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Abstract: We investigate Rees algebras and special fiber rings obtained by blowing up specialized Ferrers
ideals. This class of monomial ideals includes strongly stable monomial ideals generated in degree two
and edge ideals of prominent classes of graphs. We identify the equations of these blow-up algebras. They
generate determinantal ideals associated to subregions of a generic symmetric matrix, which may have
holes. Exhibiting Gröbner bases for these ideals and using methods from Gorenstein liaison theory, we show
that these determinantal rings are normal Cohen–Macaulay domains that are Koszul, that the initial ideals
correspond to vertex decomposable simplicial complexes, and we determine their Hilbert functions and
Castelnuovo–Mumford regularities. As a consequence, we find explicit minimal reductions for all Ferrers
and many specialized Ferrers ideals, as well as their reduction numbers. These results can be viewed as
extensions of the classical Dedekind–Mertens formula for the content of the product of two polynomials.

Keywords: Blow-up algebras, determinantal ideal, Gröbner basis, quadratic and Koszul algebra,
Cohen–Macaulay algebra, liaison, vertex-decomposability, Hilbert function, Castelnuovo–Mumford
regularity, Ferrers and threshold graphs, skew shapes, reductions
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1 Introduction
Determinantal ideals have been a classic object of investigation in algebraic geometry and commutative alge-
bra (see, e.g., [1, 8, 10, 24, 37, 42, 48]). In this paper, we introduce a new class of determinantal ideals. They
are associated to certain subregions of a generic symmetric matrix. The novelty is that the region is allowed
to have holes. We show that the minors generating the ideal form a Gröbner basis (with respect to a suitable
term order) and deduce that their quotient rings are normal Cohen–Macaulay domains that are Koszul. Using
methods from liaison theory, we establish that their initial ideals are squarefree and the Stanley–Reisner ide-
als of vertex decomposable simplicial complexes.We also use this approach to determine theHilbert function
and Castelnuovo–Mumford regularity of the quotient rings.
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The class of determinantal ideals introduced here arises naturally in the investigation of certain blow-up
algebras. In fact, these ideals describe the equations of special fiber rings and Rees algebras when one blows
up certain monomial ideals, called specialized Ferrers ideals (see [13]). These monomial ideals are gener-
ated by quadrics and include all strongly stable monomial ideals that are generated in degree two as well as
the edge ideals of threshold and Ferrers graphs – two ubiquitous classes of graphs. Using Gröbner bases, we
also produce explicit minimal reductions of (many specialized) Ferrers ideals. We then show how our knowl-
edge of the Castelnuovo–Mumford regularity allows us to determine their reduction numbers. These results
can be viewed as a generalization of the classical Dedekind–Mertens content formula. Finding distinguished
classes of reductions is potentially of interest in areas as diverse as birational geometry (see, e.g., [57, 62])
and algebraic statistics (see below).

The origins of some of our results can be traced back to the Dedekind–Mertens formula. The content c(f)
of a polynomial f = a1 + a2t + ⋅ ⋅ ⋅ + an tn−1 ∈ R[t] over a commutative ring R is the R-ideal (a1, a2, . . . , an).
Generalizing Gauss’s Lemma for a PID, Dedekind and Mertens [54] gave the general content formula for the
product of two polynomials f, g ∈ R[t], namely

c(fg) ⋅ c(g)n−1 = c(f) ⋅ c(g)n . (1.1)

In [14], this equation is explained in terms of the theory of Cohen–Macaulay rings for generic polynomi-
als f = x1 + ⋅ ⋅ ⋅ + xn tn−1 and g = ym + ⋅ ⋅ ⋅ + y1tm−1. Multiplying both sides of (1.1) by c(f)n−1, one obtains the
“decayed” content equation

c(fg) ⋅ [c(f) ⋅ c(g)]n−1 = [c(f) ⋅ c(g)]n . (1.2)

By [14], if n ≤ m, the exponent n − 1 = deg f in (1.2) is the least possible. That is, c(fg) is a minimal reduc-
tion of c(f) ⋅ c(g)with reduction number min{n,m} − 1 (see Figure 1). Subsequently, a combinatorial proof of
the Dedekind–Mertens formula was given by Bruns and Guerrieri [5] via a study of the Gröbner basis of the
ideal c(fg). The boxes in Figure 1 are naturally associated to the edges of a complete bipartite graph (with

xn

xn−1

xn−2

x2

x1

y1 y2 y3 ym−1 ym

Figure 1. The ideal c(fg) in relation to the ideal c(f)c(g).

vertices x1, . . . , xn and y1, . . . , ym). Its diagonals correspond to the generators of c(fg). As a consequence
of our results on blow-up rings, we generalize the classical content reduction formula for a full rectangular
tableau to Dedekind–Mertens-like formulas for Ferrers tableaux and skew shapes. We proceed in two steps.

In the first step, instead of a rectangle we considermore generally a Ferrers tableau and its corresponding
Ferrers ideal. Any partition λ = (λ1, . . . , λn) corresponds to a Ferrers tableau Tλ, which is an array of n rows
of cells with λi cells in row i, left justified. The corresponding Ferrers ideal has a monomial generator corre-
sponding to each cell in Tλ, that is,

Iλ = (xiyj | 1 ≤ j ≤ λi , 1 ≤ i ≤ n) ⊂ K[x1, . . . , xn , y1, . . . , ym],
where m = λ1. It is the edge ideal of a Ferrers graph (see Figure 2).
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x3

x4

x5

y1 y2 y3 y4 y5 y6

Iλ = (x1y1, x1y2, x1y3, x1y4, x1y5, x1y6, x2y1, x2y2, x2y3, x2y4, x3y1, x3y2, x3y3, x3y4, x4y1, x4y2, x5y1)
Figure 2. Ferrers graph, tableau, reduction, and ideal for λ = (6, 4, 4, 2, 1).

Ferrers graphs/tableaux have a prominent place in the literature as they have been studied in relation to
chromatic polynomials [4, 23], Schubert varieties [19, 21], hypergeometric series [33], permutation statis-
tics [9, 23], quantum mechanical operators [65], and inverse rook problems [19, 21, 27]. More generally,
algebraic and combinatorial aspects of bipartite graphs have been studied in depth (see, e.g., [12, 13, 22,
25, 35, 51, 61] and the comprehensive monographs [36, 66]). In this paper, we complete a study initiated in
[12] by exhibiting, in particular, explicit minimal reductions of Ferrers ideals. More precisely, we show that
the diagonals in any Ferrers tableau Tλ correspond to the generators of a minimal reduction Jλ of the Ferrers
ideal Iλ (see Theorem 5.1 and Figure 2) and that Iλ has reduction number (see Theorem 6.7)

rJλ (Iλ) = min{n − 1, λi + i − 3 | 2 ≤ i ≤ n}.
In the second step, we investigate the ideals that one obtains from Ferrers ideals by specialization, that is,

by substituting yj Ü→ xj. In order to infer properties of the resulting ideals, onewants to preserve thenumber of
generators in this process. This forces us to adjust the traditional notation. Given a partition λ = (λ1, . . . , λn),
let μ = (μ1, . . . , μn) ∈ ℤn be a vector such that 0 ≤ μ1 ≤ ⋅ ⋅ ⋅ ≤ μn < λn. Form a diagramTλ−μ, obtained fromTλ
by removing the leftmost μi boxes in row i (see Figure 3). The ideal whose generators correspond to the cells
of Tλ−μ was called a generalized Ferrers ideal Iλ−μ in [13]. Thus,

Iλ−μ := (xiyj | 1 ≤ i ≤ n, μi < j ≤ λi) ⊂ K[x1, . . . , xn , y1, . . . , ym].
It is isomorphic to a Ferrers ideal. Substituting yj Ü→ xj gives the specialized Ferrers ideal

Iλ−μ := (xixj | 1 ≤ i ≤ n, μi < j ≤ λi) ⊂ K[x1, . . . , xmax{n,m}].
In order to guarantee that Iλ−μ and Iλ−μ have the same number of minimal generators we assume throughout
μi ≥ i − 1 for i = 1, . . . , n. Thus, Tλ−μ is a skew shape. Notice that specialized Ferrers ideals are a proper
generalization of Ferrers ideals, which one obtains if μ1 = ⋅ ⋅ ⋅ = μn ≥ n (see Figure 5).
x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6

Tλ−μ

x1

x2

x3

x4

x5

x1 x2 x3 x4 x5 x6

T12 T13 T14 T15 T16

T12 T25 T26

T13 T35 T36

T14 T46

T15 T25 T35 T56

T16 T26 T36 T46 T56
Sλ−μ

Figure 3. A skew shape and its symmetrization for λ = (6, 6, 6, 6, 6) and μ = (1, 4, 4, 5, 5).
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By [13], the ideal Iλ−μ and its specialization Iλ−μ have closely related minimal free resolutions. Both are
supported on a polyhedral cell complex whose faces can be read off from Tλ−μ. Thus, one wonders if also
their reductions are similarly related. Surprisingly, this is not the case. Properties of reductions are governed
by blow-up rings. In Theorem 4.2, we determine the equations of the special fiber ring of Iλ−μ. More precisely,
these equations can be taken as 2-minors of a subregion Sλ−μ of a generic matrix, where Sλ−μ is obtained
from Tλ−μ by reflecting about themain diagonal (see Figure 3). Notice that, depending on μ, the symmetrized
tableau Sλ−μ may have holes in the middle! A modification of this construction also allows us to identify
the Rees algebra of Iλ−μ as determinantal (see Corollary 4.4). In order to establish these results we first
show that the 2-minors in the symmetrized region Sλ−μ form a Gröbner basis of the ideal they generate (see
Theorem 2.4). We then apply liaison-theoretic methods in order to analyze the corresponding initial ideals.
In particular, we show that they correspond to vertex decomposable simplicial complexes and thus are
Cohen–Macaulay. To conclude, we also use a localization argument to prove that the determinantal ideals
are prime (see Proposition 3.5) and determine the dimension of the special fibers ring (see Proposition 4.1).

Notice that Theorem 4.2 generalizes the identification of the special fiber ring of a Ferrers ideal in
[12, Proposition 5.1]. We apply Theorem 4.2 to determine explicit minimal reductions of arbitrary Ferrers
ideals (see Theorem 5.1) and of strongly stable specialized Ferrers ideals (see Theorem 5.2). Their reduction
numbers are found in Theorems 6.7 and 6.9. The latter results are based on formulas for the Hilbert functions
of the special fiber rings to generalized and specialized Ferrers ideals in Section 6. There we also establish
a result that relates the reduction number to the Castelnuovo–Mumford regularity of a special fiber ring (see
Proposition 6.6), which is of independent interest. It allows us to determine the reduction numbers in our
Dedekind–Mertens-like formulas.

There is extensive literature on the Hilbert functions of determinantal rings (see, e.g., [1, 11, 18, 26, 37,
43–46, 60]. It often involves path counting arguments. Instead, we use a liaison-theoretic approach, based
on the theory of Gorenstein liaison (see [41, 47]).

We hope that our resultsmotivate further investigations. Thus, we conclude the article with some specific
open questions outlined in Section 7. In particular, we discuss problems regarding the shape of minimal free
resolutions, finding explicit minimal reductions, generalizations to higher minors, and some connections to
algebraic statistics.

2 Symmetric tableaux with holes: Gröbner bases
In this section we determine Gröbner bases of a new class of determinantal ideals, as mentioned in the
introduction. We start by recalling our standard notation that is used throughout the paper. The vector
λ = (λ1, . . . , λn) is a partition and μ = (μ1, . . . , μn) an integer vector such that

0 ≤ μ1 ≤ ⋅ ⋅ ⋅ ≤ μn < λn ≤ ⋅ ⋅ ⋅ ≤ λ1 =: m
and μi ≥ i − 1 for all i = 1, . . . , n. Entries of the tableaux Tλ−μ correspond to variables Tij in the polynomial
ring

K[Tλ−μ] := K[Tij | 1 ≤ i ≤ n, μi < j ≤ λi].
Thinking of Tλ−μ as a subtableau of an m × n matrix, the symmetrized tableau Sλ−μ is obtained by reflect-
ing Tλ−μ along the main diagonal. Note that the resulting symmetrization may have holes along the main
diagonal.

Example 2.1. Consider λ = (5, 5, 4) and μ = (1, 3, 3). Then we get the symmetrization in Figure 4.

Crucially, note also that in general neither the tableau Tλ−μ nor Sλ−μ is a ladder or a symmetric ladder, respec-
tively, in the usual sense (see, e.g., [10, 28]).

Example 2.2. Consider λ = (5, 5, 4) and μ = (1, 3, 3). Then the variables T1,3 and T2,4 are in the tableauTλ−μ.
However, T2,3 is neither in Tλ−μ nor in Sλ−μ, so the tableaux Tλ−μ and Sλ−μ are not ladders.
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T12 T13 T14 T15

T24 T25

T34

Tλ−μ

T12 T13 T14 T15

T12 T24 T25

T13 T34

T14 T24 T34

T15 T25
Sλ−μ

Figure 4. Example of a symmetrized tableaux.

Denote by I2(Tλ−μ) and I2(Sλ−μ) the ideals in K[Tλ−μ] generated by the determinants of 2 × 2 submatrices of
Tλ−μ and Sλ−μ, respectively.

Example 2.3 (Example 2.1, continued). For λ and μ as in Example 2.1, we get

I2(Tλ−μ) = (T14T25 − T15T24)
and

I2(Sλ−μ) = (T14T25 − T15T24, T12T34 − T13T24).
Themain result of this section is a Gröbner basis computation (see Theorem 2.4). To this end, we fix through-
out this section the lexicographic order ≺ on the monomials in K[Tλ−μ], where the variables are ordered
row-wise, that is, ≺ is the lexicographic order induced by

T1,μ1+1 > T1,μ1+2 > ⋅ ⋅ ⋅ > T1,λ1 > T2,μ2+1 > ⋅ ⋅ ⋅ > T2,λ2 > ⋅ ⋅ ⋅ > Tn,λn .
Equivalently, Trc > Tr�c� if r < r�, or if r = r� and c < c�. Note that this is a diagonal term order, that is, the
leading term of any minor is the main diagonal term.

Theorem 2.4. We have the following results:
(a) The 2-minors of Tλ−μ form a Gröbner basis of I2(Tλ−μ) with respect to the lexicographic order ≺.
(b) The 2-minors of Sλ−μ form a Gröbner basis of I2(Sλ−μ) with respect to the lexicographic order ≺.
Proof. We first show (b). We use induction on the number of rows, n, of Tλ−μ. If n = 1, then I2(Sλ−μ) = 0, so
the claim is clearly true. Let n ≥ 2. Then we consider the partition λ̃ differing from λ only in its last part

λ̃ := (λ1, . . . , λn−1, λn − 1).
Thus, the tableaux Tλ−μ is obtained from Tλ̃−μ by adding a new right-most box in its last row. Using induction
on the number of variables in row n of Tλ−μ we may assume that the 2-minors of Sλ̃−μ form a Gröbner basis
of I2(Sλ̃−μ) with respect to the lexicographic order. To show the analogous claim for the 2-minors of Sλ−μ we
simply use Buchberger’s Criterion (see, e.g., [15]) and show that the S-polynomial of any two minors has
remainder zero after at most four steps of the division algorithm.

LetM1 andM2 be two distinct 2-minors of the symmetric tableau Sλ−μ. To simplify notation, throughout
much of this proof, let us use a single index to denote the row and column indices for the variables in Sλ−μ.
Let

M1 := TdTb − TaTc , M2 := TlTk − TeTf ,
where the positive term in each binomial represents the initial term of the minor with respect to the order ≺.

We may assume that the initial terms of M1 and M2 are not relatively prime, since their S-polynomial
reduces to zero otherwise (see, for example, [15, Proposition 2.9.4]). In addition, if the leading terms are not
relatively prime, say Tl = Td,wemayassume that the trailing termsare relatively prime. Indeed, if for example
Ta = Te, the S-polynomial will be a multiple of another quadric in the ideal (another 2-minor of Sλ−μ), and
will reduce to zero as follows:

S(M1,M2) = Te(TbTf − TkTc).
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Thus we may assume that {Te , Tf } ∩ {Ta , Tc} = 0. SinceM1 andM2 are minors, it follows that either the sup-
port ofM1M2 consists of exactly 7 variables or it consists of 6 variables and the leadingmonomials ofM1 and
M2 are equal. Furthermore, by symmetry of Sλ−μ, we may assume that all the 2-minors we are considering
are determinants of matrices whose south-east corners are not in the lower half of Sλ−μ. It follows that any
such minor with Tn,λn in its support is the determinant of a matrix with Tn,λn in its south-east corner, where
Tn,λn is located in Tλ−μ. Moreover, if Tn,λn does not divide the leading term of such a minor, then the minor is
in I2(Sλ̃−μ). In any case, the row indices of the matrices determining our minors are at most n.

We now treat separately the possibilities for the variable Tn,λn to appear in the support of one, both, or
none of the two minors.

Case I. Suppose that Tn,λn ̸∈ supp(M1) ∪ supp(M2). Then M1,M2 ∈ I2(Sλ̃−μ). By induction hypothesis, the
S-polynomial S(M1,M2) can be reduced to zero using 2-minors in I2(Sλ̃−μ). Thus, this is true in I2(Sλ−μ) as
well.

Case II. Suppose that Tn,λn ∈ supp(M1), but Tn,λn ̸∈ supp(M2), say, Tn,λn = Td. By the leading term criterion,
we may assume that Tb appears in the leading monomial of M2. Letting l = b, we obtain

M1 = Tn,λnTb − TaTc , M2 = TbTk − TeTf .
Then S(M1,M2) = TaTcTk − TeTf Tn,λn , and Tb is located to the left and above of Tn,λn . Since by our conven-
tion on the south-east corners ofminors Tk is not in a rowwith index greater than n, the variable Tk alsomust
be located above row n. Thus, schematically, there are the following possibilities for the relative positions of
the variables in the supports of M1 and M2:

Tk Tf Tm�

Te Tb Ta
Tc Tn,λn

or
Tb Ta Te
Tf Tm� Tk
Tc Tn,λn

or
Tb Te Ta
Tf Tk Tm�

Tc Tn,λn

.

The variables in each initial term are underlined, making the common one underlined twice. Furthermore,
Tm� denotes a variable that must be present in Tλ−μ because Tn,λn is. It will be used for reduction. Indeed, in
all cases we can reduce the S-polynomial to zero because

S(M1,M2) = Tc(TaTk − TeTm� ) + Te(TcTm� − Tf Tn,λn ).
Notice that the order of the two steps in the division algorithm depends on the leading term of S(M1,M2).
The indicated reduction works in all cases.

Case III. Finally, suppose Tn,λn = supp(M1) ∩ supp(M2), say Tn,λn = Td = Tl, and the support of M1M2 con-
sists of 7 variables. Then

M1 = Tn,λnTb − TaTc , M2 = Tn,λnTk − TeTf ,
where Tk ̸= Tb, and

S(M1,M2) = TkTaTc − TbTeTf .
The variables Tb and Tk must be located to the left and above of Tn,λn . One typical situation for the positions
of the involved variables is:

Tk Tn� Te
Tm� Tb Ta
Tf Tc Tn,λn

.

As before, Tm� and Tn� denote variables whose presence is established if it is needed in the reduction process.
Indeed, assume Tk is not located in the lower half ofSλ−μ. Then Tn� is inTλ−μ. Thus, the division algorithm

provides
S(M1,M2) − Ta(TkTc − Tf Tn� ) = Tf (TaTn� − TbTe).

Otherwise, if Tk is in the lower half of Sλ−μ, then Tm� must be present there as well. This time the division
algorithm gives

S(M1,M2) − Tc(TkTa − TeTm� ) = Te(TcTm� − TbTf ).
Hence in both cases the S-polynomial reduces to zero.
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The other typical situation is
Tb Ta

Tk Tm� Te
Tf Tc Tn,λn

.

Assume first that the variable Tm� is present in Sλ−μ. There are two cases. If the leading term of the
S-polynomial is TkTaTc, then we use the minor TkTc − Tm�Tf whose leading term divides TkTaTc. Thus
the division algorithm provides

S(M1,M2) − Ta(TkTc − Tm�Tf ) = Tf (TaTm� − TbTe),
and hence the S-polynomial reduces to zero as a multiple of another minor. Otherwise, if the leading term
of the S-polynomial is TbTeTf , then it is divisible by the leading term of TbTe − TaTm� . Thus we can again
reduce the S-polynomial to zero using the division algorithm

S(M1,M2) + Tf (TbTe − TaTm� ) = Ta(TkTc − Tf Tm� ).
It remains to consider the case where the variable Tm� is not present in the tableau Sλ−μ. It follows that

Tb and Te must be located in the upper half of Sλ−μ, whereas Tk and Tc are in the lower half of the tableau.
In particular, none of these variables is on its main diagonal. We need to keep track of the positions of the
involved variables. Denote the rows and columns of the locations of these variables by i, j, n and p, q, λn,
respectively. Thus,

i < j < n ≤ λn , p < q < λn , p < j, and i < q < n.
Returning to the original double indices for the variables, we obtain that the above diagram becomes

p q λn
i Ti,q Ti,λn
j Tp,j Tj,λn
n Tp.n Tq,n Tn,λn

.

Here we included the row and column indices and wrote the variables in the form Tk,l with k ≤ l. Notice that
the S-polynomial of the minors M1 and M2 now reads as

S(M1,M2) = Ti,qTj,λnTp,n − Ti,λnTp,jTq,n .
The non-presence of the variable Tm� means that j ≤ q ≤ μj or q ≤ j ≤ μq.
Case A. Assume j ≤ q ≤ μj. Now we consider two subcases by comparing i and p.

Case A.1. Assume i < p. Then the following relations hold:
i < p < j ≤ q < n ≤ λn .

Hence the leading monomial of S(M1,M2) is Ti,qTj,λnTp,n. Using rows i, p and columns q, n, we claim that

Ti,qTp,n − Ti,nTp,q ∈ I2(Sλ−μ).
Indeed, since i < n and Tp,n is present in Tλ−μ, its column n also contains Ti,n. Moreover, the presence of Tp,j
means that μp < j. Since j ≤ q < n ≤ λp, we conclude that Tp,q is inTλ−μ. This shows the existence of the above
minor. Its leadingmonomial is Ti,qTp,n. Hencewe can use it in the division algorithm for reducing S(M1,M2).
We obtain

S(M1,M2) − Tj,λn (Ti,qTp,n − Ti,nTp,q) = Ti,nTp,qTj,λn − Ti,λnTp,jTq,n =: F.
The leading monomial of F is Ti,nTp,qTj,λn . Now, using rows i, j and columns n, λn, we claim

Ti,nTj,λn − Ti,λnTj,n ∈ I2(Sλ−μ).



806 | A. Corso, U. Nagel, S. Petrović and C. Yuen, Blow-up algebras and determinantal ideals

To this end it is enough to see that the variable Tj,n is present in Sλ−μ if n < λn. However, Tq,n ∈ Tλ−μ implies
μq < n. Hence, using j ≤ q, we conclude that μj ≤ μq < n ≤ λq ≤ λj which gives Tj,n ∈ Tλ−μ. If n < λn, then the
leading monomial of the last minor is Ti,nTj,λn . Thus, we can use it in another step of the division algorithm.
We get

F − Tp,q(Ti,nTj,λn − Ti,λnTj,n) = Ti,λn (Tp,qTj,n − Tp,jTq,n).
Notice that this is also true if n = λn. Using rows j, q and columns p, n, we see that Tp,qTj,n − Tp,jTq,n is aminor
of Sλ−μ or trivial if j = q. In both cases, S(M1,M2) reduces to zero.
Case A.2. Assume i ≥ p. Then the following relations hold:

p ≤ i < j ≤ q < n.
It follows that the leadingmonomial of S(M1,M2) is Tp,jTi,λnTq,n. Using rows j, q and columns p, n, we claim
that

Tp,jTq,n − Tj,nTp,q ∈ I2(Sλ−μ).
Indeed, since q < n and Tq,n is in Tλ−μ, its column n also contains Tj,n. As above, the presence of Tp,j means
that μp < j. Since j ≤ q ≤ λj, we get Tp,q ∈ Tλ−μ, as desired. The leading monomial of the above minor is
Tp,jTq,n. Thus, the division algorithm provides

S(M1,M2) + Ti,λn (Tp,jTq,n − Tj,nTp,q) = −Tp,qTi,λnTj,n + Tp,nTi,qTj,λn =: F.
The leading monomial of F is Tp,qTi,λnTj,n. Using rows p, i and columns q, λn, we claim that

Tp,qTi,λn − Tp,λnTi,q ∈ I2(Sλ−μ).
Indeed, we have already seen Tp,q ∈ Tλ−μ. Moreover, since Ti,λn is in column λn and p ≤ i, this column also
contains Tp,λn . The leading monomial of the last minor is Tp,qTi,λn . Hence, another step in the division algo-
rithm gives

F + Tj,n(Tp,qTi,λn − Tp,λnTi,q) = Ti,q(Tp,nTj,λn − Tp,λnTj,n).
Since this is trivial or a multiple of a minor of Sλ−μ using rows p, j and columns n, λn, we have reduced
S(M1,M2) to zero, as desired.
Case B. Assume q ≤ j ≤ μq. Again we consider two subcases by comparing i and p.

Case B.1. Assume i ≤ p. This implies the relations

i ≤ p < q ≤ j < n ≤ λn .
Thus, the leading monomial of S(M1,M2) is Ti,qTp,nTj,λn . Using rows q, j and columns i, λn, we obtain

Ti,qTj,λn − Ti,jTq,λn ∈ I2(Sλ−μ).
Indeed, since q ≤ j and Tj,λn is present in Tλ−μ, its column n also contains Tq,λn . Moreover, the presence of
Tp,j means μp < j. Hence, we get μi ≤ μp < j < n ≤ λn ≤ λi, so Ti,j ∈ Tλ−μ. The leading term of the aboveminor
is Ti,qTj,λn . Applying the division algorithm, we obtain

S(M1,M2) − Tp,n(Ti,qTj,λn − Ti,jTq,λn ) = Ti,jTp,nTq,λn − Ti,λnTp,jTq,n =: F
with leading monomial Ti,jTp,nTq,λn . Using rows i, p and columns j, n, we claim that

Ti,jTp,n − Ti,nTp,j ∈ I2(Sλ−μ).
Indeed, column n of Tλ−μ contains Tp,n. Since i ≤ p, the variable Ti,n is also in this row. Observe that the
leading term of this minor is Ti,jTp,n. Using the minor for another step of the division algorithm, we obtain

F − Tq,λn (Ti,jTp,n − Ti,nTp,j) = Tp,j(Ti,nTq,λn − Ti,λnTq,n).
This polynomial is trivial or a minor of Sλ−μ using rows i, q and columns n, λn. Hence it reduces to zero.
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Case B.2. Assume i > p. Then the following relations hold:
p < i ≤ q ≤ j < n.

Thus, the leading term of S(M1,M2) is Tp,jTi,λnTq,n. Using rows p, i and columns j, λn, we get

Tp,jTi,λn − Tp,λnTi,j ∈ I2(Sλ−μ).
Indeed, Tp,λn is in column n of Tλ−μ because Ti,λn is and p < i. Furthermore, the presence of Ti,q implies
μi < q ≤ j < n ≤ λi, and thus Ti,j ∈ Tλ−μ. Notice that the leading monomial of the last minor is Tp,jTi,λn . Now
the division algorithm gives

S(M1,M2) + Tq,n(Tp,jTi,λn − Tp,λnTi,j) = Tp,nTi,qTj,λn − Tp,λnTi,jTq,n =: F
whose leading monomial is Tp,nTi,qTj,λn . Using rows q, j and columns i, λn, we claim

Ti,qTj,λn − Ti,jTq,λn ∈ I2(Sλ−μ).
To this end it suffices to notice that Tq,λn is present in column λn of Tλ−μ because Tj,λn is and q ≤ j. Since
Ti,qTj,λn is the leading monomial of this minor we can use it in the division algorithm. We get

F − Tp,n(Ti,qTj,λn − Ti,jTq,λn ) = Ti,j(Tp,nTq,λn − Tp,λnTq,n).
Again, this is zero or a minor of Tλ−μ using rows p, q and columns n, λn. Hence S(M1,M2) has been reduced
to zero.

Case IV. Suppose the leading monomials of M1 and M2 are equal and divisible by Tn,λn . Thus, the support
of M1M2 consists of 6 variables. In order to keep track of locations we use again double indices. Write the
leading monomial of M1 as Ti,jTn,λn . Since M1 ̸= M2, we must have i ̸= j, say i < j. Thus, we may assume

M1 = Ti,jTn,λn − Ti,λnTj,n , M2 = Ti,jTn,λn − Ti,nTj,λn ,
where n < λn. Hence

S(M1,M2) = Ti,nTj,λn − Ti,λnTj,n ,
which is a minor of Sλ−μ using rows i, j and columns n, λn. This completes the proof of (b).

Finally, consider claim (a). It also follows from the above arguments, but its proof is simpler because the
second situation in Case III above does not occur. We omit the details.

3 Symmetric tableaux with holes: Invariants
Theorem 2.4 allows us to compute the initial ideals of the ideals I2(Tλ−μ) and I2(Sλ−μ) with respect to the
order ≺. We use these to determine invariants of the determinantal ideals themselves. In order to analyze
their properties we use a technique from liaison theory.

Proposition 3.1. Let J ⊂ I ⊂ R = K[x1, . . . , xr] be homogeneous ideals such that ht J = ht I − 1. Let f ∈ R be
a homogeneous polynomial of degree d such that J : f = J, and set I� := f ⋅ I + J. If R/I and R/J are Cohen–
Macaulay, then so is R/I� and ht I� = ht I.

Moreover, the Hilbert functions of the involved rings are related by

hR/I� (j) = hR/I(j − d) + hR/J(j) − hR/J(j − d) for all j ∈ ℤ.
Proof. This is part of [41, Lemma 4.8].

Remark 3.2. (i) The ideal I� := f ⋅ I + J is called a basic double link of I. The name stems from the fact that I�

can be Gorenstein linked to I in two steps if I is unmixed and R/J is Cohen–Macaulay and generically
Gorenstein ([41, Proposition 5.10]).
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(ii) A homogeneous ideal I is said to be glicci if it is in the Gorenstein liaison class of a complete intersection.
It then follows that I is Cohen–Macaulay. If I is a squarefree monomial ideal, then, following [53, Def-
inition 2.2], I is said to be squarefree glicci if I can be linked in an even number of steps to a complete
intersection I� generated by variables such that every other ideal in the chain linking I to I� is a squarefree
monomial ideal.
Note that Proposition 3.1 provides the following: If I is a squarefreemonomial ideal that can be obtained

from an ideal generated by variables by a sequence of basic double links, then I is squarefree glicci, thus in
particular Cohen–Macaulay.

We use basic double links to show that the initial ideals we consider correspond to simplicial complexes that
satisfy a strong combinatorial property: they are vertex decomposable. Recall that a simplicial complex ∆ on n
vertices is a collection of subsets of {1, . . . , n} that is closed under inclusion. The elements of ∆ are called the
faces of ∆. The dimension of a face F is |F| − 1, and the dimension of ∆ is themaximum dimension of its faces.
The complex ∆ is said to be pure if all its facets, the faces that are maximal with respect to inclusion, have the
same dimension.

Let {k} be a vertex of ∆, a 0-dimensional face. Then the link of k is

lk∆(k) = {G ∈ ∆ | {k} ∪ G ∈ ∆, {k} ∩ G = 0},
and the deletion with respect to k is

∆−k = {G ∈ ∆ | {k} ∩ G = 0}.
A simplicial complex ∆ is vertex decomposable if it is a simplex, or it is the empty set, or there exists a vertex k
such that lkk(∆) and ∆−k are both pure and vertex decomposable, and

dim ∆ = dim(∆−k) = dim lk∆(k) + 1.
Vertex decomposable simplicial complexes are known to have strong structural properties. In particular, they
are shellable, and thus Cohen–Macaulay.

The Stanley–Reisner ideal associated to a simplicial complex ∆ on n vertices is the squarefree monomial
ideal

I∆ = (xi1 , . . . , xis | {i1, . . . , is} ̸∈ ∆) ⊂ K[x1, . . . , xn].
In fact, this induces a bijection between the simplicial complexes on n vertices and squarefree monomial
ideals in K[x1, . . . , xn]. According to [53, Theorem 3.3], the Stanley–Reisner ideal of a vertex decomposable
simplicial complex is squarefree glicci. In the main result of this section we show first that the ideals in ques-
tion are squarefree glicci by describing explicitly the required basic double links, and then use this to infer
the desired vertex decomposability.

Theorem 3.3. (a) The initial ideal in(I2(Tλ−μ)) := in≺(I2(Tλ−μ)) is squarefree and has height
ht in(I2(Tλ−μ)) = n∑

i=2
(λi − μi − 1).

Its associated simplicial complex is vertex decomposable. In particular, in(I2(Tλ−μ)) is Cohen–Macaulay.
(b) The initial ideal in(I2(Sλ−μ)) := in≺(I2(Sλ−μ)) is squarefree and has height

ht in(I2(Sλ−μ)) = max{0, n − 1 − μ1} + n∑
i=2

(λi − μi − 1).
Its associated simplicial complex is vertex decomposable. In particular, in(I2(Sλ−μ)) is Cohen–Macaulay.
Moreover, if either ideal is non-trivial, then it can be obtained from an ideal generated by variables using

suitable basic double links. In particular, it is squarefree glicci.

Proof. In both cases we use induction on the number n of rows of Tλ−μ. If n = 1, then I2(Tλ−μ) and I2(Sλ−μ)
are trivial and there is nothing to show.
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Let n ≥ 2. Now we use induction on λn − μn ≥ 1. We define a new partition λ̃ differing from λ only in its
last part by

λ̃ := (λ1, . . . , λn−1, λn − 1).
Thus, the tableaux Tλ̃−μ is obtained from Tλ−μ by deleting the right-most box in its last row. It follows that

in(I2(Tλ̃−μ)) ⊂ in(I2(Tλ−μ))
and

in(I2(Sλ̃−μ)) ⊂ in(I2(Sλ−μ)).
We first determine how much larger the ideals on the right-hand side are. We treat the two cases separately.

(a) Observe if λn − μn = 1, that is, the last row of Tλ−μ consists of precisely one box, then deleting this box
gives a tableau leading to the same ideals as the given ones. Thus, we conclude by induction on the number
of rows. Now assume λn − μn ≥ 2.

Theorem 2.4 (a) provides that

in(I2(Tλ−μ)) = Tn,λna + in(I2(Tλ̃−μ)), (3.1)

where

a = (Tij | 1 ≤ i < n and μn < j < λn).
Using induction, we infer that in(I2(Tλ−μ)) is a squarefree monomial ideal.

Now note that we can rewrite equation (3.1) as

in(I2(Tλ−μ)) = Tn,λna� + in(I2(Tλ̃−μ)), (3.2)

where

a� = a + in(I2(Tλ̃−μ)).
Set now

λ� := (λ1 − (λn − μn − 1), . . . , λn−1 − (λn − μn − 1)) ∈ ℤn−1
and

μ� := (μ1, . . . , μn−1) ∈ ℤn−1.
Then the ideal a� is isomorphic to (the extension ideal in K[Tλ−μ]) of the sum of in(I2(Tλ�−μ� )) and an ideal
generated by ht a new variables. Applying the induction hypothesis to in(I2(Tλ�−μ� )), we conclude that a� is a
Cohen–Macaulay ideal of height

ht a� = ht a + ht in(I2(Tλ�−μ� ))= (n − 1)(λn − μn − 1) + n−1∑
i=2

(λi − (λn − μn − 1) − μi − 1)= n∑
i=2

(λi − μi − 1) = 1 + ht in(I2(Tλ̃−μ)).
Hence in(I2(Tλ−μ)) is a basic double link of a�, and Proposition 3.1 shows that in(I2(Tλ−μ)) has the claimed
height.

Denote by ∆ the simplicial complex corresponding to in(I2(Tλ−μ)). By the induction hypothesis, the
simplicial complex of in(I2(Tλ̃−μ)) is vertex decomposable. Thus, this is also true for the simplicial complex
corresponding to the ideal a�. Hence equation (3.2) shows that the link lk∆(n, λn) and the deletion ∆−(n,λn)
with respect to the vertex (n, λn) ∈ ∆ are vertex decomposable, and hence so is ∆.
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(b) We employ the same strategy as for (a), though carrying it out is more involved. Theorem 2.4 (b) implies
that

in(I2(Sλ−μ)) = Tn,λnb + in(I2(Sλ̃−μ)), (3.3)

where b is an ideal that is generated by variables. We now determine this ideal b. To this end, onemust list all
the 2-minors of Sλ−μ such that Tn,λn is an entry on the main diagonal. By symmetry of Sλ−μ we may assume
that Tn,λn is in Tλ−μ. Thus, we are looking for 2 × 2 submatrices of Sλ−μ that are formed by rows i and n, where
i < n, and columns j and λn of Sλ−μ, where j < λn. We distinguish three cases.

Case 1: Assume position (n, j) is in Tλ−μ. This is true if and only if Tij is in the ideal a.
Case 2: Assume that position (i, j) is in Tλ−μ, but that position (n, j) is not in Tλ−μ. The first condition

means μi < j < λn, whereas the second condition gives j ≤ μn. Furthermore, since position (n, j) is in Sλ−μ,
by symmetry the second condition implies that position (j, n) is in Tλ−μ, that is, j ≤ n and μj < n. Notice
that the condition n < λj is always satisfied because our assumptions provide n − 1 ≤ μn < λn ≤ λj. Since, by
assumption n − 1 ≤ μn < λn and the condition j − 1 ≤ μj < n implies j ≤ n, we see that Case 2 occurs if and
only if μi < j ≤ min{n, μn} and μj < n.

Case 3: Assume that positions (i, j) and (n, j) are not in Tλ−μ, that is, j ≤ μi and the positions (j, i) and(j, n) are in Tλ−μ. The latter is equivalent to j ≤ n and μj < i < n, using again that n < λj. Notice that here we
have i ≥ j, thus the variable at position (i, j) is Tji.

These considerations show that we can write

b = a + b1 + b2,
where the ideal

b1 = (Tij | μj < n and μi < j ≤ min{n, μn})
corresponds to Case 2 and

b2 = (Tij | i ≤ μj and μi < j < n)
corresponds to Case 3. Using induction and equation (3.3), it follows that in(I2(Sλ−μ)) is a squarefree mono-
mial ideal.

Next, we claim that b2 can be rewritten as

b2 = (Tij | max{i, μi} < j < n}. (3.4)

Indeed, the right-hand side is contained in b2 because i < j implies i ≤ j − 1 ≤ μj.
Conversely, if Tij ∈ b2, then i − 1 ≤ μi < j. Assume i = j. Then we get μj = μi = i − 1, a contradiction to

i < μj. Thus, Tij is in the right-hand side of equation (3.4), which establishes said equation.
Now we are ready to rewrite the ideal b as

b = a + b1 + b2 = a + b��, (3.5)

where

b�� := (Tij | 1 ≤ i < n and μi < j < n).
Indeed, clearly b2 is contained in b��. Assume there is some Tij ∈ b1 \ b��. This provides n = j ≤ μn, a con-

tradiction to μj < n.
Conversely, assume there is some Tij ∈ b�� \ b. This condition together with b2 ⊂ b forces i = j > μi ≥ i − 1.

This implies μj = j − 1 < n and μi = i − 1 < j ≤ n − 1 ≤ μn. Thus Tij is in b1 ⊂ b, a contradiction.
Using equation (3.5), we conclude that

in(I2(Sλ−μ)) = (TijTkl !!!! 1 ≤ i < k ≤ n, 1 ≤ j < l ≤ λk , and μk < j or μi < j < k).
It follows that we can rewrite equation (3.3) as

in(I2(Sλ−μ)) = Tn,λnb� + in(I2(Sλ̃−μ)), (3.6)
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where

b� := b + in(I2(Sλ̃−μ)) = b + (TijTkl !!!!!!!!! 1 ≤ i < k < n, 1 ≤ j < l ≤ λk , and μk < j or μi < j < k, and
n ≤ j < l ≤ μn or λn ≤ j or [n ≤ j ≤ μn and λn ≤ l] ) .

Set now

λ� := (λ1 − (λn − μn − 1), . . . , λn−1 − (λn − μn − 1)) ∈ ℤn−1
and

μ� := (μ�1, . . . , μ�n−1) ∈ ℤn−1, where μ�i := max{n − 1, μi}.
Then it follows that the ideal b� is isomorphic to the extension ideal in K[Tλ−μ] of the sum of in(I2(Tλ�−μ� )) and
an ideal generated by ht b variables. Hence, by part (a), we obtain that b� is Cohen–Macaulay and has height

ht b� = ht b + ht in(I2(Tλ�−μ� ))= (n − 1)(λn − μn − 1) + n−1∑
i=1

max{0, n − 1 − μi} + n−1∑
i=2

(λi − (λn − μn − 1) −max{n − 1, μi} − 1)
= λn − μn − 1 + n−1∑

i=1
max{0, n − 1 − μi} + n−1∑

i=2
(λi −max{n − 1, μi} − 1)= max{0, n − 1 − μ1} + n∑

i=2
(λi − μi − 1)= 1 + ht in(I2(Sλ̃−μ)),

where we used the observation that

max{0, n − 1 − μi} −max{n − 1, μi} = −μi .
We conclude that in(I2(Sλ−μ)) is a basic double link of b�, and Proposition 3.1 shows that in(I2(Sλ−μ)) has the
claimed height. Here we abuse our notation if λn − μn = 1. Then row n of the tableaux Tλ̃−μ is empty. Thus,
the ideal I2(Sλ̃−μ) has the claimed properties by induction on n.

Finally, denote by ∆ the simplicial complex corresponding to in(I2(Sλ−μ)). Equation (3.6) provides that
the simplicial complexes corresponding to b� and in(I2(Sλ̃−μ)) are the link lk∆(n, λn) and the deletion ∆−(n,λn),
respectively. They are both vertex decomposable by the induction hypothesis, and hence so is ∆.

Corollary 3.4. The rings K[Tλ−μ]/I2(Tλ−μ) and K[Tλ−μ]/I2(Sλ−μ) are Cohen–Macaulay.
Proof. This follows from the corresponding result for the initial ideals in Theorem 3.3.

We use the previous theorem and a well-known localization technique (see, e.g., [6, Lemma 7.3.3]) to estab-
lish the following result.

Proposition 3.5. The ideals I2(Tλ−μ) and I2(Sλ−μ) are prime ideals in K[Tλ−μ].
Proof. We use again induction based on obtaining Tλ−μ by adding a new right-most box in the last row of
a smaller tableau. So set

λ̃ := (λ1, . . . , λn−1, λn − 1).
By induction, we may assume that I2(Tλ̃−μ) and I2(Sλ̃−μ) are prime. Since the proof for I2(Tλ−μ) is similar, but
easier, we only provide the arguments that I2(Sλ−μ) is a prime ideal.

Consider the K-algebra homomorphism φ : K[Tλ−μ][T−1
n,λn ] → K[Tλ−μ][T−1

n,λn ] defined by
Tij Ü→ {{{Ti,j + Tn,jTi,λnT−1

n,λn if (i, j) ̸= (n, λn),
Ti,j otherwise.
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In fact, φ is an isomorphism whose inverse map is ψ : K[Tλ−μ][T−1
n,λn ] → K[Tλ−μ][T−1

n,λn ] defined by
Tij Ü→ {{{Ti,j − Tn,jTi,λnT−1

n,λn if (i, j) ̸= (n, λn),
Ti,j otherwise.

Notice that φ maps the extension of I2(Sλ−μ) to the extension of b + I2(Tλ�−μ� ), where
λ� := (λ1 − (λn − μn − 1), . . . , λn−1 − (λn − μn − 1)) ∈ ℤn−1

and

μ� := (μ�1, . . . , μ�n−1) ∈ ℤn−1, μ�i := max{n − 1, μi},
and b is the ideal used in the proof of Theorem 3.3, namely

b = (Ti,j | 1 ≤ i < n and [μi < j < n or μn < j < λn]).
It follows that we get isomorphisms(K[Tλ−μ]/I2(Sλ−μ))[t−1n,λn ] ≅ (K[Tλ−μ]/(b + I2(Tλ�−μ� )))[T−1

n,λn ] ≅ (K[Tλ�−μ� , Tn,λn ]/I2(Tλ�−μ� ))[T−1
n,λn ],

where t−1n,λn denotes the residue class of T
−1
n,λn in A := K[Tλ−μ]/I2(Sλ−μ).

Assume that A is not a domain. Then I2(Sλ−μ) ̸= I2(Sλ̃−μ), and A has an associated prime ideal that con-
tains tn,λn because the above isomorphisms show that A[t−1n,λn ] is a domain. Since A is Cohen–Macaulay by
Corollary 3.4, all its associated prime ideals have the same height. It follows that the ideals I2(Sλ−μ) and
J := (I2(Sλ−μ), Tn,λn ) have the same height in K[Tλ−μ].

Notice that I2(Sλ−μ) ̸= I2(Sλ̃−μ) implies the existence of a quadratic binomial f ∈ I2(Sλ−μ) \ I2(Sλ̃−μ) such
that (f, Tn,λn ) = (Ti,jTk,l , Tn,λn ), where Ti,jTk,l ∈ K[Tλ̃−μ]. By the induction hypothesis, I2(Sλ̃−μ) is a prime
ideal generated by quadrics. We conclude that

ht(I2(Sλ̃−μ), Ti,jTk,l) = 1 + ht I2(Sλ̃−μ).
Using Theorem 3.3, we obtain

ht(I2(Sλ̃−μ), Ti,jTk,l) = ht I2(Sλ−μ).
The ideal on the left-hand side is generated by polynomials in K[Tλ̃−μ]. Hence we get

ht J ≥ ht(I2(Sλ̃−μ), Ti,jTk,l , Tn,λn ) > ht I2(Sλ−μ).
However, this contradicts the conclusion of the previous paragraph. Hence A is a domain.

Our results can be partially summarized as follows.

Corollary 3.6. The rings K[Tλ−μ]/I2(Tλ−μ)and K[Tλ−μ]/I2(Sλ−μ)are normal Cohen–Macaulay domains that are
Koszul.

Proof. First, by the two previous results we know that the two rings are Cohen–Macaulay domains.
Second, since the prime ideals I2(Tλ−μ) and I2(Sλ−μ) are generated by binomials, they are, in fact, toric

ideals (see, e.g., [16, Proposition 1.1.11]). Observe that the initial ideals of I2(Tλ−μ) and I2(Sλ−μ) provided by
Theorem 2.4 (a) and (b), respectively, are squarefree. It follows that K[Tλ−μ]/I2(Tλ−μ) and K[Tλ−μ]/I2(Sλ−μ)
are normal.

Finally, these rings are also Koszul, as I2(Tλ−μ) and I2(Sλ−μ) have Gröbner bases consisting of quadrics
(see [7, Theorem 2.2]).

Remark 3.7. Theorem 3.3 shows in particular that the initial ideal of I2(Sλ−μ) is glicci. In fact, by a result
in [52] the ideal I2(Sλ−μ) itself is glicci. This raises the question whether also ideals generated by minors of
higher order than 2 in Sλ−μ are glicci. Affirmative answers in some cases are established in [52] (see also [29]).
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4 Blow-up algebras
We now use the results of the previous sections to elucidate the structure of blow-up algebras of spe-
cialized Ferrers ideals. Recall that, for an ideal I in any commutative ring R, its Rees algebra is the ring
R[It] = ⨁j≥0 I j tj ⊂ R[t], where t is a variable. If R is a graded ring having only one maximal graded ideal m,
then the special fiber ring of I ⊂ R is the algebra

F(I) =⨁
j≥0

I j/mI j ≅ R[It] ⊗R R/m.
For a monomial ideal I, we denote by G(I) the minimal generating set of I that consists of monomials. If I

is a monomial ideal whoseminimal generators have degree two, then the special fiber ringF(I) is isomorphic
to K[G(I)]. If the minimal generators of I are even squarefree quadratic monomials, then I is the edge ideal of
a simple graph, and K[G(I)] is also called the edge subring of this graph.

In what follows, we determine the special fiber ring of a specialized Ferrers ideal. First we find its dimen-
sion using results from [66]. We continue to employ the notation from the previous sections. In particular,
λ is a partition with n parts, its largest one being λ1 = m.
Proposition 4.1. The Krull dimension of the special fiber ring of a specialized Ferrers ideal Iλ−μ is

dimF(Iλ−μ) = m +min{0, n − 1 − μ1} = {{{m if μ1 ≤ n − 1,
m + n − μ1 − 1 if μ1 ≥ n.

Proof. We consider several cases. Assume that μ1 ≥ n. Then Iλ−μ is the edge ideal of a bipartite graph Γλ−μ
on the vertex set {x1, . . . , xn} ⊔ {xμ1+1, . . . , xm}. In fact, Γλ−μ is a Ferrers graph on n + m − μ1 vertices. Since
it is connected, we get dimF(Iλ−μ) = m + n − μ1 − 1 (see [66, Proposition 8.2.12] or [61]), as claimed.

Let μ1 ≤ n − 1. Recall that Iλ−μ is not necessarily a squarefree monomial ideal. Consider the subideal of
Iλ−μ that is generated by the squarefree monomials in Iλ−μ. It is the edge ideal Iλ�−μ� of a connected graph
Γλ�−μ� on m vertices. This is clear if the partition λ� also has n positive parts. However, if the latter condition
fails, then x2n is in Iλ−μ. Hence themonomials x1xn , . . . , xn−1xn are in Iλ−μ, so they are in Iλ�−μ� . It follows that
in any case Γλ�−μ� is a connected graph.

Let x2j be a generator of Iλ−μ that is not in Iλ�−μ� . Assume the graph Γλ�−μ� is not bipartite. Then
[66, Exercise 8.2.16] implies that K[G(Iλ�−μ� ), x2j ] has dimension m. Since

K[G(Iλ�−μ� ), x2j ] ⊂ K[G(Iλ−μ)] ⊂ K[x1, . . . , xm],
we conclude that K[G(Iλ−μ)] ≅ F(Iλ−μ) has dimension m.

If Γλ�−μ� is a bipartite graph, then K[G(Iλ�−μ� )] has already dimension m, and thus the above argument
gives again that the dimension of K[G(Iλ−μ)] is m, as claimed.

The main result of this section is the following.

Theorem 4.2. The special fiber ring of Iλ−μ is a determinantal ring arising from the 2-minors of a symmetric
tableau which may have holes. More precisely, there is a graded isomorphism

F(Iλ−μ) ≅ K[Tλ−μ]/I2(Sλ−μ).
It is a normal Cohen–Macaulay domain that is Koszul.

Proof. Consider the algebra epimorphism

π : K[T] �¤ K[G(Iλ−μ)] ≅ F(Iλ−μ),
where π(Tij) = xixj. We claim that the kernel of π is the determinantal ideal I2(Sλ−μ). Since π maps all
2-minors in Sλ−μ to zero, we get I2(Sλ−μ) ⊂ ker π. Both ideals are prime ideals (see Corollary 3.6). Thus, to
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deduce the desired equality it is enough to show that the two ideals have the same height. Then Corollary 3.6
gives the asserted properties of F(Iλ−μ).

Theorem 3.3 (b), on the one hand, implies that

ht I2(Sλ−μ) = max{0, n − 1 − μ1} + n∑
i=2

(λi − μi − 1).
On the other hand, Proposition 4.1 and λ1 = m provides

ht ker π = dim K[Tλ−μ] − dimF(Iλ−μ) = n∑
i=1

(λi − μi) − [m +min{0, n − 1 − μ1}]= n∑
i=2

(λi − μi − 1) − μ1 + n − 1 −min{0, n − 1 − μ1} = n∑
i=2

(λi − μi − 1) +max{0, n − 1 − μ1},
as desired.

Remark 4.3. Observe that the description of the special fiber ring becomes simpler if μ1 ≥ n − 1. Indeed, then
I2(Sλ−μ) = I2(Tλ−μ) (see Figure 5). Moreover, if μ satisfies the even stronger assumption μ1 ≥ n, then Iλ−μ is
the edge ideal of a Ferrers graph. Thus, Theorem 4.2 includes in particular a description of the special fibers
ring of a Ferrers ideal. This identificationwas first obtained in [12, Proposition 5.1 (b)]. Note however that the
descriptions above and in [12] use a priori different determinantal ideals, due to the presentation of a Ferrers
ideal by different tableaux.

x1

x2

x3

y1 y2 y3 y4 y5 y6 y7 y8

Tλ−μ

T15 T16 T17 T18

T25 T26 T27

T35 T36

T15 T25 T35

T16 T26 T36

T17 T27

T18

Sλ−μ

Figure 5. A skew shape and its symmetrization for λ = (8, 7, 6) and μ = (4, 4, 4).

The last result allows us also to give a determinantal description of the Rees algebra of a specialized Ferrers
ideal.

Corollary 4.4. Let Iλ−μ ⊂ R = K[x1, . . . , xm] be a specialized Ferrers ideal. Then its Rees algebra R[Iλ−μ t] is
isomorphic to the special fiber ring F(J) of the ideal J ⊂ R[x0], where x0 is a new variable and

J = Iλ−μ + x0(x1, . . . , xm) ⊂ R.
In particular, the Rees algebra R[Iλ−μ t] is a normal Cohen–Macaulay domain that is Koszul.

We prove this result below after making it more precise.

Remark 4.5. Notice that in the case μ1 > n none of the variables xi with n < i ≤ μ1 divides a monomial
minimal generator of Iλ−μ. Thus, the properties of Iλ−μ can be studied by considering it as an ideal in the
smaller polynomial ring, which is obtained from R by dropping the variables xn+1, . . . , xμ1 . Equivalently,
this amounts to renaming the variables xμ1+1, . . . , xm by xn+1, . . . , xm+n−μ1 and considering the resulting
Ferrers ideal Iλ�−μ� in a polynomial ring with variables x1, . . . , xm+n−μ1 , where now μ�1 = n. This allows us to
essentially restrict ourselves to Ferrers ideals Iλ−μ satisfying μ1 ≤ n.
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Corollary 4.6. Let Iλ−μ ⊂ R = K[x1, . . . , xm] be a specialized Ferrers ideal with μ1 ≤ n. Then its Rees algebra
is determinantal. More precisely, there are algebra isomorphisms

R[Iλ−μ t] ≅ F(Iλ�−μ� ) ≅ K[Tλ�−μ� ]/I2(Sλ�−μ� ),
where

λ� = (λ1 + 1, λ1 + 1, λ2 + 1, . . . , λn + 1) ∈ ℤn+1
and

μ� = (1, μ1 + 1, μ2 + 1, μn + 1) ∈ ℤn+1.
Remark 4.7. (i) The passage from the special fiber ring of Iλ−μ to its Rees algebra given in Corollary 4.6 can

also be described as follows: Augment the tableau Sλ−μ with a new top row and a new leftmost column.
Leave the new northwest corner empty and fill the new top row with the variables x1, . . . , xm from left
to right and the leftmost column with x1, . . . , xm from top to bottom; see Figure 6. Let I be the ideal of
R[Tλ−μ] that is generated by the 2-minors in the augmented tableau. Up to the names of the variables,
the augmented tableau is the same as Sλ�−μ� . Hence Corollary 4.6 gives the isomorphism

R[Iλ−μ t] ≅ R[Tλ−μ]/I.
(ii) If Iλ−μ is the edge ideal of a graph Γ, then the last isomorphism says that the Rees algebra of Iλ−μ is

isomorphic to the special fiber ring of the edge ideal to the cone over Γ. This is true for arbitrary edge
ideals of graphs by [66, Proposition 8.2.15].

(iii) The Rees algebra of a complete graph on n vertices was already identified by Villarreal (see [66, Exercise
9.2.14]). In ournotation this is the ringR[Iλ−μ t],where λ = (n, n, . . . , n) ∈ ℤn and μ = (1, 2, . . . , n) ∈ ℤn.

T12 T13 T14 T15

T12 T24 T25

T13 T34

T14 T24 T34

T15 T25

Sλ−μ

x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

T12 T13 T14 T15

T12 T24 T25

T13 T34

T14 T24 T34

T15 T25

The augmented tableau Sλ′−μ′

Figure 6. A symmetrized tableau and its augmentation.

Proof of Corollary 4.4 and Corollary 4.6. Consider the ring homomorphisms

φ : R[Tλ−μ] → R[Iλ−μ t], Tij Ü→ xixj

and
α : R[Iλ−μ t] → K[J], xk Ü→ x0xk , xixj t Ü→ xixj .

The first part of Corollary 4.4 follows because α is an isomorphism.
Now let us assume μ1 ≤ n. Then, up to renaming variables, the ideals J and Iλ�−μ� are equal, and

R[Tλ−μ] is isomorphic to the polynomial ring K[Tλ�−μ� ]. Hence α ∘ φ is the map that induces an isomorphism
K[Tλ�−μ� ]/I2(Sλ�−μ� ) ≅ K[Iλ�−μ� ], which in turn is isomorphic to K[J] ≅ F(J). This establishes Corollary 4.6.
Moreover, Corollary 3.6 gives that F(J) is a normal Cohen–Macaulay domain that is Koszul.

It remains to consider the case μ1 > n. Put S = K[x1, . . . , xn , xμ1+1, . . . , xm]. Then
F(J) ≅ F(JS)[xn+1, . . . , xμ1 ].

Since F(JS) is a determinantal ring that is Koszul and a normal Cohen–Macaulay domain by Corollary 4.6,
the same is true for F(J).
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5 Minimal reductions
In the special case where λ = (m,m, . . . ,m) ∈ ℤn, the ideal Iλ is the edge ideal of a complete bipartite
graph, and a distinguished minimal reduction of Iλ is given by the Dedekind–Mertens content formula
(see [5, 14, 54]). Here we extend this result to arbitrary Ferrers ideals.

Recall that an ideal J is said to be a reduction of an ideal I if J ⊂ I and there is an integer r ≥ 0 such that
Ir+1 = J ⋅ Ir .

The minimum integer r such that this equality holds is called the reduction number of I with respect to J and
denoted by rJ(I). A reduction J isminimal if no ideal strictly contained in J is a reduction of I. The (absolute)
reduction number of I is

r(I) = min{rJ(I) | J is a minimal reduction of I}.
Theorem 5.1. For every partition λ = (λ1 = m ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λn) with positive parts, the m + n − 1 diagonals of
the Ferrers tableau Tλ generate a minimal reduction Jλ of the Ferrers ideal Iλ. More precisely, this minimal
reduction is generated by ∑

i≥1
xiyk+i , k = 0, . . . ,m − 1,

and ∑
i≥1
xk+iyi , k = 1, . . . , n − 1,

where the summands are monomials that are contained in Iλ.

For the partition λ := (5, 5, 5, 2, 1), this minimal reduction can be represented by the diagram in Figure 7.

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5

Figure 7. Example of Theorem 5.1: A Ferrers minimal reduction for λ = (5, 5, 5, 2, 1).

For the specialized Ferrers ideal Iλ−μ, we find a distinguished minimal reduction in an important special
case, namely when it is a strongly stable monomial ideal. Figure 8 illustrates the result in a simple case.

Theorem 5.2. Let μ = (0, 1, . . . , n − 1) ∈ ℤn, and let λ = (λ1, . . . , λn) be a partition, where λ1 = m and λn ≥ n.
Then the m diagonals in the tableauTλ−μ generate aminimal reduction Jλ−μ of the specialized Ferrers ideal Iλ−μ.
More precisely, this minimal reduction is generated by∑

i≥1
xixk+i , k = 0, . . . ,m − 1,

where the summands are monomials that are contained in Iλ−μ.

The proofs of the last two statements are based on results about certain initial ideals.

Lemma 5.3. Let I2(Tλ) ⊂ K[Tλ] be the ideal generated by the 2-minors of Tλ, and let L ⊂ K[Tλ] be the ideal
generated by the m + n diagonals∑

i≥1
Ti,k+i (for k = 0, . . . ,m − 1) and ∑

i≥1
Tk+i,i (for k = 1, . . . , n − 1).
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x1

x2x3

x1 x2 x3 x4 x5

Figure 8. An illustration of Theorem 5.2 for λ = (5, 5, 4).

Then a power of every variable Tij in Tλ is in an initial ideal of the ideal of I2(Tλ) + L. More precisely,
T jij ∈ in≺(I2(Tλ) + L), where≺ is the reverse-lexicographic termorder inducedby the row-ordering on the tableau,
that is,

T1,1 > T1,2 > ⋅ ⋅ ⋅ > T1,λ1 > T2,1 > ⋅ ⋅ ⋅ > T2,λ2 > ⋅ ⋅ ⋅ > Tn,λn .
Proof. To simplify notation put Q = I2(Tλ). In what follows, diagonals and minors with Tij in their support
will be used to construct a polynomial in the ideal Q + L whose initial term is T jij. This condition will be
satisfied by ensuring that all other terms are divisible either by monomials in the initial ideal or by variables
that are reverse-lexicographically smaller than Tij, i.e. are to the east or south of Tij. Notice that the initial
monomial of each 2-minor is the product of the variables on its antidiagonal.

Claim. For each variable Tij in Tλ, the following polynomial is in Q + L:± ∑
p1>0

Ti−p1 ,j ∑
p2>0

Ti−p2 ,j ⋅ ⋅ ⋅ ∑
pj−2>0

Ti−pj−2 ,j( ∑
pj−1>0

Ti−pj−1 ,jTi,j−p1−⋅⋅⋅−pj−1) + T jij + LOT. (*)

Here and below we always use the conventions that “LOT” stands for “lower-order terms” and represents
monomials that are ≺-smaller than the last monomial listed (i.e., T jij above) and the sums only involve vari-
ables that are in Tλ. The latter allows avoiding specifying the upper limits of the summations explicitly, thus
greatly simplifying notation.

Let Dij ∈ L be the diagonal passing through Tij, that is,
Dij = ∑

p>0
Ti−p,j−p + Tij + LOT.

Furthermore, let Qi,j;i−p,j−p ∈ Q be the 2-minor of Tλ whose diagonal term is TijTi−p,j−p.
Using T j−11j D1j, the claim is true if i = 1. Let i > 1. Then T j−1ij Dij reads as

T j−1ij Dij = T j−1ij ∑
p1>0

Ti−p1 ,j−p1 + T jij + LOT. (d1)

Thus, we are done if j = 1. Let j > 1. Continue to successively modify the above polynomial by replacing vari-
ables Tkl that are above and strictly to the left of Tij by using the diagonal Dkl if k = i and by using the minor
Qi,j;k,l if k < i.

Following this strategy, subtract suitable multiples of the minors Qi,j;i−p1 ,j−p1 from polynomial (d1) and
obtain

T j−2ij ∑
p1>0

Ti−p1 ,jTi,j−p1 + T jij + LOT ∈ Q + L.
If j = 2, this shows the claim.Otherwise, repeat the process. In order to substitute the variables Ti,j−p1 , use

the diagonals Di,j−p1 = ∑p2>0 Ti−p2 ,j−p2−p1 + Ti,j−p1 + LOT. Subtracting suitable multiples of them provides−T j−2ij ∑
p1>0

Ti−p1 ,j ∑
p2>0

Ti−p2 ,j−p2−p1 + T jij + LOT ∈ Q + L.
Next, subtract suitable multiples of the minors Qi,j;i−p2 ,j−p2−p1 (p1, p2 > 0), obtaining−T j−3ij ∑

p1>0
Ti−p1 ,j ∑

p2>0
Ti−p2 ,jTi,j−p1−p2 + T jij + LOT ∈ Q + L.
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This gives the claim if j = 3. In general, repeating the process j − 1 times provides the following polynomial
in L + Q: ± ∑

p1>0
Ti−p1 ,j ∑

p2>0
Ti−p2 ,j ⋅ ⋅ ⋅ ∑

pj−2>0
Ti−pj−2 ,j ∑

pj−1>0
Ti−pj−1 ,jTi,j−p1−⋅⋅⋅−pj−1 + T jij + LOT.

This establishes the claim in general.
Finally, observe that p1, . . . , pj−1 > 0 implies p1 + ⋅ ⋅ ⋅ + pj−1 ≥ j − 1. Hence the polynomial (*) can be

rewritten as ±T j−1i−1,jTi1 + T jij + LOT.
Subtracting the appropriate multiple of the diagonal Di,1 results in a polynomial whose leading terms is T jij.
This completes our argument.

For a strongly stable specialized Ferrers ideal, an analogous result holds.

Lemma 5.4. Let I2(Sλ−μ) ⊂ K[Tλ−μ] be the ideal generated by the 2-minors of Sλ−μ, μ = (0, 1, . . . , n − 1) ∈ ℤn,
and let L ⊂ K[Tλ−μ] be the ideal generated by the m diagonals ∑i≥1 Ti,k+i, k = 0, . . . ,m − 1. Then a power of
every variable Tij in Tλ−μ is in an initial ideal of the ideal of I2(Sλ−μ) + L. More precisely, T jij ∈ in≺(I2(Sλ−μ) + L),
where ≺ is the reverse-lexicographic term order induced by the row-ordering on the tableau, that is,

T1,μ1+1 > T1,μ1+2 > ⋅ ⋅ ⋅ > T1,λ1 > T2,μ2+1 > ⋅ ⋅ ⋅ > T2,λ2 > ⋅ ⋅ ⋅ > Tn,λn .
Proof. The proof is completely analogous to the argument used to establish Lemma 5.3.

The main results of this section follow now easily.

Proof of Theorem 5.1. Lemma 5.3 shows that the radical of the ideal I2(Tλ) + L is generated by the variables
in Tλ. Since the special fiber ringF(Iλ) of Iλ has dimensionm + n by [61] and is isomorphic to K[Tλ]/I2(Tλ) by
[12, Proposition 5.1], it follows that the diagonals generating L form a system of parameters of F(Iλ). Hence,
the claim follows (see, e.g., [38, Proposition 8.2.4]).

Analogous arguments, using Lemma 5.4 and Theorem 4.2, provide the proof of Theorem 5.2. In the interest
of space, the details are omitted.

Remark 5.5. (i) Smith used Theorem 5.2 to compute the core of certain Ferrers ideals, that is, the intersec-
tion over all minimal reductions of such a Ferrers ideal (see [62, Theorem 5.1]).

(ii) It would be desirable to extend Theorem 5.2, that is, to find a distinguished minimal reduction of other
specialized Ferrers ideals. Notice that the diagonals in the tableau Tλ−μ do not generate a minimal
reduction of Iλ−μ in general. In fact, if μ1 ≥ 1, then the number of diagonals is less than the number of
generators of any minimal reduction of Iλ−μ.

Example 5.6. Consider the specialized Ferrers ideals associated to λ = (4, 4, 4) and μ = (1, 2, 3). It is
Iλ−μ = (x1x2, x1x3, x1x4, x2x3, x2, x2x4, x3x4) ⊂ K[x1, x2, x3, x4].

According to Proposition 4.1, its special fiber ring has dimension four. Thus, every minimal reduction of Iλ−μ
has four minimal generators; see Figure 9.

x1

x2

x3

x1 x2 x3 x4

f1 := x1x2 + x2x3 + x3x4

f2 := x1x3 + x2x4

f3 := x1x4

Figure 9. Illustration of Example 5.6.
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Since the tableau Tλ−μ has only three diagonals, another generator is needed. Indeed, one can check that
the three diagonals together with the polynomial

x1x2 + x1x3 + x1x4 + x2x4 + x3x4
generate a minimal reduction of Iλ−μ.

This and other examples suggest that each specialized Ferrers ideal Iλ−μ has a minimal reduction consisting
of the diagonals in Tλ−μ and suitably many additional generators. However, we have not been able to find
combinatorial descriptions for the needed additional generators.

6 Hilbert functions and reduction numbers
We now determine the Hilbert function of the determinantal rings introduced in Section 2. This allows us
to find their Castelnuovo–Mumford regularity. We then show that this regularity gives the reduction number
of the Dedekind–Mertens-like reductions we established in the previous section. We conclude with some
examples to illustrate our results.

In order to compute the Hilbert series of the special fiber rings of the specialized Ferrers ideals, we first
establish a recursive formula using the Gorenstein liaison results proven in Section 3. This is similar to the
approach used in [12].

Recall from the previous section that

F(Iλ−μ) ≅ K[Iλ−μ] ≅ K[Tλ−μ]/I2(Sλ−μ)
has dimension m +max{0, n − 1 − μ1}. Hence there is a unique polynomial pλ−μ ∈ ℤ[t] such that the Hilbert
series of K[Iλ−μ] can be written as

HK[Iλ−μ](t) = pλ−μ(t)(1 − t)m+max{0,n−1−μ1}

and e(K[Iλ−μ]) = pλ−μ(1) > 0 is the multiplicity of K[Iλ−μ]. The polynomial pλ−μ is called the normalized
numerator of the Hilbert series. Using this notation allows us to state the desired recursion formula. We con-
tinue to use the notation and assumptions introduced at the beginning of Section 2.

Lemma 6.1. Given λ = (λ1, . . . , λn−1, λn) ∈ ℤn and μ = (μ1, . . . , μn) ∈ ℤn, set
λ̃ := (λ1, . . . , λn−1, λn − 1) ∈ ℤn , λ� := (λ1 − (λn − μn − 1), . . . , λn−1 − (λn − μn − 1)) ∈ ℤn−1,

and

μ� := (μ�1, . . . , μ�n−1) ∈ ℤn−1, where μ�i := max{n − 1, μi}.
If n ≥ 2, then there is the following relation among Hilbert series:

pλ−μ(t) = {{{pλ̃−μ(t) if λ2 = μ2 + 1 and μ1 ≥ n − 1,
pλ̃−μ(t) + t ⋅ pλ�−μ� (t) otherwise.

Proof. In the proof of Theorem 3.3 (see equation (3.6)) we have shown that

in(I2(Sλ−μ)) = Tn,λnb� + in(I2(Sλ̃−μ)).
Observe that the height of b� is zero if and only if λ2 = μ2 + 1 and μ1 ≥ n − 1. (This follows from the compu-
tation at the end of the proof of Theorem 3.3). This implies the claim in this case since Hilbert functions do
not change when passing to the initial ideal.
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In the other case, where λ2 ≥ μ2 + 2 or μ1 ≤ n − 2, apply Proposition 3.1 to conclude that
HF(Iλ−μ)(t) = (1 − t) ⋅ HK[Tλ−μ]/I2(Sλ̃−μ)(t) + t ⋅ HK[Tλ−μ]/b� (t).

In the proof of Theorem 3.3 we also showed that

K[Tλ−μ]/I2(Sλ̃−μ) ≅ F(I λ̃−μ)[Tn,λn ]
and that K[Tλ−μ]/b� has the same Hilbert series as a polynomial ring over F(Iλ�−μ� ) = F(Iλ�−μ� ). Setting for
simplicity d := dim K[Iλ−μ], it follows that

pλ−μ(t)(1 − t)d = (1 − t) ⋅ pλ̃−μ(t)(1 − t)d+1 + t ⋅ pλ�−μ� (t)(1 − t)d ,
which proves our claim.

In order to compare the results for the special fiber rings of Ferrers ideals and their specializations, recall that
F(Iλ−μ) has dimension m + n − 1. Hence its Hilbert series can be written as

HF(Iλ−μ)(t) = pλ−μ(t)(1 − t)m+n−1

and e(F(Iλ−μ)) = pλ−μ(1) > 0 is the multiplicity of K[Iλ−μ]. Again, refer to pλ−μ as the normalized numerator
of the Hilbert series.

We are now ready to derive an explicit formula for the Hilbert series. Observe that all terms are non-
negative. Notice also that in case n = 1, the special fiber rings are just polynomial rings over the field K.

Theorem 6.2. Assume n ≥ 2. Then we have the following results:
(a) The normalized numerator of the Hilbert series of F(Iλ−μ) is

pλ(t) = 1 + h1(λ − μ) ⋅ t + ⋅ ⋅ ⋅ + hn−1(λ − μ) ⋅ tn−1,
where

h1(λ − μ) = n∑
j=2

(λj − μj − 1)
and

hk(λ − μ) = ∑
2≤i1<i2<...<ik≤n

λi1−μi1−k∑
jk−1=λi1−μi1
−λik+μik−k+2

jk−1∑
jk−2=λi1−μi1

−λik−1+μik−1−k+3

⋅ ⋅ ⋅ j2∑
j1=λi1−μi1
−λi2+μi2

j1

if k ≥ 2.
(b) The normalized numerator of the Hilbert series of F(Iλ−μ) is

pλ−μ(t) = 1 + h1(λ − μ) ⋅ t + ⋅ ⋅ ⋅ + hn−1(λ − μ) ⋅ tn−1,
where

h1(λ − μ) = max{0, n − 1 − μ1} + n∑
j=2

(λj − μj − 1), σj = {{{1 if j > 0,
0 if j ≤ 0.

and

hk(λ − μ) = ∑
2≤i1<i2<...<ik≤n

λi1−max{ik−1,μi1 }
−k+σik−1−μ1∑

jk−1=λi1−max{ik−1,μi1 }
−λik+max{ik−1,μik }−k+2

jk−1∑
jk−2=λi1−max{ik−1,μi1 }

−λik−1+max{ik−1,μik−1 }−k+3

⋅ ⋅ ⋅ j2∑
j1=λi1−max{ik−1,μi1 }
−λi2+max{ik−1,μi2 }

j1

if k ≥ 2.
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Proof. The proof of claim (a) is similar and only easier than the one of claim (b) (see also [12, Theorem 5.4]).
We restrict ourselves to showing (b) for the case μ1 ≤ n − 2. If μ1 ≥ n − 1, then each max{ik − 1, μi1 } in
the asserted formula equals μi1 , so the formula becomes the same as the one in (a). This is correct as
I2(Tλ−μ) = I2(Sλ−μ) if μ1 ≥ n − 1 (see Remark 4.3).

Assume μ1 ≤ n − 2. Continue to use the notation introduced in Lemma 6.1. This result implies

hk(λ − μ) = hk(λ̃ − μ) + hk−1(λ� − μ�) (6.1)

for all integers k ≥ 0.
A straightforward computation shows that this recursion provides the claimed formula for h1(λ − μ).

Thus, it suffices to consider k ≥ 2.
Nowwe use induction on n ≥ 2. If n = 2, then pλ�−μ� = 1. Thus h2(λ − μ) = 0 by induction on λ2 − μ2 ≥ 1,

using Lemma 6.1.
Let n ≥ 3. Now, we use induction on k ≥ 2. Since the case k = 2 is similar, but easier than the general

case, we present the argument only if k ≥ 3. Finally, we use induction on λn − μn ≥ 1.
Assume λn − μn = 1. Then row n in the tableaux Tλ̃−μ is empty, so we know hk(λ̃ − μ) and hk−1(λ� − μ�) by

induction on n. Hence, equation (6.1) gives

hk(λ − μ) = ∑
2≤i1<...<ik≤n−1

λi1−max{ik−1,μi1 }
−k+σik−1−μ1∑

jk−1=λi1−max{ik−1,μi1 }
−λik+max{ik−1,μik }−k+2

jk−1∑
jk−2=λi1−max{ik−1,μi1 }

−λik−1+max{ik−1,μik−1 }−k+3

⋅ ⋅ ⋅ j2∑
j1=λi1−max{ik−1,μi1 }
−λi2+max{ik−1,μi2 }

j1

+ ∑
2≤i1<...<ik−1≤n−1

λi1−max{n−1,μi1 }
−k+1∑

jk−2=λi1−max{n−1,μi1 }
−λik−1+max{n−1,μik−1 }−k+3

jk−2∑
jk−3=λi1−max{ik−1,μi1 }

−λik−2+max{ik−1,μik−2 }−k+4

⋅ ⋅ ⋅ j2∑
j1=λi1−max{ik−1,μi1 }
−λi2+max{ik−1,μi2 }

j1.

Observing that σn−1−μ1 = 1 and λn = max{n − 1, μn} = λn − μn = 1, we can rewrite the second summation as

∑
2≤i1<...<ik−1<ik=n

λi1−max{n−1,μi1 }
−k+σn−1−μ1∑

jk−1=λi1−max{n−1,μi1 }
−λn+max{n−1,μn}−k+2

jk−1∑
jk−2=λi1−max{n−1,μi1 }

−λik−1+max{n−1,μik−1 }−k+3

⋅ ⋅ ⋅ j2∑
j1=λi1−max{n−1,μi1 }
−λi2+max{n−1,μi2 }

j1.

Substituting this into the previous equation, we obtain

hk(λ − μ) = ∑
2≤i1<...<ik≤n

λi1−max{ik−1,μi1 }
−k+σik−1−μ1∑

jk−1=λi1−max{ik−1,μi1 }
−λik+max{ik−1,μik }−k+2

jk−1∑
jk−2=λi1−max{ik−1,μi1 }

−λik−1+max{ik−1,μik−1 }−k+3

⋅ ⋅ ⋅ j2∑
j1=λi1−max{ik−1,μi1 }
−λi2+max{ik−1,μi2 }

j1,

as claimed.
Assume now λn − μn ≥ 2. Then the induction hypotheses and Formula (6.1) provide the following, after

considering separately the cases ik < n and ik = n in the formula for hk(λ̃ − μ):
hk(λ − μ) = ∑

2≤i1<...<ik≤n−1

λi1−max{ik−1,μi1 }
−k+σik−1−μ1∑

jk−1=λi1−max{ik−1,μi1 }
−λik+max{ik−1,μik }−k+2

jk−1∑
jk−2=λi1−max{ik−1,μi1 }

−λik−1+max{ik−1,μik−1 }−k+3

⋅ ⋅ ⋅ j2∑
j1=λi1−max{ik−1,μi1 }
−λi2+max{ik−1,μi2 }

j1

+ ∑
2≤i1<...<ik−1<ik=n

λi1−max{n−1,μi1 }−k+1∑
jk−1=λi1−max{n−1,μi1 }

−(λn−1)+max{n−1,μn}−k+2

jk−1∑
jk−2=λi1−max{n−1,μi1 }

−λik−1+max{n−1,μik−1 }−k+3

⋅ ⋅ ⋅ j2∑
j1=λi1−max{n−1,μi1 }
−λi2+max{n−1,μi2 }

j1

+ ∑
2≤i1<...<ik−1≤n−1

λi1−(λn−μn−1)
max{n−1,μi1 }−(k−1)∑
jk−2=λi1−max{n−1,μi1 }
−λi1+max{n−1,μi1 }−k+3

jk−2∑
jk−3=λi1−max{n−1,μi1 }

−λik−2+max{n−1,μik−2 }−k+4

⋅ ⋅ ⋅ j2∑
j1=λi1−max{n−1,μi1 }
−λi2+max{n−1,μi2 }

j1.
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Notice that in the third summation the upper limit for jk−2 is one less than the lower limit for jk−1 in the second
summation. Thus, combining these two summations provides:

hk(λ − μ) = ∑
2≤i1<...<ik≤n−1

λi1−max{ik−1,μi1 }
−k+σik−1−μ1∑

jk−1=λi1−max{ik−1,μi1 }
−λik+max{ik−1,μik }−k+2

jk−1∑
jk−2=λi1−max{ik−1,μi1 }

−λik−1+max{ik−1,μik−1 }−k+3

⋅ ⋅ ⋅ j2∑
j1=λi1−max{ik−1,μi1 }
−λi2+max{ik−1,μi2 }

j1

+ ∑
2≤i1<...<ik−1<ik=n

λi1−max{n−1,μi1 }−k+1∑
jk−1=λi1−max{n−1,μi1 }
−λn+max{n−1,μn}−k+2

jk−1∑
jk−2=λi1−max{n−1,μi1 }

−λik−1+max{n−1,μik−1 }−k+3

⋅ ⋅ ⋅ j2∑
j1=λi1−max{n−1,μi1 }
−λi2+max{n−1,μi2 }

j1

= ∑
2≤i1<i2<...<ik≤n

λi1−max{ik−1,μi1 }
−k+σik−1−μ1∑

jk−1=λi1−max{ik−1,μi1 }
−λik+max{ik−1,μik }−k+2

jk−1∑
jk−2=λi1−max{ik−1,μi1 }

−λik−1+max{ik−1,μik−1 }−k+3

⋅ ⋅ ⋅ j2∑
j1=λi1−max{ik−1,μi1 }
−λi2+max{ik−1,μi2 }

j1,

where we used the assumption μ1 ≤ n − 2 to conclude that σik−1−μ1 = 1 if ik = n.
Corollary 6.3. Assume n ≥ 2. Then, for any integer k ∈ {1, . . . , n − 1} we have the following results:
(a) hk(λ − μ) > 0 if and only if

k ≤ λi − μi + i − 3 for all i = 2, . . . , k + 1.
(b) hk(λ − μ) > 0 if and only if there is some integer ik ∈ {k + 1, . . . , n} such that

2 ≤ λik − μik + σik−1−μ1 (6.2)

and
k ≤ λi −max{ik − 1, μi} + i − 3 + σik−1−μ1 for all i = 2, . . . , k + 1. (6.3)

Proof. First, let us show (b). If 2 ≤ k < n, then the formula for hk(λ − μ) gives that hk(λ − μ) is positive if and
only if there are integers i2 < i3 < ⋅ ⋅ ⋅ < ik in {2, . . . , n} such that the number

λi1 −max{ik − 1, μi1 } − k + σik−1−μ1
is positive and not less than each

λi1 −max{ik − 1, μi1 } − λij +max{ik − 1, μij } − j + 2
whenever 2 ≤ j ≤ k. This is equivalent to

k ≤ λij −max{ik − 1, μij } + j − 2 + σik−1−μ1 for all j = 1, . . . , k. (6.4)

For j = k this condition becomes inequality (6.2) because μik ≥ ik − 1. Furthermore, for each j ∈ {1, . . . , k},
we have ij ≥ j + 1. Thus, using (6.4) we obtain

k ≤ λij −max{ik − 1, μij } + j − 2 + σik−1−μ1≤ λj+1 −max{ik − 1, μj+1} + (j + 1) − 3 + σik−1−μ1 .
Hence, we have shown that conditions (6.4) imply (6.2) and (6.3).

Conversely, assume (6.2) and (6.3) are satisfied. Choosing then ij = j + 1 for j = 1, . . . , k − 1, we obtain
k ≤ λj+1 −max{ik − 1, μj+1} + (j + 1) − 3 + σik−1−μ1= λij −max{ik − 1, μij } + j − 2 + σik−1−μ1 .

Since (6.4) is equivalent to (6.2) for j = k, it follows that conditions (6.4) hold.
We have shown that assertion (b) is true if k ≥ 2. Using the first part of Theorem 6.2 (b), one checks that

(b) is also true if k = 1.
Second, for claim (a) one argues similarly. We leave the details to the interested reader.



A. Corso, U. Nagel, S. Petrović and C. Yuen, Blow-up algebras and determinantal ideals | 823

Part (a) of the previous result implies the following corollary.

Corollary 6.4. If n ≥ 2, then
regF(Iλ−μ) = min{n − 1, λi − μi + i − 3 | 2 ≤ i ≤ n}.

Proof. Set r = min{n − 1, λi − μi + i − 3 | 2 ≤ i ≤ n}. Using Corollary 6.3, we conclude that hr(λ − μ) ̸= 0 and
hr+1(λ − μ) = 0 because

r = min{n − 1, λi − μi + i − 3 | 2 ≤ i ≤ r + 2}.
Now we illustrate Corollary 6.3 (b) in the case where Iλ−μ is a strongly stable monomial ideal.

Corollary 6.5. If n ≥ 2 and μ = (0, 1, . . . , n − 1) ∈ ℤn, then
regF(Iλ−μ) = min{n − 1, ⌊ λi + i2 ⌋ − 1 | 2 ≤ i ≤ n}.

Proof. Using μi = i − 1, by Corollary 6.3 (b) we obtain that hk(λ − μ) > 0 if and only if there is some integer
ik ∈ {k + 1, . . . , n} such that

ik ≤ λik
and

k + ik ≤ λi + i − 1 for all i = 2, . . . , k + 1. (6.5)

Set
r = min{n − 1, ⌊ λi + i2 ⌋ − 1 !!!!!! 2 ≤ i ≤ n}.

Now put ir = r + 1. Then ir ≤ n ≤ λn ≤ λir and, by definition of r, we have
r + ir = 2r + 1 ≤ λi + i − 1

for each i = 2, . . . , n. Hence Conditions (6.5) are satisfied, and thus hr(λ − μ) > 0. This gives regF(Iλ−μ) ≥ r.
If r = n − 1, then equality follows by Theorem 6.2.

Assume r ≤ n − 2. Then it remains to show that hr+1(λ − μ) = 0. If i ≥ r + 2, then
λi + i
2 ≥ n + r + 22 ≥ r + 2.

It follows that
r = min{n − 1, ⌊ λi + i2 ⌋ − 1 !!!!!! 2 ≤ i ≤ r + 1} = λj + j2 − 1

for some j ∈ {2, . . . , r + 1}. This implies λj + j ≤ 2r + 3.
However, (6.5) with k = r + 1 requires in particular

2r + 3 ≤ r + 1 + ir+1 ≤ λj + j − 1.
This contradiction shows hr+1(λ − μ) = 0, as desired.
Let us apply these results in order to compute the reduction number of the minimal reductions established
in the previous section. There are results in the literature that relate reduction numbers and Castelnuovo–
Mumford regularities under various assumptions (see, for example, [64]). However, we need the following
observation.

Proposition 6.6. Let I ⊂ R = K[x1, . . . , xN] be a homogeneous ideal that is generated in one degree, say d,
where K is an infinite field. Assume that the special fiber ring F(I) is Cohen–Macaulay. Then each minimal
reduction of I is generated by dimF(I) homogeneous polynomials of degree d, and I has reduction number

r(I) = regF(I).
Proof. For any minimal reduction J of I, consider the equality JIk = Ik+1, where integer k = rJ(I). Since J is
contained in I and I is generated by homogeneous polynomials of degree d, the same must be true for J.
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As K is infinite eachminimal reduction of I is generated by s = dimF(I) elements. Let J = (g1, . . . , gs) be
such a reduction. The classes of its generators form a system of parameters of F(I) that is linear. Since F(I) is
Cohen–Macaulay, g1, . . . , gs is a regular sequence. Regularity is invariant under quotient by a linear regular
sequence (see, e.g., [49, Lemma 2]). Thus,

regF(I) = regF(I)/JF(I).
AsF(I)/JF(I) is artinian its regularity is determined by its largest non-vanishing degree component (see, e.g.,
[50, Lemma 2.1]), that is,

regF(I)/JF(I) = max{k ∈ ℤ | [F(I)/JF(I)]k ̸= 0}.
Notice that [F(I)/JF(I)]k ≅ Ik/(JIk−1 +mIk). Nakayama’s Lemma implies that [F(I)/JF(I)]k = 0 if and only if
Ik = JIk−1. Now the claim follows.

Finally, we are ready to determine the reduction number of any Ferrers ideal. Together with Theorem 5.1, this
completes our derivation of Dedekind–Mertens-like formulas in this case.

Theorem 6.7. For each partition λ, the reduction number of the Ferrers ideal Iλ is

r(Iλ) = min{n − 1, λi + i − 3 | 2 ≤ i ≤ n}.
Proof. Consider μ = (μ1, . . . , μn), where μ1 = ⋅ ⋅ ⋅ = μn = n, and λ̃ = (λ1 + n, . . . , λn + n). Then the special
fiber rings of the ideals Iλ, Iλ̃−μ, and I λ̃−μ are isomorphic.

The Ferrers ideal Iλ is generated in degree two and its special fiber ring is Cohen–Macaulay (see, e.g.,
Theorem 4.2). Hence Proposition 6.6 applies and we conclude using Corollary 6.4 if n ≥ 2. If n = 1, then
Jλ = Iλ, and thus rJλ (Iλ) = 1, completing the argument.

Example 6.8. If λ = (m,m, . . . ,m) ∈ ℤn, then Theorem 6.7 gives r(Iλ) = min{m, n} − 1, and thus
Jλ ⋅ Imin{m,n}−1

λ = Imin{m,n}
λ .

This is the Dedekind–Mertens formula for the content of the product of two generic polynomials in [14, The-
orem 2.1], as discussed in the introduction. Theorems 5.1 and 6.7 give analogous Dedekind–Mertens-like
formulas with optimal exponents for an arbitrary Ferrers ideal.

We now consider the specialized Ferrers ideals for which we found a distinguished minimal reduction in
Theorem 5.2.

Theorem 6.9. Let μ = (0, 1, . . . , n − 1) ∈ ℤn, and let λ = (λ1, . . . , λn) be a partition, where λ1 = m and λn ≥ n.
Then the reduction number of the specialized Ferrers ideal Iλ−μ is

r(Iλ−μ) = min{n − 1, ⌊ λi + i2 ⌋ − 1 !!!!!!! 2 ≤ i ≤ n}.
Proof. The ideal Iλ is generated in degree two, and its special fiber ring is Cohen–Macaulay by Theorem 4.2.
Hence Proposition 6.6 and Corollary 6.5 give the assertion if n ≥ 2. If n = 1, then Iλ−μ = x1(xμ1+1, . . . , xm),
which is equal to each of its minimal reductions. This completes the argument.

We illustrate some of the above results in some very special cases.

Example 6.10. Let 2 ≤ n ≤ m be integers and consider the partition

λ = (m, . . . ,m) ∈ ℤn and μ = (0, 1, . . . , n − 1) ∈ ℤn .
Then the coefficients of the normalized numerator in the Hilbert series of the toric ring F(Iλ−μ) are

h1(λ − μ) = max{0, n − 1} + n∑
j=2

(m − (j − 1) − 1) = n − 1 + n∑
j=2

(m − j) = m(n − 1) − (n2)
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and, for k ≥ 2, they are
hk(λ − μ) = ∑

2≤i1<i2<⋅⋅⋅<ik≤n

m−ik−k+2∑
jk−1=−k+2

jk−1∑
jk−2=−k+3

⋅ ⋅ ⋅ j2∑
j1=0

j1

= ∑
k<ik≤n

(ik − 2k − 1) m−ik−k+2∑
jk−1=−k+2

jk−1∑
jk−2=−k+3

⋅ ⋅ ⋅ j2∑
j1=0

j1

= ∑
k<ik≤n

(ik − 2k − 1) m−ik−k+2∑
jk−1=−k+2

jk−1∑
jk−2=−k+3

jk−2∑
jk−3=−k+4

⋅ ⋅ ⋅ j3∑
j2=−1

(j2 + 12 )
...= ∑
k<ik≤n

(ik − 2k − 1)(m − ik + 1k ).
Notice that, for a fixed k, this is a sum over a polynomial in ik of degree 2k − 1, which can be evaluated
explicitly. For example, if k = 2, then

h2(λ − μ) = (m4) − m(m + 1 − n3 ) + 3(m + 2 − n4 ).
However, a general formula does not seem to be easy, except in the case m = n.

Indeed, if m = n, then the above formulas simplify to give

hk(λ − μ) = ( n2k)
for all k ≥ 0. In this special case there is a more direct approach. Observe that if we assume m = n, then
we have Iλ−μ = (x1, . . . , xn)2, thus F(Iλ−μ) is the coordinate ring of the second Veronese embedding of ℙn−1
into ℙ(n+12 )−1. Hence the Hilbert function in non-negative degrees is

hK[Iλ−μ](j) = (n − 1 + 2jn − 1 ).
The multiplicity is e(F(Iλ−μ)) = 2n−1. Observe that F(Iλ−μ) is a Gorenstein ring if and only if n is even.
Now consider the analogous squarefree specialized Ferrers ideals.

Example 6.11. Let 2 ≤ n < m be integers and consider the partition

λ = (m, . . . ,m) ∈ ℤn and μ = (1, 2, . . . , n) ∈ ℤn .
Then

h1(λ − μ) = max{0, n − 2} + n∑
j=2

(m − j − 1) = n − 2 + n∑
j=2

(m − j − 1) = m(n − 1) − (n + 12 )
and

hk(λ − μ) = ∑
2≤i1<i2<⋅⋅⋅<ik≤n

m−ik−k+2∑
jk−1=−k+3

jk−1∑
jk−2=−k+3

jk−2∑
jk−3=−k+4

⋅ ⋅ ⋅ j2∑
j1=0

j1

= ∑
k<ik≤n

(ik − 2k − 1) m−ik−k+2∑
jk−1=−k+3

jk−1∑
jk−2=−k+3

jk−2∑
jk−3=−k+4

⋅ ⋅ ⋅ j2∑
j1=0

j1

= ∑
k<ik≤n

(ik − 2k − 1) m−ik−k+2∑
jk−1=−k+3

jk−1∑
jk−2=−k+3

jk−2∑
jk−3=−k+4

⋅ ⋅ ⋅ j3∑
j2=−1

(j2 + 12 )
...
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= ∑
k<ik≤n

(ik − 2k − 1) m−ik−k+2∑
jk−1=−k+3

(jk−1 + k − 2k − 1 )
= ∑
k<ik≤n

(ik − 2k − 1)(m − ik + 1k )
for k ≥ 2, where in the formula from Theorem 6.2 we used that ik > ij implies ik − 1 ≥ ij for j = 2, . . . , k − 1.

Note that in the special casem = n + 1 these formulas are againwell known. Indeed, then Iλ−μ is the edge
ideal of a complete graph on n + 1 vertices, and the result simplifies to

hk(λ − μ) = {{{{{{{
(n + 12k ) if k ≤ n + 12 and k ̸= 1,(n + 1)(n − 2)

2 if k = 1,
as first shown in [66, Remark 9.2.11]. For the multiplicity, we obtain

e(F(Iλ−μ)) = h0(λ − μ) + ⋅ ⋅ ⋅ + hn−1(λ − μ) = h1(λ − μ) − (n + 12 ) + ∑
k≥0

(n + 12k ) = 2n − (n + 1).
In the case m = n + 1, also the Hilbert function of F(Iλ−μ) admits a nice form. Indeed, in non-negative

degrees it equals its Hilbert polynomial, which in turn is equal to the Ehrhart polynomial of the second
hypersimplex inℝn+1 with (n+12 ) vertices (see [63, Corollary 9.6]), namely

hF(Iλ−μ)(j) = (n + 2jn ) − n(n + j − 1n )
for all j ≥ 0. Note that the multiplicity of F(Iλ−μ), that is 2n − (n + 1), is the volume of this hypersimplex.

7 Final remarks and open problems

7.1 Shapes of minimal free resolutions

In Corollary 3.6 we showed in particular that the rings K[Tλ−μ]/I2(Tλ−μ) and K[Tλ−μ]/I2(Sλ−μ) are Koszul
rings. This means that the minimal graded free resolution of the residue field over the original ring is linear,
that is, it is of the form ⋅ ⋅ ⋅ → Aγ2 (−2) → Aγ1 (−1) → A → K → 0,

where A is K[Tλ−μ]/I2(Tλ−μ) or K[Tλ−μ]/I2(Sλ−μ) and K is considered as the quotient of A by its maximal
homogeneous ideal. It is a very interesting question to study the shape of the graded minimal free resolution
of A over the polynomial ring R = K[Tλ−μ]. The first problem is then to describe the length of the linear part of
the resolution. This questionhas beenmostly investigated in the casewhen the ideal is generated byquadrics.
In fact, one says that A = R/I has property (Np) for some integer p ≥ 1 if the first p steps in the resolution are
linear (see [31]). More precisely, the graded minimal free resolution has the form⋅ ⋅ ⋅ → Fp+1 → Rβp (−p − 1) → ⋅ ⋅ ⋅ → Rβ1 (−2) → R → A → 0.

Hence property (N1) means that the ideal I is generated by quadrics. The algebra A has property (N2) if in
addition all first syzygies of I are linear. There is a rich literature investigating property (Np) in various cases,
initiated in [30].

Notice that the resolution of A is linear if and only if its Castelnuovo–Mumford regularity is one. By Corol-
laries 6.4 and 6.5, the regularity of K[Tλ−μ]/I2(Tλ−μ) and K[Tλ−μ]/I2(Sλ−μ) is greater than one in most cases.
Thus, it would be very interesting to establish results on the length of the linear part of the resolution of these
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rings. This is a challenging problem. It is even open in the very special case, where λ = (m, . . . ,m) ∈ ℤn,
μ = (0, 1, . . . , n − 1) ∈ ℤn, and 2 ≤ n ≤ m as considered in Example 6.10. If we further assume m = n, then
A = K[Tλ−μ]/I2(Sλ−μ) is the coordinate ring of the second Veronese embedding ofℙn−1. In this latter case, the
resolution is linear if and only if n ≤ 3. If n ≥ 4 and the characteristic of K is zero, then A has property (N5),
but not (N6) by [39]. However, if n ≥ 6 and the characteristic of K is five, then A satisfies (N4), but not (N5)
by [2].

7.2 Finding explicit minimal reductions

In Theorem 5.2 we determined a distinguished minimal reduction of the ideal Iλ−μ in an important case. It
would be desirable to extend this result to further cases as this could be useful, for example, in studying the
core of Ferrers ideals or in investigations in algebraic statistics (see below). The challenge is that then the
number of generators of a minimal reduction is greater than the number of diagonals in Tλ−μ. An interesting
first step would be to settle the case when the difference is one. We note that, experimentally, the pattern for
a minimal reduction as found in Example 5.6 seems to generalize.

7.3 Other shapes of matrices and higher minors

The determinantal rings K[Tλ−μ]/I2(Tλ−μ) and K[Tλ−μ]/I2(Sλ−μ) arise naturally as special fiber rings of a
Ferrers and a specialized Ferrers ideal, respectively (see [12, Proposition 5.1] and Theorem 4.2), or as Rees
algebras (see Remark 4.7). However, one may also view these determinantal rings as obtained from a generic
(symmetric)matrix, where some variables are forbidden for use in anyminor. Alternatively, one could replace
the “forbidden” variables by zeros and eliminate forbidden subregions of thematrix. It is shown in [3] that the
ideal generated by the maximal minors of such a matrix always has a linear resolution and that the non-zero
minors form a universal Gröbner basis.

It would be interesting to investigate ideals generated by higher minors of a tableau Tλ−μ or Sλ−μ. Steps
in this direction are taken in [52].

7.4 Connections with algebraic statistics

We hope that our results also motivate further investigations in applications of monomial algebras. For
instance, special fiber rings of edge ideals of graphs (and hypergraphs) make a notable appearance in alge-
braic statistics, which considers statistical models with rational parametrizations. Specifically, the structure
of the model of independence of two categorical random variables X ∈ [n] and Y ∈ [m] is such that it is
parametrized by the edges of a bipartite graph on n and m vertices. In symbols,

P(X = i, Y = j) = P(X = i)P(Y = j),
where P(A)denotes the probability of the event A. If we denote themarginal probabilities by P(X = i) = xi and
P(Y = i) = yi, the edge xiyj in a bipartite graph corresponds to the probability of the joint state of the random
variables (X, Y) = (i, j). Without any restrictions on themodel, the bipartite graph is complete. Missing edges
in the bipartite graph correspond to the so-called structural zeros in the statistical model, that is, joint states
of random variables that are simply unobservable. In this sense, Ferrers graphs correspond to independence
models where structural zeros appear with a hierarchy: if the joint state (i, j) is not a zero, then neither are
any states (k, l)with k < i and l < j. In the same way, the generalized Ferrers tableau with μi ≥ i parametrizes
the model of quasi-independence with structural zeros, obtained from the independencemodel by removing
the diagonals of the tableau.

One of the early results in the field is the Fundamental Theorem of Markov Bases [20], which states that
a Markov basis for a log-linear statistical model on discrete variables, of which the independence models are
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quintessential examples, is given by a generating set of a corresponding toric ideal. In algebraic language,
a Markov basis of a model parametrized by monomials is a generating set of the special fiber ring of that
monomial ideal. A Markov basis is necessary for testing fit of a proposed model to the given data, and the
Fundamental Theorem applies to a large class of models used in practice. However, most of the time, deter-
mining theMarkov basis – theoretically or using a computer – is a highly non-trivial task due to the size of the
problems that arise in applications. In other situations, structural zeros pose a significant challenge, in that
many of the elements of aMarkov basis are not applicable, as they attempt to place observations where struc-
tural zeros disallow them. In such cases, having an explicit description of a Gröbner basis can be important
for more efficient computation, see for example [58] or [40].

Independencemodels are not the only ones encoded by graphs; there are other families of models whose
building blocks have bipartite graph structure. Recent results, e.g., [32, 56], show that for some very pop-
ular models of random graphs Markov bases can be constructed by appropriately composing generators
of the edge subring of a bipartite graph. The problem of the computational difficulty of Markov bases has
been addressed for various models recently [17, 32, 34, 59] by considering subsets of generators that can be
applied to given data. Another direction of interest is howwell Markov chains based on various types of bases
behave; the interested readers should see, e.g., [55, Section 3.1] for references to the literature on mixing
times. It is possible that using a nice Gröbner basis leads to positive results, though it seems more likely that
Markov chains based on graph-theoretic sampling algorithms could perform better. These types of questions
are subjects of ongoing research.

More interestingly, a connection has not yet been made between statistical concepts and reductions,
reduction numbers, or other similar information. Generators of a minimal reduction are sums of monomi-
als from the model parametrization. Since minimal reductions carry a lot of algebraic information about the
original monomial ideal, and algebraic information such as dimension captures the algebraic complexity of
themodel, anopenquestion is to investigate how touseminimal reductions in statisticalmodeling, sampling,
or inference.
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