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Abstract: We investigate Rees algebras and special fiber rings obtained by blowing up specialized Ferrers
ideals. This class of monomial ideals includes strongly stable monomial ideals generated in degree two
and edge ideals of prominent classes of graphs. We identify the equations of these blow-up algebras. They
generate determinantal ideals associated to subregions of a generic symmetric matrix, which may have
holes. Exhibiting Grobner bases for these ideals and using methods from Gorenstein liaison theory, we show
that these determinantal rings are normal Cohen—Macaulay domains that are Koszul, that the initial ideals
correspond to vertex decomposable simplicial complexes, and we determine their Hilbert functions and
Castelnuovo—Mumford regularities. As a consequence, we find explicit minimal reductions for all Ferrers
and many specialized Ferrers ideals, as well as their reduction numbers. These results can be viewed as
extensions of the classical Dedekind—Mertens formula for the content of the product of two polynomials.

Keywords: Blow-up algebras, determinantal ideal, Grobner basis, quadratic and Koszul algebra,
Cohen—Macaulay algebra, liaison, vertex-decomposability, Hilbert function, Castelnuovo—Mumford
regularity, Ferrers and threshold graphs, skew shapes, reductions
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1 Introduction

Determinantal ideals have been a classic object of investigation in algebraic geometry and commutative alge-
bra (see, e.g., [1, 8, 10, 24, 37, 42, 48]). In this paper, we introduce a new class of determinantal ideals. They
are associated to certain subregions of a generic symmetric matrix. The novelty is that the region is allowed
to have holes. We show that the minors generating the ideal form a Grobner basis (with respect to a suitable
term order) and deduce that their quotient rings are normal Cohen—Macaulay domains that are Koszul. Using
methods from liaison theory, we establish that their initial ideals are squarefree and the Stanley—Reisner ide-
als of vertex decomposable simplicial complexes. We also use this approach to determine the Hilbert function
and Castelnuovo—-Mumford regularity of the quotient rings.
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The class of determinantal ideals introduced here arises naturally in the investigation of certain blow-up
algebras. In fact, these ideals describe the equations of special fiber rings and Rees algebras when one blows
up certain monomial ideals, called specialized Ferrers ideals (see [13]). These monomial ideals are gener-
ated by quadrics and include all strongly stable monomial ideals that are generated in degree two as well as
the edge ideals of threshold and Ferrers graphs — two ubiquitous classes of graphs. Using Grobner bases, we
also produce explicit minimal reductions of (many specialized) Ferrers ideals. We then show how our knowl-
edge of the Castelnuovo—Mumford regularity allows us to determine their reduction numbers. These results
can be viewed as a generalization of the classical Dedekind—Mertens content formula. Finding distinguished
classes of reductions is potentially of interest in areas as diverse as birational geometry (see, e.g., [57, 62])
and algebraic statistics (see below).

The origins of some of our results can be traced back to the Dedekind—Mertens formula. The content c(f)
of a polynomial f = a; + a>t +--- + ant"! € R[t] over a commutative ring R is the R-ideal (a1, az, .. ., ax,).
Generalizing Gauss’s Lemma for a PID, Dedekind and Mertens [54] gave the general content formula for the
product of two polynomials f, g € R[t], namely

c(fg) - c(@" = c(f) - c(®)". (1.1)

In [14], this equation is explained in terms of the theory of Cohen—Macaulay rings for generic polynomi-
alsf=x1+---+xpt" Tand g = yim + - -- + y1t™ 1. Multiplying both sides of (1.1) by c(f)""1, one obtains the
“decayed” content equation

c(fg) - [cH - c(@)1™ ! = [c(h - c(g)". (1.2)

By [14], if n < m, the exponent n — 1 = deg f in (1.2) is the least possible. That is, c(fg) is a minimal reduc-
tion of c(f) - ¢(g) with reduction number min{n, m} — 1 (see Figure 1). Subsequently, a combinatorial proof of
the Dedekind—Mertens formula was given by Bruns and Guerrieri [5] via a study of the Grébner basis of the
ideal c(fg). The boxes in Figure 1 are naturally associated to the edges of a complete bipartite graph (with

Yr Y2 Y3

Z1

€2

Tpn—2

Tn—1

Figure 1. The ideal c(fg) in relation to the ideal c(f)c(g).

vertices xq,...,xy and y1, ..., ym). Its diagonals correspond to the generators of c(fg). As a consequence
of our results on blow-up rings, we generalize the classical content reduction formula for a full rectangular
tableau to Dedekind—Mertens-like formulas for Ferrers tableaux and skew shapes. We proceed in two steps.

In the first step, instead of a rectangle we consider more generally a Ferrers tableau and its corresponding
Ferrers ideal. Any partition A = (11, ..., A,) corresponds to a Ferrers tableau T), which is an array of n rows
of cells with A; cells in row i, left justified. The corresponding Ferrers ideal has a monomial generator corre-
sponding to each cell in Ty, that is,

IAZ(le]|1S]SAl’ 1SiSn)CK[le---,Xn,Yh---,Ym],

where m = Ay. It is the edge ideal of a Ferrers graph (see Figure 2).
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Y1 Y2 Ys Ya Ys Ys Yi Y2 Ys Y4 Ys Ye
I NNN
X9 T2
x3 T3
Ty g |\

T5 o5 |\,

In = (X1Y1, X1Y2, X1¥3, X1Y4, X1Y5, X1Y6, X2V 1, X2Y2, X2V3, X2V4, X3V 1, X3Y2, X3V3, X3V 4, X4V1, X4Y2, X5V1)

Figure 2. Ferrers graph, tableau, reduction, and ideal for A = (6, 4, 4, 2, 1).

Ferrers graphs/tableaux have a prominent place in the literature as they have been studied in relation to
chromatic polynomials [4, 23], Schubert varieties [19, 21], hypergeometric series [33], permutation statis-
tics [9, 23], quantum mechanical operators [65], and inverse rook problems [19, 21, 27]. More generally,
algebraic and combinatorial aspects of bipartite graphs have been studied in depth (see, e.g., [12, 13, 22,
25, 35, 51, 61] and the comprehensive monographs [36, 66]). In this paper, we complete a study initiated in
[12] by exhibiting, in particular, explicit minimal reductions of Ferrers ideals. More precisely, we show that
the diagonals in any Ferrers tableau T, correspond to the generators of a minimal reduction J, of the Ferrers
ideal I} (see Theorem 5.1 and Figure 2) and that I has reduction number (see Theorem 6.7)

r(I)) =minfn-1,A4;+i-3|2<i<n}.

In the second step, we investigate the ideals that one obtains from Ferrers ideals by specialization, that is,
by substituting y; — x;.In order to infer properties of the resulting ideals, one wants to preserve the number of
generators in this process. This forces us to adjust the traditional notation. Given a partition A = (A4, ..., Ay),
letyu = (u1, ..., un) € Z" beavectorsuchthatO < py < -+ < uy < Ap. Formadiagram T, obtained from T
by removing the leftmost p; boxes in row i (see Figure 3). The ideal whose generators correspond to the cells
of Ty_, was called a generalized Ferrers ideal Iy_, in [13]. Thus,

Doys=(gyjl1<isn pi <j<A) cK[Xt, ..o, Xn, Y1y o0 oy Yml.
It is isomorphic to a Ferrers ideal. Substituting y; + x; gives the specialized Ferrers ideal
7/1_]1 =Xl 1<i<n, p <j<A) cKxq, ..., Xmax{n,m}l-

In order to guarantee that I}_, and T,\_,, have the same number of minimal generators we assume throughout
puizi-1fori=1,...,n. Thus, Ty_, is a skew shape. Notice that specialized Ferrers ideals are a proper

generalization of Ferrers ideals, which one obtains if u; = --- = y, > n (see Figure 5).
Y Y2 Y3 Ya Ys Ye T1 X2 X3 T4 T5 g N
1 | | | 1 | | | F\\Tlg T13 T14 T15 T16
T Z2 Tio \\\ L |Tos|Toe
z; P z3loL Tis - \\\ - 135|156
565_ x5_ T15T25T35”“§-\“\. Ts6
T6|T26|T36|Tus|T56|
T)\—u S/\_IJ«

Figure 3. A skew shape and its symmetrization for A = (6, 6,6, 6, 6) and y = (1, 4, 4, 5, 5).
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By [13], the ideal I}, and its specialization 7/17;1 have closely related minimal free resolutions. Both are
supported on a polyhedral cell complex whose faces can be read off from Tj_,. Thus, one wonders if also
their reductions are similarly related. Surprisingly, this is not the case. Properties of reductions are governed
by blow-up rings. In Theorem 4.2, we determine the equations of the special fiber ring of T/\—u- More precisely,
these equations can be taken as 2-minors of a subregion S, of a generic matrix, where S;_, is obtained
from T,_, by reflecting about the main diagonal (see Figure 3). Notice that, depending on y, the symmetrized
tableau Sy, may have holes in the middle! A modification of this construction also allows us to identify
the Rees algebra of 7/1—;4 as determinantal (see Corollary 4.4). In order to establish these results we first
show that the 2-minors in the symmetrized region S;_,, form a Grobner basis of the ideal they generate (see
Theorem 2.4). We then apply liaison-theoretic methods in order to analyze the corresponding initial ideals.
In particular, we show that they correspond to vertex decomposable simplicial complexes and thus are
Cohen—Macaulay. To conclude, we also use a localization argument to prove that the determinantal ideals
are prime (see Proposition 3.5) and determine the dimension of the special fibers ring (see Proposition 4.1).

Notice that Theorem 4.2 generalizes the identification of the special fiber ring of a Ferrers ideal in
[12, Proposition 5.1]. We apply Theorem 4.2 to determine explicit minimal reductions of arbitrary Ferrers
ideals (see Theorem 5.1) and of strongly stable specialized Ferrers ideals (see Theorem 5.2). Their reduction
numbers are found in Theorems 6.7 and 6.9. The latter results are based on formulas for the Hilbert functions
of the special fiber rings to generalized and specialized Ferrers ideals in Section 6. There we also establish
aresult that relates the reduction number to the Castelnuovo—Mumford regularity of a special fiber ring (see
Proposition 6.6), which is of independent interest. It allows us to determine the reduction numbers in our
Dedekind—-Mertens-like formulas.

There is extensive literature on the Hilbert functions of determinantal rings (see, e.g., [1, 11, 18, 26, 37,
43-46, 60]. It often involves path counting arguments. Instead, we use a liaison-theoretic approach, based
on the theory of Gorenstein liaison (see [41, 47]).

We hope that our results motivate further investigations. Thus, we conclude the article with some specific
open questions outlined in Section 7. In particular, we discuss problems regarding the shape of minimal free
resolutions, finding explicit minimal reductions, generalizations to higher minors, and some connections to
algebraic statistics.

2 Symmetric tableaux with holes: Grobner bases

In this section we determine Grobner bases of a new class of determinantal ideals, as mentioned in the
introduction. We start by recalling our standard notation that is used throughout the paper. The vector
A= (Aq,...,Ay)isapartition and u = (i1, - . . , Un) an integer vector such that

O<py < <uUp<Ap<--- <Ay ==m

and p; >i-1foralli=1,...,n. Entries of the tableaux T, correspond to variables T;; in the polynomial
ring

K[Tp—p] :=K[Tj|1<i<n,u<j< Ail.

Thinking of T)_, as a subtableau of an m x n matrix, the symmetrized tableau S,_, is obtained by reflect-
ing Ty, along the main diagonal. Note that the resulting symmetrization may have holes along the main
diagonal.

Example 2.1. Consider A = (5, 5, 4) and u = (1, 3, 3). Then we get the symmetrization in Figure 4.

Crucially, note also that in general neither the tableau Ty, nor S;_, is a ladder or a symmetric ladder, respec-
tively, in the usual sense (see, e.g., [10, 28]).

Example 2.2. ConsiderA = (5, 5, 4)and u = (1, 3, 3). Then the variables T; 3 and T, 4 are in the tableau Ty_,.
However, T, 3 is neither in Tj_, nor in §,_, so the tableaux T)_,, and S, are not ladders.
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AN
-
¢ |Th2|Ths|Tha|Ths T2 |Ts|Tha|Ths
L (Tou|Tos T12 \\é To4|Ts5
S el ket I il MO .
Ty Tig| N |T54
T14|Tog|T34( ™
T15|1T5s5
T)\—u S)\—M

Figure 4. Example of a symmetrized tableaux.

Denote by I>(T)-y) and I5(S)—) the ideals in K[T)_,] generated by the determinants of 2 x 2 submatrices of
Ta-, and Sy, respectively.

Example 2.3 (Example 2.1, continued). For A and u as in Example 2.1, we get

I (Tr-p) = (T14T2s5 — T15T24)

and
L(Sa-y) = (T14T25 — T15T24, T12T34 — T13T24).

The main result of this section is a Grébner basis computation (see Theorem 2.4). To this end, we fix through-
out this section the lexicographic order < on the monomials in K[T)-,], where the variables are ordered
row-wise, that is, < is the lexicographic order induced by

Tigner > Tige2 > o> Tipy > Toppen > > Top, > 00> T,

Equivalently, T, > Ty if r < 1, orif r = ¥’ and c < ¢'. Note that this is a diagonal term order, that is, the
leading term of any minor is the main diagonal term.

Theorem 2.4. We have the following results:
(@) The 2-minors of Ty form a Grébner basis of I,(T)_,,) with respect to the lexicographic order <.
(b) The 2-minors of Sy_, form a Grobner basis of I»(Sy-,) with respect to the lexicographic order <.

Proof. We first show (b). We use induction on the number of rows, n, of Ty_,. If n = 1, then I,(S)—,) = 0, so
the claim is clearly true. Let n > 2. Then we consider the partition A differing from A only in its last part

Z = (/11,...,)(,1_1,/1“— 1).

Thus, the tableaux T, is obtained from TLF by adding a new right-most box in its last row. Using induction
on the number of variables in row n of T,_, we may assume that the 2-minors of Si—u form a Grobner basis
of I Z(SZ—M) with respect to the lexicographic order. To show the analogous claim for the 2-minors of §;_,, we
simply use Buchberger’s Criterion (see, e.g., [15]) and show that the S-polynomial of any two minors has
remainder zero after at most four steps of the division algorithm.

Let M, and M be two distinct 2-minors of the symmetric tableau S;_,,. To simplify notation, throughout
much of this proof, let us use a single index to denote the row and column indices for the variables in Sy_.
Let

My :=TqTy - TaT., M =TTy - T.Ty,

where the positive term in each binomial represents the initial term of the minor with respect to the order <.
We may assume that the initial terms of M; and M, are not relatively prime, since their S-polynomial
reduces to zero otherwise (see, for example, [15, Proposition 2.9.4]). In addition, if the leading terms are not
relatively prime, say T; = T4, we may assume that the trailing terms are relatively prime. Indeed, if for example
T, = Te, the S-polynomial will be a multiple of another quadric in the ideal (another 2-minor of S;_,), and
will reduce to zero as follows:
S(M1, M) = Te(Tp Tr — Tk T¢).
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Thus we may assume that {Te, Tf} N {Tq, Tc} = 0. Since M1 and M, are minors, it follows that either the sup-
port of M1 M, consists of exactly 7 variables or it consists of 6 variables and the leading monomials of M; and
M, are equal. Furthermore, by symmetry of S;_,,, we may assume that all the 2-minors we are considering
are determinants of matrices whose south-east corners are not in the lower half of S;_,,. It follows that any
such minor with T}, 5, in its support is the determinant of a matrix with T}, 5, in its south-east corner, where
Ty,2, is located in Ty—,. Moreover, if Ty, 3, does not divide the leading term of such a minor, then the minor is
inI Z(S;_”). In any case, the row indices of the matrices determining our minors are at most n.

We now treat separately the possibilities for the variable T, ;, to appear in the support of one, both, or
none of the two minors.

Case I. Suppose that Ty, ¢ supp(M1) Usupp(Mz). Then M1, M, € IZ(SX—y)- By induction hypothesis, the
S-polynomial S(M1, M) can be reduced to zero using 2-minors in I Z(Sﬁ—y)' Thus, this is true in I>(Sy-,) as
well.

Case ll. Suppose that Ty, € supp(M7), but Tz, ¢ supp(M>), say, Tn,a, = Tq. By the leading term criterion,
we may assume that T} appears in the leading monomial of M,. Letting I = b, we obtain

My =Typ, Ty = TaTe, My =TypTi -~ TeTy.

Then S(M1, M3) = TqT¢Tx — TeTfTy,a,, and T is located to the left and above of T} 5,. Since by our conven-
tion on the south-east corners of minors T} is not in a row with index greater than n, the variable Ty also must
be located above row n. Thus, schematically, there are the following possibilities for the relative positions of
the variables in the supports of M; and M>:

Ik Tf T Ib Tq Te Ih Te T,
Te T, Ta of Ty Tp T, OF T; Ty Tu -
T, In,/\,l T. In,/ln T, In,/\,,

The variables in each initial term are underlined, making the common one underlined twice. Furthermore,
T,y denotes a variable that must be present in Ty, because T}, 3, is. It will be used for reduction. Indeed, in
all cases we can reduce the S-polynomial to zero because

S(Ml’ MZ) = Tc(TaTk - TeTm’) + Te(Tch’ - Tan,An)~
Notice that the order of the two steps in the division algorithm depends on the leading term of S(M;, M5).

The indicated reduction works in all cases.

Case lll. Finally, suppose Tp z, = supp(M1) N supp(Mz), say Tn,a, = Ta = T;, and the support of M1 M, con-
sists of 7 variables. Then
My =Tnp,Tp = TaTes, Mz = Ty, Tk - Te Ty,
where Ty + Ty, and
S(My, M) = TxTqT. — TpTeTy.
The variables T}, and Ti must be located to the left and above of T, ,,. One typical situation for the positions
of the involved variables is:

Ik Ty Te
Ty Ib T, .
Tf T. In An

As before, T,y and T,y denote variables whose presence is established if it is needed in the reduction process.
Indeed, assume T isnotlocated in the lower half of Sy_,. Then T,y isin Tj_. Thus, the division algorithm
provides
S(My, M) = Ta(TxTc = TfTw) = Tr(TqTn — TpTe).

Otherwise, if Ty is in the lower half of Sy, then Ty must be present there as well. This time the division
algorithm gives
S(Mla MZ) - Tc(TkTa - TeTm’) = Te(Tch’ - Tbe)-

Hence in both cases the S-polynomial reduces to zero.
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The other typical situation is

I, Ta
Ik T T .
Tf Tc In An

Assume first that the variable Ty is present in S)_,. There are two cases. If the leading term of the
S-polynomial is TxT,T¢, then we use the minor Ty T, — T,y Ty whose leading term divides Ty T4 T.. Thus
the division algorithm provides

S(My, M2) = Ta(TxTe = Ty Tf) = Tf(Ta T — Ty Te),

and hence the S-polynomial reduces to zero as a multiple of another minor. Otherwise, if the leading term
of the S-polynomial is T, T, Ty, then it is divisible by the leading term of T T, — Ty Tyy. Thus we can again
reduce the S-polynomial to zero using the division algorithm

S(M1, M2) + T(TpTe = TaTmr) = Ta(TkTe = Tf Ty ).

It remains to consider the case where the variable Ty, is not present in the tableau S;_,. It follows that
Tp and T, must be located in the upper half of S,_,, whereas Ty and T, are in the lower half of the tableau.
In particular, none of these variables is on its main diagonal. We need to keep track of the positions of the
involved variables. Denote the rows and columns of the locations of these variables by i, j, n and p, q, A,
respectively. Thus,
i<j<n<ldy, p<q<lAy,, p<j, and i<g<n.

Returning to the original double indices for the variables, we obtain that the above diagram becomes

b q An
i Ty Tip, )
i Ty Tj,

n Tp.n Tq,n Ty 2,

Here we included the row and column indices and wrote the variables in the form T ; with k < [. Notice that
the S-polynomial of the minors M; and M, now reads as

S(M1, M) = TiqTja, Tpn — Tin, Tp,jTg,n-
The non-presence of the variable Ty, means thatj < g < pjorq <j < uq.
Case A. Assume j < g < pj. Now we consider two subcases by comparing i and p.
Case A.1. Assumei < p. Then the following relations hold:
i<p<j<g<n<A,.
Hence the leading monomial of S(M1, M>) is T; 4 Tj a, Tp,n. Using rows i, p and columns g, n, we claim that
Ti,qTpn — TinTp,q € In(Sa-p)-

Indeed, since i < nand Ty, is present in T)_y, its column n also contains T; ,. Moreover, the presence of T ;
means that p, < j.Sincej < g < n < A,, we conclude that T, 4 is in T)_,. This shows the existence of the above
minor. Its leading monomial is T; 4 T, . Hence we can use it in the division algorithm for reducing S(M1, M5).
We obtain

S(Mla MZ) - Tj,An(Ti,q Tp,n - Ti,n Tp,q) = Ti,n Tp,q Tj,/\,, - Ti,}ln Tp,qu,n = F.

The leading monomial of Fis T; , Ty 4 Tj z,. Now, using rows i, j and columns n, A,, we claim

TinTjr, — Tin, Tjn € I(Sa-p)-
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To this end it is enough to see that the variable Tj , is present in Sy, if n < A,. However, Ty, € Ty, implies
Mg < n.Hence, using j < g, we conclude that y; < ug < n < A4 < Aj which gives Tj ,, € Tp_y. If n < Ay, then the
leading monomial of the last minor is T; , Tj A,. Thus, we can use it in another step of the division algorithm.
We get

F - Tp,q(Ti,n Tj,/l,, - Ti,/l,, Tj,n) = Ti,/ln(Tp,qu,n - Tp,qu,n)-

Notice that thisisalso trueif n = A,. Using rows j, g and columns p, n, we see that T), 4 Tj n — Tp,jT¢,n is a minor
of Sy, or trivial if j = g. In both cases, S(M1, M) reduces to zero.

Case A.2. Assumei > p. Then the following relations hold:
p<i<j<g<n.

It follows that the leading monomial of S(M1, M) is Ty, Ti 1, Tq,n. Using rows j, g and columns p, n, we claim
that

Tp,jTgn = TjnTp,q € Ir(Sa-p)-

Indeed, since g < nand Ty, is in Tp_y, its column n also contains Tj,,. As above, the presence of T, ; means
that up < j. Since j < g < Aj, we get T 4 € Ty, as desired. The leading monomial of the above minor is
Tp,j T4 n. Thus, the division algorithm provides

S(ML MZ) + Ti,/ln(Tp,qu,n - Tj,nTp,q) = _Tp,qTi,A,l T}',n + Tp,nTi,qu,/In =: F.
The leading monomial of F is Ty, 4T; , Tj,n. Using rows p, i and columns q, A, we claim that
Tp,qTiA, — Tpa,Ti,g € I2(Sap)-

Indeed, we have already seen Tj 4 € Tp_,. Moreovert, since Tj 3, is in column A, and p < i, this column also
contains T ,,. The leading monomial of the last minor is Ty 4T; A,. Hence, another step in the division algo-
rithm gives

F+ Tjn(Tp,qTin, = TpaaTig) = Tig(Tp,nTja, = Tp,a, Tjin)-

Since this is trivial or a multiple of a minor of Sj_,, using rows p, j and columns n, A,, we have reduced
S(M1, M>) to zero, as desired.

Case B. Assume q < j < 4. Again we consider two subcases by comparing i and p.
Case B.1. Assumei < p. This implies the relations
isp<g<j<n<i,.
Thus, the leading monomial of S(M1, M) is T; ¢ Tp,nTj1,. Using rows g, j and columns i, A,,, we obtain
TiqTja, — Ti,jTgn, € I2(Sa—p)-

Indeed, since g < j and Tj,, is present in T)_,, its column n also contains T ;,. Moreover, the presence of
Tpjmeans yp < j. Hence, we get i < pp < j < n <Ay <A, 80 Ty j € Th—y. Theleading term of the above minor
is Tj 4 Tj,2,- Applying the division algorithm, we obtain

S(M1, M3) = Tpn(TiqTjp, — Ti,jTgr,) = Ti,jTpnTan, — Tia,Tp,jTgn = F
with leading monomial T; ;Tp » Tg,a,. Using rows i, p and columns j, n, we claim that
TijTpn — TinTp,j € I(Sa-p)-

Indeed, column n of Ty_, contains T} ,. Since i < p, the variable T; , is also in this row. Observe that the
leading term of this minor is T; ; Tp, ». Using the minor for another step of the division algorithm, we obtain

F- Tq,/\,,(Ti,ij,n - Ti,nTp,j) = Tp,j(Ti,n Tq,/\,l - Ti,/l,, Tq,n)-

This polynomial is trivial or a minor of §)_, using rows i, g and columns n, A,. Hence it reduces to zero.
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Case B.2. Assumei > p. Then the following relations hold:
p<i<qg<j<n.
Thus, the leading term of S(M1, M,) is Tp,;Ti z, Tq,n- Using rows p, i and columns j, A,,, we get
Tp,iTia, = Tpa, Tij € L(Sa-p).

Indeed, Tp,,, is in column n of Ty, because Tj,, is and p < i. Furthermore, the presence of T; ; implies
Mi < g <j<n<A;,andthus Ty j € Ty Notice that the leading monomial of the last minor is T ;T; 1. Now
the division algorithm gives

SM1, M3) + Tgn(Tp,Tip, = Tp2u Ti) = Tp,nTiq i, = Tp,a, TijTgn =2 F
whose leading monomial is Tp » T; 4 Tj,a,. Using rows g, j and columns i, A,, we claim
Ti,gTja, — Ti,jTgn, € Ia(Sa-p)-

To this end it suffices to notice that T, ,, is present in column A, of Ty_, because Tj, is and g < j. Since
Ti ¢Tj a, is the leading monomial of this minor we can use it in the division algorithm. We get

F=Tpn(TiqTja, = Ti,jTqa,) = Ti,j(Tp,nTgn, = Tp,a, Tg,n)-

Again, this is zero or a minor of Ty, using rows p, g and columns n, A,. Hence S(M;, M;) has been reduced
to zero.

Case IV. Suppose the leading monomials of M1 and M, are equal and divisible by Ty ;,. Thus, the support
of M1 M, consists of 6 variables. In order to keep track of locations we use again double indices. Write the
leading monomial of M1 as T;jTn,a,. Since My # M,, we must have i # j, say i < j. Thus, we may assume

My =TijToa, = Tia, Tjns M2 =TijTop, — TinTja,,
where n < A,,. Hence
S(M19M2) = Ti,nTj,/l,, - Ti,An Tj’n’

which is a minor of $;_,, using rows i, j and columns n, A,. This completes the proof of (b).
Finally, consider claim (a). It also follows from the above arguments, but its proof is simpler because the
second situation in Case III above does not occur. We omit the details. O

3 Symmetric tableaux with holes: Invariants

Theorem 2.4 allows us to compute the initial ideals of the ideals I(Ty-) and I>(S)y-) with respect to the
order <. We use these to determine invariants of the determinantal ideals themselves. In order to analyze
their properties we use a technique from liaison theory.

Proposition 3.1. Let J c I ¢ R = K[x4, ..., x;] be homogeneous ideals such that ht] =htI - 1. Let f € R be
a homogeneous polynomial of degree d such that J : f =], and set I' := f-1+]. If R/I and R/J are Cohen—
Macaulay, then sois R/I' and htI' = htI.

Moreover, the Hilbert functions of the involved rings are related by

hr/r(G) = hry1(G = d) + hgyy(G) = hgry(G—a) forallj € Z.
Proof. This is part of [41, Lemma 4.8]. O

Remark 3.2. (i) Theideal I' := f- I + ] is called a basic double link of I. The name stems from the fact that I’
can be Gorenstein linked to I in two steps if I is unmixed and R/J is Cohen-Macaulay and generically
Gorenstein ([41, Proposition 5.10]).
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(ii) A homogeneous ideal I is said to be glicci if it is in the Gorenstein liaison class of a complete intersection.
It then follows that I is Cohen—Macaulay. If I is a squarefree monomial ideal, then, following [53, Def-
inition 2.2], I is said to be squarefree glicci if I can be linked in an even number of steps to a complete
intersection I’ generated by variables such that every other ideal in the chain linking I to I is a squarefree
monomial ideal.

Note that Proposition 3.1 provides the following: If I is a squarefree monomial ideal that can be obtained
from an ideal generated by variables by a sequence of basic double links, then I is squarefree glicci, thus in
particular Cohen—Macaulay.

We use basic double links to show that the initial ideals we consider correspond to simplicial complexes that
satisfy a strong combinatorial property: they are vertex decomposable. Recall that a simplicial complex A on n
vertices is a collection of subsets of {1, . . ., n} that is closed under inclusion. The elements of A are called the
faces of A. The dimension of a face F is |[F| — 1, and the dimension of A is the maximum dimension of its faces.
The complex A is said to be pure if all its facets, the faces that are maximal with respect to inclusion, have the
same dimension.

Let {k} be a vertex of A, a O-dimensional face. Then the link of k is

Ika(k) = {G e A | {k}UG € A, {k} N G =0},

and the deletion with respect to k is
Ak={GeA|{kinG =0}

A simplicial complex A is vertex decomposable if it is a simplex, or it is the empty set, or there exists a vertex k
such that 1k, (A) and A_k are both pure and vertex decomposable, and

dim A = dim(A_g) = dim Ika (k) + 1.

Vertex decomposable simplicial complexes are known to have strong structural properties. In particular, they
are shellable, and thus Cohen—Macaulay.
The Stanley—Reisner ideal associated to a simplicial complex A on n vertices is the squarefree monomial
ideal
In= (Xiys o os i | i1, -+ o505} € A) € Kxq, ..., Xn].

In fact, this induces a bijection between the simplicial complexes on n vertices and squarefree monomial
ideals in K[x1, ..., X,]. According to [53, Theorem 3.3], the Stanley—Reisner ideal of a vertex decomposable
simplicial complex is squarefree glicci. In the main result of this section we show first that the ideals in ques-
tion are squarefree glicci by describing explicitly the required basic double links, and then use this to infer
the desired vertex decomposability.

Theorem 3.3. (a) The initial ideal in(I;(Ty-y)) := in<(I>(Ty—y)) is squarefree and has height

n
htin(Iy(Tap) = Y (Ai - pi - 1).
i=2
Its associated simplicial complex is vertex decomposable. In particular, in(I(T-,)) is Cohen—Macaulay.
(b) The initial ideal in(I>(Sa—y)) := in<(I>(Sa-y)) is squarefree and has height

n
htin(I,(Sy-,)) = max{0, n— 1 - p1} + Y (A; - pi - 1).
i=2
Its associated simplicial complex is vertex decomposable. In particular, in(I>(Sy-y)) is Cohen—Macaulay.
Moreover, if either ideal is non-trivial, then it can be obtained from an ideal generated by variables using
suitable basic double links. In particular, it is squarefree glicci.

Proof. In both cases we use induction on the number n of rows of Ty_,. If n = 1, then I(T_,) and I(Sx-y)
are trivial and there is nothing to show.
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Let n > 2. Now we use induction on A,, — u, > 1. We define a new partition 1 differing from A only in its
last part by

A= A1, Aper, Ay = 1).

Thus, the tableaux TZ—y is obtained from T, by deleting the right-most box in its last row. It follows that
in(I>(T;_,) < in(I2(Ta-u))

and
in(I2(S5_,)) < in(I2(Sa-p))-

We first determine how much larger the ideals on the right-hand side are. We treat the two cases separately.

(@) Observe if A, — up = 1, that is, the last row of Ta- consists of precisely one box, then deleting this box
gives a tableau leading to the same ideals as the given ones. Thus, we conclude by induction on the number
of rows. Now assume A, — pp > 2.

Theorem 2.4 (a) provides that

In(12(Tr-p)) = T, 0+ in(I2(T5_,)), (3.1)
where
a=(Tjl1<i<nandu, <j<Ay).

Using induction, we infer that in(I>(Ty-,)) is a squarefree monomial ideal.
Now note that we can rewrite equation (3.1) as

in(l(Tay)) = Tap, 0" +in(12(Ty)), (3.2)
where
o’ = a+in(Ix(Ty_)).
Set now
A= (A=A =pn=1)s oo A = (A —pn = 1)) € 2"
and

M=, .., fnoy) € 20N

Then the ideal o’ is isomorphic to (the extension ideal in K [Ta—y]) of the sum of in(I>(Ty—,)) and an ideal
generated by ht a new variables. Applying the induction hypothesis to in(I(Ty_,')), we conclude that o’ is a
Cohen—Macaulay ideal of height

hta' =hta +htin(I2(Ty_y))
n-1

(n=1)An—pn =1+ Y (A= (An—pn - 1) - pi — 1)

i=2

Il
M=

(Ai = i = 1) = 1 + htin(Io(Ty_)).
i

Hence in(I>(T)-y)) is a basic double link of a’, and Proposition 3.1 shows that in(I, (Ta-p)) has the claimed
height.

Denote by A the simplicial complex corresponding to in(I(Tx-,)). By the induction hypothesis, the
simplicial complex of in(I 2(T;_y)) is vertex decomposable. Thus, this is also true for the simplicial complex
corresponding to the ideal a’. Hence equation (3.2) shows that the link lka(n, A,,) and the deletion A_¢ 2,
with respect to the vertex (n, A,;) € A are vertex decomposable, and hence so is A.
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(b) We employ the same strategy as for (a), though carrying it out is more involved. Theorem 2.4 (b) implies
that
in(I2(Sa-p)) = Tn,a,b + iH(Iz(Sz_},)), (3.3)

where b is an ideal that is generated by variables. We now determine this ideal b. To this end, one must list all
the 2-minors of §;_,, such that T, », is an entry on the main diagonal. By symmetry of S)_, we may assume
that Tp,y, isin Ty-,. Thus, we are looking for 2 x 2 submatrices of Sy, that are formed by rows i and n, where
i < n, and columns j and A, of S;_,,, where j < A,. We distinguish three cases.

Case 1: Assume position (n, j) is in Ty—. This is true if and only if Tj; is in the ideal a.

Case 2: Assume that position (i, j) is in Ty, but that position (n, j) is not in Ty_,. The first condition
means J; < j < Ap, whereas the second condition gives j < u,. Furthermore, since position (n, j) is in Sy,
by symmetry the second condition implies that position (j, n) is in Ty, that is, j < n and p; < n. Notice
that the condition n < A; is always satisfied because our assumptions provide n — 1 < u, < A, < A;. Since, by
assumption n - 1 < u, < A, and the condition j — 1 < yj < n implies j < n, we see that Case 2 occurs if and
only if y; < j < min{n, u,} and y; < n.

Case 3: Assume that positions (i, j) and (n, j) are not in T)_y, that is, j < y; and the positions (j, i) and
(j, n) are in Ty_,,. The latter is equivalent to j < n and y; < i < n, using again that n < A;. Notice that here we
have i > j, thus the variable at position (i, j) is Tj;.

These considerations show that we can write

b=a+by+by,

where the ideal
b1 = (T | uj < nand y; < j < min{n, un})

corresponds to Case 2 and
by =(Ty li<pjand p; <j<n)

corresponds to Case 3. Using induction and equation (3.3), it follows that in(I>(S1-,)) is a squarefree mono-
mial ideal.
Next, we claim that b, can be rewritten as

by = (Ty | max{i, i} <j < nh (3.4)

Indeed, the right-hand side is contained in b, because i < jimpliesi <j -1 < p;.

Conversely, if T;; € by, then i — 1 < p; < j. Assume i = j. Then we get y; = y; = i — 1, a contradiction to
i < pj. Thus, Tj; is in the right-hand side of equation (3.4), which establishes said equation.

Now we are ready to rewrite the ideal b as

b=a+by+b;=a+0b", (3.5)
where
b" :=(Tj|1<i<nandp; <j<n).

Indeed, clearly b, is contained in b". Assume there is some Tj; € by \ b”. This provides n = j < pn, a con-
tradiction to y; < n.

Conversely, assume there is some Tj; € b \ b. This condition together with b, c bforcesi=j > p; >i-1.
Thisimpliespj=j-1<nandpj=i-1<j<n-1< u, Thus T;jisin by c b, a contradiction.

Using equation (3.5), we conclude that

in(I(Sa—p)) = (T5§Ti | 1<i<k<n, 1<j<l<M, and pg <jorp; <j<k).
It follows that we can rewrite equation (3.3) as

in(I(Sa-p) = T, b +inL2(S3_)), (3.6)



DE GRUYTER A. Corso, U. Nagel, S. Petrovi¢ and C. Yuen, Blow-up algebras and determinantal ideals =— 811

where

b = b+ in(Iz(Sz_y)) =b+ <Tikal

1<i<k<n, 1<j<l<A, andug<joru;<j<k, and)

n<j<l<spupordp<jorn<j<upandA, <l
Set now

A=A = A =pn=1)y ooy Anet = Ay — pn = 1)) € Z™1
and

o=, . uh) €2, where p! = max{n - 1, pi}.

Then it follows that the ideal b’ is isomorphic to the extension ideal in K [Tr—y] of the sum of in(I5 (T —)) and
an ideal generated by ht b variables. Hence, by part (a), we obtain that b’ is Cohen—-Macaulay and has height

ht b’ =htb + htil’l(]z(T}(’—y’))

n-1 n-1

=(n-1)Ap-pp-1) + Zmax{o,n—l—yi}+ Z(/\i—(/\n—yn—l)—max{n—1,y,~}—1)
i=1 i=2
n-1 n-1
=Ap—Un -1+ ZmaX{O,n—l—yi}+ Z(Ai—max{n—l,yi}—l)
i=1 i=2

n
=max{0,n-1-pi}+ Z(/li—]ii -1)

i=2
=1+ htin(Iz(S;_ﬂ)),

where we used the observation that
max{0, n — 1 - p;} - max{n - 1, pi} = —p;.

We conclude that in(I(S3-,)) is a basic double link of b, and Proposition 3.1 shows that in(I>(S3-,)) has the
claimed height. Here we abuse our notation if A,, — y, = 1. Then row n of the tableaux T/'\-y is empty. Thus,
the ideal I 2(85-,) has the claimed properties by induction on n.

Finally, denote by A the simplicial complex corresponding to in(I>(Sx-y)). Equation (3.6) provides that
the simplicial complexes corresponding to b’ and in(I, (S;fy)) are thelink 1ka(n, A,) and the deletion A_(,,3,),
respectively. They are both vertex decomposable by the induction hypothesis, and hence so is A. O

Corollary 3.4. The rings K[Ta_y1/1>(Tr-y) and K[Ty_,1/1>(Sx-y) are Cohen—Macaulay.
Proof. This follows from the corresponding result for the initial ideals in Theorem 3.3. O

We use the previous theorem and a well-known localization technique (see, e.g., [6, Lemma 7.3.3]) to estab-
lish the following result.

Proposition 3.5. The ideals I5(Ty_,) and I(Sp-y) are prime ideals in K[T)_,,].

Proof. We use again induction based on obtaining T)_,, by adding a new right-most box in the last row of
a smaller tableau. So set
A= (/\1, s ,An_l,An - 1)

By induction, we may assume that I, (T H) and I, (S;Hl) are prime. Since the proof for I,(Ty-,) is similar, but
easier, we only provide the arguments that I(S)-y) is a prime ideal.
Consider the K-algebra homomorphism ¢ : K[Tr-,](T,,} 1 — K[Ta-,][T,}; 1 defined by

Tij+ TnjTia, Tpp, i) # (1, An),
Ti]' = s/tn )
T;; otherwise.
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In fact, ¢ is an isomorphism whose inverse map is ¥ : K[Ty_,] [T;}A"] — K[Ty-] [T;,l/ln] defined by

Tij = TnjTin, Ty, (09 # (0, An),
Tjj — n )
Ti; otherwise.

Notice that ¢ maps the extension of I5(S;-,) to the extension of b + I>(Ty ), where
A= (A =Qn=pn=1)s oo Aot = Ay —pn - 1)) € 2

and

poi= (U, M) €277, pp = max{n - 1, p},
and b is the ideal used in the proof of Theorem 3.3, namely

b=(Tijl1<i<nand[y;<j<noru,<j<Anl).
It follows that we get isomorphisms
(KITa-pl /T (Sa- )ty 1= (KITayd /(6 + L(Tau DI T, 5 1= (K[Tayrs Tad )/ T2 (Th— )T, T,

where ¢!, denotes the residue class of T;,}, in A := K[Ta—]/I2(Sx-y)-

Assume that A is not a domain. Then I(Sy-p) # I z(S;_”), and A has an associated prime ideal that con-
tains tn,z, because the above isomorphisms show that A[t;}}ln] is a domain. Since A is Cohen—Macaulay by
Corollary 3.4, all its associated prime ideals have the same height. It follows that the ideals I,(Sy-,) and
J := (I2(Sa—p), Tn,p,) have the same height in K[Ty_,,].

Notice that I5(Sy_) # I 2(55_’1) implies the existence of a quadratic binomial f € I,(Sa—y) \ I» (Si—u) such
that (f, Tna,) = (Ti,jTk,15 Tnp,), where T; ;T € K[Tj_y]. By the induction hypothesis, Iz(Sz_y) is a prime
ideal generated by quadrics. We conclude that

ht(12(85_,), TijTe)) = 1+ ht Ip(Sy_).
Using Theorem 3.3, we obtain
ht(I>(S5_,,), TijTi,1) = ht I (Sap).
The ideal on the left-hand side is generated by polynomials in K [Tz_y ]. Hence we get
ht] > ht(I3(S5_,), Ti,jTk,1» Tn,a,) > Wt 1r(Sa-p).
However, this contradicts the conclusion of the previous paragraph. Hence A is a domain. O
Our results can be partially summarized as follows.

Corollary 3.6. Therings K[Ta—,1/1>(Ta—y) and K[Tr_y1/1>(Sa—y) are normal Cohen—Macaulay domains that are
Koszul.

Proof. First, by the two previous results we know that the two rings are Cohen—Macaulay domains.

Second, since the prime ideals I,(T)-,) and I,(Sy-,) are generated by binomials, they are, in fact, toric
ideals (see, e.g., [16, Proposition 1.1.11]). Observe that the initial ideals of I;(Ta-,) and I;(Sy—) provided by
Theorem 2.4 (a) and (b), respectively, are squarefree. It follows that K[Ty_,1/I>(Tr—y) and K[Ta_,1/I1>(Sa—y)
are normal.

Finally, these rings are also Koszul, as I>(Ty-,,) and I>(Sy-) have Grébner bases consisting of quadrics
(see [7, Theorem 2.2]). O

Remark 3.7. Theorem 3.3 shows in particular that the initial ideal of I,(S-) is glicci. In fact, by a result
in [52] the ideal I,(S)-,) itself is glicci. This raises the question whether also ideals generated by minors of
higher order than 2 in S, are glicci. Affirmative answers in some cases are established in [52] (see also [29]).
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4 Blow-up algebras

We now use the results of the previous sections to elucidate the structure of blow-up algebras of spe-
cialized Ferrers ideals. Recall that, for an ideal I in any commutative ring R, its Rees algebra is the ring
R[It] = Eszo It c R[t], where t is a variable. If R is a graded ring having only one maximal graded ideal m,
then the special fiber ring of I c R is the algebra

F(I) = PP /ml = R[It] &g R/m.
j=0

For a monomial ideal I, we denote by G(I) the minimal generating set of I that consists of monomials. If I
is amonomial ideal whose minimal generators have degree two, then the special fiber ring F(I) is isomorphic
to K[G(I)]. If the minimal generators of I are even squarefree quadratic monomials, then I is the edge ideal of
a simple graph, and K[G(I)] is also called the edge subring of this graph.

In what follows, we determine the special fiber ring of a specialized Ferrers ideal. First we find its dimen-
sion using results from [66]. We continue to employ the notation from the previous sections. In particular,
Ais a partition with n parts, its largest one being 1; = m.

Proposition 4.1. The Krull dimension of the special fiber ring of a specialized Ferrers ideal 7,1,}, is

_ m i <n-1,
dimJ(Ip—p) =m+min{O,n -1 -} = /i
m+n-pu; -1 ifp; >n.

Proof. We consider several cases. Assume that y; > n. Then TA_H is the edge ideal of a bipartite graph I'y_,
on the vertex set {x1, ..., Xp} U {Xy,+1, ..., Xm}. Infact, I'y_, is a Ferrers graph on n + m — u, vertices. Since
it is connected, we get dim 3"(7/1_},) =m+n -y - 1 (see [66, Proposition 8.2.12] or [61]), as claimed.

Let 1 < n - 1. Recall that TA_y is not necessarily a squarefree monomial ideal. Consider the subideal of
TA,H that is generated by the squarefree monomials in TA,H. It is the edge ideal T,V,Hr of a connected graph
Ty—, on m vertices. This is clear if the partition A" also has n positive parts. However, if the latter condition
fails, then x2 is in I)_,. Hence the monomials X1 Xn, . . . , Xn_1X, are in I _y, so they are in I, It follows that
in any case I'y/_, is a connected graph.

Let x].2 be a generator of 7,1_,4 that is not in 7,1:_]1:. Assume the graph I'y_, is not bipartite. Then
[66, Exercise 8.2.16] implies that K [G(T,y,y:), sz] has dimension m. Since

KIGy—p), X711 € KIG(p-p)] € K[X1, -+ o, Xmi],

we conclude that K[G(I\_,)] = F(I\—,) has dimension m.
If Ty is a bipartite graph, then K [G(T/v_yr)] has already dimension m, and thus the above argument
gives again that the dimension of K [G(TA_H)] is m, as claimed. O

The main result of this section is the following.

Theorem 4.2. The special fiber ring of 7,1,}, is a determinantal ring arising from the 2-minors of a symmetric
tableau which may have holes. More precisely, there is a graded isomorphism

FIpp) = KTyl /L (Sap).

It is a normal Cohen—Macaulay domain that is Koszul.

Proof. Consider the algebra epimorphism
m: K[T] » K[G(In-)] = FIap),

where m1(Tjj) = x;x;. We claim that the kernel of 7 is the determinantal ideal I,(S;-,). Since m maps all
2-minors in Sy, to zero, we get I,(Sy—y) C ker 71. Both ideals are prime ideals (see Corollary 3.6). Thus, to



814 —— A.Corso, U. Nagel, S. Petrovi¢ and C. Yuen, Blow-up algebras and determinantal ideals DE GRUYTER

deduce the desired equality it is enough to show that the two ideals have the same height. Then Corollary 3.6
gives the asserted properties of F (7,1_,4).
Theorem 3.3 (b), on the one hand, implies that

n
ht1(Spp,) = max{0, n -1 - py}+ Y (A — i - 1).
i=2
On the other hand, Proposition 4.1 and A; = m provides
n
htker 71 = dim K[Ty ] - dim F(T1) = Y (Ai = ui) = [m + min{0, n - 1 - py}]
i=1

n
Ai—pi—1) —pr+n—1-min{0,n—1-p1} = Y (A — pi — 1) + max{0, n — 1 - ps},
2 i=2

M=

as desired. m

Remark 4.3. Observe that the description of the special fiber ring becomes simpler if y; > n — 1. Indeed, then
I>(Sp—y) = I(Ty—y) (see Figure 5). Moreover, if u satisfies the even stronger assumption u; > n, then .7,1_“ is
the edge ideal of a Ferrers graph. Thus, Theorem 4.2 includes in particular a description of the special fibers
ring of a Ferrers ideal. This identification was first obtained in [12, Proposition 5.1 (b)]. Note however that the
descriptions above and in [12] use a priori different determinantal ideals, due to the presentation of a Ferrers
ideal by different tableaux.

Y1 Y2 Y3 Ya Ys Ye Y7 Y8

x1 Ty6|T17|T1s
2> S Tg|Tar
z3loi i T3¢
Ty_, Sx—u
Ty7|To7
| Ts]

Figure 5. A skew shape and its symmetrization for A = (8,7, 6) and py = (4, 4, 4).

The last result allows us also to give a determinantal description of the Rees algebra of a specialized Ferrers
ideal.

Corollary 4.4. Let 7,1_,1 Cc R =K[x1,...,Xxn] be a specialized Ferrers ideal. Then its Rees algebra R[TA_F t] is
isomorphic to the special fiber ring F(J) of the ideal ] c R[xq], where xq is a new variable and

J =Ty +xo(X1,...,Xm) CR.
In particular, the Rees algebra R[T,\,y t] is a normal Cohen—Macaulay domain that is Koszul.
We prove this result below after making it more precise.

Remark 4.5. Notice that in the case p; > n none of the variables x; with n < i < y; divides a monomial
minimal generator of T/\—y- Thus, the properties of T,l_y can be studied by considering it as an ideal in the

smaller polynomial ring, which is obtained from R by dropping the variables xn,1, ..., x;,. Equivalently,
this amounts to renaming the variables x,, 1, ..., Xm bY Xn41, ..., Xmin—y, and considering the resulting
Ferrers ideal T,p_yr in a polynomial ring with variables x1, .. ., Xmsn—y, , Wwhere now y’l = n. This allows us to

essentially restrict ourselves to Ferrers ideals 7,1_,4 satisfying pu; < n.
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Corollary 4.6. Let 7,1,,1 C R =K|x1,...,Xxn] be a specialized Ferrers ideal with pu; < n. Then its Rees algebra
is determinantal. More precisely, there are algebra isomorphisms

RUopt] = FTy—yw) = KTy ) /I (Sv—p),

where
A=A+, 4+, +1,..., A +1) e Z™!

and
W=,y +1, 4+ 1, up + 1) € Z™1,

Remark 4.7. (i) The passage from the special fiber ring of 7/1*11 to its Rees algebra given in Corollary 4.6 can
also be described as follows: Augment the tableau S;_,, with a new top row and a new leftmost column.
Leave the new northwest corner empty and fill the new top row with the variables x4, ..., x,,; from left
to right and the leftmost column with x4, ..., x,, from top to bottom; see Figure 6. Let I be the ideal of
R[T,_,] that is generated by the 2-minors in the augmented tableau. Up to the names of the variables,
the augmented tableau is the same as S)'_,. Hence Corollary 4.6 gives the isomorphism

R[Ip_yt] = R[Ta_,)/1.

(ii) If 7,1_,, is the edge ideal of a graph T, then the last isomorphism says that the Rees algebra of 7,1_,1 is
isomorphic to the special fiber ring of the edge ideal to the cone over T'. This is true for arbitrary edge
ideals of graphs by [66, Proposition 8.2.15].

(iii) The Rees algebra of a complete graph on n vertices was already identified by Villarreal (see [66, Exercise

9.2.14]).InournotationthisistheringR[TA_yt],where/l =(n,n,...,n)eZ"andu=(1,2,...,n) e Z".
N N || T2 (X3 | X4 | T
T_\_\ T12|T13|T14|T15 o1 [N | T2 |Tus|T1a|Ths

Tio| M (T2a|Tos Ty |Ti2| N0 [Toa|Tos

Ths \\\ T34 z3 |Ths \\\ T34

T14|Toq|T3a| T4 |T14|Toa|T34| ™

Tis5|125 Zs |T15(125

Sx—u The augmented tableau Sy,

Figure 6. A symmetrized tableau and its augmentation.

Proof of Corollary 4.4 and Corollary 4.6. Consider the ring homomorphisms
@ : R[Tay] — RlIiptl, Ty xixj

and
o R[j/\_”t] = K[J], Xx = XoXk, XiXjt — XiX;j.

The first part of Corollary 4.4 follows because a is an isomorphism.

Now let us assume u; < n. Then, up to renaming variables, the ideals J and T;U,yr are equal, and
R[Tj-,] is isomorphic to the polynomial ring K[Ty _,]. Hence a o ¢ is the map that induces an isomorphism
K[Ty w1/ L(Sy—w) = K [T,V_yr], which in turn is isomorphic to K[J] = F(J). This establishes Corollary 4.6.
Moreover, Corollary 3.6 gives that F(J) is a normal Cohen—Macaulay domain that is Koszul.

It remains to consider the case p; > n. Put S = K[x1, ..., Xn, Xp,41, - - -, X |. Then

FO) = FUS) Xns1s + o5 Xy ]

Since F(JS) is a determinantal ring that is Koszul and a normal Cohen-Macaulay domain by Corollary 4.6,
the same is true for F(J). O
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5 Minimal reductions

In the special case where A = (m, m, ..., m) € Z", the ideal I, is the edge ideal of a complete bipartite
graph, and a distinguished minimal reduction of I, is given by the Dedekind—Mertens content formula
(see [5, 14, 54]). Here we extend this result to arbitrary Ferrers ideals.

Recall that an ideal J is said to be a reduction of an ideal I if J ¢ I and there is an integer r > 0 such that

Ir+1 :]. IY.

The minimum integer r such that this equality holds is called the reduction number of I with respect to J and
denoted by ry(I). A reduction J is minimal if no ideal strictly contained in J is a reduction of I. The (absolute)
reduction number of I is

r(I) = min{ry(I) | J is a minimal reduction of I}.

Theorem 5.1. For every partition A = (11 = m > A; > --- > A,,) with positive parts, the m + n — 1 diagonals of
the Ferrers tableau T, generate a minimal reduction J) of the Ferrers ideal I). More precisely, this minimal
reduction is generated by

inka, k=0,...,m-1,

i>1
and
Zxk+iyi9 k:1,...,n—1,

i>1

where the summands are monomials that are contained in I,.

For the partition A := (5, 5, 5, 2, 1), this minimal reduction can be represented by the diagram in Figure 7.

Y1 Y2 Y3z Ya Ys

Tl \

€2

T3

T4

N\
CIZ5A

Figure 7. Example of Theorem 5.1: A Ferrers minimal reduction for A = (5, 5, 5, 2, 1).

For the specialized Ferrers ideal TA_H, we find a distinguished minimal reduction in an important special
case, namely when it is a strongly stable monomial ideal. Figure 8 illustrates the result in a simple case.

Theorem 5.2. Lety =(0,1,...,n—1) e Z", andletA = (A4, ..., Ay) be a partition, where A = mand A,, > n.
Then the m diagonals in the tableau T)_,, generate a minimal reduction fA_y of the specialized Ferrers ideal 7,1,“.
More precisely, this minimal reduction is generated by

inxkﬂ', k=0,...,m-1,

i1
where the summands are monomials that are contained in I _.
The proofs of the last two statements are based on results about certain initial ideals.

Lemma 5.3. Let I,(Ty) ¢ K[Ta] be the ideal generated by the 2-minors of Ty, and let L c K[T,] be the ideal
generated by the m + n diagonals

ZTi,kH- (fork=0,...,m-1) and ZTkH-,l- (fork=1,...,n-1).

i>1 i>1
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Tl T2 T3 T4 ITp
1‘1 \

T3

Figure 8. An illustration of Theorem 5.2 for A = (5, 5, 4).

Then a power of every variable Tj; in Ty is in an initial ideal of the ideal of I,(T,) + L. More precisely,
T{j € inc(Io(Ty) + L), where < is the reverse-lexicographic term order induced by the row-ordering on the tableau,
that is,

Ti1>Tio>>Tip, >To1>->Tap, > > Ty,

Proof. To simplify notation put Q = I>(Tx). In what follows, diagonals and minors with Tj; in their support
will be used to construct a polynomial in the ideal Q + L whose initial term is T {1 This condition will be
satisfied by ensuring that all other terms are divisible either by monomials in the initial ideal or by variables
that are reverse-lexicographically smaller than Tj;, i.e. are to the east or south of Tj;. Notice that the initial
monomial of each 2-minor is the product of the variables on its antidiagonal.

Claim. For each variable Tj; in Ty, the following polynomial isin Q + L:

o LT i *
Z Tip,,j Z Tip, - z Tl_pj72’1< Z Tl_Pifh]Tl,)‘Pl—“‘_pifl)+ T;; + LOT. )
p1>0 p2>0 Pj-2>0 pj-1>0

Here and below we always use the conventions that “LOT” stands for “lower-order terms” and represents
monomials that are <-smaller than the last monomial listed (i.e., Téj above) and the sums only involve vari-
ables that are in T. The latter allows avoiding specifying the upper limits of the summations explicitly, thus
greatly simplifying notation.

Let D;j € L be the diagonal passing through Tj;, that is,

Dij = z T,'_p,j_p + T,'j + LOT.
p>0

Furthermore, let Qi j;i-p,j-p € Q be the 2-minor of T whose dlagonal termis T Ti_pjp.
Using T Dh, the claim is trueifi = 1. Let i > 1. Then T D,, reads as

T;'Dy=T;" Y Tip,jp, + T);+LOT. @1
p1>0
Thus, we are done if j = 1. Let j > 1. Continue to successively modify the above polynomial by replacing vari-
ables Ty, that are above and strictly to the left of T;; by using the diagonal Dy, if k = i and by using the minor
Qi,j;k,l ifk <i.
Following this strategy, subtract suitable multiples of the minors Q; j;ip, j-p, from polynomial (d1) and
obtain
T2 Y Tip,jTijopy + T +LOT € Q + L.
p1>0
If j = 2, this shows the claim. Otherwise, repeat the process. In order to substitute the variables T; j_p, , use
the diagonals Dj j_p, = Y.,,0 Ti-p,,j-p,-p: + Ti,j-p, + LOT. Subtracting suitable multiples of them provides

-2
~T% Y Tipj Y Tipyjoprp + Ty +LOT € Q+ L.
p1>0 p2>0

Next, subtract suitable multiples of the minors Q j;i—p,,j-p,-p, (P1, P2 > 0), obtaining

Jj—3 J
-Tj Z Tip,j z Tip,jTij-p,-p, + Tjj +LOT € Q + L.
p1>0 p2>0
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This gives the claim if j = 3. In general, repeating the process j — 1 times provides the following polynomial
inL+Q:
J
+ Z Tip,j Z Tip,j-- Z Tip;sj Z Ti-pj1,jTij-pi—-p;s + T + LOT.
p1>0 p2>0 pj-2>0 pj-1>0

This establishes the claim in general.

Finally, observe that p1, ..., pj-1 > O implies p; +--- + pj_1 > j— 1. Hence the polynomial (*) can be
rewritten as . _

717} ;Tiy + T}; + LOT.

Subtracting the appropriate multiple of the diagonal D; ; results in a polynomial whose leading terms is T{:j.
This completes our argument. O

For a strongly stable specialized Ferrers ideal, an analogous result holds.

Lemma 5.4. Let I>(Sy-,) < K[T_,] be the ideal generated by the 2-minors of Sy, u = (0,1,...,n-1) € Z",
and let L ¢ K[T)_,] be the ideal generated by the m diagonals Y ;-, T k+i, k=0, ..., m - 1. Then a power of
every variable T;j in Ty, is in an initial ideal of the ideal of I,(S)—,) + L. More precisely, Tf:j € in(I2(Sa—p) + L),
where < is the reverse-lexicographic term order induced by the row-ordering on the tableau, that is,

Tip41 > Tope2 > o> Tip > Toppe1 > 0o > Tap, >0 > Typ,-

Proof. The proof is completely analogous to the argument used to establish Lemma 5.3. O
The main results of this section follow now easily.

Proof of Theorem 5.1. Lemma 5.3 shows that the radical of the ideal I,(T,) + L is generated by the variables
in T,. Since the special fiber ring F(I) of I} has dimension m + n by [61] and is isomorphic to K[T;]/I,(Ty) by
[12, Proposition 5.1], it follows that the diagonals generating L form a system of parameters of F(I). Hence,
the claim follows (see, e.g., [38, Proposition 8.2.4]). O

Analogous arguments, using Lemma 5.4 and Theorem 4.2, provide the proof of Theorem 5.2. In the interest
of space, the details are omitted.

Remark 5.5. (i) Smith used Theorem 5.2 to compute the core of certain Ferrers ideals, that is, the intersec-
tion over all minimal reductions of such a Ferrers ideal (see [62, Theorem 5.1]).

(ii) It would be desirable to extend Theorem 5.2, that is, to find a distinguished minimal reduction of other
specialized Ferrers ideals. Notice that the diagonals in the tableau T, do not generate a minimal
reduction of 7/17;4 in general. In fact, if u; > 1, then the number of diagonals is less than the number of
generators of any minimal reduction of TA_H.

Example 5.6. Consider the specialized Ferrers ideals associated to A = (4, 4, 4) and pu = (1, 2, 3). Itis
Doy = (X1X2, X1X3, X1X4, X2X3, X2, X2 X4, X3X4) € K[X1, X2, X3, X4].

According to Proposition 4.1, its special fiber ring has dimension four. Thus, every minimal reduction of T,\,y
has four minimal generators; see Figure 9.

1 T X3 T4

T \\ f1:=x100 + w23 + X374
T2l fo = x173 + w214
LCRNR f3 = @124

Figure 9. lllustration of Example 5.6.
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Since the tableau Ty, has only three diagonals, another generator is needed. Indeed, one can check that
the three diagonals together with the polynomial

X1X2 + X1X3 + X1 X4 + X2X4 + X3Xy

generate a minimal reduction of I)_.

This and other examples suggest that each specialized Ferrers ideal T,Hl has a minimal reduction consisting
of the diagonals in T, and suitably many additional generators. However, we have not been able to find
combinatorial descriptions for the needed additional generators.

6 Hilbert functions and reduction numbers

We now determine the Hilbert function of the determinantal rings introduced in Section 2. This allows us
to find their Castelnuovo—Mumford regularity. We then show that this regularity gives the reduction number
of the Dedekind—Mertens-like reductions we established in the previous section. We conclude with some
examples to illustrate our results.

In order to compute the Hilbert series of the special fiber rings of the specialized Ferrers ideals, we first
establish a recursive formula using the Gorenstein liaison results proven in Section 3. This is similar to the
approach used in [12].

Recall from the previous section that

F(Ir-p) = K[I-p] = K[Tay)/12(Sa-p)

has dimension m + max{0, n — 1 — u1}. Hence there is a unique polynomial p_, € Z[¢] such that the Hilbert
series of K[I)_,] can be written as

ﬁ/\—y(t)
HI{[YA—y](t) = (1- t)m+max{0,n—1—y1}

and e(K [7,1_,,]) = ﬁ,\_y(l) > 0 is the multiplicity of K [7,1_,4]. The polynomial ﬁ/l—u is called the normalized
numerator of the Hilbert series. Using this notation allows us to state the desired recursion formula. We con-
tinue to use the notation and assumptions introduced at the beginning of Section 2.

Lemma 6.1. GivenA = (A1, ..., A1, Ap) € Z"and p = (U3, - . ., Un) € Z", set
A=Aty e s, An =1 €Z%, A=A =An=pn—-1)s ..y Ap1 — Ay = pn — 1)) € Z*1,
and
o=, 1) €2, where ! = max{n - 1, pi}.

If n > 2, then there is the following relation among Hilbert series:

— Dy, () ifAy=pr+1landy; >n-1,
p}t—y(t) =1_ K _ )
P, () +t-Py_w() otherwise.

Proof. In the proof of Theorem 3.3 (see equation (3.6)) we have shown that
in(I>(Sa—p)) = T, b’ + in(I2(S3_,))-

Observe that the height of b’ is zero if and only if A; = u> + 1 and u; > n - 1. (This follows from the compu-
tation at the end of the proof of Theorem 3.3). This implies the claim in this case since Hilbert functions do
not change when passing to the initial ideal.
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In the other case, where A, > u, + 2 or yy < n - 2, apply Proposition 3.1 to conclude that
Hyq, )0 = (A =6 - Hrmyyns;,) (O + € Hiry /00 (0).
In the proof of Theorem 3.3 we also showed that
K[Ta)/L(Sy_,) = F(T5_)[ T,

and that K[Ty ]/ b’ has the same Hilbert series as a polynomial ring over F (T;u,yr) = F(Iy—yr). Setting for
simplicity d := dim K[I1_,], it follows that

ﬁ/\—y(t) _
(1-td

) E}{_H(t) Lt I_')/V_H/(t)
(1- t)d+1 (1- t)d ’

1-0

which proves our claim. O

In order to compare the results for the special fiber rings of Ferrers ideals and their specializations, recall that
F(Ix-,) has dimension m + n - 1. Hence its Hilbert series can be written as

Pa-u(t)

Hoanll = - ot

and e(F(Ip-yp)) = pa-p(1) > 0 is the multiplicity of K[I;_,]. Again, refer to py_, as the normalized numerator
of the Hilbert series.

We are now ready to derive an explicit formula for the Hilbert series. Observe that all terms are non-
negative. Notice also that in case n = 1, the special fiber rings are just polynomial rings over the field K.

Theorem 6.2. Assume n > 2. Then we have the following results:
(a) The normalized numerator of the Hilbert series of F(Iy_) is

pa(t) = 1+hl(ﬂ—y)-t+...+hn_1(A_y).tn71,

where
n
- =Y -p-1)
j=2
and
Aiy —piy —k Jr-1 J2
hk(A - }l) = Z Z Z e z J1
2<i1 << <IN 1=y —pig Jr-2=Ai; —Hiy J1=Ai; —Hiy
i +ui —k+2 Ay AR —k+3 =Aiy +Miy

ifl>2.

(b) The normalized numerator of the Hilbert series of F (TA,F) is

Pau®=1+hiA-p)-t+-+hpaA-p) - "7,

where
— L 1 ifj>o0,
hi(A—p) =max{0,n-1-p}+ Y A -pj-1), 0= o
j=2 0 lf] <0.
and
Aiy —max{ix—1,pi }
B —k+0i -1y Jke1 j2
hk(A—n) = Z Z z Z i1
2<ii<ip<c.<ipsn e =Ap-max{ic-1pun} jrea=Ay —max{i-1,p,} Ji=Aiy —max{ix—1,pi; }
A rmax{ic=1,p; }-k+2 =iy, +max{ix—1,u,_, }-k+3 —Ai, +max{ix—1,pi, }

ifk > 2.
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Proof. The proof of claim (a) is similar and only easier than the one of claim (b) (see also [12, Theorem 5.4]).
We restrict ourselves to showing (b) for the case u; <n-2.If yy > n-1, then each max{ix — 1, y;,} in
the asserted formula equals pj,, so the formula becomes the same as the one in (a). This is correct as
I)(Ta—y) = I(Sp—y) if u1 > n— 1 (see Remark 4.3).

Assume y; < n — 2. Continue to use the notation introduced in Lemma 6.1. This result implies

hie = p) = ke - ) + her A = ') (6.1)

for all integers k > 0.

A straightforward computation shows that this recursion provides the claimed formula for hy(A - W.
Thus, it suffices to consider k > 2.

Now we use inductiononn > 2.Ifn = 2, thenﬁ,u,y, = 1. Thus Hz(/l — ) =0byinductionon A, — uy > 1,
using Lemma 6.1.

Let n > 3. Now, we use induction on k > 2. Since the case k = 2 is similar, but easier than the general
case, we present the argument only if k > 3. Finally, we use induction on A,, — p, > 1.

Assume A, — pn = 1. Then row n in the tableaux T;l_y is empty, so we know ﬁk(x — W) and Fk_l(/\’ -1 by
induction on n. Hence, equation (6.1) gives

Ay —max{ix—1,u;, }

_ —k+oy 1y, Ji-1 J2
hA-w= ) Y y y i1
2<ip <. <ikgn-1 g =Ay —max{ix—1,p;, } Jk-2=Ai; —max{ix—1,p; } Jji=Ai —max{ix—1,p;, }
7}lik+max{ik—1,yik}—k+2 —Aik_1+max{ik71,y,-k_l}—k+3 —Ai, +max{ix—1,p, }
Ay —max{n-1,u;, } ) )
—k+1 Jk=2 )2
2<ig<..<ij-1sn-1 jxp=Ai; —max{n-1,p;, } Jk-3=Aiy —max{ix—1,pi; } ji=Ai; —max{ix—1,pi, }
—Aikﬂ+max{n—1,y,«k71}—k+3 —A,-IFZ+max{ik—1,yik72}—k+4 —Ai, +max{ix—1,ui, }

Observing that 01—, = 1 and A, = max{n - 1, pn} = Ay — pn = 1, we can rewrite the second summation as

Aiy —max{n-1,p;, }

—k+0n-1 Jk-1 J2
> D D >
2<i <o <Tp-1<Ue=n - jg-1=A;; —max{n-1,p;, } Jk-2=Ai; —max{n-1,p;, } Jji=Aiy —max{n-1,p;, }
—Ap+max{n-1,pu,}-k+2 —A,-k_l+max{n—1,y,»k_1}—k+3 —Ai, +max{n-1,u;, }

Substituting this into the previous equation, we obtain

Aiy —-max{ig—1,ui; }

B ~k+0i -1y Jie1 J2
na-p= ¥ > I S
2<iy <o <ISN jrer=Ai —max{iv—1, 11, } Jjr-2=Ai; —max{ix—1,ui; } ji=Ai —max{ix—1,pi, }

—Aik +max{ix—1,pi }-k+2 Ay, +max{ik—1,yik71 }-k+3 =Aiy +max{ix—1,pi, }
as claimed.

Assume now A, — 4, > 2. Then the induction hypotheses and Formula (6.1) provide the following, after
considering separately the cases iy < n and ix = n in the formula for hi(A - W:

Aiy —max{ix—1,p;, }

B —k+0i-1-py Jk-1 J2
mA-w= Y > ) 2
2<ii<c.<ig<n=1  jrg=Ai —max{ix=1,pi, ) jro=Ai —max{ix—1,pi; } J1=Aiy ~max{ix—1, iy }
—Ai+max{ic—1,ui }-k+2  —A;y_, +max{ix—1,u5_, }-k+3 Ay rmaxiii—1, i, }
Ay, —max{n-1,p;; }-k+1 Ji-1 j2
2<i1<...<ig-1<ix=n Jjrk-1=Ai; —max{n-1,p;, } Jjk-2=Ai; —max{n-1,u;, } ji=Ai —max{n-1,p;, }
—(Ap—1)+max{n-1,un}-k+2 —/Ii,H+max{n—1,}11k71}—k+3 —Ai, +max{n-1,u;, }
Ailf(}ln*ynfl)
max{n-1,u;, }-(k-1) Ji-2 J2
4 | Z | Z ‘ Z o z J1-
2<ii <o <ip-12n-1 o =Ai —max{n-1,p;, } Jk-3=Ai; —max{n-1,u;, } Jji=Ai, —max{n-1,p;, }

-Ai +max{n-1,p;, }-k+3 —}l,-k_z +max{n—1,y,-k_2 Y—k+4 —Ai, +max{n-1,p;, }
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Notice that in the third summation the upper limit for ji_, is one less than the lower limit for jx_; in the second
summation. Thus, combining these two summations provides:

Aiy —max{ix—1,p;, }

_ kg 14 Jic1 J2
hA-p= ) Y y . y i1
2<ip <. <ig=n=1 o1 =A; —max{ix—1,pi, } Jr-2=Aiy —max{ix—1,p;, } Jji=Ai; —max{ix—1,pi, }
—/Iik+max{ik—1,y,-k}—k+2 —A;k_l+max{ik—1,y,-k_1}—k+3 =Ai, +max{ix—1,pi, }
Ay —max{n-1,u;; }-k+1 k1 j2
D> I
28iy <<l <B=njia=Ai —max{n-1,u b jra=Ay —max{n-1,u; } Ji=Ai; -max{n-1,p;, }
—Ap+max{n-1,pu,}—k+2 —Aik,l +max{n-1,u;,_, }-k+3 —Ai, +max{n-1,u;, }
Ay —max{ix—1,u;, }
_k+0'ik717111 jk—l j2
=X D 2D JR. A
2<i1 << <IN -1 =A;; —max{ixy—1,p, } Jk-2=Ai; —max{ix—1,p; } Jji=Ai, —max{ix—1,p;, }
—Aik+max{ik—1,yik}—k+2 —Aik_l +max{ik—1,y,-k_l}—k+3 —Ai, +max{ix—1,pi, }
where we used the assumption p1 < n — 2 to conclude that 03,1, = 1if iy = n. O

Corollary 6.3. Assume n > 2. Then, for any integer k € {1, ..., n — 1} we have the following results:
(@) hx(A-p) > 0ifand only if
k<A -pui+i-3 foralli=2,...,k+1.

(b) hx(A- W) > 0 if and only if there is some integer iy € {k + 1, ..., n} such that
2< A, - M + Oiy—1-; (6.2)

and
k<A -max{ix -1, i} +i-3+ 051y, foralli=2,...,k+1. (6.3)

Proof. First, let us show (b). If 2 < k < n, then the formula for hi(A - ) gives that hi(A - W) is positive if and
only if there are integers i, < i3 <--- < i, in {2, ..., n} such that the number

Ai, —max{ix - 1, i, } -k + 0414,
is positive and not less than each
Aiy —max{ix — 1, pi, } = Ay + max{ix — 1, pi} - j+2
whenever 2 < j < k. This is equivalent to
k <Ay —max{ix - 1, u} +j-2+ 041y, forallj=1,...,k (6.4)

For j = k this condition becomes inequality (6.2) because y;, > ix — 1. Furthermore, for each j € {1, ..., k},
we have i; > j + 1. Thus, using (6.4) we obtain

k < Aj; —max{ix - 1, pi} +j -2 + Ojp-1-p
<Ajpr —max{ix — 1, i} + G+ 1) =3 + Ojp1p, -

Hence, we have shown that conditions (6.4) imply (6.2) and (6.3).
Conversely, assume (6.2) and (6.3) are satisfied. Choosing then i; = j+ 1forj=1,..., k-1, we obtain

k< Ajp1 —maxfix — 1, pjsa} + G+ 1) = 3 + 01,

= Ay, —max{ix - 1, pi} +j = 2+ 01y, -

Since (6.4) is equivalent to (6.2) for j = k, it follows that conditions (6.4) hold.

We have shown that assertion (b) is true if k > 2. Using the first part of Theorem 6.2 (b), one checks that
(b) is also true if k = 1.

Second, for claim (a) one argues similarly. We leave the details to the interested reader. O
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Part (a) of the previous result implies the following corollary.

Corollary 6.4. Ifn > 2, then
regF(Iy-y) =min{n-1,A; —pu; +i-3]2<i<nj}.

Proof. Setr =min{n—-1,A; — y; +i—- 3|2 <i < n}. Using Corollary 6.3, we conclude that h,(A — u) # 0 and
hyi1(A = ) = 0 because
r=min{fn -1, —p;+i-3|2<i<r+2}L O

Now we illustrate Corollary 6.3 (b) in the case where 7,1_,1 is a strongly stable monomial ideal.
Corollary 6.5. Ifn>2andu=(0,1,...,n-1) € Z", then

reg F(Ip-y) = min{n -1, [Ai 1

J—1|2sisn}.

Proof. Using pu; =i - 1, by Corollary 6.3 (b) we obtain that Hk()l — u) > 0 if and only if there is some integer
ire{k+1,...,n}suchthat
iy < Aik
and
k+ix<Aj+i-1 foralli=2,...,k+1. (6.5)

Set
Ai +1

r=min{n—1,{ J—1|2sisn}.
Now put i, = r + 1. Then i, < n < A, < A;, and, by definition of r, we have
r+i,=2r+1<Aj+i-1

foreachi=2,...,n.Hence Conditions (6.5) are satisfied, and thus E(A — }) > 0. This gives reg CF(TA_},) >T.
If r = n — 1, then equality follows by Theorem 6.2.
Assume r < n — 2. Then it remains to show that hy,1(A — p) = 0.If i > r + 2, then

)li+i>n+r+2

> >r+2.
3 r+
It follows that Aoi Aoi
i i+
r=min{n—l,[ l+lJ—1|2sisr+1}= J ]—1

forsomej e {2,...,r+1}. Thisimplies A; +j < 2r + 3.

However, (6.5) with k = r + 1 requires in particular

2r+3<r+1+ip g <Aj+j-1.

This contradiction shows ﬁm(}l — ) =0, as desired. O

Let us apply these results in order to compute the reduction number of the minimal reductions established
in the previous section. There are results in the literature that relate reduction numbers and Castelnuovo—
Mumford regularities under various assumptions (see, for example, [64]). However, we need the following
observation.

Proposition 6.6. Let I ¢ R = K[x1, ..., xy] be a homogeneous ideal that is generated in one degree, say d,
where K is an infinite field. Assume that the special fiber ring F(I) is Cohen—Macaulay. Then each minimal
reduction of I is generated by dim F(I) homogeneous polynomials of degree d, and I has reduction number

r(I) = reg F(I).

Proof. For any minimal reduction J of I, consider the equality JI¥ = I¥*1, where integer k = ry(I). Since J is
contained in I and I is generated by homogeneous polynomials of degree d, the same must be true for J.
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As K is infinite each minimal reduction of I is generated by s = dim F(I) elements. Let ] = (g1, ..., gs) be
such a reduction. The classes of its generators form a system of parameters of F(I) that is linear. Since F(I) is
Cohen—-Macaulay, g1, . . . , 85 is a regular sequence. Regularity is invariant under quotient by a linear regular
sequence (see, e.g., [49, Lemma 2]). Thus,

reg F(I) = reg F(I)/JF(I).

As F(I)/JF(I) is artinian its regularity is determined by its largest non-vanishing degree component (see, e.g.,
[50, Lemma 2.1]), that is,
reg F(1)/JF(I) = maxik € Z | [F(I)/JF(D]x # O}.

Notice that [F(I)/JF(D)]x = I¥/(JI*¥! + mI¥). Nakayama’s Lemma implies that [F(I)/JF(I)]x = O if and only if
I = J1*-1, Now the claim follows. O

Finally, we are ready to determine the reduction number of any Ferrers ideal. Together with Theorem 5.1, this
completes our derivation of Dedekind—-Mertens-like formulas in this case.

Theorem 6.7. For each partition A, the reduction number of the Ferrers ideal I is
r(Iy) =min{n-1,A;+i-3|2<i<n}

Proof. Consider y = (u1, ..., Un), where yu; =---=pu, =n, and A=(A1+n,..., Ay +n). Then the special
fiber rings of the ideals Iy, I5_,,, and 771_}1 are isomorphic.

The Ferrers ideal I, is generated in degree two and its special fiber ring is Cohen—Macaulay (see, e.g.,
Theorem 4.2). Hence Proposition 6.6 applies and we conclude using Corollary 6.4 if n > 2. If n = 1, then
Ja = 1), and thus rj, (Ix) = 1, completing the argument. O

Example 6.8. If A = (m, m, ..., m) € Z", then Theorem 6.7 gives r(I}) = min{m, n} — 1, and thus
]A . Imin{m,n}—l _ Imin{m,n}
A = :
This is the Dedekind—Mertens formula for the content of the product of two generic polynomials in [14, The-

orem 2.1], as discussed in the introduction. Theorems 5.1 and 6.7 give analogous Dedekind—Mertens-like
formulas with optimal exponents for an arbitrary Ferrers ideal.

We now consider the specialized Ferrers ideals for which we found a distinguished minimal reduction in
Theorem 5.2.

Theorem 6.9. Letpu =(0,1,...,n-1) € Z",andletA = (A1, ..., Ay) be a partition, where Ay = mand A, > n.
Then the reduction number of the specialized Ferrers ideal TA_,, is

/11'+l'
2

r(T,\_H)zmin{n—l,[ J—l l 2sisn}.

Proof. Theideal I, is generated in degree two, and its special fiber ring is Cohen—Macaulay by Theorem 4.2.
Hence Proposition 6.6 and Corollary 6.5 give the assertion if n > 2. If n = 1, then 7/1—;4 = X1(Xp 415+« o5 Xm),
which is equal to each of its minimal reductions. This completes the argument. O

We illustrate some of the above results in some very special cases.

Example 6.10. Let 2 < n < m be integers and consider the partition
A=(m,...,m)ez" and u=(0,1,...,n-1)e2zZ".

Then the coefficients of the normalized numerator in the Hilbert series of the toric ring F (7/1—;4) are

Fl(/t—y):max{o,n—1}+2(m—(j—1)—1)=n—1+Z(m—j)=m(n—1)—('21)

j= j=
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and, for k > 2, they are
m—ix—k+2 Jk-1

Ra-m- Y ST LS

2<iy<ip<<ikEN  jro1=—k+2 jr-2=—k+3 j1=0

. m—ix—k+2 Jk-1 J2
ix—2
= z (k i 1) Z Z Z j1

k<ix<n Jk-1=—k+2  jr_o=—k+3 j1=0

TS SR s

Ji-1==k+2 ji-a=-k+3 jk-3=—k+4 ja=-1

3 Z ik=-2\(m-ir+1
_k. k-1 k ’
<ir<n

Notice that, for a fixed k, this is a sum over a polynomial in i), of degree 2k — 1, which can be evaluated
explicitly. For example, if k = 2, then

Hz(/\—}l)=<T>—m<m+31_n>+3(m+j_n)-

However, a general formula does not seem to be easy, except in the case m = n.
Indeed, if m = n, then the above formulas simplify to give

Rie(A - p) = <2"k)

for all k > 0. In thi