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Abstract: Epidemiologists often categorize a continuous risk predictor,
even when the true risk model is not a categorical one. Nonetheless, such
categorization is thought to be more robust and interpretable, and thus
their goal is to fit the categorical model and interpret the categorical pa-
rameters. We address the question: with measurement error and catego-
rization, how can we do what epidemiologists want, namely to estimate the
parameters of the categorical model that would have been estimated if the
true predictor was observed? We develop a general methodology for such
an analysis, and illustrate it in linear and logistic regression. Simulation
studies are presented and the methodology is applied to a nutrition data
set. Discussion of alternative approaches is also included.
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1. Introduction

Fitting models by categorizing a continuous risk predictor is a common practice
in epidemiology. Among many recent examples, see [20, 19, 1, 5, 10] and [25].
A look at current issues of epidemiology journals will uncover many more ex-
amples. An important issue is that, generally in these problems, there are many
covariates other than the main risk predictor.

The appeal of categorization in interpreting results is clear. If we have a risk
predictor X, and we categorize it into J levels (C1, ..., CJ), one can compare
the highest level of the predictor, CJ , to the lowest level, C1, and if they are
statistically significantly different, one can then conclude that it is better to be
in the class that has the lowest risk, and quantify how much better.

One important technical point is that categorization implicitly posits an in-
duced model based on the categorized variable X. In some cases, the induced
model actually fits the data, e.g., when the response Y actually depends on X
only through its categorized version, or if there are no other covariates, see the
next paragraph. In other cases, and generally, the induced model does not fit the
data, and we call this model misspecified. In particular, suppose that there are
other covariates than X, say Z. Consider a binary response, Y , let H(·) be the
logistic distribution function, and suppose that the true risk model in the con-
tinuous scale is pr(Y = 1|X,Z) = H{m(X,Z,β)} for some continuous function
m(·). Then, even if there is no measurement error, if any of the covariates Z are
related to Y in this continuous model, or if there is an interaction of X and Z on
Y , categorizing X into J levels and plugging that into m(X,Z,β) in place of X
leads to a misspecified model as we have defined it. Measurement error in this
context makes things even more difficult. When there is no measurement error,
[26] gives a characterization of what is actually being estimated in misspecified
models: while we do not emphasize it, our paper extends this characterization
to the measurement error case. A relevant paper that first solved this particular
problem is [14], which was also cited in [26].

This slightly different terminology is motivated by the following example.
Suppose that Y is binary, there are no additional covariates Z, and simply de-
fine πj = pr(Y = 1|X∗ = j), where X∗ is the categorized predictor. Then
we can write, correctly, that pr(Y = 1|X∗ = j) = H{I(X∗ = j)θj} by mak-
ing the obvious identifications. Thus, categorization does result in an induced
correctly specified logistic model, just not the one in the continuous scale. A
logistic regression analysis of Y on the categories of X∗ then will estimate θj
consistently.

Our point is not to try to get epidemiologists to change their common prac-
tice. Instead, we study the effect of measurement error when a continuous predic-
tor variable subject to measurement error is categorized. Our goal is to answer
the question: with measurement error in this context, how can we (a) obtain
consistent estimates of what epidemiologists would have obtained if X were
actually observed; and (b) develop consistent standard errors.

We answer the question above in a general way. Section 2 gives basic technical
background. Section 3 provides a general methodology for answering questions



4034 B. G. Blas Achic et al.

(a) and (b) above. Section 4 presents simulation studies for linear and logistic
regression that show the good behavior of our methodology, both in terms of
bias and confidence interval coverage. Section 5 shows applications of our ap-
proach by using data from the Eating at America’s Table Study [23]. Section
6 presents a discussion about other potential approaches to categorization and
how those approaches compare to ours. Sketches of technical arguments are in
the appendix.

Remark 1. As discussed above, categorization leads to a misspecified model.
It is also well-known that such categorization generally leads to differential mea-
surement error [11, 13, 3], and thus additional complications over simply fitting
a measurement error model. Chapters 6.1–6.2 of [13] has a detailed discussion
when the continuous variable is dichotomized, calling the result differential by
dichotomization. We are thus assuming that the true risk model in a continuous
variable X is not categorical in X. If it were, consult [13] and [3], who also
discuss the issue of doing a measurement error analysis in this case, especially
the difficult complex issues of computation and identifiability both theoretical
and practical.

2. Data generating mechanism and basic ideas

2.1. Illustration: A special case of linear regression

It is instructive to consider a special case, namely linear regression. Doing so
will set the stage for our general method. The response is Y , the scalar predictor
subject to error is X, the observed scalar predictor is W , there are predictors Z
measured without error, and we define Z̃ = (1, ZT)T to allow for an intercept.

The regression model in the continuous predictor X is Y = Xβ1 + Z̃Tβ2 + ε,
where ε is mean zero independent of (W,X,Z). There are j = 1, ..., J categories
(C1, ..., CJ): the number of categories J is set by the investigator, and is generally
3 (tertiles), 4 (quartiles) or 5 (quintiles), depending on the scientific field and
the investigator’s interests. Here M(X,Z) = {I(X ∈ C1), ..., I(X ∈ CJ), Z

T}T.
If X could be observed, then we would also immediately obtain an estimate of
β = (β1, β

T
2 )

T.

By [26], when X is observed, what epidemiologists estimate by using the cate-
gorized M(X,Z) is Θ, where, based on the normal equations for the categorized
predictor, Θ = (θ1, ..., θJ ,Θ

T
J+1)

T is the solution to

0 = E[M(X,Z){Y −MT(X,Z)Θ}]
= E[M(X,Z){Xβ1 + Z̃Tβ2 −MT(X,Z)Θ}]. (1)

The estimate Θ̂ is the solution to 0 = n−1
∑n

i=1M(Xi, Zi){Yi −MT(Xi, Zi)Θ},
and this is a consistent estimate of Θ. Comparisons between categories j and k
for j, k ≤ J , say, are θ̂j − θ̂k.
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However, when X is not observable, estimating the solution to (1) has to be
based solely on (Y,W,Z). In (1), it makes sense that if one believes the true
regression model is linear in (X,Z), then, at some point, an estimate of β can
be obtained via a measurement error analysis if there are sufficient data to do
so.

Solving (1) based only on the observed W though is not so easy, and it is
clear that some part of the relationship between W and X given Z is going
to need to be specified, as it needs to be to do a general measurement error
analysis. One way to do this is to define

G(X,Z,Θ,β) = M(X,Z){Xβ1 + Z̃Tβ2 −MT(X,Z)Θ}, (2)

and then define Q(W,Z,Θ,β) = E{G(X,Z,Θ,β)|W,Z}. Since 0 = E{Q(W,Z,
Θ,β)}, Θ can be estimated by solving

0 = n−1∑n
i=1

[
E{M(X,Z)(Xβ1 + Z̃Tβ2)|Wi, Zi}
− E[{M(X,Z)MT(X,Z)}|Wi, Zi]Θ

]
.

Hence, in this simple case, for j = 1, ..., J we will need to be able to calculate
expectations of XI(X ∈ Cj) given (W,Z) and the probability that X ∈ Cj

given (W,Z). As we will see, in general problems, we will need to estimate the
expectations of other functions of X given (W,Z).

So, to summarize, to get a general solution, it appears that we will need to
estimate (β1, β2) by a measurement error analysis and estimate expectations of
specified functions of X given (W,Z).

Remark 2. Following on Remark 1, it is obvious that in the unlikely event
that the true risk model is actually categorical in X, so that E(Y |X,Z) =
MT(X,Z)β, then model misspecification and differential measurement error
both disappear, and one really needs just the probabilities that X is in the
categories given (W,Z). As [13] and [3] discuss in detail, estimating such models
is difficult because of model identifiability concerns. Often, papers dealing with
this issue assume the existence of a validation data set, where X is actually
observed on a subset of the data. [13] is a particularly good source for the
difficulties we have mentioned and remedies using replication data. [3], page
314, who states that estimating the misclassification rates is “most likely coming
from internal validation data” and also has a nice discussion.

2.2. Assumptions

Our work is very general, but even so, the algorithm is basically the same as
in Section 2.1. Our methodology requires three basic assumptions, described
below. We let X be the continuous predictor subject to measurement error,
Z covariates measured exactly, W the mismeasured version of X, and Y the
response.

Assumption 1. When X is observed, the true response model in the continuous
scale has parameters β, such that there is an estimating function, Φtrue(Y,X,
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Z,β) that identifies β and satisfies

0 = E{Φtrue(Y,X,Z,β)|X,Z}. (3)

Assumption 1 occurs in at least two circumstances.

Example 1. (A) There are functions m1(X,Z,β) and m2(X,Z,β) such that
E(Y |X,Z) = m1(X,Z,β) and the unbiased estimating function that would be
used if X were observable is

Φtrue(Y,X,Z,β) = m2(X,Z,β){Y −m1(X,Z,β)}. (4)

(B) There is a parametric model for Y given (X,Z).

Example 1(A) is very general, in that it includes traditional quasilikelihood
models, nonlinear regression, generalized linear models, probit regression, etc.
Crucially, it does not require a fully parametric model for the distribution of Y
given (X,Z).

In our approach, as in linear regression in Section 2.1, we may need to ob-
tain information about moments of specified functions of X given (W,Z). To
do this, we will consider the setting in which there may be an external data
set of N observations giving information on one set of parameters of the joint
distribution, Λext: if there is no external study, N = 0 and Λext does not exist.
In addition, there is another set of the parameters, Λint, that is estimated from
the n observations in the internal data set.

Assumption 2. When X is not observed, either (a) the distribution of X given
(W,Z) is known up to parameters Λext and Λint as described above, or (b) there
is a function, G(X,Z,Θ,β) defined at (11) below, whose conditional expectation
given (W,Z) depends on parameters Λext and Λint and can be estimated. The
parameter Λext cannot be estimated by internal data, while the parameter Λint

can be estimated by internal data. For both, there are unbiased estimating func-
tions Vext,m(Λext) for the external data and Vint,i(Λint,Λext) for the internal
data such that E{Vext,m(Λext)} = 0 and E{Vint,i(Λint,Λext)} = 0.

For linear regression, G(X,Z,Θ,β) is given in (2).
If there are external data and N > 0, we estimate Λext by solving the esti-

mating equation

0 = N−1
N∑

m=1

Vext,m(Λext). (5)

In the internal data set, we estimate Λint by solving an estimating equation

0 = n−1∑n
i=1Vint,i(Λint, Λ̂ext). (6)

There is also a very subtle issue that needs to be made explicit.

Assumption 3. If external data are necessary for model identification, the
parameter Λext is transportable in the sense that this parameter is the same in
the external and internal data sets.
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The issue of when parameters are transportable from an external data set to
the internal data set is discussed in Chapter 2.2.4–2.2.5 of [4]. As they state, it
is much better if there are sufficient internal data that external data need not
be used, but this is not always the case.

2.3. General observations when X is observed

As argued in Section 1, the goal is to fit a model when X is categorized
into J levels (C1, ..., CJ), and so we defined the dummy variables and Z to-
gether as M(X,Z) = {I(X ∈ C1), ..., I(X ∈ CJ), Z

T}T: our formulation allows
more complex forms, including interactions. Suppose there are i = 1, ..., n sub-
jects in the primary/main/internal study, and suppose further that we observe
(Yi, Xi, Zi). If X is observed, the analysis done on these categories will be based
on replacing (X,Z) in (3)–(4) byM(X,Z), and to make clear the categorization,
we define a parameterΘ, set Φcat{Yi,M(Xi, Zi),Θ} = Φtrue{Yi,M(Xi, Zi),Θ},
and obtain Θ̂ by solving

0 = n−1∑n
i=1Φcat{Yi,M(Xi, Zi),Θ}. (7)

More complex forms of (7) are easily accommodated.
Unlike in Assumption 1 and (3)–(4), except in the rare case that the cate-

gorized model is actually true, 0 �= E[Φcat{Y,M(X,Z),Θ}|X,Z], a conditional
expectation. This is a key part of the work in [26].

Despite the fact that the categorized model does not fit the data conditional
on (X,Z), by standard estimating equation theory [26], the estimate formed by
solving (7) has a limit as n → ∞, Θ, which is the solution to

0 = E[Φcat{Y,M(X,Z),Θ}]. (8)

It is important to observe that (8) is an unconditional expectation, not a con-
ditional one.

If, instead of observing X, we observe its mismeasured version W , and if
we replace X by W , we will of course generally inconsistently estimate both β
and Θ.

2.4. Estimating the true parameter β

In our approach, as in Section 2.1 for linear regression, we must estimate β
in (3). There is of course a large literature on how to do this [13, 4, 3, 27].
Borrowing on that literature, from Assumptions 1–2, for an estimating function
Φ(Y,W,Z,β,Λint,Λext), the estimate, β̂, is the solution to

0 = n−1∑n
i=1Φ(Yi,Wi, Zi,β, Λ̂int, Λ̂ext), (9)

where (Λ̂int, Λ̂ext) are obtained from equations (5) and (6), respectively. Of
course, the details and the form of Φ(·) differ from case-to-case.
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3. Methodology and asymptotic theory

3.1. Methodology: General case

The methodology is simple to explain at the general level. The target Θ is
defined as the solution to (8). However, we can rewrite (8) as

0 = E (E[Φcat{Y,M(X,Z),Θ}|W,Z]) . (10)

Since the distribution of Y given (X,Z) depends on β, for notational complete-
ness we define

G(X,Z,Θ,β) = E [Φcat{Y,M(X,Z),Θ}|X,Z] (11)

= E [Φcat{Y,M(X,Z),Θ}|X,Z,β] ;

Q(W,Z,Θ,β,Λint,Λext) = E{G(X,Z,Θ,β)|W,Z}. (12)

Making the usual nondifferential measurement error assumption, i.e., that Y
and W are independent given (X,Z),

0 = E {Q(W,Z,Θ,β,Λint,Λext)} . (13)

Critically, (12) depends only on the observed covariates. Thus, if we have con-

sistent estimates (β̂, Λ̂int, Λ̂ext) of (β,Λint,Λext), then a consistent estimate, Θ̂,
of Θ solves

0 = n−1∑n
i=1Q(Zi,Wi,Θ, β̂, Λ̂int, Λ̂ext). (14)

In some cases, we do not have external data. Thus, we do not have Vext and
Λext, and Vint and Θ only depend on Λint.

Remark 3. The key question is how to compute G(X,Z,Θ,β) in (11). In the
fully general case (3), we require a parametric model for the distribution of Y
given (X,Z), as in Example 1(B). However, in standard regression models of
the form in (4) in Example 1(A), great simplification occurs, because in that
case,

Φcat{Y,M(X,Z),Θ} = m2{M(X,Z),Θ} [Y −m1{M(X,Z),Θ}] ,

and thus

G(X,Z,Θ,β) = m2{(X,Z),Θ} [m1(X,Z,β)−m1{M(X,Z),Θ}] .

C.3 gives detailed formulae for linear and logistic regression.

Remark 4. Our method is closely related to the expectation-correction method
of [27], Chapter 2.5.2, and less closely to the general corrected score meth-
ods first introduced by [17]. [27] has an excellent and comprehensive discussion
of the correction methods in the literature. We do not have a score function
per se, but we have a function, Φcat{Y,M(X,Z),Θ}, with the property that
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E[Φcat{Y,M(X,Z),Θ}] = 0: importantly, it is not true that the conditional
expectation E[Φcat{Y,M(X,Z),Θ}|X,Z] ≡ 0. Instead of our (11)–(12), the
expectation-correction method uses as its estimating equation E[Φcat{Y,M(X,
Z),Θ}|Y,W,Z] = Q∗(Y,W,Z,Θ,β,Λint,Λext). The obvious distinction is that
our function Q(·) does not involve Y explicitly, while the expectation-correction
function Q∗(·) does involve Y . We used Q(·) and (11) because our assumptions
allow G(·) to be calculated explicitly, especially in Example 1(A), so that im-
plementation is somewhat easier. In addition, in Example 1(A), there does not
need to be a full likelihood, as would be required in the expectation-correction
method, so there are actual differences in the methods.

3.2. Asymptotic Theory

Asymptotic theory for the parameter estimates is easily derived. Let Ω =
(Θ,β,Λint,Λext) and let the true values of the parameters be denoted by Ω.

It is neater notation in this section to let i = 1, ..., n denote the internal
data, and i = n + 1, ..., n + N denote the external data. For i > n, define
Ψi(Ω) = {0, 0, 0, V T

ext,i(Λext)}T, while for i ≤ n define

Ψi(Ω) = {QT(Wi, Zi,Θ,β,Λint,Λext),Φ
T(Yi,Wi, Zi,β,Λint,Λext),

V T
int,i(Λint,Λext), 0}T.

If there are external data, the estimate Ω̂ solves 0 =
∑n+N

i=1 Ψi(Ω̂). If there are
no external data, then N = 0, Ω = (Θ,β,Λint) and the zero element and Λext

in the definition of Ψi(Ω) are removed.
By standard estimating equation results, we have the following results, which

are shown in Appendices A.1 and A.2.

Lemma 1. If there are external data, i.e., N > 0, make Assumptions 1–3.
Suppose that N → ∞ and n → ∞ such that n/(n + N) → blim, where 0 <
blim < 1. Then

(n+N)1/2(Ω̂−Ω) → Normal{0, A−1B(A−1)T},

where A = blimE{∂Ψ1(Ω)/∂ΩT} + (1 − blim)E{∂Ψn+N (Ω)/∂ΩT} and B =
blimcov{Ψ1(Ω)} + (1 − blim)cov{Ψn+N (Ω)}. In the definitions of A and B, the
expectation and covariance matrix for Ψ1(Ω) are computed in the internal data,
while the expectation and covariance matrix for ΨN+n(Ω) are computed in

the external data. Let Ĉext be the sample covariance matrix of Ψi(Ω̂) for i =

n + 1, ..., n + N and let Ĉint be the sample covariance matrix of Ψi(Ω̂) for

i = 1, ..., n. Consistent estimates of A and B are easily seen to be Â = (n +

N)−1
∑N+n

i=1 ∂Ψi(Ω̂)/∂ΩT and B̂ = {n/(n+N)}Ĉint + {N/(n+N)}Ĉext.

Lemma 2. If there are no external data, i.e., N = 0, make Assumptions 1–2.
As n → ∞,

n1/2(Ω̂−Ω) → Normal{0, A−1B(A−1)T},
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where A = E{∂Ψ1(Ω)/∂ΩT} and B = cov{Ψ1(Ω)}. In the definitions of A and
B, the expectation and covariance matrix for Ψ1(Ω) are computed in the internal

data. Let Ĉint be the sample covariance matrix of Ψi(Ω̂) for i = 1, ..., n. Con-

sistent estimates of A and B are easily seen to be Â = n−1
∑n

i=1∂Ψi(Ω̂)/∂ΩT

and B̂ = Ĉint.

Remark 5. While the calculations used in Lemmas 1–2 are standard, as a
referee has pointed out, we are making the following kinds of assumptions to
carry them through: weaker conditions can be constructed. All these condi-
tions hold in our examples of linear and logistic regression with additive mea-
surement error. There is a parameter which we have called in this subsection
Ω = (Θ,β,Λint,Λext). For i = 1, ..., n + N , we have defined estimating func-
tions Ψi(Ω), which we have defined in such a way that E{Ψi(Ω)} = 0 for
i = 1, ..., n +N : the expectations are unconditional, although in implementing
the estimators we have exploited our Assumptions 1–3 to simplify the numerical
calculations. Having done all this, we are now in the realm of estimating equa-
tion theory. Sufficient but not necessary conditions for our asymptotic theory
to hold are the following.

• The parameter space is compact. This is not necessary but it is convenient
for proving consistency.

• There is a unique Ω in the parameter space such that E{Ψi(Ω)} = 0 for
all i = 1, ..., n+N .

• The estimating equations Ψi(Ω) are 3-times continuously and boundedly
differentiable in the parameter space.

• The estimating equation 0 =
∑n+N

i=1 Ψi(Ω) has a unique solution.

• The matrix E{∂Ψi(Ω)/∂ΩT} is of full rank within a neighborhood of the
true parameter value.

• For sufficiently large (n,N), within a neighborhood of the true parame-

ter value, (n +N)−1
∑n+N

i=1 ∂Ψi(Ω)/∂ΩT is of full rank with eigenvalues
bounded away from 0 and ±∞.

Remark 6. The major new item here in verifying the assumptions mentioned in
Remark 5 are the differentiability assumptions having to do with Q(W,Z,Θ,β,
Λint,Λext) in (12). Let the conditional density/mass function of Y given (X,Z)
be fY |X,Z(·,β, Λint,Λext) and the conditional density/mass function of X given
(W,Z) be fX|W,Z(·,Λint,Λext). Let dν(y) and dν(x) be integrals/counts as the
case requires. Then (12) can be written out as

Q(W,Z,Θ,β,Λint,Λext)

=

∫ {∫
Φcat{y,M(x, Z),Θ}fY |X,Z(y | x, Z,β,Λint,Λext)dν(y)

}
×fX|W,Z(x | W,Z,Λint,Λext)dν(x).

Then the non-standard differentiability assumptions in Remark 5 are really
about the differentiability assumptions of Φcat{y,M(x, Z),Θ}, fY |X,Z(·,β,Λint,
Λext) and fX|W,Z(·,Λint,Λext) with respect to the parameters.
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4. Simulations: Logistic and linear regression

4.1. Logistic regression

4.1.1. Scenarios

For simplicity, we do our simulations in the case that there is no Z. For logistic
regression, we assume that the true model is

pr(Y = 1|X) = H(β0 +Xβ1) = H{(1, X)β}, (15)

where H(·) is the logistic distribution function. Then we generate data as

W = X + U ; X = Normal(μx, σ
2
x); U = Normal(0, σ2

u), (16)

where X and U are independent. We set β0 = −0.42 and set β1 = log(1.5)
in Table 1. We set (μx = 0, σ2

x = 1, σ2
u = 1), so that the measurement er-

ror variance is the same as the variance of X, and the classical attenuation
coefficient is λ = σ2

x/(σ
2
x + σ2

u) = 0.50. Solving (8) numerically, we find that
Θ = (−0.98,−0.64,−0.42,−0.21, 0.14)T. In both cases, the main study sample
size is n = 500.

We used the quintiles of the distribution of X to define the categories. This
is because, as stated in the introduction, we have our goal is to obtain consis-
tent estimates of what epidemiologists would have obtained if X were actually
observed, in this case, the quintiles of X.

We did simulations in two cases:

1. External-Internal Data: The internal data has no replicates and the exter-
nal data set has size N = 300 and K = 2 replicates for each observation.
The nuisance parameters are Λext = σ2

u and Λint = (μx, σ
2
x). We estimated

σ2
u from the external data with replicates, and estimated μx, σ

2
x using the

internal data without any replicates. Standard errors were computed as in
Lemma 1.

2. Internal Data Only: The internal data has R = 2 replicates and there
are no external data (K = 0). The nuisance parameters Λ = Λint =
(μx, σ

2
x, σ

2
u). We estimated (μx, σ

2
x, σ

2
u) from the internal data with repli-

cates. Standard errors were computed as in Lemma 2.

C.3 provides details of implementation.

4.1.2. Results

The results given below are similar, and indeed even more impressive, when
the main study sample size n increases to n = 1,000, 2,000 and 3,000, and
thus these are not displayed here. The results are also similar when β1 is either
smaller or larger. The same qualitative results are also found forΘ = (θ1, ..., θ5)

T

individually (results not shown).
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We fit the new approach and compare it with the naive method for the
both cases described above. Our main interest is to estimate the log relative
risk θ5 − θ1, which compares the effect of the category 5 with the effect of
the category 1. In the two simulations, we computed (a) the log relative risk
pretending that X is observed; (b) our method; and (c) the naive method that
ignores measurement error. In the scenario of internal data with R = 2, the
predictor used was the sample mean of the replicates.

Based on 1000 simulated data sets, in Table 1, we report the empirical average
mean bias, asymptotic standard error, standard deviation, root mean squared
error, and coverage rate of the nominal 95% confidence interval across the sim-
ulations.

From Table 1, we observe the following.

• The estimator using true X and our method both have little bias and
provide near-nominal coverage.

• The naive estimator that ignores the measurement error is badly biased
and attenuated towards zero. Consequently the coverage probabilities are
near-zero and the root mean squared errors are quite inflated.

• With no internal replicates, i.e., R = 1, the root mean squared error of
our method is naturally higher than if X had been observed, but not
quite as high as would be expected in a continuous analysis. Indeed, in a
continuous analysis with attenuation λ = 0.50, as in our simulation, one
would expect a doubling of root mean squared error.

4.2. Linear regression

4.2.1. Scenarios

In this section, we do simulations based on simple linear regression with no Z,
including homoscedastic and heteroscedastic cases.

We assume that the true model is

Y = β0 +Xβ1 + ε = (1, X)β + ε, (17)

Similarly, we generate data as

W = X + U ; X = Normal(μx, σ
2
x); U = Normal(0, σ2

u).

We set β0 = 0 and set β1 = 0.75 and studied two cases: (a) homoscedastic with
ε ∼ N(0, 1); and (b) heteroscedastic with ε ∼ N(0, 0.2 + 0.5x2). The classical
attenuation coefficient and sample size are the same as in Section 4.1. Solving
(8) numerically, we find that Θ = (−1.04,−0.40, 0.00, 0.40, 1.05)T. C.2 provides
implementation details.

4.2.2. Results

Similarly as before, our main interest is to estimate θ5−θ1, which compares the
effect of the category 5 with the effect of the category 1. In the two simulations,
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we computed θ5 − θ1 (a) pretending that X is observed; (b) our methods; and
(c) the naive method that ignores measurement error. For the naive method,
in internal data with R = 2, the predictor used is the sample mean of the
replicates.

Based on 1000 simulated data sets, in Table 2, we report the empirical average
mean bias, asymptotic standard error, standard deviation, root mean squared
error, and coverage rate of the nominal 95% confidence intervals across the
simulations.

From Table 2, we see that similar conclusions can be drawn as in Section
4.1. However, an interesting thing is in the heteroscedastic case, when noise
ε has its variance related to X. Assuming that X is observed, the coverage
rate of nominal 95% confidence intervals is low, because the heteroscedasticity
is ignored. Using our method, we can get close to nominal coverage without
knowing any information about the noise ε. Thus, this example shows that our
method is very general as we stated in Example 1(A).

5. Empirical example

5.1. Data description

We illustrate our methods using data from the Eating at America’s Table
(EATS) Study [23], in which 964 participants completed multiple 24-hour recalls
of diet. We consider the variable Fat Density, which is the percentage of calories
coming from Fat. The response Y is either (i) the indicator of obesity, which
means that a subject’s body mass index (BMI, weight in kilograms divided by
the square of height in meters) is 30 or greater. or (ii) the actual body mass
index. We assume that W , is unbiased for usual intake X, and that W = X+U .
It is reasonable in these data to take (a) X to be normally distributed, (b) that
U is normally distributed; and (c) that X and U are independent, as we now
describe. We used the methods described in [9] and Chapter 1.7 of [4], which
also give the rationale for these methods. Specifically, for (a), as they suggest
a qq-plot of the individual means for Fat Density looked acceptably normal,
with skewness and kurtosis = -0.06 and 3.02, respectively, see the top panel of
Figure 1. For (b), as they suggest, we took differences of the first and second
Fat Density measurements, which had skewness (theoretically = 0) and kurtosis
= -0.14 and 3.40, respectively: the somewhat higher kurtosis here is seen to be
minor on the qq-plot, see the middle panel of Figure 1. Finally, for (c), they sug-
gest analyzing the correlation between the individual-level mean and standard
deviation = 0.06, and there was no obvious strong pattern when we plotted the
data the latter against the former, see the bottom panel of Figure 1.

For numerical stability, our analysis in the continuous scale is uses centered
and standardized W using (15W − 5)/

√
0.5. To illustrate an example of an

internal and an external study, we randomly selected N = 200 subjects as the
external study to have the first two 24-hour recalls, while using the remaining
data as the main internal study. As in the simulation, we either set the number
of recalls R = 1, K = 2, meaning the external study data were used to estimate
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the measurement error variance, for R = 2, K = 0, in which case the external
data were not used.

5.2. Results

5.2.1. Logistic regression

As described in Section 4.1, we assume the true model defined by (15)–(16), and
the respective two cases. In this application we again estimate the log relative
risk θ5 − θ1. We fit both our new approach and the naive model that ignores
measurement error when external data is and is not used.

In Table 3, we observe that when using the external data and only 1 obser-
vation in the internal data the estimate of the log relative risk θ5 − θ1 from our
approach is 108% greater than the naive estimate, while when using internal
data with two replicates our estimate of our approach is 32% greater than the
naive estimate. This makes sense because the second case uses the mean of two
replicates, hence has smaller measurement error variance, and thus the naive
estimate will be closer to our method.

In both cases, the asymptotic standard error from our new method is greater
than the naive method, which led to wider confidence intervals. This makes
sense, because with a scalar covariate measured with error, correcting for mea-
surement error bias usually increases estimated standard errors, while of course
reducing bias.

5.2.2. Linear regression

Next we consider the linear model with body mass index as the response. All
assumptions for W , X and U are the same as in Section 5.1. Moreover, we
maintain the standardization and sampling scheme in Section 5.1: the results
are presented in Table 4.

From Table 4, we observe similar conclusions as in logistic regression case.
One point of particular interest is that in both scenarios (external-internal or
internal data only), our estimator converges theoretically to the same value, and
this is seen in the results. The naive method that ignores measurement error
estimates different parameters because the measurement error variance is twice
as large in the external-internal case as it is in the internal-only case.

6. Other approaches and the assumptions

6.1. Other approaches

We emphasize once more that it is common practice in epidemiology to cat-
egorize a continuous predictor, and we have given numerous citations of this
practice. Generally, this practice results in a misspecified model.

Our goal is to correct the analysis so as to reproduce, asymptotically, the
estimators that would have been obtained if there were no measurement error.
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The problem has not been considered previously in the context that a continuous
predictor has been categorized. Such categorization generally leads to differential
measurement error [11, 13, 3], and thus additional complications over simply
fitting a measurement error model.

While our paper is the first to consider the issue of how to correct an analy-
sis to account for a continuous predictor that is categorized, there are of course
other possible approaches, but none of them really avoids the basic issues we
have discussed of what is needed to obtain consistent estimators with asymp-
totically correct inference in the case of measurement error.

• For example, one could assume that the true risk model is based upon
the categorized truth, even if this is implausible in most contexts. One
could further assume that the misclassification is nondifferential, which is
incorrect if the true risk model is in the continuous scale [11, 13, 3]. There
is a small literature on this problem. [13], especially Chapter 6.1, has
remarks on the bias induced when a binary predictor is misclassified. [3],
Chapter 6.7.7 and Chapter 6.14, has a detailed discussion of the issue, and
provides a number of references to the problem. Both [13] and [3] show
that a measurement error correction will require a distribution for the
categorical X given (W,Z), sometimes called the reclassification rate, and
both indicate that there are substantive issues, including identifiability,
involved with estimating these models. For replication studies wherein W
is measured repeatedly on a subset of the data, there is some evidence that
3 replicates will result in identifiability. However, both books emphasize
the use of internal validation substudies, wherein one actually observes X
in a substudy.
If Xcat is the categorized truth, then one might attempt an analysis based
on assuming a joint distribution of (Y,W,Xcat) given Z, but as in any
measurement error model [4], the joint distribution requires (a) a dis-
tribution for Y given (Xcat,W,Z), and (b) the distribution of (W,Xcat)
given Z. However, (a) actually depends on W , and thus that the modeling
presents additional complications. In addition, (b) is no easier than ours,
can be implausible and does not make fewer assumptions than we have
done.

• Simulation-extrapolation, or SIMEX, [6, 22, 4] is a well-known approach
to the creation of approximately, but not fully, consistent estimators for
additive measurement error models of the form W = X+ZTα+U , where
U is independent of Z and can be homoscedastic or heteroscedastic but
has replicates [8], and is generally taken to be normally distributed. This
literature attempts to dispense with distributional assumptions for X for
the continuous case, but is at best approximately correct. The fact that
a categorized risk model is implausible, leading to differential measure-
ment error, may also cause complications, but the use of SIMEX in this
context is a worthwhile topic for further study. We also mention the MC-
SIMEX procedure [16], which is appropriate for misclassified data where
the misclassification probabilities can be estimated.
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• It is also possible to change the paradigm entirely and avoid categoriza-
tion, and all the issues related to categorization, by instead using Bsplines.
Indeed, part of the reason sometimes given for categorizing a continuous
predictor and not modeling a response linearly in the continuous X is
that it could lead to unduly extreme comparisons for risk between the
lowest and the highest values of X. The general thought is that this can
be overcome by replacing the linear X by a Bspline in X. There are pa-
pers involving Bsplines and measurement error [2, 12, 18], and it appears
that regression calibration can possible be used by calibrating each spline
basis function. After the fitting, one could compare the Bspline fits at the
10th, 30th, 50th, 70th and 90th percentiles of X to form versions of the
tables found in epidemiology papers, but the interpretations are not fully
comparable.

We showed how to solve this problem and given asymptotically consistent
estimators with asymptotically correct standard errors. Assumption 2 is reason-
able in other contexts than ours, for example, that X has a mixture-of-normals
distribution and U is normally distributed [7].

6.2. Assumptions in the simulations and example

Readers of an initial version of this paper have noted that our simulations and
data example use the assumption that the distribution of X given (W,Z) is nor-
mally distributed, but misinterpreted this fact into concluding that the approach
is only applicable in that case. For the data example in Section 5, we justified
the assumptions using known methods for model checking of measurement er-
ror models. Assumption 2 is widely used and reasonable in many other contexts
than ours numerical work, for example, that X has a mixture-of-normals distri-
bution and U is normally distributed [7]. Modeling via mixture distributions is a
reasonable way to extend what we have done in the classical error case. See also
[21] for the homoscedastic and heteroscedastic cases when the variance function
and the distributions of X and U are modeled as mixture distributions.

Many papers in the literature also rely on the existence of validation data,
where X is actually observed in a subset of the main data set. In that case,
Assumption 2 is easily checked by model fitting and validation on the observed
validation data subset.

6.3. Categorization

In Section 2.1, we stated that the number J of categories was set by the investi-
gators, Usually, J = 3, 4 or 5, as seen by the examples cited in the introduction.
In addition, setting the category limits is also an art, and may be based on (a)
limits in the literature; (b) limits based on the error-prone instrument, such as
the quintiles of a food frequency questionnaire or 24-hour recall; and (c) lim-
its based on a measurement error analysis. Since our goal is to construct the
analysis that would have been done if X could be observed, we use the latter.
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Appendix A: Sketch of technical arguments

A.1. Argument for Lemma 1

We consider the case that there are external data used to estimate Λext and
that there are parameters Λint. As in Section 3.2, the data for i = 1, ..., n are
for the internal data, while, for i = n+ 1, ..., n+N , are for the external data if
such external data exist and are used. The functions Ψi(Ω) are also defined in
Section 3.2. By Taylor series,

(n+N)−1/2∑n+N
i=1

{
Ψi(Ω̂)−Ψi(Ω)

}
= (n+N)−1/2∑n+N

i=1

{
∂Ψi(Ω)

∂Ω
(Ω̂−Ω) + op(‖Ω̂−Ω‖)

}
=

{
(n+N)−1∑n+N

i=1

∂Ψi(Ω)

∂Ω

}
(n+N)1/2(Ω̂−Ω) + op(1).

For logistic regression and linear regression, the forms of Ψi(Ω) can be found in
Appendix C. Thus,

(n+N)1/2(Ω̂−Ω)

= −
{
(n+N)−1

N+n∑
i=1

∂Ψi(Ω)/∂Ω

}−1

(n+N)−1/2
N+n∑
i=1

Ψi(Ω) + op(1).

It is obvious that (n + N)−1
∑N+n

i=1 ∂Ψi(Ω)/∂Ω = A + op(1), and immediate

that (n + N)−1/2
∑N+n

i=1 Ψi(Ω) → Normal(0, B), where A and B are defined in
Lemma 1.

A.2. Argument for Lemma 2

We consider the case that there are only parameters Λint. As in Section 3.2,
the data for i = 1, ..., n are for the internal data. The functions Ψi(Ω) are also
defined in Section 3.2. Then

0 = n−1/2
n∑

i=1

Ψi(Ω̂)

= n−1/2
n∑

i=1

Ψi(Ω) +

{
n−1

n∑
i=1

∂Ψi(Ω)/∂Ω

}
n1/2(Ω̂−Ω) + op(1),

so that

n1/2(Ω̂−Ω) = −
{
n−1

n∑
i=1

∂Ψi(Ω)/∂Ω

}−1

n−1/2
n∑

i=1

Ψi(Ω) + op(1).

As in A.1, n−1
∑n

i=1∂Ψi(Ω)/∂Ω = A + op(1), and n−1/2
∑n

i=1Ψi(Ω) →
Normal(0, B), where A and B are defined in Lemma 2.
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Appendix B: Tables for simulations and EATS data analysis

Table 1

Simulation study for logistic regression in Section 4.1 with sample size n = 500 and, where
applicable, the external study has sample size N = 300 and 2 replicates, while

β0 = −0.42, β1 = log(1.5). The target parameter, Θ = (θ1, ..., θ5)T, where θj is the
parameter for the jth category. Displayed are results for the estimation of the log relative

risk, θ5 − θ1. Ext-Int Data is the case that external data are used to estimate the
measurement error variance. Int Data is the case that the internal data have 2 replicates,
and the Ignore ME estimator ignores the measurement error and is based on the mean of
these replicates. Coverage is the coverage rate of nominal 95% confidence intervals. RMSE

is the square root of the mean squared error.

Log Relative Risk Analysis
Mean Actual

mean Estimated Standard
Data Method bias Std. Err. Deviation RMSE Coverage
X observed 0.016 0.304 0.301 0.301 95.2%
Ext-Int Data

Our Method -0.005 0.41 0.402 0.402 94.5%
Ignore ME -0.453 0.251 0.256 0.520 0%

Int Data
Our method 0.005 0.361 0.323 0.323 95.9%
Ignore ME -0.287 0.268 0.266 0.391 80.2%

Table 2

Simulation study for linear regression in Section 4.2 with n = 500 and, where applicable, the
external study has sample size N = 300 and 2 replicates, while β0 = 0, β1 = 0.75. The
target parameter, Θ = (θ1, ..., θ5)T, where θj is the parameter for the jth category.

Displayed are results for the estimation of θ5 − θ1. Ext-Int Data is the case that external
data are used to estimate the measurement error variance. Int Data is the case that the

internal data have 2 replicates, and the Ignore ME estimator ignores the measurement error
and is based on the mean of these replicates. Coverage is the coverage rate of nominal 95%

confidence intervals. RMSE is the square root of the mean squared error.

Results Analysis (θ5 − θ1)
Mean Actual

mean Estimated Standard
Data Method bias Std. Err. Deviation RMSE Coverage

Homoscedastic ε ∼ N(0, 1)

X observed 0.004 0.145 0.150 0.150 95.1%
Ext-Int Data

Our Method 0.013 0.249 0.233 0.233 95.8%
Ignore ME -0.814 0.139 0.142 0.826 0.1%

Int Data
Our method -0.007 0.176 0.170 0.170 95.3%
Ignore ME -0.536 0.142 0.145 0.555 3.7%

Heteroscedastic ε ∼ N(0, 0.2 + 0.5x2)

X observed 0.004 0.123 0.169 0.169 85.3%
Ext-Int Data

Our Method 0.011 0.261 0.245 0.245 95.9%
Ignore ME -0.814 0.122 0.135 0.825 0.1%

Int Data
Our Method -0.010 0.197 0.189 0.189 95.9%
Ignore ME -0.537 0.123 0.141 0.555 1.8%
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Table 3

Data analysis for logistic regression in Section 5. The target parameter, Θ = (θ1, ..., θ5)T,
where θj is the parameter for the jth category. Displayed are results for the estimation of
the log relative risk, θ5 − θ1. Ext-Int Data is the case that external data are used only to

estimate the measurement error variance, and the external data have 2 replicates. Int Data
is the case that the internal data have 2 replicates, and the Ignore ME estimator ignores the
measurement error and is based on the mean of these replicates. Asymptotic Std. Err. is the
standard error estimate from the theory. CI is the nominal 95% confidence interval for the

log relative risk. p-value is the p-value for the test that the log relative risk = 0.

Log Relative Risk Analysis
Asymptotic

Data Method Estimate Std. Err. 95% CI p-value
Ext-Int Data

Our Method 0.98 0.47 (0.06, 1.90) 0.036
Ignore ME 0.47 0.24 (0.00, 0.95) 0.049

Int Data
Our Method 1.10 0.34 (0.43, 1.77) 0.001
Ignore ME 0.83 0.22 (0.39, 1.26) 0.000

Table 4

Data analysis in for linear regression Section 5. The target parameter, Θ = (θ1, ..., θ5)T,
where θj is the parameter for the jth category. Displayed are results for the estimation of

θ5 − θ1. Ext-Int Data is the case that external data are used only to estimate the
measurement error variance, and the external data have 2 replicates. Int Data is the case

that the internal data have 2 replicates, and the Ignore ME estimator ignores the
measurement error and is based on the mean of these replicates. Asymptotic Std. Err. is the

standard error estimate from the theory. CI is the nominal 95% confidence interval for
θ5 − θ1. p-value is the p-value for the test that θ5 − θ1 = 0.

Results Analysis (θ5 − θ1)
Asymptotic

Data Method Estimate Std. Err. 95% CI p-value
Ext-Int Data

Our Method 0.59 0.18 (0.24, 0.95) 0.001
Ignore ME 0.28 0.10 (0.09, 0.47) 0.004

Int Data
Our Method 0.56 0.13 (0.30, 0.81) 0.000
Ignore ME 0.35 0.09 (0.18, 0.52) 0.000
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Fig 1. EATS data of Section 5. Top panel: Normal qq-plot of the mean Fat Density over 4
recalls. This indicates that the mean Fat Density is approximately normally distributed and
qualifies for the assumptions in our numerical example. Middle panel: Normal qq-plot of dif-
ferences of observed Fat density, as a diagnosis that U is approximately normally distributed.
Bottom panel: Mean and standard deviation plot to diagnose heteroscedasticity, showing that
there is little heteroscedasticity in the measurement errors.
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Appendix C: Estimating equations for linear and logistic regression

C.1. Estimating the nuisance parameter Λ

Here we only consider two cases among numerous possibilities. One is that the
internal data consists of (Yi,Wi, Zi) for i = 1, ...n and σ2

u is estimated from the
external data using replicates Wik for k = 1, ...,K and i = n+1, ..., n+N . The
second case is that the replicates are in the internal data.

C.1.1. External-internal data

For specificity, we consider the first case that the external data have no responses
Y , are independent of the internal data. Suppose that we use external data
only to estimate σ2

u, and we observe Wik = Xi + Uik for k = 1, ...,K and i =
n+1, ..., n+N . We use internal data to estimate μx, σ

2
x without replicates. In the

external data, let W i· = K−1
∑K

k=1 Wik. Define σ̂2
u,i = (K − 1)−1

∑K
k=1(Wik −

W i·)
2 to be the sample variance of the Wik for a given i. Because E{(Wi −

μx)
2) = σ2

x + σ2
u, unbiased estimating equations for (Λext,Λint) = (μx, σ

2
x, σ

2
u)

are

For μx: n−1∑n
i=1(Wi − μx) = 0;

For σ2
u: N−1∑n+N

i=n+1(σ̂
2
u,i − σ2

u) = 0;

For σ2
x: n−1∑n

i=1{(Wi − μx)
2 − σ2

x − σ2
u} = 0.

C.1.2. Internal data only

Suppose there is no external data, and we have replicates Wir for r = 1, ..., R in
the internal data. Now we use internal data to estimate Λ = (μx, σ

2
x, σ

2
uR), and

we observe Wir = Xi + Uir for r = 1, ..., R and i = 1, ..., n.
Define W i· = R−1

∑R
r=1 Wir. Define σ̂2

u,i to be the sample variance of the

Wir within subject i, and define σ2
u/R = σ2

uR. The estimating equations are

For μx: n−1∑n
i=1(W i· − μx) = 0;

For σ2
uR: n−1∑n

i=1(σ̂
2
u,i/R− σ2

uR) = 0;

For σ2
x: n−1∑n

i=1{(W i· − μx)
2 − σ2

x − σ2
uR} = 0.

Since the two cases we considered are the same as in linear regression and logistic
regression, the way we estimate Λint and Λext are exactly the same. Then we
will only give details for the estimating equations about β and Θ below.

C.2. Details for linear regression

C.2.1. Background

Here we give full details of our methodology for linear regression. As in Lemma 1,
Ω = (Θ,β,Λint,Λext).



4052 B. G. Blas Achic et al.

Let Z̃ = (1, ZT)T. Here we consider the simple case of linear regression with
the classical measurement error model in both the external and internal data
sets to be

Y = Xβ1 + Z̃Tβ2 = (X, Z̃T)β;

W = X + U ; X = Normal(Z̃Tα, σ2
x); U = Normal(0, σ2

u).

C.2.2. The forms of Φ(·)

In this linear model, denote the estimating equations for β as Φ(·), we consider

Φ(Y,W,Z,β,Λint,Λext) = (1,W )T(Y −Wβ1 − Z̃Tβ2) + (0, β1σ
2
u)

T.

C.2.3. The forms of Φcat(·) and Q(·)

Since we assume the true model is Y = (X, Z̃T)β, it is easy to see that categor-
ical estimating function

Φcat{Y,MT(X,Z)Θ} = M(X,Z)[Y −MT(X,Z)Θ].

Hence, by simple calculations and following Remark 3, with Ω = (Θ,β,Λint,
Λext),

Q(W,Z,Ω) = E

[
M(X,Z)

{
(X, Z̃T)β −MT(X,Z)Θ

} ∣∣∣∣W,Z

]
.

We used the integrate function in the R package stats to compute the inte-
grals.

The estimating function for β = (β0, β1) is

Φ(β, Λ̂) = n−1∑n
i=1E

(
[Yi −H{m(Xi,β)}]∂m(Xi,β)/∂β

T
∣∣∣Wi).

The estimating function for Θ is

Q(Wi,Θ, β̂, Λ̂) = E

⎡⎢⎣ m(Xi, β̂)I(Xi ∈ C1)−Θ1I(Xi ∈ C1)
...

m(Xi, β̂)I(Xi ∈ CJ)−ΘJI(Xi ∈ CJ)

Wi

⎤⎥⎦ .

Asymptotic standard errors were estimated as in Lemma 1 and Lemma 2.

C.3. Details for logistic regression

C.3.1. Background

Here we give full details of our methodology for logistic regression. As in Lem-
ma 1, Ω = (Θ,β,Λint,Λext).
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As before, let H(·) denote the logistic distribution function and let Z̃ =
(1, ZT)T. Here we consider the special case of linear logistic regression with the
classical measurement error model in both the external and internal data sets
to be

pr(Y = 1|X,Z) = H(Xβ1 + Z̃Tβ2) = H{(X, Z̃T)β};
W = X + U ; X = Normal(Z̃Tα, σ2

x); U = Normal(0, σ2
u).

Different from the linear case in Section C.2, we consider the case where X
depends on another covariate Z. There are numerous data structures possible,
but we here present the external-internal and internal data only cases.

C.3.2. Settings

There are two settings of interest.

• There is no information about σ2
u in the internal data, so that the external

parameter is the measurement error variance,Λext = σ2
u, while the internal

parameters are Λint = (αT, σ2
x)

T.
• There are no external data, so that Λext is null, and the internal data with

replicates allow estimation of Λint = (αT, σ2
u, σ

2
x)

T.

In both case, σ2
u (or σ2

uR in the internal data only case) are estimated the same
as in C.1.1 and C.1.2, while the estimating function for (α, σ2

x) is

Vint,i(Λint,Λext) =
{
Z̃T
i (Wi − Z̃T

i α), (Wi − Z̃T
i α)2 − σ2

x − σ2
u

}
,

where i = 1, ..., n.

C.3.3. Estimating β

In this section, we implement our method and give all estimating equations in
the case where we have both external and internal data. In another case, where
we only use internal data with replicates, all results below are still valid by
removing Λext.

Define λ = σ2
x/(σ

2
x+σ2

u). Then, given (W,Z), X is normally distributed with

mean μ(W,Z,Λext,Λint) = Z̃Tα + λ(W − Z̃Tα) and variance λσ2
u. We write

this conditional density as fx|w,z(x,w, z,β,Λint,Λext).
There are multiple ways to estimate β from the observed data. Here we

describe two of them.

• The first is regression calibration, in which X is replaced by its mean given
(W,Z) and the linear logistic model is fit. Thus the regression calibration
method has

Φ(Y,W,Z,β,Λint,Λext) = {μ(W,Z,Λext,Λint), Z̃}T

×[Y −H{μ(W,Z,Λext,Λint)β1 + Z̃Tβ2}].



4054 B. G. Blas Achic et al.

• A second possibility, one that we used, is the following. By simple calcu-
lations, pr(Y = 1|W,Z) = p(W,Z,β,Λint,Λext), where

p(W,Z,β,Λint,Λext) =

∫
H{(x, Z̃T)β}fx|w,z(x,W,Z,Λint,Λext)dx,

a quantity that is easily computed in R using the integrate function
in the R package stats. Denote pi = pr(Yi = 1|Wi, Zi). Thus, the log-
likelihood ∝ n−1

∑n
i=1Yilog(pi) + (1 − Yi)log(1 − pi). We then use optim

function in the R package stats to minimize the negative loglikelihood to
estimate β.

C.3.4. The forms of Φcat(·) and Q(·)

Since we assume the true model is pr(Y = 1|X,Z) = H{(X, Z̃T)β}, it is easy
to see that categorical estimating function

Φcat{Y,MT(X,Z)Θ} = M(X,Z)[Y −H{MT(X,Z)Θ}].

Hence, with Ω = (Θ,β,Λint,Λext), by simple calculations and following Re-
mark 3,

Q(W,Z,Ω) = E

(
M(X,Z)

[
H{(X, Z̃T)β} −H{MT(X,Z)Θ}

] ∣∣∣∣W,Z

)
.

We used the integrate function in the R package stats to compute the inte-
grals.
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