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Abstract: Accurate phenological information is essential for monitoring crop development, predicting
crop yield, and enhancing resilience to cope with climate change. This study employed a curve-
change-based dynamic threshold approach on NDVI (Normalized Differential Vegetation Index)
time series to detect the planting and harvesting dates for corn and soybean in Kentucky, a typical
climatic transition zone, from 2000 to 2018. We compared satellite-based estimates with ground
observations and performed trend analyses of crop phenological stages over the study period to
analyze their relationships with climate change and crop yields. Our results showed that corn and
soybean planting dates were delayed by 0.01 and 0.07 days/year, respectively. Corn harvesting
dates were also delayed at a rate of 0.67 days/year, while advanced soybean harvesting occurred
at a rate of 0.05 days/year. The growing season length has increased considerably at a rate of 0.66
days/year for corn and was shortened by 0.12 days/year for soybean. Sensitivity analysis showed
that planting dates were more sensitive to the early season temperature, while harvesting dates were
significantly correlated with temperature over the entire growing season. In terms of the changing
climatic factors, only the increased summer precipitation was statistically related to the delayed corn
harvesting dates in Kentucky. Further analysis showed that the increased corn yield was significantly
correlated with the delayed harvesting dates (1.37 Bu/acre per day) and extended growing season
length (1.67 Bu/acre per day). Our results suggested that seasonal climate change (e.g., summer
precipitation) was the main factor influencing crop phenological trends, particularly corn harvesting
in Kentucky over the study period. We also highlighted the critical role of changing crop phenology in
constraining crop production, which needs further efforts for optimizing crop management practices.

Keywords: crop phenology; MODIS NDVI; climate change; agricultural yield; food security

1. Introduction

Vegetation phenology is defined as the development, differentiation, and initiation
of plant organs [1]. Accurate retrieval of crop phenology information is a prerequisite for
evaluating crop adaptation to climate change, modeling agricultural ecosystem carbon
exchange, and predicting future agricultural production [2–5]. The Intergovernmental
Panel on Climate Change has reported a change in global mean temperature of 1.5 ◦C
above pre-industrial levels, along with changes in precipitation and an increased frequency
of extreme climate events (IPCC, 2018). This shift in climate may bring varying degrees of
impacts on agricultural ecosystems at different temporal and spatial scales. Crop phenology
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is closely related to climate change and is a critical indicator of optimum yield [6,7].
Therefore, it is essential to consider changes in crop phenology when assessing climate
impacts on agricultural productivity, carbon cycling, and land-atmosphere feedbacks [8,9].

Many studies have shown that the climate impacts on agricultural ecosystems are
reflected by variations in crop phenology, such as the advanced or delayed planting and
harvesting dates [10–12]. For example, He et al. [13] reported that soybean planting dates
were delayed by an average of 1.78 days/decade, and the growing season length was
shortened by an average of 1.16 days/decade during 1981–2010 across the major soybean-
producing areas in China. Climate warming is a primary factor that drives phenological
shifts [14], with temperature responses varying with crop types, locations, and study
periods [15,16]. Many studies have investigated the responses of crop phenology to
historical climate warming at regional to global scales. For example, Estrella et al. [17]
reported that corn and oats sowing dates in Germany advanced in response to increases in
March–May temperature at a rate of 0.60 days/◦C and 4.15 days/◦C, respectively. Based
on corn phenology observations collected from agro-meteorological stations in China,
Tao et al. [18] reported that the growing season lengthened during 1981–2009 due to
combined effects of warming temperature, changing field practices, and shifting varieties.
Model simulation results from Tubiello et al. [19] have shown that warmer temperatures
accelerated plant phenology and further shortened the crop growing period, which resulted
in crop yield reduction and potential food insecurity. Nevertheless, other climatic factors
such as precipitation could determine the planting date more directly than the temperature
in some regions [20,21]; however, few studies have explored the crop phenological changes
and their relations with precipitation.

Remote sensing imagery can be considered an essential tool that complements field-
based data collection approaches [22]. Numerous studies have reported the use of satellite-
based Normalized Differential Vegetation Index (NDVI) and Enhanced Vegetation Index
(EVI) for detecting crop phenology [23–25]. Some studies have shown good performance in
identifying phenological stages of specific crop types using pre-defined VI thresholds [26].
For example, Sakamoto et al. [27] used a two-step filtering approach to detect the pheno-
logical stages of corn and soybean and achieved high accuracies at the site and regional
levels. Huang et al. [28] applied dynamic thresholds of VI time series to detect the start
and end of the season of different crop types and obtained higher accuracy than the results
from fixed thresholds.

Kentucky is a traditional agricultural state, with corn and soybean being leading field
crops. As a typical climatic transition zone, agriculture in Kentucky faces mixed climates
that blend northern and southern weather patterns. Over the past 100 years, this region has
not seen significant seasonal changes in temperature, especially during the crop growing
season in this region [29]. Although crop phenological changes such as earlier planting
dates have been widely reported under a warming climate [17,18,30], the associated spatial
patterns are highly varied [31,32]. Uncertainties remain regarding how crop phenology has
changed over areas like Kentucky, where temperature trends were generally flat over the
past decades.

This study adopted a curve-change-based dynamic threshold approach along with
MODIS NDVI time series and ground observations to detect the planting and harvest-
ing dates for corn and soybean in Kentucky from 2000 to 2018. We also quantified the
temporal trends of crop phenology and its responses to climatic factors (i.e., temperature
and precipitation) and the correlations with crop yields. The objectives of the study are
(1) to identify phenological dates of corn and soybean using MODIS NDVI time series in
Kentucky from 2000 to 2018; (2) to evaluate the accuracy of estimated crop phenological
stages using ground data at the state and county levels; (3) to characterize the spatial-
temporal trends of crop phenological stages for corn and soybean in Kentucky during the
study period; (4) to examine the correlations between crop planting/harvesting dates and
temperature/precipitation variations; and (5) to analyze the effects of crop phenological
change on crop yields.
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2. Materials and Methodology
2.1. Study Area

In this study, we focused on the Commonwealth of Kentucky (36◦30′N to 39◦9′N and
81◦58′W to 89◦34′W) (Figure 1). In general, Kentucky has a humid subtropical climate
characterized by hot summers and cold to mild winters, with an oceanic climate found in
the highlands of the southeast. The mean annual temperatures in Kentucky range from
11.67 ◦C in the northeast to 15 ◦C in the southwest. The state-wide annual precipitation is
1143 mm, with 965.2 mm for the northern part and 1270 mm for the southern part). Crops
in Kentucky are predominantly corn and soybean, which account for more than 90% of
total cropland in the state.
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Figure 1. Maps of the study area (Kentucky, overview, and CDL (Cropland Data Layer is derived from USDA NASS)).

2.2. Datasets
2.2.1. Ground Data

We acquired crop planting and harvesting dates of corn and soybean in Kentucky at
both the state and county levels. Crop reports released by USDA National Agricultural
Statistics Service (NASS) provided the state-level progress of crop phenology information
of Kentucky from 2004 to 2018. We extracted the dates of 80% progress of planting and
harvesting stages of corn and soybean from the crop reports. We also obtained 5-year
averaged crop planting and harvesting dates from the same data source. The state-level
crop yields were obtained from the USDA survey. The crop phenology datasets were
derived from the Kentucky Hybrid Corn Performance Tests and Kentucky Soybean Variety
Performance Tests. These tests offered annual planting and harvesting dates of corn and
soybean from 2000 to 2018. The details of the ground data are shown in Table 1.

Table 1. Description of datasets used in this study.

Datasets Sources Crop Types Scales Periods Information

Crop progress report Corn/soybean State 2004–2018 Planting/harvesting dates
Kentucky Hybrid Corn Performance Test Corn County 2000–2018 Planting/harvesting dates

Kentucky Soybean Variety Performance Trials Soybean County 2000–2018 Planting/harvesting dates
Quick Stats (NASS) Corn/soybean State 2000–2018 Yields
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2.2.2. Satellite and Ancillary Data

In this study, the MODIS NDVI time series calculated from the MCD43A4 product (ver-
sion 6, https://lpdaac.usgs.gov/products/mcd43a4v006/; accessed on 20 February 2021)
was used to detect the planting and harvesting dates of corn and soybean in Kentucky
from 2000 to 2018 [33]. MCD43A4 provides 500-m and daily surface reflectance of seven
bands in a Sinusoidal projection system, available from February 2000 to the present.

The crop maps from NASS Cropland Data Layers (NASS-CDL) (https://nassgeodata.
gmu.edu/CropScape/; accessed on 20 February 2021) were used to identify specific loca-
tions of corn and soybean fields. The NASS-CDL classifies specific crop types and provides
multi-year crop classification maps at 30 m resolution for the conterminous United States.
This classification map is available from 2008 to 2018 for Kentucky.

We used gridded monthly air temperature and precipitation from Daymet to examine
the relationships between climate change and crop phenological development [34]. These
climate datasets include minimum/maximum temperature and precipitation at a 1km
spatial resolution (https://daymet.ornl.gov/; accessed on 20 February 2021). We calculated
the monthly average air temperature based on the maximum and minimum temperatures.

2.3. Methodology
2.3.1. Time Series Data Processing

We processed MODIS daily reflectance data on the Google Earth Engine Platform. The
NDVI was calculated from the reflectances of the RED and NIR bands as follows [35]:

NDVI =
ρNIR − ρRED
ρNIR + ρRED

(1)

where ρRED and ρNIR are band 1 (0.620–0.670 µm) and band 2 (0.841–0.876 µm) reflectances
from the MODIS product, respectively.

It was necessary to smooth the time series data using smoothing functions before
extracting phenological dates. The smoothing methods consider the noise bias caused by
snow or clouds and can handle missing data. Here, we used the Harmonic analysis method
to smooth the NDVI time series. This Harmonic algorithm can smooth and reconstruct
remotely sensed VI time series while reducing the influence of clouds at the pixel level [36].

2.3.2. Detection of Crop Planting Dates, Harvesting Dates, and Crop Growth Period

In this study, the definitions of crop phenological stages were from USDA NASS
( https://www.nass.usda.gov/Publications/National_Crop_Progress/terms_definitions;
accessed on 20 February 2021). We considered the silking stage of corn and the blooming
stage of soybean as heading dates, respectively. We used a curve-change-based dynamic
threshold approach on NDVI time series to identify crop planting and harvesting dates for
corn and soybean in Kentucky from 2000 to 2018.

The corn and soybean areas were extracted using the NASS-CDL maps from 2008 to
2018. The original 30 m CDL maps were aggregated into 500 m maps with the percentages
of corn or soybean areas being calculated in each 500 m pixel, respectively, to match the size
of the MODIS pixel. Pixels with corn or soybean > 50% were retained for crop phenology
detection. Previous studies have shown that the NDVI increases with leaf green-up during
the spring season and decreases with leaf senescence in the fall [37,38]. As VI values in
croplands generally exceed 0.4 at peak growth [39], spurious peaks were discarded if the
corresponding NDVI values were less than 0.35. We then set a threshold of 0.35 to limit the
cropland, i.e., the pixels with the maximum NDVI values less than 0.35 were excluded as
non-cropland cover types [40].

For each crop pixel in a given year, the first and the second derivatives of the NDVI
curve were defined by the following equations:

f (xi)
′ =

f (xi)− f (xi−1)

1
(2)

https://lpdaac.usgs.gov/products/mcd43a4v006/
https://nassgeodata.gmu.edu/CropScape/
https://nassgeodata.gmu.edu/CropScape/
https://daymet.ornl.gov/
https://www.nass.usda.gov/Publications/National_Crop_Progress/terms_definitions
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f (xi)” =
f (xi)

′ − f (xi−1)
′

1
(3)

where f’ and f” are the first- and second-order derivatives of the smoothed NDVI time series
(f), i is the time sequence number of values in the smoothed NDVI time series (2, 3 . . . 365),
1 is the time step of NDVI time series, and f is the smoothed NDVI time series.

We then identified crop phenological dates based on the characteristics of the deriva-
tives:

Heading dates:
Previous studies have shown that the maximum NDVI occurs around the heading

dates [41]. We, therefore, used the point at the NDVI peak to capture crop heading dates
and constrained the valid range according to the five-year averaged planting dates from
the crop reports dataset (Table 2).

f (xi)
′ > 0

f (xi+1)
′ < 0

f (xi+1) ≥ 0.35
a < Peak(heading dates) < b

) (4)

where f ’ is the first-order derivative of the NDVI curve; f is smoothed NDVI curve; i means
the ith of NDVI/NDVI’ values in the time series (1, 2, 3 . . . 365), a and b are the upper and
lower boundaries of the valid time range for NDVI peak, respectively.

Table 2. Parameter thresholds derived from the crop reports dataset used for crop phenology
detection.

Phenology
Descriptions

Heading Dates Planting Dates Harvesting Dates

The Peak (DOY) of
NDVI Time Series

The Peak (DOY) of
the 2nd Derivative

The Peak (DOY) of
the 2nd Derivative

Corn: 2000–2004 [143, 254] [106, 143] [254, 320]
Corn: 2005–2009 [152, 249] [101, 152] [249, 314]
Corn: 2010–2014 [161, 251] [100, 161] [251, 319]
Corn: 2015–2019 [151, 248] [98, 151] [248, 301]

Time ranges [143, 254] [98, 161] [248, 320]
Soybean: 2000–2004 [172, 262] [113, 172] [262, 313]
Soybean: 2005–2009 [179, 261] [121, 179] [261, 305]
Soybean: 2010–2014 [183, 265] [112, 183] [265, 332]
Soybean: 2015–2019 [179, 261] [125, 179] [261, 302]

Time ranges [172, 265] [112, 183] [261, 332]

Planting dates:
The NDVI curve shows lower values before crop planting when agricultural lands are

plowed or cultivated (Figure 2). After the crop planting, photosynthetic activity starts with
plant expanded leaves, and thereby, the NDVI curve begins to increase. It is reasonable to
expect the NDVI value of the planting date is located at the low point at the early stage
of the NDVI curve. We, therefore, applied the peak of the second-order derivative of the
NDVI curve (before the heading date) to detect the crop planting date. The crop planting
dates were constrained within 40–120 days before the heading dates based on the Corn
and Soybean Production Calendar in Kentucky (https://simpson.ca.uky.edu/files/corn_
and_soybean_production_calendar.pdf; accessed on 20 February 2021). Additionally, we
also used more accurate ranges to filter out all possible outlier estimates according to the
5-year averaged phenology derived from the crop reports dataset (Table 2).

https://simpson.ca.uky.edu/files/corn_and_soybean_production_calendar.pdf
https://simpson.ca.uky.edu/files/corn_and_soybean_production_calendar.pdf
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Figure 2. NDVI curves and second derivative of smoothed NDVI for (a) corn and (b) soybean with key points for planting
and harvesting dates (• Planting date, Second derivative peak; N Harvesting date, Second derivative peak. Pure pixels were
selected in the study area based on the CDL map).

Harvesting dates:
Plant leaves continue to wither and die during the harvesting season. Crop canopy

can be harvested in this stage. Correspondingly, the NDVI value decreases to the lowest
point when the crop is harvested from fields. After the heading date, the peak (after the
heading date) of the second-order derivative of the NDVI curve can catch the lowest value
of NDVI at the last period of the NDVI curve (Figure 2). Here we used this transition
point to detect the crop harvesting date. Similarly, the harvesting dates were constrained to
occur within the time range of 30–110 days after the heading date, according to the crop
calendar in Kentucky. Similarly, we retained estimates that fall into the valid time range as
determined by the 5-year averaged harvesting dates (Table 2).

Subsequently, crop growing season length was calculated for each pixel using the time
difference between planting and harvesting dates.

2.4. Evaluation and Trend Analysis

At the state level, we calculated the dates when the areas of estimated phenological
dates occupied 80% of the total planting areas across the whole state for corn and soybean.
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For county-level evaluation, the mean values of the estimations were calculated for corn
(68 counties) and soybean (74 counties) in top producer counties. The coefficient of deter-
mination (R2) and root mean square error (RMSE) were used to evaluate the estimated crop
phenology against the ground data at both the state and county levels.

R2 =
∑n

i=1(xi − x)2(yi − y)2

∑n
i=1(xi − x)2 ∑n

i=1(yi − y)2 (5)

RMSE =

√
1
n
∗∑n

i=1(yi − xi)
2 (6)

where n represents the number of samples. yi and xi are the ground data and remote
sensing estimates, respectively.

Linear regression analysis was applied for generating the changing trends of the
phenological estimations at the state level over the study period. We also used the Mann–
Kendall test [42,43] and the Sen’s slope estimator [44] to analyze the temporal trends of
phenological stages at the pixel scale. During the process, pixels with more than 12 years
being identified as an individual crop (corn or soybean) were included in the Mann-Kendall
test. The analytical method was implemented using the R computing environment [45].

We used linear regression analysis to examine temporal patterns of climatic factors and
crop yields and their relationships with crop phenology. The Pearson correlation coefficient
was adopted to describe the sensitivity of crop phenology to climate change. Climatic
factors include minimum, maximum, average temperatures, and accumulated precipita-
tion during three seasons (spring: March–May, summer: June–August, fall: September–
November) and the whole crop growing period.

3. Results
3.1. Evaluation of Simulated Crop Phenology
3.1.1. State-Level Evaluation

The state-level evaluation results showed that crop phenology estimated by remote
sensing was at a high level of agreement with the crop reports from the survey data
(Figure 3). The estimated harvesting dates closely matched those from the crop reports,
with R2 of 0.92 and 0.90 for corn and soybean, respectively (Figure 3b). The R2 of the
estimated planting dates of corn and soybean against survey data was 0.87 and 0.79,
respectively. The accuracy of the estimated harvesting dates of soybean was the highest,
with an RMSE of 3.34 days. The RMSE value of corn harvesting dates was 3.82 days. The
accuracies of the estimated planting dates of corn and soybean were 6.05 and 3.70 days,
respectively (Figure 3a).

3.1.2. County-Level Evaluation

The county-level assessment appeared to show lower accuracies compared to the state-
level assessment (Figure 4). Generally, the estimated crop phenological dates were later
than those observed from field tests. Overestimations were larger in estimated planting
dates than harvesting dates for both corn and soybean. The RMSE values of corn planting
and harvesting dates were 10.84 and 10.93 days, respectively. For soybean, the RMSE of
harvesting dates was 9.17 days, and the RMSE value of planting dates was 12.26 days.
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Figure 3. Evaluation of estimated crop phenology at the state level (N is 15 years, blue for corn and
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3.2. Spatial Distribution of Crop Phenology

The corn planting and harvesting dates were mapped every six years from 2000 to
2018 in Kentucky (Figure 5). The corn cultivation areas were mainly distributed in western
Kentucky. The corn planting dates showed obvious spatial differences in 2000 and 2006, but
not during 2012 and 2018. In general, the earliest and latest planting dates were appeared
in 2012 and 2000, respectively. Unlike the distribution of planting season, the timing of
corn harvesting dates varied widely among different pixels during four years. The earliest
and latest corn harvesting dates were detected in 2012 and 2006, respectively. Moreover,
the earlier planting dates accordingly led to earlier harvesting dates in 2012.

The crop phenology maps of soybean for the years 2000, 2006, 2012, and 2018 were
depicted in Figure 6. Like corn, the soybean planting areas were mainly concentrated
in the western part of the study area. Similar spatial patterns in the soybean planting
dates were observed in 2006, 2012, and 2018, exhibiting earlier planting dates than the
year 2000 at the pixel level. In terms of the harvesting dates, advanced soybean harvesting
dates were extensively distributed in 2012 and 2018 compared with 2000 and 2006 across
soybean areas.
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3.3. Changing Trends of Crop Phenology

Phenological trends were analyzed for corn and soybean at the state level over the
study period (Figure 7). The crop planting dates were slightly delayed by 0.01 days/year
for corn and 0.07 days/year for soybean. Corn harvesting dates were delayed by an average
rate of 0.67 days/year, while a slightly advanced pattern (0.05 days/year) in the soybean
harvesting dates was detected. The inter-annual variation in the crop growing season
length was related to the changing planting and harvesting dates. For soybean, a slightly
shortening trend was found at a rate of 0.12 days/year, i.e., 2.28 days over the entire study
period. However, the corn growing season experienced an increasing tendency by an
average rate of 0.66 days/year, i.e., 12.54 days over the study period.
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Figure 7. Linear regression analysis for trends of phenological stages in Kentucky, 2000–2018 ((a) corn, (b) soybean).

In addition, widespread negative tendencies were detected for the phenological
estimations of corn and soybean from pixel to pixel in Kentucky from 2000 to 2018
(Figures 8 and 9). For corn, the slope values in Figure 8a,d,g showed that more than
40% of corn production areas for planting and harvesting dates, about a third of the area
for growing season length, experienced phenological changes. Pixels with unchanged
slopes (slope = 0) accounted for more than half of the total pixels for corn planting dates,
harvesting dates, as well as growing season length. The pixels with significant changing
trends were scattered across the corn production areas (Figure 8b,e,h). The statistical his-
tograms in Figures 8 and 9 displayed all changing slopes that were significant or not in crop
planting dates, harvesting dates, and growing season length. According to the statistics
(Figure 8c,f,i), the proportions of negative trends (slope < 0) were much larger than those
of positive trends (slope > 0), indicating the advanced corn planting dates, harvesting
dates, and shortened growing season length over the study area. Figure 8c showed an
evident advanced trend over the significant values for corn planting dates. However, for
corn harvesting dates (Figure 8f) and the growing season length (Figure 8i), proportions of
significant trends with negative and positive slope values were roughly equivalent.



Remote Sens. 2021, 13, 1615 12 of 22Remote Sens. 2021, 13, x FOR PEER REVIEW  

14 
 

 1 
Figure 8. Slope, P values, and their percentages of planting dates (a,b,c) harvesting dates (d,e,f) and growing season length (g,h,i) of corn in Kentucky, 2000–2018 (Slope: change rate of 2 
crop phenological dates; P values: the confidence of trend analysis; we only included pixels that were identified as corn for more than 12 years in the Mann-Kendall statistical test). 3 

0

20

40

60

slope<0
P<0.05

slope>0
P<0.05

slope<0
P>0.05

slope>0
P>0.05

%

0

20

40

60

slope<0
P<0.05

slope>0
P<0.05

slope<0
P>0.05

slope>0
P>0.05

%

0

20

40

60

slope<0
P<0.05

slope>0
P<0.05

slope<0
P>0.05

slope>0
P>0.05

%

(a) (b)

(d) (e)

(g) (h)5%
24%

71%

5%

36%
59%

3%

42%
55%

42%

58%

37%

63%

38%

62%

(c)

(f)

(i)

Figure 8. Slope, p values, and their percentages of planting dates (a–c) harvesting dates (d–f) and growing season length (g–i) of corn in Kentucky, 2000–2018 (Slope: change rate of crop
phenological dates; p values: the confidence of trend analysis; we only included pixels that were identified as corn for more than 12 years in the Mann-Kendall statistical test).
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Figure 9. Slope, p values, and their percentages of planting dates (a–c) harvesting dates (d–f) and growing season length (g–i) of soybean in Kentucky, 2000–2018 (Slope: change rate of
crop phenological dates; p values: the confidence of trend analysis; we only included pixels that were identified as soybean for more than 12 years in the Mann-Kendall statistical test).
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In Figure 9a,d,g, more than a third of pixels with positive or negative trends were
observed in soybean planting dates, harvesting dates, and growing season length. Similarly,
pixels with unchanged trends (slope = 0) made up to more than half of the total values for
three soybean phenological variables. Larger proportions with significant trends occurred
in soybean planting and harvesting dates compared with those of corn (Figure 9b,e). Similar
significant proportions were found in the growing season length of soybean and corn
(Figures 8h and 9h). Advanced in soybean planting and harvesting dates were detected
with high proportions of negative values (Figure 9c,f). However, Figure 9i showed that
pixels with extended soybean growing season length (slope > 0) accounted for more than
60%, and comparable percentages of positive and negative slopes showed significant trends.

3.4. Trends of Climatic Factors and Its Correlation with Crop Phenology

Maximum temperatures decreased in three seasons and ranged from −0.001 to
−0.01 ◦C/year in Kentucky from 2000 to 2018 (Table 3). Warming trends in minimum and
average temperatures were observed, ranging from 0.03 to 0.05 ◦C/year and from 0.01
to 0.03 ◦C/year, respectively. Specifically, the minimum temperature during the growing
season showed a significant increasing trend with a rate of 0.05 ◦C/year. Accumulated pre-
cipitation increased over time in all seasons in Kentucky. Historical climate records showed
that summers from 2014 to 2018 are among the ten wettest summers over the last 30 years
in Kentucky (http://kyclimate.org/climtrends.html; accessed on 20 February 2021). Thus,
over the years tested, the summer climate trended wetter in Kentucky.

Table 3. Trends of seasonal climatic factors in Kentucky, 2000–2018.

Seasons
Tmax Tmin Tavg Prec

Trends
(◦C/year) r Trends

(◦C/year) r Trends
(◦C/year) r Trends

(mm/year) r

Spring −0.01 −0.05 0.03 0.16 0.01 0.05 3.58 0.21
Summer −0.001 −0.003 0.04 0.28 0.02 0.13 5.40 0.41

Fall −0.01 −0.03 0.04 0.22 0.02 0.09 0.64 0.04
Apr–Oct 0.01 0.08 0.05 * 0.54 0.03 0.31 8.41 0.32

Note: Trends are significant with * p < 0.05. Tmax, Tmin, Tavg, and Prec represent the maximum temperature,
minimum temperature, average temperature, and precipitation, respectively.

The crop planting/harvesting dates were negatively correlated with three temperature
variables but positively correlated with the precipitation for both crops (Tables 4 and 5).
Corn planting dates showed significant correlations with the accumulated precipitation in
spring (r = 0.56 for corn, r = 0.49 for soybean). Compared with soybean, corn planting dates
were more sensitive to spring temperature, i.e., significant responses were −3.95 days/◦C
and−3.70 days/◦C to Tmax and Tavg, respectively. For harvesting dates, higher correlation
coefficients with temperature and precipitation were observed for corn and soybean. In
particular, the correlations between crop harvesting dates and Tmax in summer/April–
October were higher than 0.7 for corn and 0.65 for soybean. Significant relationships
were also found between harvesting and the accumulated precipitation in summer/April–
October for corn, and in fall/April–October for soybean, respectively. Corn growing season
length exhibited negative sensitivities to temperature variables. Apart from a negative
correlation in spring, positive relationships were detected between corn growing season
length and the accumulated precipitation. Soybean growing season length was negatively
correlated with all climatic factors except with the accumulated precipitation in fall and
April–October. Significant correlations between growing season length and precipitation
were mainly concentrated in summer/April–October for corn and summer/fall for soybean,
respectively (Tables 4 and 5).

http://kyclimate.org/climtrends.html
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Table 4. Correlations between corn phenology and climatic variables in Kentucky, 2000–2018.

Climate Variables in
Individual Seasons

Planting Dates
Climate Variables in
Individual Seasons

Harvesting Dates
Climate Variables in
Individual Seasons

Growing Season Length

r Response (days/◦C;
days/mm) r Response (days/◦C;

days/mm) r Response (days/◦C;
days/mm)

Tmax in Spring −0.56 * −3.95 Tmax in Spring −0.53 * −4.77 Tmax in Spring −0.11 −0.82
Tmin in Spring −0.33 −2.64 Tmin in Spring −0.27 −2.83 Tmin in Spring −0.02 −0.19
Tavg in Spring −0.48 * −3.70 Tavg in Spring −0.43 −4.30 Tavg in Spring −0.07 −0.60
Prec in Spring 0.56 * 0.05 Prec in Spring 0.20 0.02 Prec in Spring −0.28 −0.02

Tmax in Summer −0.72 * −7.20 Tmax in Summer −0.46 * −3.86
Tmin in Summer −0.47 * −6.18 Tmin in Summer −0.38 −4.24
Tavg in Summer −0.67 * −8.26 Tavg in Summer −0.47 * −4.84
Prec in Summer 0.45 0.06 Prec in Summer 0.33 0.04

Tmax in Fall −0.47 * −3.73 Tmax in Fall −0.27 −1.81
Tmin in Fall −0.20 −2.05 Tmin in Fall −0.09 −0.77
Tavg in Fall −0.41 −4.32 Tavg in Fall −0.22 −1.98
Prec in Fall 0.10 0.01 Prec in Fall 0.07 0.01

Tmax in Apr–Oct −0.77 * −9.94 Tmax in Apr–Oct −0.39 −4.30
Tmin in Apr–Oct −0.36 −6.84 Tmin in Apr–Oct −0.16 −2.47
Tavg in Apr–Oct −0.69 * −12.19 Tavg in Apr–Oct −0.34 −5.06
Prec in Apr–Oct 0.47 * 0.03 Prec in Apr–Oct 0.17 0.01

Note: Trends are significant with * p < 0.05. Tmin, Tmax, Tavg, and Prec denotes monthly values of maximum, minimum, average temperatures, and cumulative precipitation.
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Table 5. Correlations between soybean phenology and climatic variables in Kentucky, 2000–2018.

Climate Variables in
Individual Seasons

Planting Dates
Climate Variables in
Individual Seasons

Harvesting Dates
Climate Variables in
Individual Seasons

Growing Season Length

r Response (days/◦C;
days/mm) r Response (days/◦C;

days/mm) r Response (days/◦C;
days/mm)

Tmax in Spring −0.34 −1.71 Tmax in Spring −0.35 −2.84 Tmax in Spring −0.15 −1.13
Tmin in Spring −0.11 −0.64 Tmin in Spring −0.23 −2.10 Tmin in Spring −0.17 −1.46
Tavg in Spring −0.25 −1.37 Tavg in Spring −0.30 −2.76 Tavg in Spring −0.16 −1.39
Prec in Spring 0.49* 0.03 Prec in Spring 0.11 0.01 Prec in Spring −0.20 −0.02

Tmax in Summer −0.67 * −5.93 Tmax in Summer −0.35 −2.93
Tmin in Summer −0.48 * −5.59 Tmin in Summer −0.37 −4.05
Tavg in Summer −0.64 * −7.03 Tavg in Summer −0.39 −4.04
Prec in Summer 0.24 0.03 Prec in Summer −0.03 −0.003

Tmax in Fall −0.65 * −4.65 Tmax in Fall −0.55 * −3.68
Tmin in Fall −0.09 −0.82 Tmin in Fall −0.08 −0.73
Tavg in Fall −0.47 * −4.50 Tavg in Fall −0.41 −3.60
Prec in Fall 0.52 * 0.05 Prec in Fall 0.54 * 0.05

Tmax in Apr-Oct −0.69 * −8.00 Tmax in Apr-Oct −0.38 −4.09
Tmin in Apr-Oct −0.23 −3.92 Tmin in Apr-Oct −0.14 −2.24
Tavg in Apr-Oct −0.58 * −9.11 Tavg in Apr-Oct −0.32 −4.77
Prec in Apr-Oct 0.49 * 0.03 Prec in Apr-Oct 0.21 0.01

Note: Trends are significant with * p < 0.05. Tmin, Tmax, Tavg, and Prec denotes monthly values of maximum, minimum, average temperatures, and cumulative precipitation.
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3.5. Trends of Crop Yield and Its Correlation with Crop Phenology

Crop yields showed significant increases in corn (2.19 Bu/acres per year, p < 0.05)
and soybean (0.75 Bu/acres per year, p < 0.05), respectively, in Kentucky over the study
period. A more noticeable increment was found in corn yield. However, we observed
that corn yield consistently increased over time except for the sharp decrease in 2012
(68 Bu/acre), dramatically lower than the average corn yield (143 Bu/acre) of the study
period. The reduced crop production was relevant to extreme heatwaves and drought
during the summer [46].

We further investigated the relationships between the crop phenological dates and
crop yields of corn and soybean using the linear regression analysis (Table 6). Over the
2000–2018 period, a significant positive correlation was found between corn growing
season length and corn yield, suggesting that a one-day extension of the growing period
increased 1.67 Bu/acres (p < 0.01) in corn yield. Furthermore, significant responses of
harvesting dates to crop yields were detected for corn (trend = 1.37 Bu/acre per day,
p < 0.01) and soybean (trend = 0.39 Bu/acre per day, p < 0.05), respectively.

Table 6. Correlations between crop phenology and crop yields in Kentucky, 2000–2018.

Crop Phenology r Trends (Bu/acre per day)

Corn planting dates 0.15 0.42
Corn harvesting dates 0.70 * 1.37
Corn growing period 0.71 * 1.67

Soybean planting dates 0.38 0.48
Soybean harvesting dates 0.51 * 0.39
Soybean growing period 0.30 0.24

Note: Trends are significant with * p < 0.05.

4. Discussion
4.1. Comparisons of Remote Sensing-Based Crop Phenology with Other Studies

Various vegetation phenology detecting methods have been developed in previous
studies. However, mapping crop phenology is still challenging because the land surface
vegetation dynamics or remote sensing phenology is different from crop physiological
growth stages [47]. In this study, we detected the crop planting dates, harvesting dates, and
growing season length for corn and soybean using an NDVI curve-change-based dynamic
threshold approach. This approach linked characteristics of remote sensing vegetation
index to crop physiological growth stages. NDVI time series at a daily time step allows for
a high degree of coupling between remote sensing and crop growth stages. The threshold
setting for each crop phenological stage based on survey data can further improve the
reliability of the approach.

Our evaluation results suggested that our estimated crop phenological stages were
favorably comparable with the results in previous studies. For example, using a remote
sensing approach, Sakamoto et al. [27] reported the RMSEs of estimated phenological dates
ranged from 0.7 to 8.6 days for corn and 1.9 to 14.5 days for soybean. In our study, RMSEs
of estimated crop phenological dates were between 3.34 and 6.05 days at the state level and
between 9.17 and 12.26 days at the county level. The lower accuracy in the county-level
estimates was mainly due to limited available site-level field observations for evaluation.
However, the state-level evaluation was based on the USDA crop report; its favorable
performance illustrates the potential of the NDVI curve-change-based dynamic threshold
approach in realistically estimating phenology for corn and soybean.

4.2. Spatial-Temporal Trends of Crop Phenology

We analyzed the state-level linear trends of three estimated crop phenological vari-
ables and built their spatial-temporal patterns by the Mann-Kendall test. Many studies
have reported that earlier crop planting and extended growing seasons occurred dur-
ing recent decades, but the changing trends vary depending on the study period [48,49].
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Menzel et al. [50] showed that phenological trends were weaker for the most recent 30-year
period (1989–2018) compared to the 1976–2005 period for both agricultural and wild plants.
Kucharik [30] found that the planting date in approximately 75% across the 12 Corn
Belt states was advanced by 0.37 days/year from 1979 to 2005. Notably, Kentucky was
among the states with significant changes, with advanced corn planting dates at a rate of
0.8 days/year [30]. Sacks and Kucharik [12] reported that soybean planting dates advanced
by 0.49 days/year averaged across the U.S. from 1981 to 2005. However, our study showed
a slight delay in crop planting for both corn (0.01 days/year) and soybean (0.07 days/year)
at the state level in Kentucky from 2000 to 2018. The changing patterns over different study
periods implied that the earlier trend of crop planting season slowed down during the last
two decades over the study area. In the Midwest U.S., soybean is usually planted after
completing corn planting. Therefore, delayed corn planting dates might cause delayed
soybean planting as well [51]. Sacks and Kucharik [12] also showed that the growing
season length of corn and soybean was significantly extended by 0.67 and 0.30 days/year,
respectively, in the U.S. during 1981–2005. Their findings of the prolonged corn growing
season were similar to the results in our study (0.66 days/year).

Meanwhile, we found that soybean experienced a shorter growing season (0.12 days/year)
in Kentucky during 2000–2018. According to Sacks and Kucharik [12], both corn (1 day/year)
and soybean (0.83 days/year) experienced a trend of earlier harvesting in Kentucky
over 1981–2015. However, our study showed largely postponed harvesting for corn
(0.67 days/year) and slightly advanced harvesting for soybean (0.05 days/year) during
2000–2018. We also found that the longer corn growing season length could significantly
benefit corn yield. The shortened soybean growth period may have undesired conse-
quences for yield but allow more intercropping or earlier sowing of winter cereals [50].
The advanced harvesting dates and shortened growing season of soybean were probably
related to the increasing double cropping system in Kentucky [52].

4.3. Effects of Climate Change and Other Factors on Crop Phenology

Temperature is often considered the most critical factor that influences crop phenologi-
cal change. Many studies suggested advanced trends of crop phenology across the northern
hemisphere due to the rising temperatures [53,54]. A long-term study showed that nearly
all earlier planting events occurred in warmer years, and more than 80% of them were
related to seasonal spring and summer temperatures [17]. In this study, only two climatic
variables showed significant changing trends (minimum temperature in April-October and
precipitation from June to August) in Kentucky from 2000 to 2018. Sensitivity analysis
showed that crop phenology responded negatively to temperature and positively to precip-
itation, but no significant response was found with the growing season temperature. The
overall analysis revealed that the phenology shifts (crop planting and harvesting) were not
related to the increasing temperature during April–October.

Climate change raises the concern about how field management could be optimized
to adapt to the changes in crop phenological development. The trend analysis showed
that temperature did not have distinct warming trends in Kentucky over the study period.
However, the crop phenology was observed with significant changes for both corn and
soybean. As we discussed, the sensitivity analysis found that only the summer precipitation
was significantly related to the delayed corn harvesting dates. The weak linkage between
crop phenology and climatic variables implied that changing phenology is relatively
dominated by human factors (e.g., management practices and variety improvement). This
finding agrees with previous studies showing non-climatic factors (e.g., crop varieties,
farmer decisions, cropping systems, and agronomic practices) may lead to changes in crop
phenology. For example, Kucharik [30] suggested no strong evidence to support that the
warming temperature was the most important factor driving the corn planting trends
across the majority of the Corn Belt from 1979 to 2005.

Previous studies have also suggested the use of more advanced equipment and
improved field management may be major contributors to planting trends in the spring
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season [55]. Lithourgidis et al. [56] suggested that farmer decisions were becoming much
more efficient at field operations, especially adopting management practices that can
facilitate earlier planting. Kucharik [30] presented that a trend toward performing tillage
immediately after fall harvests might be one of the most significant changes in agronomic
practices. Additionally, crop insurance policy restricts the final planting dates for different
crop types in different regions, resulting in shifts in crop phenology [57].

4.4. Effects of Crop Phenological Shift on Crop Yield

Agricultural crop production is closely related to crop phenological change. Previous
research presented that the optimum range of crop phenological stages can lead to high crop
production [58]. Some studies suggested that warming climate advanced phenological
phases and, consequently, shortened crop growth duration, potentially reducing crop
yield [2,19]. However, this study found no significant effects of earlier planting on crop
yield in Kentucky. Our result is consistent with Sacks and Kucharik [12], which verified
that earlier planting did not show significant effects on crop yields across the U.S. Corn Belt.
In addition, we found that planting dates did not show significant correlations with crop
yield for both corn and soybean in Kentucky. In contrast, corn growing season length and
harvesting dates contributed to the increased yield during the last two decades. This result
is in agreement with Wu et al. [7], who suggested that a longer growth duration might
increase agricultural production. These findings can serve as a benchmark by farmers to
access crop phenology and its associated impacts on crop yield in Kentucky.

4.5. Uncertainty and Expectations

This study detected crop phenological stages using the remote sensing-based ap-
proach. The state- and county-level evaluations against ground-based datasets illustrated
the robustness of this approach. However, this study still involves some uncertainties.
First, agriculture in Kentucky is mainly concentrated in the north and west regions, with
highly fragmented cropland areas in the rest of the state. In this case, MODIS products
at a 500 m spatial resolution may not accurately capture the crop phenological stages
in fragmented areas due to the effects of mixed and perimeter pixels. In the next step,
data fusion of high-resolution satellite imagery is needed for reducing uncertainties in
areas where mixed cropland pixels are dominant. Second, our county-level evaluation
was based on very limited field observations; further effort is needed to collect more crop
phenology data for robust validation and evaluation. Third, crop phenology is affected
by many non-climatic factors. For example, the growing degree days for different crops
are species-level characteristics. They may vary among varieties and are highly indepen-
dent of the circumstances. At present, we cannot identify the impacts of crop variety on
phenological shifts due to unavailable associated data not available. This knowledge gap
might be filled as high spatial-temporal-spectrum resolution remote sensing images and
site-specific variety information are available. Understanding the microclimate impacts
on crop phenology will also require more available observations, such as data recorded
from flux towers. Fourth, other crop phenological stages, such as the flowering and grain
filling stages, also play critical roles in affecting crop development. Future work should
endeavor to cover more phenological stages to analyze the effects of climate change and
improve the capability of crop yield prediction. Additionally, future studies should explore
the application of machine learning techniques on crop phenology detection, which might
be a solution to improve the estimation accuracy [2,3].

5. Conclusions

In this study, using MODIS NDVI time series and ground datasets, we detected
the planting dates, harvesting dates, and growing season length of corn and soybean in
Kentucky from 2000 to 2018. We also investigated their temporal patterns and correlations
with climate change and yields. Trend analysis showed that corn experienced delayed
planting/harvesting dates and extended growing season length over the study period.
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However, soybean was found to have delayed planting dates, an advanced harvesting
season, and a shortened growing season length. Sensitivity analysis showed that increased
seasonal climate temperature could significantly advance the planting and harvesting
dates for both corn and soybean. Combining the climate variables and crop phenological
patterns revealed that increasing accumulated precipitation in summer was substantially
related to the delayed harvesting dates of corn in Kentucky over the study period. This
study also suggested that the increasing corn yield had a significant correlation with the
delayed harvesting dates and prolonged growing season. No significant correlation was
found between climate change and soybean changing phenology. Moreover, changing
phenological stages did not contribute to soybean yield. Our findings highlight the future
needs to explore the impacts of non-climate-related factors on soybean phenology. The
quantitative crop phenology responding to climate change and crop yields may provide
farmers and local policy-makers guidelines for optimizing the field operations.
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