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ABSTRACT OF DISSERTATION 
 
 

CARNOSIC ACID DIFFERENTIALLY MODULATES THE NRF2-
ANTIOXIDANT RESPONSE IN MALE AND FEMALE MICE FOLLOWING 

EXPERIMENTAL TRAUMATIC BRAIN INJURY 
 

Traumatic brain injury (TBI) is a leading cause of death and disability in the United 
States (U.S.). Each year, an estimated 2.8 million Americans are diagnosed with a TBI due 
to falling, motor vehicle collisions, gun violence, and sports related concussions. Although 
inflicted by a single event, the post-traumatic effects of TBI often develop into a life-long 
disease. Survivors often experience cognitive decline, memory loss, emotional instability, 
changes in personality, and physical disabilities. A single TBI, and more-so repetitive 
TBIs, place an individual at a greater risk of developing chronic neurological disorders, 
such as dementia or Alzheimer’s disease, earlier in life. Additionally, the high costs and 
long-term care associated with treating TBI also strains families, companies, and the health 
care system. To develop an effective treatment, the underlying neuropathophysiology of 
TBI has been well studied for decades. Historically, basic research has been conducted 
more frequently in males, leaving a gap in knowledge about how females may react to a 
treatment. This may be a contributing factor as to why all TBI clinical trials have failed, 
leaving us without a treatment for this disease.  

One of the central secondary mechanisms associated with TBI is oxidative stress. 
Within minutes of the initial mechanical injury, the injured neurons and glial cells begin 
producing toxic amounts of reactive oxygen/nitrogen species (ROS/RNS), free radicals, 
undergo apoptosis, and initiate other damaging secondary cascades. Oxidative damage 
typically peaks around 3 days post injury but may persist for weeks depending on the injury 
severity. Because of the central role, early onset, and prolonged nature of oxidative stress, 
it has remained a logical avenue for developing treatments for TBI. 
 Cells are equipped with an innate antioxidant defense system to battle oxidative 
stress. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a basic 
leucine zipper that regulates the expression of several antioxidant proteins within the 
antioxidant response element (ARE). In healthy cells, Nrf2 is rapidly turned over to 
maintain a proper redox balance. However, following injury, a rise in oxidative stress, or 
in the presence of electrophilic species, Nrf2 is shuttled from the cytoplasm to the nucleus 
to initiate transcription of detoxifying enzymes. Recent understanding of this pathway has 
led to the development of a class of drugs called “Nrf2 activators”. The pro-electrophilic 
drug carnosic acid (CA), an extract in the common herb rosemary, has been shown to be 
an extremely effective Nrf2 activator and antioxidant.  
 The goal of this dissertation was to describe the innate time course of Nrf2-ARE 
activity following a single controlled cortical impact injury in male and female mice. 
Previous work in our lab showed that a single controlled cortical impact (CCI) injury 
increased markers of oxidative stress and consequently, increased the production of Nrf2 
mediated phase II enzymes. A single dose of CA at multiple different time points was able 
to reduce markers of oxidative stress while boosting the Nrf2 response. The goal of this 
project was to recapitulate this experiment in male and female mice to illuminate potential 



 

sex differences in the Nrf2-ARE response to CCI and test the efficacy of CA as a 
neuroprotective agent. 

In Aim 1, mice were sacrificed at 1, 2, 3, 7 days post injury (DPI). Both the injured 
cortex and hippocampus were analyzed for Nrf2 protein and mRNA the Nrf2-ARE 
biomarkers HO-1 and NQO1. In Aim 2, mice received the same injury and were given a 
single 1.0 mg/kg I.P. dose of CA 1 hr post-injury and sacrificed at 1 and 3 DPI and only 
the cortex was analyzed. We then examined how CA augmented the cellular localization 
(nuclear vs cytoplasmic) of Nrf2 and transcription of Nrf2 regulated mRNA biomarkers.  
 Results from Aim 1 detected notable sex-based differences in the innate Nrf2 
response. Male mice had greater amounts of HO-1 mRNA, whereas female mice exhibited 
higher amounts of HO-1 protein. Results from Aim 2 indicate a sex-based difference in the 
therapeutic action of CA. Nrf2 nuclear localization was increased in males treated with 
CA, whereas CA treated females had increased cytoplasmic concentrations of Nrf2. 
Surprisingly, qRT-PCR analysis revealed that CA treatment drove down transcription of 
HO-1, NQO1, and Nrf2 in males. Conversely, CA treatment enhanced transcription of HO-
1, NQO1, and decreased Nrf2 in females.  
 From these results, we can conclude that there are minor regional and temporal 
differences in the Nrf2-ARE pathway in male and female rodents. Also, the therapeutic 
mechanism of action associated with CA may be different in males and females given that 
a single dose had the opposite effect on Nrf2 cellular localization, however, with such 
modest drug effects, this cannot yet be concluded. Future studies may consider a thorough 
behavioral and histological analysis following a single dose of CA to measure functional 
recovery and visualize the neuroprotective effect. Additionally, a pharmacokinetic profile 
of CA clearance would be beneficial in determining the optimal dosing regimen for each 
sex. 
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CHAPTER 1. INTRODUCTION 

1.1 Traumatic Brain Injury 

 Epidemiology 

Traumatic brain injury (TBI) is an overarching term used to describe the disruption 

of normal brain function acquired from a bump, blow, or jolt to the head or by a penetrating 

object [1]. It is common for people with a TBI to suffer from a myriad of symptoms and 

disorders, ranging from seizures, changes in personality, memory loss, limb spasticity or 

flaccidity, incontinence, and loss of other bodily functions/control [2]. In the United States 

alone there are an estimated 2.8 million new cases each year, and a recent poll revealed 

that nearly 23 million adults over 40 years of age reported sustaining at least one head 

injury at some point in their lifetime [3-5].  

TBI-related deaths are most commonly caused by firearms, whereas TBI-related 

hospitalizations and emergency department visits are primarily the result of falling, motor-

vehicle collisions, and being struck by/against an object [1, 3, 6, 7]. In addition to being a 

major cause of death and disability, with an economic cost of nearly $76.5 billion each year 

in medical bills and indirect costs, TBI represents significant health care crises in the 

United States [8, 9]. 

The severity of head trauma, along with pre-injury lifestyle factors and post-injury 

medical care all considerably influence the patient’s long-term prognosis [10-17]. 

Although many TBI survivors may seem to achieve a full recovery, after years of research 

and debate, TBI is now recognized as a chronic neurological disease [9, 18-20]. In fact, 
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recent data shows that a single TBI increases the chances of developing Alzheimer’s 

disease rises with each subsequent head injury [9, 21]. Moreover, repetitive TBI places 

individuals at a higher risk of developing neurological disorders, neurodegenerative 

diseases, neuroendocrine disorders, and psychiatric disease later in life [2, 17, 22].  

 Predictors in TBI Outcomes 

Although TBI effects people of all ages, races, but even with all factors considered, 

males are at a significantly higher risk of acquiring a fatal head injury [1, 5, 6]. There are 

several factors that contribute to patient prognosis and ability to return to their pre-injury 

level of function. Studies have indicated that certain demographics, such as age, have been 

linked to TBI prognosis [7, 17, 23]. The elderly are more prone to falls and are also at 

greater risk of death and fare worse in the long-term. Another predictor of patient outcome 

has been directly linked to severity scores on the Glasgow Coma Scale upon admission 

[24-26]. This predictor has been linked to length of time in coma, with worse outcomes 

being noted with persons experiencing prolonged comatose states [15, 27-29].  

 Severity Assessment and Glasgow Coma Scale 

During the early stages of clinical TBI research, physicians began to appreciate the 

complex relationship between injury severity and post-injury symptoms [30, 31]. As 

research gained momentum, they recognized the need for a standard assessment protocol 

to accurately categorize patients based on injury severity [30]. Over the years, these 

observations led to the development of key clinical assessment measures that are still 

widely used today. 

The Glasgow Coma Scale (GCS) was one of the first standardized TBI assessment 
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tools used by clinicians to assess TBI severity in the human population [32, 33]. The initial 

iteration – The Coma Index – was not intended as a diagnostic tool, rather, it was purposed 

as means of objectively assessing the level of a person’s consciousness while in a comatose 

state [26, 34]. As it’s use gained favor throughout the 1970’s, the GCS was eventually 

assigned an ordinal scale for standardization and to monitor patient recovery [11]. By the 

1980’s, the GCS had evolved into a prognostic tool that measured the responsiveness of 

three different modalities – eye opening, motor response, and verbal response – an ordinal 

scale that corresponded to 3 levels of injury severity (mild, moderate, and severe) [11, 13, 

15, 16, 35-37]. With these adaptations, the GCS was quickly adopted as the gold standard 

evaluation tool due its use of clear terminology and relive ease and quickness to administer 

[14, 35]. Nowadays, clinicians often take a multimodal approach when evaluating patients 

that includes bedside assessments in conjunction with neuroimaging techniques and 

neuromonitoring equipment to achieve a more precise diagnoses [38-42]. 

1.2 Current Treatment Strategies 

Though standard of care differs around the world, initial medical care aims to 

stabilize the patient by re-establishing intracranial pressure (ICP), optimizing cerebral 

perfusion pressure (CPP) and brain oxygenation [43-47]. Until recently, decompressive 

craniectomy was a routinely used to decrease ICP pressure, however, advances in 

monitoring CPP have demonstrated that reducing ICP negatively effects the state of CPP 

[44]. Regulating CPP during the acute stages of the injury has been shown to decrease ICP 

thereby reducing the likelihood of ischemia and reperfusion injury [44, 48, 49]. 
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1.3 Previously Tested Pharmacological Therapies for TBI 

For the past several decades, institutions and pharmaceutical industries have 

conducted multiple clinical trials testing a variety of synthetic and natural compounds for 

treating TBI [50-58]. Many of these drugs were developed to target a specific element of 

the secondary cascade, whereas others possessed a broader range of effects [59-61]. Of 

these experimental drugs, the following classes made it to phase II and phase III clinical 

trials classes of drugs ranged from steroids, Ca2+ channel blockers, glutamate (NMDA) 

receptor antagonists, immunosuppressants, inflammatory modulators, sex hormones, and 

antioxidants [62, 63]. 

TBI has a long track record of promising therapeutic drugs followed by failed 

clinical trials and this is just a slight indication to the complex nature of the injury. Another 

major challenge with successfully translating drugs lies in accurately defining the 

pharmacodynamics and pharmacokinetics of the drug preclinical animal models [60, 64-

66]. Some of the most effective drugs to date are large, highly polar, lipophilic molecules 

with multiple mechanisms of action, such as the non-glucocorticoid 21-aminosteroid 

dubbed tirilazad mesylate [52-54]. Studies in rodents demonstrated that tirilazad conferred 

excellent neuroprotection against cerebrovascular insult, prevented destruction of the lipid 

membrane by halting lipid peroxidation, and provided antioxidant protection by 

scavenging iron-catalyzed free radicals [67-71]. In the pre-clinical phases, tirilazad proved 

to be well tolerated, and during the early clinical phases proved to greatly reduce mortality 

and improved outcome in a subpopulation of males with SAH [51, 52, 72-76]. Even after 

showing safety and efficacy, the tirilazad trials were discontinued after failing to show 

significant therapeutic efficacy in patients with moderate (GCS = 9-12) to severe (GCS = 
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4-8). The glucocorticoids dexamethasone and methylprednisolone also have a long history 

as treatments for both spinal cord injury and head trauma [50, 57, 58, 77, 78]. However, 

poor clinical design, flawed dosing regimes, increased rates of mortality, and lack of post-

mortem analysis all contributed to the failure of these drugs [56, 78-80]. The female 

hormone, progesterone, was one of the largest and most promising to date. In the late 

1970’s and early 1980’s, researchers found that pseudopregnant female rats with elevated 

levels of progesterone fared better after blunt force trauma to the brain [81]. These findings 

led to a series of phase II and phase III clinical trials that ultimately determined 

progesterone use was not effective enough to become a new therapeutic to fight TBI, which 

was likely due to suboptimal dosing parameters [64, 82-84]. 

While many promising treatments have been identified in animal models and 

optimized for human clinical trials, none to date have proven effective enough to become 

part of the therapeutic regiment for TBI [85]. Reasons for their failure may be linked to 

differences in biological sex, poor clinical or pre-clinical research design, and an unrealistic 

therapeutic window of administration [64, 83]. Therefore, elucidating potential sex 

differences in the pathophysiology of TBI, selecting a drug with a broad therapeutic 

window, and interpreting pharmacological effects with reliable biomarkers may increase 

the likelihood of developing a successful treatment for TBI. 

1.4 Pathophysiology  

 Primary and Secondary TBI 

As previously stated, TBI is caused by trauma to the head leading to a loss of 

consciousness and changes in brain chemistry [35]. To better understand the depth and 
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consequences of TBI, it has been commonly studied as a two-part injury process. The 

primary injury is initial damage caused by the forcible impact, penetrating object, coup-

countercoup contusion, or percussive force from an explosion [42, 86]. At this stage of the 

injury, individuals suffer from skin lacerations, cranial fractures, hematomas, swelling, 

increased intracranial pressure (ICP), contusions, shearing of axons and cell bodies, 

breeches in the blood-brain barrier (BBB), and loss of brain matter [42, 87, 88].  

The sequelae triggered by the primary insult, commonly referred to as the 

secondary injury, is characterized by the disruption in neurobiological homeostasis [88, 

89]. Depending on the severity of the initial injury, certain secondary injury processes may 

only last a few hours, or can persist for weeks to months after the primary insult [90, 91]. 

The following section is meant to provide a concise review of the secondary sequela that 

are related to this body of work. 

 The Blood-Brain Barrier and Cerebral Edema 

Cerebral edema (CE) is a well-documented condition that arises following TBI. It 

is characterized by an excess water from the peripheral vasculature system are able to freely 

flow across the BBB into the central nervous system (CNS) and accumulate in the brain 

[92, 93]. The BBB is an intricate network of brain capillary endothelial cells fused together 

by tight junctions, astrocytes, and pericytes with the purpose of sealing off the peripheral 

immune response and regulating the exchange of solutes between central and peripheral 

vasculature [94-96].  

Trauma to this protective barrier permits the extravasation of fluid and solutes from 

the periphery into the interstitial space, causing the cell bodies in the brain to swell [49, 93, 
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97, 98]. This causes damage to cellular ion exchange pumps, microvascular alterations, 

and a drop in cerebral perfusion pressure (CPP)  [99]. CE is characterized by excess fluid 

accumulation within brain and leads to an increase in brain volume and intracranial 

pressure (ICP) [87]. CE also plays a critical role in determining prognosis and mortality in 

patients with severe TBI [100]. The two common types of edema that frequently occur 

after TBI are vasogenic edema, localized within the extracellular spaces, and cytotoxic 

edema, which specially targets brain cells [92]. 

Vasogenic edema is a consequence of the structural failure of the BBB and 

separation of endothelial cell lining from adjoining astrocytes, permitting the unregulated 

passage of ions and proteins into the brain interstitium [101]. This edema causes expansion 

in brain volume, subsequently raising ICP to dangerous levels [46]. Elevated ICP may 

initiate a variety of compensatory mechanisms to restore compliance, such as decreasing 

cerebral spinal fluid (CSF) production, increasing CSF absorption, or shunting CSF out of 

the cranial vault [92, 102].  

Cytotoxic brain edema is characterized by a disruption of the intracellular osmotic 

balance within vulnerable cells, particularly astrocytes [103]. This process is partially 

driven by a surge in free extracellular Na+, K+, Ca2+, and Cl- released from cells undergoing 

apoptosis and necrosis [104]. The central mechanisms contributing to cytotoxic edema are 

increased intracellular ion concentrations (particularly Na+), sustained absorption of 

osmotically active solutes, and leaky cell membranes from metabolic exhaustion [105]. 

Ultimately, ATP production fails to meet the energy demands of the Na+/K+ ATPases 

required to restore electrogenic balance and maintain electrochemical stability, generating 

more neurotoxic positive feedback loops [105, 106].  
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 Glutamate excitotoxicity 

The excitatory neurotransmitter glutamate is essential for maintaining a host of 

healthy brain functions, most notably learning and memory formation [107, 108]. Optimal 

regulation of glutamatergic signaling requires the synchronized effort of both pre-/post-

synaptic neurons, ligand receptors activation, and reuptake by neurons and astroglia for 

signal termination [109-113]. Due to the potent action of glutamate and widespread 

receptor distribution, a delicate balance between signal transmission and termination must 

be maintained to prevent neurotoxicity [110, 112, 114-118]. 

The binding of glutamate, glutamate analogues, and voltage changes regulate 

synaptic transmissions and several signal cascades in pre-/post-synaptic neuronal 

populations and amongst glial cells [119-121]. These receptors are classified into two main 

subfamilies based on structure and the mechanisms regulating signal transduction. 

Metabotropic glutamate receptors (mGluRs) are seven transmembrane domains G protein-

coupled receptors that control several cellular processes [122]. On the other hand, 

ionotropic glutamate receptors (iGluRs) permit the flow of ions (Na+, K+, and Ca2+) 

through transmembrane ion channels to evoke an excitatory membrane depolarization 

[112]. There are three subtypes of iGluRs and they slightly vary in function. Both AMPA 

and Kainate receptors allow Na+ influx into the cells and K+ leakage into the extracellular 

space upon glutamate-ligand binding, whereas NMDA receptors also require a change in 

voltage for full activation [123]. This electrogenic process, typically assisted by AMPA 

receptors, removes a magnesium ion from the channel pore to permit the influx of Na+ and, 

more importantly, Ca2+ influx [115].  



 

9 
 

Glutamate regulation relies on multiple transporters, enzymes, receptors, and a 

coordinated effort between neurons and astroglia for reuptake and inactivation [110, 112, 

113]. ATP storages become depleted due to the high energy expenditure associated with 

glutamate removal and inactivation [119, 124]. Following TBI, excess glutamate 

accumulates within the extracellular space due to increased neuronal firing, loss of 

inhibition, and impaired astrocyte glutamate uptake, causing persistent glutamatergic 

signaling, and elevated intracellular concentrations of Na+, K+, and Ca2+ within neurons 

[113, 119, 121, 124]. Specifically, Ca2+ overload can initiate several other injury cascades 

including the activation of caspases, calpains, protein kinases, and mitochondrial 

uncoupling [125-127].  

 Oxidative Stress 

Oxidative stress is reflected by the imbalance between the production of ROS/RNS, 

lipid peroxidative by-products and the cells ability to neutralize these toxic intermediates 

[128]. A major source of secondary brain injury is the nearly instantaneous rise in oxidative 

stress caused by mitochondrial uncoupling, generation of superoxide anions, hydrogen 

peroxide, and iron-catalyzed hydroxyl radicals [69, 129-132]. Sequestering excess Ca2+ 

causes mitochondria to begin producing excessive amounts of free radicals, reactive 

nitrogen, and oxygen species (RNS/ROS) [126]. Cells begin swelling and mitochondria 

succumb to bioenergetic failure from inhibition of the electron transport chain, destabilized 

membrane potential, and opening of the mitochondrial permeability transition pore 

(MPTP) [133]. Formation of the MPTP is a critical event that triggers apoptosis and further 

increases oxidative stress induced cell damage [133]. One mechanism used by the cell to 
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combat oxidative stress is through upregulating the production of detoxifying enzymes 

from the antioxidant response element [134]. 

1.5 The Nrf2-ARE Pathway  

The antioxidant response element (ARE) encodes many powerful detoxifying 

enzymes to combat oxidative stress and reduce oxidative damage [134]. Transcription from 

the ARE by the transcription factor nuclear factor erythroid-2 related factor 2 (Nrf2) can 

be induced by endogenous signalling metabolites, dietary compounds, pharmaceuticals, 

and cell damage [135-144]. The main purpose of these cytoprotective enzymes is to prevent 

lipid peroxidation, quench free radicals, reduce oxidized molecules, and purge the cell of 

xenobiotics. For example, heme oxygenase 1 (HO-1) is a detoxifying enzyme that catalyzes 

the degradation of heme groups into bilirubin, and subsequently biliverdin and carbon 

monoxide [145-147]. It has also been shown to be quickly upregulated through Nrf2 

activity in several models of brain injury, making it a prime candidate for studying Nrf2 

activation [145, 146, 148-151]. Another well-known phase II enzyme under Nrf2 

regulation is NAD(P)H: quinone oxidoreductase 1 (NQO1) [152, 153]. NQO1 catalyzes 

the two-electron reduction of dietary quinones to less harmful hydroquinones, detoxifies 

chemotherapeutic compounds, and reduces glutamate excitotoxicity [152, 154-157].   

Under quiescent conditions, cells rapidly degrade Nrf2, exhibiting a half-life of 

around 20 minutes [158, 159]. In this case, Nrf2 is bound by its repressor protein, Keap1 

and shuttled into the cytoplasm for degradation via the Cul3-based E3 ligase and 26S 

proteasome [158, 160-163]. When cells are stressed from either an excessive build-up of 

oxidants or electrophilic species, Nrf2 is stabilized and undergoes nuclear translocation 
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[158, 161, 164-168]. Recently, researchers have identified molecules with certain 

properties that can effectively modulate Nrf2 transcriptional activity. Since this discovery, 

these molecules have been tested as a treatment for many types of neurological disorders, 

including TBI. These molecules all act under similar mechanisms, which is by triggering 

redox sensitivity cysteines on Keap1 to block Nrf2 degradation [169, 170]. Figure 1.1 

shows a schematic of the Nrf2-ARE. 

 Carnosic Acid, a Nrf2 Activator 

Carnosic acid (CA), an ortho-diphenolic abietane diterpene found in rosmanris 

officinalis (rosemary), is a pro-electrophilic molecule known to upregulate Nrf2 

transcription from the ARE [171-173]. It contains a catechol ring that has been shown to 

scavenge free radicals, and after accepting an electron, it is able to activate the Nrf2 

pathway through S-alkylation of cysteine 151 on Keap1 [171, 174, 175]. Several studies 

have shown that CA-induced activation of Nrf2 leads to a dose-dependent upregulation in 

transcriptional activity within the ARE, which has been recorded by the luciferase assay 

[174, 175]. In vivo studies have shown that CA elicits neuroprotective effects in models of 

stroke and closed head injury [174, 176, 177]. Possessing both a pro-electrophilic state and 

an electrophilic state, CA has been considered a potent antioxidant that can also upregulate 

endogenous cytoprotective enzymes effect and Nrf2 has made CA an attractive candidate 

for treating TBI [173, 174, 178]. 

1.6 Addressing Biological Sex as a Variable in TBI 

Biological sex is considered a binary term to identify males and females based on 

genetic makeup, sexual reproductive organs present at birth, and hormonal profiles [179]. 
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Although gender is sometimes used interchangeably with biological sex, it is a social 

construct used for self-identification, forming relationships, and defining masculine or 

feminine characteristics [179]. Indeed, gender may also impact patient outcomes and 

deserves consideration when developing personalized medicine [180, 181]. Nevertheless, 

the term biological sex will be used to discuss the pathophysiological consequences 

associated with TBI in both humans and animals in this body of work. 

 Biological Sex Differences in Outcomes 

Both males and females can sustain a life-altering TBI at any point in life, yet men 

comprise the majority of TBI patients [4, 5, 182]. This could be for various reasons, such 

as, men more often work dangerous jobs, take greater risks, play high contact sports, and 

make up a greater population of the military. Although TBI is more prevalent amongst 

men, the reports on patient outcome are not as straightforward.  

Recently, an extensive report attempted to decipher the complex relationship 

between biological sex in the realm of TBI [183]. In this review, the authors cited multiple 

studies with contradicting results, however, a closer analysis revealed certain trends related 

to biological sex and TBI. For instance, conditions such as injury severity, study size, 

mechanism of injury, and age were all identified as potential factors contributing to patient 

outcomes and preclinical research. Out of each of these conditions, the authors identified 

injury severity as a major contributing factor when determining outcomes related to 

biological sex differences [183].  

Numerous studies that evaluated patient outcomes following a mild to moderate 

TBI found that women had worse outcomes than men. Women were at a higher risk of 
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depression and reported more post-concussive symptoms [184-191]. Other studies found 

that women reported poorer quality of life, had greater mortality rates, and that young girls 

(≤ 19 years) took longer to recover in the hospital [192-198]. Furthermore, women also 

tended to suffer more long-term post-injury complications, such as headaches, migraines, 

anxiety, post-traumatic stress, and higher rate of unemployment [199-206]. These 

conclusions, however, are controversial due to the substantial amount of evidence 

supporting the complete opposite outcomes following a moderate to severe TBI. In these 

cases, women were more likely to be successfully employed, report a better quality of life, 

have superior emotional processing skills, and had a lower risk of mortality [207-212]. 

To complicate matters even further, there are also numerous studies that found no 

significant sex differences regardless of injury severity. These studies evaluated duration 

of post-concussive symptoms, length of hospital stay, numerous neurocognitive exams, 

psychological well-being, and mortality [213-222]. After many years of promising 

preclinical research and failed clinical trials, the National Institutes of Health (NIH) 

amended its guidelines for more rigorous research. In 2001, the NIH introduced a mandate 

forcing the inclusion of females and minorities in clinical research. Another revision in 

2015 called for biological sex to be incorporated as a variable into the research design for 

NIH-funded animal research [223].  

Based on the NIH guidelines and a plethora of evidence to suggest that biological 

sex may impact antioxidant buffering capacity, we aimed to first describe the endogenous 

Nrf2-ARE in male and female mice. After defining the time course, we aimed to augment 

the Nrf2-ARE with CA.  
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Table 1.1 Glasgow Coma Scale 
Representation of a simplified version of the Glasgow Coma Scale. Adapted from 
[224]. 
Eye Opening E = 

Spontaneous 4 

To Speech 3 

To Pain 2 

No Response 1 

Best Motor Response M = 

Obeys 6 

Localizes 5 

Withdraws 4 

Abnormal Flexion 3 

Extends 2 

No Response 1 

Verbal Response V =  

Oriented  5 

Confused Conversation 4 

Inappropriate Words 3 

Incomprehensible Sounds 2 

No Response 1 

Total GSC Score 3 ‒ 15  
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Figure 1.1 Schematic of the Nrf2-ARE 
Nrf2 is bound by Keap1 and shuttled into the cytoplasm. Under basal conditions, 
Keap1 presents Nrf2 for ubiquitination and subsequent proteasomal degradation by 
the Cul3-based E3 Ligase and 26S proteasome. In the presence of oxidative stress, 
Keap1 cysteine residues are modified, releasing Nrf2 and allowing it to accumulate 
within the nucleus. In the nucleus, sMaf proteins bind to Nrf2 and initiate transcription 
of cytoprotective enzymes from the antioxidant response element (ARE). 

 

CHAPTER 2. TIME COURSE OF THE ENDOGENOUS NRF2-ANTIOXIDANT 
RESPONSE ELEMENT AFTER CONTROLLED CORTICAL IMPACT INJURY 

IN MALE AND FEMALE MICE 
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2.1 Introduction 

Nearly 5.3 million Americans currently suffer from chronic conditions associated 

with TBI and, without an effective therapy, will remain a health safety concern for the 

entire population. TBI accounts for approximately 2.8 million related hospitalizations, 

emergency room visits, and more than 55,000 deaths each year [20, 225, 226]. It is widely 

known that men are more likely to suffer from TBI at a rate nearly 3 times higher than 

women, and are more likely to die because of the injury up until 65 years of age [180, 207]. 

This may be the only justification for why preclinical studies used almost exclusively male 

mice when testing and developing drugs. Until recently, it was widely accepted that 

females performed better in animal studies, whereas human studies report women as having 

worse outcomes [189, 193, 198, 210].  

Clinical experimental design has not always stratified the patient population by sex, 

potentially confounding the results. Unfortunately, there is one case where an ad hoc 

analysis revealed that the drug tirilazad mesylate was effective in a subpopulation of male 

subjects with subarachnoid haemorrhage (SAH), but ineffective in female patients [72]. 

Interestingly, a human pharmacokinetic evaluation of tirilazad previously showed that 

women metabolized the drug at a higher rate than men, yet they received the same dose 

based on their weight and were not stratified by sex during later clinical testing [52, 75, 

227]. 

One of the most substantiated secondary processes that contributes to TBI-induced 

neurodegeneration is the neurochemical pathway giving rise to oxidative stress [228]. 

Damaged mitochondria become a significant source of oxidative stress in the form of 

excess free hydroxyl radicals, reactive oxygen/nitrogen species (ROS/RNS), and 
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superoxide radicals [229, 230]. Overproduction of these free radical species occurs within 

minutes of the initial insult and initiates several other secondary cascades, including lipid 

peroxidation (LP) [129-131, 231]. LP is initiated when reactive oxygen species (ROS) 

attack polyunsaturated fatty acids found within lipid membranes, triggering membrane 

destabilization and generation of neurotoxic aldehydes (e.g., 4-HNE, acrolein) [129, 232, 

233]. These neurotoxic by-products then form adducts to proteins, RNA, and DNA, 

perpetuating LP and further compromising the structural components and functional 

integrity of the cellular membrane [234]. Consequently, toxic amounts of Ca2+ and 

chemical neurotransmitters are released, causing mass depolarization, metabolic 

dysfunction, apoptosis and necrosis [69, 125, 150]. 

The Nrf2-ARE pathway provides cells with innate protection from abrupt increases 

in free radical production and lipid peroxidation. Under homeostatic conditions, Nrf2 is 

quickly bound by its repressor protein and redox/electrophile sensor, Keap1, and targeted 

for proteasomal degradation [158, 161, 235, 236]. A sudden increase in oxidative stress or 

electrophiles rapidly inhibits Keap1-mediated ubiquitination, triggering Nrf2 liberation, 

stabilization, and subsequent nuclear accumulation [158, 161]. Nuclear Nrf2 

heterodimerizes with small Maf proteins and begins transcription from the antioxidant 

response element (ARE), quickly elevating the production of phase II enzymes, such as 

heme oxygenase 1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) [134, 142, 

164, 237-239]. The highly reactive nature of the Nrf2/ARE axis and potential for 

neuroprotection against a variety of neurodegenerative diseases has led to the discovery of 

Nrf2 activating compounds, such as sulforaphane, tert-butylhydroquinone, and CA [142, 
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240]. These agents typically possess electrophilic properties that interrupt Keap1/Nrf2 

interaction, thus freeing Nrf2 for transcription within the ARE [142, 178].  

There is evidence to support that biological sex does play a role in the functional 

recovery process [188, 241-243]. Preclinical studies have attributed differences to the 

female sex hormones estrogen and progesterone, mitochondrial respiration rate, and the 

inflammatory response [244-247]. There are some reports indicating that certain aspects of 

the secondary pathogenic processes of TBI are differentially regulated in males and 

females [242, 247-249]. There is evidence of brain-region specific biological sex 

differences in the response to oxidative stress, suggesting that Nrf2/ARE pathway may be 

differentially regulated in males and females [230, 250-254]. Furthermore, HO-1 knock-

out is neuroprotective in a male specific manner [251, 255]. Due to growing interest in 

developing effective Nrf2 activating drugs, it is essential that we define the time course of 

Nrf2-ARE following TBI in both male and female mice. To our knowledge, this is the first 

study to investigate potential sex differences in the time course of the Nrf2 response 

following CCI injury. 

2.2 Materials and Methods 

 Animals 

This study used weight-matched male (9 weeks) and female (12 weeks) CF-1 mice 

(Charles River Labs, USA) weighing 28–32g at the time of surgery. Weight matched mice 

were chosen to ensure that the brain sizes of both sexes were as similar as possible, 

resulting in a similar initial injury depth and volume.  Each sex was housed separately in 

groups of 4–5 and allowed to acclimate for 7 days on a 12 hr light/dark cycle with ad 
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libitum access to food and water. All animal procedures and housing conditions were 

conducted in accordance with the University of Kentucky Institutional Animal Care and 

Use Committee.  

 Surgical Procedures and Injury 

Surgical procedures are previously described in detail [232]. Briefly, all mice were 

initially anesthetized with 3% isoflurane and maintained at surgical plane with 2.5% 

isoflurane during the surgical procedure. Mice were secured in a stereotaxic device and a 

sagittal incision (~2.0 cm) was made to expose the skull. A 4.0 mm diameter craniotomy 

centered between bregma and lambda over the left parietal lobe was performed with a hand 

trephine, taking care to leave the dura intact. Brain-injured mice were rotated 20° clockwise 

before contusion. A pneumatic controlled cortical impact (CCI) device (Precision Systems 

Instrumentation, PSI TBI0300, Fairfax Station, VA) equipped with a 3.0 mm stainless steel 

beveled impactor tip was used to create the injury. Cortical deformation was -1.0 mm and 

inflicted at velocity of 3.5 m/s with a dwell period of 500 ms. Following injury, a 6.0 mm 

sterilized plastic disc was secured in place over the craniotomy with quick-bonding liquid 

cyanoacrylate and the incision was sutured closed. Mice were placed in a temperature-

controlled chamber for 20–30 min to safely regain consciousness before returning to their 

previous housing assignments. Shams underwent all surgical procedures excluding the 

injury. Normal feeding and grooming behavior was exhibited soon after recovering from 

anesthesia and monitored daily. Mice in the experimental group were sacrificed at 1, 2, 3, 

and 7 days post-injury (DPI). 

 Quantitative Real-Time PCR and Gene Expression Analysis 

Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine 
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mRNA expression of Nrf2 (Thermo Fisher Scientific, Assay ID Mm00477784_m1) and 

the Nrf2-ARE mediated targets HO-1 (Thermo Fisher Scientific, Assay ID 

Mm00516005_m1), NQO1 (Thermo Fisher Scientific, Assay ID Mm00500821_m1). 

Briefly, mice were asphyxiated in a CO2 filled chamber. Following decapitation, brains 

were rapidly removed and dissected on ice using caution to prevent contamination between 

samples. A 4.0 mm disc of the cortex (penumbral tissue and injured core) and the ipsilateral 

hippocampus were carefully dissected and immediately placed in RNAlater solution 

(Thermo Fisher Scientific) for 24 hrs at 4°C to minimize cellular disruption and then stored 

at -80°C until analysis.  

For total RNA isolation, the TRIzol Reagent protocol (Thermo Fisher Scientific, 

Cat# 15596018) was used per manufacturer specifications. Homogenization was achieved 

using Lysing Matrix D tubes (MP Biomedicals, San Diego, CA, Cat# 116913050) filled 

with TRIzol Reagent in conjunction with the FastPrep®-24 homogenizer (MP 

Biomedicals). Lysates were phase-separated in bathocuporine (BCP); RNA was 

precipitated in 2-propanol, washed in 75% ethanol and decontaminated of residual DNA 

using the DNA-free kit (Thermo Fisher Scientific, Cat# AM1906). 

In preparation for qRT-PCR analysis, purified total-RNA concentrations were 

determined using a NanoDrop (Thermo Fisher Scientific) with 260/280 ratios of 1.8–2.2 

were considered satisfactory. A total of 1.0 µg of purified total-RNA was then reverse 

transcribed to produce cDNA for subsequent qRT-PCR analysis. The StepOne-Plus Real-

Time PCR System (Thermo Fisher Scientific, SCR_015805) in conjunction with 

commercially available TaqMan® RT-PCR primers and probes (Thermo Fisher Scientific) 

were used to detect gene amplification.  
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PCR reactions were run in duplicates in a 96 well format at a final volume of 25.0 

µL using a standard amplification protocol (2.5 hrs, 40 cycles). Each reaction for a target 

gene contained 3.0 µL of stock cDNA plus 22.0 µL of a TaqMan RT-PCR Master Mix and 

gene-specific primers. Each reaction used for normalization purposes contained 3.0 µL of 

1:10 diluted total cDNA plus 22.0 µL of the TaqMan PCR Master Mix and the endogenous 

control glyceraldehyde-3-phosphate dehydrogenase (GAPDH) primer. The resulting 

amplification curves were analysed by the well-established 2(−ΔΔCt) method, with GAPDH 

used as the reference gene and the sham groups as controls. All fold change values reported 

were log2 normalized. Methods used for total RNA extraction, purification, and 

complimentary DNA (cDNA) preparation, and qRT-PCR analysis have been previously 

validated in our lab [233]. 

 Immunoblotting and Protein Analysis 

Western blotting technique was used to determine protein levels of the phospho-

Nrf2 (pNrf2) and Nrf2-ARE mediated targets HO-1 and NQO1. Briefly, mice were 

asphyxiated in a CO2 filled chamber and brains were rapidly removed and dissected on ice. 

A 4.0 mm disc of the cortex (penumbral tissue and injured core) and the ipsilateral 

hippocampus were immediately transferred to Triton lysis buffer (1.0% Triton, 20.0 mM 

Tris HCL, 150.0 mM NaCl, 5.0 mM EGTA, 10.0 mM EDTA, and 10.0% glycerol) 

containing protease inhibitors (Sigma Aldrich, St. Louis, MO, Cat# 11836153001). Tissue 

samples were sonicated and then vortexed every 15 min for 1 hr. The whole-cell lysate 

emulsifications were centrifuged for 30 min (13,000 rpm at 4°C), the resulting supernatant 

was transferred to fresh tubes, and the debris pellet was discarded. Protein concentrations 
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were determined using the BCA Protein Assay Kit (Thermo Fisher Scientific, Cat# 23225). 

Samples were kept on ice throughout all of the procedures. 

Equal amounts of protein (35.0 µg aliquots) were separated on either 12% (for HO-

1 and NQO1) or 10% (for pNrf2) Bis-Tris SDS-PAGE precast gels (Bio-Rad, Hercules, 

CA, Cat# 3450118; 3450112) using XT-MOPS running buffer. A semi-dry electro-

transferring unit set to 15 V for 45 min was used to transfer proteins onto nitrocellulose 

membranes. Membranes were then placed in blocking solution (5% milk/TBS for HO-1, 

NQO1; 5% BSA/TBS w/v for pNrf2) for 1 hr at room temperature. Next, membranes were 

incubated with the appropriate primary antibody solutions at 4°C overnight (HO-1) or 72 

hr (NQO1 and pNrf2). Finally, membranes were washed 3x5 min in TBST, incubated in 

the appropriate secondary solution for 2 hr at room temperature, and washed again 3x10 

min in TBST prior to imaging. A LI-COR Odyssey-CLx InfraRed Imaging System (LI-

COR Biosciences, Lincoln, NE, SCR_014579) and Image Studio software (version 5.2, Li-

Cor Biosciences, SCR_015795) were used to scan and quantify the band intensities of the 

membranes. 

Primary antibodies used for Western blotting were rabbit monoclonal for anti-

Heme-oxygenase-1 (HO-1) (Abcam, Cambridge, MA, ab68477), anti-NAD(P)H: quinone 

oxidoreductase 1 (NQO1) (Abcam); rabbit polyclonal for anti-Phospho-Nrf2 (Ser40) 

(pNrf2) (Thermo Fisher Scientific, PA5-67520), and mouse monoclonal for anti-Alpha 

Tubulin (α-tubulin) (Abcam) was used as the internal control. The fluorescent secondary 

conjugate antibodies were either goat anti-rabbit (1:5,000; IRdye-800CW, Rockland, 

Limerick, PA) or goat anti-mouse (1:5000, IRdye-700CW, Rockland). With exception to 

the detection of pNrf2, blocking solution was prepared as TBS/5% milk and all primary 



 

23 
 

and secondary antibodies were diluted in TBST/5% milk. (Note: blots probing for pNrf2 

were blocked in TBS/5% BSA; primary and secondary antibodies were diluted in only 

TBST only). A more detailed list of the primary antibodies and vendors is provided in 

Table 2.2. 

 Statistical Analysis 

GraphPad Prism (version 9.0, GraphPad Software Inc., San Diego, CA, 

SCR_002798) was used for statistical analysis and graphing for data obtained from qRT-

PCR and immunoblot quantifications. An ordinary two-way ANOVA was used to detect 

significant main effects of time and of sex and an interaction of time and sex in both 

followed by a Tukey’s post hoc multiple comparisons test. Differences between the mean 

(+/-) were considered significant at α = 0.05. Statistical data were reported as the mean 

standard deviation (SD). For all multiple comparisons, the sham mice were used as the 

control group. 

2.3 Results 

For this study a total of 120 rodents were organized into two cohorts, one for qRT-

PCR (N = 60) and a second for immunoblot analysis (N = 60). Each cohort was comprised 

of an equal number of males (n = 30) and females (n = 30) and underwent the same surgical 

techniques and experimental model of CCI. At the time of surgery, mice were randomly 

assigned to receive sham operation or to an experimental group (1, 2, 3, and 7 DPI). For 

each sham and experimental group, there were an equal number of males (n = 6) and 

females (n = 6). Full statistical values are reported in the figure captions. 
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 Time course of Nrf2 

Focal TBI is known to cause an increase in oxidative damage for up to one-week 

post-injury [256, 257]. Cells respond to these sudden increases in oxidants by stabilizing 

the transcription factor Nrf2 to ramp up production of detoxifying enzymes from the 

antioxidant response element [145, 164, 230, 253, 254, 258]. To date, the post-injury time 

course of Nrf2 has yet to be described in both males and females. To determine if biological 

sex differences exist in the Nrf2-ARE pathway following experimental TBI, we measured 

the gene expression of Nrf2 and two of its key downstream targets, HO-1 and NQO1 in the 

cortex and hippocampus. Here, we report that CCI injury altered Nrf2-ARE mediated gene 

expression and protein concentration of HO-1 and NQO1 in a region and sex specific 

manner.  

 Nrf2 Gene Expression and Protein in the Cortex and Hippocampus 

Nrf2 mRNA was significantly elevated in brain-injured male mice at 2, 3, and 7 

DPI (Figure 2.1A). Similarly, Nrf2 mRNA levels also elevated at 2, 3, and 7 DPI in female 

mice (Figure 2.1A). The gene expression of cortical Nrf2 was not found to be significantly 

different between males and females at 1, 2, 3, or 7 DPI (Figure 2.1A). Analysis of the 

hippocampus revealed that Nrf2 gene expression increased from sham levels at 1 DPI and 

remained elevated for up to 7 DPI in both sexes (Figure 2.2B). However, at 7 DPI, 

hippocampal Nrf2 was significantly lower in females compared to males (Figure 2.2B). To 

determine if upregulation in Nrf2 mRNA corresponded with changes in Nrf2 protein, we 

probed whole cell lysates for pNrf2. We chose to analyze pNrf2, specifically the pSer40 

version, because this would indicate activation related to PKC pathway by the lipid 

peroxidation by-product 4-HNE [259]. In the cortex, pNrf2 levels were highest in shams 
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regardless of biological sex (Figure 2.1C). In the male cortex, we observed a steady 

decrease in pNrf2 that was significant at 3 DPI (Figure 2.1C). In the female cortex, pNrf2 

was also significantly downregulated, but this occurred at 7 DPI (Figure 2.1C). We did not 

observe an injury effect in pNrf2 in the hippocampus for either sex (Figure 2.3D). 

 Time course of NAD(P)H dehydrogenase; quinone 1 

NAD(P)H dehydrogenase; quinone 1 (NQO1) is a potent 2-electron reductase 

capable of quenching free radicals in the cytoplasm by forming a homodimer and binding 

to the redox-active coenzyme FAD [152]. NQO1 is also a known target gene for Nrf2 and, 

recently, it has been shown to have a sex-based divergent expression in the liver of rats 

[152, 260, 261]. In the present study we found cortical NQO1 mRNA significantly 

increased in male mice at 3 DPI and 7 DPI and female mice at 3 DPI and 7 DPI (Figure 

2.2A). A significant injury effect was also observed with NQO1 gene expression in the 

hippocampus. While male mice exhibited a significant increase in NQO1 mRNA at 7 DPI, 

female mice had significantly higher expression at 3 DPI and 7 DPI (Figure 2.2B). In good 

accordance with our gene expression analysis, we observed a similar injury effect in the 

cortex and hippocampus with respect to NQO1 protein. Although not significant, cortical 

NQO1 protein was elevated with respect to shams at 3 DPI and 7 DPI in both male and 

females (Figure 2.2C). NQO1 hippocampal protein was significantly elevated at 3 DPI in 

females only (Figure 2.2D).  

 Time Course of Heme Oxygenase 1 

Heme oxygenase 1 (HO-1) is a highly inducible enzyme essential for catabolizing 

heme groups into biliverdin, and subsequently into bilirubin and carbon monoxide [262]. 

When analysing the induction of HO-1 mRNA following CCI, we found a sex-specific 
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temporal pattern in both the cortex and hippocampus. In the cortex of both sexes, HO-1 

mRNA induction followed an inverted-U shaped curve, peaking at 3 DPI in both sexes, a 

time point when oxidative stress is at the highest. In the male cortex, HO-1 expression was 

significantly elevated at 1, 2, 3 DPI to 7 DPI relative to shams (Figure 2.3A). In the female 

cortex, HO-1 mRNA was significantly elevated at 3 DPI (Figure 2.3A). In the male 

hippocampus, HO-1 induction was elevated relative to shams at 1, 2, and 3 DPI (Figure 

2.3B). In the female hippocampus, HO-1 mRNA was elevated 1 DPI and 3 DPI (Figure 

2.3B). Interestingly, hippocampal HO-1 was significantly elevated in males compared to 

females at 3 DPI (Figure 2.3B). For both males and females, HO-1 protein was significantly 

elevated at 3 DPI, the corresponding peak for both sexes (Figure 2.3C). In the 

hippocampus, only female HO-1 protein was significantly elevated compared to shams, 

and this occurred at 2 DPI and 3 DPI (2.3D). 

2.4 Discussion  

Studies examining the effect of biological sex in brain injury have reported sexually 

dimorphic outcomes dating back to the 1970’s. These studies report regional differences, 

where males tend to recover better when injured in the frontal cortex and septal nucleus, 

while females recovered better from hippocampal lesions [263-265]. Other studies have 

found that female gonadal hormones, progesterone and estrogen, provided enhanced 

neuroprotection [81, 246, 266]. Furthermore, the neuroinflammatory profile of female mice 

tends to be less pronounced in CCI models insult [247, 266], and there is even evidence to 

suggest sex-dependent differences in mitochondria and other metabolic processes that 

contribute to neurodegeneration [250, 253, 267]. A recent study also found that the Nrf2 

regulated proteins HO-1 and NQO1 and the multidrug resistance associated protein 4 
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(MRP4) efflux transporter were more plentiful in the female choroid plexus [253]. Due to 

a growing mass of literature supporting that multiple biological systems are influenced by 

sex-dependent factors, we aimed to directly compare the spatial and temporal dynamics of 

the Nrf2-ARE pathway in both male and female mice. To the best of our knowledge, this 

is the first attempt to investigate the endogenous antioxidant response in a mouse model of 

CCI induced brain injury that included a sex-based comparison of the Nrf2-ARE molecular 

pathway. 

It is well known that CCI injury accelerates the production of free radicals, 

increases lipid peroxidation and results in cell death [90, 130, 268, 269]. Previously, our 

lab conducted a time course study which showed that levels of 4-hydroxy-2-nonenal (4-

HNE), a by-product of lipid peroxidation, coincided with Nrf2 activation following CCI 

injury in male mice [233]. Increases in oxidative stress, such as 4-HNE, or electrophilic 

compounds, such as sulforaphane and CA, triggers the dissociation of the Keap1/Nrf2 

complex by modifying Keap1 cysteine residues or by direct phosphorylation of Nrf2 [161, 

270]. It has been shown that phosphorylation of Nrf2 at the serine 40 site is a critical event 

for releasing Nrf2 from the repressor protein during high levels of oxidative stress [166]. 

First, we evaluated the injured cortex and ipsilateral hippocampus for Nrf2 mRNA 

and relative protein quantities. In the present study, Nrf2 mRNA increased equally in males 

and females at each of the recorded time points. On the other hand, hippocampal Nrf2 

mRNA was significantly decreased in females compared to males at 7 DPI. Temporal, 

regional and cell-specific sex differences have been identified regarding the inflammatory 

response as well as the extent of protein carbonylation, both factors that impact the 

transcription of Nrf2, following CCI injury [247, 271]. A previous study showed that at 7 
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DPI males showed enhanced IBA1 immunoreactivity in the dentate gyrus compared to 

females [247]. Another study showed that at 5 DPI, females had less carbonylation near 

the dorsal third ventricle and median eminence, structures near the hippocampus [230]. 

Next, we prepared total cell lysates from the injured cortex and ipsilateral 

hippocampus and tested for the presence of the serine 40 phosphorylated form of Nrf2 

(pNrf2). This post-translational modification occurs via activation of the atypical PKC 

(aPKC) pathway by 4-HNE, a by-product of lipid peroxidation and known Nrf2 activator 

[259]. Interestingly, male and female mice had similar basal levels of pNrf2, which were 

highest in shams and decreased at each post-injury time point. Although we observed a 

steady decline in the levels of pNrf2, there were signs of increased transcriptional activity, 

represented by the amplified production of Nrf2, HO-1 and NQO1 mRNA. This may seem 

paradoxical, however, can be easily explained. The phosphorylation of the serine 40 site 

on Nrf2 is required to release Nrf2 from Keap1 but is not required to enhance 

transcriptional activity [166, 272  ]. Nrf2 can also be modified through many alternative 

pathways and mechanisms [160]. Therefore, pNrf2 represents a specific pool of cellular 

Nrf2, as it excludes newly transcribed, or otherwise unaltered by post-translational 

modifications. Furthermore, this suggests that the newly transcribed Nrf2 may be targeted 

through alternative activating pathways thus enhancing the efficiency of Nrf2 

transcriptional activation [135, 143, 273, 274]. Future studies should consider measuring 

both pNrf2 and total Nrf2 levels after injury. 

Our current study aligns with previous studies, verifying that CCI injury does lead 

to the induction of Nrf2 mediated effectors, specifically HO-1 and NQO1 [137, 233]. The 

HO-1 enzyme catalyzes the breakdown of heme into biliverdin, ferrous iron, and carbon 
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monoxide and is a highly inducible antioxidant that is activated in response to brain injury, 

especially following the breakdown of the blood-brain barrier [275]. Recently, it was found 

that CCI injury leads to significantly elevated levels of HO-1 protein in female mice 

compared to male mice at 1 DPI, but not 7 dpi [245]. We did not see a significant increase 

in HO-1 protein until 3 DPI, however, this difference could be attributed to differences in 

injury severity produced by our CCI model. In our study, a post-hoc analysis revealed that 

cortical HO-1 mRNA levels were significantly higher in males compared to females at 2 

and 3 DPI, indicating a sex-dependent mechanism involved in the secondary 

pathophysiology. Interestingly, neurodegeneration induced by TBI has been shown to peak 

in males within 3 days, while maximum neurodegeneration occurred 14 days post-injury 

in females [90]. Other reports provide evidence that male mice exhibit greater HO-1 protein 

induction over females following ferrous iron-induced injury within the mouse striatum 

[251]. However, when injured castrated male HO-1+/‒ mice were treated with estradiol 

(E2), HO-1 expression fell to injured female levels. Interestingly, greater HO-1 expression 

in males was associated with larger lesions and worse behavioural outcomes, while HO-1 

suppression, castration, and E2 treatment attenuated these results. Another study 

examining the effects of E2 on HO-1 induction during intracerebral haemorrhage (ICH) 

supported these outcomes. After experimental ICH, E2 treatment in males abolished HO-

1 induction and significantly reduced brain edema [276]. HO-1 activation in male mice has 

been shown to be detrimental during the early stages of ICH but aided in hematoma 

clearance and improved neurological outcomes during the later stages of recovery [151]. 

Keeping that in mind, there are studies citing improvements associated with HO-1 
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induction in males using Nrf2 inducers, suggesting a more complex role in the regulation 

of this pathway [277, 278].  

The phase II enzyme NQO1 plays a direct role in the catalytic detoxification of 

toxic quinones to benign hydroquinones and is tightly regulated by the Nrf2-ARE pathway 

[233, 277, 279]. In the current study, we found that NQO1 mRNA and protein induction 

coincided with Nrf2 mRNA production in both the male and female cortex and 

hippocampus. Interestingly, the hippocampal fractions of females tended to have a more 

robust expression of NQO1 protein and an earlier mRNA induction profile than that of 

males. Although NQO1 can be detected in all areas of the brain including the cortex, 

hippocampus, striatum, and cerebellum, it is predominately located in endothelial cells and 

lateral walls of the choroid plexus (CP) [253, 255, 280]. Interestingly, when examining the 

cytoprotective gene composition of the CP, researchers found that females possessed 

greater concentrations of NQO1, HO-1, and certain ATP-binding cassette transporters 

associated with the passage of NQO1 and HO-1 metabolites and other compounds when 

compared to males [253]. Collectively, these data indicate that, to a certain degree, Nrf2 

activity may also contribute to sex-specific variations in the detoxification of molecules 

and the transportation of metabolites between blood and cerebrospinal fluid.  

Effectively managing the acute neuropathological consequences of TBI inflicted 

by oxidative insult is critical for maximizing the patient’s potential of recovery [85, 240, 

281]. The Nrf2-ARE pathway is the cell’s main emergency defense against rapid 

destabilization in redox homeostasis and can be manipulated using electrophilic 

compounds. Mounting literature supports that targeting the endogenous Nrf2-ARE 
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antioxidant pathway with Nrf2 stabilizers may confer neuroprotection in multiple 

neurological diseases [140, 144, 173, 232, 233, 258, 281]. 

2.5 Conclusion  

The present study aimed to analyze and compare the spatial and temporal 

characteristics of the male and female Nrf2-ARE axis. Our findings indicate that there is 

no difference in the basal expression of the Nrf2-ARE pathway between young-adult male 

and female mice, however, we did find sex-based differences in the spatial and temporal 

profiles of Nrf2-ARE activity within the first week following CCI injury. These data 

suggest that there are other underlying factors influencing the regulation of Nrf2-ARE 

response. Contributing factors may be linked to circulating gonadal hormones, 

mitochondrial makeup, differences in neuroinflammatory profiles, and potential structural 

and functional differences in communicating across the BBB, however, the specific 

mechanisms have yet to be elucidated.  Ongoing studies are comparing the influence of sex 

differences in response to the Nrf2-ARE activating drug CA. Prior work from our 

laboratory has observed that in male mice subjected to CCI TBI, CA treatment is 

impressively neuroprotective with at least an 8-hour post-injury therapeutic efficacy 

window [232]. Currently, we are comparing the findings and the responsiveness to CA in 

female vs. male mice. 
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Table 2.1  Primary Antibodies 
Host-Target Dilution Band Vendor Catalog RRID 

Rb anti-phospho-
Nrf2(Ser40) 

1:500 

 

100/110 
kDa 

Thermo Fisher 
Scientific 

PA5-
67520 

AB_2691678 

Rb anti-HO-1 1:2,000 33 kDa Abcam ab68477 AB_11156457 
Rb anti-NQO1 1:500 31 kDa Abcam ab80588 AB_1603750 
Ms anti-α Tubulin 1:10,000 52 kDa Abcam ab7291 AB_2241126 
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Figure 2.1 Nrf2 gene expression and pNrf2 protein quantities in the cortex and 
hippocampus. 

A Two-way ANOVA with Tukey’s post hoc was used for all multiple comparisons 
test, with statistical significance level set to α = 0.05. Error bars on graphs represent 
the SEM. Some sex-dependent changes were found in cortical Nrf2 gene expression 
and protein concentrations in cortical tissue from male and female CF-1 mice in 
response to a controlled cortical impact (CCI) injury. A. Gene expression in the cortex 
revealed no sex differences in Nrf2 mRNA upregulation 2, 3, and 7 DPI compared to 
shams (Time: F4, 50 = 70.84, p < 0.0001; Sex: F1, 50 = 0.075, p = 0.78; Interaction F4, 50 

= 0.57; p = 0.785). B. Sex differences were found in Nrf2 gene expression in the 
hippocampus (Interaction: F4, 50 = 4.85, p = 0.002; Time: F4, 50 = 48.50, p < 0.0001; 
Sex: F1, 50 = 12.68, p = 0.0008). Nrf2 was signficantly upregulated for both sexes at 1, 
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2, 3, and 7 DPI. Expression was significantly higher in males at 7 DPI. C. Protein 
quantities of pNrf2 in the cortex decreased over time in males and females, but 
revealed no significant sex differences (Interaction: F4, 50 = 0.43, p = 0.12; Time: F4, 

50 = 7.55, p < 0.0001; Sex: F1, 50 = 1.29, p = 0.2602;). D. In the hippocampus, pNrf2 
protein levels did not fluctuate significantly in response to injury (Interaction: F4, 50 = 
1.88, p = 0.1277; Time: F4, 50 = 0.39, p = 0.8144; Sex: F1, 50 = 3.67, p = 0.0623). 
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Figure 2.2 NQO1 gene expression and protein quantities in the cortex and hippocampus. 
A Two-way ANOVA with Tukey’s post hoc was used for all multiple comparisons 
test, with statistical significance level set to α = 0.05. Error bars on graphs represent 
the SEM. Post-injury upregulation of NQO1 gene expression and protein 
concentration is brain region and sex-specific. A. When compared to shams, NQO1 
gene induction in the cortex was significantly higher at 3 DPI and 7 DPI in males and 
females, no sex differences were detected (Interaction: F4, 50 = 1.09, p = 0.3673; Time: 
F4, 50 = 72.09, p < 0.0001; Sex: F1, 50 = 7.15, p = 0.0100). B. In the hippocampus, when 
compared to shams, females had significantly higher levels of NQO1 mRNA at 3 DPI 
and 7 DPI, whereas NQO1 mRNA peaked in males 7 DPI. (Interaction: F4, 50 = 1.49, 
p = 0.2172; Time: F4, 50 = 26.08, p < 0.0001; Sex: F1, 50 = 1.73, p = 0.1934). C. Cortical 
NQO1 protein appeared to increase, but results were not signficant (Interaction: F4, 50 



 

36 
 

= 0.10, p = 0.9785; Time: F4, 50 = 3.81, p = 0.0088; Sex: F1, 50 = 0.18, p = 0.6661). D. 
In the hippocampus, NQO1 protein quantities significantly increased from sham 
levels at 3 DPI in females (Interaction: F4, 50 = 1.49, p = 0.2185; Time: F4, 50 = 4.49, p 
= 0.0035; Sex: F1, 50 = 1.52, p = 0.2226). 
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Figure 2.3 HO-1 gene expression and protein quantities in the cortex and hippocampus. 
A Two-way ANOVA with Tukey’s post hoc was used for all multiple comparisons 
test, with statistical significance level set to α = 0.05. Error bars on graphs represent 
the SEM. Post-injury upregulation of HO-1 gene expression and protein concentration 
is brain region and sex-specific. A. When compared to shams, HO-1 gene induction 
in the cortex was significantly higher at all recorded post-injury time points in males, 
and at 3 DPI in females. Sex differences were detected at 2 and 3 DPI (Interaction: F4, 

50 = 3.67, p = 0.0106; Time: F4, 50 = 24.35, p < 0.0001; Sex: F1, 50 = 45.19, p < 0.0001). 
B. When compared to shams, males had significantly higher levels of HO-1 mRNA 
at 1, 2, 3, and 7 DPI, whereas HO-1 mRNA peaked in females at 2 and 3 DPI. Males 
had significantly higher HO-1 gene expression than females at 3 DPI (Interaction: F4, 

50 = 4.32, p = 0.0044; Time: F4, 50 = 22.24, p < 0.0001; Sex: F1, 50 = 14.28, p = 0.0044). 
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C. Cortical HO-1 protein significantly increased from sham levels at 3 DPI in both 
males and females (Interaction: F4, 50 = 0.911, p = 0.4644; Time: F4, 50 = 10.09, p < 
0.0001; Sex: F1, 50 = 0.48, p = 0.4906). D. In the hippocampus, HO-1 protein quantities 
significantly increased from sham levels at 2 and 3 DPI in females (Interaction: F4, 50 
= 1.682, p = 0.1688; Time: F4, 50 = 15.10, p < 0.0001; Sex: F1, 50 = 1.99, p = 0.1641). 

 

 

 



 

39 
 

CHAPTER 3. CARNOSIC ACID DIFFERENTIALLY EFFECTS THE NRF2-ARE 
PATHWAY RESPONSE IN MALE AND FEMALE MICE FOLLOWING 

EXPERIMENTAL BRAIN INJURY 

3.1 Introduction 

Traumatic brain injury is a serious global health problem. The heterogeneity of TBI has 

presented unique hurdles to both the preclinical research process and clinical trial 

methodology. In order to develop an effective treatment for TBI, researchers developed 

several animal models of head injury to mimic the various mechanisms of injury seen in 

humans [256, 269, 282-287]. Rigorous testing had led to the development of several 

promising neuroprotective agents and clinical trials. Although these drugs had striking 

results in animals, that same therapeutic efficacy has not yet been achieved in human 

patients. 

Over the years, there has been much debate about why these drugs failed to make 

the transition from the bench to the bedside, however, one of the prevailing arguments lies 

in the preclinical research process. Most of these drugs were designed to act with high 

specificity, targeting a single secondary cascade or cell receptor. For instance, the NMDA 

receptor antagonists were designed to combat excessive glutamate signalling, a known 

secondary insult that occurs in the acute stages of secondary injury. Although 

demonstrating a very clean mechanism of action, these drugs ultimately failed because of 

their high degree of receptor binding. NMDA antagonists outcompeted glutamate binding, 

and because glutamate signalling is essential for life, this led to several complications, 

including death. A silver-bullet drug with a single mechanism of action does sound 

appealing, but it may not be a logical approach to treating such a complicated injury 

process.  
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Basic experimental research has typically overlooked the use of females in TBI 

research, however, there mounting evidence to support that biological sex should be 

considered a factor in both in preclinical and clinical TBI research. Preclinical experimental 

TBI studies have demonstrated biological sex differences in the antioxidant capacity of 

mammalian in the injured CNS [90, 245, 254, 288]. For example, one study showed that 

CCI injury lead to a greater degree of protein carbonylation near the ependymal zones of 

the dorsal third ventricle of the lesion in male mice [230]. In corroboration, another study 

found that aging male mice generated a greater degree of protein carbonylation and reduced 

catalytic activity of glutathione peroxidases in compared to aging females [254]. On the 

other hand, some studies find that lipid peroxidation also to occur at higher rates in the 

female brain, whereas other studies have found that the female brains tend show a decrease 

in antioxidant activity [289]. Sex differences have also been noted in the catalytic activity 

of NQO1 in the liver as well as HO-1 mediated iron catabolism activity in the brain [290, 

291].  

There is increasing evidence of sex differences in brain drug metabolism and BBB 

penetrability. The presence and abundance of multidrug resistant associated proteins 

(MRPs) transporters, which can affect the bioavailability of drug metabolites, were also 

found to be distributed differently throughout the male and female brain. Males exhibited 

a greater expression of MRP5 whereas females showed greater expression of MRP 4 [253]. 

Moreover, researchers identified Nrf2 as a mediated the expression of MRP2, MRP 3, and 

MRP4 expression through use of a Nrf2-KO model [292].  These gross differences in 

antioxidant capacity and regulation suggest that the endogenous antioxidant pathway may 

also be under differential regulation. 
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The Nrf2-Keap1 antioxidant pathway is responsible for protecting cells against 

oxidative damage. Under redox stable conditions, Nrf2 is constitutively expressed, bound 

by Keap1, a Cullin-3 E3 ubiquitin ligase adapter protein, shuttled between the nucleus and 

cytoplasm for ubiquitination and subsequent proteasomal degradation [143, 178, 293]. 

Keap1 also facilitates the nuclear accumulation of Nrf2 with the aid of several redox 

sensitive cysteine moieties [235, 274, 294-296]. When triggered, ceases the ubiquitination 

and degradation of Nrf2, increasing translocation into the nucleus subsequently 

upregulating transcription of cytoprotective genes [135, 144, 274, 297].  

Two such mechanisms by which Nrf2 is stabilized occurred in the presence of 

oxidative stress and through electrophilic modification of the Keap1 cysteine residues [143, 

158, 161, 235, 239, 270, 274, 294, 296, 298-302]. Since its discovery, it has been 

considered an attractive pharmaceutical target for CNS disorders due to its ability to 

cleanse cells of oxidative stress and xenobiotics [142, 281]. In fact, research involving this 

pathway has led to an entire class of several neuroprotective compounds termed Nrf2 

activators, which have been screened in various models of models of CNS injury and 

neurodegeneration [140, 141, 303]. These acquired their name based on their ability 

upregulate Nrf2 transcriptional activity. One common characteristic shared among this 

class of drugs is the preferentially selection and modification of key cysteine residues on 

Keap1, which interrupts the ubiquitination pathway and facilitates Nrf2 nuclear 

translocation [239, 270, 299, 300]. 

One of the more potent Nrf2 activating compounds is carnosic acid (CA), an ortho-

diphenolic abietane diterpene found in Rosmanris officinalis (the common herb, rosemary). 

It contains a catechol moiety that has been shown to scavenge free radicals and activate the 
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Nrf2 pathway through S-alkylation of cysteine 151 on Keap1 [171, 174, 175]. CA-induced 

activation of Nrf2 leads to and upregulation in transcriptional activity of within the ARE, 

which has been recorded by luciferase assay. In vivo studies have shown CA bestows 

neuroprotective effects in models of stroke and closed head injury. Possessing both an 

antioxidant effect and Nrf2 stabilizing properties has made CA an attractive candidate for 

TBI. Figure 3.1 provides a depiction of the proposed mechanism by which CA exerts its 

neuroprotective effect in vivo following traumatic CNS injury.  

Several studies to date have demonstrated the mechanisms associated with the 

therapeutic potential of manipulating the Nrf2-Are pathway in males [136, 140, 277, 304, 

305], however, to date, no study has evaluated the subcellular localization of Nrf2 or 

demonstrated neuroprotective effects in CNS trauma in female mice. To determine if the 

subcellular distribution of Nrf2 is different between sexes, we first compared the levels of 

cytoplasmic Nrf2 to nuclear Nrf2 for each sex. In line with other studies, we found that 

Nrf2 was preferentially localized in the cytoplasmic fraction in male mice. Interestingly, 

the females had significantly higher amounts of nuclear Nrf2. Furthermore, after a 

thorough literature review, we could not find studies that described Nrf2 cytoplasmic and 

nuclear distributions in the female mouse brain. To the best of our knowledge, this is the 

first study to report the subcellular distribution of Nrf2 in the female cortex; the first sex 

comparison of subcellular Nrf2 in the mouse cortex; and the first to determine if the effects 

of an electrophilic compound on Nrf2 localization is sex-dependent in the cortex of mice. 
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3.2 Methods and Materials 

 Animals 

All animal procedures and housing conditions were conducted in accordance with 

the University of Kentucky Institutional Animal Care and Use Committee. This study used 

weight-matched male (9 weeks) and female (12 weeks) CF-1 mice (Charles River Labs, 

USA) weighing 28–32g at the time of surgery. Each sex was housed separately in groups 

of 4–5. The mice were allowed to acclimate for 7 days on a 12 hr light/dark cycle with ad 

libitum access to food and water in the vivarium. Following surgery, mice were placed 

back in freshly prepared cages in their original groups before being returned to the 

vivarium.  

 Mouse Model of Controlled Cortical Impact Injury (CCI) 

To ensure that the male and female mice did not come into contact on the day of 

surgery, the female cohort underwent surgical procedures first, followed by the male. To 

further ensure no contact, each sex was initially anesthetized in a designated Plexiglas 

chamber. Mice were initially put under anesthesia using 4.0% isoflurane, heads shaved, 

and placed in a stereotaxic instrument (David Kopf, Tujunga, CA, USA). Mice were 

secured in a stereotaxic device and a sagittal incision (~2.0 cm) was made to expose the 

skull. A 4.0 mm diameter craniotomy centered between bregma and lambda over the left 

parietal lobe was performed with a hand trephine, taking care to leave the dura intact. 

Brain-injured mice were rotated 20° clockwise before contusion. A pneumatic controlled 

cortical impact (CCI) device (Precision Systems Instrumentation, PSI TBI0300, Fairfax 

Station, VA) equipped with a 3.0 mm stainless steel beveled impactor tip was used to create 

the injury. Cortical deformation was -1.0 mm and inflicted at velocity of 3.5 m/s with a 
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dwell period of 500 ms. Following injury, a 6.0 mm sterilized plastic disc was secured in 

place over the craniotomy with quick-bonding liquid cyanoacrylate and the incision was 

sutured closed. Mice were placed in a temperature-controlled chamber to safely regain 

consciousness before returning to their previous housing assignments. Shams underwent 

all surgical procedures excluding the injury. Normal feeding and grooming behavior was 

exhibited soon after recovering from anaesthesia and mice were monitored daily. Mice 

were allowed to survive for either 1 or 3 days post injury (DPI). 

 Drug Preparation and Administration 

The dose, preparation, route of administration, and therapeutic window of efficacy were 

previously established in our lab [232]. Carnosic acid (Millipore Sigma, USA) was 

prepared at a concentration of 1 mg/kg in a 10% ethanol/90% PBS vehicle solution. 

Animals were treated with CA or vehicle solution (10% ethanol/90% PBS) via 

intraparatoneal (I.P.) injection 1 hr following the CCI injury. 

 

 Tissue Collection  

At either 1 or 3 DPI, mice were asphyxiated in a CO2 filled chamber. Following 

decapitation, brains were rapidly removed and dissected using caution to prevent 

contamination between samples. A 5.0 mm disc of the injured cortex (penumbral tissue 

and injured core ~40 mg) was isolated and prepared for cellular fractionation using the 

following procedure. In Chapter 2, we also assessed the ipsilateral hippocampus, however, 

we wanted to focus on how CA altered the Nrf2-ARE pathway specifically at the contusion 

site. 
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 Cell Fractionation: Nuclear and Cytoplasmic Isolation 

Separation and purification of the cytoplasmic and nuclear contents of cortical 

samples was achieved using the NE-PER Nuclear Cytoplasmic Extraction Reagent kit 

(Thermo Scientific, Waltham, MA, USA) according to the manufacturer’s directions. 

Optimization to increase protein yield and concentration were done per manufacturer’s 

recommendations. Briefly, cortical samples were washed with PBS and then transferred to 

a 1.5 mL microcentrifuge tube (SP Bel-Art, Wayne, NJ, USA) filled with 400 µL ice cold 

reagent 1 (CERI). Samples were homogenized using a cordless homogenizer (SP Bel-Art, 

Wayne, NJ, USA) equipped with a sterile plastic pestle (SP Bel-Art, Wayne, NJ, USA). 

The homogenate was then vortexed on the highest setting for 15 s and placed on ice for 10 

min followed by the addition of 22 µL of reagent 2 (CERII), vortexed for 5 s, incubated 

another 1 min on ice, and centrifuged for 15 min at 16,000 g at 4°C. The cytoplasmic 

supernatant was transferred to a clean pre-chilled tube and stored at -80°C. The nuclear 

pellet was resuspended in 100 µL of reagent 3 (NER) and vortexed for 15 s, incubated on 

ice for 10 min, 9 times for a total of 90 min. The nuclear homogenate was centrifuged for 

15 min at 16,000 g at 4°C. The resulting supernatant containing the nuclear contents was 

then transferred to a clean pre-chilled tube and stored at -80°C.  

 

 Western Blot for Nuclear and Cytoplasmic Nrf2 

Protein concentration of the cytoplasmic fraction and nuclear fractions were 

determined using the BCA Protein Assay kit (Pierce; Rockford, IL, USA). A 10 µg aliquot 

of each cell protein fraction was diluted in Milli-Q© water with 4x protein sample loading 

buffer (Licor; Lincoln, NE, USA) and 20x reducing agent (Bio-Rad; Hercules, CA, USA) 
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to a total volume of 20 µL. Samples were vortexed for 5 s, then placed in a 60°C water 

bath for 10 min and vortexed again. Equal volumes (15 µL) of each cell fraction were 

loaded on a precast 3-8% Criterion™ XT Tris-Acetate gel (Bio-Rad) in a Criterion™ 

Vertical Electrophoresis Cell (Bio-Rad) filled with ice cold XT Tricine Running Buffer 

(Bio-Rad). Electrophoresis was conducted on ice using a Power Ease 500 power supply 

(Invitrogen/Thermo Fisher Scientific; Waltham, MA) at 80 V for 15 min followed by 150 

V for 90 min. Gels were removed from the cassette and equalized in ice cold Towbin 

transfer buffer (Table 3.1) for 5 min then placed between filter paper and transferred to 

nitrocellulose using a Trans Blot Semi-Dry Transfer Cell (Bio-Rad) at 18 V (constant), 

2.00 mA for 40 min at room temperature (RT). The gel sandwiches were moistened with 

Towbin transfer buffer prior to mounting the cathode plate.  

After the transfer, blots were briefly rinsed in TBS and then blocked in TBS/5% 

milk for 1 hr at RT on a lab rotator. It should be noted that each step involving an incubation 

period took place while gently rotating on a lab rotator. After being rinsed 1x in TBS, the 

primary antibody (Table 3.2) was added for overnight (~16 hr) incubation at 4°C. The 

following day, blots were allowed to equilibrate to RT for 10 min, washed 3x5 min in TBS-

T. After the final wash, the blot was incubated for 1hr at RT in the secondary antibody 

(Table 3.2) diluted in TBS-T/5% milk. Blots were washed 3x5 min in TBS-T at room 

temperature and then scanned on the LI-COR Oddessy-CLx (Licor).  

 Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) 

Briefly, mice were asphyxiated in a CO2 filled chamber, brains were removed from 

the skull, and dissected on ice using caution to prevent contamination between samples. A 

5.0 mm disc of the cortex, including the penumbral tissue and injured core, was carefully 
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dissected out and immediately placed in RNAlater® solution (Thermo Fisher Scientific) 

for 24 hr at 4°C to minimize cellular disruption. The cortical samples were then stored at -

80°C until further processing.  

The TRIzol® Reagent protocol (Thermo Fisher Scientific) was used per 

manufacturer specifications to isolate total RNA from the cortical tissue samples. Tissue 

was homogenized using Lysing Matrix D tubes filled with beads (MP Biomedicals) and 

800µL of TRIzol® Reagent in conjunction with the FastPrep®-24 homogenizer (MP 

Biomedicals). Lysates were incubated at RT for 10 min then centrifuged at 18,000 g for 10 

min at 4°C. Without disturbing the beads, the supernatant was carefully transferred to tubes 

filled with 100 µL of BCP and gently mixed. After 15 min of incubation at RT, the phase-

separated samples were centrifuged at 18,000 g for 20 min at 4°C. The clear aqueous top 

layer was carefully transferred to fresh tubes containing 500 µL 2-propanol, vortexed for 

10 s, and incubated at RT for 15 min. The solution containing precipitated RNA was 

centrifuged at 18,000 g for 15 min at 4°C, leaving a clear supernatant and white pellet of 

RNA.  The supernatant was discarded, and the RNA pellet was subsequently washed in 

75% ethanol (100% ethanol diluted in Nuclease-Free Water (Applied Biosystems; 

Waltham, MA, USA)), and decontaminated of residual DNA using the DNA-free kit 

(Thermo Fisher Scientific). The RNA samples were treated with 6 µL of the DNase and 

buffer enzyme cocktail, heated in a 37°C water bath for 30 min, then treated with 5 µL of 

the DNAse Inactivator cocktail. After centrifuging at 10,000 g for 5 min, the supernatant 

was removed, and resuspended in 20-30 µL of Nuclease-Free water (Applied Biosystems). 

Purified total-RNA concentrations were determined using a NanoDrop (Thermo 

Fisher Scientific) with 260/280 ratios of 1.8–2.2 were considered to be acceptable. A total 
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of 1.0 µg of purified total-RNA in a 40 µL reaction was reverse transcribed using the High 

Capacity cDNA Reverse Transcription Kit (Applied Biosystems) per the directions and the 

C1000 Touch™ Thermal Cycler (Bio-Rad) to produce complimentary DNA (cDNA) for 

subsequent qRT-PCR analysis. The lid of the cycler was set to 105°C, and cycle protocol 

was 25°C for 10 min, 37°C for 120 min, and 85°C for 5 min. 

The StepOnePlus™ Real-Time PCR System (Thermo Fisher Scientific) in 

conjunction with commercially available TaqMan® RT-PCR primers and probes were 

used to detect gene amplification. Duplicate PCR reactions were ran in in a 96 well format 

at a final volume of 25.0 µL using a standard amplification protocol (2.5 hr, 40 cycles). 

Each reaction for a target gene contained 3.0 µL of stock cDNA plus 22.0 µL of a 

TaqMan® RT-PCR Master Mix and gene-specific primers (Table 3.3). For normalization 

and quantification, each plate had a set of control reactions containing 3.0 µL of 1:10 

diluted total cDNA plus 22.0 µL of the TaqMan® PCR Master Mix and the endogenous 

control glyceraldehyde-3-phosphate dehydrogenase (GAPDH) primer (Table 3.3). The 

resulting amplification curves were analysed by the well-established 2(−ΔΔCt) method, with 

GAPDH used as the reference gene and the sham groups as controls. All fold change values 

reported were log2 normalized. Methods used for total RNA extraction, purification, and 

complimentary DNA (cDNA) preparation, and qRT-PCR analysis have been previously 

validated in our lab [233]. 

 Sample Size and Statistical Analysis 

Experimental groups for Western blot analysis were comprised of an equal number 

of male and female mice. Each cytoplasmic and nuclear fraction came from a single mouse 

from one of the following groups: Sham (n=4); 1 DPI + Veh (n=7); 1 DPI + CA (n = 7); 3 
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DPI + Veh (n=7); 3 DPI + CA (n = 7). qRT-PCR analysis experimental groups were as 

follows. Males: Sham (n=4); 1 DPI + Veh (n=7); 1 DPI + CA (n = 7); 3 DPI + Veh (n=6); 

3 DPI + CA (n = 7). Females: Sham (n=4); 1 DPI + Veh (n=6); 1 DPI + CA (n = 8); 3 DPI 

+ Veh (n=6); 3 DPI + CA (n = 7). GraphPad Prism (version 9.0, GraphPad Software Inc., 

San Diego, CA, SCR_002798) was used for statistical analysis and to create the graphs. A 

Two-way analysis of variance (ANOVA) with Tukey’s post hoc was used for all multiple 

comparison tests, with statistical significance level set to α = 0.05. Error bars on graphs 

represent the standard error of the mean (SEM). 

3.3 Results 

 Carnosic Acid Differentially Effects the Distribution of Nuclear and Cytoplasmic 
of Nrf2 Protein in Male and Female Mice 

To determine the subcellular localization of Nrf2, we isolated the nuclear and 

cytoplasmic protein contents from the lesion core of the injured cortex. In line with other 

studies, we found that the nuclear concentration of Nrf2 was lower than the cytoplasmic 

concentration of Nrf2 in male shams (Figure 3.2) [158, 167, 302]. Interestingly, in female 

shams, the nuclear concentration of Nrf2 was not significantly different in shams (Figure 

3.3).  

To determine the effect of CA on the stabilization and translocation of Nrf2, we 

divided the total nuclear concentration by cytoplasmic concentration. In males, we found 

that CA treatment led to a significant increase in the ratio of nuclear to cytoplasmic Nrf2 

at both 1 DPI and 3 DPI (Figure 3.4A). In complete opposition, we found that CA treatment 
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led to an decreased cytoplasmic concentration of Nrf2 in female mice at 1 DPI (Figure 

3.4B).  

Next, we directly compared the effect of CA treatment between males and females 

to determine if this effect was significant between sexes. We found that males had 

significantly small ratio of nuclear to cytoplasmic Nrf2 as compared to female shams and 

1 DPI + Veh treated groups (Figure 3.5). 

 qRT-PCR Analysis of Nrf2 Transcriptional Targets 

3.3.2.1 Nrf2 Gene Expression following Delayed CA 
Treatment 

Nrf2 is known to target transcription of Nrf2, therefore, we analysed mRNA to 

determine the effect of CA or Veh treatment. We found significantly elevated levels of 

Nrf2 mRNA in male mice at 1 DPI and 3 DPI in both Veh and CA treated groups (Figure 

3.6). In females, Nrf2 mRNA levels were found to be elevated at 3 DPI in female in both 

Veh and CA treated groups (Figure 3.6). Though there were no significant differences 

between the magnitude change of Nrf2 between males and females, it was interesting to 

observe that the increase in Nrf2 gene expression occurred at an earlier time point in males 

compared to females.  

3.3.2.2 NQO1 Gene Expression following Delayed CA 
Treatment 

NQO1 is another well-cited target for Nrf2 transcription, therefore, it was chosen 

for mRNA analysis to determine the effect of CA or Veh on Nrf2 transcription [153, 280]. 

We found NQO1 mRNA was significantly elevated in male mice at 3 DPI in both Veh and 

CA treated groups (Figure 3.7). Similarly, in females, NQO1 mRNA levels were found to 
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be elevated at 3 DPI in both Veh and CA treated groups (Figure 3.7). There were no 

significant differences between the magnitude change of NQO1 between males and 

females. 

3.3.2.3 HO-1 Gene Expression following Delayed CA 
Treatment 

Transcriptional regulation of HO-1 is a highly cited target for Nrf2 transcription, 

therefore, it was chosen for mRNA analysis to determine the effect of CA or Veh on Nrf2 

transcription [145, 146, 150]. HO-1 mRNA was significantly elevated in male mice at 1 

DPI and 3 DPI in both Veh and CA treated groups (Figure 3.8). In females, HO-1 mRNA 

levels were found to be elevated at 1 DPI and 3 DPI in both Veh and CA treated groups 

(Figure 3.8). At 3 DPI, Veh treated males had significantly higher levels of HO-1 compared 

to females, but this difference was not present in the CA treated groups at 3 DPI.  

 qRT-PCR Analysis of Nrf2 Negative Regulators 

3.3.3.1 NF-κB Gene Expression following Delayed CA 
Treatment 

There are studies to suggest that the pro-inflammatory transcription factor NF-κB 

is a negative regulator of Nrf2 transcriptional activity. To determine if CA possessed anti-

inflammatory properties, we analysed the total NF-κB content. We found that NF-κB 

mRNA was significantly elevated in male mice at 3 DPI in both Veh and CA treated groups 

(Figure 3.9). Similarly, in females, NF-κB mRNA levels were found to be elevated at 3 

DPI in both Veh and CA treated groups (Figure 3.9). There were no significant differences 

between the magnitude change of NF-κB between males and females. 

3.3.3.1 GSK-3β Gene Expression following Delayed CA 
Treatment 
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There are studies to suggest that the serine-threonine kinase GSK-3β is a negative 

regulator of Nrf2 transcriptional activity. We found that GSK-3β mRNA was significantly 

elevated in female mice compared to male mice at 1 DPI in Veh treated groups, but CA 

treatment abolished this effect in females at 1 DPI (Figure 4.0). 

3.4 Discussion 

Several studies to date have demonstrated the mechanisms associated with the 

therapeutic potential of manipulating the Nrf2-ARE pathway in males [136, 140, 277, 304, 

305], however, to date, no study has evaluated the subcellular localization of Nrf2 or 

demonstrated neuroprotective effects in CNS trauma in female mice. To determine if the 

subcellular distribution of Nrf2 is different between sexes, we first compared the levels of 

cytoplasmic Nrf2 to nuclear Nrf2 for each sex. In line with other studies, we found that 

Nrf2 was preferentially localized in the cytoplasmic fraction in mice. Unexpectedly, female 

mice did not show preferential location of Nrf2 to the cytoplasm or nucleus when 

comparing the purified extracts. After a thorough literature review, we could not find 

studies that described Nrf2 cytoplasmic and nuclear distributions the female mouse brain. 

To the best of our knowledge, this is the first study to report the subcellular distribution of 

Nrf2 in the female cortex and a sex comparison of subcellular Nrf2 in the mouse cortex. 

Carnosic acid is a potent Nrf2 inducer that has demonstrated neuroprotective effects 

by enhancing nuclear translocating and upregulating Nrf2 transcription of the ARE [174-

177, 306]. We have previously shown that a 1.0 mg/kg I.P. dose of CA administered 1 hr 

post-TBI significantly reduced oxidative damage and cytoskeletal breakdown in the cortex 

and hippocampus of male mice, and this dose remained effective when delayed for up to 8 
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hr post-injury [232]. Evidence from our study recapitulated these findings, with males 

showing increased Nrf2 nuclear localization after a single I.P. dose of CA 1 hr post injury. 

To date, however, all neuroprotective studies using Nrf2-inducers, including CA, have 

been conducted in vitro or used exclusively male animals. Therefore, we based our 

therapeutic dose of CA based on our previous studies. Unexpectedly, CA treatment in 

female mice significantly decreased concentrations of nuclear Nrf2 at 1 DPI. The reason 

for this differential effect so far is unclear, however, we speculate that the dosing paradigm 

for females did not lie in the therapeutic range. Nrf2 activators tend to have different effects 

on the repressor protein Keap1, which regulates Nrf2 subcellular location and degradation, 

when administered in high vs low concentrations [174, 307, 308]. CA treatment may have 

induced a nuclear efflux of Nrf2 at 1 DPI due to not receiving the optimal therapeutic dose, 

as by 3 DPI, the ratio had returned to baseline. It also must be noted that females started 

out with significantly more nuclear Nrf2 as compared to males and that the Veh treated 

group also experienced a drop in nuclear concentration of Nrf2 at 1 DPI. These data 

indicate that while transcriptional activity may not differ at baseline, females may be 

primed for Nrf2-mediated transcription or other factors are influencing Nrf2 localization.  

Several studies corroborated that both experimental brain injury and CA upregulate 

gene expression of Nrf2, HO-1 and NQO1 [137, 174, 258, 259]. To determine if the 

subcellular distribution of Nrf2 was associated with synergistic upregulation of Nrf2 

transcriptional activity with CA treatment, we conducted qRT-PCR targeting gene 

expression of Nrf2, and the Nrf2-ARE modulated effectors HO-1 and NQO1. Nrf2 is a 

known regulator of Nrf2 expression and, indeed, we found that Nrf2 mRNA was 

upregulated in males at 1 DPI, and both sexes at 3 DPI. These findings were likely related 



 

54 
 

to an injury effect and not a treatment effect. However, it should be noted that the increase 

in Nrf2 mRNA was only significantly elevated in males at 1 DPI. Expression of NQO1 is 

known to be modulated via the Nrf2-ARE pathway in response to oxidative stress and 

electrophilic induction [153, 309, 310]. In the present study, we did not find a significant 

treatment effect in NQO1. This may be due to an overall a lower induction rate of NQO1 

and because NQO1 is primarily localized to vascular tissue [153, 255, 280], and a closer 

look at tissue-specific increases in NQO1 may reveal a different effect. We did detect a 

major sex difference in the induction of HO-1 at 3 DPI in our Veh treated groups, with 

males showing elevated levels of HO-1 in comparison to females. The effect was abolished 

with the administration of CA at 3 DPI. Lower levels of HO-1 have been associated with a 

neuroprotective effect in males when compared to females [251, 276, 311]. It appears that 

CA may be exerting neuroprotective effects via the Nrf2 pathway in tandem with other cell 

signaling pathways. 

Nrf2-ARE activity is also known to be negatively regulated by the pro-

inflammatory transcription factor NF-κB and the serine-threonine kinase GSK-3β [171, 

312-317]. Previous studies have demonstrated that CA has anti-inflammatory properties, 

which were linked to a decrease in NF-κB expression [176, 318]. In the present study, we 

did not detect a significant anti-inflammatory treatment effect regarding NF-κB. We did 

detect significantly higher levels of GSK-3β at 1 DPI in Veh treated females compared to 

males, but this effect was abolished with CA treatment. Interestingly, a single dose of CA 

attenuated GSK-3β levels in females, but also led to a smaller Nrf2 nuclear/cytoplasmic 

ratio. Though there is a paucity of information on the subject, we believe that CA may be 
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acting on different cell signaling pathways in upstream of Nrf2 in males and females or be 

exerting minimal anti-inflammatory effects.  

3.5 Future Experimental Considerations 

Due to a lack of treatment effect, future studies should consider conducting a dose 

response experiment as well as a therapeutic window of efficacy in females to determine 

the therapeutic range of CA. Considering the rather futile dose-response 1.0 mg/kg 

produced in male mice, higher doses of CA should also be tested, as well as repeat dosing 

procedures. In Chapter 2, we found regional sex differences in Nrf2 activity, specifically 

in the hippocampus. Because we chose to focus our efforts on the cortex in this study, 

future experiments should also assess the regional differences in Nrf2-ARE activity. Also, 

in Chapter 2 we measured pNrf2, whereas in the current Chapter we assessed unaltered 

Nrf2. We chose to assess unmodified Nrf2 to have a better correlation between newly 

transcribed Nrf2 and freshly translated Nrf2. Future studies should consider probing for 

several post-translationally modified forms of Nrf2 to gain a better understanding of the 

signaling pathways involved regarding the CCI injury, CA, or other Nrf2 activators, and to 

illuminate potential sex differences. 

3.6 Conclusion 

In the present study, we found that CA increased nuclear localization of Nrf2 in 

males and reduced it in females. We also found that as opposed to increasing gene 

expression of downstream Nrf2 effectors, it did not influence NQO1 mRNA and in fact, it 

reduced the expression of HO-1 mRNA in males, while increasing it in females. Due to the 

lack of information on behavioral measures and histological data, we cannot determine if 
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these changes were either beneficial or detrimental. Future studies should consider 

investigating the role of negative Nrf2 regulators, such as NF-κB as well as GSK-3β. 
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Table 3.1  Towbin Transfer Buffer 
Reagent Per 1 Liter Concentration 
Trizma 3.03 g  25 mM 
Glycine 14.4 g  192 mM 

SDS 0.025 g  0.087 mM 
Methanol 200 mL  

Milli-Q H2O 850 mL  
Towbin transfer buffer was made fresh prior to Western blot analyses and stored at 
room temperature for up to 7 days. The recipe for this buffer can be found on the Bio-
Rad website [319]. 
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Table 3.2  TaqMan® Assay Primers and Probes. 
Gene Symbol 

(RefSeq) 
Gene 
Alias  

Assay ID Amplicon  

Length 

Vendor 
(Catalog 

#) 

Catalog # 

Hmox1 
(NP_034572.1) 

HO-1 Mm00516005_m1 69 Thermo 
Fisher 

Scientific 

4331182 

NQO1 
(NP_032732.2) 

NQO1 Mm00500821_m1 74 Thermo 
Fisher 

Scientific 

4331182 

Nfe2l2 
(NP_035032.1) 

Nrf2 Mm00477784_m1 61 Thermo 
Fisher 

Scientific 

4331182 

NFKB 
(NP_032715.2) 

NFκB Mm00476361_m1 70 Thermo 
Fisher 

Scientific 

4331182 

GSK3B 
(NP_062801.1) 

GSK3β Mm00444911_m1 72 Thermo 
Fisher 

Scientific 

4331182 

GAPDH 
(NM_008084.2) 

GAPDH Mm99999915_g1 107 Thermo 
Fisher 

Scientific 

4352932E 
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Table 3.3  Western Blot: Cytoplasmic and Nuclear Nrf2 Antibodies. 

Primary Dilution Band RRID Vendor Product ID 

Rb-Nrf2 1:2,000 110 kDa AB_2687540 Abcam ab137550 

Ms-βIII Tubulin 1:5,000 50 kDa AB_2691678 Abcam ab78078 

Chx-Lamin A/C 1:2,000 74 kDa/65 kDa AB_2892106 Novus NBP2-25152 

Secondary Dilution Signal Target Vendor Product ID 

Goat anti-Rb 1:7,5000 IR800 Nrf2 Licor 926-32211 

Goat anti-Ms 1:15,000 IR680 βIII Tubulin Licor 925-32210 

Donkey anti-Chx 1:10,000 IR680 Lamin A/C Licor 926-68075 
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Figure 3.1 Proposed Pleiotropic Mechanism of Carnosic Acid in TBI. 
Prior to oxidization, carnosic acid possesses a pro-electrophilic catechol nucleus that 
renders it as an antioxidant. Following the acceptance of an electron via free radical, 
or quenching lipid peroxide species, the catechol nucleus performs an electrophilic 
attack on cysteine 151 of Keap1, stabilizing Nrf2 and facilitating nuclear 
translocation. Nrf2 then upregulates the production of cytoprotective gene to combat 
multiple secondary injury pathways. 

 

 

 

 

 

 

 

 

 

 

 



 

61 
 

 

Figure 3.2 Male Cytoplasmic and Nuclear Nrf2 Protein. 
Western blot analysis to determine the effect of CA on distribution of Nrf2 in purified 
cytosolic and nuclear fractions from the injured cortex of male mice. A single dose of 
CA significantly increased nuclear Nrf2 concentration compared to vehicle treatment 
1 DPI. By 3 DPI, both CA and vehicle treated groups had significantly elevated Nrf2 
nuclear concentrations compared to sham controls. Comparison of cytoplasmic to 
nuclear concentration indicated that Nrf2 was preferentially localized to the cytoplasm 
in sham and 1 DPI vehicle treated mice. A Two-way ANOVA with Tukey’s post hoc 
was used for all multiple comparisons test, with statistical significance level set to α 
= 0.05. Error bars on graphs represent the SEM. (Interaction: F4, 54 = 1.86, p = 0.1302; 
Treatment: F4, 54 = 4.72, p = 0.0024; Cell localization: F1, 54 = 36.19, p < 0.0001). 
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Figure 3.3 Female Cytoplasmic and Nuclear Nrf2 Protein. 

Western blot analysis to determine the effect of CA on distribution of Nrf2 in purified 
cytosolic and nuclear fractions from the injured cortex of female mice. A single dose 
of CA or vehicle did not significantly alter the cytoplasmic concentration or nuclear 
concentration of Nrf2 compared to sham controls. Results from a Two-way ANOVA 
with Tukey’s post hoc for multiple comparisons test, with statistical significance level 
set to α = 0.05. Error bars on graphs represent the SEM. (Interaction: F4, 54 = 2.25, p 
= 0.075; Cell localization: F1, 54 = 0.038, p = 0.84; Treatment: F4, 54 = 1.06, p = 0.3812)  
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Figure 3.4 Male and Female Nuclear to Cytoplasmic Nrf2 Protein Ratio. 
Analysis of subcellular protein fractions to determine the effect on the preferential 
location of Nrf2 and if the effect of CA on Nrf2 cellular concentration is sex 
dependent. Cytoplasmic and nuclear fractions were normalized to Beta-III Tubulin. 
Then, to determine the preferential subcellular localization of Nrf2, the ratio of 
nuclear to cytoplasmic concentration was determined by dividing the normalized 
nuclear fraction by the normalized cytoplasmic fraction for each sex. A. Delayed 
administration of CA significantly increased the nuclear/cytoplasmic concentration of 
Nrf2 in male mice at 1 DPI and 3 DPI with respect to male shams. (Treatment: F4, 21 
= 6.23, p = 0.0018) B. In contrast, CA significantly decreased the nuclear/cytoplasmic 
concentration in female mice compared to female shams 1 DPI. (Treatment: F4, 21 = 
5.30, p = 0.0041). A One-way ANOVA with Tukey’s post hoc was used for multiple 
comparisons test, with statistical significance level set to α = 0.05. Error bars on 
graphs represent the SEM. 
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Figure 3.5 Male and Female Nuclear to Cytoplasmic Nrf2 Protein Ratio. 
Analysis of subcellular protein fractions to determine the effect on the preferential 
location of Nrf2 and if the effect of CA on Nrf2 cellular concentration is sex 
dependent. Delayed administration of CA significantly increased the 
nuclear/cytoplasmic concentration of Nrf2 in male mice at 1 DPI and 3 DPI with 
respect to male shams. In contrast, CA significantly decreased the 
nuclear/cytoplasmic concentration in female mice compared to female shams at 1 
DPI. Comparison of nuclear/cytoplasmic fractions between sham males and females 
revealed that Nrf2 is preferentially localized to the cytoplasm in sham males and 
nucleus of sham females. A Two-way ANOVA with Tukey’s post hoc was used for 
multiple comparisons test, with statistical significance level set to α = 0.05. Error bars 
on graphs represent the SEM. (Interaction: F4, 54 = 8.427, p < 0.0001; Sex: F1, 54 = 
52.66, p < 0.0001 Treatment: F4, 54 = 1.64, p = 0.1767).  
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Figure 3.6 Male and Female Nrf2 Gene Expression. 
The post-injury effect of CA or Veh on the induction of Nrf2 gene expression in the 
cortex of male and female mice. Nrf2 gene expression was significantly upregulated 
in males at 1 and 3 DPI regardless of Veh or CA treatment. Nrf2 gene expression in 
females was significantly elevated at 1 DPI as a result of CA treatment. Nrf2 
expression remained elevated in females at 3 DPI in the presence of Veh and CA 
treatment. A Two-way ANOVA with Tukey’s post hoc was used for all multiple 
comparisons test, with statistical significance level set to α = 0.05. Error bars on 
graphs represent the SEM. (Interaction: F4, 55 = 1.388, p = 0.2503; Sex: F1, 55 = 0.0018, 
p < 0.0001; Treatment: F4, 55 = 54.23, p < 0.0001). 
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Figure 3.7 Male and Female NQO1 Gene Expression. 
The post-injury effect of CA or Veh on the induction of NQO1 gene expression in the 
cortex male and female mice. NQO1 gene expression was significantly upregulated 
in males at 3 DPI regardless of Veh or CA treatment. NQO1 gene expression was also 
upregulated as a result of injury at 3 DPI in both Veh and CA treated female groups. 
A Two-way ANOVA with Tukey’s post hoc was used for all multiple comparisons 
test, with statistical significance level set to α = 0.05. Error bars on graphs represent 
the SEM. (Interaction: F4, 55 = 0.070, p = 0.5941; Sex: F1, 55 = 0.2366, p = 0.6286; 
Treatment: F4, 55 = 36.01, p < 0.0001). 

 

 

 

 

 

 

 

 

 



 

67 
 

 

Figure 3.8 Male and Female HO-1 Gene Expression. 
The post-injury effect of CA or Veh on the induction of HO-1 gene expression in the 
cortex male and female mice. HO-1 gene expression was significantly upregulated in 
males 1 and 3 DPI regardless of Veh or CA treatment. HO-1 gene expression was also 
upregulated as a result of injury in females at 1 and 3 DPI. At 3 DPI. Interestingly, 
Veh treated males had significantly higher HO-1 mRNA expression compared to Veh 
treated females at 3 DPI. A Two-way ANOVA with Tukey’s post hoc was used for 
all multiple comparisons test, with statistical significance level set to α = 0.05. Error 
bars on graphs represent the SEM. (Interaction: F4, 55 = 4.403, p = 0.0.0037; Sex: F1, 

55 = 1.46, p = 0.2314; Treatment: F4, 55 = 55.93, p < 0.0001). 
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Figure 3.9 Male and Female NFκB Gene Expression. 
The post-injury effect of CA or Veh on the induction of NFκB gene expression in the 
cortex male and female mice. NFκB gene expression was significantly upregulated in 
males at 3 DPI regardless of Veh or CA treatment. In females, NFκB gene expression 
was also upregulated as a result of injury at 3 DPI in both Veh and CA groups. A 
Two-way ANOVA with Tukey’s post hoc was used for all multiple comparisons test, 
with statistical significance level set to α = 0.05. Error bars on graphs represent the 
SEM. (Interaction: F4, 55 = 0.070, p = 0.5941; Sex: F1, 55 = 0.2366, p = 0.6286; 
Treatment: F4, 55 = 36.01, p < 0.0001). 
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Figure 4.0 Male and Female GSK-3β Gene Expression. 
The post-injury effect of CA or Veh on the induction of GSK-3β gene expression in 
the cortex male and female mice. GSK-3β gene expression did not significantly 
change from sham levels in males as a result of injury, CA or Veh treatment. At 1 
DPI, Veh treated females had significantly higher levels of GSK-3β compared to Veh 
treated males at 1 DPI. A Two-way ANOVA with Tukey’s post hoc was used for all 
multiple comparisons test, with statistical significance level set to α = 0.05. Error bars 
on graphs represent the SEM. (Interaction: F4, 55 = 1.88, p = 0.1266; Sex: F1, 55 = 5.643, 
p = 0.0210; Treatment: F4, 55 = 2.57, p = 0.0475). 
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CHAPTER 4. DISCUSSION 

4.1 The Secondary Injury of TBI in Males and Females 

Considering the heterogeneity of TBI and myriad of secondary consequences that 

arise from the injury, it comes with little surprise that a successful treatment has been so 

elusive over the years. Although science has developed several animal models of TBI to 

recapitulate the human heterogeneity condition, no single model alone can be used to truly 

predict the potential success or failure of a treatment. Furthermore, most of these animal 

models have historically used exclusively male mice, thus our understanding of the 

secondary pathology that arises from these injury models has been skewed towards the 

male sex. Evidence keeps mounting that biological sex contributes to numerous differences 

in the secondary pathology of TBI in not just humans, but also in animal models [230, 243, 

245, 247, 249, 250, 254, 271, 320, 321]. There have been numerous drugs tested and 

dubbed a success or failure in the preclinical stages throughout the years based on using a 

single model of TBI and only male rodents. These drugs, showing great success in 

preclinical research, failed to elicit a therapeutic response, and sometimes even worsened 

outcomes during clinical trials, or therapeutic efficacy was shown in only one sex [53, 54, 

72, 73, 75, 322]. Therefore, we must consider the heterogeneity of TBI in the light of both 

sexes as well as the model of TBI being used to test and develop drug treatments. A 

thorough understanding of the pathophysiology associated with a single model has led to 

the development of many potent drugs with a single mechanism of action. Furthermore, it 

is becoming more apparent that males and females metabolize drugs differently and these 

differences may extend to the blood-brain barrier BBB [244, 253, 323-325]. 
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 The Nrf2-ARE Pathway following Experimental Brain Injury and Delayed CA 
Treatment 

The Nrf2-ARE pathway is ubiquitously expressed in mammalian cells and acts as 

the master regulator of redox homeostasis in response to sudden increases in oxidative 

stress, as well as xenobiotic and electrophilic molecules [135, 163, 164, 238, 302]. Not 

only does the Nrf2-ARE pathway combat oxidative stress, but it has also been shown to 

modulate the inflammatory response [143]. This pathway has been well characterized in 

males following CCI injury and considered a potential therapeutic target for certain drugs 

called Nrf2 activators [141, 142, 162, 178, 326, 327]. However, there is a paucity of 

information to date on studies that have examined this pathway in the female uninjured 

brain or following TBI to determine if it holds the same therapeutic potential in females. 

Despite the relative lack of information on the Nrf2 regulation in the brain of both sexes, 

previous work has demonstrated sex-based differences in brain and hepatic antioxidant 

capacities, cortical revascularization, and cytoskeletal degradation following CCI [90, 230, 

252]. Therefore, we set forth to characterize this pathway in both sexes to determine if 

biological sex played a role in its modulation following a CCI injury. 

The cytoplasmic phase II enzyme NQO1 is critical for the two electron reduction 

reaction of FAD and has been shown to protect against glutamate toxicity [156, 328]. There 

are also studies demonstrating significant sex differences in the catalytic activity and 

induction of NQO1 being higher in females [255, 260, 329]. In chapter 2, we provided data 

corroborating these findings, with females showing significantly elevated levels of NQO1 

protein in the hippocampus whereas males did not demonstrate a rise in NQO1 following 

injury. Interestingly, it has been shown that NQO1 deactivates electrophiles and in doing 
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so, increases their excretion [330]. The catechol ring on CA is indeed a potential substrate 

for NQO1 and given that females have a higher NQO1 metabolic activity, this may 

decrease the availability of the electrophilic from of CA, thus reducing the therapeutic 

effect. A more thorough dose-response study with direct male to female comparisons will 

be required to determine why CA decreased nuclear total Nrf2 concentration in females. 

 HO-1 is critical for mediating the catalytic reduction of heme groups and the 

abundance of this detoxifying enzyme is heavily dependent on both the presence of heme 

and Nrf2 activity [145, 146, 148, 275, 331]. Another study has demonstrated the 

neuroprotective effect of HO-1 upregulation is present in both sexes, though in this case it 

was not Nrf2 mediated [332]. In Chapter 2, we found that the endogenous transcriptional 

response was more sensitive in males, whereas females a greater abundance of HO-1 

protein. This could be due to the presence of catechol estrogens, which are known to 

modify cysteine 288 of Keap1, potently increasing the Nrf2/HO-1 signaling [333]. In 

Chapter 3, we found that CA treatment increased the ratio of nuclear/cytoplasmic Nrf2 in 

males at 1 DPI and 3 DPI. These results confirm that CA successfully increased nuclear 

localization in males, but unexpectedly HO-1 transcription was higher in the Veh treated 

males compared to CA treated males at 3 DPI. Furthermore, at 3 DPI, CA treated females 

had higher levels of HO-1 than Veh treated levels. This indicates that other mechanisms 

are implicated in the Nrf2-regulated control of HO-1. Since catechol estrogens modify 

cysteine 288 and CA modifies cysteine 151 of Keap1, it is possible that females benefit 

from dual activation of Nrf2. Some studies have shown that HO-1 is differentially regulated 

in the male and female brain, indicating that downregulation of HO-1 elicits 

neuroprotective effects in males but not females [251, 276]. This suggests that high levels 
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of HO-1 may be a pathological sign in males, but not females. Moreover, the coordinated 

regulation of HO-1 appears to be more complicated than we initially predicted, and CA 

may be interacting with other pathways to control the downstream effects of Nrf2. 

4.2 Limitations and Considerations 

One of the major limitations in TBI research is accurately modeling the 

heterogeneous nature of TBI. This poses multiple challenges for researchers. In the lab 

setting, all variables must be controlled for to be sure that the treatment is having an effect. 

However, over the years, several models of TBI have been developed to mimic different 

aspects, to a certain degree, found in the human condition. More recently, while more 

emphasis has been placed on sex as a potential factor in treating TBI, it is becoming more 

apparent that sex differences are common in these animal models as well. For example, the 

CCI model which produces a focal lesion, has shown clear sex differences in the rate of 

cytoskeletal degradation, variances in oxidative stress, and a divergence in the brain 

vasculature repair process [245, 256, 269, 283]. Studies of closed head injury produce less 

severe anatomical disturbances, but still result in lasting metabolic changes and altered 

microvasculature [91]. Sex differences have also been found in diffuse models of closed 

head injury, with females showing more severe metabolic disturbances than males, 

especially in mitochondrial function [334]. Other diffuse models of animal TBI, such as 

the lateral fluid percussion (LFP) injury, have also demonstrated sex differences in the 

pathophysiology of the secondary injury. A group found that male mice exhibited a less 

severe neuroinflammatory profile as compared to females using the same parameters of 

LFP injury [335]. More interestingly, another group found that males had more severe 
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physiological consequences following LFP injury, and phenylephrine aggravated this 

injury males but was found to be beneficial in females [336]. 

Another consideration is whether what we believe is a beneficial response as 

measured by biomarkers translates to functional recovery. One of the limitations we were 

presented with in Chapter 3 is we did not conduct a behavioral analysis to determine if 

changes in biomarkers conferred functional benefits or functional deficits. Furthermore, 

we still have yet to determine the subpopulation of brain cells as to which CA effects in 

vivo in both males and females at these time points. A recent study demonstrated the 

dynamic temporal tissue specific expression of Nrf2 following diffuse head injury in rats 

[337]. CA has been shown to be neuroprotective in neurons and astrocytes in vitro [171, 

174]. However, studies on the subcellular population that are protected, and if they are 

protected, in males and females has yet to be elucidated. Considering the progressive 

changes in cell expression of Nrf2 following a single diffuse injury, it would be worth 

knowing if CA targets a specific subpopulation of brain cells, how it changes over time, 

and whether biological sex effects the temporal activation of Nrf2. 

4.3 Future Directions 

The relative paucity of information on the secondary processes of TBI in the female 

is becoming more obvious. Therefore, more studies should be conducted to determine the 

secondary effects of these animal models in females alone. A better description of these 

injury models is necessary to determine the efficacy of certain drugs. It is also becoming 

more apparent that certain TBI treatments are going to be efficacious in males whereas 

some will be more efficacious in females. It is possible that the severity of injury, secondary 
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pathology, as well as other circumstances, such as age, and time of admission post-injury, 

are all going to be factors to consider when administering a certain drug therapy. To 

develop TBI treatments that will successfully translate from the bench to the bedside, drugs 

should be tested in several different models of TBI. These models should also include both 

males and females. Lastly, more emphasis should be placed on whether these drugs 

improve functional outcomes, and then determine their mechanisms of action. In vitro 

models are great for defining the mechanisms, whereas in vivo studies allow for behavioral 

analysis to determine therapeutic efficacy in the whole organism as well as anatomical 

evidence of neuroprotection. 

4.4 Conclusion 

The Nrf2-ARE pathway seems to be different in male and female mice following a 

single CCI injury. Furthermore, a single 1.0 mg/kg I.P. dose of CA 1 hr following CCI 

injury produces differential effects in male and female mice. Based on the literature, our 

results indicate that this dose and therapeutic window of administration have a greater 

therapeutic effect in male mice, compared to female mice. A dose response study may help 

conclude that the therapeutic dose of CA for females is different than that of males or reveal 

that CA does not hold the same therapeutic benefits in females. A thorough behavioural 

analysis as well as histological analysis would also describe the potential for functional 

recovery and neuroprotection. Lastly, testing CA in several other TBI injury models may 

be beneficial in identifying potential subpopulations that should be stratified during clinical 

testing.  
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APPENDICIES 

APPENDIX 1. ABBREVIATIONS 

BBB Blood-brain barrier 
BCP Bathocuporine 
CE Cerebral edema 
Chx Chicken 
CT Computer tomography 
Dk Donkey 
DTI Diffusion tensor imaging 
Gt Goat 
HO-1 Heme Oxygenase 1 
I.P. Intraparatoneal 
MRI Magnetic resonance imaging 
Ms Mouse 
NQO1 NAD(P)H: quinone oxidoreductase 1 
Nrf2 Nuclear factor erythroid 2-related factor 2 
qRT-PCR Quantative real time polymerase chain reaction 
GSK-3β Glycogen synthease kinase 3-beta 
NFκB Nuclear factor kappa-light-chain-enhancer of activated B cells 
Rb Rabbit 
RT Room temperature 
SDS Sodium dodecyl sulfate 
TBS Tris buffered saline 
TBS-T Trist buffered saline with Tween® 20 (0.1%) 
CA Carnosic acid 
Veh Vehicle 
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APPENDIX 2. EQUIPMENT 

PRODUCT MANUFACTURER CATALOG NUMBER 
Nuclease-Free Water Applied Biosystems, 

Thermo Fisher Scientific 
AM9937 

High Capacity cDNA Reverse 
Transcription Kit 

Applied Biosystems, 
Thermo Fisher Scientific 

4366814 

Cordless Homogenizer Bel-Art F65000-0000 
Power Pac 200 
(Semi-Dry Transfer Power 
Supply) 

Bio-Rad 165-5052 

C1000 Touch Thermal Cycler Bio-Rad 1851148 
Tans-Blot Sd Semi-Dry 
Transfer Cell 

Bio-Rad 1703940 

3-8% Criterion™ XT Tris-
Acetate Gel 

Bio-Rad 345-0130 

XT Tricine Buffer Bio-Rad 161-0790 
20x Reducing Agent Bio-Rad 161-0792 
Bovine serum albumin Bio-Rad 5000206 
Tween® 20 Bio-Rad 1706531 
Synergy HTX Multi-Mode 
Reader 

Bio-Tek  

Methanol Fischer Scientific A412-500 
Glycine Fischer Scientific BP381-500 
NaCL Fischer Scientific BP358-212 
HCL Fischer Scientific A142P-19 
Power Ease 500 
(Electrophoresis Power Supply) 

Invitrogen EI8600 

LI-COR Oddessy CLX Infrared 
Scanner 

LI-COR  

4x Protein Sample Loading 
Buffer 

LI-COR 928-40004 

BCA Protein Assay Kit Pierce 23225 
Trizma® Sigma-Aldrich T1503 
NE-PER kit Thermo Scientific 78833 
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