich history in practical applications. What made the 

Kalman filter popular in the world of applications was its performance and ease of 

implementation rather than its analytical elegance (Zarchan and Musoff, 2000). 

Navigating the Apollo spacecraft, predicting short-term stock market fluctuations, and 

estimating location with relatively inexpensive hand-held receivers (global positioning 

systems) are some of the broad applications of the filter. It is recognized as the best 

performing filter in many disciplines. The Kalman filter is believed by some to be the 

second most important algorithm technique ever conceived after the Fast Fourier 

Transform (Zarchan and Musoff, 2000); some even consider it as the greatest discovery 

of the twentieth century (Haykin, 2001).  

The Kalman filter attempts to minimize the mean of the squared error (Maybeck, 

1979).  This successful filter, which enjoys the benefits of using both least squares and 

probability theory, has been shown to be the optimal solution of a linear problem in the 

sense that no nonlinear filter designed so far can perform better than it, and even when 

the noise components are not Gaussian, it is the optimal filter among the entire family of 

linear filters (Moriya, 2010).  One aspect of its optimality is that the filter incorporates all 

the information given to it. Regardless of measurement precision, the Kalman filter 

processes all available measurements to estimate the current value of the variables of 

interest.  

Theoretically, the Kalman filter is an estimator that determines the state of a linear 

dynamic system which is perturbed by Gaussian white noise by using measurements that 

are linearly related to the state but corrupted by additive Gaussian white noise 

(Figure  4-1) (Maybeck, 1979; Grewal and Andrews, 2008). As mentioned earlier, the 
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filter is also a mathematical approach that estimates the state of a general system such 

that it minimizes the mean of the squared error (Welch and Bishop, 2006). The states of a 

system are those parameters that illustrate the internal condition or status of the system at 

a given instant of time (Simon, 2012). For example, the states of a moving object might 

include its velocity, position, and acceleration whereas for a chemical plant they could be 

pressure, temperature, flow rate, and gas analysis. Another example would be flood 

prediction: the dynamic system under investigation here being the river system and the 

states involved could be water level and rain gauges (Grewal and Andrews, 2008). 

In applying the Kalman filter, it is not always possible or even required to measure 

every variable in a system — the filter is able to estimate the missing information from 

indirect and noisy measurements (estimating the state of a dynamic system). It is also 

used to predict the likely future courses of a dynamic system that cannot be controlled by 

people, for example the amount of flow of rivers during floods (performance analysis of 

estimation systems) (Grewal and Andrews, 2008). 

 

Figure  4-1: Different sources of uncertainty involved in a system and typical Kalman filter 
application (from Maybeck, 1979). 
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Historical Perspectives of the Kalman Filter 
 

What is known today as stochastic filtering and estimation theory, leading to different 

versions of the Kalman filter in use today, is the result of the evolutionary development 

of ideas from many researchers. Galileo, Pascal, Huygens, Newton, Bernoulli, Riccati, 

Piazzi, Laplace, and Maxwell are some of the well-known scientists who contributed to 

the estimation theory. Although the fact that measurement errors are inevitable was 

known from the time of Galileo (1564-1642), the first method for calculating an optimal 

estimate from the noisy measurements, the method of least mean squares, was first 

discovered by Carl Friedrich Gauss in 1795 (Sorenson, 1970). Before Gauss had 

published his great achievement in 1805 in Disquisitiones Arithmeticae, there were other 

scientists who were challenged by the question of “ how to estimate measured values a 

priori so that the estimate in combination with the measurement could be used to estimate 

better the measured parameter” (Moriya, 2010). The challenge for Pierre-Simon Laplace 

was the estimation of the motions of Jupiter and Saturn. The concept of parametric 

estimation was used also in addressing questions like estimating the motion of the moon 

and the dimensions of the Earth (Simon, 2006). By 1801, it had been nearly 30 years that 

an association of European astronomers had been searching for a “missing” planet based 

on Bode’s law without any success. On the first day of the nineteenth century, Piazzi 

discovered a new celestial object and tracked it for 41 nights but after that it moved very 

close to the sun and disappeared. At that time, it was believed that there were only seven 

planets – proclaimed by the well-known philosopher George Hegel– and it would have 

been a waste of time to search for the eighth one. Despite this belief, the orbit of this new 

planet, Ceres, could be estimated by Gauss by the least mean square method and the 

planet was found again by its discoverer, Piazzi, on the last day of the year.  The 

publication of this method placed him, along with Laplace, as one of the founders of the 

theory of probability (Moriya, 2010). Since its introduction, it has been an interesting 

subject for generations of scientists and technologists. This first optimal estimation 

method that was based on least squares and probability theory provided a connection 

between experimental and theoretical sciences and gave experimentalists a practical 

method for estimating the unknown parameters of theoretical methods. 
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The method of least squares is one fundamental part of the Kalman filtering; the other 

mathematical foundation is the probability theory or stochastic systems (Figure  4-2)It 

makes the estimation of the parameters of a dynamic system possible. Probability itself 

was developed by scientists like Pascal, Fermat, Huygens, Bernoulli, Laplace, and 

Legendre and, as described before, Gauss combined it with least square theory in the 19th 

century (Grewal and Andrews, 2008).  Another concept needed in the dynamic estimation 

is that of the Markov chain. It was Andre Andreyevich Markov who first developed the 

theory of Markov process. In this process or “chain”, the system undergoes transitions 

from one state to another, between a finite or countable number of possible states, and it 

is considered to be memoryless. This means that the next state depends only on the 

current state and not on the sequence of events that preceded it. Later on, Norbert Wiener 

(1984-1964), one of the geniuses of the 20th century, combined the probability theory 

with the knowledge of dynamic systems and developed a filter known as the Wiener 

filter. In the early years of World War ІІ, Wiener was involved in a military project 

attempting to find an answer to the problem of “firing on moving targets” for the United 

States.  He tried to figure out how to predict the future course of a target using noisy 

radar tracking data. The solution was derived from the least mean square prediction error 

in terms of the autocorrelation functions of the signal and the noise (Moriya, 2010). 

Wiener approached the problem from the frequency domain perspective. His filter was 

known to be very successful; therefore it was classified as “Top Secret” and was not 

published for years (Wiener reported his solution in the classified report in 1942, but it 

was not available to public until 1949) (Wiener, 1964). Almost at the same time that 

Wiener was developing his filter, but independently of him, a Soviet scientist 

Kolmogorov, published a method pertaining to least squares estimation on measurement 

theory. Kolmogorov’s work, practically identical to Wiener’s method, did not become 

well-known in the Western world until later since it was published in Russian 

(Kolmogorov, 1992). As Wiener and Kolmogorov’s filters are identical, the filter is 

known today as the Wiener-Kolmogorov filter. 

 

19 



 
 
Figure  4-2: Foundational concepts leading to the Kalman filter (from Grewal and 
Andrews, 2008). 
 

The Wiener-Kolmogorov filter became the basis of dynamic systems research in the 

1950s. The Wiener-Kolmogorov filter is based heavily in statistics and requires 

information about covariances. For several years in the 1950s, NASA investigated a way 

to implement the Wiener-Kolmogorov filter and use it in space navigation problems, but 

without success (Schmidt, 1981), until they began to replace the covariance knowledge 

by state-space descriptions and the results were algorithms that are very close to the 

Kalman filter (Moriya, 2010). It was one of the first models connecting position and 

velocity (state) to measurements (space).  

In 1958, Rudolph E. Kalman and Richard S. Bucy were given a fund to do advanced 

research in estimation and control at the Research Institute for Advanced Studies in 

Baltimore. Kalman followed the idea of applying the notion of state variables to the 

Wiener-Kolmogorov filter; he developed the equivalent estimation method from a time-

varying state-space model and established what is now called the Kalman filter (Grewal 

and Andrews, 2008). Although the replacement of state-space form instead of the 

frequency domain formulation made the mathematical background needed for the 

derivation much simpler, Kalman’s idea was not accepted among his peers in electrical 

engineering and so he chose a mechanical engineering journal to publish his new filter. 

Even later, when he wrote his second paper on the continuous-time case, it was rejected 
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because one of the referees stated that one step in the proof was not correct (but it was 

indeed correct). Kalman insisted on presenting his filter and finally the paper was 

accepted. Soon, it became one of the most interesting topics of study in many universities 

and in a single decade after its introduction, it was the subject of hundreds of doctoral 

theses in the electrical engineering field, a field where it originally met with severe 

skepticism (Grewal and Andrews, 2008).  

Although prior to 1960, and before Kalman developed his filter, similar filters were 

introduced in fields other than engineering, such as statistics and economics. However, 

the filter was named after Kalman for several reasons. First, Kalman introduced his filter 

in a relatively straightforward way and even though he did not focus on any specific 

application, he laid out a strong theoretical foundation, and thus it was considered more 

general and useful. Second, at the time of the publication of his paper, digital computers 

were available and that made the use of the filter practical. Finally, Kalman introduced 

his work to NASA and they used the filter as an estimator for the Apollo space program 

successfully (Schmidt, 1981; McGee and Schmidt, 1985).  

Later in 1962, the Kalman filter played an important role in the development of 

realization theory, a theory that deals with the problem of finding a model to explain the 

behavior of a system based on observed input/output data. In 1985, Kalman received the 

Kyoto Prize, the Japanese equivalent of the Nobel Prize (Grewal and Andrews, 2008).  

The Kalman filter was one of the enabling technologies of the Space Age. Without it, 

the precise navigation of spacecrafts through solar system was completely impossible. It 

was also recognized as the best performing filter in many other disciplines. In general, the 

principal uses of the Kalman filter can be grouped into two categories:  (1) estimating the 

state of dynamic systems and (2) performance analysis of estimation systems (Grewal 

and Andrews, 2008). Some of the applications of the Kalman filter are: tracking a user's 

position and orientation in virtual environments (Welch and Bishop, 1997), data fusion in 

navigation (Joost and and Krekel, 1993), data processing (Zhang, 1997), describing the 

water movement in river basins, coastal areas, and oceans (Madsen and Cañizares , 1999; 

and Drécourt and Madsen, 2001), maximizing equity market sector predictability 

(Johnson and Sakoulis, 2003), assimilation of observations in atmospheric models 

(Houtekamer et al., 2005), suppression of noise in a running car environment for hands-
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free mobile telephony (Kybic, 1998), aerospace applications (Schmidt, 1981), and sales 

rate and cumulative sales forecasting (Munroe et al., 2009). 

In recent years, more research topics are focusing on applications of the Kalman filter 

for non-linear systems, the systems whose noise has non-Gaussian characteristics, the 

systems that involve uncertainty in their contrasts, etc. These subjects have resulted in 

more than 100,000 publications by 2010, including a variety of academic publications, 

textbooks, and numerous patents (Moriya, 2010). 

In the following chapters, I develop the Kalman filter for reducing noise in full tensor 

gravity gradiometry (FTG) data that were initially collected for testing the capabilities of 

airborne gradiometry in locating a known salt dome in Louisiana for oil and gas 

exploration. The data were provided by Bell Geospace Company. In this research, I have 

introduced new methodology in the application of the filter for reducing noise and I have 

also incorporated the constraint of Laplace’s equation, for the first time, in the 

formulation of the filter. In order to illustrate basic concepts of the filter, I also use 

examples from a few books on the topic.  
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Inside the Black Box of the Kalman Filter 
 

Starting With an Example 

 

A simple example from Maybeck’s (1979) book on the Kalman filter is widely used 

by other authors as it is helpful in understanding in simple steps how the Kalman filter 

works. In this single variable example, any kind of data would suffice but the 

determination of a position is chosen here since it is a familiar concept for dynamic 

systems. 

Suppose we want to establish our position based on a set of measurements where the 

true location is not known. Our measurement of position for time 𝑡𝑡1is considered to be 𝑧𝑧1. 

We know that there are some sources of uncertainty in our measurements like human 

error and measuring device inaccuracies, etc. Because of all different inaccuracies that 

are involved in measurements, we have the standard deviation 𝜎𝜎𝑍𝑍1 to define the precision. 

With such a measurement (𝑧𝑧1) and corresponding standard deviation, we would be able to 

establish the conditional probability of x (𝑥𝑥1), i.e., the position at time 𝑡𝑡1 (Figure  4-3). 

 
 
Figure  4-3: Conditional probability density of position based on first measured value z1 
(from Maybeck, 1979) 
 

Figure  4-3 shows 𝑓𝑓𝑥𝑥(𝑡𝑡1)|𝑥𝑥(𝑡𝑡1)(𝑥𝑥|𝑧𝑧1) as a function of location (x) and illustrates the 

probability of being at a location based only on the measurement 𝑧𝑧1. It is also 
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understandable that the larger the 𝜎𝜎𝑥𝑥1, the broader the probability peak. Broader 

probability peak spreads the probability “weight” over a larger range of 𝑥𝑥 values. From 

basic statistics, we know that for a Gaussian probability density, 68.3 % of the probability 

“weight” lies within ±1σ distance of the mean on both sides. With this explanation, the 

best estimate of the position (𝑥𝑥�(𝑡𝑡1)) based on the conditional probability density is  

𝑥𝑥�(𝑡𝑡1) = 𝑧𝑧1                                                                                   4-1 

And the variance of the error in the estimate is:    

𝜎𝜎𝑥𝑥2(𝑡𝑡1) = 𝜎𝜎𝑥𝑥1
2                                                                                              4-2                                                                                

In this perfect Gaussian case, the best estimate (x�) is equal to the mode, the median 

and also the mean of the measurements. If another measurement is taken at the same time 

so that t2 ≅ t1, we can say the position has not changed from measurement 1 to 2 while 

the second measurement (𝑧𝑧2) has the variance σz2. Let’s suppose that for any reason (for 

example the second observer is better trained or more skilled), and hence σz2 is smaller 

than σz1. Figure  4-4 illustrates how the conditional density of the position would be at 

time t2 based on only the second measurement 𝑧𝑧2. As we expect, due to smaller variance, 

the peak is narrower and one’s ability to locate the position in the case of the second 

observation is greater (Figure  4-4). 

 
Figure  4-4: Conditional probability density of position based on the second measured 
value z2 (from Maybeck, 1979). 
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The next question is whether we can have a better estimate based on both the 

measurements and whether we can combine the results to obtain a better estimate 

(Figure  4-4). The best estimate of the position, at time 𝑡𝑡2 ≅ 𝑡𝑡1 based on both available 

measurements 𝑧𝑧1 and 𝑧𝑧2 has a Gaussian probability density with   mean µ and variance 

𝜎𝜎2 (Figure  4-5) such that 

𝜇𝜇 = � 𝜎𝜎𝑧𝑧2
2

(𝜎𝜎𝑧𝑧1
2+𝜎𝜎𝑧𝑧2

2)
� 𝑧𝑧1 + � 𝜎𝜎𝑧𝑧1

2

(𝜎𝜎𝑧𝑧1
2+𝜎𝜎𝑧𝑧2

2)
� 𝑧𝑧2                                                                     4-3 

and  
1
𝜎𝜎2

= � 1
𝜎𝜎𝑧𝑧1

2�+ � 1
𝜎𝜎𝑧𝑧1

2�                                                                                                        4-4  

 

 
Figure  4-5: Conditional probability density of position based on both measured values z1 
and z2 (from Maybeck, 1979). 
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If the uncertainty is equal for both 𝑍𝑍1and 𝑍𝑍2in equation 4-3, then the weights in the 

equation will be 0.5 for each measurement 

𝜇𝜇 = �1
2
� 𝑧𝑧1 + �1

2
� 𝑧𝑧2                                                             4-5 

And if 𝜎𝜎𝑥𝑥1is larger than 𝜎𝜎𝑥𝑥2, then the measurement z2 will appropriately have more 

weight, and vice versa. Similarly, one can observe from Equation  4-4 that the variance of 

the best estimate is smaller than either of the two measurements. It means that even if one 

of the measurements is of poor quality and consequently has large uncertainty, then the 

variance of the estimate is again less than that of each measurement; it is reasonable 

because even a poor quality data can provide some information and should thus increase 

the precision of the prediction.  

In order to put the above concepts in the iterative form needed for the Kalman filter, 

the best or maximum likelihood estimate of position involving the two measurements can 

be written as: 

𝑥𝑥�(𝑡𝑡2) = µ                                                             4-6 

and whose error variance is σ2 .  

While the associated error variance is σ2, we refer to 𝑥𝑥�(𝑡𝑡2) as the best estimate since it 

is the maximum likelihood estimate. It is also a linear estimate whose variance is less 

than any other linear estimate (Maybeck, 1979).  

If the first and second measurements have the same precision, then Equation  4-3 will be   

    𝜇𝜇 = �1
2
� 𝑧𝑧1 + �1

2
� 𝑧𝑧2                                                            4-7 

That is simply, as would be expected, the average of the two measurements. When 

uncertainty involved in measuring z1 is more than that of z2, 𝜎𝜎𝑥𝑥1is larger than 𝜎𝜎𝑥𝑥2, then 

the equation will dictate more weight to z2 (Equation  4-3). 

Considering Equations  4-3 and  4-6 simultaneously, and because the weights on 𝑧𝑧1 and 

𝑧𝑧2 in Equation  4-3 add up to 1, we arrive at 
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𝑥𝑥�(𝑡𝑡2) = �
𝜎𝜎𝑥𝑥2

2

�𝜎𝜎𝑥𝑥12 + 𝜎𝜎𝑥𝑥22�
� 𝑧𝑧1 + �

𝜎𝜎𝑥𝑥1
2

�𝜎𝜎𝑥𝑥12 + 𝜎𝜎𝑥𝑥22�
� 𝑧𝑧2 

                =  
𝜎𝜎𝑥𝑥2

2𝑧𝑧1 + 𝜎𝜎𝑥𝑥1
2𝑧𝑧2 + 𝜎𝜎𝑥𝑥1

2𝑧𝑧1 − 𝜎𝜎𝑥𝑥1
2𝑧𝑧1

�𝜎𝜎𝑥𝑥12 + 𝜎𝜎𝑥𝑥22�
 

               = 𝑧𝑧1 + � 𝜎𝜎𝑧𝑧1
2

�𝜎𝜎𝑧𝑧1
2+𝜎𝜎𝑧𝑧2

2�
� [𝑧𝑧2 − 𝑧𝑧1]                                                                    4-8 

Finally, using Equation  4-1, Equation  4-6 can be rewritten in a form known in the 

Kalman filter literature: 

𝑥𝑥�(𝑡𝑡2) = 𝑥𝑥�(𝑡𝑡1) + 𝐾𝐾(𝑡𝑡2)[𝑧𝑧2 − 𝑥𝑥�(𝑡𝑡1)]                                                                     4-9 

where  

𝐾𝐾(𝑡𝑡2) = �
𝜎𝜎𝑥𝑥1

2

�𝜎𝜎𝑥𝑥12 + 𝜎𝜎𝑥𝑥22�
� 

Equation  4-9 illustrates that the optimal estimate at time t2, 𝑥𝑥�(𝑡𝑡2), is equal to the best 

prediction of its value before the second measurement, z2, is taken plus an iterative 

correction term, K, composed of the gain value times the difference between z2 and the 

best prediction of its value before the last measurement, 𝑥𝑥�(𝑡𝑡1) (Maybeck, 1979). 

Equation  4-9 and the associated discussion explain the “predictor-corrector” structure of 

the filter. First, based on all previous information, a “prediction” of the desired variables 

at the next measurement time is made. Then, when the next measurement is taken, the 

difference between it and the predicted value is used for “correction”. 

Substituting K in Equation  4-4, the variance of the position can be rewritten as  

𝜎𝜎𝑥𝑥2(𝑡𝑡2) = 𝜎𝜎𝑥𝑥
2(𝑡𝑡1) − 𝐾𝐾(𝑡𝑡2)𝜎𝜎𝑥𝑥2(𝑡𝑡1)                           4-10 

In this form, the terms  𝑥𝑥�(𝑡𝑡2) and 𝜎𝜎𝑥𝑥2(𝑡𝑡2) include all of the information in the function 

𝑓𝑓𝑥𝑥(𝑡𝑡2)⃓𝑥𝑥(𝑡𝑡1),𝑥𝑥(𝑡𝑡2)(𝑥𝑥⃓𝑧𝑧1, 𝑧𝑧2) and propagate conditional probability density of the position at 

time 𝑡𝑡2 considering measurements 𝑧𝑧1and 𝑧𝑧2. 

The above framework can be used to estimate static problems, but how will the 

equations change in a dynamic problem? What will happen if the object of interest travels 

for some time before another measurement is taken? If we suppose that the best model 

has the following form: 
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝑢𝑢 + 𝑤𝑤                                                           4-11 
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where u is the nominal velocity and w is a noise term representing uncertainty in our 

knowledge of the actual velocity. It might be due to disturbances or the effects that have 

been neglected, so that we can consider the model as a first order equation which may 

have non-optimum conditions. The noise is considered to be a white Gaussian noise with 

a mean of zero and variance 𝜎𝜎𝑤𝑤2(Maybeck, 1979). 

Figure  4-6 shows how the conditional probability density propagates. The probability 

density shifts along the x-axis with the nominal speed of u and spreads out in time about 

its mean. Addition of uncertainty over time, reduces confidence in the knowledge of the 

exact position, and hence the increased spread of the probability density at position 𝑧𝑧3 

(Figure  4-6).  

 
Figure  4-6: Propagation of conditional probability density of position based on all three 
measured values z1, z2 and z3, (from Maybeck, 1979). 
 

 

At the time 𝑡𝑡3−, right before the third measurement is taken at time 𝑡𝑡3 (superscripts 

minus indicate pre-measurement values), the desired probability density has a Gaussian 

distribution and it is expressed mathematically as a function having a conditional 

probability of 𝑓𝑓𝑥𝑥(𝑡𝑡3)⃓𝑥𝑥(𝑡𝑡1),𝑥𝑥(𝑡𝑡2)(𝑥𝑥⃓𝑧𝑧1, 𝑧𝑧2) and that probability can be represented by its 

mean and variance using the following equations (Maybeck,1979):  

𝑥𝑥�(𝑡𝑡3−) = 𝑥𝑥�(𝑡𝑡2) + 𝑢𝑢[𝑡𝑡3 − 𝑡𝑡2]  , and 

𝜎𝜎𝑥𝑥2(𝑡𝑡3−) = 𝜎𝜎𝑥𝑥2(𝑡𝑡2) + 𝜎𝜎𝑤𝑤2[𝑡𝑡3 − 𝑡𝑡2]                                                                  4-12 
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At time 𝑡𝑡3, the measurement 𝑧𝑧3, with the variance of  𝜎𝜎𝑥𝑥2(𝑡𝑡3−), is taken. At this point, 

as before, there are two available Gaussian probability densities: one is the density that 

encompasses all the information before the measurement and the other is the information 

that comes from the measurement itself. Like in the static case, the predicted probability 

density of 𝑥𝑥�(𝑡𝑡3−) and  𝜎𝜎𝑥𝑥2(𝑡𝑡3−) is combined with the density of 𝑧𝑧3 and 𝜎𝜎𝑥𝑥3
2 to yield a 

Gaussian density having the best estimate at time 𝑡𝑡3 as given below by the values of  

𝑥𝑥�(𝑡𝑡3) and 𝜎𝜎𝑥𝑥2(𝑡𝑡3) 

𝑥𝑥�(𝑡𝑡3) = 𝑥𝑥�(𝑡𝑡3−) + 𝐾𝐾(𝑡𝑡3)[𝑧𝑧3 − 𝑥𝑥�(𝑡𝑡3−)] , 

and 

𝜎𝜎𝑥𝑥2(𝑡𝑡3) = 𝜎𝜎𝑥𝑥2(𝑡𝑡3−) − 𝐾𝐾(𝑡𝑡3)𝜎𝜎𝑥𝑥2(𝑡𝑡3−)                                            4-13 

where the gain value of 𝐾𝐾(𝑡𝑡3) is calculated as 

 𝐾𝐾(𝑡𝑡3) = 𝜎𝜎𝑥𝑥2(𝑡𝑡3−)
�𝜎𝜎𝑥𝑥2(𝑡𝑡3−)+𝜎𝜎𝑧𝑧3

2�
                                                4-14 

The optimal estimate at time 𝑡𝑡3 is 𝑥𝑥�(𝑡𝑡3); it is formed by the prediction of its value 

before the measurement 𝑧𝑧3 is taken and is corrected by the gain value times the difference 

between 𝑧𝑧3 and the prediction of its value. 

Equation ٤-14 suggests that if the variance of the measurement noise, 𝜎𝜎𝑥𝑥3, is large, 

then the corresponding gain value 𝐾𝐾(𝑡𝑡3) will be small. Equation  4-13 shows that the 

smaller gain value implies that we should give less weight to a noisy measurement and 

more weight should be given to the optimal estimate made before the measurement is 

taken, 𝑥𝑥�(𝑡𝑡3−). Mathematically, if at the extreme  𝜎𝜎𝑥𝑥3 → ∞, 𝐾𝐾(𝑡𝑡3) approaches zero, and as 

we would expect the best estimate at this point, 𝑥𝑥�(𝑡𝑡3), is 𝑥𝑥�(𝑡𝑡3−).  

On the other hand, if the dynamic system noise, 𝜎𝜎𝑤𝑤 (later which will also be called the 

process noise covariance), is large, then 𝜎𝜎𝑥𝑥2(𝑡𝑡3−) will be large (Equation 4-12), and 

consequently 𝐾𝐾(𝑡𝑡3) will be large. Literally, it means that when we are not sure about our 

system model and its output, we should give more weight to the measurement. In the 

limit, when 𝜎𝜎𝑤𝑤 → ∞,  𝜎𝜎𝑥𝑥2(𝑡𝑡3−) → ∞, and 𝐾𝐾(𝑡𝑡3) → 1, thus the best estimate from the 

filter, 𝑥𝑥�(𝑡𝑡3), calculated from Equation  4-13, will be   

𝑥𝑥�(𝑡𝑡3) = 𝑥𝑥�(𝑡𝑡3−) + 1. [𝑧𝑧3 − 𝑥𝑥�(𝑡𝑡3−)] = 𝑧𝑧3     . 
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So in the limit of complete lack of confidence in the system model, the best choice 

would be ignoring the model completely and relying on only the new measurement as the 

optimal estimate.  

In understanding the Kalman filtering process, there is one other limiting case to 

consider: i.e. when 𝜎𝜎𝑥𝑥2(𝑡𝑡3−) becomes zero. When this occurs, 𝐾𝐾(𝑡𝑡3) will be zero. It 

means that if we have absolute confidence in our estimate before the measurement, 𝑧𝑧3, is 

taken, then we do not need to include the measurement itself in adjusting our estimate. In 

this case, we can accept the estimate before the measurement is taken, i.e.,  𝑥𝑥�(𝑡𝑡3−), as the 

best estimate, 𝑥𝑥�(𝑡𝑡3), in Equation  4-13 as  

𝑥𝑥�(𝑡𝑡3) = 𝑥𝑥�(𝑡𝑡3−) + 0. [𝑧𝑧3 − 𝑥𝑥�(𝑡𝑡3−)] = 𝑥𝑥�(𝑡𝑡3−) 

𝑇𝑇ℎ𝑢𝑢𝑢𝑢,               𝜎𝜎𝑥𝑥(𝑡𝑡3−) → 0    𝑡𝑡ℎ𝑒𝑒𝑒𝑒    𝑥𝑥�(𝑡𝑡3) = 𝑥𝑥�(𝑡𝑡3−)                                          4-15 

How the Kalman Filter Works 

As mentioned before, the Kalman filter, i.e., an optimal state estimator, is made of two 

different steps and equations: Time Update or the prediction step as well as 

Measurement update which is known as the correction step. The filter uses a form of 

feedback control to make the estimate. It means that, first, the filter estimates the process 

state and then obtaining the feedback from the noisy measurement, it corrects its estimate 

(Figure  4-7). In other words, the time update equations are designed to project current 

state and error covariance estimates forward, and obtain the a priori estimates for the 

next time step. Whereas the measurement update equations try to incorporate a new 

measurement into the a priori estimate and calculate a posteriori estimate (Moriya, 

2010). 
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Figure  4-7: The Kalman filter recursive feedback loop (from Welch and Bishop, 2006). 
 

In chapter 5, to understand the workings of the Kalman filter, I explain the 

measurement and time update procedures as well as the corresponding equations. The 

measurement update is obtained with iterative least-squares estimation. I found the book, 

“Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches”, by D. Simon very 

helpful in understanding the filter, and so I use the examples from that book in addition to 

my own examples. 
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CHAPTER 5. THE MEASUREMENT UPDATE AND TIME UPDATE 

STEPS 

 

From Least-Squares Estimation to Iterative Least-Squares 
 

Carl Friedrich Gauss discovered in 1795 and published later in 1809 (Simon, 2006) 

that “the most probable value of the unknown quantities will be that in which the sum of 

the squares of differences between the actually observed and computed values multiplied 

by numbers that measure the degree of precision is a minimum” (2004). This is the basis 

of the measurement update step of the Kalman filter (Simon, 2006).  

In this step of the Kalman filter, the best value of a state is determined given our noisy 

measurements. This is done using an iterative least-squares approach and it is the starting 

point of all Kalman filters. As it mentioned before, the states of a system are those 

parameters that illustrate the internal condition or status of the system at a given instant 

of time (Simon, 2012). In the following, I introduce two linear least-squares examples, 

which are first converted to the iterative least-squares method, and then in the form of 

equations for the measurement update (Simon, 2006). I took the next 2 examples from 

Simon (2006). 

Example 1: Estimation of a constant by the least-squares with measurements 

having the same degree of accuracy 

In the simplest case, the desired state is a constant vector, where all available 

measurements have the same accuracy and therefore the same level of confidence. It is an 

example for determining the resistance of a resistor. We do not know the resistance and 

we have taken several measurements (with noise) with a cheap multimeter to estimate its 

resistance. In this example, the desired state (resistance) is a constant scalar but, in 

general the state can involve more than one element and have the form of a constant 

vector (Simon, 2006). Stating these explanations in mathematical language, we have state 

vector "𝑥𝑥" that contains “n” unknown elements, and vector "𝑦𝑦" that involves “k” noisy 

measurements. The question is how we can determine the “best” estimate of  "𝑥𝑥" which is 

called "𝑥𝑥"� . With the assumptions of the Kalman filter, consider that there is a linear 
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relation between the elements of the measurement vector, y,  and the state vector, 𝑥𝑥, and 

there exists  some measurement noise (v), so   

𝑦𝑦1 = 𝐻𝐻11𝑥𝑥1 + ⋯𝐻𝐻1𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑣𝑣1 

. 

. 

. 

𝑦𝑦𝑘𝑘 = 𝐻𝐻𝑘𝑘1𝑥𝑥1 + ⋯+ 𝐻𝐻𝑘𝑘𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑣𝑣𝑘𝑘                                               5-1 

 
where H is the measurement matrix.  

Writing in the matrix form, we have 

𝑦𝑦 = 𝐻𝐻𝑥𝑥 + 𝑣𝑣                                                                        5-2 

The difference between noisy measurements and vector 𝐻𝐻𝑥𝑥� which is known as 

measurement residual is given as 

 𝜖𝜖𝑥𝑥 = 𝑦𝑦 − 𝐻𝐻𝑥𝑥�                                                             5-3 

From the least-squares method (Gauss, 2004), to find the most probable value of the 

vector, x� , we need to minimize the sum of the squares between the measured values, y, 

and the vector Hx�. To accomplish this, we minimize the cost function J, where J is 

defined as  

𝐽𝐽 = 𝜖𝜖𝑥𝑥12 + ⋯+ 𝜖𝜖𝑥𝑥𝑘𝑘2 

       = 𝜖𝜖𝑥𝑥𝑇𝑇                                                                5-4 

Substituting  6-3 in  6-4, we have, 

𝐽𝐽 = (𝑦𝑦 − 𝐻𝐻𝑥𝑥�)𝑇𝑇(𝑦𝑦 − 𝐻𝐻𝑥𝑥�) 

        =  𝑦𝑦𝑇𝑇𝑦𝑦 − 𝑥𝑥�𝑇𝑇𝐻𝐻𝑇𝑇𝑦𝑦 − 𝑦𝑦𝑇𝑇𝐻𝐻𝑥𝑥� + 𝑥𝑥�𝑇𝑇𝐻𝐻𝑇𝑇𝐻𝐻𝑥𝑥 �                                          5-5 

Since we are looking for the unknown  𝑥𝑥� that minimizes the cost function  𝐽𝐽, we need 

to compute the partial derivative of 𝐽𝐽 with respect to 𝑥𝑥� and set it equal to zero. Thus, 

𝜕𝜕𝐽𝐽
𝜕𝜕𝑥𝑥�

= −𝑦𝑦𝑇𝑇𝐻𝐻 − 𝑦𝑦𝑇𝑇𝐻𝐻 + 2𝑥𝑥�𝑇𝑇𝐻𝐻𝑇𝑇𝐻𝐻 

 = 0                 5-6 

 

 

The 𝑥𝑥� that can satisfy the above equation can be calculated as 
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𝐻𝐻𝑇𝑇𝑦𝑦 = 𝐻𝐻𝑇𝑇𝐻𝐻𝑥𝑥� 

𝑥𝑥� = (𝐻𝐻𝑇𝑇𝐻𝐻)−1𝐻𝐻𝑇𝑇𝑦𝑦 
    = 𝐻𝐻𝐿𝐿𝑦𝑦                                                                        5-7 

In the above equation 𝐻𝐻𝐿𝐿 exists if 𝑘𝑘 ≥ 𝑒𝑒 and 𝐻𝐻 is a full rank matrix, then 𝐻𝐻𝐿𝐿 is the left 

pseudo inverse of 𝐻𝐻. One of the two criteria for the existence of 𝐻𝐻 is that the number of 

measurements, 𝑘𝑘, must be greater than the number of variables, 𝑒𝑒, that we want to 

estimate (𝑘𝑘 ≥ 𝑒𝑒). The second criterion is that the measurements need to be linearly 

independent.   

In the above equations, we used the following mathematical properties of matrix 

algebra and matrix calculus. 

(𝐴𝐴𝐴𝐴)𝑇𝑇 = 𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇 

𝜕𝜕(𝑥𝑥𝑇𝑇𝑦𝑦)
𝜕𝜕𝑥𝑥

= 𝑦𝑦𝑇𝑇 

𝜕𝜕(𝑥𝑥𝑇𝑇𝑦𝑦)
𝜕𝜕𝑦𝑦

= 𝑥𝑥𝑇𝑇 

𝜕𝜕(𝑥𝑥𝑇𝑇𝐴𝐴𝑥𝑥)
𝜕𝜕𝑥𝑥

= 𝑥𝑥𝑇𝑇𝐴𝐴 + 𝐴𝐴𝑇𝑇xT                                                           5-8 

For estimating the unknown resistance, 𝑥𝑥, of the resistor, based on 𝑘𝑘 available noisy 

measurements from a multimeter, we can write  

𝑦𝑦1 = 𝑥𝑥 + 𝑣𝑣1 

. 

. 

. 
 𝑦𝑦𝑘𝑘 = 𝑥𝑥 + 𝑣𝑣𝑘𝑘                                                                        5-9 

Since there is only one resistor, 𝑥𝑥 is a scalar. Equation ٥-9 can be written in the form 

of a single matrix as, 

   �

𝑦𝑦1.
.
.
𝑦𝑦𝑘𝑘

� = �

1.
.
.
1

� 𝑥𝑥 + �

𝑣𝑣1.
.
.
𝑣𝑣𝑘𝑘

�                                                          5-10 

 
Equation  5-7 illustrates that the optimal estimate, 𝑥𝑥�, of the unknown resistance, 𝑥𝑥, can 

be calculated as 
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𝑥𝑥� = (𝐻𝐻𝑇𝑇𝐻𝐻)−1𝐻𝐻𝑇𝑇𝑦𝑦 

   = �[1 … 1] �

1.
.
.
1

��

−1

[1 … 1] �

𝑦𝑦1.
.
.
𝑦𝑦𝑘𝑘

� 

    = 1
𝑘𝑘

(𝑦𝑦1 + ⋯𝑦𝑦𝑘𝑘)                                                                     5-11 

where H is as defined previously in Equations  5-10. The result gives the average of the 

measurements as the best estimate of the unknown resistance and thus agrees with one’s 

intuition. 

 

Example 2: Estimation of a constant when measurements have different degree 

of accuracy 

In the above example, we studied the case that we had equal amount of confidence in 

all our measurements. But that is not a general case. In practice, we have more 

confidence in some measurements than the others. So we need to give more weight to the 

measurements having greater confidence. Nevertheless, we would like to use 

measurements with greater uncertainty in our estimation, because they still have some 

information.  

Mathematically stated, like before, we have an unknown constant, which is 

represented by an n-element vector, 𝑥𝑥, and a k-element vector of measurements, 𝑦𝑦. We 

also assume that there is a linear relationship between each element of 𝑦𝑦 with the 

elements of 𝑥𝑥, and we have some measurement noise (v) whose variance might be 

different for each element of 𝑦𝑦. Thus,  

�

𝑦𝑦1.
.
.
𝑦𝑦𝑘𝑘

� =

⎣
⎢
⎢
⎡
𝐻𝐻11 . . . 𝐻𝐻1𝑛𝑛.

.

.
⋱

.

.

.
𝐻𝐻𝑘𝑘1 . . . 𝐻𝐻𝑘𝑘𝑛𝑛⎦

⎥
⎥
⎤
�

𝑥𝑥1.
.
.
𝑥𝑥𝑘𝑘

� + �

𝑣𝑣1.
.
.
𝑣𝑣𝑘𝑘

� 

𝐸𝐸(𝑣𝑣𝑖𝑖2) = 𝜎𝜎𝑖𝑖2        (𝑖𝑖 = 1, . . . ,𝑘𝑘)                                                        5-12 

 
If the measurement noise has zero-mean and is independent, the measurement 

covariance matrix has the form 

𝑅𝑅 = 𝐸𝐸(𝑣𝑣𝑣𝑣𝑇𝑇) 
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= �
𝜎𝜎12 ⋯ 0
⋮  ⋯
0 ⋯ 𝜎𝜎𝑘𝑘2

�             5-13 

To find the optimum value of 𝑥𝑥, we need to minimize the cost function, 𝐽𝐽, with respect 

to 𝑥𝑥�. So 

 𝐽𝐽 = 𝜖𝜖𝑦𝑦12

𝜎𝜎12
+ ⋯+ 𝜖𝜖𝑦𝑦𝑦𝑦2

𝜎𝜎𝑦𝑦2
             5-14 

If we compare Equation  5-14 with  5-4, we see that in 5-4 we tried to minimize the 

sum of the squares of the elements of 𝜖𝜖𝑥𝑥, while in  5-14 we minimize the weighted sum of 

the squares. The weighted minimization makes it possible to consider relative variances 

of the errors in observations. It means that, if one of our measurements, let’s say 𝑦𝑦1, is a 

relatively noisy measurement, then as we do not have that much confidence in it, we 

place less emphasis on minimizing the difference between it and the first element of 𝐻𝐻𝑥𝑥�, 

and we put more  effort in minimizing this difference for those measurements that are 

less noisy. In this case, the cost function can be written as 

𝐽𝐽 = 𝜖𝜖𝑥𝑥𝑇𝑇𝑅𝑅−1𝜖𝜖𝑥𝑥  

   = (𝑦𝑦 − 𝐻𝐻𝑥𝑥�)𝑇𝑇𝑅𝑅−1(𝑦𝑦 − 𝐻𝐻𝑥𝑥�) 

   = 𝑦𝑦𝑇𝑇𝑅𝑅−1𝑦𝑦 − 𝑥𝑥�𝑇𝑇𝐻𝐻𝑇𝑇𝑅𝑅−1𝑦𝑦 − 𝑦𝑦𝑇𝑇𝑅𝑅−1𝐻𝐻𝑥𝑥� + 𝑥𝑥�𝑇𝑇𝐻𝐻𝑇𝑇𝑅𝑅−1𝐻𝐻𝑥𝑥�             5-15 

 To compute the best estimate of 𝑥𝑥, which is 𝑥𝑥�, like before, we need to take the partial 

derivative of the cost function, 𝐽𝐽, with respect to 𝑥𝑥� and set it equal to zero: 

 
∂J
𝜕𝜕𝑥𝑥�

= −2𝑦𝑦𝑇𝑇𝑅𝑅−1𝐻𝐻 + 2𝑥𝑥�𝑇𝑇𝐻𝐻𝑇𝑇𝑅𝑅−1𝐻𝐻 

= 0 

Therefore,  

 𝐻𝐻𝑇𝑇𝑅𝑅−1𝑦𝑦 = 𝐻𝐻𝑇𝑇𝑅𝑅−1𝐻𝐻𝑥𝑥�  

and 

𝑥𝑥� =  (𝐻𝐻𝑇𝑇𝑅𝑅−1𝐻𝐻)−1𝐻𝐻𝑇𝑇𝑅𝑅−1𝑦𝑦             5-16 

 
For the example of estimating the resistance based on 𝑘𝑘 available measurements with 

different levels of uncertainty, our system of equations becomes: 
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𝑦𝑦𝑖𝑖 = 𝑥𝑥 + 𝑣𝑣𝑖𝑖 

𝐸𝐸(𝑣𝑣𝑖𝑖2) = 𝜎𝜎𝑖𝑖2                       (𝑖𝑖 = 1, … ,𝑘𝑘)                                            5-17 

Like Equation  5-10, the relation between the unknown values and measurement can be 

written as 

�

𝑦𝑦1.
.
.
𝑦𝑦𝑘𝑘

� = �

1.
.
.
1

� 𝑥𝑥 + �

𝑣𝑣1.
.
.
𝑣𝑣𝑘𝑘

�                                              5-18 

The measurement noise covariance has the following form 

𝑅𝑅 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝜎𝜎12 …𝜎𝜎𝑘𝑘2)             5-19 

and substitution of the above vectors in Equation  5-16 results in 

𝑥𝑥� = (𝐻𝐻𝑇𝑇𝑅𝑅−1𝐻𝐻)−1𝐻𝐻𝑇𝑇𝑅𝑅−1𝑦𝑦 

 𝑥𝑥�  = �[1 ⋯ 1] �
𝜎𝜎12 ⋯ 0
⋮ ⋱ ⋮
0 … 𝜎𝜎𝑘𝑘2

�

−1

�
1
⋮
1
��

−1

×  [1 ⋯ 1] �
𝜎𝜎12 ⋯ 0
⋮ ⋱ ⋮
0 … 𝜎𝜎𝑘𝑘2

�

−1

�

𝑦𝑦1.
.
.
𝑦𝑦𝑘𝑘

�   

= �∑ 1
𝜎𝜎𝑖𝑖2� �

−1
�𝑦𝑦1 𝜎𝜎12� + ⋯+ 𝑦𝑦𝑘𝑘

𝜎𝜎𝑘𝑘2� �          5-20 

Thus, when the measurements are weighted by the inverse of their uncertainty, less 

emphasis is placed on measurements having greater uncertainty. When all of the data 

have the same accuracy, (𝑖𝑖. 𝑒𝑒. ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝜕𝜕𝑖𝑖 is constant), Equation  5-20 reduces to 

Equation  5-11. 

Converting the Linear Estimator to the Linear Recursive Estimator 

Equations  5-7 and   5-16 calculate the optimum estimate of a constant vector; If we 

update our estimate of 𝑥𝑥 each time for all measurements sequentially, it means that we 

obtain measurements gradually and include them into the estimation procedure 

subsequently, we will need to augment the 𝐻𝐻 matrix and recompute our best estimate, 𝑥𝑥�, 

each time. If the number of measurements gets large, then the computation could become 

very time consuming and will need large memory and storage space. So rewriting the 

estimator equation recursively is an important step in making it an effective estimator. In 

this form of equation, after (𝑘𝑘 − 1) measurements, we obtain a new measurement, 𝑦𝑦𝑘𝑘, the 

iterative least-squares equations can be written as  
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𝑦𝑦𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑥𝑥 + 𝑣𝑣𝑘𝑘 

   𝑥𝑥 �𝑘𝑘 = 𝑥𝑥�𝑘𝑘−1 + 𝐾𝐾𝑘𝑘(𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−1)                                                                                    5-21 

In the above equation, all matrices are known except 𝐾𝐾𝑘𝑘, which is called the estimator 

gain matrix. 

The (𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−1) term is known as the correction term. If either the correction term 

or the gain matrix becomes zero, then the estimate does not change from time step 

(𝑘𝑘 − 1) to 𝑘𝑘. 

We need a criterion to determine the gain matrix. Here the criterion is to minimize the 

sum of the variances of the estimation errors for each time step, 

𝐽𝐽𝑘𝑘 = 𝐸𝐸[(𝑥𝑥1𝑘𝑘 − 𝑥𝑥�2)2] + ⋯+ 𝐸𝐸[(𝑥𝑥𝑛𝑛𝑘𝑘 − 𝑥𝑥�𝑛𝑛)2] 

= 𝐸𝐸�𝜖𝜖2𝑥𝑥1,𝑘𝑘 + ⋯+ 𝜖𝜖2𝑥𝑥𝑛𝑛,𝑘𝑘� 

= 𝐸𝐸�𝜖𝜖𝑇𝑇𝑥𝑥,𝑘𝑘𝜖𝜖𝑥𝑥,𝑘𝑘� 

      = 𝐸𝐸�𝑇𝑇𝑇𝑇�𝜖𝜖𝑇𝑇𝑥𝑥,𝑘𝑘𝜖𝜖𝑥𝑥,𝑘𝑘�� 

= 𝑇𝑇𝑇𝑇𝑃𝑃𝑘𝑘                                                          5-22 

In the above equation, 𝑃𝑃𝑘𝑘 is the estimation error covariance and can be written in a 

recursive form as  

𝑃𝑃𝑘𝑘 = 𝐸𝐸�𝜖𝜖𝑥𝑥,𝑘𝑘𝜖𝜖𝑇𝑇𝑥𝑥,𝑘𝑘� 

      = 𝐸𝐸��(𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝜖𝜖𝑥𝑥,𝑘𝑘−1 − 𝐾𝐾𝑘𝑘𝑣𝑣𝑘𝑘�[… ]𝑇𝑇� 

= (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝐸𝐸�𝜖𝜖𝑥𝑥,𝑘𝑘−1𝜖𝜖𝑇𝑇𝑥𝑥,𝑘𝑘−1�(𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑇𝑇 − 𝐾𝐾𝑘𝑘𝐸𝐸(𝑣𝑣𝑘𝑘𝜖𝜖𝑇𝑇𝑥𝑥,𝑘𝑘−1)(𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑇𝑇 

−(𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘) 𝐸𝐸�𝜖𝜖𝑥𝑥,𝑘𝑘−1𝑣𝑣𝑇𝑇𝑘𝑘�𝐾𝐾𝑇𝑇
𝑘𝑘 + 𝐾𝐾𝑘𝑘𝐸𝐸(𝑣𝑣𝑘𝑘𝑣𝑣𝑇𝑇𝑘𝑘)𝐾𝐾𝑘𝑘𝑇𝑇        5-23 

The estimation error at time (𝑘𝑘 − 1) is independent of the measurement noise at time 

𝑘𝑘 (i.e., 𝜖𝜖𝑥𝑥,𝑘𝑘−1 is independent of 𝑣𝑣𝑘𝑘) and the probability theory tells us that 

𝐸𝐸(𝐴𝐴𝐴𝐴) = 𝐸𝐸(𝐴𝐴)𝐸𝐸(𝐴𝐴)                                                                                                  5-24 

If we further suppose that both the measurement noise and estimation error have zero 

mean, then,  

𝐸𝐸�𝑣𝑣𝑘𝑘𝜖𝜖𝑇𝑇𝑥𝑥,𝑘𝑘−1� = 𝐸𝐸(𝑣𝑣𝑘𝑘)𝐸𝐸𝑇𝑇�𝜖𝜖𝑥𝑥,𝑘𝑘−1� = 0                                                                     5-25  

With the same logic,  

𝐸𝐸�𝜖𝜖𝑥𝑥,𝑘𝑘−1𝑣𝑣𝑇𝑇𝑘𝑘� =  𝐸𝐸�𝜖𝜖𝑥𝑥,𝑘𝑘−1� 𝐸𝐸𝑇𝑇(𝑣𝑣𝑘𝑘) = 0            5-26 
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Using Equation  5-13, Equation  5-23 can be written as 

𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘−1(𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑇𝑇 + 𝐾𝐾𝑘𝑘𝑅𝑅𝑘𝑘𝐾𝐾𝑘𝑘𝑇𝑇                                           5-27 

where 𝑅𝑅𝑘𝑘 is the covariance of 𝑣𝑣𝑘𝑘. Equation 5-27 is the recursive formula that gives us 

the covariance of the least-squares estimation error. It tells us that as the measurement 

noise covariance (𝑅𝑅𝑘𝑘) increases, the uncertainty in the estimate (𝑃𝑃𝑘𝑘) also increases. That 

is exactly what one expects.  

The issue of the value of 𝐾𝐾𝑘𝑘 that will make the cost function (𝐽𝐽) in Equation  5-22 the 

minimum is still unaddressed. For this, we need to calculate 𝜕𝜕𝐽𝐽𝑦𝑦
𝜕𝜕𝐾𝐾𝑦𝑦

 and set it equal to zero. 

Taking into account Equations  5-22 and  5-27 and considering 

𝜕𝜕𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇)
𝜕𝜕𝐴𝐴

= 2𝐴𝐴𝐴𝐴 

From matrix calculus, we have 

𝜕𝜕𝐽𝐽𝑘𝑘
𝜕𝜕𝐾𝐾𝑘𝑘

=
𝜕𝜕(𝑇𝑇𝑇𝑇𝑃𝑃𝑘𝑘)
𝜕𝜕𝐾𝐾𝑘𝑘

=  
𝜕𝜕[𝑇𝑇𝑇𝑇 �(𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘−1(𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑇𝑇 + 𝐾𝐾𝑘𝑘𝑅𝑅𝑘𝑘𝐾𝐾𝑘𝑘𝑇𝑇�]

𝜕𝜕𝐾𝐾𝑘𝑘
 

= 2(𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘−1�−𝐻𝐻𝑘𝑘𝑇𝑇� + 2𝐾𝐾𝑘𝑘𝑅𝑅𝑘𝑘 = 0                                5-28 

If we solve the above equation for 𝐾𝐾𝑘𝑘: 

𝐾𝐾𝑘𝑘𝑅𝑅𝑘𝑘 =  (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇, 

and therefore 

𝐾𝐾𝑘𝑘�𝑅𝑅𝑘𝑘 + 𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇� = 𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇 

and 

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1                                                                  5-29 

Table  5-1: Measurement update equations. shows the basic recursive least squares 

estimation equations, which form the measurement update equations of the Kalman filter. 

 
Table  5-1: Measurement update equations. 
 

x�k = x�k-1 + Kk �yk-Hkx�k-1�                                                                   5-21 

     Pk = �I-KkHk�Pk-1�I-KkHk�
T

+ KkRkKk
T                                           5-27 

Kk = Pk-1Hk
T(HkPk-1Hk

T + Rk)-1                                                           5-29 
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Table  5-2: Components of the full tensor gradiometry matrix and their mathematical 
meaning. 
 

 𝑥𝑥�𝑘𝑘 State estimate Output 

𝐾𝐾𝑘𝑘 Gain matrix (in some sources it is called blending factor) Intermediary variables 

𝑦𝑦𝑘𝑘 Actual measurement Input 

𝐻𝐻𝑘𝑘 Measurement matrix (relates the state to the measurement) Constant 

𝑃𝑃𝑘𝑘 Estimation error covariance Output 

𝑅𝑅𝑘𝑘 Measurement error covariance Input 

 
The steps for the recursive least-squares estimator are summarized in Simon’s book 

(2006) as: 

1. Initializing the estimator, the best values for the estimation, and its corresponding 

covariance, 

𝑥𝑥�0 = 𝐸𝐸(𝑥𝑥) 

 𝑃𝑃0 = 𝐸𝐸[(𝑥𝑥 − 𝑥𝑥�0)(𝑥𝑥 − 𝑥𝑥�0)𝑇𝑇]                                              5-30 

If the values of 𝑥𝑥 are not known before measurements are taken, then we set 

𝑃𝑃0 = ∞, and if 𝑥𝑥 is perfectly known, then 𝑃𝑃0 = 0; 

2. For 𝑘𝑘 = 1, 2, …, repeat the following in a loop 

(a) Obtain the measurement 𝑦𝑦𝑘𝑘, and 

(b) Update the estimate of 𝑥𝑥 and estimate the error covariance 𝑃𝑃 (using equations 

in Table  5-1). 

Alternative forms of the estimator 

In scientific literature, the equations of the Kalman filter are given in different forms. 

These alternative forms are mathematically identical, but some of them are more practical 

from a computational point of view. If we start with Equation  5-27 and substitute 𝐾𝐾𝑘𝑘 

from Equation  5-29 we obtain                                             

𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘−1(𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑇𝑇 + 𝐾𝐾𝑘𝑘𝑅𝑅𝑘𝑘𝐾𝐾𝑘𝑘𝑇𝑇                               

= �𝐼𝐼 − 𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘−1𝐻𝐻𝑘𝑘�𝑃𝑃𝑘𝑘−1[… ]𝑇𝑇 + 𝐾𝐾𝑘𝑘𝑅𝑅𝑘𝑘𝐾𝐾𝑘𝑘𝑇𝑇                                          5-31 

In the above equation a new variable 𝑆𝑆𝑘𝑘 is introduced which is defined as 

𝑆𝑆𝑘𝑘 = �𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘�             5-32 
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If we again substitute 𝐾𝐾𝑘𝑘 from 5-29 in  5-31, using the following rule of matrix 

computations 

 (𝐴𝐴𝐴𝐴𝐵𝐵…𝑀𝑀𝑀𝑀)𝑇𝑇 = 𝑀𝑀𝑇𝑇𝑀𝑀𝑇𝑇 …𝐵𝐵𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇            ,         

then, 

𝑃𝑃𝑘𝑘 = 𝑃𝑃𝑘𝑘−1 − 𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘−1𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1 − 𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘−1𝐻𝐻𝑘𝑘 𝑃𝑃𝑘𝑘−1 + 

     𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘−1𝐻𝐻𝑘𝑘 𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘−1𝐻𝐻𝑘𝑘 𝑃𝑃𝑘𝑘−1 + 𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘−1𝑅𝑅𝑘𝑘𝑆𝑆𝑘𝑘−1𝐻𝐻𝑘𝑘 𝑃𝑃𝑘𝑘−1                          

= 𝑃𝑃𝑘𝑘−1 − 2 𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘−1𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1 +  𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘−1(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘) 𝑆𝑆𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇𝑃𝑃𝑘𝑘−1 

= 𝑃𝑃𝑘𝑘−1 − 2 𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘−1𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1 +  𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘−1𝑆𝑆𝑘𝑘 𝑆𝑆𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇𝑃𝑃𝑘𝑘−1 

= 𝑃𝑃𝑘𝑘−1 − 2 𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘−1𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1 +  𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇𝑃𝑃𝑘𝑘−1 

= 𝑃𝑃𝑘𝑘−1 −  𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇𝑆𝑆𝑘𝑘−1𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1            5-33 

 
If we review equations  5-29 and  5-32 that calculate 𝐾𝐾𝑘𝑘 and 𝑆𝑆𝑘𝑘, respectively, 𝑃𝑃𝑘𝑘 can be 

rewritten as 

𝑃𝑃𝑘𝑘 = 𝑃𝑃𝑘𝑘−1 −  𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇�𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘�
−1
𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1 

      = 𝑃𝑃𝑘𝑘−1 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1 

      = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘−1                        5-34 

Equation 5-34  has a simpler form compared with Equation  5-27 but on the other hand 

it has a numerical problem. Sometimes, it gives a negative value for 𝑃𝑃𝑘𝑘 which is not 

realistic.  

If we start with Equation 5-34 again and take the inverse of the both sides of the 

equation, we can write 

𝑃𝑃𝑘𝑘 = 𝑃𝑃𝑘𝑘−1 −  𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇�𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘�
−1
𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1 

𝑃𝑃𝑘𝑘−1 = [𝑃𝑃𝑘𝑘−1 −  𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇�𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘�
−1
𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1]−1                              5-35 

Considering the following matrix inversion lemma 

(𝐴𝐴 − 𝐴𝐴𝐷𝐷−1𝐵𝐵)−1 =  𝐴𝐴−1 + 𝐴𝐴−1𝐴𝐴 (𝐷𝐷 − 𝐵𝐵𝐴𝐴−1𝐴𝐴)−1𝐵𝐵𝐴𝐴−1  ,        5-36 

Equation  5-35 can be written as 

𝑃𝑃𝑘𝑘−1 = 𝑃𝑃𝑘𝑘−1−1 

+𝑃𝑃𝑘𝑘−1−1 𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝑃𝑃𝑘𝑘−1−1 𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇)−1𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝑃𝑃𝑘𝑘−1−1     
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𝑃𝑃𝑘𝑘−1 = 𝑃𝑃𝑘𝑘−1−1 + 𝐻𝐻𝑘𝑘𝑇𝑇𝑅𝑅𝑘𝑘−1 𝐻𝐻𝑘𝑘            5-37 

So 𝑃𝑃𝑘𝑘 can be calculated as 

𝑃𝑃𝑘𝑘 = (𝑃𝑃𝑘𝑘−1−1 +  𝐻𝐻𝑘𝑘𝑇𝑇𝑅𝑅𝑘𝑘−1 𝐻𝐻𝑘𝑘)−1                                                                   5-38 

This form seems more complicated since three matrix inversions are needed to 

calculate it but has a computational advantage. It is never negative. 

To get an alternative form of the gain matrix we start from Equation  5-29 

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1 

Multiplying both sides of the equation by 𝑃𝑃𝑘𝑘𝑃𝑃𝑘𝑘−1 which is equal to identity matrix 

gives us 

𝑃𝑃𝑘𝑘𝑃𝑃𝑘𝑘−1𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘𝑃𝑃𝑘𝑘−1𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1                               5-39 

Substituting 𝑃𝑃𝑘𝑘−1 from Equation   5-37 leads to 

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘(𝑃𝑃𝑘𝑘−1−1 +  𝐻𝐻𝑘𝑘𝑇𝑇𝑅𝑅𝑘𝑘−1 𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1                            

 = 𝑃𝑃𝑘𝑘(𝐻𝐻𝑘𝑘𝑇𝑇 +  𝐻𝐻𝑘𝑘𝑇𝑇𝑅𝑅𝑘𝑘−1 𝐻𝐻𝑘𝑘 𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇)(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1 

= 𝑃𝑃𝑘𝑘𝐻𝐻𝑘𝑘𝑇𝑇(𝐼𝐼 +  𝑅𝑅𝑘𝑘−1 𝐻𝐻𝑘𝑘 𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇)(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1        5-40 

     Multiplying the right hand side of the equation by another identity matrix (𝑅𝑅𝑘𝑘𝑅𝑅𝑘𝑘−1 ) 

𝐾𝐾𝑘𝑘 =  𝑃𝑃𝑘𝑘𝐻𝐻𝑘𝑘𝑇𝑇𝑅𝑅𝑘𝑘−1 (𝑅𝑅𝑘𝑘 + 𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇) (𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1 

      =  𝑃𝑃𝑘𝑘𝐻𝐻𝑘𝑘𝑇𝑇𝑅𝑅𝑘𝑘−1               5-41 

In Table  5-3 the above recursive form of the least-squares equations are summarized. 

Table  5-3: Different forms of measurement update equations. 
 

Kk = Pk-1Hk
T(HkPk-1Hk

T + Rk)-1                                                    5-29 

      =  PkHk
TRk

-1                                 5-41 

x�k = x�k-1 + Kk �yk-Hkx�k-1�                                          5-21 

Pk = �I-KkHk�Pk-1�I-KkHk�
T

+ KkRkKk
T                             5-27 

     = (Pk-1
-1 +  Hk

TRk
-1 Hk)-1                                         5-38 

     = (I-KkHk)Pk-1                                                                 5-34 

 

Now, going back to the simple example of estimating a constant value from a set of 

measurements, and using the equations in Table  5-3, one can write 
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𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−1𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1 

In this case, 𝐻𝐻𝑘𝑘 = 1 and we suppose that 𝑅𝑅 is a constant, i.e., all measurements have 

the same covariance. So 

𝐾𝐾1 = 𝑃𝑃0(𝑃𝑃0 + 𝑅𝑅)−1 

𝑥𝑥�𝑘𝑘 = 𝑥𝑥�𝑘𝑘−1 + 𝐾𝐾𝑘𝑘(𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−1) 

𝑥𝑥�1 =  𝑥𝑥�0 +
𝑃𝑃0

𝑃𝑃0 + 𝑅𝑅
 (𝑦𝑦1 −  𝑥𝑥�0) 

𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘−1(𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑇𝑇 + 𝐾𝐾𝑘𝑘𝑅𝑅𝑘𝑘𝐾𝐾𝑘𝑘𝑇𝑇 

𝑃𝑃1 = 𝑃𝑃0𝑅𝑅
𝑃𝑃0+𝑅𝑅

                                                 5-42 

 
Then for the best estimate of 𝑥𝑥 and the related covariance, one can write the equation 

for 𝑘𝑘 = 2 and obtain 

𝐾𝐾2 =
𝑃𝑃1

𝑃𝑃1 + 𝑅𝑅
=

𝑃𝑃0
2𝑃𝑃0 + 𝑅𝑅

 

𝑃𝑃2 =
𝑃𝑃1𝑅𝑅
𝑃𝑃1 + 𝑅𝑅

=
𝑃𝑃0𝑅𝑅

2𝑃𝑃0 + 𝑅𝑅
 

 𝑥𝑥�2 =  𝑥𝑥�1 +
𝑃𝑃1

𝑃𝑃1 + 𝑅𝑅
 (𝑦𝑦2 −  𝑥𝑥�1) 

      = 𝑃𝑃0+𝑅𝑅
2𝑃𝑃0+𝑅𝑅

 𝑥𝑥�1 + 𝑃𝑃0
2𝑃𝑃0+𝑅𝑅

                5-43 

 
Considering equations 5-42 and 5-43, we can write a general expression for 

calculating the estimate (𝑥𝑥�), the estimation error covariance (𝑃𝑃𝑘𝑘), and the gain matrix 

(𝐾𝐾𝑘𝑘) as 

𝑃𝑃𝑘𝑘−1 =
𝑃𝑃0𝑅𝑅

(𝑘𝑘 − 1)𝑃𝑃0 + 𝑅𝑅
 

𝐾𝐾𝑘𝑘 =
𝑃𝑃0

𝑘𝑘𝑃𝑃0 + 𝑅𝑅
 

𝑥𝑥�𝑘𝑘 =  𝑥𝑥�𝑘𝑘−1 + 𝐾𝐾𝑘𝑘 (𝑦𝑦𝑘𝑘 −  𝑥𝑥�𝑘𝑘−1) 

      = (1 − 𝐾𝐾𝑘𝑘) 𝑥𝑥�𝑘𝑘−1 + 𝐾𝐾𝑘𝑘𝑦𝑦𝑘𝑘 

      = (𝑘𝑘−1)𝑃𝑃0+𝑅𝑅
𝑘𝑘𝑃𝑃0+𝑅𝑅

 𝑥𝑥�𝑘𝑘−1 + 𝑃𝑃0
𝑘𝑘𝑃𝑃0+𝑅𝑅

𝑦𝑦𝑘𝑘                                                  5-44 
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The above equations show that when 𝑥𝑥 is perfectly known before any measurements 

are obtained, i.e. when 𝑃𝑃0 = 0, then 𝐾𝐾𝑘𝑘 = 0 and  𝑥𝑥�𝑘𝑘=  𝑥𝑥�0. It means that the optimal 

estimate of 𝑥𝑥 is known, constant, and completely independent of the measurements. It is 

the case when we are completely sure about our first estimation and clearly we do not 

need the measurements to calculate the best estimation of the variable. On the other hand, 

in the case when 𝑥𝑥 is completely unknown before the measurements, 𝑃𝑃0 → ∞, and the 

best estimate of the variable would be: 

  𝑥𝑥�𝑘𝑘 =
(𝑘𝑘 − 1)𝑃𝑃0

𝑘𝑘𝑃𝑃0
 𝑥𝑥�𝑘𝑘−1 +

𝑃𝑃0
𝑘𝑘𝑃𝑃0

𝑦𝑦𝑘𝑘 

  =
(𝑘𝑘 − 1)

𝑘𝑘
 𝑥𝑥�𝑘𝑘−1 +

1
𝑘𝑘
𝑦𝑦𝑘𝑘 

  =  1
𝑘𝑘

 [(𝑘𝑘 − 1) 𝑥𝑥�𝑘𝑘−1 + 𝑦𝑦𝑘𝑘]             5-45 

 
But what will be the best estimate of a state when the state is completely unknown? 

Intuitively, we know that it should be the average of the measurements. If we rewrite the 

average of the measurements in an iterative form as 

𝑦𝑦�𝑘𝑘 =
1
𝑘𝑘

 �𝑦𝑦𝑗𝑗

𝑘𝑘

𝑗𝑗=1

 

     =
1
𝑘𝑘
��𝑦𝑦𝑗𝑗

𝑘𝑘−1

𝑗𝑗=1

+ 𝑦𝑦𝑘𝑘�  

     =  
1
𝑘𝑘

 �(𝑘𝑘 − 1)�
1

𝑘𝑘 − 1
 �𝑦𝑦𝑗𝑗

𝑘𝑘−1

𝑗𝑗=1

� + 𝑦𝑦𝑘𝑘� 

=  1
k

[(k − 1)y�k−1 + yk]             5-46 

 

Comparing equations  5-45 and 5-46 one can see that the optimal estimate of a state, 

when the estimate is completely unknown, is the average of the measurements.  

Examples illustrating how the measurement update equations make an estimation 

Below are two examples that show how the linear recursive estimator works. The first 

example is about a system that has one measurement set (𝑦𝑦) and one variable to be 
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estimated (𝑥𝑥) (the same as Example 1 at the beginning of the chapter). The second 

example considers a system that has again one measurement set but the state consists of 

two variables(𝑥𝑥1 𝑑𝑑𝑒𝑒𝑑𝑑 𝑥𝑥2).  

Suppose we have a data set collected with a voltmeter having the accuracy 𝑅𝑅 and the 

true voltage of the system is known accurately. The example illustrates how a linear 

recursive estimator can yield the desirable result. The matrices needed for this example 

are 

𝐻𝐻 = 1 

𝑃𝑃0 = 1  

𝑥𝑥0 = 15               5-47 

 
𝑃𝑃0 = 1  implies that we are not sure about the initial estimate 𝑥𝑥0 = 15. Figure  5-1 

illustrates that the estimates will converge to the true value of 12 (in this case, within 10 

iterations), and the estimation error variance (Pk) approaches zero whose low value 

assures us that the estimates are trustable.  

On the other hand, if we trust the initial estimate of 15 more than before by supplying 

a smaller estimation variance of 𝑃𝑃0 =  0.2, then the linear recursive estimator cannot 

reach the true voltage in ten time steps. Figure  5-2 shows that 80 iterations are needed to 

approach the true value in this case.  

In the case of more precise measurements, R, the measurement error, is smaller and 

clearly it means that we believe we should trust our measurements more and our 

estimates need to be closer to our measurements. As Figure  5-3 shows, even though our 

first estimate (𝑥𝑥0 = 15) is not close to the true value (12), since the measurement error is 

smaller than the previous examples (R= 0.1 instead of 1), the second estimation can get 

very close to the true value of 12. Both the estimation and the corresponding variance 

illustrate this point (i.e., variance of the estimation gets close to 0.1 as soon as the second 

estimation was made).  

If we incorrectly specify that our measurements are 100% correct and no noise is 

present (i.e. R=0), it is expected that the later estimations will be the same as the first 

measurement (𝑧𝑧1), regardless of the number of iterations. This occurs even if future 
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measurements may be more precise, and the equations from Table  5-3 rewritten for this 

case show why:  

If 𝑅𝑅 = 0,�
                𝐾𝐾1 = 𝑃𝑃0𝐻𝐻1𝑇𝑇�𝐻𝐻1𝑃𝑃0𝐻𝐻1𝑇𝑇 + 𝑅𝑅1�

−1
=  𝑃𝑃02 = 1

                            𝑃𝑃1 = (1 − 𝐾𝐾1𝐻𝐻1)𝑃𝑃0(1− 𝐾𝐾1𝐻𝐻1)𝑇𝑇 + 𝐾𝐾1𝑅𝑅1𝐾𝐾1𝑇𝑇 = 0
 𝑥𝑥�1 = 𝑥𝑥�0 + 𝐾𝐾1(𝑦𝑦1 − 𝐻𝐻1𝑥𝑥�0) = 𝑦𝑦1   

 

              �
    𝐾𝐾2 = 𝑃𝑃1𝐻𝐻2𝑇𝑇�𝐻𝐻2𝑃𝑃1𝐻𝐻2𝑇𝑇 + 𝑅𝑅2�

−1
=  𝑀𝑀𝐴𝐴𝑀𝑀

                            𝑃𝑃2 = (1 − 𝐾𝐾2𝐻𝐻2)𝑃𝑃1(1 − 𝐾𝐾2𝐻𝐻2)𝑇𝑇 + 𝐾𝐾2𝑅𝑅2𝐾𝐾2𝑇𝑇 = 𝑀𝑀𝐴𝐴𝑀𝑀
              𝑥𝑥�2 = 𝑥𝑥�1 + 𝐾𝐾2(𝑦𝑦2 − 𝐻𝐻2𝑥𝑥�1) = 𝑀𝑀𝐴𝐴𝑀𝑀                     
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Figure  5-1: Importance of measurement error and initial estimate covariance; the first 
simulation: Measurement error R = 1 and the uncertainty in the initial estimate 
covariance P0 =1. (a) State estimates and (b) the corresponding estimation variance. 
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Figure  5-2: Importance of measurement error and initial estimate covariance; The 
second simulation: Measurement error R = 1 and the uncertainty in the initial estimate 
covariance P0 =2. (a) State estimates and (b) the corresponding estimation variance for 
the second simulation. 80 estimations were made to reach the target. 
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Figure  5-3: Importance of measurement error and initial estimate covariance; the Third 
simulation: measurement error R is considered 0.1 (see the reduced spread of 
measurements around the true value of 12) and the initial estimation error variance P0 
=1. In this case, the filter responds to measurements quickly, increasing the estimate 
variance so it was very “quick” to believe the noisy measurements. (a) State estimates 
and (b) the corresponding estimation variance. 

 

 

a

 

b
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As for this case, 𝑃𝑃1 = 0 and 𝐾𝐾1 = 1, both 𝐾𝐾2 and 𝑃𝑃2 are undefined and the  second 

iteration breaks down.  

On the other hand, if one assumes that 𝑥𝑥 is perfectly known before measurements, 

then  𝑃𝑃0 = 0, which upon substitutions into equations in Table  5-3 yields, 

�
    𝐾𝐾1 = 𝑃𝑃0𝐻𝐻1𝑇𝑇�𝐻𝐻1𝑃𝑃0𝐻𝐻1𝑇𝑇 + 𝑅𝑅1�

−1
=  0

  𝑃𝑃1 = (1 − 𝐾𝐾1𝐻𝐻1)𝑃𝑃0(1 − 𝐾𝐾1𝐻𝐻1)𝑇𝑇 + 𝐾𝐾1𝑅𝑅1𝐾𝐾1𝑇𝑇 = 0
 𝑥𝑥�1 = 𝑥𝑥�0 + 𝐾𝐾1(𝑦𝑦1 − 𝐻𝐻1𝑥𝑥�0) =  𝑥𝑥�0 =   𝑥𝑥0  

 

𝐾𝐾1 = 𝐾𝐾2 =. . . = 𝐾𝐾𝑛𝑛 = 0 

 𝑃𝑃1 = 𝑃𝑃2 =. . . = 𝑃𝑃𝑛𝑛 = 0 

𝑥𝑥�1 =   𝑥𝑥�2 = . . . =   𝑥𝑥�𝑛𝑛 =  𝑥𝑥0               

Below I give an example taken from Simon’s book, “Optimal State Estimation”, that 

is very useful for illustrating how the linear recursive estimator works. I, however, used 

different models to illustrate how parameters (initial estimation error and measurement 

error) can affect the behavior of the system. 

In this example the instrument can detect the concentration of two mixed chemicals 

but it cannot distinguish between two or measure them separately. However, we are 

interested in the concentration of each chemical individually. Suppose in our system 

chemical 1 is constant but the system has a leakage so that chemical 2 is decreased by 1% 

from one measurement time to the next time step. So the measurement equation can be 

written as 

 𝑦𝑦𝑘𝑘 = 𝑥𝑥1 + 0.99𝑘𝑘−1𝑥𝑥2 + 𝑣𝑣𝑘𝑘              5-49 

 
In this equation 𝑣𝑣𝑘𝑘 is the measurement noise, which is a random variable with zero-

mean and variance R.  

And H, is a (1×2) measurement matrix:  

[1           0.99𝑘𝑘]               5-50 

 
 From Table  5-3, the states of the system are 𝑥𝑥1 and 𝑥𝑥2 in this example and the 

corresponding covariances are 𝑃𝑃1 and 𝑃𝑃2. Supposing that the initial estimates of the states 

are 8 and 6, respectively, the initial state matrix can be written as 
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𝑥𝑥0 =  �86�               5-51 

𝑃𝑃, which is the estimation covariance matrix, is a (2×2) matrix and the elements on its 

diagonal are the ones that are used in determining the state variances. As we do not have 

confidence in our initial estimate, the initial estimation error variance matrix has the form 

𝑃𝑃0 = �1 0
0 1�              5-52 

In this example, we will use a random function to create measurements, so for each 

separate run, we will have different measurements but what matters is that we expect the 

linear recursive estimator to show a certain behavior. We expect the variances of the 

estimations to approach zero after a couple dozen time steps, and estimations 

approaching their true values. The following figures illustrate the parameter estimates and 

the corresponding variances for different simulations. 

In all examples, the estimates approach their true values after several iterations and the 

corresponding variances decrease to zero rapidly, assuring us that the estimates must be 

reaching their true values.  

If we have more confidence in our initial estimate, we can start with a smaller value of 

𝑃𝑃.  

𝑃𝑃0 = �0.1 0
0 0.1�              5-53 

Figure  5-5 illustrates that when we have more confidence in our initial estimate, the 

results will be smoother. Eventually, we will come to the same result but the number of 

time steps that we need to estimate to get the same result becomes larger. In the case 

where we use the smaller initial estimation covariance, at time step 2, we would reach 0.1 

for the estimation error (Figure  5-5) whereas for the case of lesser confidence in our 

initial estimate, this value cannot be reached in first 40 time steps (Figure  5-4). 

We should notice here the role of the measurement error (R) and how it can affect the 

result. Large 𝑅𝑅 means that we cannot trust measurements very much and we should rely 

on the previous estimation more (Table  5-3). Mathematically, high value of 𝑅𝑅 results in a 

smaller gain value (𝐾𝐾𝑘𝑘) 

Kk = Pk-1Hk
T(HkPk-1Hk

T + Rk)-1           5-29 

So the next estimate is calculated as 
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x�k = x�k-1 + Kk �yk-Hkx�k-1�            5-21 

𝑥𝑥�𝑘𝑘 = 𝑥𝑥�𝑘𝑘−1(1 −  𝐾𝐾𝐻𝐻𝑘𝑘) + 𝐾𝐾𝑘𝑘 𝑦𝑦𝑘𝑘                                             5-54 

Thus, the smaller gain value results in lesser weight to the measurement and, 

consequently, relatively more weight will be placed in the prior estimates. 

If the initial estimation error covariance (𝑃𝑃0) is defined as the identity matrix, and 

supposing a larger measurement error, (𝑅𝑅 = 10), the resultant estimation and the related 

covariance results in Figure  5-6. The figure shows that, noisy data set results in 

estimations that have small degree of confidence. Even after 50 time steps, P (estimation 

error covariance) of 0.2 cannot be reached. As one may instinctively conclude, for noisy 

data set, more measurements are needed to obtain a considerable level of confidence. 
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Figure  5-4: Simon’s (2006) example 3.5: First simulation; modified for 𝑅𝑅 = 1 𝑑𝑑𝑒𝑒𝑑𝑑 𝑝𝑝 =
�1 0
0 1� (a) State estimates and (b) the corresponding variances. 

 

  

a) 

b) 
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Figure  5-5: Simon’s (2006) example 3.5: Second simulation; the same example 
when 𝑅𝑅 = 1 𝑑𝑑𝑒𝑒𝑑𝑑 𝑝𝑝 = �0.1 0

0 0.1�. (a) State estimates and (b) the corresponding 
variances. 
  

a) 

b) 
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Figure  5-6: Simon’s (2006) example 3.5: Third simulation; R =10 and 𝑝𝑝 = �1 0
0 1�. The 

filter responds to measurements quickly, increasing the estimate variance so it was very 
“quick” to believe the noisy measurements. (a) State estimates and (b) the corresponding 
variances. 
  

a) 

b) 
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The time update 
 

Chapter 4 discussed how the Kalman filter equations can be categorized in two groups 

as measurement update equations and time update equations. The measurement update 

equations are responsible for feedback in such a way that they incorporate a new 

measurement into the a priori estimate and the result is the a posteriori estimate. They 

act as the corrector equations while time update equations function as the predictor 

equations. Time update equations project the current state and error covariance forward 

in time to calculate the a priori estimate that will be the input to the measurement update 

subsequently (Welch and Bishop, 2006).  

In this section, I illustrate the examples of the time update equations used in the 

Kalman filter and the criteria that control their stability. 

Supposing we can define our discrete-time system by a linear equation as 

𝑥𝑥𝑘𝑘 =  𝐹𝐹𝑘𝑘−1𝑥𝑥𝑘𝑘−1 + 𝐺𝐺𝑘𝑘−1𝑢𝑢𝑘𝑘−1 + 𝜔𝜔𝑘𝑘−1                 5-55 

 
where 𝐹𝐹 is a matrix that relates the current estimation to the previous one (called the 

state transition matrix),  𝑢𝑢𝑘𝑘 is a known control vector, 𝐺𝐺 is a control matrix defining 

linear equations for any control factors, and 𝑤𝑤𝑘𝑘 is Gaussian zero-mean white noise with 

covariance 𝑄𝑄𝑘𝑘. The expected value of both sides of the equation is written as 

�̅�𝑥𝑘𝑘 = 𝐹𝐹𝑘𝑘−1�̅�𝑥𝑘𝑘−1 + 𝐺𝐺𝑘𝑘−1𝑢𝑢𝑘𝑘−1                       5-56 

To calculate the change in the covariance of the state (𝑥𝑥𝑘𝑘) with time, using 

Equations  5-55 and  5.56, we can write 

(𝑥𝑥 − �̅�𝑥𝑘𝑘)(𝑥𝑥 − �̅�𝑥𝑘𝑘)𝑇𝑇 = (𝐹𝐹𝑘𝑘−1𝑥𝑥𝑘𝑘−1 + 𝐺𝐺𝑘𝑘−1𝑢𝑢𝑘𝑘−1 + 𝜔𝜔𝑘𝑘−1 − �̅�𝑥𝑘𝑘)(… )𝑇𝑇 

= [𝐹𝐹𝑘𝑘−1(𝑥𝑥𝑘𝑘−1 − �̅�𝑥𝑘𝑘−1) + 𝜔𝜔𝑘𝑘−1][𝐹𝐹𝑘𝑘−1(𝑥𝑥𝑘𝑘−1 − �̅�𝑥𝑘𝑘−1) + 𝜔𝜔𝑘𝑘−1]𝑇𝑇 

= 𝐹𝐹𝑘𝑘−1(𝑥𝑥𝑘𝑘−1 − �̅�𝑥𝑘𝑘−1)(𝑥𝑥𝑘𝑘−1 − �̅�𝑥𝑘𝑘−1)𝑇𝑇𝐹𝐹𝑇𝑇𝑘𝑘−1 + 𝜔𝜔𝑘𝑘−1𝜔𝜔𝑇𝑇
𝑘𝑘−1 +  

 𝐹𝐹𝑘𝑘−1(𝑥𝑥𝑘𝑘−1 −  �̅�𝑥𝑘𝑘−1) 𝜔𝜔𝑇𝑇
𝑘𝑘−1 + 𝜔𝜔𝑘𝑘−1(𝑥𝑥𝑘𝑘−1 − �̅�𝑥𝑘𝑘−1)𝑇𝑇𝐹𝐹𝑇𝑇𝑘𝑘−1 

 5-57 

Therefore, the covariance of 𝑥𝑥𝑘𝑘 is calculated as 

𝑃𝑃𝑘𝑘 = 𝐸𝐸[(𝑥𝑥 − �̅�𝑥𝑘𝑘)(𝑥𝑥 − �̅�𝑥𝑘𝑘)𝑇𝑇] 

= 𝐸𝐸[𝐹𝐹𝑘𝑘−1(𝑥𝑥𝑘𝑘−1 − �̅�𝑥𝑘𝑘−1)(𝑥𝑥𝑘𝑘−1 − �̅�𝑥𝑘𝑘−1)𝑇𝑇𝐹𝐹𝑇𝑇𝑘𝑘−1 + 𝜔𝜔𝑘𝑘−1𝜔𝜔𝑇𝑇
𝑘𝑘−1 +  
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   𝐹𝐹𝑘𝑘−1(𝑥𝑥𝑘𝑘−1 −  �̅�𝑥𝑘𝑘−1)𝜔𝜔𝑇𝑇
𝑘𝑘−1 + 𝜔𝜔𝑘𝑘−1(𝑥𝑥𝑘𝑘−1 − �̅�𝑥𝑘𝑘−1)𝑇𝑇𝐹𝐹𝑇𝑇𝑘𝑘−1]             5-58 

                                            
Considering that (𝑥𝑥𝑘𝑘−1 − �̅�𝑥𝑘𝑘−1) and 𝜔𝜔𝑘𝑘−1 are uncorrelated, the last two terms in the 

above equations are zero. So 𝑃𝑃𝑘𝑘 is written as 

𝑃𝑃𝑘𝑘 = 𝐹𝐹𝑘𝑘−1 𝑃𝑃𝑘𝑘−1𝐹𝐹𝑇𝑇𝑘𝑘−1 + 𝑄𝑄𝑘𝑘−1                 5-59 

 
Table  5-4: Time update measurements. 
 

x�k = Fk-1x�k-1 + Gk-1uk-1                                   5-56 

Pk = Fk-1 Pk-1FTk-1 + Qk-1                                             5-59 

 

The following worked example from Simon (2006) is useful in illustrating and 

understanding the process of time update.   

Examples illustrating how the time update equations predict an estimation 

Suppose we have a system consisting of predator 𝑥𝑥(1) and its prey 𝑥𝑥(2), and we want 

to predict their population as a function of time. We would also like to know the accuracy 

of our estimation. Further suppose that the system of predator and prey can be described 

as 

𝑥𝑥𝑘𝑘+1(1) =  𝑥𝑥𝑘𝑘(1) -0.8 𝑥𝑥𝑘𝑘(1) + 0.4 𝑥𝑥1(2) +  𝜔𝜔𝑘𝑘(1) 

𝑥𝑥𝑘𝑘+1(2) =  𝑥𝑥𝑘𝑘(2) − 0.4 𝑥𝑥𝑘𝑘(1) + 𝑢𝑢𝑘𝑘 +  𝜔𝜔𝑘𝑘(2)                     5-60 

 
The first equation relates to the change in the population of predator from one time 

step to the next one; it shows that the predator population decreases when overcrowding 

occurs, but the prey population causes the predator population to increase. The second 

equation explains how the population of prey decreases through time due to predator 

population and increases due to a controlling parameter (𝑢𝑢𝑘𝑘), which in this case can be 

the external food supply. Both the populations are subjected to environmental factors 

which disturb them randomly (𝜔𝜔𝑘𝑘(1) 𝑑𝑑𝑒𝑒𝑑𝑑 𝜔𝜔𝑘𝑘(2)). The above equations can be written in 

the form of the state-space vectors and matrices as 
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𝑥𝑥𝑘𝑘+1 =  � 0.2 0.4
−0.4 1 �  𝑥𝑥𝑘𝑘 + �01�  𝑢𝑢𝑘𝑘 +  𝜔𝜔𝑘𝑘                      5-61 

 
 In this example 𝐹𝐹 = � 0.2 0.4

−0.4 1 � and 𝐺𝐺 =  �01�. 

We can predict how the mean and covariance of the population (predator and prey) 

change with time using Equations  5-56 and 5-59. Suppose 𝑢𝑢𝑘𝑘 = 1, the initial state is 

�̅�𝑥0 =  �10
20�,  𝑃𝑃0 = diag (40,40), and 𝑄𝑄 =  �1 0

0 2�. Then the first five time steps can be 

calculated as follows: 

Initiate the filtering process by setting the values of the initial state vector and its 

covariance 

𝑥𝑥0 =  �10
20�           and              𝑃𝑃0 =  �40 0

0 40� . 

First iteration: 

 

𝑥𝑥1 =  � 0.2 0.4
−0.4 1 �  �10

20� +  �01�  1 =  �10
17� 

𝑃𝑃1 =  � 0.2 0.4
−0.4 1 �  �40 0

0 40� �
0.2 0.4
−0.4 1 �

𝑇𝑇
+  �1 0

0 2�  =  � 9 12.8
12.8 48.4� 

Second iteration: 

𝑥𝑥2 =  � 0.2 0.4
−0.4 1 �  �10

17� + �01�  1 =  �8.8
14� 

𝑃𝑃2 =  � 0.2 0.4
−0.4 1 �  � 9 12.8

12.8 48.4� �
0.2 0.4
−0.4 1 �

𝑇𝑇
+  �1 0

0 2�  =  �11.15 19.15
19.15 41.6 � 

Third iteration: 

𝑥𝑥3 =  � 0.2 0.4
−0.4 1 �  �8.8

14 � +  �01�  1 =  � 7.36
11.48� 

𝑃𝑃3 =  � 0.2 0.4
−0.4 1 �  �11.15 19.15

19.15 41.6 � �
0.2 0.4
−0.4 1 �

𝑇𝑇
+ �1 0

0 2�  =  �11.17 16.51
16.51 30.06� 

Fourth iteration: 

𝑥𝑥4 =  � 0.2 0.4
−0.4 1 �  � 7.36

11.48� +  �01�  1 =  �6.04
9.54� 

𝑃𝑃4 =  � 0.2 0.4
−0.4 1 �  �11.17 16.51

16.51 30.06� �
0.2 0.4
−0.4 1 �

𝑇𝑇
+  �1 0

0 2�  =  � 8.9 11.79
11.79 20.64� 

Fifth iteration: 
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𝑥𝑥5 =  � 0.2 0.4
−0.4 1 � �6.04

9.54�  +  �01�  1 =  �5.03
8.11� 

𝑃𝑃5 =  � 0.2 0.4
−0.4 1 �  � 8.9 11.79

11.79 20.64� �
0.2 0.4
−0.4 1 �

𝑇𝑇
+  �1 0

0 2�  =  �6.54 8.01
8.01 14.63� 

 

Figure  5-7 shows the first 15 time steps and illustrates the propagation of the mean and 

the covariance of predator and prey populations with time. After a few iterations, P 

reaches a steady-state value indicating convergence.  

However, if we suppose that overcrowding does not affect the predator population 

then the Equations  5-60 can be rewritten as 

𝑥𝑥𝑘𝑘+1(1) =  𝑥𝑥𝑘𝑘(1) +0.4 𝑥𝑥1(2) +  𝜔𝜔𝑘𝑘(1) 

𝑥𝑥𝑘𝑘+1(2) =  𝑥𝑥𝑘𝑘(2) − 0.4 𝑥𝑥𝑘𝑘(1) + 𝑢𝑢𝑘𝑘 +  𝜔𝜔𝑘𝑘(2)                 5-62 

 
Hence, = � 1 0.4

−0.4 1 �.  

All other parameters are unchanged with respect to the first example.  

Unlike the previous case, the mean and the covariance of the estimation are not 

convergent here.  

Whether convergence will occur or not in a particular case can be deduced from the 

following conditions on the existence of the solution. The theorem states that when the 

state transition matrix (𝐹𝐹) is stable and the process error covariance (𝑄𝑄) is positive 

definite, the estimation error covariance (𝑃𝑃) has a “unique positive definite steady-state 

solution” (Simon, 2006). One of the conditions of this stability is that each of the 

eigenvalues of matrix F be < 1 and their product be  ≠ 1 (Simon, 2006). For the second 

case discussed above, 𝐹𝐹 is not stable and therefore the variances diverge from one step to 

the next.  

A comparison of the transition matrixes and their eigenvalues from the two examples 

are given below. They show the cause of the difference in the propagation of means and 

covariances is in the stability criteria given above. 

𝐹𝐹 = � 0.2 0.4
−0.4 1 �                   𝜆𝜆1(𝐹𝐹) = 0.6      &       𝜆𝜆2(𝐹𝐹) = 0.6          

               5-63 
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𝐹𝐹 = � 1 0.4
−0.4 1 �        𝜆𝜆1(𝐹𝐹) = 1 + 0.4 𝑖𝑖     &       𝜆𝜆2(𝐹𝐹) = 1 − 0.4 𝑖𝑖 

 
Now going back to the voltmeter example discussed in the measurement update part 

(Chapter 6), a system can be written as 

�̅�𝑥𝑘𝑘 = �̅�𝑥𝑘𝑘−1               5-64 

Further supposing that our initial estimates are the same as the first assumption 

𝑃𝑃0 = 1 

𝑥𝑥0 = 15                                                           5-65 

 
A slight modification in the magnitude of the one by one 𝐹𝐹 matrix, from 1.25 to even 

0.75 can make a divergent problem convergent (Figure  5-9 and   5-10).  

Thus, even before computing the covariance, just by calculating the eigenvalues, we 

can say if there is a unique positive definite steady-state solution for 𝑃𝑃 or not. When 

𝐹𝐹 = 1.25, its eigenvalue is 1.25 and the system is  unstable and the estimation and the 

corresponding estimation error covariance are not convergent. Whereas when F = 0.75, λ 

(F)=0.75 and the system is stable. So the mean and covariance tend to a certain value 

after adequate number of iterations. One of the reasons that makes the Kalman filter 

practical is that it can solve this problem by its time and measurement update loop.  
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Figure  5-7: (a) The state mean and (b) covariance of the predator and prey population. 
First simulation of the Simon’s (2006) Example 4.1 with the assumption that 
overcrowding affects the predator population. 
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Figure  5-8: (a) State mean and (b) Covariance of the predator and prey population. 
Second simulation supposing that overcrowding does not affect the predator population. 
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Figure  5-9: (a) State mean and (b) covariance of the voltmeter example studied in 
measurement update section. First simulation: F=1.25, R=1, and P0 =1.  
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Figure  5-10: (a) State mean and (b) covariance of the voltmeter example studied in 
measurement update section. Second simulation: F=0.75, R=1, and P0 =1.  
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CHAPTER 6.  THE DISCRETE- TIME KALMAN FILTER 

EQUATIONS 

 

The understanding developed in the chapters on the measurement and time update will 

be used here to derive the discrete-time Kalman filter equations. For understanding the 

equations that follow, the notation used is very important and therefore it is given when 

appropriate.  

If we suppose that a linear discrete-time system can be defined as 

𝑥𝑥𝑘𝑘 =  𝐹𝐹𝑘𝑘−1𝑥𝑥𝑘𝑘−1 + 𝐺𝐺𝑘𝑘−1𝑢𝑢𝑘𝑘−1 + 𝜔𝜔𝑘𝑘−1  
𝑦𝑦𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘                     6-1 

where 𝐹𝐹 is a matrix that relates the current estimation (𝑥𝑥𝑘𝑘) to the previous one (𝑥𝑥𝑘𝑘−1), 

known as the state transition matrix, Gk is Control matrix , and  𝑢𝑢𝑘𝑘 is a known optional 

control vector, and 𝑤𝑤𝑘𝑘 is the process noise. Moreover, 𝐻𝐻 is a matrix that relates the state 

vector matrix (𝑥𝑥𝑘𝑘) to the measurement vector (𝑦𝑦𝑘𝑘), whereas 𝑣𝑣𝑘𝑘 is the measurement 

noise. Both  𝜔𝜔𝑘𝑘 and 𝑣𝑣𝑘𝑘 are assumed to be white, with normal probability distribution 

(Gaussian) and uncorrelated which means that they are independent of each other; the 

corresponding covariance matrices are 𝑄𝑄𝑘𝑘 and 𝑅𝑅𝑘𝑘, respectively (Welch and Bishop, 

2006). Mathematically, these previous statements related to the characteristics of noise 

denoted as 

𝜔𝜔𝑘𝑘~ (0,𝑄𝑄𝑘𝑘) 

𝑣𝑣𝑘𝑘~ (0,𝑅𝑅𝑘𝑘) 

𝐸𝐸�𝑣𝑣𝑘𝑘𝜔𝜔𝑗𝑗𝑇𝑇� = 0                                                             6-2 

The role of the filter is to estimate the state vector (𝑥𝑥𝑘𝑘) based on the dynamics of the 

system which is known to us to a certain degree and the noisy measurement (𝑦𝑦𝑘𝑘) that are 

available to us. How accurate our filter is able to estimate the state of the system depends 

on the amount of information we have about our system. For example, to estimate 𝑥𝑥𝑘𝑘, it 

is important whether the measurement at time step 𝑘𝑘 (𝑧𝑧𝑘𝑘) is available to use or not. If the 

measurements cover all the measurements up to and including time 𝑘𝑘, then it is possible 

to have a posteriori estimate (𝑥𝑥�𝑘𝑘+), where if the measurement 𝑧𝑧𝑘𝑘 is not available, and only 

the measurements prior to time 𝑘𝑘 are available,  it is possible to estimate only  a priori 

estimate (𝑥𝑥�𝑘𝑘−) (Grewal and Andrews, 2011). Mathematically, this is denoted as 
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𝑥𝑥�𝑘𝑘+ = 𝐸𝐸[ 𝑥𝑥𝑘𝑘⃓ 𝑦𝑦1 ,𝑦𝑦2, …𝑦𝑦𝑘𝑘] = 𝑑𝑑 𝑝𝑝𝑝𝑝𝑢𝑢𝑡𝑡𝑒𝑒𝑇𝑇𝑖𝑖𝑝𝑝𝑇𝑇𝑖𝑖 𝑒𝑒𝑢𝑢𝑡𝑡𝑖𝑖𝑒𝑒𝑑𝑑𝑡𝑡𝑒𝑒 

𝑥𝑥�𝑘𝑘− = 𝐸𝐸[ 𝑥𝑥𝑘𝑘⃓ 𝑦𝑦1 ,𝑦𝑦2, …𝑦𝑦𝑘𝑘−1] = 𝑑𝑑 𝑝𝑝𝑇𝑇𝑖𝑖𝑝𝑝𝑇𝑇𝑖𝑖 𝑒𝑒𝑢𝑢𝑡𝑡𝑖𝑖𝑒𝑒𝑑𝑑𝑡𝑡𝑒𝑒                       6-3 

 
Both 𝑥𝑥�𝑘𝑘+ and 𝑥𝑥�𝑘𝑘− are the estimates of the same quantity (𝑥𝑥𝑘𝑘) but 𝑥𝑥�𝑘𝑘+ should be a better 

estimate. These two estimates are the ones that are used later in deriving the Kalman filter 

equations. However, following Simon’s book (2006), I want to discuss other kinds of 

estimations since they are used in smoothing methods. 

If, in estimating 𝑥𝑥𝑘𝑘, measurements after time 𝑘𝑘 are available and are taken into 

account in our estimation, then we can form a smoothed estimate. If the value of 𝑥𝑥𝑘𝑘 is 

estimated based on the measurements more than one step behind, then the estimation is 

known as the predicted estimate.  

𝑥𝑥�𝑘𝑘⃓ 𝑘𝑘+𝑁𝑁 = 𝐸𝐸[ 𝑥𝑥𝑘𝑘⃓ 𝑦𝑦1 ,𝑦𝑦2, …𝑦𝑦𝑘𝑘, … 𝑦𝑦𝑘𝑘+𝑁𝑁] = 𝑑𝑑 𝑢𝑢𝑒𝑒𝑝𝑝𝑝𝑝𝑡𝑡ℎ𝑒𝑒𝑑𝑑 𝑒𝑒𝑢𝑢𝑡𝑡𝑖𝑖𝑒𝑒𝑑𝑑𝑡𝑡𝑒𝑒 
𝑥𝑥�𝑘𝑘⃓ 𝑘𝑘−𝑀𝑀 = 𝐸𝐸[ 𝑥𝑥𝑘𝑘⃓ 𝑦𝑦1 ,𝑦𝑦2, …𝑦𝑦𝐾𝐾−𝑀𝑀, ] = 𝑑𝑑 𝑝𝑝𝑇𝑇𝑒𝑒𝑑𝑑𝑖𝑖𝑝𝑝𝑡𝑡𝑒𝑒𝑑𝑑 𝑒𝑒𝑢𝑢𝑡𝑡𝑖𝑖𝑒𝑒𝑑𝑑𝑡𝑡𝑒𝑒                                 6-4 

 
where 𝑀𝑀 is the number of estimates considered after the current estimate, k, being 

considered and 𝑀𝑀 are the number of estimates considered prior to the current estimate. 

Figure  6-1 illustrates different forms of estimations. Here it is assumed that we have 

measurements up to and including time step 𝑘𝑘 = 10. Any estimation of the state at 

𝑘𝑘 < 10 is called the smoothed estimate (𝑥𝑥�5|10 is an example). An estimate of the state at 

time 𝑘𝑘 = 10 is known as the a posteriori estimate (𝑥𝑥�10|10) and the estimate of the state at 

𝑘𝑘 = 11 is called a priori estimate (𝑥𝑥�11|10). Any estimation of the state at time steps 

𝑘𝑘 > 11, is a prediction estimate (𝑥𝑥�15|10 is shown as an example of this type).  

 
Figure  6-1: Illustration of the smoothed, a priori, a posteriori, and the predicted notation 
of estimates. 
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The two primary estimations that are used in the Kalman filter are the a priori estimate 

(𝑥𝑥�𝑘𝑘−) and a posteriori estimate (𝑥𝑥�𝑘𝑘+). As discussed in Chapter 5, each estimation has a 

corresponding covariance of the estimation error (𝑃𝑃𝐾𝐾) and, consequently, the covariance 

of the estimation error of the a priori estimate is shown as 𝑃𝑃𝑘𝑘− whereas for the a 

posteriori estimate is denoted as 𝑃𝑃𝑘𝑘+ (Welch and Bishop, 2006). Mathematically, the a 

priori and a posteriori covariance are written as  

 

𝑃𝑃𝑘𝑘− = 𝐸𝐸[(𝑥𝑥 − 𝑥𝑥�𝑘𝑘−)(𝑥𝑥 −   𝑥𝑥�𝑘𝑘−)𝑇𝑇] 

𝑃𝑃𝑘𝑘+ = 𝐸𝐸[(𝑥𝑥 − 𝑥𝑥�𝑘𝑘+)(𝑥𝑥 −   𝑥𝑥�𝑘𝑘+)𝑇𝑇]                                                           6-5 

Figure  6-2, taken from Simon (2006), can help further in understanding the concept of 

a priori and  a posteriori estimation and the corresponding estimation error covariance. 

With the notation in Figures  6-1 and  6-2, it is possible to synthesize the understanding 

developed from chapter 5 about time and measurement update equations to derive the 

Kalman filter equations. 

 
Figure  6-2: Timeline illustrating the concept of a priori and a posteriori estimation and 
their corresponding estimation error covariance. (from Simon, 2006). 

 

Suppose that we have access to measurements up to and including time step 𝑘𝑘. To 

illustrate how the filter performs, assume that we have calculated the best estimate of the 

state at time step 𝑘𝑘 − 1, (𝑥𝑥�𝑘𝑘−1+ ), and therefore we know the comparable covariance of the 

estimation error, (�̂�𝑝𝑘𝑘−1+ ). It means that we have considered and taken into account 𝑘𝑘 − 1 

measurements for the state estimation at time step 𝑘𝑘 − 1. With Equation 5-56, we can 

predict the state of the system at time step 𝑘𝑘 as 

x�k = Fk-1x�k-1 + Gk-1uk-1                  5-56 
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As we have considered 𝑘𝑘 − 1 measurements to estimate the state at time step 𝑘𝑘, and 

since there is no other measurement between time (𝑘𝑘 − 1)+ and 𝑘𝑘−, the calculation  from 

Equation 5-56 which is based on our knowledge of the system dynamics (Fk and Gk), is 

actually the a posteriori estimate, 𝑥𝑥�𝑘𝑘+. Thus, Equation  5-56 can be rewritten as 

𝑥𝑥𝑘𝑘− =  𝐹𝐹𝑘𝑘−1𝑥𝑥�𝑘𝑘−1+ + 𝐺𝐺𝑘𝑘−1𝑢𝑢𝑘𝑘−1                                    6-6 

Also, as soon as the prediction of an estimation is made, the corresponding covariance 

estimation error needs to be calculated to tell us how accurate the estimation is. Equation 

5-59 can help with that  

Pk = Fk-1 Pk-1FTk-1 + Qk-1                                              5-59 

And, in terms of the notation of the a priori and a posteriori estimates, it can be 

written as 

𝑃𝑃𝑘𝑘− = 𝐹𝐹𝑘𝑘−1𝑃𝑃𝑘𝑘−1+ 𝐹𝐹𝑘𝑘−1𝑇𝑇 + 𝑄𝑄𝑘𝑘−1                    6-7 

At this point, the last measurement, 𝑦𝑦𝑘𝑘, can be taken into account in the estimation of 

𝑥𝑥𝑘𝑘. From the measurement update equations and Table  5-1 we have 

x�k = x�k-1 + Kk �yk-Hkx�k-1�                                  5-21 

Pk = �I-KkHk�Pk-1�I-KkHk�
T

+ KkRkKk
T                                5-27 

= (Pk-1
-1 +  Hk

TRk
-1 Hk)-1                                   5-38 

       = (I-KkHk)Pk-1                        5-34 

Kk = Pk-1Hk
T(HkPk-1Hk

T + Rk)-1                      5-29 

 =  PkHk
TRk

-1                                     5-41 

In the above equations, 𝑥𝑥�𝑘𝑘−1 is the estimate we have before the last measurement (𝑦𝑦𝑘𝑘) 

is processed; thus, in the Kalman filter notation given above, it is shown as 𝑥𝑥�𝑘𝑘− (a priori 

estimate). Similarly, 𝑥𝑥�𝑘𝑘 is the estimate which is calculated after 𝑦𝑦𝑘𝑘 is taken into account 

in the estimation of the state at time step 𝑘𝑘, and so it can be denoted as the a posteriori 

estimate. 𝑃𝑃𝑘𝑘−1 and 𝑃𝑃𝑘𝑘 that are the covariances before and after 𝑦𝑦𝑘𝑘 is considered, 

respectively, and can be designated as the a priori and a posteriori covariance matrices. 

Using these notation changes, the above previous equations can be restated as  
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𝑥𝑥�𝑘𝑘+ =  𝑥𝑥�𝑘𝑘− + 𝐾𝐾𝑘𝑘(𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−)                                     6-8 

𝑃𝑃𝑘𝑘+ =  (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘−(𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑇𝑇 + 𝐾𝐾𝑘𝑘𝑅𝑅𝑘𝑘𝐾𝐾𝑘𝑘𝑇𝑇 

    =  [(𝑃𝑃𝑘𝑘−)−1 + 𝐻𝐻𝑘𝑘𝑇𝑇𝑅𝑅𝑘𝑘−1 𝐻𝐻𝑘𝑘]−1 =  (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘−                                 6-9 

      𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘
𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘

𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1 = 𝑃𝑃𝑘𝑘+𝐻𝐻𝑘𝑘
𝑇𝑇𝑅𝑅𝑘𝑘−1               6-10 

 
The five equations from  6-6 to  6-10 are recognized as the basic equations of the 

Kalman filter. The filtering procedure starts with the prediction step with the time update 

equations and goes to the measurement update equations to correct its estimations. Then 

the correction output is fed back to predict the next point and this is process is repeated 

until the last measurement (Figure  6-3). 

The filter procedure starts with our best estimate of the initial state at step 0 (x�0+) and 

the related covariance of the state estimation error (P0+) which are defined as 

 

𝑥𝑥�0+ = 𝐸𝐸(𝑥𝑥0)                                                           6-11 

𝑃𝑃0+ = 𝐸𝐸[(𝑥𝑥0 − �̅�𝑥0)(𝑥𝑥0 − �̅�𝑥0)𝑇𝑇] 

      = 𝐸𝐸[(𝑥𝑥0 − 𝑥𝑥�0+)(𝑥𝑥0 − 𝑥𝑥�0+)𝑇𝑇]                                                                   6-12 

Once again, it should be mentioned that 𝑃𝑃0+ tells us about the level of uncertainty in 

the initial estimation of 𝑥𝑥0. Therefore, if the initial state is known perfectly, then 𝑃𝑃0+ = 0. 

On the other hand, if we have no idea of the value of the initial state estimate, then 

𝑃𝑃0+ =  ∞𝐼𝐼, where I is the identity matrix. 

Given 𝑥𝑥�0+ and 𝑃𝑃0+, the Kalman filter goes through the time update step and the output 

would be the predictions for 𝑥𝑥1−  and 𝑃𝑃1− (the a priori estimate and the corresponding 

covariance), here the filter computes the measurement update steps and the output of the 

previous time update step would be the input of this step. At this stage, using the 

measurement taken at time 𝑘𝑘 = 1, i.e., 𝑦𝑦1, the correction is made. The outputs of this step 

are 𝑥𝑥1+  and 𝑃𝑃𝑘𝑘+ (the a posteriori estimate and the corresponding covariance) which will 

be fed to the loop as the input of the next time update step, k = 2, and so on.  
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Time update (Prediction)  Measurement update (Correction) 

1) A priori update: 

Project the state ahead 

𝑥𝑥𝑘𝑘− =  𝐹𝐹𝑘𝑘−1𝑥𝑥�𝑘𝑘−1+ + 𝐺𝐺𝑘𝑘−1𝑢𝑢𝑘𝑘−1 

 

2) A Priori error covariance:  

Project the error covariance ahead 

𝑃𝑃𝑘𝑘− = 𝐹𝐹𝑘𝑘−1𝑃𝑃𝑘𝑘−1+ 𝐹𝐹𝑘𝑘−1𝑇𝑇 + 𝑄𝑄𝑘𝑘−1 

3) Compute the Kalman gain 

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘
𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘

𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1 

4) A posteriori update: 

Update estimate with measurement 

𝑦𝑦𝑘𝑘 

𝑥𝑥�𝑘𝑘+ =  𝑥𝑥�𝑘𝑘− + 𝐾𝐾𝑘𝑘(𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−) 

5) A posteriori error covariance: 

Update the error covariance 

𝑃𝑃𝑘𝑘+ = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘− 

 

Figure  6-3: The Kalman filter operation loop: Five basic filter equations and their 
concise meaning stating the filtering operation. 
 
Table  6-1: Parameters in the Kalman filter 
𝑥𝑥𝑘𝑘− State prediction Intermediary variables 

𝑥𝑥�𝑘𝑘+ State update Output 

𝑃𝑃𝑘𝑘− Covariance prediction Intermediary variable 

𝑃𝑃𝑘𝑘+ Covariance update Output 

𝐾𝐾𝑘𝑘 Gain matrix (in some sources it is called blending factor) Intermediary variable 

𝑦𝑦𝑘𝑘 Actual measurement Input 

𝐻𝐻𝑘𝑘 Measurement matrix (relates the state to the measurement) 
Should be modified at each 

step 

𝐹𝐹𝑘𝑘 
State transition matrix (relates the state at the previous time 

step to the state at the current step) 

Should be modified at each 

step 

𝐺𝐺𝑘𝑘 Control matrix (relates the optional control input to the state) 
Should be modified at each 

step 

𝑢𝑢 
Control input (indicates the magnitude of any system's or 

user's control on the situation) 
Input 

𝑅𝑅𝑘𝑘 Measurement error covariance Input 

𝑄𝑄𝑘𝑘 Process noise covariance 
Should be modified at each 

step 
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The concept and equations of one-step Kalman filter  
 

One-step Kalman filter simplifies the computer implementation of the equations 

(Simon, 2006). Equation  5-6 which is used to predict the a priori estimate can be 

rewritten with the time index increased by one as 

xk
- =  Fk-1x�k-1

+ + Gk-1uk-1                                                    6-6 

   𝑥𝑥�𝑘𝑘+1− = 𝐹𝐹𝑘𝑘𝑥𝑥�𝑘𝑘+ + 𝐺𝐺𝑘𝑘𝑢𝑢𝑘𝑘                                    6-13 

Substituting 𝑥𝑥�𝑘𝑘+ from Equation  6-8 into  6-13 results in 

x�k+ =  x�k
- + Kk �yk-Hkx�k

- �                                                6-8 

𝑥𝑥�𝑘𝑘+1− =  𝐹𝐹𝑘𝑘[𝑥𝑥�𝑘𝑘− + 𝐾𝐾𝑘𝑘(𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−)] + 𝐺𝐺𝑘𝑘𝑢𝑢𝑘𝑘 

     =  𝐹𝐹𝑘𝑘(𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘) 𝑥𝑥�𝑘𝑘− + 𝐹𝐹𝑘𝑘𝐾𝐾𝑘𝑘𝑦𝑦𝑘𝑘 + 𝐺𝐺𝑘𝑘𝑢𝑢𝑘𝑘              6-14 

Equation 6-14 shows that we can compute a priori state estimate directly from the 

previous a priori estimate without computing the a posteriori state estimate in between. 

A similar approach can be used to obtain the one-step expression for the a priori 

covariance of the estimation error. Starting from Equation  6-7and increasing the time step 

by one yields 

Pk
- = Fk-1Pk-1

+ Fk-1
T + Qk-1                                                   6-7 

𝑃𝑃𝑘𝑘+1− = 𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘+𝐹𝐹𝑘𝑘𝑇𝑇 + 𝑄𝑄𝑘𝑘                                   6-15 

Substituting Equation 6-9 into  6-15 results in 

Pk+ =  (I-KkHk)Pk
-                                                6-9 

𝑃𝑃𝑘𝑘+1− = 𝐹𝐹𝑘𝑘(𝑃𝑃𝑘𝑘− − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−)𝐹𝐹𝑘𝑘𝑇𝑇 + 𝑄𝑄𝑘𝑘  

       =  𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘−𝐹𝐹𝑘𝑘𝑇𝑇 −  𝐹𝐹𝑘𝑘𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐹𝐹𝑘𝑘
𝑇𝑇 + 𝑄𝑄𝑘𝑘  

          =  𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘−𝐹𝐹𝑘𝑘𝑇𝑇 −  𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘
𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘

𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐹𝐹𝑘𝑘
𝑇𝑇 + 𝑄𝑄𝑘𝑘                              6-16 

In the above calculation, the Kalman gain is substituted from Equation  6-10  

Kk = Pk
-Hk

T(HkPk
-Hk

T + Rk)-1 = Pk+Hk
TRk

-1                                      6-10 

Equation  6-16 is called a discrete Riccati equation and along with Equation  6-14 it 

forms the equations of the one-step Kalman filter. They can be used to compute the a 

priori state and the corresponding covariance of the estimation on the basis of the 
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previous a priori state and covariance without intermediate calculations of the a 

posteriori state estimate and covariance.  

The same logic can be applied to the a posteriori state and covariance. They can be 

calculated directly from the previous a posteriori quantities without going through the 

equations determining the a priori state and covariance. Table  6-2 illustrates the one-step 

Kalman filter. 

 

Table  6-2: The one-step Kalman filter using only the a priori estimations (top) and the a 
posteriori estimations (bottom). 
 

Kk = Pk
-Hk

T(HkPk
-Hk

T + Rk)-1                                                                                6-10 

𝑥𝑥�𝑘𝑘+1− =  Fk(I- KkHk) x�k
- + FkKkyk + Gkuk                                            6-14 

𝑃𝑃𝑘𝑘+1− =  FkPk
-FkT- FkPk

-Hk
T(HkPk

-Hk
T + Rk)-1HkPk

-FkT + Qk                                     

6-16 

Kk = Pk+Hk
TRk

-1                                                                                                        6-10 

 𝑥𝑥�𝑘𝑘+ = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)(𝐹𝐹𝑘𝑘−1𝑥𝑥�𝑘𝑘−1+ + 𝐺𝐺𝑘𝑘−1𝑢𝑢𝑘𝑘−1) + 𝐾𝐾𝑘𝑘𝑦𝑦𝑘𝑘                                                       6-17 

𝑃𝑃𝑘𝑘+ = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)( 𝐹𝐹𝑘𝑘−1𝑃𝑃𝑘𝑘−1+ 𝐹𝐹𝑘𝑘−1𝑇𝑇 +𝑄𝑄𝑘𝑘−1)                                                                  6-18 

     

Running and tuning the Kalman filter  
Like any other filter or estimator, the Kalman filter needs to be tuned and has certain 

steps. These steps can be described as: 

I. Building a model. This is the most important step which determines the 

system’s dynamic and illustrates how the current state is related to the 

previous step as well as how the measurement is linked to the state (the first 

two equations below). Also, in this step we need to estimate the measurement 

and process noise (the two middle equations below) and make sure they are 

uncorrelated (the last equation).  

𝑥𝑥𝑘𝑘 = 𝐹𝐹𝑘𝑘−1𝑥𝑥𝑘𝑘−1 + 𝐺𝐺𝑘𝑘−1𝑢𝑢𝑘𝑘−1+ 𝜔𝜔𝑘𝑘 

               𝑦𝑦𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘 

       𝜔𝜔𝑘𝑘~ (0,𝑄𝑄𝑘𝑘) 

  𝑣𝑣𝑘𝑘~ (0,𝑅𝑅𝑘𝑘) 
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𝐸𝐸�𝑣𝑣𝑘𝑘𝜔𝜔𝑗𝑗𝑇𝑇� = 0                                         6-19 

In the actual implementation of the filter, the measurement error 

covariance,𝑅𝑅, is usually known prior to operating the filter; one way to 

achieve this is through sample measurements. On the other hand, the 

determination of the process noise covariance, 𝑄𝑄, is generally more difficult. 

That is why we usually do not have the ability to observe how uncertain we 

are about the system that we have defined. Sometimes one needs to run the 

filter several times so that one would be able to tune it (i.e., to determine 

parameters such as Q). 

It is very important to consider that determining the process noise 

appropriately is critical. When 𝑄𝑄 is set large, the estimation error covariance 

increases (Equation  6-7) and this eventually results in a higher gain value, 

making the filter give more weight to the measurements (Equation ٦-10), and 

thereby making the state estimation difficult. On the other hand, if 𝑄𝑄 is 

assigned a small value, the estimation covariance will decrease rapidly from 

one time step to the next and eventually might converge to zero 

(Equation  6-16). Consequently, a zero value for 𝑃𝑃𝑘𝑘− will result which will in 

turn lead to 𝐾𝐾𝑘𝑘 = 0 (Equation  6-10). This means that the measurement update 

equation (Equation  6-8) will not consider the measurement itself in calculating 

the a posteriori estimate; and from that step on all measurements,  𝑦𝑦𝑘𝑘, will be 

completely ignored and the filter will become inactive in the sense that it will 

not respond to the measurements from that time step onward. Thus, it is 

essential to remember the general principle that for the Kalman filter, an 

assumption of an imperfect model (or the presence of a certain amount model 

noise) is important (Simon, 2006), and it is essentially a part of the process of 

building the model. 

II. Initializing the process: Estimating the initial model state and its 

covariance. To initiate the Kalman filter, we need to know 𝑥𝑥�0+ and 𝑃𝑃0+, our 

best estimates of the initial state and the covariance of our initial estimate. 

They have been defined previously as follows 
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x�0+ = E(x0)                                               6-11 

𝑃𝑃0+ = E ��x0-x�0+��x0-x�0+�
T
�                                                       6-12 

 

III. The iterations. After all the above information is gathered, we can start the 

process by plugging these values in the three equations of the measurement 

update (Figure  6-3) and iterate till the required convergence is obtained. 

Once again I illustrate the filter process with examples. 

Example 1 

Going back to the simple voltmeter example examined in chapter 5, the true value of 

the state is 12 volts. Following the steps explained above: 

i. Building the model. As the signal is constant, F = 1, and the filter is 

run assuming different levels of process noise covariance (Q=1, Q=5, 

and Q=0.1). There is no control signal (B=0). Some know that our 

measurement is the state value which is contaminated with 

measurement noise that has a standard deviation of 1 (R=1). 

𝑥𝑥𝑘𝑘 = 𝐹𝐹𝑘𝑘−1𝑥𝑥𝑘𝑘−1 + 𝐺𝐺𝑘𝑘−1𝑢𝑢𝑘𝑘−1 +  𝜔𝜔𝑘𝑘 

     =  𝑥𝑥𝑘𝑘−1 

𝑦𝑦𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘 

𝑦𝑦𝑘𝑘 = 𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘 

ii. We need to start the procedure from the initial state estimation. Here 

we suppose that the system has the characteristics of Figure  5-1, i.e., x0 

=15 and P0=1. 

iii. Now we can iterate the Kalman filter cycle. 

 

 

 

74 



  

  

0 1 2 3 4 5 6 7 8 9 10
6

7

8

9

10

11

12

13

14

15

Time step 

V
ol

ta
ge

 The state estimate
*    The measurements

0 1 2 3 4 5 6 7 8 9 10

0.8

1

1.2

1.4

1.6

1.8

2

Time step 

E
st

im
at

io
n 

er
ro

r c
ov

ar
ia

nc
e

 The covariance of the state estimate

a) 

b) 

75 



  

  
Figure  6-4: Illustrations of different estimations in the Kalman filter. Circles show the a 
priori estimations and squares illustrate the a posteriori estimations.  (a) State 
estimations and the measurements, (b) covariance of the estimation, (c) propagation of 
estimations  with time, and (d) changes in the covariance of the estimations. Parameters: 
R=1, Q=1 and P0 =1. 
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Figure  6-5: (a) State estimations (Circles show the priori estimations and squares 
illustrate the posteriori estimations) and the measurements, (b) covariance of the 
estimation, (c) how the estimations propagate with time, and (d) how the covariance of 
the estimations changes. Second simulation: R=1, Q=5 and P0 =1. 
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Figure  6-6: (a) State estimations (Circles show the priori estimations and squares 
illustrate the posteriori estimations) and the measurements, (b) covariance of the 
estimation, (c) how the estimations propagate with time, and (d) how the covariance of 
the estimations changes. Third simulation: R=1, Q=0.1 and P0 =1. 
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The above examples and figures illustrate the importance of 𝑄𝑄 and the effect of its 

value relative to R. The first simulation shows the case where 𝑄𝑄 and 𝑅𝑅 have equal values 

(Figure  6-4). In this case, the a posteriori estimation would be an estimation carried out 

between the measurement at a given time step and the a priori estimation at the same 

time step. After some iteration, our estimations approach the true value of the state which 

is 12 volts in this example (Figures   6-4 (a) and  6-4 (c)). The covariance of the estimation 

decreases noticeably when each measurement is considered in the estimation; it reduces 

at each time step from the a priori estimate to the a posteriori one (from around 1.6 to 

0.2, Figure  6-4 (b) and  6-4(d)). Figures  6-4 (c) and  6-4 (d) show how the a priori and 

posteriori estimations and the corresponding covariance propagate with time. 

For the second simulation, we impose more uncertainty into our model and establish a 

model with a higher 𝑄𝑄 value (𝑄𝑄 = 5) while 𝑅𝑅 = 1. As it can be intuitively concluded, in 

this case that we are not sure about the system that we have defined, the Kalman filter a 

posteriori estimation would follow the measurements more than the a priori estimation 

(Figures  6-5 (a) and  6-5 (c) , see for example the closeness of the a posteriori estimations 

(squares) to the measurements (stars)). In this case the filter gives more weight to the 

noisy measurements rather than the a priori estimation and, consequently, results in 

higher estimation variance (Figure  6-5 (b) and  6-5 (d)). Comparison of the values the 

covariance of the estimations shows that in the second simulation they are higher than in 

the first simulation (6 vs. 1.6 and 1 vs 0.64). 

In the case where one is more confident about the defined system (i.e., 𝑄𝑄 = 0.1 and R 

= 1), one expects the filter to give more weight to the a priori estimations than the noisy 

measurements in each time step (See Figures  6-6 (a) and  6-6 (c)). We also predict smaller 

estimation error covariance (𝑃𝑃) (Figures  6-6 (b) and  6-6 (d), compare 1 vs 1.6 and 0.3 vs 

0.64). 

High (low) value of Q results in high (low) a priori estimation error 𝑃𝑃𝑘𝑘−, that will 

cause, consequently, high (low) gain value (𝐾𝐾) as well as high (low) a posteriori 

estimation error (𝑃𝑃𝑘𝑘+). High (low) gain value means more (less) weight for the 

measurement of the same iteration rather than the a priori estimation and it will illustrate 

what the new estimation would be.  
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Example 2 

Here I want to discuss the most typical example of the Kalman filter which is 

discussed in almost every textbook and webpage. The task is studying the performance of 

the Kalman filter assuming a motion with constant acceleration. The motion of a body is 

governed by the following law: 

�
𝑑𝑑𝑡𝑡 =  1

2
 𝑑𝑑 𝑡𝑡2 + 𝑉𝑉0𝑡𝑡 + 𝑑𝑑0                      (𝑝𝑝𝑑𝑑𝑇𝑇𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑 𝑢𝑢ℎ𝑑𝑑𝑝𝑝𝑒𝑒)

𝑉𝑉𝑡𝑡 = 𝑑𝑑𝑡𝑡 + 𝑉𝑉0                                    (𝑆𝑆𝑡𝑡𝑇𝑇𝑑𝑑𝑖𝑖𝑑𝑑ℎ𝑡𝑡 𝑝𝑝𝑖𝑖𝑒𝑒𝑒𝑒)
𝑑𝑑 = 𝑝𝑝𝑝𝑝𝑒𝑒𝑢𝑢𝑡𝑡𝑑𝑑𝑒𝑒𝑡𝑡

         6-20 

 
where 𝑑𝑑𝑡𝑡 and 𝑉𝑉𝑡𝑡 are the position and the velocity of the body at time t, respectively, d0 

and V0 are the initial position and velocity of the body, and a is the constant acceleration. 

The state of the system, in this case, is the position of the body depends on both 

vehicle position and velocity.  

Mathematically, the state vector is written as  

𝑥𝑥𝑘𝑘 = �𝑑𝑑𝑘𝑘𝑉𝑉𝑘𝑘
�                 6-21 

Knowing the position and velocity at time 𝑘𝑘, they can be calculated at time 𝑘𝑘+1 as 

𝑑𝑑𝑘𝑘+1 =  
1
2

 𝑑𝑑 ∆𝑡𝑡2 + 𝑉𝑉𝑘𝑘∆𝑡𝑡 + 𝑑𝑑𝑘𝑘 + 𝑑𝑑𝑘𝑘�  

𝑉𝑉𝑘𝑘+1 = 𝑑𝑑∆𝑡𝑡 + 𝑉𝑉𝑘𝑘 + 𝑉𝑉𝑘𝑘�                                                                      6-22 

where ∆𝑡𝑡 is the time difference between time step 𝑘𝑘 and 𝑘𝑘 + 1, 𝑑𝑑𝑘𝑘� is the position 

noise, and 𝑉𝑉𝑘𝑘� is the velocity noise. Thus, in the matrix form, the equations become 

�𝑑𝑑𝑘𝑘+1𝑉𝑉𝑘𝑘+1
� = �

1
2

 𝑑𝑑 ∆𝑡𝑡2 + 𝑉𝑉𝑘𝑘∆𝑡𝑡 + 𝑑𝑑𝑘𝑘 + 𝑑𝑑𝑘𝑘�

𝑑𝑑∆𝑡𝑡 + 𝑉𝑉𝑘𝑘 +  𝑉𝑉𝑘𝑘�
� = �1 ∆𝑡𝑡

0 1 � �
𝑑𝑑𝑘𝑘
𝑉𝑉𝑘𝑘
� + �

1
2

 ∆𝑡𝑡2

∆𝑡𝑡
� 𝑑𝑑 + �𝑑𝑑𝑘𝑘

�
𝑉𝑉𝑘𝑘�
� 

𝑥𝑥𝑘𝑘+1 =  �1 ∆𝑡𝑡
0 1 �  𝑥𝑥𝑘𝑘 + �

1
2

 ∆𝑡𝑡2

∆𝑡𝑡
� 𝑑𝑑 + �𝑑𝑑𝑘𝑘

�
𝑉𝑉𝑘𝑘�
�                                        6-23 

On the other hand, position is the only variable that is measured in this example, so the 

equation that illustrates how the measurements are related to the state of the system can 

be written as 

𝑑𝑑𝑘𝑘 = [1 0] �𝑑𝑑𝑘𝑘𝑉𝑉𝑘𝑘
� + 𝑧𝑧𝑘𝑘            

 𝑦𝑦𝑘𝑘 =  [1 0]  𝑥𝑥𝑘𝑘 + 𝑧𝑧𝑘𝑘                 6-24 
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where 𝑧𝑧𝑘𝑘 is the measurement error, and 

 𝑥𝑥𝑘𝑘+1 =  𝐹𝐹𝑘𝑘𝑥𝑥𝑘𝑘 + 𝐺𝐺𝑘𝑘𝑢𝑢𝑘𝑘 + 𝜔𝜔𝑘𝑘                 

  yk = Hkxk + vk                                                            6-1 

The steps in the Kalman filter construction in this example are: 

i. Comparison of Equations ٦-23 and  6-24 with Equation  6-1, helps us build the 

model of the system 

   𝐹𝐹𝑘𝑘 = �1 ∆𝑡𝑡
0 1 � ,       Gk = �

1
2

 ∆t2

∆t
�,          𝑥𝑥𝑘𝑘 = �𝑑𝑑𝑘𝑘𝑉𝑉𝑘𝑘

� ,         uk = a,              

   𝜔𝜔𝑘𝑘 = �𝑑𝑑𝑘𝑘
�
𝑉𝑉𝑘𝑘�
� = �

1
2

 ∆𝑡𝑡2

∆𝑡𝑡
� 

   𝐻𝐻𝑘𝑘 = [1 0],            𝑣𝑣𝑘𝑘 = 𝑧𝑧𝑘𝑘                6-25 

ii. To start the filter the initial state estimation and the covariance of that 

estimation are  

𝑥𝑥0 = �00�  

𝑃𝑃0 = (𝑑𝑑𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑑𝑑𝑇𝑇𝑑𝑑𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒 𝑒𝑒𝑝𝑝𝑖𝑖𝑢𝑢𝑒𝑒)2 �
(1
2

 ∆𝑡𝑡2)2 (1
2

 ∆𝑡𝑡2)(∆𝑡𝑡)

(1
2

 ∆𝑡𝑡2)(∆𝑡𝑡) (∆𝑡𝑡)2
�                  6-26 

 
Now we can start to run the filter loop by plugging Equations  6-26 into the 

measurement update equations in Figure  6-3. 

Figure  6-7 simulates the motion of a body moving with an acceleration of 1. How the 

Kalman tracks the object and reduces the measurement error in its estimations 

(Figure  6-6 (b)). 
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Figure  6-7: Tracking a body with constant acceleration (a) Vehicle Position (True, 
Measured, and Estimated), (b) Position Measurement Error and Position Estimation 
Error, (c) Velocity (True and Estimated), and (d) Velocity Estimation Error. The 

parameters for the example are a=1, 𝑥𝑥0 = �00� ,𝑃𝑃0 = �
1
4

1
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1
2

1
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Another popular simple case in the textbooks on the Kalman filter is the motion with 

constant velocity. Considering that the one-dimensional motion of a body is ruled by the 

following law: 

�𝑑𝑑𝑡𝑡 = (𝑉𝑉 ∗ 𝑡𝑡) + 𝑑𝑑0
𝑉𝑉 = 𝑝𝑝𝑝𝑝𝑒𝑒𝑢𝑢𝑡𝑡𝑑𝑑𝑒𝑒𝑡𝑡

                  6-27 

where dt is the position at time t, d0 is the position that the body starts moving from 

and V is the constant velocity. 

The state vector in this case is defined as 

𝑥𝑥𝑘𝑘 = �𝑑𝑑𝑘𝑘𝑉𝑉𝑘𝑘
�                                                                       6-28 

Knowing the state at time 𝑘𝑘, it can be calculated at time 𝑘𝑘+1 as: 

𝑑𝑑𝑘𝑘+1 =  𝑉𝑉∆𝑡𝑡 + 𝑑𝑑𝑘𝑘 + 𝑑𝑑𝑘𝑘�  

𝑉𝑉𝑘𝑘+1 = 𝑉𝑉𝑘𝑘 + 𝑉𝑉𝑘𝑘�                                                        6-29 

and in the matrix form 

�𝑑𝑑𝑘𝑘+1𝑉𝑉𝑘𝑘+1
� = �𝑉𝑉𝑘𝑘∆𝑡𝑡 + 𝑑𝑑𝑘𝑘 + 𝑑𝑑𝑘𝑘�

 𝑉𝑉𝑘𝑘 +  𝑉𝑉𝑘𝑘�
� = �1 ∆𝑡𝑡

0 1 � �
𝑑𝑑𝑘𝑘
𝑉𝑉𝑘𝑘
� + �𝑑𝑑𝑘𝑘

�
𝑉𝑉𝑘𝑘�
� 

 𝑥𝑥𝑘𝑘+1 =  �1 ∆𝑡𝑡
0 1 �  𝑥𝑥𝑘𝑘 + �𝑑𝑑𝑘𝑘

�
𝑉𝑉𝑘𝑘�
�                                             6-30 

The measurements matrix can be written as 

𝑑𝑑𝑘𝑘 = [1 0] �𝑑𝑑𝑘𝑘𝑉𝑉𝑘𝑘
� + 𝑧𝑧𝑘𝑘  

 𝑦𝑦𝑘𝑘 =  [1 0]  𝑥𝑥𝑘𝑘 + 𝑧𝑧𝑘𝑘                                                                     6-31 

where 𝑧𝑧𝑘𝑘, ∆𝑡𝑡, 𝑑𝑑𝑘𝑘�, and 𝑉𝑉𝑘𝑘� are characterized as before.  

Once again, the steps in the Kalman filter construction in this example are: 

i. To define the model of the system, we need the following matrices 

         𝐹𝐹𝑘𝑘 = �1 ∆𝑡𝑡
0 1 � ,       𝑥𝑥𝑘𝑘 = �𝑑𝑑𝑘𝑘𝑉𝑉𝑘𝑘

� ,        𝜔𝜔𝑘𝑘 = �𝑑𝑑𝑘𝑘
�
𝑉𝑉𝑘𝑘�
� = �

𝜔𝜔𝑑𝑑
𝜔𝜔𝑉𝑉

� 

𝐻𝐻𝑘𝑘 = [1 0],            𝑣𝑣𝑘𝑘 = 𝑧𝑧𝑘𝑘                                                         6-32 

ii. Initial state estimation and the covariance of that estimations is described as 

𝑥𝑥0 = �01�                    𝑃𝑃0 =  (ωV)2                                                                                 6-33 
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iii. One can begin iterating at this juncture by plugging Equations 6-33 into the 

measurement update equations in Figure  6-3. 

 Figure  6-7 shows the Kalman filter behavior.  
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Figure  6-8: Tracking a body with constant velocity (a) Vehicle Position (True, Measured, 
and Estimated), (b) Position Measurement Error and Position Estimation Error. 
𝑥𝑥0 = �05� ,𝑃𝑃0 = �0.25 0.25

0.25 0.25� , ∆𝑡𝑡 = 1. 
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Convergence to the Steady-state 
 

Before closing this chapter, an important point should be considered regarding running 

the Kalman filter. In tuning the filter, a consideration should be given to the convergence 

of the covariance of the estimation and the gain value to steady-state values after a certain 

number of time steps. It is possible to test and run the filter to check the convergence but 

it is more practical to investigate that through some equations instead. Both the a 

posteriori estimation covariance and the Kalman gain value will converge to a steady-

state if the a priori estimation covariance does also converge (Figure  6-3 and Table  6-2) 

On the other hand, it can be proved (Simon, 2006) that the covariance of the a priori 

estimation of a scalar system can be written as 

𝑃𝑃𝑘𝑘− =
𝜏𝜏1𝜇𝜇1𝑘𝑘−1(2𝑅𝑅𝐻𝐻2𝑃𝑃1− − 𝜏𝜏2) − 𝜏𝜏2𝜇𝜇2𝑘𝑘−1(2𝐻𝐻2𝑃𝑃1− − 𝜏𝜏1)

2𝐻𝐻2𝜇𝜇1𝑘𝑘−1(2𝑅𝑅𝐻𝐻2𝑃𝑃1− − 𝜏𝜏2) − 2𝐻𝐻2𝜇𝜇2𝑘𝑘−1(2𝐻𝐻2𝑃𝑃1− − 𝜏𝜏1)
 

where 

𝜏𝜏1 = 𝐻𝐻2𝑄𝑄 + 𝑅𝑅(𝐹𝐹2 − 1) +  𝜎𝜎, 

𝜏𝜏2 = 𝐻𝐻2𝑄𝑄 + 𝑅𝑅(𝐹𝐹2 − 1) −  𝜎𝜎, 

𝜇𝜇1 = 𝐻𝐻2𝑄𝑄 + 𝑅𝑅(𝐹𝐹2 + 1) +  𝜎𝜎, 

 𝜇𝜇2 = 𝐻𝐻2𝑄𝑄 + 𝑅𝑅(𝐹𝐹2 + 1) −  𝜎𝜎,         and 

𝜎𝜎 = �𝐻𝐻2𝑄𝑄 + 𝑅𝑅(𝐹𝐹 + 1)2�𝐻𝐻2𝑄𝑄 + 𝑅𝑅(𝐹𝐹 − 1)2           6-34 

 
If we take into account the case where   𝜇𝜇2 < 𝜇𝜇1, we can easily conclude that as 𝑘𝑘 

increases, 𝜇𝜇2𝑘𝑘 gets smaller and smaller relative to 𝜇𝜇1𝑘𝑘 (Simon, 2006). Therefore, the steady 

state of the a priori estimation covariance can be written as 

lim
𝑘𝑘→∞

𝑃𝑃𝑘𝑘− =  lim
𝑘𝑘→∞

𝜏𝜏1𝜇𝜇1𝑘𝑘−1(2𝑅𝑅𝐻𝐻2𝑃𝑃1− − 𝜏𝜏2) − 𝜏𝜏2𝜇𝜇2𝑘𝑘−1(2𝐻𝐻2𝑃𝑃1− − 𝜏𝜏1)
2𝐻𝐻2𝜇𝜇1𝑘𝑘−1(2𝑅𝑅𝐻𝐻2𝑃𝑃1− − 𝜏𝜏2) − 2𝐻𝐻2𝜇𝜇2𝑘𝑘−1(2𝐻𝐻2𝑃𝑃1− − 𝜏𝜏1)

 

      = lim
𝑘𝑘→∞

 
𝜏𝜏1𝜇𝜇1𝑘𝑘−1(2𝑅𝑅𝐻𝐻2𝑃𝑃1− − 𝜏𝜏2)

2𝐻𝐻2𝜇𝜇1𝑘𝑘−1(2𝑅𝑅𝐻𝐻2𝑃𝑃1− − 𝜏𝜏2)
 

= 𝜏𝜏1
2𝐻𝐻2                                     6-35 

 
Equations 6-9 and  6-10 can be used to find the steady-state of the a posteriori 

estimation covariance and the Kalman gain value  
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Pk+ =  (I-KkHk)Pk
-                                                               5-9 

Kk = Pk
-Hk

T(HkPk
-Hk

T + Rk)-1                                                  5-10 

If we go back to the example 1 where the first simulation was R=Q=F= H =1, then 

the values of parameters of Equation  6-34 are 

𝜎𝜎 = �𝐻𝐻2𝑄𝑄 + 𝑅𝑅(𝐹𝐹 + 1)2�𝐻𝐻2𝑄𝑄 + 𝑅𝑅(𝐹𝐹 − 1)2 = 

�12 ∗ 1 + 1(1 + 1)2�12 ∗ 1 + 1(1 − 1)2 = √5 

𝜏𝜏1 = 𝐻𝐻2𝑄𝑄 + 𝑅𝑅(𝐹𝐹2 − 1) +  𝜎𝜎 = 12 ∗ 1 + 1(12 − 1) + √5  = 1 + √5 

𝑃𝑃∞− =
𝜏𝜏1

2𝐻𝐻2 =
1 + √5
2 ∗ 12

= 1.6 

𝐾𝐾∞ = 𝑃𝑃∞−𝐻𝐻𝑘𝑘𝑇𝑇�𝐻𝐻𝑘𝑘𝑃𝑃∞−𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘�
−1

= 1.6 ∗ 1(1 ∗ 1.6 ∗ 1 + 1)−1 

=
1.6
2.6

= 0.62 

𝑃𝑃∞+ =  (𝐼𝐼 − 𝐾𝐾∞𝐻𝐻𝑘𝑘)𝑃𝑃∞− = (1 − 0.6 ∗ 1)1.6 = 0.64           6-36 

Figure  6-4 (d) shows the a priori and a posteriori estimation covariance. The Kalman 

gain value of this example is plotted in Figure  6-9 and it converges to 0.62. 

 
Figure  6-9: Kalman gain value (Example 1, simulation 1 of Chapter 5). The steady-state 
of the gain value converges to 0.62 (Equation  6-36). 
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CHAPTER 7.  SOME VARIATIONS AND EXTENSIONS OF THE 

KALMAN FILTER 

In this chapter I want to review some generalizations of the Kalman filter. Although 

there are lots of these generalizations, the purpose of all them is unique and that is to 

make the filter more flexible and practical for a broader set of problems. In this chapter I 

will discuss just the ones that I applied to our FTG data in my thesis. 

Here are the generalizations that I will cover in this chapter: 

 Kalman filtering with fading memory 

 Constrained Kalman filtering 

 Kalman Smoothers  

 

Fading-memory Kalman filter 

As it is discussed in chapter 6, sometimes it is hard to define a model for a system and 

in case of mismodeling, that happens if our model does not match reality, the Kalman 

filter might diverge from the true state. One of the solutions for such a case is adding 

fictitious process noise. It results in giving more weight to the measurements rather than 

the filter estimations; this way it can reduce the effects of a model that was not defined 

perfectly. Another way to compensate the effects of mismodeling is using the Kalman 

filter with fading memory (Schle et all., 1967).  

The concept of this version of the Kalman filter is that more emphasis should be given 

to the recent data. It is achieved by entering an 𝛼𝛼 term in the cost function and 

consequently, forcing the filter to converge to an estimate that reduces the weight of old 

measurements while increases the weight of the most recent ones. In standard Kalman 

filter, this 𝛼𝛼 term is considered to be 1 so equal weight is given to all measurements 

(regardless of old or new ones) while in fading memory filter it set to be greater than 1 . 

The solution to such a cost function is the Kalman gain in which 𝑅𝑅𝑘𝑘 is replaced with 

𝛼𝛼−2𝑘𝑘𝑅𝑅𝑘𝑘 and 𝑄𝑄𝑘𝑘 is replaced with 𝛼𝛼−2𝑘𝑘−2𝑄𝑄𝑘𝑘 (Sorenson and Sacks, 1971). The original 

Kalman filter gain is written as 

Kk = Pk
-Hk

T(HkPk
-Hk

T + Rk)-1 = Pk+Hk
TRk

-1            6-10 
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Replacing 𝑅𝑅𝑘𝑘 and 𝑄𝑄𝑘𝑘 with their new solutions gives  

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘
𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘

𝑇𝑇 + 𝛼𝛼−2𝑘𝑘𝑅𝑅𝑘𝑘)−1                 7-1 

=  𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘
𝑇𝑇[𝛼𝛼−2𝑘𝑘�𝐻𝐻𝑘𝑘𝛼𝛼2𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘

𝑇𝑇 + 𝑅𝑅𝑘𝑘�]−1 

= 𝛼𝛼2𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘
𝑇𝑇(𝐻𝐻𝑘𝑘𝛼𝛼2𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘

𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1 

Time update equation for estimation error covariance can be calculated replacing 𝑄𝑄𝑘𝑘 

with its new solution in equation  6-7  

Pk
- = Fk-1Pk-1

+ Fk-1
T + Qk-1                                               6-7 

𝑃𝑃𝑘𝑘− = 𝐹𝐹𝑘𝑘−1𝑃𝑃𝑘𝑘−1+ 𝐹𝐹𝑘𝑘−1𝑇𝑇 + 𝛼𝛼−2𝑘𝑘𝑄𝑄𝑘𝑘−1              7-2 

Multiplying both sides of the equation in  𝛼𝛼2𝑘𝑘 results 

𝛼𝛼2𝑘𝑘 𝑃𝑃𝑘𝑘− =  𝐹𝐹𝑘𝑘−1𝛼𝛼2𝑘𝑘𝑃𝑃𝑘𝑘−1+ 𝐹𝐹𝑘𝑘−1𝑇𝑇 + 𝑄𝑄𝑘𝑘−1                   7-3 

For time update equations, all time steps on the right hand side of the equation should 

be stated based on  𝑘𝑘 − 1 while on the right hand side should be stated based on 𝑘𝑘 so 

𝛼𝛼2𝑘𝑘 𝑃𝑃𝑘𝑘− = 𝛼𝛼2𝐹𝐹𝑘𝑘−1𝛼𝛼2(𝑘𝑘−1)𝑃𝑃𝑘𝑘−1+ 𝐹𝐹𝑘𝑘−1𝑇𝑇 + 𝑄𝑄𝑘𝑘−1                7-4 

On the other hand, measurement update equation for calculating estimation error 

covariance is stated as 

𝑃𝑃𝑘𝑘+ =  𝑃𝑃𝑘𝑘− − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−                      6-9 

To make it in accordance with 7-4, both sides of the equation is multiplied by 𝛼𝛼2𝑘𝑘. 

𝛼𝛼2𝑘𝑘 𝑃𝑃𝑘𝑘+ = 𝛼𝛼2𝑘𝑘𝑃𝑃𝑘𝑘− − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘𝛼𝛼2𝑘𝑘𝑃𝑃𝑘𝑘−                 7-5 

The state update equations remain unchanged since there is no 𝑅𝑅 or 𝑄𝑄 in them. 

xk
- =  Fk-1x�k-1

+ + Gk-1uk-1                             6-6 

x�k+ =  x�k
- + Kk �yk-Hkx�k

- �                                     6-8 

Defining two new parameters 𝑃𝑃�𝑘𝑘− and 𝑃𝑃�𝑘𝑘+ as below can lead to fading memory Kalman 

filter equation as summarized inTable  7-1. 

𝑃𝑃�𝑘𝑘− = 𝛼𝛼2𝑘𝑘𝑃𝑃𝑘𝑘− 

𝑃𝑃�𝑘𝑘+ = 𝛼𝛼2𝑘𝑘𝑃𝑃𝑘𝑘+                    7-6  
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Table  7-1: The Kalman filter operation loop for fading memory Kalman filter. 
 

Time update (Prediction)  Measurement update (Correction) 

1)  Priori update 

𝑥𝑥𝑘𝑘− =  𝐹𝐹𝑘𝑘−1𝑥𝑥�𝑘𝑘−1+ + 𝐺𝐺𝑘𝑘−1𝑢𝑢𝑘𝑘−1 

 

2) Priori error covariance 

𝑃𝑃�𝑘𝑘− = 𝛼𝛼2𝐹𝐹𝑘𝑘−1𝑃𝑃�𝑘𝑘−1+  𝐹𝐹𝑘𝑘−1𝑇𝑇 + 𝑄𝑄𝑘𝑘−1 

3) Kalman gain 

𝐾𝐾𝑘𝑘 = 𝑃𝑃�𝑘𝑘−𝐻𝐻𝑘𝑘
𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃�𝑘𝑘−𝐻𝐻𝑘𝑘

𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1 
4) Posteriori update 

𝑥𝑥�𝑘𝑘+ =  𝑥𝑥�𝑘𝑘− + 𝐾𝐾𝑘𝑘(𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−) 
5) Posteriori error covariance 

𝑃𝑃�𝑘𝑘+ =  𝑃𝑃�𝑘𝑘− − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘𝑃𝑃�𝑘𝑘− 

 

 

Running and tuning the filter has the same steps as discussed before in chapter 6: 

I. Building a model: the system and measurement equations are as stated in 

equations 6-1 and  6-2. 

II. Initializing the process: the filter initialized as equations 6-11 and  6-12.  

III. Iterating the procedure: operation loop summarized in Table  7-1 should be run 

repeatedly. 

Figure  7-1 illustrates how fading memory Kalman filter emphasizes on the recent 

measurement by giving more weight to it rather than the model suggestion in estimation 

process. It can be observed comparing  7-1c and 7-1f. Gain value is the parameter 

determining the importance of the most recent measurement in estimation. The higher the 

gain value is the more weight is given to the measurement. The effect of 𝛼𝛼 parameter and 

how it affects the filter operation in fading memory version is clear comparing  7-1 a 

and  7-1 d. In standard Kalman filter; when process noise estimation covariance (𝑄𝑄) is 

zero (i.e. when we are 100% confident about our model) the best estimate that can be 

made is what the model tells us. It means that after some time steps, the Kalman gain 

value converges to zero and the measurements are neglected completely in estimation 

process. While, in fading memory Kalman filter, even when 𝑄𝑄 is zero, some weight will 

be given to the measurements and the estimation is something between what the model 

predicts and the measured value. In standard Kalman filter, when the confidence about 

the model is 100%, there is no doubt in the filter estimation. It means that the output of 
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the filter, which is the model prediction, is 100% accurate (𝑃𝑃 → 0)(Figure  7-1 f). While, 

in fading memory filter, some weight will be given to the measurement, there is always 

some degree of uncertainty in estimation so 𝑃𝑃 ≠ 0 (Figure  7-1c).  

The following example can be modelled as 

  𝑥𝑥𝑘𝑘 =  𝑥𝑥𝑘𝑘−1 

       𝑦𝑦𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘 

 𝑣𝑣𝑘𝑘~ (0,𝑅𝑅𝑘𝑘) 

  𝑄𝑄𝑘𝑘 = 0                 7-7 

 
According to chapter 6, the steady state of the standard Kalman filter is calculated as 

(Figures  7-1b and  7-1c). 

𝜎𝜎 = �𝐻𝐻2𝑄𝑄 + 𝑅𝑅(𝐹𝐹 + 1)2�𝐻𝐻2𝑄𝑄 + 𝑅𝑅(𝐹𝐹 − 1)2 

𝜏𝜏1 = 𝐻𝐻2𝑄𝑄 + 𝑅𝑅(𝐹𝐹2 − 1) +  𝜎𝜎 

𝑝𝑝𝑖𝑖𝑒𝑒
𝑘𝑘→∞

𝑃𝑃𝑘𝑘− =  
𝜏𝜏1

2𝐻𝐻2 = 0 

𝐾𝐾∞ = 𝑃𝑃∞−𝐻𝐻𝑘𝑘𝑇𝑇�𝐻𝐻𝑘𝑘𝑃𝑃∞−𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘�
−1

= 0 
𝑃𝑃∞+ =  (𝐼𝐼 − 𝐾𝐾∞𝐻𝐻𝑘𝑘)𝑃𝑃∞− = 0                  7-8 

For fading memory filter, the steady state is determined using equation in Table  7-1. 

𝑃𝑃�𝑘𝑘− = 𝛼𝛼2𝑃𝑃�𝑘𝑘−1+   

𝐾𝐾𝑘𝑘 = 𝑃𝑃�𝑘𝑘−𝐻𝐻𝑘𝑘
𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃�𝑘𝑘−𝐻𝐻𝑘𝑘

𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1 =
𝑃𝑃�𝑘𝑘−

𝑃𝑃�𝑘𝑘− + 𝑅𝑅𝑘𝑘
 

=
𝛼𝛼2𝑃𝑃�𝑘𝑘−1+

𝛼𝛼2𝑃𝑃�𝑘𝑘−1+ + 𝑅𝑅
 

𝑃𝑃�𝑘𝑘+ =  𝑃𝑃�𝑘𝑘− − 𝐾𝐾𝑘𝑘𝑃𝑃�𝑘𝑘−                    

=  𝛼𝛼2𝑃𝑃�𝑘𝑘−1+ − � 𝛼𝛼2𝑃𝑃�𝑦𝑦−1
+

𝛼𝛼2𝑃𝑃�𝑦𝑦−1
+ +𝑅𝑅

�𝛼𝛼2𝑃𝑃�𝑘𝑘−1+                  7-9 

When steady state of the system is reached, we expect 𝑃𝑃�𝑘𝑘+ = 𝑃𝑃�𝑘𝑘−1+  

𝑃𝑃�∞+  =  𝛼𝛼2𝑃𝑃�∞+ − �
𝛼𝛼2𝑃𝑃�∞+

𝛼𝛼2𝑃𝑃�∞+ + 𝑅𝑅
�𝛼𝛼2𝑃𝑃�∞+ 

1 =  𝛼𝛼2 − �
𝛼𝛼2𝑃𝑃�∞+

𝛼𝛼2𝑃𝑃�∞+ + 𝑅𝑅
�𝛼𝛼2 
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1 =  
𝛼𝛼2𝑅𝑅

𝛼𝛼2𝑃𝑃�∞+ + 𝑅𝑅
 

 𝑃𝑃�∞+ = 𝑅𝑅�𝛼𝛼2−1�
𝛼𝛼2

                 7-10  

Substituting  7-10 in 7-9, the gain value for the steady state can be written as 

𝐾𝐾∞ =  
𝛼𝛼2𝑃𝑃�∞+

𝛼𝛼2𝑃𝑃�∞+ + 𝑅𝑅
=

𝑅𝑅(𝛼𝛼2 − 1)
𝑅𝑅(𝛼𝛼2 − 1) + 𝑅𝑅

 

      =  
(𝛼𝛼2 − 1)

(𝛼𝛼2 − 1) +  1
  

     =  �𝛼𝛼
2−1�
𝛼𝛼2

                   7-11 

In the following example  

𝑅𝑅 = 0.5           𝑑𝑑𝑒𝑒𝑑𝑑                  𝛼𝛼 = 1.1 

Substituting these values in  7-10 and 7-11 gives (Figures  7-1 b and  7-1 c) 

𝑃𝑃∞ = 0.087      𝑑𝑑𝑒𝑒𝑑𝑑               𝐾𝐾∞ = 0.17                

In standard filter (α = 1), so equations 7-10 and 7-11 converge to zero as it is 

expected.   
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Figure  7-1: Comparison of standard filter with fading memory Kalman filter. (a) 
modelled, measured and estimated position from a standard Kalman filter (b) the 
corresponding estimation error covariance converging to zero; the estimation are 
believed to be 100% accurate (c) the gain value tends to be zero in higher time steps; 
resulting in neglecting the measurements and giving all weight to the modelled estimate . 
d) The same system but using the fading memory Kalman filter (alpha is considered 1.1). 
The filter is more responsive to new measurements. (e) The estimation error covariance. 
Although the process noise covariance is zero (𝑄𝑄 = 0), the estimations always have a 
degree of uncertainty so 𝑃𝑃 does not reach zero. (f)  Kalman gain for the fading memory 
filter. It never converges to zero so always some weight is given to the measurements. 
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Constrained Kalman filter 

 

Sometimes there is some information about the model that is neglected in running the 

filter because it is difficult to simply involve them in the structure. On the other hand, we 

want that information to be incorporated in the filtering procedure to get more accurate 

estimations. This additional information might be in the form of equality (e.g., fixed 

speed of a moving object) or inequality constraints (e.g., maximum speed of a motor) 

(Simon, 2010).  

Model reduction (Wen and Durrant-Whyte, 1992), perfect measurements (Porrill, 

1988), projection approaches (Hayward, 1998) and A pdf truncation approach (Simon 

and Chia, 2002; and Simon, 2006) are the different ways that researchers treat the 

constraints. Here, I will only focus on discussing the first two approaches that 

mathematically are identical (Simon, 2010). The straightforward model reduction 

approach that works based on diminishing the parameters of the system usually can be 

easily implemented. Reducing the dimension of the problem brings up the advantage of 

the method which is less computational effort. In spite of simplicity of the approach, it 

has two major disadvantages that sometimes make it undesirable. First, sometimes 

reducing the dimension of the problem makes the physical meaning of the state lost; it 

would be difficult to recognize and interpret the state equations. Second, this approach is 

only applicable for equality equations (i.e. 𝐷𝐷𝑥𝑥 = 𝑑𝑑) and cannot be used directly for 

inequality constraints (i.e. 𝐷𝐷𝑥𝑥 ≤ 𝑑𝑑)(Simon, 2006). 

Suppose the system that we are dealing with has 3 variables (𝑥𝑥1, 𝑥𝑥2 𝑑𝑑𝑒𝑒𝑑𝑑 𝑥𝑥3) and 3 

measured parameters (𝑦𝑦1,𝑦𝑦2 𝑑𝑑𝑒𝑒𝑑𝑑 𝑦𝑦3). The state, measurement, and observation matrices 

can be written 

𝑥𝑥𝑘𝑘 =  �
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
�             𝐻𝐻 =  �

1 0 0
0 1 0
0 0 1

�        𝑦𝑦𝑘𝑘 =  �
𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
�                        7-12 

So the system is defined by the following equations as 

𝑥𝑥𝑘𝑘+1 =  �
1 0 0
0 1 0
0 0 1

� 𝑥𝑥𝑘𝑘 + �
𝜔𝜔𝑘𝑘1
𝜔𝜔𝑘𝑘2
𝜔𝜔𝑘𝑘3

� 
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𝑦𝑦𝑘𝑘 =  �
1 0 0
0 1 0
0 0 1

� 𝑥𝑥𝑘𝑘 +  �
𝑣𝑣𝑘𝑘1
𝑣𝑣𝑘𝑘2
𝑣𝑣𝑘𝑘3

�                 7-13 

If from the scientific fact underlying the problem, it is kwon that the following 

constraint is always satisfied between the states,  

𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 = 0                      7-14 

Then the dimension of the problem can be reduced: 

𝑥𝑥3 = −(𝑥𝑥1 + 𝑥𝑥2)                   7-15  

Substituting this in measurement and transition matrix results in 

𝑥𝑥𝑘𝑘+1(1) = 𝑥𝑥𝑘𝑘(1) 

𝑥𝑥𝑘𝑘+1(2) = 𝑥𝑥𝑘𝑘(2) 

𝑦𝑦𝑘𝑘 =  �
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� + �

𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
� 

𝑦𝑦𝑘𝑘 =  �
𝑥𝑥1
𝑥𝑥2

−(𝑥𝑥1 + 𝑥𝑥2)
�+ �

𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
� 

𝐹𝐹 = H= �1 0
0 1�                  7-16 

Some researchers involve the state constraints in the Kalman filter operation loop by 

considering them as perfect measurements (Porrill, 1988). Supposing the constraint is 

given as 𝐷𝐷𝑥𝑥𝑘𝑘 = 𝑑𝑑, it can be interpreted there are some perfect measurements available 

that have not been contaminated by any noise 𝑣𝑣𝑘𝑘 = 0. The measurement update equation 

of standard Kalman filter can be augmented by adding this information as 

�
𝑦𝑦𝑘𝑘
𝑑𝑑 � =  �𝐻𝐻𝐷𝐷�  𝑥𝑥𝑘𝑘 + �𝑣𝑣𝑘𝑘0 �                7-17 

The time update and the estimation error covariance equations are as the standard 

filter. I used the perfect measurement method to incorporate Laplace’s equation in our 

filtering procedure. Laplace’s equation is written as 

𝑥𝑥1 +  𝑥𝑥2 + 𝑥𝑥3 = 0                 7-18 

The measurement update equation for our case of study is defined as 

�
𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
0
� =  �

1 0 0
0 1 0
0 0 1
1 1 1

�  𝑥𝑥𝑘𝑘 + �
𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
0
�               7-19  
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Figure  7-2 compares standard and constrained filter results. It can be seen that 

constrained filter (perfect measurement) results are closer to the model estimations (true 

position) and is more successful in determining the position than the standard filter. 

Table  7-2 illustrates this comparison quantitatively by evaluating RMS (Root Mean 

Square) errors. The table shows that the root mean square of the difference between 

modeled and estimated position is less in constrained Kalman filter and it can be seen in 

Figure  7-2 as well. But the best point about the constrained Kalman filter is that although 

its estimation are close to the estimations of the standard filter, it can estimate so that the 

state estimate get close to the constraint (Table  7-2, RMS error based on the x1+x2+x3=0 

criterion).   

 

 

0 5 10 15 20 25 30
-4

-2

0

2

4

6

8

10

12

Time (sec)

P
os

iti
on

 (f
ee

t)

Third Variable of the Position 

 

 

True Position
Measured Position
Estimated position (unconstrained)
Estimated position (constrained)

101 



 

 
Figure  7-2: Comparison of standard and constrained Kalman filter (solid line versus 
dashed one). 
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Table  7-2: Root Mean Square error for the following example analyzing standard and 
constrained Kalman filter operation. 

 Standard Kalman filter Constrained Kalman filter 
RMS error of the state variables 

(True position – estimated position) 
1.983 1.6299 

RMS error regarding the criterion 

(x1+x2+x3=0) 
1.4419 6.1615e-016 

 

The Perfect measurement approach is easy to understand and incorporate but it also 

has some disadvantages: it can increase the possibility of numerical problems such as 

zero determinants that results in a non-invertible matrix plus like model reduction it is 

applicable for equality constraints directly and not for the inequality problems. Also it 

increases the size of the matrix that needs to be inverted by adding rows to the 

measurement equation (equation  7-17) (Simon and Chia, 2002). 

Kalman smoothers 
 

Estimations that can be obtained in standard Kalman filters use past and current 

observations to predict the current state so estimations are limited to a priori and a 

posteriori estimations (Figure  6-2). The a priori estimate (𝑥𝑥𝑘𝑘−) of a time step which is 

obtained from the time update equation is based on measurements up to that particular 

time step while a posteriori one (𝑥𝑥𝑘𝑘+), calculated from the measurement update step, is 

based on measurements up to and including that given time step.  

𝑥𝑥�𝑘𝑘+ = 𝐸𝐸[ 𝑥𝑥𝑘𝑘⃓ 𝑦𝑦1 ,𝑦𝑦2, …𝑦𝑦𝑘𝑘] = 𝑑𝑑 𝑝𝑝𝑝𝑝𝑢𝑢𝑡𝑡𝑒𝑒𝑇𝑇𝑖𝑖𝑝𝑝𝑇𝑇𝑖𝑖 𝑒𝑒𝑢𝑢𝑡𝑡𝑖𝑖𝑒𝑒𝑑𝑑𝑡𝑡𝑒𝑒 

x�k
- = E � xk⃓ y1 , y2, … yk-1� = a priori estimate                                  7-20 

Although the past and current information is adequate for calculating the system state, 

it is not optimal; the estimations can be improved by considering all available data to 

estimate the sequence of states (Nakata and Tonetti, 2010). That is applicable for 

problems that estimations are made after all measurements are recorded (off-line 

estimation problems) or for the systems estimations can be made with some delay (on-

line estimation problems) (Shimkin, 2009). Suppose the measurements include records up 

to time step 20 and the best estimate of time 10 is requested. According to chapter 6 and 

the above definition, estimation based on measurements 1 to 9 is a priori (𝑥𝑥�10− ) and if 
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measurement 10 is considered as well the estimation obtained would be a posteriori 

(𝑥𝑥�10+ ). It is clear that availability of measurements up to time 20 might be a help to have 

an even better estimate of 𝑥𝑥10. This argument is just a start point to show there are more 

varieties of estimations than just a priori and a priori one. The extension of the Kalman 

filter which improves the standard filter by adding future measurements is known as 

Optimal Smoothing.  

Before discussing optimal smoothing, it worth mentioning that there is another 

common notation used in most text books to indicate the measurements that have been 

considered for the estimation of a given time. That is, 𝑥𝑥�𝑘𝑘,𝑗𝑗  is the best estimate of time step 

𝑘𝑘 given all the measurements up to an including time 𝑖𝑖. With this notation a priori and a 

posteriori estimations are defined as 

𝑥𝑥�𝑘𝑘− =  𝑥𝑥�𝑘𝑘,𝑘𝑘−1 

𝑥𝑥�𝑘𝑘+ =  𝑥𝑥�𝑘𝑘,𝑘𝑘                   7-21 

According to this notation, the Kalman smoothers that are listed as three main types 

can be noted as the following (Shimkin, 2009): 

 Fixed-point smoothing: 𝑥𝑥�𝑀𝑀0|𝑘𝑘𝑓𝑓𝑝𝑝𝑇𝑇 𝑘𝑘 = 𝑀𝑀0,𝑀𝑀0 + 1, … 

 Fixed-lag smoothing: 𝑥𝑥�𝑘𝑘|𝑘𝑘+𝑙𝑙0𝑓𝑓𝑝𝑝𝑇𝑇𝑘𝑘 = 0,1, …         7-22  

 Fixed-interval smoothing: 𝑥𝑥�𝑘𝑘|𝑃𝑃0𝑓𝑓𝑝𝑝𝑇𝑇 𝑘𝑘 = 0,1, …𝑃𝑃0 

A common feature among the smoothers is that future measurements are considered in 

estimations. In fixed point smoothing, the goal is to get the best estimate of a fixed point 

(𝑀𝑀0) incorporating new additional measurements (𝑀𝑀0,𝑀𝑀0 + 1, … ). In other words, with 

this approach, as time progresses, we continue to update the estimate of point (𝑀𝑀0) based 

on the increasing number of measurements and thus improve the quality of our estimation 

(𝑥𝑥�𝑘𝑘).  

Using the fix-lag smoother, we try to obtain an estimate of the state (𝑥𝑥�𝑘𝑘) given 

measurements up to and including time +𝑝𝑝0 . In this scenario, as new measurements are 

added to our information, the time index of the estimation point , (𝑘𝑘), changes but the lag 

𝑝𝑝0 remains constant. This way, for each estimation point, 𝑝𝑝0 future measurements are 

taken into account.  
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For the last type of smoothers, fixed-interval smoothing, a fixed interval of 

measurements is available (𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑃𝑃0) and the target is to use all the measurements 

in the interval for some of the interior points of the interval. Table  7-3 depicts the Kalman 

smoothers at estimation times k and k+1. Table  7-4 brings an example for each of them. 

 

Table  7-3: Kalman smoothers at estimation points k and k+1. 
 

 Time step k Time step k+1 

Fixed-point 

smoother 
  

Fixed-lag 

smoother   

Fixed-interval 

smoother 
  

 

Table  7-4: Kalman smoothers and the corresponding examples taken from Simon 2006. 
 

Fixed-point smoother 
A satellite orbits continually and sends photographs to be 

process and displayed for a particular fixed point. 

Fixed-lag smoother 
A satellite orbits continually and sends photographs to be shown 

with a constant delay for each point.   

Fixed-interval smoother 

During the weekend all data has been recorded and after the 

weekend, all collected data are going to be used for the estimation 

of the state for each point 

 

Here, just the fixed-lag smoother is discussed since that is the approach that I used for 

filtering. I selected this method to reduce the effect of nonlinearity that we had in our data 

and improve the quality of the estimations. 

Before explaining how the fixed-lag Kalman filter works, we need to derive an 

alternative form for the Kalman filter. 
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An alternative form for the Kalman filter 

As Table  6-2 shows one-step Kalman filter is determined as 

 

 Kk = Pk
-Hk

T(HkPk
-Hk

T + Rk)-1 = Pk+Hk
TRk

-1                              6-10 

𝑥𝑥�𝑘𝑘+1− =  Fk(I- KkHk) x�k
- + FkKkyk + Gkuk              6-14 

 Pk+1
- =  FkPk

-FkT- FkPk
-Hk

T(HkPk
-Hk

T + Rk)-1HkPk
-FkT + Qk                       6-16 

 

On the other hand, we define 𝐿𝐿𝑘𝑘 as 

𝐿𝐿𝑘𝑘 =  𝐹𝐹𝑘𝑘𝐾𝐾𝑘𝑘                  7-23 

where 𝐿𝐿𝑘𝑘 is the redefined Kalman gain, 𝐹𝐹𝑘𝑘is the state transition matrix, and 𝐾𝐾𝑘𝑘 is the 

standard Kalman gain. 

Multiplying both sides of equation  6-10 in 𝐹𝐹𝑘𝑘 results in  

𝐿𝐿𝑘𝑘 =  𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘
𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘

𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1               7-24 

Assuming 𝐺𝐺𝑘𝑘 = 0, the state update equation  6-14 can be written as 

𝑥𝑥�𝑘𝑘+1− = 𝐹𝐹𝑘𝑘𝑥𝑥�𝑘𝑘− − 𝐹𝐹𝑘𝑘 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘− + 𝐹𝐹𝑘𝑘𝐾𝐾𝑘𝑘𝑦𝑦𝑘𝑘 

  = 𝐹𝐹𝑘𝑘𝑥𝑥�𝑘𝑘− +  𝐹𝐹𝑘𝑘  𝐾𝐾𝑘𝑘(𝑦𝑦𝑘𝑘 −  𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−) 

  = 𝐹𝐹𝑘𝑘𝑥𝑥�𝑘𝑘− + 𝐿𝐿𝑘𝑘(𝑦𝑦𝑘𝑘 −  𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−)                7-25 

Rearranging the priori estimation error covariance, equation  6-16 gives us 

𝑃𝑃𝑘𝑘+1− = 𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘− �𝐹𝐹𝑘𝑘𝑇𝑇 − 𝐻𝐻𝑘𝑘𝑇𝑇�𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘
𝑇𝑇 + 𝑅𝑅𝑘𝑘�

−1
𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐹𝐹𝑘𝑘

𝑇𝑇� +  𝑄𝑄𝑘𝑘 

  = 𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘−�𝐹𝐹𝑘𝑘𝑇𝑇 − 𝐻𝐻𝑘𝑘𝑇𝑇𝐾𝐾𝑘𝑘𝑇𝑇 𝐹𝐹𝑘𝑘𝑇𝑇� + 𝑄𝑄𝑘𝑘 

  = 𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘− [𝐹𝐹𝑘𝑘 − 𝐹𝐹𝑘𝑘𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘]𝑇𝑇 + 𝑄𝑄𝑘𝑘 

  = 𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘− [𝐹𝐹𝑘𝑘 − 𝐿𝐿𝑘𝑘𝐻𝐻𝑘𝑘]𝑇𝑇 + 𝑄𝑄𝑘𝑘                      7-26 

Equations  7-24,  7-25, and  7-26 build another alternative form of the standard Kalman 

filter. 

�
𝐿𝐿𝑘𝑘 =  𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘

𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘
𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1

𝑥𝑥�𝑘𝑘+1− =  𝐹𝐹𝑘𝑘𝑥𝑥�𝑘𝑘− +  𝐿𝐿𝑘𝑘(𝑦𝑦𝑘𝑘 −  𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−)   
 𝑃𝑃𝑘𝑘+1− =  𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘− [𝐹𝐹𝑘𝑘 − 𝐿𝐿𝑘𝑘𝐻𝐻𝑘𝑘]𝑇𝑇 + 𝑄𝑄𝑘𝑘 

              7-27 
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Deriving the fixed-lag smoother 

As equation 7-22 and Table  7-3 show, in fixed-lag method our goal is to calculate the 

best estimate of each estimation point based on measurements up to and including 𝑀𝑀 

future time steps. That is, our estimation of a state at time 𝑡𝑡𝑘𝑘−𝑁𝑁 is calculated considering 

measurements until time 𝑡𝑡𝑘𝑘. As measurements are obtained, time index 𝑘𝑘 changes while 

the lag 𝑀𝑀 remains constant. So what the filter determines is 𝑥𝑥�𝑘𝑘−𝑁𝑁|𝑘𝑘 for 𝑘𝑘 = 𝑀𝑀,𝑀𝑀 + 1, . ..  

The main idea is to define an “augmented state vector”, 𝑥𝑥𝑘𝑘+1, and corresponding 

augmented system equation. A new notation is defined here as 𝑥𝑥𝑘𝑘,𝑚𝑚 and it refers to the 

state of 𝑥𝑥𝑘𝑘−𝑚𝑚 which propagates from time 𝑘𝑘 −𝑒𝑒 to time 𝑘𝑘 with an identity transition 

matrix and zero process noise. Following this definition, 

𝑥𝑥𝑘𝑘+1,1 =  𝑥𝑥𝑘𝑘 

𝑥𝑥𝑘𝑘+1,2 =  𝑥𝑥𝑘𝑘−1 =  𝑥𝑥𝑘𝑘,1 

𝑥𝑥𝑘𝑘+1,3 = 𝑥𝑥𝑘𝑘−2 = 𝑥𝑥𝑘𝑘,2 

⋮                    7-28 

From equation 7-28 it can be concluded that 

𝑥𝑥𝑘𝑘+1,𝑁𝑁+1 = 𝑥𝑥𝑘𝑘,𝑁𝑁 = 𝑥𝑥𝑘𝑘−1,𝑁𝑁−1 = ⋯ = 𝑥𝑥𝑘𝑘−𝑁𝑁              7-29 

Combining above equations and the state update equation ( 6-19), the augmented 

system can be delineated as 

𝑥𝑥𝑘𝑘+1 = 𝐹𝐹𝑘𝑘𝑥𝑥𝑘𝑘+ 𝜔𝜔𝑘𝑘                  6-19 

�

𝑥𝑥𝑘𝑘+1
𝑥𝑥𝑘𝑘+1,1
⋮

𝑥𝑥𝑘𝑘+1,𝑁𝑁+1

� = �

𝐹𝐹𝑘𝑘
𝐼𝐼
⋮
0

0
0
⋱
…

…
…
⋱
𝐼𝐼

0
0
⋮
0

�  �

𝑥𝑥𝑘𝑘
𝑥𝑥𝑘𝑘,1
⋮

𝑥𝑥𝑘𝑘,𝑁𝑁+1

� + �

𝐼𝐼
0
⋮
0

�  𝜔𝜔𝑘𝑘              7-30 

The first row of equation  7-30 composes the dynamic system and the remaining rows 

form the successive time delays. It helps us to calculate the state of the system; 𝑥𝑥𝑘𝑘 is the 

state of the system at time 𝑡𝑡𝑘𝑘 and the components of the augmented vector are 

sequentially delayed states. The last component of the augmented state vector at time 

𝑡𝑡𝑘𝑘+1 is what we wish to calculate in a smoothed filter. In other words, this last component 

is 𝑥𝑥�𝑘𝑘−𝑁𝑁|𝐾𝐾. 

Considering the measurement equation ( 6-19), it can be augmented as 

 𝑦𝑦𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘                    6-19 
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𝑦𝑦𝑘𝑘 = [𝐻𝐻𝑘𝑘 0 0 … 0] �

𝑥𝑥𝑘𝑘
𝑥𝑥𝑘𝑘,1
⋮

𝑥𝑥𝑘𝑘,𝑁𝑁+1

� + 𝑣𝑣𝑘𝑘               7-31 

where the terms 𝐹𝐹𝑘𝑘, 𝐻𝐻𝑘𝑘, 𝜔𝜔𝑘𝑘, and 𝑣𝑣𝑘𝑘are the same as those explained in Table  6-1. 

Covariance of the augmented state estimate and the augmented Kalman gain matrix 

are delineated as 

 𝑃𝑃𝑘𝑘+1− =

⎣
⎢
⎢
⎢
⎡ 𝑃𝑃𝑘𝑘+1

0,0

𝑃𝑃𝑘𝑘+1
1,0

⋮
𝑃𝑃𝑘𝑘+1
𝑁𝑁+1,0

𝑃𝑃𝑘𝑘+1
0,1

𝑃𝑃𝑘𝑘+1
1,1

⋮
𝑃𝑃𝑘𝑘+1
𝑁𝑁+1,1

…
…
…
…

𝑃𝑃𝑘𝑘+1
0,𝑁𝑁+1

𝑃𝑃𝑘𝑘+1
1,𝑁𝑁+1

⋮
𝑃𝑃𝑘𝑘+1
𝑁𝑁+1,𝑁𝑁+1⎦

⎥
⎥
⎥
⎤
                                 𝐿𝐿𝑘𝑘 = �

𝐿𝐿𝑘𝑘,0
𝐿𝐿𝑘𝑘,1
⋮

𝐿𝐿𝑘𝑘,𝑁𝑁+1

�        7-32 

State estimation 

Substituting state transition matrix from  7-30 into  7-25 yields: 

�

𝑥𝑥𝑘𝑘+1
𝑥𝑥𝑘𝑘+1,1
⋮

𝑥𝑥𝑘𝑘+1,𝑁𝑁+1

� = �

𝐹𝐹𝑘𝑘
𝐼𝐼
⋮
0

0
0
⋱
…

…
…
⋱
𝐼𝐼

0
0
⋮
0

� �

𝑥𝑥𝑘𝑘
𝑥𝑥𝑘𝑘,1
⋮

𝑥𝑥𝑘𝑘,𝑁𝑁+1

� + �

𝐿𝐿𝑘𝑘,0
𝐿𝐿𝑘𝑘,1
⋮

𝐿𝐿𝑘𝑘,𝑁𝑁+1

��𝑦𝑦𝑘𝑘 − [𝐻𝐻𝑘𝑘 0 0 … 0] �

𝑥𝑥𝑘𝑘
𝑥𝑥𝑘𝑘,1
⋮

𝑥𝑥𝑘𝑘,𝑁𝑁+1

�� 

                    7-33 

Equation  7-28 states that 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘+1|𝑘𝑘 = 𝑥𝑥�𝑘𝑘+1−  

𝑥𝑥𝑘𝑘+1,1 = 𝑥𝑥𝑘𝑘|𝑘𝑘 = 𝑥𝑥�𝑘𝑘+ 

𝑥𝑥𝑘𝑘+1,2 =  𝑥𝑥�𝑘𝑘−1|𝑘𝑘 

⋮ 

𝑥𝑥𝑘𝑘+1,𝑁𝑁+1 = 𝑥𝑥�𝑘𝑘−𝑁𝑁|𝑘𝑘          7-34 

Similarly, for the right hand side of the equation: 

𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘|𝑘𝑘−1 = 𝑥𝑥�𝑘𝑘− 

𝑥𝑥𝑘𝑘+1,1 = 𝑥𝑥�𝑘𝑘−1|𝑘𝑘−1 

⋮ 

𝑥𝑥𝑘𝑘,𝑁𝑁+1 = 𝑥𝑥�𝑘𝑘−𝑁𝑁−1|𝑘𝑘−1                7-35 

Substituting  7-34 and 7-35 in 7-33 results in state update equation as 
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⎣
⎢
⎢
⎡
𝑥𝑥�𝑘𝑘+1−

𝑥𝑥�𝑘𝑘|𝑘𝑘
⋮

𝑥𝑥�𝑘𝑘−𝑁𝑁|𝑘𝑘⎦
⎥
⎥
⎤

= �

𝐹𝐹𝑘𝑘
𝐼𝐼
⋮
0

0
0
⋱
…

…
…
⋱
𝐼𝐼

0
0
⋮
0

�

⎣
⎢
⎢
⎡

𝑥𝑥�𝑘𝑘−
𝑥𝑥�𝑘𝑘−1|𝑘𝑘−1

⋮
𝑥𝑥�𝑘𝑘−𝑁𝑁−1|𝑘𝑘−1⎦

⎥
⎥
⎤

+  

�

𝐿𝐿𝑘𝑘,0
𝐿𝐿𝑘𝑘,1
⋮

𝐿𝐿𝑘𝑘,𝑁𝑁+1

�

⎝

⎛𝑦𝑦𝑘𝑘 − [𝐻𝐻𝑘𝑘 0 0 … 0]

⎣
⎢
⎢
⎡

𝑥𝑥�𝑘𝑘−
𝑥𝑥�𝑘𝑘−1|𝑘𝑘−1

⋮
𝑥𝑥�𝑘𝑘−𝑁𝑁−1|𝑘𝑘−1⎦

⎥
⎥
⎤

⎠

⎞         7-36 

The first component of the state vector on the left hand side of the equation  7-36, 

𝑥𝑥�𝑘𝑘+1− , is the a priori estimate of state at time 𝑘𝑘+1 taking into account measurements up to 

and including time 𝑘𝑘. The second component is estimation of point 𝑘𝑘 having the same 

data set. Consequently, the last component of the vector, 𝑥𝑥�𝑘𝑘−𝑁𝑁,𝑘𝑘, is our estimation of 

point 𝑘𝑘 − 𝑀𝑀, considering measurements up to and including time 𝑘𝑘 and that is the state 

estimate we want to obtain from fixed-lag smoother. Mathematically, the rows of this 

equation determine each of the augmented state components.  

𝑥𝑥�𝑘𝑘+1− = 𝐹𝐹𝑘𝑘𝑥𝑥�𝑘𝑘− + 𝐿𝐿𝑘𝑘,0(𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−) 

⋮ 

𝑥𝑥�𝑘𝑘−𝑖𝑖|𝑘𝑘 = 𝑥𝑥�𝑘𝑘−𝑖𝑖|𝑘𝑘−1 + 𝐿𝐿𝑘𝑘,𝑖𝑖+1(𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−) 

⋮ 

 𝑥𝑥�𝑘𝑘−𝑁𝑁|𝑘𝑘 = 𝑥𝑥�𝑘𝑘−𝑁𝑁|𝑘𝑘−1 + 𝐿𝐿𝑘𝑘,𝑁𝑁+1(𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−)              7-37 

Gain matrices 

Taking state transition matrix from  7-30 and substituting it in 7-24 yields: 

�

𝐿𝐿𝑘𝑘,0
𝐿𝐿𝑘𝑘,1
⋮

𝐿𝐿𝑘𝑘,𝑁𝑁+1

� = �

𝐹𝐹𝑘𝑘
𝐼𝐼
⋮
0

0
0
⋱
…

…
…
⋱
𝐼𝐼

0
0
⋮
0

�

⎣
⎢
⎢
⎢
⎡ 𝑃𝑃𝑘𝑘

0,0

𝑃𝑃𝑘𝑘
1,0

⋮
𝑃𝑃𝑘𝑘
𝑁𝑁+1,0

𝑃𝑃𝑘𝑘
0,1

𝑃𝑃𝑘𝑘
1,1

⋮
𝑃𝑃𝑘𝑘
𝑁𝑁+1,1

…
…
…
…

𝑃𝑃𝑘𝑘
0,𝑁𝑁+1

𝑃𝑃𝑘𝑘
1,𝑁𝑁+1

⋮
𝑃𝑃𝑘𝑘
𝑁𝑁+1,𝑁𝑁+1⎦

⎥
⎥
⎥
⎤
�
𝐻𝐻𝑘𝑘𝑇𝑇
0
⋮
0

� × 

⎝

⎜
⎛

[𝐻𝐻𝑘𝑘 0 0 … 0]

⎣
⎢
⎢
⎢
⎡ 𝑃𝑃𝑘𝑘

0,0

𝑃𝑃𝑘𝑘
1,0

⋮
𝑃𝑃𝑘𝑘
𝑁𝑁+1,0

𝑃𝑃𝑘𝑘
0,1

𝑃𝑃𝑘𝑘
1,1

⋮
𝑃𝑃𝑘𝑘
𝑁𝑁+1,1

…
…
…
…

𝑃𝑃𝑘𝑘
0,𝑁𝑁+1

𝑃𝑃𝑘𝑘
1,𝑁𝑁+1

⋮
𝑃𝑃𝑘𝑘
𝑁𝑁+1,𝑁𝑁+1⎦

⎥
⎥
⎥
⎤
�
𝐻𝐻𝑘𝑘𝑇𝑇
0
⋮
0

� + 𝑅𝑅𝑘𝑘

⎠

⎟
⎞

−1
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�

𝐿𝐿𝑘𝑘,0
𝐿𝐿𝑘𝑘,1
⋮

𝐿𝐿𝑘𝑘,𝑁𝑁+1

� =

⎣
⎢
⎢
⎢
⎡𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘

0,0𝐻𝐻𝑘𝑘𝑇𝑇

𝑃𝑃𝑘𝑘
0,0𝐻𝐻𝑘𝑘𝑇𝑇
⋮

𝑃𝑃𝑘𝑘
0,𝑁𝑁𝐻𝐻𝑘𝑘𝑇𝑇 ⎦

⎥
⎥
⎥
⎤
 (𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘

0,0𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1             7-38 

In the above equation 𝐿𝐿𝑘𝑘,0 is the standard Kalman filter gain matrix. From the above 

equation  

𝐿𝐿𝑘𝑘,0 =  𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘
0,0𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘

0,0𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1               7-39 

Considering that 𝑃𝑃𝑘𝑘
0,0 is the a priori estimation error covariance, 𝑃𝑃𝑘𝑘−, 

𝐿𝐿𝑘𝑘,0 =  𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1               7-40 

That is exactly what we expect (equation  6-10). 𝐿𝐿𝑘𝑘,𝑁𝑁+1 is the Kalman gain we want to 

obtain in fixed-lag smoother and is calculated as 

𝐿𝐿𝑘𝑘,𝑖𝑖 = 𝑃𝑃𝑘𝑘
0,𝑖𝑖−1𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘

0,0𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1 

𝐿𝐿𝑘𝑘,𝑁𝑁+1 =  𝑃𝑃𝑘𝑘
0,𝑁𝑁𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1                7-41 

Estimation error covariance 

Starting from equations 7-26 and substituting 7-30 in that, the covariance update 

equation for the augmented system can be written as 

 𝑃𝑃𝑘𝑘+1− = 𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘− [𝐹𝐹𝑘𝑘 − 𝐿𝐿𝑘𝑘𝐻𝐻𝑘𝑘]𝑇𝑇 + 𝑄𝑄𝑘𝑘 

   = 𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘−(𝐹𝐹𝑘𝑘𝑇𝑇 − 𝐻𝐻𝑘𝑘𝑇𝑇𝐿𝐿𝑘𝑘𝑇𝑇) + 𝑄𝑄𝑘𝑘               7-42 

⎣
⎢
⎢
⎢
⎡ 𝑃𝑃𝑘𝑘+1

0,0

𝑃𝑃𝑘𝑘+1
1,0

⋮
𝑃𝑃𝑘𝑘+1
𝑁𝑁+1,0

𝑃𝑃𝑘𝑘+1
0,1

𝑃𝑃𝑘𝑘+1
1,1

⋮
𝑃𝑃𝑘𝑘+1
𝑁𝑁+1,1

…
…
…
…

𝑃𝑃𝑘𝑘+1
0,𝑁𝑁+1

𝑃𝑃𝑘𝑘+1
1,𝑁𝑁+1

⋮
𝑃𝑃𝑘𝑘+1
𝑁𝑁+1,𝑁𝑁+1⎦

⎥
⎥
⎥
⎤

= �

𝐹𝐹𝑘𝑘
𝐼𝐼
⋮
0

0
0
⋱
…

…
…
⋱
𝐼𝐼

0
0
⋮
0

�

⎣
⎢
⎢
⎢
⎡ 𝑃𝑃𝑘𝑘

0,0

𝑃𝑃𝑘𝑘
1,0

⋮
𝑃𝑃𝑘𝑘
𝑁𝑁+1,0

𝑃𝑃𝑘𝑘
0,1

𝑃𝑃𝑘𝑘
1,1

⋮
𝑃𝑃𝑘𝑘
𝑁𝑁+1,1

…
…
…
…

𝑃𝑃𝑘𝑘
0,𝑁𝑁+1

𝑃𝑃𝑘𝑘
1,𝑁𝑁+1

⋮
𝑃𝑃𝑘𝑘
𝑁𝑁+1,𝑁𝑁+1⎦

⎥
⎥
⎥
⎤

× 

    ��
𝐹𝐹𝑘𝑘𝑇𝑇
0
⋮
0

𝐼𝐼
…
⋱
…

…
⋱
⋱
…

0
⋮
𝐼𝐼
0

� − �
𝐻𝐻𝑘𝑘𝑇𝑇
0
⋮
0

� 𝐿𝐿𝑘𝑘𝑇𝑇� + �

𝑄𝑄𝑘𝑘
0
⋮
0

0
0
⋱
…

…
…
⋱
0

0
0
⋮
0

� 

=

⎣
⎢
⎢
⎢
⎡𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘

0,0

𝑃𝑃𝑘𝑘
0,0

⋮
𝑃𝑃𝑘𝑘
𝑁𝑁,0

𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘
0,1

𝑃𝑃𝑘𝑘
0,1

⋮
𝑃𝑃𝑘𝑘
𝑁𝑁,1

…
…
…
…

𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘
0,𝑁𝑁+1

𝑃𝑃𝑘𝑘
0,𝑁𝑁+1

⋮
𝑃𝑃𝑘𝑘
𝑁𝑁,𝑁𝑁+1 ⎦

⎥
⎥
⎥
⎤

× 

110 



��
𝐹𝐹𝑘𝑘𝑇𝑇
0
⋮
0

𝐼𝐼
…
⋱
…

…
⋱
⋱
…

0
⋮
𝐼𝐼
0

� − 𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘
0,0𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1𝐻𝐻𝑘𝑘 × �

𝑃𝑃𝑘𝑘
0,0𝐹𝐹𝑘𝑘𝑇𝑇

0
⋮
0

𝑃𝑃𝑘𝑘
0,0

0
⋱
0

…
…
⋱
…

𝑃𝑃𝑘𝑘
0,𝑁𝑁

0
⋮
0

�� + �

𝑄𝑄𝑘𝑘
0
⋮
0

0
0
⋱
…

…
…
⋱
0

0
0
⋮
0

�      7-43  

This is important to notice that estimation error covariance matrix is a symmetric 

matrix. So, 𝑃𝑃𝑘𝑘
𝑖𝑖,0 = 𝑃𝑃𝑘𝑘

0,𝑖𝑖 and 𝑃𝑃𝑘𝑘
𝑖𝑖,0 = (𝑃𝑃𝑘𝑘

𝑖𝑖,0)𝑇𝑇.The state estimate that we expect from this 

smoother is 𝑥𝑥�𝑘𝑘−𝑁𝑁|𝑘𝑘. The corresponding estimation error covariance is 𝑃𝑃𝑘𝑘
𝑁𝑁+1,0. It can be 

obtained as 

𝑃𝑃𝑘𝑘+1
0,0 =  𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘

0,0 �𝐹𝐹𝑘𝑘𝑇𝑇 − 𝐻𝐻𝑘𝑘𝑇𝑇�𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘
0,0𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘�

−1
𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘

0,0𝐹𝐹𝑘𝑘𝑇𝑇� + 𝑄𝑄𝑘𝑘 

 = 𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘
0,0�𝐹𝐹𝑘𝑘𝑇𝑇 − 𝐻𝐻𝑘𝑘𝑇𝑇𝐿𝐿𝑘𝑘,0

𝑇𝑇 � + 𝑄𝑄𝑘𝑘 

 = 𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘
0,0(𝐹𝐹𝑘𝑘 − 𝐿𝐿𝑘𝑘,0𝐻𝐻𝑘𝑘)𝑇𝑇 + 𝑄𝑄𝑘𝑘 

𝑃𝑃𝑘𝑘+1
0,1 = 𝑃𝑃𝑘𝑘

0,0[𝐹𝐹𝑘𝑘𝑇𝑇 − 𝐻𝐻𝑘𝑘𝑇𝑇�𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘
0,0𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘�

−1
𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘

0,0𝐹𝐹𝑘𝑘𝑇𝑇] 

 = 𝑃𝑃𝑘𝑘
0,0(𝐹𝐹𝑘𝑘 − 𝐿𝐿𝑘𝑘,0𝐻𝐻𝑘𝑘)𝑇𝑇 

⋮ 

𝑃𝑃𝑘𝑘+1
0,𝑁𝑁+1 = 𝑃𝑃𝑘𝑘

0,𝑁𝑁 �𝐹𝐹𝑘𝑘𝑇𝑇 − 𝐻𝐻𝑘𝑘𝑇𝑇�𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘
0,0𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘�

−1
𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘

0,0𝐹𝐹𝑘𝑘𝑇𝑇� 

= 𝑃𝑃𝑘𝑘
0,𝑁𝑁(𝐹𝐹𝑘𝑘 − 𝐿𝐿𝑘𝑘,0𝐻𝐻𝑘𝑘)𝑇𝑇                7-44 

Equations 7-37, 7-41, and 7-44 establish the main body of the fixed-lag smoother and 

lead to get to the final result for each point as (Simon, 2006) 

�

 𝑥𝑥�𝑘𝑘−𝑁𝑁|𝑘𝑘 = 𝑥𝑥�𝑘𝑘−𝑁𝑁|𝑘𝑘−1 + 𝐿𝐿𝑘𝑘,𝑁𝑁+1(𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−)
𝐿𝐿𝑘𝑘,𝑁𝑁+1 =  𝑃𝑃𝑘𝑘

0,𝑁𝑁𝐻𝐻𝑘𝑘𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘−𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1

𝑃𝑃𝑘𝑘+1
0,𝑁𝑁+1 = 𝑃𝑃𝑘𝑘

0,𝑁𝑁�𝐹𝐹𝑘𝑘 − 𝐿𝐿𝑘𝑘,0𝐻𝐻𝑘𝑘�
𝑇𝑇

             7-45 

Running the fixed-lag smoother 

To get to the point stated in equation  7-45, each point needs to get through a 

procedure. The smother starts with equation 7-37,  7-39, and 7-44 as (Sage and Melsa 

(1971; Crassidis and Junkins, 2004) 

�

𝑥𝑥�𝑘𝑘+1− = 𝐹𝐹𝑘𝑘𝑥𝑥�𝑘𝑘− + 𝐿𝐿𝑘𝑘,0(𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−)

𝐿𝐿𝑘𝑘,0 =  𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘
0,0𝐻𝐻𝑘𝑘𝑇𝑇�𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘

0,0𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘�
−1

𝑃𝑃𝑘𝑘+1
0,0 =  𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘

0,0(𝐹𝐹𝑘𝑘 − 𝐿𝐿𝑘𝑘,0𝐻𝐻𝑘𝑘)𝑇𝑇 + 𝑄𝑄𝑘𝑘

               7-46 
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Taking into account that  

 𝐿𝐿𝑘𝑘,0 = 𝐹𝐹𝑘𝑘𝐾𝐾𝑘𝑘          ,  𝑃𝑃𝑘𝑘
0,0 =  𝑃𝑃𝑘𝑘−           ,  𝑥𝑥�𝑘𝑘+1|𝑘𝑘 = 𝑥𝑥�𝑘𝑘+1−                7-47 

Equations  7-46 are the standard one-step Kalman filter (compare with equation  7-27). 

The outputs obtained from the standard one-step Kalman filter, are fed to the smoother 

part of the filter as the inputs. Then for each successive time step, 𝑘𝑘, the following loop 

would be run for 𝑖𝑖 = 1, … ,𝑀𝑀 + 1. 

�

𝑥𝑥�𝑘𝑘−𝑖𝑖+1|𝑘𝑘 = 𝑥𝑥�𝑘𝑘−𝑖𝑖+1|𝑘𝑘−1 + 𝐿𝐿𝑘𝑘,𝑖𝑖(𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−)

𝐿𝐿𝑘𝑘,𝑖𝑖 = 𝑃𝑃𝑘𝑘
0,𝑖𝑖−1𝐻𝐻𝑘𝑘𝑇𝑇�𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘

0,0𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘�
−1

𝑃𝑃𝑘𝑘+1
0,𝑖𝑖 = 𝑃𝑃𝑘𝑘

0,𝑖𝑖−1�𝐹𝐹𝑘𝑘 − 𝐿𝐿𝑘𝑘,0𝐻𝐻𝑘𝑘�
𝑇𝑇

               7-48 

The following steps that should be run for each successive 𝑘𝑘, summarize the fixed-lag 

smoother: 

I. Initializing the states of the fixed-lag smoother: It is achieved by running the 

standard Kalman filter (Equations  7-46) 

II. Updating the fixed-lag smoother: reached by sequentially running the loop in  7-

48 for i = 1, … , N + 1 to get to the final result as 7-45. 
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Table  7-5: Fixed-lag smoother and its steps. 
Running 

the 

standard 

Kalman 

filter 

• Building a model: 

𝑥𝑥𝑘𝑘 = 𝐹𝐹𝑘𝑘−1𝑥𝑥𝑘𝑘−1 + 𝐺𝐺𝑘𝑘−1𝑢𝑢𝑘𝑘−1+ 𝜔𝜔𝑘𝑘 

𝑦𝑦𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘 

• Initializing the process 

     𝑥𝑥�0+ = 𝐸𝐸(𝑥𝑥0) 

    𝑃𝑃0+  = 𝐸𝐸[(𝑥𝑥0 − 𝑥𝑥�0+)(𝑥𝑥0 − 𝑥𝑥�0+)𝑇𝑇] 

• Iterating the procedure 

𝑥𝑥�𝑘𝑘+1− = 𝐹𝐹𝑘𝑘𝑥𝑥�𝑘𝑘− + 𝐿𝐿𝑘𝑘,0(𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−)

𝐿𝐿𝑘𝑘,0 =  𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘
0,0𝐻𝐻𝑘𝑘𝑇𝑇�𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘

0,0𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘�
−1

       
 𝑃𝑃𝑘𝑘+1
0,0 =  𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘

0,0(𝐹𝐹𝑘𝑘 − 𝐿𝐿𝑘𝑘,0𝐻𝐻𝑘𝑘)𝑇𝑇 + 𝑄𝑄𝑘𝑘                     
 

Running 

the 

smoother 

part 

• Initializing the process 

𝐿𝐿𝑘𝑘,0 = 𝐿𝐿𝑘𝑘          ,  𝑃𝑃𝑘𝑘
0,0 =  𝑃𝑃𝑘𝑘−           ,  𝑥𝑥�𝑘𝑘+1|𝑘𝑘 = 𝑥𝑥�𝑘𝑘+1−     

• Iterating the procedure 

For 𝑖𝑖 = 1, … ,𝑀𝑀 + 1. 

   

𝑥𝑥�𝑘𝑘−𝑖𝑖+1|𝑘𝑘 = 𝑥𝑥�𝑘𝑘−𝑖𝑖+1|𝑘𝑘−1 + 𝐿𝐿𝑘𝑘,𝑖𝑖(𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥𝑥�𝑘𝑘−)

𝐿𝐿𝑘𝑘,𝑖𝑖 = 𝑃𝑃𝑘𝑘
0,𝑖𝑖−1𝐻𝐻𝑘𝑘𝑇𝑇�𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘

0,0𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘�
−1

𝑃𝑃𝑘𝑘+1
0,𝑖𝑖 = 𝑃𝑃𝑘𝑘

0,𝑖𝑖−1�𝐹𝐹𝑘𝑘 − 𝐿𝐿𝑘𝑘,0𝐻𝐻𝑘𝑘�
𝑇𝑇

 

 

Calculating improvement  

To figure out how much this extension of the Kalman filter has smoothed the data, a 

parameter which is known as percent improvement have been defined (Simon, 2006): 

𝑝𝑝𝑒𝑒𝑇𝑇𝑝𝑝𝑒𝑒𝑒𝑒𝑡𝑡 𝑖𝑖𝑒𝑒𝑝𝑝𝑇𝑇𝑝𝑝𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 = 100 𝑇𝑇𝑇𝑇(𝑃𝑃𝑦𝑦
0,0−𝑃𝑃𝑦𝑦

𝑁𝑁+1,𝑁𝑁+1)
𝑇𝑇𝑇𝑇(𝑃𝑃𝑦𝑦

0,0)
           7-49 

To calculate 𝑃𝑃𝑘𝑘
𝑁𝑁+1,𝑁𝑁+1 which is the N + 1, N + 1th element of the covariance matrix, 

the diagonal components of the matrix Pk+1should be calculated. 

𝑃𝑃𝑘𝑘+1
1,1 = 𝑃𝑃𝑘𝑘

0,0 �𝐼𝐼 − 𝐻𝐻𝑘𝑘𝑇𝑇�𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘
0,0𝐻𝐻𝑘𝑘𝑇𝑇 + 𝑅𝑅𝑘𝑘�

−1
𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘

0,0� 

         = 𝑃𝑃𝑘𝑘
0,0 − 𝑃𝑃𝑘𝑘

0,0𝐻𝐻𝑘𝑘𝑇𝑇𝐿𝐿𝑘𝑘,1
𝑇𝑇  

𝑃𝑃𝑘𝑘+1
2,2 = 𝑃𝑃𝑘𝑘

0,1�−𝐻𝐻𝑘𝑘𝑇𝑇𝐿𝐿𝑘𝑘,2
𝑇𝑇 � + 𝑃𝑃𝑘𝑘

1,1 

          = 𝑃𝑃𝑘𝑘
1,1 − 𝑃𝑃𝑘𝑘

0,1𝐻𝐻𝑘𝑘𝑇𝑇𝐿𝐿𝑘𝑘,2
𝑇𝑇  
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⋮ 

𝑃𝑃𝑘𝑘+1
𝑖𝑖,𝑖𝑖 = 𝑃𝑃𝑘𝑘

𝑖𝑖−1,𝑖𝑖−1 − 𝑃𝑃𝑘𝑘
0,𝑖𝑖−1𝐻𝐻𝑘𝑘𝑇𝑇𝐿𝐿𝑘𝑘,𝑖𝑖

𝑇𝑇  

⋮ 

𝑃𝑃𝑘𝑘+1
𝑁𝑁+1,𝑁𝑁+1 = 𝑃𝑃𝑘𝑘

𝑁𝑁,𝑁𝑁 − 𝑃𝑃𝑘𝑘
0,𝑁𝑁𝐻𝐻𝑘𝑘𝑇𝑇𝐿𝐿𝑘𝑘,𝑁𝑁+1

𝑇𝑇                7-50 

Figure  7-3 shows Kalman filter operation versus the fixed-lag Kalman filter. The 

measurements are Tzz component of full tensor gravity data set (tie line T110). This is the 

data set that Kalman filter will be applied to in the next chapters. Here, the lag is 

considered 20.  

Standard Kalman filter reduces noise to an acceptable degree but a delay can be seen 

in peak area. Fixed-lag smoother is more successful in reaching the peak comparing with 

the standard filter but on the side areas standard filter still performs better and results in 

more even estimations (Figure  7-3 a). 

Percent Improvement (Figure ۷-۳  b) illustrates that as an average, the estimation error 

covariance has been improved using the fixed-lag smoother and literally, we are more 

confident about the estimations obtained from the smoother. 

Fixed-lag approach is strong in catching the peak but it does that at the expense of 

more noisy estimations on the side areas. Looking at Figure  7-3 a and the standard filter 

that has moved to the left brings this to mind that there is even an easier way to reach the 

peak and having less noisy estimation at the sides with compensating the lag and having 

estimation that are moved to right. On the other hand, having future measurements 

available, means the filter can be run from the last measurement to the first instead of 

first to the last. Mathematically, there is no priority in measurements based on the order 

they have been collected. When it comes to estimation, it does not really matter when 

they have been recorded. It is just important that they are accessible. 

Having smoother estimations and being able to process the data regardless of their 

order of collection, are two reasons that forward-backward smoothing is considered 

applicable. This extension of the Kalman filter has been discussed in next section.  
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Figure  7-3: Comparison of standard and Fixed-lag smoother (solid line versus dashed 
one) and percent improvement. 
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Forward-backward smoother 

Standard Kalman filter calculates the best estimate of point 𝑒𝑒 based on measurements 

up to (𝑥𝑥�𝑓𝑓). But how measurements 𝐾𝐾 = 𝑒𝑒 𝑡𝑡𝑝𝑝 𝐾𝐾 = 𝑀𝑀 can be included in the filter to 

obtain a better estimation? Another estimation of point 𝑒𝑒 can be made based on 

measurements 𝐾𝐾 = 𝑀𝑀 𝑡𝑡𝑝𝑝 𝐾𝐾 = 𝑒𝑒 (𝑥𝑥�𝑏𝑏). This time the filter runs backward in time. Two 

estimations are then combined and the forward-backward estimation is formed (Fraser 

and Potter, 1969). To incorporate both forward and backward to get the best estimate of 

point  𝑒𝑒, weighted mean of them should be calculated. 

𝑥𝑥� = 𝐾𝐾𝑓𝑓𝑥𝑥�𝑓𝑓 + 𝐾𝐾𝑏𝑏𝑥𝑥�𝑏𝑏                  7-51 

𝐾𝐾𝑓𝑓 and 𝐾𝐾𝑏𝑏 should be determined. It is clear that if more weight is given to any of the 

estimations, less weight should be given to the other one. In other words, they should 

satisfy in equation 7-52:  

  𝐾𝐾𝑓𝑓 + 𝐾𝐾𝑏𝑏 = 𝐼𝐼                  7-52 

𝑥𝑥� = 𝐾𝐾𝑓𝑓𝑥𝑥�𝑓𝑓 + (𝐼𝐼 − 𝐾𝐾𝑓𝑓)𝑥𝑥�𝑏𝑏                 7-53 

Equation 7-53 tells that parameters 𝐾𝐾𝑓𝑓, 𝑥𝑥�𝑓𝑓, and 𝑥𝑥�𝑏𝑏 should be determined. 𝑥𝑥�𝑓𝑓 is the best 

estimate of point 𝑘𝑘 = 𝑒𝑒 running the filter forward while 𝑥𝑥�𝑏𝑏 is the best estimate of the 

same point running the filter backward.  

Steps to calculate the optimal estimation from forward-backward smoother are: 

I. Running the standard Kalman filter: from 𝑘𝑘 = 1 𝑡𝑡𝑝𝑝 𝑘𝑘 = 𝑒𝑒  

II. Running the Kalman filter backward: from 𝑘𝑘 = 𝑀𝑀 𝑡𝑡𝑝𝑝 𝑘𝑘 = 𝑒𝑒 + 1 when 𝑀𝑀 is the 

last available measurement. 

III.  Running the smoother: assigning weight to forward and backward estimations. 

 

Table  7-6 summarizes the forward-backward optimal filter and its equations (Simon, 

2006). 

Figure  7-4 shows the forward-backward (FB) smoother applied on the same data set in 

Figure  7-3. The measurements are a line from full tensor gravity data set (tie T110). It 

can be observed that FB filter has located the peak accurately and compared with each of 

the individual filters gives smoother estimations. It also provides more reliable results by 
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having lower estimation error covariance which is intuitively expected that the estimation 

based on two is more accurate than each of the estimations. 
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Table  7-6: Backward-forward smoother and its steps. 

Running the standard 

Kalman filter 

• Building a model: 

𝑥𝑥𝑘𝑘 = 𝐹𝐹𝑘𝑘−1𝑥𝑥𝑘𝑘−1 +  𝜔𝜔𝑘𝑘 

𝑦𝑦𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘 

𝜔𝜔𝑘𝑘~ (0,𝑄𝑄𝑘𝑘) 

𝑣𝑣𝑘𝑘~ (0,𝑅𝑅𝑘𝑘) 

• Initializing the process 

     𝑥𝑥�𝑓𝑓0+ = 𝐸𝐸(𝑥𝑥0) 

    𝑃𝑃𝑓𝑓0+   = 𝐸𝐸[(𝑥𝑥0 − 𝑥𝑥�0+)(𝑥𝑥0 − 𝑥𝑥�0+)𝑇𝑇] 

• Iterating the procedure (For k=1,. . .,m) 

𝑃𝑃𝑓𝑓𝑘𝑘− = 𝐹𝐹𝑘𝑘−1𝑃𝑃𝑘𝑘−1+ 𝐹𝐹𝑘𝑘−1𝑇𝑇 + 𝑄𝑄𝑘𝑘−1 

𝐾𝐾𝑓𝑓𝑘𝑘 = 𝑃𝑃𝑓𝑓𝑘𝑘− 𝐻𝐻𝑘𝑘
𝑇𝑇(𝐻𝐻𝑘𝑘𝑃𝑃𝑓𝑓𝑘𝑘− 𝐻𝐻𝑘𝑘

𝑇𝑇 + 𝑅𝑅𝑘𝑘)−1 

𝑥𝑥𝑓𝑓𝑘𝑘− =  𝐹𝐹𝑘𝑘−1𝑥𝑥�𝑓𝑓,𝑘𝑘−1
+  

𝑥𝑥�𝑓𝑓𝑘𝑘+ =  𝑥𝑥�𝑓𝑓𝑘𝑘− + 𝐾𝐾𝑓𝑓𝑘𝑘�𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥𝑥�𝑓𝑓𝑘𝑘− � 

𝑃𝑃𝑓𝑓𝑘𝑘+ = (𝐼𝐼 − 𝐾𝐾𝑓𝑓𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑓𝑓𝑘𝑘−  

Running the backward 

filter 

• Initializing the process 

        𝑥𝑥�𝑏𝑏𝑁𝑁− = 𝐸𝐸(𝑥𝑥𝑁𝑁)                 𝐼𝐼𝑏𝑏𝑁𝑁− =0 

• Iterating the procedure 

For 𝑘𝑘 = 𝑀𝑀,𝑀𝑀 − 1, . ..m+1. 

𝐼𝐼𝑏𝑏𝑘𝑘+ =     𝐼𝐼𝑏𝑏𝑘𝑘− + 𝐻𝐻𝑘𝑘
𝑇𝑇𝑅𝑅𝑘𝑘−1𝐻𝐻𝑘𝑘 

𝐾𝐾𝑏𝑏𝑘𝑘 = �𝐼𝐼𝑝𝑝𝑘𝑘
+ �

−1
𝐻𝐻𝑘𝑘𝑇𝑇𝑅𝑅𝑘𝑘−1 

                𝑥𝑥�𝑏𝑏𝑘𝑘+ =   𝑥𝑥�𝑏𝑏𝑘𝑘− + 𝐾𝐾𝑝𝑝𝑘𝑘�𝑦𝑦𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥𝑥�𝑓𝑓𝑘𝑘
− � 

𝐼𝐼𝑏𝑏,𝑘𝑘−1
− = 𝐹𝐹𝑘𝑘−1𝑇𝑇 [(𝐼𝐼𝑏𝑏𝑘𝑘+ )−1 + 𝑄𝑄𝑘𝑘−1]−1𝐹𝐹𝑘𝑘−1 

𝑥𝑥�𝑏𝑏,𝑘𝑘−1
− = 𝐹𝐹𝑘𝑘−1−1 𝑥𝑥�𝑏𝑏𝑘𝑘+  

Running the smoother 𝑃𝑃𝑏𝑏𝑚𝑚− = (𝐼𝐼𝑏𝑏𝑚𝑚− )−1 

𝐾𝐾𝑘𝑘 =  𝑃𝑃𝑝𝑝𝑒𝑒− (𝑃𝑃𝑓𝑓𝑚𝑚+ + 𝑃𝑃𝑏𝑏𝑚𝑚− )−1 

𝑥𝑥�𝑚𝑚 = 𝐾𝐾𝑓𝑓𝑥𝑥�𝑓𝑓𝑘𝑘+ + (𝐼𝐼 − 𝐾𝐾𝑓𝑓)𝑥𝑥�𝑝𝑝𝑒𝑒−  

𝑃𝑃𝑚𝑚 = [�𝑃𝑃𝑓𝑓𝑚𝑚+ �−1 + (𝑃𝑃𝑏𝑏𝑚𝑚− )−1]−1 
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Figure  7-4: the FB Kalman filter. a) Comparing forward, backward, and FB smoother. 
The input is Tzz component of line T110 and b) Comparing estimation error covariance of 
the filters.  
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CHAPTER 8. APPLYING THE KALMAN FILTER ON FTG DATA OF 

VINTON SALT DOME  

In this chapter, the results of applying the Kalman filter on FTG data of the Vinton salt 

Dome are discussed. The details of equations and the concepts of the filters are discussed 

in chapters 5 through 7. 

The application of the Kalman filter started with the standard Kalman filter. Then 

fading memory Kalman filter, constrained Kalman filter, fixed-lag smoother, forward-

backward smoother, and eventually the most meaningful filter for us which is forward-

backward constrained Kalman filter are applied respectively.  

What is important to take into account is that in our filtering all components of FTG 

data are processes at the same time. So except in one of the approaches of constrained 

Kalman filter, six components are filtered simultaneously.   

In chapter 8, it was discussed that gradiometry data have 9 different components as: 

 𝑇𝑇𝑖𝑖𝑗𝑗 = �
𝑻𝑻𝒙𝒙𝒙𝒙 𝑻𝑻𝒙𝒙𝒙𝒙 𝑻𝑻𝒙𝒙𝒙𝒙
𝑻𝑻𝒙𝒙𝒙𝒙 𝑻𝑻𝒙𝒙𝒙𝒙 𝑻𝑻𝒙𝒙𝒙𝒙
𝑻𝑻𝒙𝒙𝒙𝒙 𝑻𝑻𝒙𝒙𝒙𝒙 𝑻𝑻𝒙𝒙𝒙𝒙

�                             8-1 

While  

𝑻𝑻𝒙𝒙𝒙𝒙 =  𝑻𝑻𝒙𝒙𝒙𝒙 

𝑻𝑻𝒙𝒙𝒙𝒙 =  𝑻𝑻𝒙𝒙𝒙𝒙 

𝑻𝑻𝒙𝒙𝒙𝒙 =  𝑻𝑻𝒙𝒙𝒙𝒙 

Considering this characteristic, only six components should be processed. To show 

how the Kalman filters work, the filter’s behavior on two profiles is examined; T110, a 

tie line which goes through the dome anomaly and also L471 (Figure  8-1).  

As it was discussed in chapter 6, determining process noise covariance (𝑄𝑄), is very 

critical. The filter is tuned by trying different values of 𝑄𝑄. High (low) process noise 

covariance results in high (low) gain value (K) which consequently brings about more 

(less) weight for the measurement of the same iteration rather than the a priori 

estimation. In our filter 𝑄𝑄 is determined by the filter length. Higher (lower) filter length 

involves more (less) points in calculating 𝑄𝑄 which generally engenders higher (lower) 

value of 𝑄𝑄 (Figure  8-2). Tie line 110 has a clear peak in 𝑇𝑇𝑥𝑥𝑥𝑥 component and it was 
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investigated in most cases as a checking point in determining the filter parameters. shows 

how one can determine the optimum value of process noise covariance (𝑄𝑄). 
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Figure  8-1: The position of L471 and T110 the profile and tie line which go through the salt 
dome anomaly and we selected for tuning the filter. 
 

What is critical in determining Q is that if it is assigned a low value the filter can remove the 

noise in the side area but it cannot reach the peak properly also the direction of filtering can 

introduce bias which is relatively considerable. On the other hand, higher value of Q results in 

reaching the peak but is not very effective in reducing noise (Figure  8-3 (a) versus (b)). Our 

solution for this issue is applying the filter successively (Figure  8-3(c) and (d)). As it is clear, 

applying the filter repeatedly (3 times) can cause over filtering.   

The pit of bias that seems dominantly in low process noise covariance case, can be treated by 

running the filter in both directions along a profile, forward and backward (Figure  8-4).  

The question that arises here is that is whether the filter can give an acceptable result without 

having to run the filter repeatedly? To address this concern, fading-memory Kalman filter is 

applied. As it was discussed in chapter 7, this filter gives more weight to the most recent 

estimation. In this extension, more emphasis should be given to the recent data. It is achieved by 

entering an α term in the cost function and consequently, forcing the filter to converge to an 

estimate that reduces the weight of old measurements while increases the weight of the most 

recent ones. In standard Kalman filter, this α term is considered to be 1 so equal weight is given 

to all measurements (regardless of old or new ones) while in fading memory filter it set to be 

greater than 1. 
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Figure  8-2: Importance of Q in filter operation; Standard Kalman filter applied on 
profile L471. Left hand side figures show the six FTG filtered data with lower assigned 
process noise covariance while the right hand side ones illustrate the filter behavior with 
higher process noise covariance. As it is predictable higher value for Q results in more 
weight given to the noisy measurements and the filter gives estimations closer to the 
measurements.  
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Figure  8-3: A trade-off between smoother filtering and reaching peaks; (a) and (c) have 
low process noise covariance while (b) and (d) are filtered given high process noise 
covariance. Low Q results in smoother filtering while producing more biased and 
missing reaching the peak properly. (a) and (b) are the first iteration of the standard 
Kalman filter while (c) and (d) are the third iterations. The data is Tzz component of 
T110.        
 

Figure  8-5 shows how fading-memory Kalman filter works. The behavior of the filter 

is so that it can get the peak properly but in side areas it cannot perform as well as the 

standard Kalman filter with low process noise covariance. 

The next extension that was applied on our FTG data is constrained Kalman filter. The 

constraint that is most meaningful for potential field data is Laplace’s equation. Laplace’s 

constraint is stated as 

𝑻𝑻𝒙𝒙𝒙𝒙 + 𝑻𝑻𝒙𝒙𝒙𝒙 + 𝑻𝑻𝒙𝒙𝒙𝒙 = 𝟎𝟎                                    8-2 

 

 

a) b) 

c) d) 
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Figure  8-4:Running the filter in both directions along the profile; right figures 
correspond to the first iteration of low process noise covariance while left ones are 
results of third iteration of running the filter with high process noise covariance.  
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Figure  8-5: Standard Kalman filter (a) and fading-meory Kalman filter with 𝛼𝛼 = 1.3(b). 

 

In order to incorporate the constraint of Laplace’s equation, we used two strategies: 

Model Reduction (Wen & Durrant-Whyte, 1992) and Perfect Constraint (also called 

Perfect Measurement, Porrill, 1988). These two strategies are discussed in detail in 

chapter 7.  

Model Reduction approach reduces the parameter space of the system and processes 

five independent components of the FTG (the remaining diagonal component is 

computed from the other two). Again to maintain symmetry, the filter is applied in both 

directions forward and backward (FB). The forward-backward approach which is 

assembled with Model Reduction approach is the forward-backward smoother explained 

in chapter 7. As it is discussed there, the weights of forward and backward estimations 

could be different depending on their estimation error covariances (Fraser and Potter, 

1969).  

Perfect Constraint (Perfect Measurement) approach is the other strategy used to 

incorporate Laplace’s equation in the Kalman filter. The Laplace’s equation constraint is 

incorporated in the Kalman filter operation loop such that measurements have noise but 

the constraint equation does not. The measurement update equation of the standard 

Kalman filter is augmented by adding this perfect constraint. Having zeros in the right 

hand side of the equation  8-3, makes using the forward-backward smoother impossible. 

�
𝑦𝑦𝑘𝑘
𝑑𝑑 � =  �𝐻𝐻𝐷𝐷�  𝑥𝑥𝑘𝑘 + �𝑣𝑣𝑘𝑘0 �                                                           8-3 

In the backward run, inverse of measurement error covariance is needed to be 

calculated and thoese zeros making the matrix invertible (Table  7-6, Running the 

a) b) 
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backward filter). So to remove the offset caused by directional filtering, the filter is 

applied in the forward and backward (FB) sense and the mean of the two estimations at 

each data point is the final estimate of that data point. 

 

  
Figure  8-6: Laplace’s equation constrained Kalman filter; Model Reduction (a) and 
Perfect Constraint (b). 
 

The filtered output of the two Kalman filters is nearly identical in most cases. It worth 

to mention that the backward run causes different estimations.  

The last extension that was applied on FTG data set is fixed-lag smoother. 

  
Figure  8-7: Fixed-lag Kalman filter: Lag is given three (a) and 11 (b). 

 

Comparing Figures  8-2 through  8-7 shows that selecting the appropriate parameters 

like lag and the acceptable α for fading memory Kalman filter enable us to extract signal 

from noisy measurement. In our case study, Laplace’s equation constrained Kalman filter 

is considered the most reliable result since it assures us our filtered data satisfy the most 

a) b) 

a) b) 
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meaningful constraint in potential field while it improves the signal-to-noise ratio of 

gravity gradiometry components.   

Our workflow includes simple leveling and decorrugation, both necessary for data 

processed along profiles to produce 2-D maps.  

 

 
Figure  8-8: Profiles and tie lines. 
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Figure  8-9: FTG components. Leveled Free-air observations - black stars; Laplace’s 
equation constrained Kalman filtered data using two different approaches: Perfect 
Constraint (blue line, which is mostly indistinguishable from the green line) and Model 
Reduction (green line); and Bell Geospace leveled and FTNR filtered data (red line).  

 

Comparing our constrained Kalman filter applied on FTG data with advanced Bell 

Geospace filtered results, illustrates that Kalman filtered data extract signal from noisy 

data more effectively and Kalman filtered data have greater dynamic range (Figure  8-9). 
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We compared our filter with the sophisticated Full Tensor Noise Reduction (FTNR) 

filter of Bell Geospace (Figure  8-10, Figure  8-11, and Figure  8-12). 
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Figure  8-10: Components of Leveled Free-air observations: ; Txx (a), Tyy (b), Tzz (c), Txy 
(d), Txz (e), and Tyz (f).  

a) 

b) 

c) 

d) 

e) 

f) 
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Figure  8-11: Bell Geospace leveled, FTNR filtered, and terrain corrected FTG 
components (the order is the same as figure 8-10) 
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Figure  8-12: Terrain corrected FTG components processed by Kalman filter 
incorporating Laplace’s equation constraint in the Perfect Constraint approach (the 
order is the same as figure 10-3) 
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CHAPTER 9. DISCUSSION OF RESULTS AND CONCLUSIONS 

 

We have applied several extensions and optimal smoothing approaches of the Kalman 

filter, one of the best known recursive data processing techniques, on the Full Tensor 

Gradiometry (FTG) data acquired by Bell Geospace over the Vinton salt dome located in 

southwest Louisiana. We used the filter to improve the signal-to-noise ratio of gravity 

gradiometry components. We tested the standard Kalman filter and Fading memory and 

Constrained Kalman filter extensions with Fixed-lag and Forward-Backward smoothing 

methods to maintain symmetry.  

Our most meaningful results were obtained through the Kalman filter with the 

constraint of Laplace’s equation combined with the Forward-Backward filter operations. 

Laplace’s equation constraint was incorporated using two separate strategies: Model 

reduction and Perfect constraint (or Perfect measurement). In general, the data processed 

using the Kalman filter have greater dynamic range than previously filtered data and also 

have the ability to extract a signal from noisy data without having to remove a band of 

wavenumbers. In addition, our constrained Kalman filter also has the ability to force the 

Laplace’s equation constraint. These characteristics enable the Kalman filter to 

investigate short wavelength signals associated with near-surface lateral density 

variations. In analyzing two dimensional maps for geologic variations, our workflow 

includes leveling and decorrugation, both procedures necessary for data processed along 

profiles (Figure  9-1 and Figure  9-2). 
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Figure  9-1: The Laplace's equation constrained Kalman filtered data (a), after levelling 
(b), and after levelling and decorrugation (c). 

a) b) 

c) 
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Figure  9-2: Raw (a), FTNT processed data (b), and the Laplace's equation constrained 
Kalman filtered data (c). 
 
 

Kalman filtered processed data presented a more continuous image of the caprock and 

deep salt than available from Full Tensor Noise Reduction (FTNR) filter. 

 

 

a) b) 

c) 
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There is extensive faulting around the Vinton dome. Many faults were mapped and 

detected by Coker (2006) and Ennen (2012). The radial fault sets around the dome can be 

easily seen in the data processed using the Kalman filter (Figure  9-3) 

 
              Figure  9-3: Color shaded leveled decorrugated Tzz compont. 

 

 Figure  9-4 shows Coker’s fault interpretation from seismic and Ennen’s from 

modelling.  

                                    
 
Figure  9-4: Color-shaded leveled decorrugated data with Ennen’s (2012) interpreted 
faults overlaid in black and Coker’s (2006) faults in white. 
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Figure  9-5: Operation oil wells overlaid on Tzz component on Kalman filtered data. 

 

Several previously mapped near-subsurface geologic features (faults and fractures) 

and their continuity are more readily apparent in our Kalman filter processed components 

(Figure  9-4 and Figure  9-5). Since the processed data generally agree with the previously 

mapped and interpreted structures (faults in southeast and northwest of the area), the 

interpretation of faults and fractures could be extended to previously unmapped areas 

where features show continuity not seen prior to the use of the Kalman filters. These 

structures and the associated gravity highs and lows could be useful in determining more 

precisely the locations and nature of petroleum traps. 

Advantages and disadvantages of the Kalman filter 
 

Kalman filter has been shown to be the optimal solution of a linear problem in the 

sense that no nonlinear filter designed so far can perform better than it, and even when 

the noise components are not Gaussian, it is the optimal filter among the entire family of 

linear filters. The most significant advantage of the Kalman filter is that it can process 

multiple components simultaneously. One of the pros of the Kalman filter is that it 
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provides estimation error for the estimations. It also provides us with formulas for 

advancing the error covariance matrix in time.  

The most important disadvantage of applying the Kalman filter is its computational 

complexity. There are multiple parameters that need to be defined and tuned to run the 

filter effectively. The other dawnback of this filter are the assumptions made in deriving 

the filter. The system that can go through the Kalman filter is a linear contaminated by 

white Gaussian noise which is not true in some problems. Plus, the use of Kalman filter 

equations for large dimensional systems requires us to handle matrices with large 

dimension.  
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