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ABSTRACT OF DISSERTATION 

MECHANISMS AND POTENTIAL THERAPY ON DISRUPTED BLOOD PRESSURE 
CIRCADIAN RHYTHM IN DIABETES 

Arterial blood pressure (BP) undergoes a 24-hour oscillation that peaks in the 
active day and reaches a nadir at night during sleep in humans. Reduced nocturnal BP 
fall (also known as non-dipper) is the most common disruption of BP circadian rhythm 
and is associated with increased risk of untoward cardiovascular events and target 
organ injury. Up to 75% of diabetic patients are non-dippers. However, the mechanisms 
underlying diabetes associated non-dipping BP are largely unknown. To address this 
important question, we generated a novel diabetic db/db-mPer2Luc mouse model 
(db/db-mPer2Luc) that allows quantitatively measuring of mPER2 protein oscillation by 
real-time mPer2Luc bioluminescence monitoring in vitro and in vivo. Using this model, we 
demonstrated that the db/db-mPer2Luc mice have a diminished BP daily rhythm. The 
phase of the mPER2 daily oscillation is advanced to different extents in explanted 
peripheral tissues from the db/db-mPer2Luc mice relative to that in the control mice. 
However, no phase shift is found in the central oscillator, the suprachiasmatic nucleus 
(SCN). The results indicate that the desynchrony of mPER2 daily oscillation in the 
peripheral tissues contributes to the loss of BP daily oscillation in diabetes. 

Extensive research over the past decades has been focused on how the 
components of food (what we eat) and the amount of food (how much we eat) affect 
metabolic diseases. Only recently has it become appreciated that the timing of food 
intake (when we eat), independent of total caloric and macronutrient quality, is also 
critical for metabolic health. To investigate the potential effect of the timing of food 
intake on the BP circadian rhythm, we simultaneously monitored the BP and food intake 
profiles in the diabetic db/db and control mice using radiotelemetry and BioDAQ 
systems. We found the loss of BP daily rhythm is associated with disrupted food intake 
rhythm in the db/db mice. In addition, the normal BP daily rhythm is altered in the 
healthy mice with abnormal feeding pattern, in which the food is available only during 
the inactive-phase. To explore whether imposing a normal food intake pattern is able to 



prevent and restore the disruption of BP circadian rhythm, we conducted active-time 
restricted feeding (ATRF) in the db/db mice. Strikingly, ATRF completely prevents and 
restorers the disrupted BP daily rhythm in the db/db mice. While multiple mechanisms 
likely contribute to the protection of ATRF on the BP daily rhythm, we found that ATRF 
improves the rhythms of energy metabolism, sleep-wake cycle, BP-regulatory hormones 
and autonomic nervous system (ANS) in the db/db mice. To further investigate the 
molecular mechanism by which ATRF regulates BP circadian rhythm, we determined the 
effect of ATRF on the mRNA expressions of core clock genes and clock target genes in 
the db/db mice. Of particular interest is that we found among all the genes we 
examined, the mRNA oscillation of Bmal1, a key core clock gene, is disrupted by 
diabetes and selectively restored by the ATRF in multiple peripheral tissues in the db/db 
mice. More importantly, we demonstrated that Bmal1 is partially required for ATRF to 
protect the BP circadian rhythm.  

In summary, our findings indicate that the desynchrony of peripheral clocks 
contributes to the abnormal BP circadian pattern in diabetes. Moreover, our studies 
suggest ATRF as a novel and effective chronotherapy against the disruption of BP 
circadian rhythm in diabetes. 

KEYWORDS: Diabetes, Blood pressure circadian rhythm, Clock genes, Time-restricted 
feeding, Sympathetic nervous system, db/db mice 
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CHAPTER I. INTRODUCTION  

1.1 Diabetes 

1.1.1 Background 

The prevalence of diabetes is increasing steadily over the decades, from 4.3% in 1980 to 

8.5% in 2014 worldwide. This accounts for a total of 422 million adults (9% of men and 

7.9% of women) that year (2016). This number exceeds the previous projection that 439 

million adults will have diabetes in 2030 (Shaw, Sicree et al. 2010). The newest 

International Diabetes Federation (IDF) diabetes atlas projects that the number of adults 

affected by diabetes is expected to rise to 521 to 829 million by 2040, which accounts 

for 10.4% of adults globally (Ogurtsova, da Rocha Fernandes et al. 2017).  

Diabetes is classified into four general categories: 1) type 1 diabetes (T1D); 2) 

type 2 diabetes (T2D); 3) gestational diabetes and 4) specific types of diabetes due to 

other causes, such as monogenic diabetes syndromes, diseases of the exocrine 

pancreas, and drug- or chemical-induced diabetes (2018). Among the different forms of 

diabetes, T2D accounts for 90-95% of all diabetes in the US (Prevention 2017). T2D, 

previously known as “non-insulin dependent diabetes mellitus”, is a chronic metabolic 

disease and results from the progressive loss of -cell insulin secretion; it is 

characterized by hyperglycemia, insulin resistance and relative insulin deficiency 

(Chatterjee, Khunti et al. 2017).  
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1.1.2 Complications of type 2 diabetes 

People with T2D are more susceptible to various forms of short- and long-term 

complications, which can lead to their premature death. The Centers for Disease Control 

and Prevention (CDC) of US reported that diabetes is the seventh leading cause of death 

in the US (Prevention 2017).  The world Health Organization (WHO) projects that 

diabetes will be the seventh leading cause of death in 2030 in the whole world (Mathers 

and Loncar 2006). The short-term, or acute complications associated with T2D include a 

hyperglycemic hyperosmolar state (HHS) due to acute hyperglycemia (Pasquel and 

Umpierrez 2014) as well as coma due to hypoglycemia, resulting from an adverse effect 

of diabetes treatment using insulin and sulfonylureas (Frier 2014). The long-term, or 

chronic complications of diabetes include microvascular diseases (due to the damage to 

small vessels, e.g. retinopathy, nephropathy, and neuropathy) and macrovascular 

diseases (due to the damage to the arteries, e.g. coronary artery disease leading to 

angina or myocardial infarction and cerebrovascular disease contributing to stroke) 

(Forbes and Cooper 2013). In addition, T2D has also been found to be associated with 

cancer (Tsilidis, Kasimis et al. 2015), depression (Semenkovich, Brown et al. 2015), 

dementia (Biessels, Strachan et al. 2014), tuberculosis (Jeon and Murray 2008) and 

sexual dysfunction (Isidro 2012). The incidence and mortality rate of the short-term 

complications is relatively low in T2D. The most devastating consequence of T2D is the 

long-term complications, among which cardiovascular disease (CVD) is the leading cause 

of mortality and morbidity associated with T2D (Organization 2014). In 1979, Kannel et 

al used the data from the Framingham Heart Study (FHS), which includes 13,861 men 
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and 18,928 women of 45 to 74 years of age at the time of the study, first identified that 

people with diabetes are two to three times more likely to have CVD than those without 

(Kannel and McGee 1979). Several decades later, due to effective prevention and 

treatment, the incidence of CVD has declined in people with diabetes (Fox, Coady et al. 

2004, Dale, Vatten et al. 2008), which is in accordance with the overall reduction of CVD 

(Rosamond, Chambless et al. 1998, Cooper, Cutler et al. 2000). Despite this, diabetes is 

still associated with 2-fold higher incidence in the rate of CVD (Fox, Coady et al. 2004, 

Collaboration 2010) . A recent systematic literature review demonstrated that CVD 

affects more than 30% of persons with T2D and accounts for approximately half of all 

death among people with diabetes between the year 2007 to 2017 (Einarson, Acs et al. 

2018).  

1.1.3 Hypertension in type 2 diabetes 

The mechanisms linking T2D with CVD are not well understood currently. 

Researchers have demonstrated there are several risk factors for developing CVD in 

people with T2D. Studies have shown that hyperglycemia (Klein 1995, Gerstein and 

Yusuf 1996, Lehto, Ronnemaa et al. 1996, Turner, Millns et al. 1998, Stratton, Adler et al. 

2000), hypertension (1993, Stamler, Vaccaro et al. 1993, Lehto, Ronnemaa et al. 1996, 

Turner, Millns et al. 1998), increased low density lipoprotein (LDL) cholesterol and 

decreased high density lipoprotein (HDL) cholesterol (Stamler, Vaccaro et al. 1993, 

Turner, Millns et al. 1998), and smoking (Stamler, Vaccaro et al. 1993, Turner, Millns et 

al. 1998, Qin, Chen et al. 2013, Pan, Wang et al. 2015) significantly increase the 

incidence and mortality of CVD. However, the contribution of each risk factor to the 
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development of CVD is not equal. The population attributable fraction (PAF) is a widely 

used epidemiologic measure to assess the impact of exposures to the public health in 

populations (Mansournia and Altman 2018). It is equivalent to the reduction of 

mortality with reduced risk factor exposured. For ischaemic heart disease, the PAF for 

hyperglycemia, high cholesterol, hypertension and smoking is 21%, 45%, 47% and 12%, 

respectively (Danaei, Lawes et al. 2006). And for stroke, the PAF for hyperglycemia is 

13%, which is equal to high cholesterol, for hypertension is 54% and for smoking is 8% 

(Lopez, Mathers et al. 2006). Therefore, hypertension has the highest PAF value in CVD. 

Indeed, a comparative risk assessment showed that hypertension is the leading risk 

factor for deaths for CVD, chronic kidney disease and diabetes and causes more than 

40% deaths from these diseases worldwide (2014).   

Hypertension and T2D often coexist. Hypertension occurs twice as often in 

people with diabetes than in those without diabetes (El-Atat, McFarlane et al. 2004). 

The prevalence of hypertension in T2D is 40 to 60 percent (1993, Kabakov, Norymberg 

et al. 2006, Colosia, Palencia et al. 2013). When people have both hypertension and 

T2D, their risk for CVD increases  (Gomes 2013). Multiple studies report that 

antihypertensive treatment lowers the incidence of cardiovascular events among 

diabetic patients (Curb, Pressel et al. 1996, Group 1998, Hansson, Zanchetti et al. 1998). 

The UK Prospective Diabetes Study Group (UKPDS) found that each 10 mm Hg decrease 

in updated mean systolic blood pressure was associated with reductions in risk of 12% 

for any complication related to diabetes (95% confidence interval 10% to 14%, 

P<0.0001), 15% for deaths related to diabetes (12% to 18%, P<0.0001), 11% for 
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myocardial infarction (7% to 14%, P<0.0001), and 13% for microvascular complications 

(10% to 16%, P<0.0001) (Adler, Stratton et al. 2000). A recent meta-analysis showed 

that a 10-mmHg reduction in systolic blood pressure was significantly associated with 

lower risk of all-cause mortality (RR, 0.87 [95% CI, 0.78-0.96]) and cardiovascular events 

(RR, 0.89 [95% CI, 0.83-0.95]) (Emdin, Rahimi et al. 2015).  

Accumulating studies have shown that diabetic patients have not only an 

increased prevalence of high blood pressure, but also the incidence of abnormal BP daily 

variation is elevated compared to nondiabetic people. In addition, the abnormal BP 

variation is independently associated with increased risk of cardiovascular events and 

target organ injury.  

1.2 Blood pressure circadian rhythm 

1.2.1 Background 

Arterial blood pressure (BP) displayed distinct diurnal variation, characterized by 

lowest value during sleep (around 3 a.m.), a slow increase during late sleep, an abrupt 

rise upon morning awakening, and two daytime peaks (first one around 9 a.m. and 

second one around 7 p.m.); the latter are separated by a small mid-afternoon drop 

(around 3 p.m.), and a gradual decline thereafter till the nadir during sleep (Millar-Craig, 

Bishop et al. 1978, Hermida, Ayala et al. 2007, Smolensky, Hermida et al. 2017). The 24-

hr BP in humans can be measured using a device called ambulatory blood pressure 

measurement (ABPM); this is a noninvasive and autonomic BP monitor that measures 

BP at regular intervals. The BP during the nighttime mean is normally 10-20% lower 
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compared to the daytime mean, which is also called a dipping pattern. Abnormal BP 

rhythm patterns include: non-dipping (nocturnal BP fall is less than 10% of daytime BP 

mean), reverse dipping (nocturnal BP mean is higher than daytime BP mean), and 

extreme dipping (nocturnal BP fall is greater than 20% of daytime BP mean). 

In the general population, 50.3% of people are dippers, 23.5% are non-dippers, 

20.3% are extreme-dippers and 5.9% are reverse-dippers as assessed by the 

International Database on Ambulatory blood pressure monitoring in relation to 

Cardiovascular Outcomes (IDACO).  This study was based on the ABPM data of 7458 

individuals (Boggia, Li et al. 2007). The prevalence of circadian BP patterns in 

hypertensive patients has been assessed by the Spanish Society of Hypertension ABMP 

Registry. Based on the results of 42947 hypertensive patients, dippers accounts for 

50.2% of previously untreated patients (n=8384), extreme dippers, non-dippers and 

risers (reverse-dippers) account for 8.8%, 35% and 6% respectively of this population (de 

la Sierra, Redon et al. 2009). In patients receiving antihypertensive treatment (n=34563), 

39.9%, 7.2%, 39.4% and 13.5% are dipper, extreme dippers, non-dippers and risers (de 

la Sierra, Redon et al. 2009). Therefore, non-dipping BP is the most prevalent abnormal 

BP circadian pattern in both the general population and in hypertensive patients.  

1.2.2 Circadian variation of BP and CVD 

Many cardiovascular events follow a well-defined frequency in their onset 

throughout the day; this pattern is closely related to the diurnal variation of BP. For 

example, the frequency of acute myocardial infarction onset is lowest during the 
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nighttime sleep and highest during the awake time, between 6 AM to noon (Muller, 

Stone et al. 1985, Hjalmarson, Gilpin et al. 1989, Willich, Linderer et al. 1989, Gilpin, 

Hjalmarson et al. 1990, Hansen, Johansson et al. 1992, Behar, Halabi et al. 1993, Boari, 

Salmi et al. 2007). Sudden cardiac death also exhibits 24-hour variation in the 

occurrence, with trough onset during the night and peak onset during the morning 

hours (Muller, Ludmer et al. 1987, Willich, Levy et al. 1987, Levine, Pepe et al. 1992, 

Aronow and Ahn 1993, Aronow, Ahn et al. 1994). Stoke is another cardiovascular events 

that is shown to be more frequent during the morning hours (Tsementzis, Gill et al. 

1985, Marler, Price et al. 1989, Kelly-Hayes, Wolf et al. 1995, Manfredini, Gallerani et al. 

1997, Casetta, Granieri et al. 2002). Meta-analyses of the three cardiovascular events 

demonstrated that there is a 40%, 29% and 49% excess risk of acute myocardial 

infarction, sudden cardiac death and stroke, respectively, that happen between 6 AM to 

noon (Cohen, Rohtla et al. 1997, Elliott 1998). In addition, both the aortic rupture and 

dissection happen more frequently during the early morning hours (Gallerani, 

Portaluppi et al. 1997, Manfredini, Portaluppi et al. 1999, Manfredini, Boari et al. 2004, 

Lasica, Perunicic et al. 2006, Killeen, Neary et al. 2007). The apparent time-of-day 

difference in CVD onsets suggests there may be an association between the circadian 

pattern of BP and CVD.  

In 1988, O’Brien et al reported for the first time that hypertensive patients with a 

less marked decrease in nighttime BP had a greater prevalence of stroke incidents and 

named these patients non-dippers, in contrast to the normal dippers (O'Brien, Sheridan 

et al. 1988). Since then, numerous studies have investigated the importance of 
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nighttime BP and the circadian variation of BP.  The majority of these studies found that 

blunted nighttime BP fall and abnormal night-to-day ratio of BP is associated with 

increased risk of CVD (Verdecchia, Schillaci et al. 1993, Verdecchia, Porcellati et al. 1994, 

Zweiker, Eber et al. 1994, Staessen, Thijs et al. 1999, Ohkubo, Hozawa et al. 2002, 

Kikuya, Ohkubo et al. 2005, Sega, Facchetti et al. 2005, Ingelsson, Bjorklund-Bodegard et 

al. 2006, Boggia, Li et al. 2007, Mancia, Bombelli et al. 2007, Fagard, Celis et al. 2008, 

Fagard, Thijs et al. 2009, Muxfeldt, Cardoso et al. 2009, Bastos, Bertoquini et al. 2010, 

Hansen, Li et al. 2011, de la Sierra, Banegas et al. 2012) and target organ damage in 

heart, kidney and brain, including greater ventricular mass index or left ventricular 

hypotrophy (Kuwajima, Suzuki et al. 1992, Palatini, Penzo et al. 1992, Suzuki, Kuwajima 

et al. 1992, Mayet, Shahi et al. 1995, Verdecchia, Schillaci et al. 1995, Cuspidi, Macca et 

al. 2001, Hoshide, Kario et al. 2003, Hoshide, Kario et al. 2003, Cuspidi, Meani et al. 

2004), albumin excretion or albuminuria (White 1992, Lurbe, Redon et al. 1993, Lindsay, 

Stewart et al. 1995, Timio, Venanzi et al. 1995, Equiluz-Bruck, Schnack et al. 1996), and 

silent cerebrovascular damage (Kario, Matsuo et al. 1996, Kario, Pickering et al. 2001). 

Results from the Ohasama study showed that on average, each 5% decrease in the 

decline in nocturnal systolic/diastolic BP was associated with an approximately 20% 

greater risk of cardiovascular mortality in the Japanese general population (Ohkubo, 

Hozawa et al. 2002). In addition, the nighttime BP was demonstrated to be a better 

predictor of future cardiovascular events than daytime or office BP (Staessen, Thijs et al. 

1999, Dolan, Stanton et al. 2005, Kikuya, Ohkubo et al. 2005, Boggia, Li et al. 2007, 

Fagard, Celis et al. 2008, Hansen, Li et al. 2011, O’brien, Parati et al. 2013). Fan et al in 
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2010 published results from a large prospective study in 8711 individuals from 10 

populations for a mean follow-up of 10.7 years and found that the isolated nocturnal 

hypertension, defined as daytime BP <135/85 mmHg and night-time BP ≥120/70 mmHg, 

predicts cardiovascular outcomes in patients, even though their office or daytime 

ambulatory BP is at normal range (Fan, Li et al. 2010). A recent review of nine cohorts 

from Europe, Brazil and Japan of 13844 individuals also supports the claim that 

nighttime BP better predicts cardiovascular outcomes than daytime and clinic BP 

(Roush, Fagard et al. 2014).  

Despite massive evidence supporting the prognostic role of nighttime BP in 

predicting cardiovascular events, the relationship between the dipping status of BP and 

cardiovascular outcomes is not consistent. For example, a few prospective studies with 

relatively small sample size found that the nocturnal fall of BP is not associated with 

increased left ventricular mass index or left ventricular hypotrophy (Roman, Pickering et 

al. 1997, Cuspidi, Lonati et al. 1999, Yi, Shin et al. 2014). The results from meta-analyses 

also showed inconsistent conclusions. For example, Fagard et al reported that night-to-

day ratio of arterial BP only predicts all-cause mortality but is not associated with 

cardiovascular risk (Fagard, Celis et al. 2008). On the contrary, Hansen reported that 

night-to-day ratio predicts total cardiovascular events but not mortality after adjusting 

for the 24-hour BP (Hansen, Li et al. 2011). Such discrepancy may be possibly because of 

differences in sample size, study population, end point, the low-reproducibility of a 

single 24-hour ABPM data and the definition of day and night periods (fixed or diary 

time) that may significantly affect the classification of BP dipping pattern (Henskens, 
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Kroon et al. 2008). Therefore, the Ambulatory Blood Pressure Collaboration in Patients 

with Hypertension (ABC-H) recently published a largest known meta-analysis on ABPM 

database from 3 continents; the study consists of a total of 17312 hypertensive 

individuals for follow-up of 4 to 8 years and found that after adjusting for 24-hour 

systolic blood pressure (SBP), the systolic night-to-day ratio predicts all outcomes. In 

particular, reduced nocturnal BP fall is associated with a significant 27% higher incidence 

of all cardiovascular events compare to normal nocturnal BP fall (Salles, Reboldi et al. 

2016). This largest meta-analysis confirmed the prognostic significance of BP dipping 

status on CVD. 

Among the different abnormal circadian BP patterns, reverse-dipping, in which 

the nighttime BP is higher than the daytime BP, seems to have the worst cardiovascular 

prognosis. In particular, the Ohasama study showed that reverse-dippers have the 

highest mortality risk, followed by non-dippers (Ohkubo, Imai et al. 1997). Kario et al 

found that the incidence of stoke is 6.7% in dipper, 7.6% in non-dippers, 12% in 

extreme-dipper and 22% in reverse-dippers for an average duration of 41 months (Kario, 

Pickering et al. 2001). In addition, intracranial hemorrhage was also more common in 

reverse-dippers (29% of strokes) than in other subgroups (7.7% of strokes, P=0.04) 

(Kario, Pickering et al. 2001). In another study Eguchi et al found that reverse-dippers 

have the highest cardiovascular events rate, followed by non-dippers; these findings are 

associated with approximately 150% increased risk of CVD (Eguchi, Pickering et al. 

2008).  
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1.2.3 Circadian variation of BP in diabetes 

Previous studies have demonstrated that type 2 diabetes is significantly 

associated with abnormal BP circadian rhythm in both the general population (Boggia, Li 

et al. 2007) and in hypertensive patients (de la Sierra, Redon et al. 2009). Impaired BP 

circadian rhythm is found to be more common in people with diabetes than those 

without, although the exact prevalence various among different studies. Fogari et al 

found that an abnormal circadian BP pattern is detected in 30% of the normotensive 

and 31% of the hypertensive diabetic patients compared to 6% of the normotensive and 

6.4% of the hypertensive nondiabetic subjects (Corradi, Zoppi et al. 1993). However, 

Pistrosch et al observed non-dipping BP in 73% of hypertensive diabetic patients 

(Pistrosch, Reissmann et al. 2007), while Oh et al found non-dipping BP occurs in 58.2% 

vs. 48.2% of hypertensive patients with and without diabetes (Oh, Han et al. 2015). The 

reasons for the discrepancy of the prevalence of an abnormal BP circadian pattern in 

diabetic patients are probably similar to the reasons that lead to inconsistent 

conclusions between the relationship of BP dipping status and cardiovascular outcomes, 

such as relatively small sample size, low-reproducibility of a single 24-hour ABPM data 

and the definition of daytime and nighttime periods. In addition, the complications of 

diabetes may also affect the BP dipping status. For example, Equiluz-Bruck et al 

observed non-dipping BP in 80% of the macroalbuminuric, 74% of the microalbuminuric, 

and 43% of the normoalbuminuric T2D patients compare to 37% of nondiabetic subjects 

(Equiluz-Bruck, Schnack et al. 1996). Therefore, Ayala et al evaluated the influence of 

diabetes on the circadian pattern of BP from the data of Hygia project, where 12765 
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hypertensive patients (2954 T2D patients) were maintained on a diary listing times of 

going to bed at night and awakening in the morning and their ABPM were monitored for 

48-hours. They found that the prevalence of non-dipping BP was detected in 62.1% of 

hypertensive diabetic patients compared to 45.9% hypertensive nondiabetic patients 

(Ayala, Moya et al. 2013). In addition, the largest difference between diabetic and 

nondiabetic patients is the prevalence of the riser pattern (19.9% in diabetes vs. 8.1% in 

nondiabetes), which is also shown to be associated with the worst cardiovascular 

prognosis (Ohkubo, Imai et al. 1997, Kario, Pickering et al. 2001, Eguchi, Pickering et al. 

2008). 

In patients with diabetes, reduced nocturnal BP fall is also associated with 

increased risk of CVD and target organ damage. In a 4-year prospective study, the 

incidence of fatal and nonfatal vascular (cerebrovascular cardiovascular, peripheral 

vascular arteries, and retinal artery) events is higher in T2D patients with reverse-

dipping BP than in those with dipping BP (Nakano, Fukuda et al. 1998). The intima-

media thickness and left ventricular mass index, which are found to be increased in non-

dippers, are also greater in diabetic non-dippers than dippers (Di Flaviani, Picconi et al. 

2011). The nocturnal fall in systolic blood pressure (SBP), independent of 24-hour BP, is 

negatively associated with pulse wave velocity (PWV), lower albumin: creatinine ratio 

(ACR) and positively associated with glomerular filtration rate (GFR) in T2D patients 

(Jennersjo, Wijkman et al. 2011). The rate of decline of creatinine clearance is higher in 

diabetic non-dippers than in dippers (-7.9 vs. -2.9 ml/min/year) over a 6-year period 

(Farmer, Goldsmith et al. 1998). The prevalence of non-dipping BP is highest in diabetic 
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patients with macroalbuminuria compared to diabetic patients with microalbuminuria 

and normoalbuminuria (Equiluz-Bruck, Schnack et al. 1996). There are conflicting results 

on the relationship of BP dipping status and the progression of diabetic nephropathy. 

Knudsen et al found the night: day BP ratio is an independent predictor of nephropathy 

progression in T2D patients (Knudsen, Laugesen et al. 2009) while Palmas et al 

concluded nocturnal non-dipping, if not with nocturnal BP rise, is not an independent 

predictor of nephropathy (Palmas, Pickering et al. 2008). However, Pierdomenico et al 

analyzed the results of both studies and demonstrated that the overall risk ratio (RR) for 

nephropathy progression in non-dippers was 1.73, 95% CI: 0.97–3.06, P=0.061 

(Pierdomenico and Cuccurullo 2010).  

1.2.4 Mechanisms of BP circadian rhythm 

1.2.4.1 Role of hemodynamics   

BP is determined by total peripheral resistance (TPR) cardiac output (CO), in 

which the CO equals heart rate (HR)stroke volume (SV). Several human studies have 

investigated the daily variations of TPR and CO and found the CO has an oscillation 

pattern parallel to that of BP, whereas TPR remains unchanged throughout the day or 

increases during the night (Khatri and Freis 1967, Miller and Horvath 1976, Mori 1990, 

Idema, van den Meiracker et al. 1994, Veerman, Imholz et al. 1995). Veerman et al 

concluded the nocturnal decrease of CO is mainly due to nocturnal fall of HR as the 

nighttime SV is comparable to daytime (Veerman, Imholz et al. 1995); while Miller et al 

found the decreased SV leads to nocturnal fall of CO as HR is not different between day 
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and night (Miller and Horvath 1976). The discrepancy may be due to differences in 

physical activity as the day and night changes in HR and CO are found to be correlated 

with physical activity (Cavelaars, Tulen et al. 2004). In non-dippers, an increment in 

nighttime TPR or a smaller decline in nocturnal CO and SV are found as compared to 

dippers. (Takakuwa, Ise et al. 2001, Cavelaars, Tulen et al. 2004).  

1.2.4.2 Role of sleep 

The sleep-wake cycle is the most evident circadian rhythm of life and is also a 

significant determinant of BP circadian rhythm. As reviewed by Smolensky et al 

(Smolensky, Hermida et al. 2007), the stages of sleep have a profound effect on the BP 

24-hour oscillation. The sleep stage 3 and 4, which are the deepest sleep stage, 

correspond to the lowest BP levels during sleep, whereas the less deep sleep stage 1 

and 2 and the rapid eye movement (REM) sleep, coincide with higher BP levels, although 

these values are still lower than the awake BP levels. Human study has shown that the 

levels of BP decline significantly from wakefulness to stage 4 of non-rapid eye 

movement (NREM) sleep in normotensive subjects (Somers, Dyken et al. 1993). Another 

influence of sleep on the BP 24-hour oscillation is exerted through the variation of 

respiration. During the NREM sleep, the breathing is regular and the BP declines. 

Whereas during REM sleep, the breathing and HR are irregular; central apneas or 

hypopneas occur sporadically, and the peaks of BP, sometimes as great as 30–40 mmHg 

from baseline, happen abruptly during the whole REM episode. The relationship 

between sleep and BP circadian rhythm has been investigated mainly in patients with 

obstructive sleep apnea (OSA). Studies have shown that 43% to 84% of OSA patients, 
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either hypertensive or normotensive, are non-dippers (Suzuki, Guilleminault et al. 1996, 

Loredo, Ancoli-Israel et al. 2001). Severe OSA, compared to mild OSA or habitual 

snorers, is associated with greater BP night-to-day ratio (Pankow, Nabe et al. 1997) and 

the severity of sleep apnea is demonstrated to be an independent predictor for BP 

circadian rhythm (Nabe, Lies et al. 1995).  

1.2.4.3 Role of autonomic nervous system 

It is well-known that the autonomic nervous system (ANS) is an important 

regulator of BP homeostasis. The ANS is also critical to the BP circadian rhythm. The 

activity of the sympathetic and parasympathetic nerve system (SNS and PNS), two 

efferent arms of ANS, exhibit day and night difference. The sympathetic nerve activity, 

in accordance with BP, is typically higher during the active or awake period and lower 

during sleep. In human studies, the concentrations of plasma norepinephrine (NE) and 

epinephrine (EPI) peak during the awake and reach a nadir at night during sleep in 

normal men (Prinz, Halter et al. 1979, Stene, Panagiotis et al. 1980, Lightman, James et 

al. 1981, Sowers and Vlachakis 1984, Linsell, Lightman et al. 1985). The low- to high- 

frequency ratio (LF: HF), a value that is calculated from the frequency domain method of 

heart rate variability (HRV) and considered as an indicator of sympatho-vagal balance in 

some studies, is significantly higher in the morning than in the evening (Huikuri, Niemelä 

et al. 1994, Kawano, Tochikubo et al. 1994, Nakagawa, Iwao et al. 1998, Massin, Maeyns 

et al. 2000). Using microneurography, which provides a direct measurement of efferent 

sympathetic nerve activity related to muscle blood vessels, Somers et al demonstrated 

that the mean amplitude of bursts of sympathetic nerve activity decreased significantly 
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from wakefulness to deep sleep in normal subjects (Somers, Dyken et al. 1993). In 

laboratory animals, the plasma (McCarty, Kvetnansky et al. 1981, De Boer and Van der 

Gugten 1987) and urinary (Fu, Patel et al. 2005) NE and EPI concentrations are higher 

during the active phase than rest phase. The LF: HF also displays day and night 

difference, with significantly greater LF: HF in the active phase than rest phase 

(Hashimoto, Kuwahara et al. 1999, Kuwahara, Suzuki et al. 1999, Matsunaga, Harada et 

al. 2001, Kuwahara, Tsujino et al. 2004). Direct measurement of stellate ganglion nerve 

activity in dogs revealed that there is a higher sympathetic outflow to stellate ganglia 

during the daytime (Jung, Dave et al. 2006). The direct measurement of sympathetic 

nerve activity in rodents can be obtained by measuring renal sympathetic nerve activity 

(RSNA) (Ling, Cao et al. 1998). However, whether the RSNA exhibits circadian variation 

in rodents has not been examined. On the other hand, the parasympathetic nerve 

activity, which is mostly demonstrated by the HF power of HRV, has an opposite diurnal 

pattern as the sympathetic nerve activity. An increased HF of HRV during the night has 

been found in several human studies (Furlan, Guzzetti et al. 1990, Lombardi, Sandrone 

et al. 1992, Huikuri, Niemelä et al. 1994, Yamasaki, Kodama et al. 1996, Nakagawa, Iwao 

et al. 1998, Massin, Maeyns et al. 2000). The HRV can also be calculated using a time 

domain method, in which the square root of the mean of the sum of squares of 

differences between adjacent RR intervals (rMSSD), and the percentage of differences 

between adjacent RR intervals that are greater than 50 msec (pNN50), correlate with 

the HF of HRV (Sztajzel 2004). In humans, the rMSSD and pNN50 increase at night and 

decrease during the day (Massin, Maeyns et al. 2000). In animals, a 24-hour variation of 
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HF was found in rats (Hashimoto, Kuwahara et al. 1999), dogs (Matsunaga, Harada et al. 

2001) and miniature swine (Kuwahara, Suzuki et al. 1999, Kuwahara, Tsujino et al. 2004) 

and the pattern of HF is opposite to LF: HF in these animals.    

The circadian variation of ANS activity is altered in non-dippers as compared to 

normal individuals. The difference (nocturnal dip) of the excretion rate of both NE and 

EPI between the awake and asleep period was reduced in non-dippers compare to 

dippers (Sherwood, Steffen et al. 2002). In addition, the normal difference of the urinary 

NE between work and nonwork periods in day shift workers is absent in evening+night 

shift workers, who also have a higher prevalence of non-dipping BP (Yamasaki, Schwartz 

et al. 1998). Direct measurement of muscle sympathetic nerve activity (MSNA) showed a 

close inverse association between the degree of sympathetic activation and the 

magnitude of nighttime BP falls. The most severe form of non-dipping BP pattern, the 

reverse-dipping, has the highest level of MSNA in hypertensive subjects (Grassi, 

Seravalle et al. 2008). These studies suggest that the nighttime sympathetic activity is 

increased in non-dippers vs. dippers. On the other hand, the normal increase of 

parasympathetic activity during nighttime, as assessed by power spectral analysis of 

HRV, is significantly blunted in non-dippers compare to dippers (Kohara, Nishida et al. 

1995). The ANS contributions to BP circadian rhythm are further demonstrated in 

sinoaortic denervated (SAD), guanethidine sulfate-induced sympathectomized, and 

atropine-induced parasympathetic blockade rats (Makino, Hayashi et al. 1997). The 

findings from the SAD rats showed that the MAP daily rhythm was lost due to increased 

MAP during the light phase. The daily rhythm of MAP in sympathectomized rats was 
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also diminished because of decreased MAP during the dark phase, although the 

decrease was not significant. The parasympathetic blockade induces compromised MAP 

daily rhythm in rats by increasing MAP only during the light phase. In summary, both 

human and animal studies indicate that increased sympathetic activity and/or 

decreased parasympathetic activity at night participate in BP circadian rhythm 

disruption.  

1.2.4.4 Role of baroreflex 

The baroreflex is a rapid mechanism to buffer acute BP sudden change. The 

baroreflex reflects the reciprocal responses between SNS and PNS: when the BP 

increases, baroreceptors activate and trigger the inhibition of SNS and the activation of 

PNS, resulting in decreased HR and TPR, and thus lower BP. An inversed reflex will be 

triggered when BP decreases. The baroreflex sensitivity (BRS), defined as the change in 

inter beat interval (IBI) of HR in milliseconds per unit change in BP, is used to quantify 

baroreflex function. The BRS has a daily rhythm that is opposite to BP rhythm in both 

humans (HOSSMANN, FITZGERALD et al. 1980, Takakuwa, Ise et al. 2001) and mice (Xie, 

Su et al. 2015). The role of the baroreflex in BP circadian variation is not clear. Some 

studies investigated BRS between dippers and non-dippers but did not find a significant 

difference (Vaile, Stallard et al. 1996, Takakuwa, Ise et al. 2001, Myredal, Friberg et al. 

2010). Myredal et al calculated the baroreflex effectiveness index (BEI), defined as the 

number of SBP ramps that are followed by the respective reflex RR interval ramps 

fulfilling the BRS criteria, divided by the total number of SBP ramps and found the BEI is 

decreased in non-dippers compared to normal dippers, indicating the baroreflex 



19 
 

function might be impaired in non-dippers (Myredal, Friberg et al. 2010). In mice with 

smooth muscle-specific deletion of the clock gene Bmal1, diminished BP daily rhythm is 

found to be associated with abolished BRS daily rhythm (Xie, Su et al. 2015).  

1.2.4.5 Role of hormonal systems 

BP is regulated by multiple hormones, among which the renin-angiotensin-

aldosterone system (RAAS) is the most important hormonal system for BP homeostasis. 

The RAAS regulates BP through modulating vasoconstriction and extracellular fluid 

volume. Interestingly, the components of the RAAS all exhibit circadian rhythm. Renin is 

the rate-liming enzyme of the RAAS and is secreted by the kidney. It hydrolyzes 

angiotensinogen (AGT) to angiotensin I (Ang I). In humans, numerous studies have 

demonstrated an apparent circadian rhythm of plasma renin activity (PRA), 

characterized by peak in the early morning, and nadir around midnight (Gordon, Wolfe 

et al. 1966, KATZ, ROMFH et al. 1975, Modlinger, Sharif-Zadeh et al. 1976, Cugini, 

Manconi et al. 1980, Beilin, Deacon et al. 1983, Cugini, Salandi et al. 1983, Kawasaki, 

Uezono et al. 1983, Stern, Sowers et al. 1986, Kawasaki, Cugini et al. 1990, Portaluppi, 

Bagni et al. 1990, Brandenberger, Follenius et al. 1994). Despite the massive evidence of 

PRA circadian rhythm, the relationship of the PRA and BP circadian rhythm is vague. PRA 

is comparable in dippers, non-dippers and extreme dipper in both the supine and tilting 

positions (Kario, Mitsuhashi et al. 2002). No significant correlation of PRA and the 

night/day ratio of MAP has been found (Fukuda, Urushihara et al. 2012). However PRA 

increases less in non-dippers during tilting as compared to dippers and to extreme 

dippers (Kario, Mitsuhashi et al. 2002).  The BP circadian rhythm is inverted in transgenic 



20 
 

TGR (mREN2)27 rats that harbor the mouse salivary gland renin gene (mREN2) (Mullins, 

Peters et al. 1990), (Lemmer, Mattes et al. 1993, Lemmer, Witte et al. 2003). AGT is 

mostly produced and secreted by the liver and is the only known substrate of renin.  

Recent studies suggest urinary AGT is a biomarker of the intrarenal RAAS activity (Kobori 

and Navar 2011). However, the urinary AGT levels are not significantly different 

between day and in healthy people (Nishijima, Kobori et al. 2014, Isobe, Ohashi et al. 

2015); but it is significantly higher during the daytime in patients with chronic kidney 

disease, who also exhibit a riser pattern of BP (Isobe, Ohashi et al. 2015). The renal 

proximal tubular AGT is found to be significantly higher in non-dippers than dippers and 

correlate with the night/day ratio of BP (Fukuda, Urushihara et al. 2012). A recent 

animal study demonstrated that deletion of AGT in brown adipose tissue (BAT) leads to 

decreased BP only during the rest phase (Chang, Xiong et al. 2018). Angiotensin-

converting enzyme (ACE) is found predominantly in the lung and converts Ang I to Ang 

II. An ACE inhibitor is a widely used pharmaceutical drug to treat hypertension. Only a 

few studies have reported a circadian rhythm of ACE activity, probably because the ACE 

rhythm is not apparent due to the low amplitude (Veglio, Pietrandrea et al. 1987, Cugini, 

Letizia et al. 1988). Ang II acts on multiple tissues to increase BP. Plasma Ang II peaks in 

the early morning and is lowest in the evening (Kala, Fyhrquist et al. 1973). The effects 

of Ang II on BP circadian rhythm are revealed in rats with chronic low dose Ang II 

infusion, which inverts the circadian pattern of BP (Baltatu, Janssen et al. 2001, da Silva 

Lemos, Braga et al. 2005). The effect of Ang II on BP circadian rhythm is likely mediated 

by brain RAS as TGR(ASrAOGEN) rats with low brain AGT levels are resistant to Ang II 
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induced BP circadian alternation (Baltatu, Janssen et al. 2001). In the TGR (mREN2)27 

rats, which exhibit inverted BP circadian rhythm, the levels of Ang II are significantly 

elevated and the rhythm of Ang II is lost (Schiffer, Pummer et al. 2001). In vitro study 

demonstrated that Ang II can induce clock gene expression in vascular smooth muscle 

cells (VSMCs) via the Ang II type 1 (AT1) receptor (Nonaka, Emoto et al. 2001). 

Aldosterone plays a critical role in maintaining electrolyte balance by promoting sodium 

reabsorption and potassium secretion.  In humans, aldosterone is highest in the 

morning and lowest around midnight (Liddle 1966, Kem, Weinberger et al. 1973, GRIM, 

WINNACKER et al. 1974, Armbruster, Vetter et al. 1975, KATZ, ROMFH et al. 1975, 

Ryoyu, Isamu et al. 1984, Portaluppi, Bagni et al. 1990). The effects of aldosterone on BP 

circadian rhythm are controversial. Several studies reported that the BP circadian 

rhythm is disrupted in patients with primary aldosteronism (Tanaka, Natsume et al. 

1983, Middeke and Schrader 1994, Rabbia, Veglio et al. 1997), while others found no 

significant change (Imai, Abe et al. 1992, Penzo, Palatini et al. 1994). This discrepancy is 

probably due to pathogenesis of aldosteronism (adenoma or idiopathic 

hyperaldosteronism) and the dietary sodium intake. Uzu et al demonstrated that in 

patients with unilateral adenoma, BP circadian rhythm is diminished during normal 

sodium diet but not low sodium diet; and both sodium restriction and adrenalectomy 

are able to restore BP dipping (Uzu, Nishimura et al. 1998).  

Besides RAAS, BP is also regulated by other hormones, such as cortisol, thyroid 

and atrial natriuretic peptide (ANP). Cortisol, the major form of human glucocorticoid, 

regulates BP homeostasis through multiple mechanisms (Saruta 1996). Cortisol is 
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produced in the adrenal gland and the release of cortisol is stimulated by 

adrenocorticotropic hormone (ACTH) from the pituitary gland. Excessive cortisol, 

commonly seen in people with Cushing's syndrome, is associated with hypertension 

(Whitworth, Williamson et al. 2005). Plasma cortisol has a 24-h oscillation with highest 

level around awakening and lowest level shortly after sleep (Bridges and Jones 1966, 

ORTH, ISLAND et al. 1967, Weitzman, Fukushima et al. 1971, Désir, Van Cauter et al. 

1980, Ockenfels, Porter et al. 1995). The circadian rhythm of BP is blunted or reversed in 

excessive glucocorticoid conditions, either endogenous (Cushing’s disease due to 

pituitary adenoma) or exogenous (patients with glomerulonephritis (CGN) and systemic 

lupus erythematosus (SLE) who received glucocorticoid treatment) (Imai, Abe et al. 

1988, Imai, Abe et al. 1989, Imai, Abe et al. 1990). Glucocorticoid is considered as a 

zeitgeber of circadian rhythm as it can entrain the rhythm of the circadian clock 

(Dickmeis 2009). Therefore, the effects of glucocorticoid on BP circadian rhythm may be 

also mediated through regulation of clock genes. Thyroid has complex effects on BP 

(Danzi and Klein 2003). Hypertension is observed in both hyper- (Merillon, Passa et al. 

1981) and hypo- (Streeten, Anderson Jr et al. 1988) thyroidism. A graded independent 

relation is found between lower levels of free thyroid 3 (FT3) and the risk of non-dipping 

BP (Kanbay, Turgut et al. 2007). ANP is a peptide hormone synthesized and secreted by 

cardiac muscle cells of the atria and works to decrease BP (Laragh 1985). ANP has an 

apparent circadian rhythm that is almost antiphase to BP oscillation: highest level during 

sleep and lowest level in the afternoon and evening (Winters, Sallman et al. 1988, 

Portaluppi, Montanari et al. 1989, Portaluppi, Bagni et al. 1990). A temporal inverse 
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relationship is found between the rhythm of ANP and BP (Sothern, Vesely et al. 1995). In 

addition, in patients with chronic renal failure (CRF), the loss of nocturnal BP fall is 

associated with loss of circadian variation of ANP (Portaluppi, Montanari et al. 1992).  

1.2.4.6 Role of vasculature 

Blood vessels are the major organ in maintaining BP. Studies have demonstrated 

that the vascular tone exhibits circadian variation. The vascular contractile responses to 

various agonists have been investigated extensively in isolated aortas and mesentery 

arteries in rodents. Results from these studies have demonstrated there is a time-of-day 

variation in the in vitro VSM contractile responses to phenylephrine (PE, α1-agonist), 

Ang II, high K+ and 5-hydroxytryptamine (5-HT); this variation is characterized by 

generally higher responses during the rest phase and lower responses during the active 

phase (Keskil, Gorgun et al. 1996, Gorgun, Keskil et al. 1998, Witte, Hasenberg et al. 

2001, Su, Xie et al. 2011). In addition, the in vivo MAP responses to intravenous PE and 

Ang II injection also exhibit similar variations in rodents (Masuki, Todo et al. 2005, Su, 

Xie et al. 2011). In humans, the BP response to L-noradrenaline infusion is lowest at 

0300 (HOSSMANN, FITZGERALD et al. 1980). On the other hand, the vascular responses 

to vasodilators also exhibit daily rhythm. Keskil et al found both the endothelium-

dependent and -independent relaxations are more pronounced in rats aorta at ZT19 

than the other times of the day (Keskil, Gorgun et al. 1996). Witte et al found higher 

endothelium-dependent relaxation at ZT2 than at ZT14 (Witte, Hasenberg et al. 2001). 

However, Witte et al did not examine vascular relaxation at ZT19, so they may have 

missed the peak response. In humans, both endothelium-dependent vasodilation 
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induced by acetylcholine (ACh) and flow-mediated dilation is lower in the morning than 

in the afternoon (Etsuda, Takase et al. 1999, Elherik, Khan et al. 2002). The results of 

endothelium-independent vasodilation induced by sodium nitroprusside (SNP) are not 

consistent: Panza et al did not find significant difference of vasodilation in response to 

SNP at 0700, 1400 and 1700 (Panza, Epstein et al. 1991) while Elherik et al found the 

response peaks at 1600 and lowest at 0400 and 0800 (Elherik, Khan et al. 2002). Again, 

the difference may due to limited sampling time points.  

Studies have demonstrated that altered circadian variation in vascular tone is 

associated with abnormal BP circadian rhythm. Blunted time-dependent variations in 

vascular contraction to Ang II and endothelium-dependent relaxation by ACh are found 

in TGR(mREN2)27 rats, who have an inverted BP circadian rhythm (Witte, Hasenberg et 

al. 2001). Deletion of smooth muscle specific Bmal1 in mice resulted in attenuated BP 

circadian rhythm and abolished time-of-day variation in agonist-induced 

vasoconstriction of the mesenteric arteries (Xie, Su et al. 2015). Mice lacking 

Cryptochrome (Cry), one of the clock genes, also exhibit diminished MAP circadian 

rhythm, which is accompanied by blunted day and night difference in MAP responses to 

PE (Masuki, Todo et al. 2005). Mutation of clock gene Period 2 (Per2) in mice leads to 

attenuated BP circadian rhythm (Vukolic, Antic et al. 2010) and diminished diurnal 

variation in endothelium-dependent relaxations (Viswambharan, Carvas et al. 2007). In 

subjects with non-dipping BP, the dose needed to increase the MAP to 25 mmHg using 

PE is lower than subjects with dipping BP, suggesting heightened α1-adrenergic receptor 

(α1-AR) responsiveness in non-dippers (Sherwood, Steffen et al. 2002). In addition, a 
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long-acting α1-AR blocker, doxazosin, lowers the nighttime SBP only in non-dippers but 

not in dippers (Ebata, Hojo et al. 1995). In non-dippers, endothelium-dependent 

vasodilation is reduced compared to dippers (Higashi, Nakagawa et al. 2002). In people 

with coronary artery disease, blunted BP circadian rhythm is associated with diminished 

variation in ACh induced vasodilation (Shaw, Chin-Dusting et al. 2001).   

1.2.4.7 Role of kidney 

The kidney regulates BP homeostasis through modulating extracellular fluid 

volume and electrolyte concentrations. It has long been known that the urine flow and 

excretion of sodium, potassium and chloride electrolyte are lower during sleep than 

when awake (Manchester 1933, Sirota, Baldwin et al. 1950). Such rhythms persist with 

the same amounts of food and water consumption at certain intervals throughout the 

24 hours (Simpson 1924, Nom 1929, Borst and De Vries 1950, Mills and Stanbury 1952). 

The water and electrolyte variations are in phase with the variation of glomerular 

filtration rate (GFR) and antiphase with tubular reabsorption rhythm (Koopman, 

Koomen et al. 1989). As reviewed by Burnier et al (Burnier, Coltamai et al. 2007), 

changes in GFR and/or tubular reabsorption lead to increased daytime sodium 

retention, which results in elevated nighttime BP via the pressure-natriuresis 

mechanism. The pressure-natriuresis mechanism is a long-term regulator of BP, in which 

increased renal perfusion pressure increases sodium excretion and decreases sodium 

reabsorption (Ivy and Bailey 2014). The nocturnal BP needs to increase to excrete 

excessive sodium in order to reach sodium balance. Indeed, daytime urinary sodium is 

found to be independently associated with nocturnal SBP fall (Nishijima and Tochikubo 
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2003, Bankir, Bochud et al. 2008). People with high-sodium sensitivity have a diminished 

nocturnal BP fall (Uzu, Kazembe et al. 1996, Kimura 2001). In people with chronic kidney 

disease (CKD), the GRF is reduced and the sodium reabsorption is enhanced. Increased 

prevalence of abnormal BP circadian rhythm is observed in people with CKD (Farmer, 

Goldsmith et al. 1997, Mojón, Ayala et al. 2013). In addition, such prevalence increases 

with the progression of CKD (Farmer, Goldsmith et al. 1997, Mojón, Ayala et al. 2013). 

Renal transplantation normalizes non-dippers to dippers (Gatzka, Schobel et al. 1995), 

suggesting a critical role of kidney in BP circadian rhythm. 

In summary, BP circadian rhythm is regulated by multiple factors and pathways. 

And these factors and pathways are interconnected and cannot be separated. For 

instance, sleep deprivation leads to derangement of CNS and endothelial dysfunction 

(Tobaldini, Costantino et al. 2017). There is a close interaction between SNS and RAAS: 

SNS stimulate renin and aldosterone release (Gordon, Küchel et al. 1967) while Ang II 

activates SNS and modulates baroreflex control of HR (Reid 1992). Both the vascular 

tone and kidney function are influenced by SNS, RAAS, glucocorticoid and thyroid 

hormones (Dibona and Kopp 1997, Mangos, Whitworth et al. 2003, Brewster and 

Perazella 2004, Danzi and Klein 2004, Yang and Zhang 2004, van Hoek and Daminet 

2009, Cat and Touyz 2011, Amiya, Watanabe et al. 2014). 

1.2.5 Mechanisms of diabetes associated BP circadian rhythm disruption 

As described above, BP circadian rhythm is influenced by multiple factors, 

including the sleep-wake cycle, the ANS, the hormonal systems (RAAS, glucocorticoid, 
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thyroid and atrial natriuretic peptide), the vasculature and the kidney. These factors 

interact with each other and work together to determine BP circadian rhythm. 

Alternations of these factors and pathways have been observed in diabetes. For 

example, people with diabetes have increased TPR compared to nondiabetic subjects 

(Sole, Lucas et al. 2014). Findings from the Sleep Heart Health Study (SHHS) showed that 

diabetes is associated with periodic breathing (Resnick, Redline et al. 2003). Over 86% of 

obese patients with T2D have OSA (Foster, Sanders et al. 2009). Diabetic patients are 

known to have sympatho-vagal imbalance, in which the vagal activity is impaired while 

the SNS is overactive (Perin, Maule et al. 2001).  In people with T2D, increased nighttime 

sympathetic nerve activity (Spallone, Maiello et al. 2001, Perciaccante, Fiorentini et al. 

2006)  and decreased nighttime vagal activity (Bernardi, Ricordi et al. 1992) are 

observed. In addition, there is a positive relationship between the nocturnal BP change 

and the nocturnal plasma NE change in T2D patients with neuropathy (Nielsen, Hansen 

et al. 1999). The diurnal variations of plasma PRA, aldosterone and ANP are altered in 

diabetic patients, especially in those with reversed BP rhythm (Nakano, Uchida et al. 

1994). Diabetic nephropathy is a major compilation of diabetes (Gross, De Azevedo et al. 

2005). In patients with T2D, there is a positive correlation between urinary albumin 

excretion rate (UAER) and non-dipping BP (Equiluz-Bruck, Schnack et al. 1996, Nakano, 

Ishii et al. 1996). In diabetic animal models, such as db/db mice (Hummel, Dickie et al. 

1966) and SHRcp rats (Takaya, Ogawa et al. 1996), non-dipping BP circadian rhythm is 

observed (Su, Guo et al. 2008, Sueta, Kataoka et al. 2013). In db/db mice, the LF 

component of the SBP variability,  indicative of sympathetic input to the vasculature 
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(Stauss 2007), loss the circadian variation (Senador, Kanakamedala et al. 2009) and the 

HRV linked to sympathetic control is altered at different time of day (Stables, Auerbach 

et al. 2016). The diurnal rhythm of plasma corticosterone is also altered db/db mice 

(Saito and Bray 1983). In addition, the time-of-day variations in VSM contractile 

responses and MAP responses to PE and Ang II are attenuated in db/db mice (Su, Xie et 

al. 2011). In SHRcp rats, the day and night difference in LF of HRV is lost (Sueta, Kataoka 

et al. 2013).  

In addition to the above factors, diabetes is a metabolic disorder that is 

associated with obesity, hyperglycemia and insulin resistance. The metabolic 

abnormalities are also implicated in BP regulation and may contribute to diabetes 

associated BP circadian rhythm disruption.  

Obesity is known to be associated with increased BP (Mikhail, Golub et al. 1999). 

Whether obesity is associated with the abnormal BP circadian rhythm is controversial. 

The incidence of non-dipping BP is significantly higher in obese subjects (Kotsis, Stabouli 

et al. 2005). In obese children and adolescents, the nighttime BP are higher than in 

healthy controls (Hvidt, Olsen et al. 2014). The results from both the Oman family study 

and Spanish Society of Hypertension registry demonstrated increased BMI or obesity is 

associated with non-dipping BP (Hassan, Jaju et al. 2007, de la Sierra, Redon et al. 2009). 

In addition, the body weight loss induced by gastric bypass surgery has been shown to 

restore the normal BP rhythm in morbidly obese hypertensive subjects (Czupryniak, 

Strzelczyk et al. 2005). In contrast, Diamantopoulos et al. did not find any difference in 
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the BMI between dipper and non-dippers (Diamantopoulos, Andreadis et al. 2006). The 

result from the Korean Ambulatory Blood Pressure Monitoring Registry also 

demonstrated the central obesity has no influence on the BP dipping patterns (Kang, 

Pyun et al. 2013). In an animal study, the BP dipping pattern was also not significantly 

different between diet-induce obese and lean mice (Prasai, Mughal et al. 2013).  

High blood glucose is the major diagnostic criteria of diabetes and plays an 

important role in the pathogenesis of the micro- and macro-complications of diabetes 

(Ohkubo, Kishikawa et al. 1995) (1998). The 24-h variation in fasting blood glucose is 

disrupted in people with prediabetes or T2D (Gubin, Nelaeva et al. 2017). In diabetic 

db/db mice, the daily rhythm of blood glucose is almost antiphase to that of control 

mice (Grosbellet, Dumont et al. 2015). Both the diabetic and non-diabetic non-dippers 

have greater postprandial glucose levels and are more glucose intolerant than dippers 

(Pistrosch, Reissmann et al. 2007) (Chen, Jen et al. 1998). In addition, the postprandial 

glucose is considered as an independent predictor for non-dipper BP in diabetes  

(Pistrosch, Reissmann et al. 2007).   

Various studies have investigated the roles of insulin in the BP regulation. More 

than 40% of hypertensive patients have hyperinsulinemia (Zavaroni, Mazza et al. 1992, 

Vanhala, Pitkajarvi et al. 1998). Insulin resistance is associated with hypertension, even 

in the absence of obesity and diabetes and there is a protective association between 

greater insulin sensitivity and lower BP (Goff, Zaccaro et al. 2003). The effects of insulin 

on BP regulation are through multiple pathways, including induction of vasodilation by 
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stimulating the release of nitric oxide (NO) in the endothelial cells (Scherrer, Randin et 

al. 1994), regulation of sodium handling by enhancing sodium absorption in the diluting 

segment of the distal nephron (DeFronzo, Cooke et al. 1975) and increases in 

sympathetic nervous activity (Rowe, Young et al. 1981). Studies have shown that non-

dippers have a greater degree of insulin resistance and a delayed insulin secretion phase 

during oral glucose tolerance test (OGTT) (Chen, Jen et al. 1998, Pistrosch, Reissmann et 

al. 2007). In addition, the insulin sensitivity, measured by the steady-state plasma 

glucose (SSPG) method, is negatively associated with the nocturnal BP fall (Suzuki, 

Kimura et al. 2000).  In the diabetic db/db mice, non-fasting plasma glucose and insulin 

only correlate with the light-phase BP but not the dark-phase BP (Su, Guo et al. 2008).  

1.2.6 Therapies for abnormal BP circadian rhythm 

1.2.6.1 Chronotherapy 

Since the abnormal BP circadian rhythm is usually characterized by inadequate 

decrease of sleep BP, it is not surprising to speculate that different treatment times of 

antihypertensive drugs yield different results on the pattern of BP variation. A great 

number of clinical trials have been done to test possible relationship between timing of 

antihypertensive medicine and nocturnal BP .  The results demonstrated that single 

evening dose of calcium channel blockers (CCB), AngII receptor blocker (ARB) or 

angiotensin-converting enzyme inhibitors (ACEIs), compare to single morning dose, 

significantly reduce asleep BP in individuals with essential hypertension (Umeda, Naomi 

et al. 1994, Kohno, Iwasaki et al. 1997, Hermida, Calvo et al. 2003, Hermida, Ayala et al. 
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2007, Hermida and Ayala 2009, Hermida, Ayala et al. 2009, Hermida, Ayala et al. 2010). 

A similar effect is also observed in patients with T2D receiving olmesartan at bedtime 

(Tofé Povedano and García De La Villa 2009). In addition, the bedtime administration of 

antihypertensive drugs also reduces microalbuminuria (Hermida, Calvo et al. 2005, 

Kario, Hoshide et al. 2010), plasma fibrinogen (Hermida, Ayala et al. 2005, Hermida, 

Ayala et al. 2009), cholesterol (Hermida, Ayala et al. 2005) and CVD morbidity and 

mortality (Hermida, Ayala et al. 2010, Hermida, Ayala et al. 2011). In people with T2D, 

the CVD morbidity and mortality is also significantly decreased with treatment of ≥1 

hypertension medications at bedtime (Hermida, Ayala et al. 2011).  

1.2.6.2 Targeting sodium handling 

Since the salt sensitivity is associated with BP dipping (Uzu, Kazembe et al. 1996, 

Kimura 2001), studies have investigated whether decreasing salt intake in salt-sensitive 

hypertension or reducing salt sensitivity can restore BP dipping.  The results 

demonstrated that salt restriction can shift non-dippers to dippers in patients with salt-

sensitive hypertension (Uzu, Ishikawa et al. 1997) and in patients with primary 

aldosteronism, a typical salt-sensitive secondary hypertension (Uzu, Nishimura et al. 

1998, Takakuwa, Shimizu et al. 2002). In addition, diuretics, which lower BP by reducing 

sodium sensitivity (Saito and Kimura 1996), restore BP from the non-dipping to the 

dipping pattern (Uzu and Kimura 1999, Uzu, Harada et al. 2005). ARB also restores 

normal BP circadian rhythm (Fukuda, Yamanaka et al. 2008) by suppressing tubular 

sodium reabsorption (Fukuda, Wakamatsu-Yamanaka et al. 2011). In patients with T2D, 
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combination therapy of diuretic and ARB, but not monotherapy of ARB, restores 

nocturnal BP fall (Uzu, Sakaguchi et al. 2009).  

1.3 Circadian rhythm 

1.3.1 Background 

Almost all the physiological processes in living organisms have a daily oscillation 

that is thought to adapt to the 24-hour environmental light-dark cycle. The circadian 

oscillation in mammals is generated by cell autonomous transcription-translational 

negative feedback networks. As shown in Figure 1.3.1 (Golombek, Bussi et al. 2014), the 

core of the clock networks is composed of the Bmal1-Clock/Per-Cry loop: the brain-

muscle arnt-like protein 1 (BMAL1) and circadian locomotor output cycles kaput 

(CLOCK), which form a heterodimer that activates the transcription of their repressors 

Period (Per1 and Per2) and Cryptochrome (Cry1 and Cry2). The PER and CRY proteins 

accumulate and form a complex that translates into the nucleus and, in turn, suppresses 

Bmal1 and Clock; this results in a rhythmic expression of the loop (Gekakis, Staknis et al. 

1998, Jin, Shearman et al. 1999, Kume, Zylka et al. 1999, Bunger, Wilsbacher et al. 

2000).The cycle of the loop takes about 24 hours. There are additional feedback loops 

interacting with Bmal1, among which the Rev-erb and Ror loop is the most 

prominent one. The REV-ERB competes with ROR and directly represses the 

transcription of Bmal1 while ROR promotes its transcription (Preitner, Damiola et al. 

2002, Sato, Panda et al. 2004).  
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Figure 1.3.1 The molecular mechanisms of circadian clock.  

The circadian system in mammals consists of the central and peripheral oscillators. The 

central oscillator is located in the hypothalamus suprachiasmatic nucleus (SCN), which 

acts as a master pacemaker and generates behavioral rhythms (locomotor activity and 

feeding). With the observation of rhythmic expression of clock genes and proteins in 

cells and tissues throughout the body, circadian oscillators are realized to ubiquitously 

exist in peripheral tissues (Balsalobre, Damiola et al. 1998, Yamazaki, Numano et al. 

2000, Yoo, Yamazaki et al. 2004). The circadian system is regulated in a hierarchical 

manner with the SCN being the master pacemaker that controls the clocks of peripheral 

tissues.  Animals with SCN lesions are missing the circadian rhythmicity in behavioral 

and endocrine oscillations (Moore and Eichler 1972, Stephan and Zucker 1972), 

including the rhythm of BP (Sano, Hayashi et al. 1995, Witte, Schnecko et al. 1998).  
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Tissue-specific gene expression is regulated by both the local clock and by the signals 

from the SCN. As demonstrated in mice with an intact SCN clock and conditionally 

inactive liver clock (Kornmann, Schaad et al. 2007), the rhythmic transcription of most 

hepatic genes becomes arrhythmic when the liver oscillator is arrested, but some genes, 

including the core clock gene, Per2, still oscillate robustly. In contrast, in liver explant 

culture, the rhythms in PER2 can only be observed in the liver with functional oscillators. 

The peripheral clocks are also regulated by SCN, which synchronizes peripheral clocks 

through several signals, including the autonomic innervation; hormonal signals (such as 

glucocorticoid), body temperature and behavioral processes (such as feeding) (reviewed 

in (Mohawk, Green et al. 2012)). Briefly, the sympathetic innervation from the SCN to 

the liver and adrenal gland regulates the daily rhythm of plasma glucose (Kalsbeek, La 

Fleur et al. 2004, Cailotto, La Fleur et al. 2005, Kalsbeek, Bruinstroop et al. 2010) and 

modulates adrenal sensitivity to adrenocorticotropic hormone (ACTH) and the release of 

glucocorticoid (Buijs, Wortel et al. 1999). Glucocorticoid is a hormone that can shift the 

phase of peripheral tissues as demonstrated by the glucocorticoid analog, 

dexamethasone (Balsalobre, Brown et al. 2000). This may be accomplished by the 

regulation of clock genes transcription as the glucocorticoid-response elements (GREs) 

are found in the regulatory regions of the core clock genes Per1 and Per2 (Yamamoto, 

Nakahata et al. 2005, So, Bernal et al. 2009). The daily rhythm of body temperature is 

under the control of the SCN. Peripheral oscillators are sensitive to temperature 

changes (Abraham, Granada et al. 2010) and can be reset by a low temperature pulse 

(Brown, Zumbrunn et al. 2002, Buhr, Yoo et al. 2010). The peripheral clocks can also be 
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entrained by the feeding activity generated by the SCN. Rodent studies have shown that 

the rhythms of liver clock genes and protein expression rapidly shift their phase 

following the time of feeding (Damiola, Le Minh et al. 2000, Stokkan, Yamazaki et al. 

2001). The feeding cue is of particular interest, given that scheduled, time-restricted 

feeding is capable of resetting the circadian outputs and organizing the peripheral clocks 

in the absence of SCN (Stephan, Swann et al. 1979, Hara, Wan et al. 2001). More 

importantly, recent studies have demonstrated that time-restricted feeding is closely 

related to the metabolic health.  

1.3.2 Time-restricted feeding 

Extensive research over the past decades has focused on how the components 

of food (what we eat) and the amount of food (how much we eat) affect metabolic 

diseases. Only recently has it become appreciated that the timing of food intake (when 

we eat), independent of total caloric and macronutrient quality, is also critical for 

metabolic health. Results from animal and human studies demonstrated that it is 

beneficial to the organism when the feeding time is in alignment with the endogenous 

circadian clock and vice versa. In mice fed normal diet ad libitum, the food intake 

pattern has a daily rhythm, with most of the food (~80%) consumed during the dark-

phase, which is the active period in nocturnal mice. The high-fat fed mouse is a 

commonly used animal model of obesity and diabetes. Close monitoring of food intake 

reveals that when mice are fed a high-fat diet ad libitum, their food intake pattern is 

altered as the percentage of daily food intake during the light-phase (rest period) is 

increased (Kohsaka, Laposky et al. 2007). Importantly, the change in feeding pattern 
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exceeds the onset of weight gain. Accompanied with the changes in food intake pattern, 

the 24-h profiles of circulation metabolic markers, including leptin, glucose, insulin, free 

fatty acids (FFA), and corticosterone are also altered (Kohsaka, Laposky et al. 2007). 

These results suggest a critical role in the timing of food intake on metabolic health. 

Arble et al (Arble, Bass et al. 2009) first reported that nocturnal mice fed a high-fat diet 

only during the 12-hour dark-phase gain significantly less weight than the mice fed only 

during the 12-hour light-phase without changing the calories intake. Later studies have 

confirmed the effects of time-restricted feeding on the body weight.  They found active-

time (dark-phase in nocturnal animals) restricted feeding (ATRF) prevents high-fat diet 

induced obesity in animals (Hatori, Vollmers et al. 2012, Sherman, Genzer et al. 2012, 

Tsai, Villegas-Montoya et al. 2013, Chaix, Zarrinpar et al. 2014, Yasumoto, Hashimoto et 

al. 2016). Other metabolic profiles, including total cholesterol, triglyceride, glucose 

intolerance, insulin and insulin resistance, are also improved under ATRF in high-fat fed 

animals (Hatori, Vollmers et al. 2012, Sherman, Genzer et al. 2012, Tsai, Villegas-

Montoya et al. 2013, Adamovich, Rousso-Noori et al. 2014, Chaix, Zarrinpar et al. 2014). 

In addition to metabolism, the inflammatory biomarkers, such as Interleukin-6 (IL-6), 

tumor necrosis factor-alpha (TNFα), Interleukin 1 Beta (IL1) and C-reactive protein 

(CRP) are also reduced with ATRF (Sherman, Frumin et al. 2011, Hatori, Vollmers et al. 

2012, Sherman, Genzer et al. 2012, Chaix, Zarrinpar et al. 2014). The daily fluctuation of 

the gut microbiome composition is dampened with high-fat diet and ATRF partially 

restores the fluctuation (Chaix, Zarrinpar et al. 2014).  
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In humans, a late eating pattern correlates with increased incidence of metabolic 

syndromes. Epidemiological studies demonstrate that night eating syndrome, 

characterized by delayed time of eating, is positively associated with BMI (Colles, Dixon 

et al. 2007). More daily energy intake consumed in the evening is associated with higher 

risk of obesity compared to a schedule where more energy is consumed at midday 

(Wang, Patterson et al. 2014). People who ate lunch after 1500 hours lost less weight 

and displayed a slower weight-loss rate than those who consumed their lunch before 

1500 hours in a weight-loss treatment (Garaulet, Gomez-Abellan et al. 2013). The late 

dinner eating in Japanese adults is significantly associated with hyperglycemia (Nakajima 

and Suwa 2015). In addition, in-laboratory late meal timing (lunch at 16:30) or large 

dinner (60% energy consumed at dinner) worsens insulin sensitivity and reduces glucose 

tolerance (Morgan, Shi et al. 2012, Bandin, Scheer et al. 2015). A recent published 

clinical trial demonstrated that time-restricted feeding (a 6-hour feeding period before 

1500 hours) in males with prediabetes improves insulin sensitivity, β cell 

responsiveness, oxidative stress, appetite and lowers morning BP compared to the 12-

hour feeding controls (Sutton, Beyl et al. 2018). All these data suggest eating at the 

“right” time is beneficial while eating at the “wrong” time is detrimental to metabolic 

health. 

1.3.3 Circadian rhythm and diabetes 

Accumulated evidence from human and animal studies demonstrates that 

circadian misalignment between environmental/behavioral cycles and the endogenous 

circadian clock is associated with increased incidence of obesity and type 2 diabetes. In 
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humans, results from epidemiology studies show that night or rotating shift workers 

have a higher prevalence of type 2 diabetes (Gan, Yang et al. 2015). The social jet lag--

mismatching sleep timing between workdays and freedays, is found to be associated 

with increased body weight (Roenneberg, Allebrandt et al. 2012, Parsons, Moffitt et al. 

2015, Wong, Hasler et al. 2015), elevated glycated hemoglobin in obese individuals 

(Parsons, Moffitt et al. 2015), enhanced fasting plasma insulin and insulin resistance 

(Wong, Hasler et al. 2015). Short duration and poor quality of sleep is associated with 

increased risk of future diabetes (Cappuccio, D'elia et al. 2009, Nedeltcheva and Scheer 

2014) (Holliday, Magee et al. 2013). Prolonged nighttime light exposure in an 

uncontrolled home setting is associated with a significant increase in body weight, 

triglyceride levels and low-density lipoprotein cholesterol levels (LDL-C) and a decrease 

in high-density lipoprotein cholesterol (HDL-C) levels in elderly individuals (Obayashi, 

Saeki et al. 2013). Laboratory human studies that mimic circadian misalignment also 

reveal the association between circadian disruptions and diabetes. As described before, 

late food consumption or a large dinner worsens insulin sensitivity and reduces glucose 

tolerance (Morgan, Shi et al. 2012, Bandin, Scheer et al. 2015). In addition, sleep 

restriction in normal subjects enhances plasma cortisol levels and sympathetic nervous 

activity and reduces insulin sensitivity (Stamatakis and Punjabi 2010, Broussard, 

Ehrmann et al. 2012). Sleep disturbance, such as sleep fragmentation and selective 

suppression of slow-wave sleep, without changing the sleep duration, also decreases 

glucose tolerance (Tasali, Leproult et al. 2008, Stamatakis and Punjabi 2010). Moreover, 

laboratory circadian misalignment, achieved by forced desynchrony or 12-h reversed 
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eating and lighting protocols, uncouples behavioral cycles (fasting/feeding and 

sleep/wake cycles) and/or light/dark cycles from the central circadian clock. Such 

circadian misalignment causes increased postprandial glucose and BP, and reduced 

leptin, sleep efficiency, glucose tolerance and insulin sensitivity (Scheer, Hilton et al. 

2009, Buxton, Cain et al. 2012, Morris, Yang et al. 2015, Morris, Purvis et al. 2016). In 

animals, as described before, time-restricted feeding only during the rest phase is 

associated with accelerated weight gain (Arble, Bass et al. 2009) (Bray, Ratcliffe et al. 

2013) and flattened fluctuation of plasma glucose (Bray, Ratcliffe et al. 2013). In 

addition, light exposure significantly increases food intake and weight gain, reduces 

glucose tolerance and impairs insulin sensitivity (Fonken, Workman et al. 2010, 

Coomans, van den Berg et al. 2013). Imposing chronic jet-lag in mice is associated with 

enhanced body weight and glucose intolerance (Oike, Sakurai et al. 2015) and leptin 

resistance (Kettner, Mayo et al. 2015).  

There seems be a reciprocal relationship between circadian disruptions and 

diabetes as diabetes also alters circadian rhythm. As descripted before, diabetes 

disrupts rhythms of BP and BP regulatory factors. In addition, people with prediabetes 

or type 2 diabetes have disrupted 24-hour variation in body temperature (Gubin, 

Nelaeva et al. 2017). In animal models of diabetes, altered circadian rhythms in body 

temperature (Murakami, Horwitz et al. 1995, Grosbellet, Dumont et al. 2016), 

locomotor activity (Kohsaka, Laposky et al. 2007, Su, Guo et al. 2008) (Kudo, Akiyama et 

al. 2004) and food intake pattern (Kohsaka, Laposky et al. 2007, Grosbellet, Dumont et 

al. 2016) are observed.  
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The mechanisms underlying the reciprocal relationship between circadian 

misalignment and diabetes are not fully understood. Results from animal studies reveal 

that alternations in clock genes participate in linking circadian rhythm disruptions and 

diabetes. Genetic modulations of clock genes in animals lead to metabolic disorders. In 

mice, either global (Rudic, McNamara et al. 2004, Kondratov, Kondratova et al. 2006, 

Shi, Ansari et al. 2013) or tissue-specific Bmal1 deletion in liver (Lamia, Storch et al. 

2008, Jacobi, Liu et al. 2015) or pancreas (Marcheva, Ramsey et al. 2010) causes 

impaired glucose homeostasis and/or insulin resistance. Mutation of Clock, either 

globally or in pancreas, leads to hyperglycemia and obesity (Turek, Joshu et al. 2005, 

Marcheva, Ramsey et al. 2010). Deletion of Clock in primary myotubes decreases insulin 

response to glucose and promotes lipid utilization (Perrin, Loizides-Mangold et al. 2018). 

Both mPer1/2/3 triple-deficient and mPer3 single-deficient mice gain more weight on 

high-fat diet than control mice (Dallmann and Weaver 2010). The mPer1/2-defecient 

mice have significantly higher fat composition and leptin levels than wild type mice 

(Kettner, Mayo et al. 2015). Mice with double knockout of Cry1/2 develop 

hyperglycemia (Tanida, Yamatodani et al. 2007) while overexpression of Cry1 reduces 

blood glucose concentration and improves insulin sensitivity in diabetic db/db mice 

(Zhang, Liu et al. 2010). Dual depletion of Rev-erb-α/β in mice disrupts lipid hemostasis 

(Cho, Zhao et al. 2012). On the other hand, circadian genes expressions are altered in 

liver (Kudo, Akiyama et al. 2004, Ando, Oshima et al. 2006, Kohsaka, Laposky et al. 

2007), adipose tissues (Kohsaka, Laposky et al. 2007, Caton, Kieswich et al. 2011), aorta 
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(Su, Xie et al. 2011, Nernpermpisooth, Qiu et al. 2015), mesentery arteries (Su, Xie et al. 

2011), heart (Su, Xie et al. 2011) and kidney (Su, Xie et al. 2011) in diabetic animals. 

1.3.4 Clock genes in BP circadian rhythm 

With the discovery of clock genes, the roles of clock genes in the regulation of BP 

were investigated. In humans, genetic variations in Bmal1 are associated with 

hypertension (Woon, Kaisaki et al. 2007) and non-dipping BP pattern in hypertensive 

patients (Leu, Chung et al. 2015). Deletion of Bmal1 in mice, either embryonical (Bunger, 

Wilsbacher et al. 2000) or tamoxifen inducible (Yang, Chen et al. 2016), leads to 

decreased BP during the active-phase, resulting in flattened BP circadian rhythm (Curtis, 

Cheng et al. 2007, Yang, Chen et al. 2016). In smooth-muscle-specific Bmal1 knockout 

(SM-Bmal1–KO) mice, the circadian rhythm of BP is comprised, characterized mainly by 

decreased SBP during the dark phase (Xie, Su et al. 2015). Deletion of mice Bmal1 in the 

brown adipocytes (BA-Bmal1-KO) including perivascular adipose tissue (PVAT) reduces 

the BP during the rest period, resulting in an extreme-dipping BP pattern (Chang, Xiong 

et al. 2018).  

The Clock is another component of the active arm of the clock molecular loop. 

The BP in the Clock-KO mice preserves the circadian rhythm, but the levels are 

significantly lower during both the light- and dark-phase compared with the wild type 

mice (Zuber, Centeno et al. 2009). The Clock mutant (Clockmut) mice on different 

backgrounds, including C57BL/6J (Curtis, Cheng et al. 2007), Jcl/ICR (Sei, Oishi et al. 

2008) and BALB/c (Nakashima, Kawamoto et al. 2018), all exhibit increased BP during 
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the light-phase, resulting in a non-dipping BP pattern. The cardiomyocyte-specific Clock 

mutant (CCM) mice have a decreased heart rate (HR) during both the light- and dark-

phase, in which the decrease of HR is greater during the dark-phase than the light-

phase, resulting in attenuated circadian variation of HR (Bray, Shaw et al. 2008). 

However, the BP circadian rhythm and average levels are not significantly different 

between the CCM and wild type mice. 

Per is one of the components of the negative arm of the clock molecular loop. In 

humans, the mRNA expression of Per1 in the renal medulla is significantly increased in 

hypertensive patients compared to normotensive controls (Marques, Campain et al. 

2011) and a tag single-nucleotide polymorphisms (SNPs) in Per2 are found to be 

significantly associated with a non-dipping BP pattern in hypertensive patients (Leu, 

Chung et al. 2015). The 129/sv mice lacking Per1 exhibit decreased BP during both light- 

and dark-phase, while the rhythm of BP is preserved (Stow, Richards et al. 2012). The 

Per1-KO mice on the C57BL/6J background have normal BP level and circadian rhythm 

on control diet, while they exhibit a non-dipping BP pattern on high-salt diet plus 

desoxycorticosterone pivalate, a treatment that is used to generate salt-sensitivity 

hypertension (Solocinski, Holzworth et al. 2017). Per2 mutant mice have increased 24-

hour HR, decreased 24-hour diastolic BP and attenuated the day and night difference in 

HR and BP without changes in locomotor activity (Vukolic, Antic et al. 2010). The mice 

lacking Per2 display normal BP and locomotor activity rhythm on normal diet in LD 

condition, but have moderate increase in light-phase BP accompanied with loss of 

locomotor activity rhythm in constant dark, and exogenous administration of Ang II on 



43 
 

normal diet induces non-dipping BP in Per2-KO mice in constant dark (Pati, Fulton et al. 

2016). In addition, low salt diet causes no-dipping BP in Per1/2/3 triple knockout (Per-

TKO) mice (Pati, Fulton et al. 2016). 

Another component of the circadian repressor is Cry. Deletion of both Cry1 and 

Cry2 leads to increased BP during the light phase, resulting in flattened BP circadian 

rhythm (Masuki, Todo et al. 2005, Doi, Takahashi et al. 2010). 

1.4 Diabetic mouse model-db/db mouse 

The most widely used type 2 diabetic mouse model is the db/db mouse model. 

The syndromes in db/db mice are similar to those in maturity-onset diabetes in humans, 

characterized by obesity, infertility, hyperphagia and marked hyperglycemia (Ktorza, 

Bernard et al. 1997). Diabetes in db/db mice is caused by a spontaneous point mutation 

in the “leptin receptor” gene (lepr), resulting in abnormal splicing of the gene transcript, 

leading to defective in leptin signaling (Chen, Charlat et al. 1996, Lee, Proenca et al. 

1996). The BP level and its circadian rhythm in the db/db mice are preserved when they 

are young (Senador, Kanakamedala et al. 2009). However, the db/db mice develop 

hypertension, along with non-dipping BP around 12 weeks old (Su, Guo et al. 2008, 

Senador, Kanakamedala et al. 2009). The diabetic and non-dipping BP phenotypes make 

the db/db mouse a good animal model to study BP circadian rhythm disruption in 

diabetes
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CHAPTER IA. STATEMENT OF THE PROBLEM 

Diabetes affected approximately 422 million adults worldwide in 2014 (2016). 

90-95% of these people are type 2 diabetes (T2D) in the US (Prevention 2017). People 

with T2D suffer from short- and long-term complications, among which cardiovascular 

disease (CVD) is the leading cause of mortality and morbidity associated with T2D 

(Organization 2014). It is known that hypertension is a major risk factor for CVD. 

Hypertension and T2D often coexist and the risk of CVD increases when both 

hypertension and T2D are present (Gomes 2013).  

With the use of ambulatory blood pressure monitoring (ABPM), people are 

aware that blood pressure (BP) exhibits 24-h oscillation that is lowest at night and peaks 

before awaking (Millar-Craig, Bishop et al. 1978). The BP during the nighttime mean is 

normally 10-20% lower compared to the daytime mean, which is also called a dipping 

pattern. In a large study that included 12765 hypertensive patients (2954 T2D patients), 

more than 80% of hypertensive, type 2 diabetic patients were found to have an 

abnormal BP circadian pattern (non-dipping or reserved-dipping) (Ayala, Moya et al. 

2013). The abnormal BP circadian pattern is associated with increased risk of CVD and 

target organ damages (described in chapter 1.2.2). Importantly, the dipping status of 

systolic blood pressure (SBP) predicts all CVD outcomes independent of 24-hour SBP 

levels  (Roush, Fagard et al. 2014). Therefore, understanding the mechanisms and 

restoring the disruption of BP circadian rhythm in T2D may help prevent or delay the 

onset of CVD. 
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The underlying mechanisms of diabetes associated BP circadian rhythm 

disruption are not well-understood. As described in Chapter 1.2.4, BP circadian rhythm 

is regulated by multiple factors, including the sleep-wake cycle, the ANS, the hormonal 

systems (RAAS, glucocorticoid, thyroid and atrial natriuretic peptide), the vasculature 

and the kidney. Alterations of any one of the above factors, along with diabetes induced 

metabolic abnormalities, such as obesity, hyperglycemia and insulin resistance, may be 

expected to contribute to diabetes associated BP circadian rhythm disruption.  

With the identification of mammalian clock genes in the last two decades, the 

molecular mechanisms of mammalian circadian clock are revealed. Investigations of 

clock genes point out that the clock genes may also participate in diabetes associated BP 

circadian rhythm disruption. For example, mutation or knockout of core clock genes, 

such as Bmal1 (Curtis, Cheng et al. 2007, Yang, Chen et al. 2016), Clock (Curtis, Cheng et 

al. 2007, Sei, Oishi et al. 2008, Nakashima, Kawamoto et al. 2018), Per (Vukolic, Antic et 

al. 2010) and Cry (Masuki, Todo et al. 2005, Doi, Takahashi et al. 2010) leads to 

abnormal BP circadian rhythm in rodents. On the other hand, the expressions of 

circadian genes are altered in liver (Kudo, Akiyama et al. 2004, Ando, Oshima et al. 2006, 

Kohsaka, Laposky et al. 2007), adipose tissues (Kohsaka, Laposky et al. 2007, Caton, 

Kieswich et al. 2011), aorta (Su, Xie et al. 2011, Nernpermpisooth, Qiu et al. 2015), 

mesentery arteries (Su, Xie et al. 2011), heart (Su, Xie et al. 2011) and kidney (Su, Xie et 

al. 2011) in diabetic animals. However, the results of clock genes expressions in diabetes 

are achieved using real-time PCR or Western blotting in tissues collected every 4 to 6 h 
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in only one day. Consequently, the time resolution of circadian rhythm analysis is limited 

by sampling intervals and duration.  

To overcome this barrier, we crossed db/db mice, a widely used type 2 diabetic 

mice, with mPer2Luc knock-in mice and generated a novel db/db-mPer2Luc mouse model. 

The mPer2Luc mice have an in-frame 3’-end fusion of the luciferase reporter gene to the 

endogenous mPer2 gene, which allows real-time monitoring of mPer2Luc 

bioluminescence ex vivo and in vivo (Yoo, Yamazaki et al. 2004, Tahara, Kuroda et al. 

2012).  Therefore, the db/db-mPer2Luc mice enable a novel, continuous monitoring of 

Per2 oscillation under a diabetic condition. 

Extensive research over the past decades has focused on how the components 

of food (what we eat) and the amount of food (how much we eat) affect metabolic 

diseases. Only recently has it become appreciated that the timing of food intake (when 

we eat), independent of total caloric and macronutrient quality, is also critical for 

metabolic health. Results from animal and human studies demonstrated that it is 

beneficial to the metabolic health of an organism when the feeding time is in alignment 

with the endogenous circadian clock and vice versa. However, it is not known whether 

the timing of food intake affects BP circadian rhythm.  It is also not known whether 

active-time restricted feeding (ATRF, the feeding time is restricted to the active-phase) 

is able to restore disrupted BP circadian rhythm in diabetes.
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CHAPTER IB. HYPOTHESIS 

Specific Aim 1: To real-time monitor clock gene oscillation in diabetes by generating 

db/db-mPer2Luc mice. 

Specific Ami 2: To examine the effects of active-time restricted feeding (ATRF) on BP 

circadian rhythm in diabetic db/db mice and to explore underlying mechanisms. 
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CHAPTER II. MATERIALS AND METHODS 

2.1 Project 1: A Novel Diabetic Mouse Model for Real-time Monitoring of Clock 

Gene Oscillation and Blood Pressure Circadian Rhythm. 

2.1.1 Generation of the db/db-mPer2Luc mice 

The heterozygous leptin receptor (Leprdb) mutation db/+ mice on the C57BL/KsJ 

background (Stock No.: 000642; also known as C57BL/KsJ-db/+) and the homozygous 

mPer2Luc mice on the C57BL/6J background (Stock No.: 006852; also known as C57BL/6J-

mPer2Luc) were purchased from the Jackson Laboratory. Since the homozygous 

C57BL/KsJ-db/db mice are infertile, the heterozygous male C57BL/KsJ-db/+ mice and 

homozygous female C57BL/6J-mPer2Luc mice were used as breeders to generate the 

homozygous diabetic db/db-mPer2Luc mice and heterozygous non-diabetic db/+-

mPer2Luc control mice (Figure 2.1.1A). Of note, both db/db-mPer2Luc and db/+-mPer2Luc 

control mice have a mixed C57BL/KsJ and C57BL/6J background. The genotyping 

protocol for the db/db mice is listed in the Jackson Laboratory website. The genotyping 

protocol for the mPer2Luc mice was described previously (Yoo, Yamazaki et al. 2004). The 

representative agarose gels for PCR genotyping of the mPer2Luc and db/db mice are 

shown in Figure 2.1.1B and 2.1.1C. The mice were fed normal chow diet and housed 

under 12:12 light: dark condition. Only the 4-6 month-old male db/db-mPer2Luc and age- 

and gender-matched db/+-mPer2Luc control mice were used in the current study.  All 

animal procedures were approved by the Institutional Animal Care and Use Committee 

at the University of Kentucky.  
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Figure 2.1.1 Generation of the db/db-mPer2Luc mice. (A) Breeding strategy to generate 
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Luc

 and control male mice. (B) Representative image for genotyping 
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2.1.2 Metabolic characterization of animals 

2.1.2.1 Body composition  

Body composition (lean mass and fat mass) was assessed in the light phase by NMR 

spectroscopy according to manufacturer’s instructions (Echo MRITM-100H, Houston, TX, 

USA).  

2.1.2.2 Blood glucose  

Non-fasting blood glucose was measured between Zeitgeber Time (ZT; ZT0 is defined as 

light on and ZT12 is defined as light off) ZT9 to ZT10 from the tail vein using StatStrip® 

XepressTM glucometer (NOVA® biomedical, Waltham, MA, USA).  

2.1.2.3 Plasma insulin  

Blood was collected between ZT10 and ZT11 in EDTA-coated tubes. Then the blood was 

centrifuged at 5000rpm for 10 mins and the supernatant was collected as plasma. 

Plasma insulin was determined by ELISA according to manufacturer’s instructions 

(Chrystal Chem, Elk Grove Village, IL, USA). 

2.1.2.4 Intraperitoneal glucose tolerance test (IPGTT)  

IPGTT was performed at ZT3 after 6-h fasting. The basal blood glucose was measured, 

followed by intraperitoneal (i.p.) injection of 1 mg/kg body weight (BW) glucose 

dissolved in 0.9% NaCl. The blood glucose was then measured at 15, 30, 60, 90 and 120 

mins after glucose injection.  



51 
 

2.1.3 Implantation of radiotelemetry 

The radiotelemetry probe (TA11PA-C10, Data Sciences International, St. Paul, MN, USA) 

was chronically inserted inside the left common carotid artery of the mice as described 

previously (Su, Guo et al. 2008, Su, Xie et al. 2013, Xie, Su et al. 2015). Briefly, the mice 

were anesthetized using isoflurane. Then the left carotid artery was isolated and the 

catheter of the radiotelemetry probe was inserted into the isolated carotid artery and 

tied. The body of the radiotelemetry was slipped subcutaneously to the flank close to 

the left hindlimb. Then the neck incision was sutured. After the surgery, the mice were 

watched closely until fully awake from anesthesia. After 7-10 days of recovery from the 

surgery, blood pressure (BP), heart rate (HR), and locomotor activity were recorded in 

conscious free-moving mice. The signals from the radiotelemetry were received to the 

receiver (model RPC-1) and then transferred as described in the Acquisition software. 

The data were sampled at 500Hz and analyzed using the Dataquest A.R.T. software. In 

order to demonstrate the daily rhythms of BP, HR and locomotor activity, at least 72-h 

continuous data were collected.   

2.1.4 Baroreflex sensitivity analysis 

Spontaneous baroreflex sensitivity (BRS) was analyzed by sequence techniques using 

Hemolab software downloaded from: 

http://www.haraldstauss.com/HemoLab/HemoLab.html. The data collected from 

radiotelemetry were generated into short (1-h) data sets. Then the short data sets were 

filtered at fourth order, and corner frequency 40 Hz. For an effective BRS, at least four 

consecutive sequences where the systolic arterial pressure and pulse interval were 

http://www.haraldstauss.com/HemoLab/HemoLab.html
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positively correlated (r2>0.80) were counted. Baroreflex sensitivity was calculated as the 

average slope of the systolic pressure-pulse interval relationships with auto threshold at 

3 beats in delay. The BRS were averaged in each corresponding hour over 3 days and 

one 24-hour BRS was generated.  

2.1.5 Metabolic chamber measurement of locomotor activity, food and water intake, 

respiratory exchange ratio (RER) and energy expenditure (EE)  

The locomotor activity, food and water intake, RER, and EE were determined by indirect 

gas calorimetry LabMaster system (TSE System, Bad Homburg, Germany; also known as 

metabolic chambers). The mice were kept under 12:12 light: dark cycle and were 

individually housed in the acclimation cages for seven days before being transferred to 

the metabolic chambers.  The mice were put in the metabolic chamber to collect data 

for at least three consecutive days. The concentrations of oxygen and carbon dioxide 

inside the metabolic chambers, the weights of food and water containers and the 

counts of locomotor activity were measured every 30 minutes. The data were calculated 

by the accompanied TSE PhenoMaster software.  

2.1.6 Real-time monitoring of mPer2 oscillations in explant tissues by LumiCycle 

The procedure for real-time monitoring of mPer2 oscillations in explant tissues by 

LumiCycle was adapted from previous report (Yamazaki and Takahashi 2005). Briefly, 

the aorta, mesenteric artery (MA), kidney, liver, white adipose tissue (WAT), thymus, 

lung, adrenal gland (AG), and brain were isolated from mice between ZT10 and ZT11. 

The aorta was cleaned, cut open longitudinally, and denuded of endothelium cells. The 
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MA was dissected to remove fat tissues. The kidney, liver, WAT, thymus, and lung were 

cut into small pieces, with a diameter varying between approximately 2 and 6 mm 

depending upon the tissue. The total AG was used. The brain containing the SCN was cut 

into 250 µm thick sections by using NVSL manual advance vibroslice (World Precision 

Instruments, Sarasota, FL, USA). Each tissue was cultured in a well-sealed 35-mm Petri 

dish containing Dulbecco’s Modified Eagle Medium (DMEM) and 0.1 mM D-luciferin 

(Gold Biotechnology Inc., St. Louis, MO). Details of the medium constituent were 

described previously (Yamazaki and Takahashi 2005). The light emission from the 

cultured tissues was measured with photon-counting photomultiplier tubes that count 

photons for 1 min over a 10 min interval using a LumiCycle 32 system (Actimetrics, 

Wilmette, IL, USA) as described (Yamazaki and Takahashi 2005). The bioluminescence 

data obtained from the explanted tissues were analyzed using LumiCycle Analysis 

software (Actimetrics, Wilmette, IL, USA). To detrend the signal drift over time, the 24-

hour moving average was subtracted from the raw data. To eliminate the influence of 

exposure to environmental lighting before recording, the first 12-hour data collected in 

the explant culture were excluded. The data collected from 12 hours to 36 hours in the 

culture were used to determine the oscillation amplitude and acrophase. The data 

collected from 12 hours to 120 hours in the culture were used to determine the 

oscillation period by the dampened sine-curve fitting method. The data with a goodness 

of fit >0.8 were used for analysis in all the tissues except in kidney where data with a 

goodness of fit > 0.7 were used due to the rapid dampening of the oscillation. 
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2.1.7 In vivo imaging of mPer2 time-of-day variation in the kidney, liver, and 

submandibular gland (SG)  

The procedure for in vivo imaging of mPer2 time-of-day variation in the kidney, liver, 

and SG was adapted from previous report (Tahara, Kuroda et al. 2012). Briefly, at ZT5, 

11, 17 and 23, mice were anesthetized with 2.5-4% isoflurane and subcutaneously 

injected with D-luciferin (15 mg/kg body weight in PBS). The mice were imaged 7 

minutes later for dorsal side up and 10 minutes later for later ventral side up for 5 

seconds by using the IVIS spectrum (IVIS spectrum in vivo imaging system, PerkinElmer, 

Waltham, MA, USA). Bioluminescence from the liver of each mouse was quantified 

(photon/s/cm2/sr) by setting the region of interest to the same shape and size using 

Living Image software (IVIS Imaging System). The bioluminescence intensity was 

expressed as an absolute value or as the percentage of the average value throughout 

the day as described (Tahara, Kuroda et al. 2012). 

2.1.8 Cosinor analysis of circadian rhythm 

The daily rhythms of BP, HR, locomotor activity, food and water intake, RER and EE were 

analyzed using Cosinor analysis as previously reported (Refinetti, Lissen et al. 2007). 

Briefly, a cosine wave with a known period (24 hours) was fitted by the least squares to 

the data as an estimate of the pattern of the smooth rhythm. The model equation was 

written as xi=M+Acos (θi+φ), where M is mesor, A is amplitude, φ is acrophase, and θi is 

trigonometric angles corresponding to the sampling time.  
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2.1.9 Tissue collection and quantitative analysis of mRNA expression 

2.1.9.1 Tissue collection 

Mesenteric arteries (MA) were isolated at ZT5 and ZT17 and immediately placed in 

RNAlater solution. Then the fat and adventitious tissues were carefully cleaned off 

under microscope from the MA.  

2.1.9.2 Quantitative analysis of mRNA expression 

The cleaned tissues were homogenized using tissue homogenizer (Bullet Blender ® Next 

Advance, Troy, NY) in RNase- DNase-free tubes, followed by total RNA extraction using 

RNeasy® Mini Kit (Qiagen, Hilden, Germany). Then the total RNA was used to synthesize 

cDNA by M-MLV reverse transcriptase kit (Invitrogen, Carlsbad, CA) using random 

hexamers. The real-time PCR primers for each gene are described in Table 2.1.1. 

Table 2.1.1. Real-time PCR primer information for project 1. 

Gene Primer Sequence 

Bmal1 Forward   5'-ATCAGCGACTTCATGTCTCC-3'  

  Reverse   5'-CTCCCTTGCATTCTTGATCC-3'  

ROCK1 Forward   5'-GACTGGGGACAGTTTTGAGAC-3 

  Reverse   5'-ATCCAAATCATAAACCAGGGCAT-3' 

ROCK2 Forward   5’-TTTCTAAACATGCGAAGAATCTCATATG-3’ 

  Reverse   5’-CTTCTACCCCATTTCTTCCAAGTC-3’ 

Calponin-1  Forward   5'-GCACATTTTAACCGAGGTCCT-3' 

  Reverse   5'-CTGATGGTCGTATTTCTGGGC-3' 
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Table 2.1.1 (continued)   

Calponin-2 Forward   5'-GCGGGAACATGACACAGGT-3' 

  Reverse   5'-CATGGTGGCGTCGTCAAAGT-3' 

Calponin-3 Forward   5′-AGGCAGAATACCCCGATGAA-3′ 

  Reverse   5′-GGTCGTCGCCATACTGGTACTC-3′ 

Tropomyosin 1 (α) Forward   5'-CTGGTTGAGGAGGAGTTGGA-3' 

  Reverse   5'-ATGTGCTTGGCCTCTTTCAG-3' 

Tropomyosin 2 (β) Forward   5′-AGGCCACCGACGCTGAA-3′ 

  Reverse   5′-CCTGTGCCCGATCCAACT-3′ 

SM22α Forward   5′-ACCGTGGAGATCCCAACTGGTTTA-3′ 

 Reverse   5′-CATTTGAAGGCCAATGACGTGCT-3′ 

 

Bmal1: Brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1; 

ROCK1/2: Rho kinase 1/2; SM22α: Smooth muscle protein 22-α. 
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2.1.10 Statistical analysis  

All data were expressed as mean ± SEM. For comparison of 1 parameter between 2 

strains of mice, unpaired 2-tail Student’s t-test was used. For comparison of one 

parameter across a time period between 2 strains of mice, 2-way ANOVA with repeated 

measures and Bonferroni’s post-test were performed. For comparison of multiple 

parameters between 2 strains of mice, regular 2-way ANOVA with Bonferroni’s post-test 

was performed. P < 0.05 was defined as statistically significant.
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2.2 Project 2: Active-Time Restricted Feeding Restores Blood Pressure Circadian 

Rhythm via Autonomic Nervous System in Type 2 Diabetic db/db Mice. 

2.2.1 Experimental design  

Experimental 1: To test if active-time restricted feeding (ATRF) can prevent db/db mice 

from disruption of BP daily rhythm. 

 

Experimental 2: To test if ATRF can restore the already disrupted BP daily rhythm in 

db/db mice. 

 

2.2.2 Animals 

2.2.1.1 C56BL/6J and db/db mice 

C56BL/6J mice were purchased from the Jackson Lab (Stock No.: 000664). Db/db on the 

C57BL/KsJ background and age-, gender-matched nondiabetic db/+ mice were 

purchased from the Jackson Lab (Stock No.: 000642; Bar Harbor, ME). Upon arrival, the 
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mice were housed under 12:12 light: dark condition in a light-tight box and fed with 

normal chow diet ad libitum.   

2.2.1.2 Generation of the inducible global Bmal1 knockout (iG-Bmal1-KO) mice  

The homozygous Bmal1flox/flox mice (Storch, Paz et al. 2007)(Stock No.: 007668) and 

heterozygous UBC-Cre-ERT2+/- mice (Stock No.: 007001) were purchased from the 

Jackson lab. The Bmal1flox/flox/UBC-Cre-ERT2+/- mice were generated by crossing 

Bmal1flox/flox mice and UBC-Cre-ERT2+/- mice. The genotyping protocols for the 

Bmal1flox/flox and UBC-Cre-ERT2+/- mice are listed in the Jackson Laboratory website. To 

generate iG-Bmal1-KO mice, 100 ul 20mg/ml tamoxifen dissolved in sesame oil was i.p. 

injected daily for 5 days.  

2.2.3 Feeding schedule 

All the mice were housed under 12:12 light: dark (LD) condition upon arrival and fed ad 

libitum before being subjected to experiments. The mice were fed with normal chow 

diet and had free access to water throughout the study. 

Inactive-time restricted feeding (ITRF): the mice were allowed access to food for 10 

hours between ZT2 and ZT12 during the light-phase.   

8-h active-time restricted feeding (ATRF): the mice were allowed access to food for 8 

hours from ZT13 to ZT21 during the dark-phase. 

12-h ATRF: the mice were allowed access to food for 12 hours from ZT12 to ZT24 during 

the dark-phase. 
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2.2.4 Metabolic characterization of animals 

2.2.4.1 Body composition  

Please see chapter 2.1.2.1. 

2.2.4.2 Blood glucose  

Blood glucose was measured from the tail vein using StatStrip® XepressTM glucometer 

(NOVA® biomedical, Waltham, MA, USA). For db/db and control mice that began 8-h 

ATRF at 6-week-old, non-fasting blood glucose was measured every other week at ZT13 

and ZT21. For the db/db and control mice that began 8-h ATRF at 16-week-old, non-

fasting and fasting blood glucose was measured at ZT21, in which the fasting blood 

glucose was measured after 4-h fasting started at ZT17.  

2.2.4.3 Plasma insulin, non-esterified fatty acids (NEFA) and total cholesterol 

measurement 

Endpoint blood was collected at ZT5, ZT11, ZT17 and ZT23 in tubes with 10ul 0.5mM 

EDTA and plasma was separated as described in chapter 2.1.2.3. Plasma insulin was 

determined by ELISA kit (Chrystal Chem, Elk Grove Village, IL, USA). Plasma NEFA was 

determined using NEFA kit (FUJIFILM Wako Diagnostics, Richmond, VA, USA). Total 

cholesterol was determined by a commercial cholesterol reagent set (Pointe Scientific, 

Canton, MI, USA).  

2.2.4.4 Intraperitoneal insulin tolerance test (IPTTT) 

IPITT was performed at ZT1 after 4-h fasting. The basal blood glucose was measured, 

followed by i.p. injection of 1 unit/kg body weight of insulin dissolved in 0.9% NaCl. The 
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blood glucose was then measured at 15, 30, 60, 90 and 120 mins after insulin injection.  

Area under the curve (AUC) was calculated for the area between the basal and 

decreased blood glucose after insulin injection over 120 mins in each mouse. 

2.2.5 Implantation of radiotelemetry 

Please see chapter 2.1.3. 

2.2.6 Sleep-wake state monitoring  

The sleep-wake state of the mice was monitored using PiezoSleep system (Signal 

Solutions LLC, Lexington, KY, USA) (Flores, Flores et al. 2007). The PiezoSleep system 

distinguishes between the sleep and wake state according to the body movements of 

the mice. During sleep, the primary gross body movements are associated with 

respiration and are rhythmic. During awake, the respiratory movements are masked by 

other activity and are erratic. The PiezoSleep system detects the body movements using 

a high-sensitive motion detector on the bottom of the animal cages. Control and db/db 

mice were habituated to the piezo device in LD schedule with normal chow diet for 4 

weeks. The sleep-wake state was recorded at 15-week-old for 7 days as baseline. Then 

the mice were subjected to 8-h ATRF and sleep-wake state was continued to be 

recorded for 5 days after ATRF.  

2.2.7 Urine collection and catecholamines, aldosterone and corticosterone 

measurement  

Urine was collected using metabolic cages (Tecniplast, S.p.A.). The mice were acclimated 

in the cage for over 12 hours, then the urine was collected during the periods ZT0 to 6, 
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ZT6 to 12, ZT12 to 18 and ZT18 to 24. ELISA kits were used to determine the 

concentrations of urinary epinephrine, norepinephrine and normetanephrine (Abnova, 

Taiwan) and aldosterone (Enzo Life Sciences, Inc.). The urinary concentrations of 

corticosterone were determined using EIA kit (Arbor Assay, Ann Arbor, MI). Total 

contents of urinary epinephrine, norepinephrine, normetanephrine, aldosterone and 

corticosterone were calculated as concentrations × urine volumes.  

2.2.8 Effects of prazosin on BP  

The 1-adrenergic receptor antagonist, prazosin, was i.p. injected at 1mg/kg body 

weight in the mice. Radiotelemetry was recorded 1 hour before injection as baseline 

and 2 hours after the injection (total three hours). The data were averaged over an 

interval of 3 mins. Baseline BP was calculated as the average of 1h data before injection. 

The values of BP after injection of prazosin were selected as the lowest points after 

injection.  

2.2.9 Baroreflex sensitivity analysis  

Please chapter 2.1.4 

2.2.10 Heart rate variability (HRV) analysis  

HRV was analyzed from the radiotelemetry data by frequency domain and time domain 

methods using Ponemah Software (DSI, version 6.32).  

For frequency domain analysis, 2-min segments at 20-min interval over 72 hours were 

selected and scanned to ensure they were free of artifacts. Each segment was 

interpolated to 20Hz using quadratic method. Subsequently, the data were subdivided 
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into 50 overlapping series and computed by Fast Fourier Transform (FFT) using Hanning 

window method.  The cut-off frequency range for low-frequency (LF) was 0.15-0.6Hz, 

optimized by Baudrie's group (Baudrie, Laude et al. 2007). The high-frequency (HF) 

range was 1.5-4Hz.  

For time domain analysis, 5-min segments over 72 hours were calculated and the root-

mean-square successive beat-to-beat difference (rMSSD) was plotted as the marker of 

parasympathetic heart rate control. 

For both the frequency and time domain data, The HRV were averaged in each 

correspondent hour over 3 days and one 24-hour HRV was generated. 

2.2.11 Tissue collection and quantitative analysis of mRNA expression 

2.2.11.1 Tissue collection 

The mice were euthanized at ZT5, 11, 17 and 23. The liver, mesenteric arteries (MA), 

kidney, heart and adrenal gland were removed and immediately placed in RNAlater 

solution. Then the fat and adventitious tissues of the MA were carefully cleaned off 

under microscope. The real-time PCR primers for each gene are described in Table 2.2.1.  

Table 2.2.1. Real-time PCR primer information for project 2. 

Gene Primer Sequence 

Bmal1 Forward   5'-ATCAGCGACTTCATGTCTCC-3'  

  Reverse   5'-CTCCCTTGCATTCTTGATCC-3'  

Clock Forward   5'-GGCGTTGTTGATTGGACTAGG-3 
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Table 2.2.1 (continued)   

  Reverse   5'-GAATGGAGTCTCCAACACCCA-3' 

Per1 Forward   5’-TCGAAACCAGGACACCTTCTCT-3’ 

  Reverse   5’-GGGCACCCCGAAACACA-3’ 

Per2  Forward   5'-AAAGCTGACGCACACAAAGAA-3' 

  Reverse   5'-ACTCCTCATTAGCCTTCACCT-3' 

Cry1 Forward   5'-TCGCCGGCTCTTCCAA-3' 

  Reverse   5'-TCAAGACACTGAAGCAAAAATCG-3' 

Cry2 Forward   5′-CCTCGTCTGTGGGCATCAA-3′ 

  Reverse   5′-GCTTTCTTAAGCTTGTGTCCAGATC-3′ 

Rev-erbα Forward   5'-CCCTGGACTCCAATAACAACACA-3' 

  Reverse   5'-GCCATTGGAGCTGTCACTGTAG-3' 

Rorc Forward   5′-TCCACTACGGGGTTATCACCT-3′ 

  Reverse   5′-AGTAGGCCACATTACACTGCT-3′ 

Th Forward   5′-TCTCCTTGAGGGGTACAAAACC-3′ 

 Reverse   5′-ACCTCGAAGCGCACAAAGT-3′ 

Dbh Forward   5’-CTGGGTGCCAAGGCATTTTAC-3’ 

 Reverse   5’-GAACTTCCAGTCGGAGAAACG-3’ 

Pnmt Forward   5’-AGACCTGAGCAACCCTGATG-3’ 

 Reverse   5’-TGGTGATGTCCTCAAAGTGG-3’ 

Comt Forward   5’-AACACGCAAAGCCTGGAGA-3’ 

 Reverse   5’-CATGGTGAGAAGCCTGGCTC-3’ 

MaoA Forward   5’-GGTCCTCCTTGGGGATAAAG-3’ 
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Table 2.2.1 (continued)   

 Reverse   5’-TCTCAGGTGGAAGCTCTGGT-3’ 

MaoB Forward   5’-ATGAGCAACAAAAGCGATGTGA-3’ 

 Reverse   5’-TCCTAATTGTGTAAGTCCTGCCT-3’ 

Angiotensinogen Forward   5’-TCTCTTTACCCCTGCCCTCT-3’ 

 Reverse   5’-CAGGCAGCTGAGAGAAACCT-3’ 

Renin Forward   5’-TCAGGGAGAGTCAAAGGTTTCC-3’ 

 Reverse   5’-ACAGTGATTCCACCCACAGTCA-3’ 

Ace Forward   5’-AGCCCAAGTGTTGTTGAACGA-3’ 

 Reverse   5’-TGGATACCTCCGTGCTTTTCT-3’ 

Ace2 Forward   5’-TCCAGACTCCGATCATCAAGC-3’ 

 Reverse   5’-TGCTCATGGTGTTCAGAATTGT-3’ 

At1a Forward   5’-CCAAGAAAGCCATCACCAGATC-3’ 

 Reverse   5’-TTTCTGGGTTGAGTTGGTCTCA-3’ 

 

Bmal1: Brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1; 

Clock: Circadian locomotor output cycles kaput; Per: Period; Cry: Cryptochrome; Rorc: 

RAR-related orphan receptor c; Th: Tyrosine hydroxylase; Dbh: Dopamine beta (β)-

hydroxylase; Pnmt: Phenylethanolamine N-methyltransferase; Comt: Catechol-O-

methyltransferase; MaoA and MaoB:  Monoamine oxidase A and B; Ace: angiotensin-

converting enzyme; At1a: angiotensin II receptor type 1a. 



66 
 

2.2.11.2 Quantitative analysis of mRNA expression 

Please see chapter 2.1.9.2. 

2.2.12 Statistical analysis  

All data were expressed as mean ± SEM. For comparison of 1 parameter between 2 

groups of mice, paired 2-tail Student’s t-test was used. For comparison of 1 parameter 

between more than 2 groups of mice, one-way ANOVA with Newman-Keuls’s post-test 

was used. For comparison of two parameters between ≥2 groups of mice, 2-way ANOVA 

with Bonferroni’s post-test were performed. P < 0.05 was defined as statistically 

significant.
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CHAPTER III. RESULTS 

3.1 Project 1: A Novel Diabetic Mouse Model for Real-time Monitoring of Clock 

Gene Oscillation and Blood Pressure Circadian Rhythm.  

(Published in J Biol Rhythms. 2018 Oct 2) 

Authors: Tianfei Hou, Wen Su, Zhenheng Guo and Ming C. Gong 

3.1.1 Db/db-mPer2Luc mice are obese and diabetic 

The db/db mouse is an extensively used monogenic type 2 diabetic mouse model. The 

syndrome in db/db mice is similar to that in maturity-onset diabetes in humans, 

characterized by obesity, infertility, hyperphagia and marked hyperglycemia (Ktorza, 

Bernard et al. 1997). The diabetic phenotype of the db/db mice, however, varies 

depending on the genetic background. Currently, there are two db/db mouse models: 

one is on the C57BL/KsJ background with severe hyperglycemia and temporarily 

elevated plasma insulin; the other one is on the C57BL/6J background with transient 

hyperglycemia and marked hyperinsulinemia (Hummel, Coleman et al. 1972). To study 

the disruption of circadian rhythms in type 2 diabetes, we crossed the C57BL/KsJ-db/db 

mice that have severe diabetes with the mPer2Luc mice that contain a knock-in luciferase 

gene fused to mouse Period2 (mPer2) as a clock gene reporter (Yoo, Yamazaki et al. 

2004), and generated a novel db/db-mPer2Luc mice. Since the mPer2Luc mice are on the 

C57BL/6J background, the generated db/db-mPer2Luc mice have a mixed background 

(C57BL/KsJ and C57BL/6J). It is unclear to what extent the db/db-mPer2Luc mice retain 



68 
 

obesity and diabetes. Therefore we first characterized this novel mouse model with 

respect to obesity, hyperglycemia, hyperinsulinemia and insulin resistance.  

The db/db-mPer2Luc mice had significantly increased body weight when compared to 

their littermate db/+-mPer2Luc control mice (Figure 3.1.1A). The body weight increase 

was mostly attributable to an increased fat mass as the lean mass was comparable 

between the db/db-mPer2Luc and control mice (Figure 3.1.1B). The non-fasting blood 

glucose and plasma insulin levels in the db/db-mPer2Luc mice were also markedly 

elevated relative to those in the control mice (Figure 3.1.1C and 3.1.1D). Moreover, the 

db/db-mPer2Luc mice exhibited a severely impaired glucose tolerance (Figure 3.1.1E). 

These results indicate that the db/db-mPer2Luc mice manifest the common 

characteristics of type 2 diabetes, e.g. obesity, hyperglycemia, hyperinsulinemia, and 

impaired glucose tolerance. 
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Figure 3.1.1 

 A               B                                              C 
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Figure 3.1.1 The db/db-mPer2Luc mice are obese and diabetic. Body weight (A; n = 12), 

body composition (B; n = 4-6), non-fasting blood glucose (C; n = 12), and plasma insulin 

(D; n = 4-5) were measured between ZT9 and ZT11 in the db/db-mPer2Luc and control 

db/+-mPer2Luc mice. Glucose tolerance test (E; n = 11-12) was performed at ZT3 after 6-

hour fasting. All data were expressed as mean ± SEM. *, P < 0.05; ***, P < 0.001; ns, not 

significant.        
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3.1.2 Db/db-mPer2Luc mice have a compromised BP daily rhythm that is associated 

with the disruption of the daily rhythm in baroreflex sensitivity but not heart rate 

To determine whether the BP daily rhythm is disrupted in the db/db-mPer2Luc mice, we 

recorded BP by radiotelemetry under normal 12:12 light-dark cycle for 72 consecutive 

hours. We found that the daily oscillations of mean arterial pressure (MAP), systolic 

blood pressure (SBP), and diastolic blood pressure (DBP) were diminished in the db/db-

mPer2Luc mice compared to that in the control mice (Figure 3.1.2A, 3.1.3A and 3.1.3D). 

The compromised daily rhythms of the MAP, SBP, and DBP were primarily caused by the 

decreased dipping during the inactive light phase with no change during the active dark 

phase in the db/db-mPer2Luc mice relative to the control mice (Figure 3.1.2A, 3.1.3A and 

3.1.3D). Quantitative analysis of the daily (24-hour) average of MAP, SBP, and DBP 

showed no difference between the db/db-mPer2Luc and control mice (Figure 3.1.2B 

3.1.3B and 3.1.3E), indicating that the db/db-mPer2Luc mice are normotensive, unlike the 

C57BL/KsJ-db/db mice (Park, Bivona et al. 2008, Su, Guo et al. 2008, Goncalves, Tank et 

al. 2009, Senador, Kanakamedala et al. 2009). Further quantitative analysis of the BP 

during either the light or dark phase BP (12-hour) revealed a 50% reduction in the 

difference between light phase and dark phase in the MAP, SBP, and DBP in the db/db-

mPer2Luc mice compared to that in the control mice (Figure 3.1.2C, 3.1.3C and 3.1.3F). 

Cosinor analysis of the oscillations showed that the amplitude (half of the range of 

oscillation) and robustness of daily rhythms in the MAP, SBP, and DBP were significantly 

attenuated in the db/db-mPer2Luc mice compared to that in the control mice (Figure 

3.1.2D and 3.1.2E; Table 3.1.1). Interestingly, no differences were found in the 
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acrophase (the time when the cycle peaks) between the db/db-mPer2Luc and control 

mice (Figure 3.1.2F; Table 3.1.1). 

Baroreflex is an important rapid negative feedback mechanism for maintaining normal 

BP. Therefore we investigated whether the compromised BP daily rhythm in the db/db-

mPer2Luc mice is associated with an alteration of the time-of-day variations in baroreflex 

sensitivity. We analyzed spontaneous baroreflex sensitivity by sequence techniques in 

the db/db-mPer2Luc and control mice as previously described (Xie, Su et al. 2015). In the 

db/+-mPer2Luc control mice, baroreflex sensitivity was significantly higher during the 

light-phase than during the dark-phase (Figure 3.1.4). In contrast, such time-of-day 

variations of baroreflex sensitivity were abolished in the db/db-mPer2Luc mice. This 

result implicates the loss of daily variation in baroreflex sensitivity in the compromised 

BP daily rhythm. 

Because heart rate is an important factor that determines the cardiac output and BP 

level (Reule and Drawz 2012), we investigated whether the daily heart rate oscillation is 

also altered in the db/db-mPer2Luc mice. We found that the daily heart rate, the 

difference between light phase and dark phase heart rate, and its rhythmicity, including 

amplitude, robustness, and acrophase, were not significantly altered in the db/db-

mPer2Luc mice compared to that in the control mice (Figure 3.1.5A-3.1.5F). 
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Figure 3.1.2 
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Figure 3.1.2 The daily rhythm of mean arterial pressure (MAP) is disrupted in the 

db/db-mPer2Luc mice. MAP was recorded by radiotelemetry in the db/db-mPer2Luc and 

control db/+-mPer2Luc mice. (A) The 72-hour recording of MAP. The light grey box 

indicates the dark-phase and the length of the arrowhead lines indicates the BP 

difference between the light and dark phase in the two mouse strains. (B) The 24-hour 

MAP. (C) The 12-hour MAP during the light phase (L) and dark phase (D). (D-F) The 

amplitude, robustness, and acrophase of the MAP daily oscillation. All data were 

expressed as mean ± SEM (n = 6). *, P < 0.05; **, P < 0.01, ***, P < 0.001; ns, not 

significant. 
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Figure 3.1.3 
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Figure 3.1.3 The daily oscillations of systolic blood pressure (SBP) and diastolic blood 

pressure (DBP) are diminished in db/db-mPer2Luc mice. SBP (A-C) and DBP (D-F) were 

recorded by radiotelemetry. The 72-hour recording of SBP (A) and DBP (D) where the 

grey box indicates the dark phase and the length of the arrowhead lines indicate the 

difference of BP between two strains of mice. The 24-hour average of SBP (B) and DBP 

(E). The 12-hour SBP (C) and DBP (F) during the light phase (L) and dark phase (D). The 

difference in the day and night BP was indicated in the figures. All data were expressed 

as mean ± SEM (n = 6). Unpaired t test was used for (B and E). Two-way ANOVA was 

used for (C and F). The difference between two mouse strains was indicated in the 

figures. *,  p<0.05; ns, p>0.05.  
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Figure 3.1.4 

 

 

 

 

 

 

 

 

 

Figure 3.1.4 The day and night variation of baroreflex is abolished in the db/db-

mPer2Luc mice. Baroreflex was calculated every hour using the Hemolab software in the 

db/db-mPer2Luc and control db/+-mPer2Luc mice. The light grey box indicates the dark-

phase. All data were expressed as mean ± SEM (n = 6). **, P < 0.01, ***, P < 0.001. 
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Figure 3.1.5 

A          B   C 

 

D          E                             F  

 

 

 

 

Figure 3.1.5 The daily oscillation of heart rate (HR) is not disrupted in db/db-mPer2Luc 

mice. HR was recorded by radiotelemetry in the db/db-mPer2Luc and control db/+-

mPer2Luc mice. (A) The 72-hour recording of HR. The light grey box indicates the dark-

phase and the length of the arrowhead lines indicates the HR difference between the 

light and dark phase in the two mouse strains. (B) The 24-hour HR. (C) The 12-hour HR 

during the light phase (L) and dark phase (D). (D-F) The amplitude, robustness, and 

acrophase of the HR daily oscillation. All data were expressed as mean ± SEM (n = 6). **, 

P < 0.01; ns, not significant.  
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Table 3.1.1 The daily oscillations in systolic blood pressure (SBP) and diastolic blood 

pressure (DBP) were diminished in db/db-mPer2Luc mice. 

Blood Pressure Circadian Rhythm db/+-mPer2
Luc db/db-mPer2

Luc P value 

SBP 

Amplitude (mmHg) 7.421±1.546 4.353±0.5485 0.001 * 

Acrophase (ZT time) 18.34±0.5734 19.17±0.731 0.0555 

Robustness (%) 67.93±7.997 44.17±9.646 0.0009 *** 

DBP 

Amplitude (mmHg) 6.596±1.425 3.728±0.4713 0.0004 *** 

Acrophase (ZT time) 17.96±0.5435 18.54±0.8214 0.1741 

Robustness (%) 66.58±10.39 46.22±9.543 0.0054 ** 

 

The SBP and DBP were recorded by radiotelemetry. The amplitude, acrophase, and 

robustness were calculated by Cosinor analysis.   *, P<0.05; **, p<0.01, ***, p<0.001. 
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3.1.3 The compromised BP daily rhythm is associated with the disruption of daily 

rhythms in locomotor activity and metabolism but not in food and water intake in the 

db/db-mPer2Luc mice 

Behavioral factors such as locomotor activity, food and water intake as well as 

metabolism may affect central and peripheral clock function through the release of 

neurotransmitters and hormones and thus impinge on BP circadian rhythm (Rudic and 

Fulton 2009). Therefore, the daily rhythms in locomotor activity, food and water intake, 

and metabolism were monitored by indirect calorimetry (also known as metabolic 

chamber) in the db/db-mPer2Luc and control mice every 30 minutes over 72 consecutive 

hours under 12: 12 light: dark condition. We also used radiotelemetry to monitor 

locomotor activity independently to confirm the indirect calorimetry data. The results 

from both indirect calorimetry and radiotelemetry data consistently showed that the 

daily oscillation in locomotor activity was abolished in the db/db-mPer2Luc mice 

compared with that in the control mice (Figure 3.1.6A, 3.1.6B, 3.1.6H and 3.1.6I). While 

the absolute counts regarding the daily locomotor activity from indirect calorimetry 

(Figure 3.1.6C) and radiotelemetry (Figure 3.1.6J) were not consistent, both methods 

showed a loss of the locomotor activity daily oscillation in the db/db-mPer2Luc mice 

(Figure 3.1.6D and 3.1.6K). Cosinor analysis revealed that the amplitude and robustness 

of the locomotor activity daily oscillations were largely diminished in the db/db-mPer2Luc 

mice (Figure 3.1.6E, 3.1.6F, 3.1.6L and 3.1.6M). Interestingly, in agreement with the 

compromised BP daily rhythm in the db/db-mPer2Luc mice (Figure 3.1.2F), there were 
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also no differences in the acrophase of the locomotor activity daily oscillation between 

the db/db-mPer2Luc and control mice (Figure 3.1.6G and 3.1.6N).  

In contrast to the locomotor activity, the food and water intake daily oscillations 

appeared to be preserved in the db/db-mPer2Luc mice (Figure 3.1.7A and 3.1.7B; Figure 

3.1.8A and 3.1.8B), although the db/db-mPer2Luc mice consumed more food and water 

than the control mice (Figure 3.1.7C and 3.1.8C). Since the db/db-mPer2Luc mice 

consumed more food and water proportionally during both the light and dark phase 

than the control mice (Figure 3.1.7D and 3.1.8D), the percentages of daily food and 

water intake during the light and dark phase were similar between two strains of mice 

(Figure 3.1.7D and 3.1.8D). In accordance with these findings, there were also no 

differences in robustness and acrophase in food and water intake daily oscillations 

(Figure 3.1.7F, 3.1.7G, 3.1.8F and 3.1.8G). Interestingly, there was a trend towards an 

increased daily oscillation amplitude in food intake (Figure 3.1.7E) and a significant 

increase in water intake (Figure 3.1.8E) in the db/db-mPer2Luc mice. 

The respiratory exchange ratio (RER) and energy expenditure (EE) daily oscillations were 

acquired by the metabolic chamber. The RER is calculated as the ratio between the 

volume of carbon dioxide (VCO2) produced and the volume of oxygen (VO2) used in 

metabolism. It is an indicator of fuel sources (Even and Nadkarni 2012). The EE is 

calculated as the total daily energy expenditure (calories) in the metabolic chamber, 

including basal and physical activity expenditure, thermoregulation, and the thermic 

effects of food (Even and Nadkarni 2012). The RER daily oscillation was disrupted in the 
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db/db-mPer2Luc mice compared with the control mice (Figure 3.1.9A vs. 3.1.9B). 

Although both strains of mice had a similar average RER (Figure 3.1.9C), the db/db-

mPer2Luc mice lost the RER daily oscillation compared to the control mice (Figure 

3.1.9D). In agreement with these findings, the amplitude and robustness of the RER 

daily oscillation were suppressed (Figure 3.1.9E and 3.1.9F), and the acrophase was 

delayed in the db/db-mPer2Luc mice (Figure 3.1.9G). In contrast, the EE daily oscillation 

was preserved in both strains of mice (Figure 3.1.10A and 3.1.10B), although the daily EE 

level was higher in the db/db-mPer2Luc than the control mice (Figure 3.1.10C). Both 

strains of mice exhibited a similar EE daily oscillation pattern (Figure 3.1.10D). In 

agreement with these findings, there was no difference in amplitude and acrophase 

between the db/db-mPer2Luc and control mice (Figure 3.1.10E and 3.1.10F). However, 

the robustness was suppressed in the db/db-mPer2Luc mice (Figure 3.1.10G). 
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Figure 3.1.6 
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Figure 3.1.6 The daily rhythm of locomotor activity is disrupted in the db/db-mPer2Luc 

mice. Locomotor activity was recorded by indirect calorimetry (A-G) and radiotelemetry 

(H-N). (A and H) The 72-hour recording of locomotor activity in the control mice by 

indirect calorimetry (A) and radiotelemetry (H). The 72-hour recording of locomotor 

activity in the db/db-mPer2Luc mice by indirect calorimetry (B) and radiotelemetry (I) 

where the light grey box indicates the dark-phase. (C and J) The 24-hour locomotor 

activity calculated from indirect calorimetry (C) and radiotelometry (J) data. (D and K) 

The 12-hour locomotor activity during the light phase (L) and dark phase (D) calculated 

from indirect calorimetry (D) and radiotelometry (K) data. (E-F and L-N): The amplitude, 

robustness, and acrophase of locomotor activity daily oscillation calculated from indirect 

calorimetry (E-F) and radiotelometry (L-N) data. All data were expressed as mean ± SEM 

(n = 6). *, p<0.05, ***, P < 0.001; ns, not significant. 
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Figure 3.1.7 
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Figure 3.1.7 The daily rhythm of food intake is not diminished in the db/db-mPer2Luc 

mice. Food intake was recorded by indirect calorimetry. (A and B) The 72-hour recording 

of food intake in the control (A) and db/db-mPer2Luc (B) mice where the light grey box 

indicates the dark-phase. (C) The 24-hour food intake. (D) The 12-hour food intake 

during the light phase (L) and dark phase (D). (E-F): The amplitude, robustness, and 

acrophase of food intake daily oscillation. All data were expressed as mean ± SEM (n = 

6). *, P < 0.05; **, P < 0.01, ***, P < 0.001; ns, not significant. 
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Figure 3.1.8 
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Figure 3.1.8 The daily rhythm of water intake is not diminished in the db/db-mPer2Luc 

mice. Water intake was recorded by indirect calorimetry. (A and B) The 72-hour 

recording of water intake in the control (A) and db/db-mPer2Luc (B) mice where the light 

grey box indicates the dark-phase. (C) The 24-hour water intake. (D) The 12-hour water 

intake during the light phase (L) and dark phase (D). (E-F): The amplitude, robustness, 

and acrophase of water intake daily oscillation. All data were expressed as mean ± SEM 

(n = 6). *, P < 0.05; **, P < 0.01; ns, not significant. 
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Figure 3.1.9 
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Figure 3.1.9 The daily rhythm of respiratory exchange ratio (RER) is disrupted in the 

db/db-mPer2Luc mice. RER was recorded by indirect calorimetry. (A and B) The 72-hour 

recording of the RER in the control (A) and db/+-mPer2Luc (B) mice. The light grey box 

indicates the dark-phase. (C) The 24-hour RER. (D) The 12-hour RER during the light 

phase (L) and dark phase (D). (E and F) The amplitude, robustness, and acrophase of the 

RER daily rhythm. All data were expressed as mean ± SEM (n = 6). *, P < 0.05; **, P < 

0.01, ***, P < 0.001; ns, not significant. 
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Figure 3.1.10 
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Figure 3.1.10 The daily rhythm of energy expenditure (EE) is not disrupted in the 

db/db-mPer2Luc mice. EE was recorded by indirect calorimetry. (A and B) The 72-hour 

recording of the EE in the control (A) and db/+-mPer2Luc (B) mice. The light grey box 

indicates the dark-phase. (C) The 24-hour EE. (D) The 12-hour EE during the light phase 

(L) and dark phase (D). (E and F) The amplitude, robustness, and acrophase of the EE 

daily rhythm. All data were expressed as mean ± SEM (n = 6). *, P < 0.05; **, P < 0.01, 

***, P < 0.001; ns, not significant. 
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3.1.4 Ex vivo LumiCycle recording reveals that the phases of mPer2 daily oscillation are 

shifted to different extents in various peripheral tissues but not the SCN from the 

db/db-mPer2Luc mice 

Multiple systems coordinate to maintain the normal physiological BP circadian rhythm 

(Coffman 2011). To investigate in which tissue the clock genes are altered in the db/db-

mPer2Luc mice that may contribute to the compromised BP circadian rhythm, we 

monitored mPer2 bioluminescence in real-time in peripheral and central SCN tissues in 

explant organ culture in the db/db-mPer2Luc and control mice. In the various tissues 

from the control mice, the acrophases of mPer2 oscillation varied but were orchestrated 

in a specific order (Figure 3.1.11A through 3.1.11J), with the earliest peak shown by the 

SCN (10.47 ± 0.82 hours) and later peaks shown by the lung (12.08 ± 0.24 hours), kidney 

(14.23 ± 0.11 hours), liver (14.39 ± 0.77 hours), adrenal gland (15.59 ± 0.20 hours), white 

adipose tissue (WAT; 15.59 ± 0.39 hours), aorta (16.17 ± 0.24 hours), thymus (19.61 ± 

0.77 hours), and mesenteric arteries (MA; 19.69 ± 0.29 hours).  

In the tissues from the db/db-mPer2Luc mice, the acrophases of mPer2 oscillations were 

significantly advanced to different extents relative to the corresponding control in a 

tissue-specific manner (Figure 3.1.11J). The aorta, MA, and kidney, which are crucial for 

BP and cardiovascular homeostasis, had a 0.98 ± 0.40, 1.70 ± 0.42, and 2.21 ± 0.56 hour 

phase advance, respectively (Figure 3.1.11A to 3.1.11C). The liver and WAT, two tissues 

that are crucial for energy metabolism, had a 3.28 ± 0.77 and 4.65 ± 1.21 hour phase 

advance (Figure 3.1.11D and 3.1.11E). The thymus, a primary lymphoid organ, had a 
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4.24 ± 1.59 hour phase advance (Figure 3.1.11F). In contrast, the lung and adernal gland 

had no significant phase shift (Figure 3.1.11G and 3.1.11H). Interestingly, the SCN that 

has long been believed to be a major regulator of BP circadian rhythm, had also no 

significant phase shift (Figure 3.1.11I). In contrast to the shift in the acrophase in tissues 

from the db/db-mPer2Luc mice, no significant change was detected in period and 

amplitude of mPer2 luciferase oscillations in most peripheral tissues from the db/db-

mPer2Luc (Table 3.1.2). 
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Figure 3.1.11(1) 
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Figure 3.1.11(2) 
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Figure 3.1.11 The phases of mPer2 protein daily oscillation are desynchronized in 

various explanted peripheral tissues from the db/db-mPer2Luc mice. The 

bioluminescence of mPer2 protein daily oscillation was recorded by LumiCycle in 

explanted central SCN and peripheral tissues from the db/db-mPer2Luc and control db/+-

mPer2Luc mice. The mPer2 oscillation acrophase of the tissues was calculated using the 

LumiCycle analysis software. In the representative mPer2 bioluminescence real-time 

recording (left panel), the solid vertical line indicates the acrophase of the non-diabetic 

db/+-mPer2Luc control mice, whereas the dotted vertical line indicates the acrophase of 

the diabetic db/db-mPer2Luc mice. In the acrophase (right panel), the number above the 

symbol indicates the difference of the acrophase between two strains of mice. All data 

were expressed as mean ± SEM from the aorta (A; n= 7-11), mesentery artery (MA; B; n 

= 8-12), kidney (C; n = 4-5), liver (D; n = 6-12), white fat tissue (WAT; E; n = 3-4), thymus 

(F; n = 3-5), lung (G; n = 4-6), adrenal gland (H; n = 3-6), and suprachiasmatic nucleus (I; 

SCN; n = 6-11). (J) The acrophase of various tissues in control and db/db-mPer2Luc mice. 

*, P < 0.05; **, P < 0.01, ***, P < 0.001; ns, not significant. 
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Table 3.1.2 No significant changes were detected in the period and amplitude of 

mPer2 oscillations in most explanted peripheral tissues from the db/db-mPer2Luc mice. 

 Tissues  Circadian Rhythm db/+-mPer2
Luc
 db/db-mPer2

Luc
 P value 

Aorta 
Period (h) 23.76±0.2235 24.05±0.186 0.3409 

Amplitude (counts) 139.3±29.33 208.3±21.45 0.0706 

MA 
Period (h) 24.41±0.2349 24.4±0.1887 0.9672 

Amplitude (counts) 26.6±2.005 28.11±3.485 0.7458 

Kidney 
Period (h) 24.5±0.5553 23.78±0.2905 0.2608 

Amplitude (counts) 8.072±2.38 25.06±3.207 0.0049 ** 

Liver 
Period (h) 21.08±0.3492 21.01±0.2061 0.8555 

Amplitude (counts) 44.42±10.53 55.54±11.6 0.5471 

WAT 
Period (h) 24.41±0.2349 24.4±0.1887 0.9672 

Amplitude (counts) 26.6±2.005 28.11±3.485 0.7458 

Thymus 
Period (h) 25.23±0.9905 23.96±0.6772 0.3133 

Amplitude (counts) 23.83±10.15 20.5±5.679 0.7641 

Lung 
Period (h) 23.9±0.7106 23.85±0.3052 0.9431 

Amplitude (counts) 22.37±2.039 33.32±2.855 0.0233 * 

AG 
Period (h) 22±0.4155 20.67±1.014 0.1821 

Amplitude (counts) 5.882±1.914 16.16±7.113 0.1004 

SCN 
Period (h) 23.47±0.1764 23.88±0.273 0.311 

Amplitude (counts) 11.4±2.262 11.82±2.781 0.9212 

 

The aorta, mesentery artery (MA), kidney, liver, white adipose tissues (WAT), thymus, 

lung, adrenal gland (AG), and suprachiasmatic nucleus (SCN) were isolated from the 
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db/db-mPer2Luc and db/+-mPer2Luc control mice and cultured in organ culture. The 

mPer2 bioluminescence was monitored and recorded by the LumiCycle system. The 

period and amplitude of these tissues were analyzed by using the LumiCycle analysis 

software. *: p<0.05; **: p<0.01 
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3.1.5 In vivo imaging verifies that the phase of mPer2 oscillation is also advanced in 

the kidney, liver, and submandibular gland (SG) in the db/db-mPer2Luc mice 

To investigate whether the phase advance of the mPer2 oscillation observed in explant 

tissue culture manifests the in vivo tissue oscillation, we used IVIS spectrum and 

monitored the mPer2 oscillations of the kidney, liver, and SG by IVIS spectrum in the 

intact db/db-mPer2Luc and control mice. The in vivo mPer2 bioluminescence images 

were obtained with 6 hours interval at ZT5, ZT11, ZT17, and ZT23, respectively. In 

accordance with the result from the ex vivo LumiCycle recording (Figure 3.1.11C and 

3.1.11D), the in vivo mPer2 bioluminescence of the kidney, liver, and SG exhibited 

apparent time-of-day variations. The lowest absolute bioluminescence intensity was 

detected at ZT5 and the highest absolute bioluminescence intensity was detected at 

ZT17 in all three tissues (Figure 3.1.12A and 3.1.12B). The absolute bioluminescence 

intensities were significantly higher in the db/db-mPer2Luc mice as compared to the 

control mice at ZT11 and ZT17 in the kidney (Figure 3.1.12C), at ZT11, ZT17, and ZT23 in 

the liver (Figure 3.1.12F) and at ZT17 in the SG (Figure 3.1.12I).  

To better quantify the mPer2 oscillation in all three tissues between the two mouse 

strains, we normalized the absolute mPer2 bioluminescence intensities to the average 

of the four ZT time points absolute mPer2 bioluminescence intensities, in accordance 

with a previous report (Tahara, Kuroda et al. 2012). The resulting analysis revealed that 

the relative mPer2 bioluminescence signal from the db/db-mPer2Luc mice peaked earlier 

in all three tissues than those of the control mice (Figure 3.1.12D, 3.1.12G, and 3.1.12J). 
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Moreover, cosinor analysis further illustrated that the phase of the mPer2 oscillation 

was significantly advanced in all three tissues in the db/db-mPer2Luc mice compared with 

that in control mice, with 2.60 ± 0.82, 1.54 ± 0.59, and 1.571 ± 0.61 hour advance in the 

kidney, liver, and SG (Figure 3.1.12E, 3.1.12H, and 3.1.12K), respectively. 
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Figure 3.1.12(1) 
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Figure 3.1.12(2) 
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Figure 3.1.12 The in vivo imaging shows a phase shift in the kidney, liver, and 

submandibular gland (SG) in the db/db-mPer2Luc mice. The in vivo imaging of mPer2 

bioluminescence by the IVIS spectrum show a time-of-day variation in the kidney, liver, 

and SG. (A) Representative in vivo imaging of the mPer2 bioluminescence in the kidney 

in the db/db-mPer2Luc (upper panel) and control mice (lower panel). (B) Representative 

in vivo imaging of the mPer2 bioluminescence in the SG and liver in the db/db-mPer2Luc 

(upper panel) and control mice (lower panel). The absolute bioluminescence intensity 

detected in the kidney (C), liver (F), and SG (I). The relative bioluminescence intensity 

obtained by normalizing to the average of the four-time points’ data in the kidney (D), 

liver (G), and SG (J). The brown color solid vertical line indicates the acrophase of the 

control db/+-mPer2Luc mice, whereas the blue dotted vertical line indicates the 

acrophase of the db/db-mPer2Luc mice. The acrophase of the two strains of mice in the 

kidney (E), liver (H), and SG (K) where the number above the symbol indicates the 

difference of the acrophase between the two strains of mice. All data were expressed as 

mean ± SEM (n = 4-5). *, P < 0.05; ***, P < 0.001. 
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3.1.6 Altered time-of-day variations of gene expressions in the mesenteric arteries 

from the db/db-mPer2Luc mice 

Db/db mice exhibit alterations in the daily mRNA expressions of clock and clock-

controlled genes that are involved in the regulation of BP, as we have previously shown 

(Su, Xie et al. 2012). In addition, we have demonstrated that smooth muscle BMAL1 

participates in the control of the BP daily rhythm by regulating one of the contraction 

regulatory proteins Rho-kinase 2 (ROCK2) in wild-type mice (Xie, Su et al. 2015). To test 

whether any putative clock-controlled BP-associated genes are dysregulated in db/db-

mPer2Luc mice, we determined mRNA expressions of Bmal1 and several contractile 

regulatory genes in the MA at ZT5 and ZT17. As shown in Figures 3.1.13A through 

3.1.13I, Bmal1, ROCK1, calponin-1, tropomyosin-2, and smooth muscle protein-22α 

(SM22α) mRNA expression exhibited a significant time-of-day variation. Importantly, an 

attenuation or loss of the time-of-day variations was found in the db/db-mPer2Luc mice 

compared with the control mice. In contrast, no time-of-day variations were detected in 

ROCK2, calponin-2, calponin-3, and tropomyosin-1 mRNA in either genotype (Figure 

3.1.13C, 3.1.13E, 3.1.13F, and 3.1.13G). 
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Figure 3.1.13 
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Figure 3.1.13 Altered time-of-day variations of gene expressions in the mesenteric 

arteries from the db/db-mPer2Luc mice. Control and db/db-mPer2Luc mice were 

euthanized at ZT5 and ZT17 and mesenteric arteries were harvested. Mesenteric 

arteries mRNAs were quantified using real-time PCR. (A) Bmal1. (B) ROCK1. (C) ROCK2. 

(D) calponin-1. (E) calponin-2. (F) calponin-3. (G) tropomyosin-1. (H) tropomyosin-2. (I) 

smooth muscle protein 22-α (SM22α). n = 4-5 for each mouse strain at each time point. 

Data were analyzed by 2-way ANOVA. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not 

significant.  
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3.2 Project 2: Active-Time Restricted Feeding Restores Blood Pressure Circadian 

Rhythm via Autonomic Nervous System in Type 2 Diabetic db/db Mice  

(Manuscript in preparation) 

Authors: Tianfei Hou, Wen Su, Chanuang Wang, Shreyas Joshi, Bruce O’Hara, Zhenheng 

Guo and Ming C. Gong 

3.2.1 Investigation of the effect of timing of food intake on BP circadian rhythm. 

3.2.1.1 The disruption of BP daily rhythm is associated with altered food intake 

rhythm in the db/db mice.  

To investigate whether the disruption of BP daily rhythm in the db/db mice is associated 

with an altered food intake rhythm, we simultaneously monitored the daily rhythms of 

BP and food intake using radiotelemetry and Bio-DAQ system in 12-week-old freely 

moving control and db/db mice. Consistent with previous studies (Su, Guo et al. 2008) : 

the control mice exhibited apparent 24-hour oscillation in the mean arterial pressure 

(MAP); whereas the db/db mice showed diminished daily rhythm in the MAP, mainly 

due to a reduced MAP fall during the light-phase (Fig. 3.2.1.1A).  The 12-hour average of 

MAP during the light- and dark-phase showed that although the levels of MAP during 

both the light- and dark-phase were higher in the db/db mice than those of the control 

mice, the extent of increase from db/db mice compared to control mice in the light-

phase MAP was greater than that of the dark-phase MAP, resulting in diminished 

difference between the light- and dark-phase in the MAP of the db/db mice compared 

to that of the control mice (Fig. 3.2.1.1B). 



99 
 

The food intake was monitored at 1-min interval using the Bio-DAQ system. As 

illustrated in figure 3.2.1.1C and 3.2.1.1D, the food consumption in the control mice was 

concentrated during the dark-phase, while only sporadic consumption occurred during 

the light-phase; however, the food consumption in the db/db mice was distributed 

throughout the whole day. When calculating the accumulative food intake during the 

light- and dark-phase, the db/db mice consumed more food during both the light- and 

dark- phase than that of the control mice (Fig 3.2.1.1E). In addition, a significant higher 

percent of food out of the daily food intake was consumed during the light-phase in the 

db/db mice compared to that of the control mice (11.3±4.2% in the control mice vs. 

36.0±2.9% in the db/db mice, p<0.0001).  
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Figure 3.2.1.1 
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Figure 3.2.1.1 The disruption of blood pressure daily rhythm is associated with altered 

food intake rhythm in the db/db mice. (A) 2-hour average mean arterial pressure 

(MAP) in the control and db/db mice. The light grey box indicates the dark-phase. (B) 12-

hour average MAP during the light-phase (L) and dark-phase (D). (C and D) 

Representative figures of food intake collected at 1-min interval using the Bio-DAQ 

system in the control (C) and db/db (D) mice. (E) Food intake during the light- (L) and 

dark- (D) phase. (F) Percents of food intake during the light- (L) and dark- phase (D). n=4. 

**, p<0.01; ****, P<0.0001. 
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3.2.1.2 Inactive-time restricted feeding (ITRF) altered the BP daily rhythm in the 

healthy mice. 

To investigate whether the alternation of food intake daily rhythm contributes to the 

disruption of BP daily rhythm, we fed the healthy C57BL/6J mice, whose BP daily rhythm 

is normal, on an ITRF regimen, in which the food was only available between ZT2 and 

ZT12 (i.e., during the inactive-phase (light-phase)). As shown in figure 3.2.1.2A, the MAP 

daily rhythm was apparent in the healthy C57BL/6J mice at baseline. After 4 days of 

ITRF, although the MAP started to rise at the beginning of the dark-phase, it was not 

sustained at that level during the late dark-phase and dropped to the level that was 

similar to the light-phase MAP. In agreement with that, the dark-phase MAP after ITRF 

was significantly lower than that at baseline (Fig. 3.2.1.2B). Cosine analysis of the MAP 

oscillation revealed the amplitude and robustness were significantly decreased after 

ITRF (Fig. 3.2.1.2C and 3.2.1.2D). In addition, the acrophase of MAP oscillation was 

advanced (Fig. 3.2.1.2E). 

The effect of ITRF on the level and daily rhythm of SBP was similar to that on the MAP 

(Fig. 3.2.1.3A-3.2.1.3D), except the acrophase of SBP was not significantly altered after 

ITRF (Fig. 3.2.1.3E). Interestingly, besides the similar effects of ITRF on the level of dark-

phase and the oscillation of DBP as those of the SBP (Fig. 3.2.1.3F-3.2.1.3J), ITRF also 

significantly increased the DBP level during the light-phase (Fig. 3.2.1.3F and 3.2.1.3G).  
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Figure 3.2.1.2 
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Figure 3.2.1.2 Inactive-time restricted feeding (ITRF) altered the MAP daily rhythm in 

the healthy mice. (A) 2-hour average MAP in the C57BL/6J mice at baseline and after 4 

days of ITRF. The light grey box indicates the dark-phase. (B) 12-hour average MAP 

during the light-phase (L) and dark-phase (D).  (C-E) The amplitude (C), robustness (D) 

and acophase (E) of MAP oscillation. n=6. *, p<0.05; **, p<0.01; ***, p<0.001; ****, 

P<0.0001; ns, not significant.  
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Figure 3.2.1.3(1) 
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Figure 3.2.1.3(2) 

H  I  J 

 

 

 

 

 

 

Figure 3.2.1.3 ITRF altered the systolic blood pressure (SBP) and diastolic blood 

pressure (DBP) daily rhythm in the healthy mice. (A and F) 2-hour average SBP (A) and 

DBP (F) in the C57BL/6J mice at baseline and after 4 days of ITRF. The light grey box 

indicates the dark-phase. (B and G) 12-hour average SBP (B) and DBP (G) during the 

light-phase (L) and dark-phase (D).  (C-E and H-J) The amplitude, robustness and 

acrophase of SBP (C-E) and DBP (H-J) oscillation. n=6. *, p<0.05; **, p<0.01; ***, 

p<0.001; ****, p<0.0001; ns, not significant.  
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3.2.2 Determination of whether active-time restricted feeding (ATRF) restores BP 

circadian rhythm in diabetes.  

3.2.2.1 ATRF prevented the disruption of BP daily rhythm in the db/db mice  

To investigate whether ATRF prevents the disruption of BP daily rhythm, we fed the 

db/db and control db/+ mice on an ATRF regimen, in which the food was only available 

between ZT13 and ZT21 during the active-phase (dark-phase). The ATRF was started at 

the age of 6-weeks-old when the normal BP daily rhythm was preserved in the db/db 

mice, as the disruption of BP daily rhythm in the male db/db mice begins around 12-

weeks of age (Senador, Kanakamedala et al. 2009). As a control for the ATRF feeding 

paradigm, a group of age-matched db/db and control mice received ad libitum feeding 

(ALF). The BP was measured after 10-weeks of ATRF or ALF. As shown in Figure 3.2.2.1A 

and 3.2.2.1B, the ad libitum fed-control mice (Ctrl-ALF) exhibited 24-hour oscillation in 

mean arterial pressure (MAP): the MAP is lower during the light-phase than that during 

the dark-phase. In contrast, the ad libitum fed db/db mice (db/db-ALF) exhibited a non-

dipping BP pattern: the decrease of MAP during the light-phase was severely 

compromised when compared with the control mice. ATRF had no apparent effect on 

the MAP in the control mice (Ctrl-ATRF vs. Ctrl-ALF), but effectively prevented the 

disruption of BP daily rhythm in the db/db mice (db/db-ATRF vs. db/db-ALF). As shown 

in Figure 3.2.2.1C, the MAP was increased in the db/db-ALF mice compared to the 

control mice during both the light- and dark-phase, but the extent of increase was larger 

during the light-phase than during the dark-phase, which resulted in a non-dipping 
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phenotype in the db/db mice. The ATRF selectively reduced the MAP during the light-

phase thus preserved the normal MAP dipping in the db/db-ATRF mice (Fig. 3.2.2.1C).  

Cosine analysis of the MAP daily oscillation revealed that the oscillation amplitude (Fig. 

3.2.2.1D) and robustness (Fig. 3.2.2.1E) were significantly decreased in the db/db-ALF 

mice compared to the Ctrl-ALF mice. Importantly, the ATRF fed db/db mice maintained 

near normal oscillation amplitude and robustness as in the control mice (Fig. 3.2.2.1D 

and 3.2.2.1E). In contrast, the oscillation acrophase was not significantly altered in the 

db/db-ALF mice and ATRF did not modify it significantly (Fig. 3.2.2.1F).  

ATRF had similar effects on the daily oscillations of systolic blood pressure (SBP) (Fig. 

3.2.2.2A-3.2.2.2E) and diastolic blood pressure (DBP) (Fig. 3.2.2.2F-3.2.2.2J) as observed 

in the MAP (Fig. 3.2.2.1).   
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Figure 3.2.2.1 Active-time restricted feeding (ATRF) prevented db/db mice from the 

disruption of mean arterial pressure (MAP) daily rhythm. (A) Continuous 72-hour MAP 

in the control and db/db mice with ad libitum feeding (ALF) or ATRF. The grey box 

indicates the dark-phase. (B) 2-hour average MAP in the control and db/db mice with 

ALF or ATRF. (C) 12-hour average MAP during the light-phase (L) and dark-phase (D).  (D-

F) The amplitude (D), robustness (E) and acrophase (F) of MAP oscillation. Ctrl-ALF: 

n=13; Ctrl-ATRF: n=12; db/db-ALF: n=12; db/db-ATRF: n=5. *, p<0.05; **, p<0.01; ***, 

p<0.001; ****, p<0.0001; ns, not significant.  
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Figure 3.2.2.2(1) 
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Figure 3.2.2.2(2) 
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Figure 3.2.2.2 ATRF prevented the disruption of systolic blood pressure (SBP) and 

diastolic blood pressure (DBP) daily rhythm in the db/db mice. (A and F) 2-hour 

average SBP (A) and DBP (F) in the control and db/db mice with ALF or ATRF. The grey 

box indicates the dark-phase. (B and G) 12-hour average SBP (B) and DBP (G) during the 

light-phase (L) and dark-phase (D).  (C-E and H-J) The amplitude, robustness and 

acrophase of SBP (C-E) and DBP (H-J) oscillation. Ctrl-ALF: n=13; Ctrl-ATRF: n=12; db/db-

ALF: n=12; db/db-ATRF: n=5. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001; ns, 

not significant.  
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3.2.2.2 ATRF restored the already disrupted BP daily rhythm in the db/db mice  

To test whether ATRF can restore the already disrupted BP daily rhythm, which is highly 

relevant to human situations, we administered ATRF to 16-week-old db/db mice when 

their BP daily rhythm is severely disrupted. BP was recorded at baseline with ALF and 

after 9 days of ATRF. As expected, db/db mice lost the normal MAP daily oscillation at 

baseline (Fig. 3.2.2.3A and 3.2.2.3B). Importantly, ATRF restored the MAP daily 

oscillation mainly by reducing the light-phase MAP (Fig. 3.2.2.3A and 3.2.2.3B). Cosine 

analysis demonstrated that the amplitude (Fig. 3.2.2.3C) and robustness (Fig. 3.2.2.3D) 

of the db/db mice MAP oscillation were increased after ATRF. Moreover, ATRF had 

similar effects on the SBP (Fig. 3.2.2.4A-3.2.2.4E) and DBP (Fig. 3.2.2.4F-3.2.2.4J) as that 

on the MAP (Fig. 3.2.2.3). 
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Figure 3.2.2.3 

A    B 
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Figure 3.2.2.3 ATRF restored the disrupted MAP daily rhythm in the db/db mice. (A) 2-

hour average MAP in the db/db mice at baseline and after 9 days of ATRF. (B) 12-hour 

average MAP during the light-phase (L) and dark-phase (D).  (C-E) The amplitude (C), 

robustness (D) and acrophase (E) of MAP oscillation. n=5. *, p<0.05; **, p<0.01; ***, 

p<0.001; ****, P<0.0001; ns, not significant.  
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Figure 3.2.2.4(1) 
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Figure 3.2.2.4(2) 
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Figure 3.2.2.4 ATRF restored the disrupted daily rhythms of SBP and DBP in the db/db 

mice. (A and F) 2-hour average SBP (A) and DBP (F) in the db/db mice at baseline and 

after 9 days of ATRF. (B and G) 12-hour average SBP (B) and DBP (G) during the light-

phase (L) and dark-phase (D).  (C-E and H-J) The amplitude, robustness and acrophase of 

SBP (C-E) and DBP (H-J) oscillations. n=5. *, p<0.05; ****, p<0.0001; ns, not significant.  
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3.2.2.3 The effects of ATRF on the diabetic symptoms of the db/db mice  

To investigate that in addition to the striking benefits in the BP daily rhythm, whether 

the ATRF improves the diabetic symptoms in the db/db mice, we measured the body 

weight, lean and fat body mass, blood glucose at ZT 13 and ZT 21 in the four groups of 

mice who started ATRF at 6-weeks of age. Neither the body weight (Fig. 3.2.2.5A) nor 

the lean- or fat-body mass (Fig. 3.2.2.5B) were altered by the 10-week-long ATRF when 

compared to the ALF fed groups. Of note, the body weight and fat mass remained 

significantly higher in the db/db than in the control mice throughout the entire feeding 

regimen (Fig. 3.2.2.5A and 3.2.2.5B).  When measured at ZT13, a time point immediately 

after the fasting period for the ATRF fed groups; the blood glucose levels were 

significantly lower in the db/db-ATRF vs. db/db-ALF and in the Ctrl-ATRF vs. Ctrl-ALF 

groups respectively (Fig. 3.2.2.5C). In contrast, when measured at ZT21, a time point 

immediately after the active-phase feeding in the ATRF fed mice, the blood glucose was 

not different between the db/db-ATRF vs. db/db-ALF mice and between the control-

ATRF vs. control-ALF mice respectively (Fig. 3.2.2.5D). Of note, the blood glucose 

remained at much higher levels in the db/db mice than in the control mice under both 

ATRF and ALF regimens (Fig. 3.2.2.5C and 3.2.2.5D).  

We also investigated whether the recovery of BP daily rhythm in 16-week-old mice by 

ATRF is associated with improvements of body weight, body composition and blood 

glucose, insulin sensitivity, plasma insulin and non-esterified fatty acid (NEFA) and total 

cholesterol. The results demonstrated no significant improvements in the body weight, 



115 
 

body composition or fasting and non-fasting blood glucose (Fig. 3.2.2.5E-3.2.2.5H). For 

insulin sentivity, we carried out an intraperitoneal insulin tolerance test at ZT1 after 4-

hour fasting. While insulin induced prompt blood glucose decrease in the control mice, 

there was a minimal decrease in the blood glucose of the db/db mice, indicating a 

severe insulin resistance in the db/db mice (Fig. 3.2.2.5I and 3.2.2.5J). Importantly, ATRF 

did not improve the insulin sensitivity in the db/db or the control mice (Fig. 3.2.2.5I and 

3.2.2.5J). Plasma insulin, NEFA and total cholesterol were significantly higher in the 

db/db-ALF than in the Ctrl-ALF mice (Fig. 3.2.2.5K-3.2.2.5M). While ATRF significantly 

decreased plasma insulin and total cholesterol levels in the control mice (Ctrl-ALF vs. 

Ctrl-ATRF), it had no significant effects on the plasma NEFA levels in either the control or 

db/db mice, nor on insulin or total cholesterol levels in the db/db mice (db/db-ALF vs. 

db/db-ATRF) (Fig. 3.2.2.5K-3.2.2.5M).  
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Figure 3.2.2.5(1) 
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Figure 3.2.2.5(2) 
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Figure 3.2.2.5(3) 
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Figure 3.2.2.5 The effects of ATRF on the diabetic symptoms of the db/db mice. (A-D) 
data collection in the mice started with ATRF at 6-week-old. (A) Body weight; Ctrl-ALF: 
n=10; Ctrl-ATRF: n=14; db/db-ALF: n=8; db/db-ATRF; n=17. (B) Body composition; n=5 in 
each group; (C and D) Blood glucose at ZT13 (C) and at ZT21 (D); n=7-10. (E-M) data 
collected in the mice started with ATRF at 16-week-old. (E) Body weight; n=8-10; (F) 
Body composition; n=8-10; (G and H) Non-fasting blood glucose (G) and fasting blood 
glucose (H) measured at ZT21; Ctrl-ALF: n=3-8; Ctrl-ATRF: n=12; db/db groups: n=5-8; (I) 
Insulin resistance test was performed at ZT1 by i.p. injection of 1 unit/kg insulin after 4-
hour fasting and the blood glucose was measured at indicated times; n=7-9; (J) Areas 
under the curve of insulin resistance test; (K-M) Plasma insulin (K), non-esterified fatty 
acid (NEFA, L) and cholesterol (M); control groups: n=4-7; db/db groups: n=3-5. *, 
p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001; ns, not significant. 
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3.2.2.4 ATRF improved the daily rhythm of energy metabolism in the db/db mice 

We had previously shown that the diabetic mice had disrupted daily rhythm in the 

energy metabolism (Fig 3.1.9 and 3.1.10).  It is not known, however, whether ATRF 

improves the oscillation in the energy metabolism of the db/db mice. The respiratory 

exchange ratio (RER) and energy expenditure (EE) were recorded using indirect 

calorimetry in the four groups of mice which started ATRF at 6-weeks of age. The results 

demonstrated that the daily rhythm of RER seen in the Ctrl-ALF mice was lost in the 

db/db-ALF mice (Fig. 3.2.2.6A). ATRF induced an even more robust RER oscillation in the 

control mice by decreasing the light-phase RER and increasing the dark-phase RER (Fig. 

3.2.2.6A and 3.2.2.6B) and established a modest RER oscillation in the db/db mice by 

decreasing the light-phase RER (Fig. 3.2.2.6A and 3.2.2.6B). Of note, the average RER 

during the light- and dark-phase and 24-hour day was lower in the db/db mice 

compared with the control mice in both feeding regimens (Fig. 3.2.2.6C and 3.2.2.6D). In 

agreement with the observed oscillation, cosine analysis revealed that the RER 

oscillation amplitude (Fig. 3.2.2.6E) and robustness (Fig. 3.2.2.6F) were significantly 

decreased in the db/db-ALF mice compared with the Ctrl-ALF mice. ATRF increased the 

oscillation amplitude and robustness in both the control and db/db mice (Fig. 3.2.2.6E 

and 3.2.2.6F). In addition, the delayed acrophase of RER oscillation in the db/db mice 

was corrected with ATRF (Fig. 3.2.2.6G). Regarding the EE, ATRF significantly decreased 

the mean EE in the db/db mice during the light phase (Fig. 3.2.2.7B and 3.2.2.7C) and 

consequently the 24-hour energy expenditure (Fig. 3.2.2.7D). In contrast, ATRF did not 

significantly modify the EE in the control mice (Fig. 3.2.2.7A to 3.2.2.7D). Cosine analysis 
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revealed that ATRF significantly enhanced the daily oscillations of EE amplitude (Fig. 

3.2.2.7E) and robustness (Fig. 3.2.2.7F) in both the control and db/db mice. In addition, 

ATRF corrected the delayed acrophase in the daily oscillation of EE in the db/db mice 

(Fig. 3.2.2.7G).  
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Figure 3.2.2.6 
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Figure 3.2.2.6 ATRF improved the daily rhythm of respiratory exchange ratio (RER) in 
the db/db mice. RER was recorded by indirect calorimetry. (A and B) The 72-hour 
recording of the RER in the control and db/db mice with ALF (A) or ATRF (B). The light 
grey box indicates the dark-phase. (C) 12-hour average RER during the light-phase (L) 
and dark-phase (D).  (D) Daily RER. (E-G) The amplitude (E), robustness (F) and 
acrophase (G) of RER oscillation; control groups: n=10; db/db groups: n=5-6. *, p<0.05; 
**, p<0.01; ***, p<0.001; ****, P<0.0001; ns, not significant.   

0 12 24 36 48 60 72
0.7

0.8

0.9

1.0

1.1
db/db-ALF

Ctrl-ALF

Time (hour)

R
e

s
p

ir
a
to

ry
 E

xc
h
a
n
g

e

R
a
tio

 (
V

C
O

2
/V

O
2
)

Interaction

Time

Feeding

****

****

****

Time (hour)

R
e

s
p

ir
a
to

ry
 E

xc
h
a
n
g

e

R
a
tio

 (
V

C
O

2
/V

O
2
)

0 12 24 36 48 60 72
0.6

0.8

1.0

1.2

Ctrl-ATRF

db/db-ATRF

Interaction

Time

Feeding

****

****

****

R
e

s
p

ir
a
to

ry
 E

xc
h
a
n
g

e

R
a
tio

 (
V

C
O

2
/V

O
2
)

0.6

0.8

1.0

1.2

****

ALF ATRF

Ctrl db/db

****

****
****

L   D       L   D            L   D      L   D

Ctrl db/db

A
c
ro

p
h
a
s
e

 (
Z

T
 t
im

e
)

0

5

10

15

20

25

ALF ATRF

**

Ctrl db/db   Ctrl db/db

ns

***
ns

R
o

b
u
s
tn

e
s
s
 (

%
)

0

20

40

60

80

100

ALF ATRF

****

Ctrl db/db   Ctrl db/db

****

****
**

R
e

s
p

ir
a
to

ry
 E

xc
h
a
n
g

e

R
a
tio

 (
V

C
O

2
/V

O
2
)

0.0

0.4

0.8

1.2
***

Ctrl db/db Ctrl db/db

ALF ATRF

***

ns
ns

A
m

p
lit

u
d

e
 (

V
C

O
2
/V

O
2

)

0.00

0.05

0.10

0.15

0.20

ALF ATRF

****

Ctrl db/db   Ctrl db/db

****

****
****



122 
 

Figure 3.2.2.7 
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Figure 3.2.2.7 ATRF improved the daily rhythm of energy expenditure (EE) in the db/db 
mice. EE was recorded by indirect calorimetry. (A and B) The 72-hour recording of the 
EE in the control and db/db mice with ALF (A) or ATRF (B). The light grey box indicates 
the dark-phase. (C) 12-hour average EE during the light-phase (L) and dark-phase (D). (D) 
Daily EE. (E-G) The amplitude (E), robustness (F) and acrophase (G) of EE oscillation; 
control groups: n=10; db/db groups: n=5-6. *, p<0.05; **, p<0.01; ***, p<0.001; ****, 
P<0.0001; ns, not significant.   
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3.2.3 Exploration of possible mechanisms underlying ATRF initiated protection of BP 

circadian rhythm in the db/db mice.  

3.2.3.1 ATRF improved the daily rhythms in the sleep and locomotor activity 

Since the daily cycles of sleep/wake and activity/rest significantly influence BP daily 

oscillation; we monitored the effects of ATRF on these behaviors. As shown in Fig. 

3.2.3.1A and 3.2.3.1B, ALF-fed control mice slept about 65% of the time during the light-

phase and 25% of the time during the dark-phase.  ATRF did not significantly modify the 

sleep time distribution in the control mice. In contrast, ALF-fed mice slept significantly 

less (~55%) during the light-phase and more (~37%) during the dark-phase sleep 

compared with the ALF-fed control mice (Fig. 3.2.3.1A and 3.2.3.1B). Importantly, ATRF 

significantly increased the sleep time during the light-phase and significantly decreased 

the sleep during the dark-phase, resulting in a restoration of the sleep time distribution 

during the light- and dark-phase similar to the control mice (Fig. 3.2.3.1A and 3.2.3.1B). 

Interestingly, there is no difference in the total daily sleeping time between the control 

and db/db mice (Fig. 3.2.3.1C). To investigate the sleep quality, we determined the the 

sleep bout length during the light- and dark-phase. In both the db/db and control mice, 

the sleep bout length was longer during the light-phase than during the dark-phase (Fig. 

3.2.3.1D and 3.2.3.1E). Interestingly, while ATRF did not alter the sleep bout length 

during the dark-phase in either the db/db and control mice, ATRF significantly increased 

the sleep bout length during the light phase starting on the second day of ATRF and 

reached a plateau around the third day of ATRF (Fig. 3.2.3.1D).  
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With ALF, the daily rhythms in locomotor activity in the control mice, as demonstrated 

in Fig. 3.2.3.2A, were lost in the db/db mice (Fig. 3.2.3.2B). ATRF significantly decreased 

the locomotor activity during the light-phase and significantly increased the locomotor 

activity during the dark-phase. ATRF thus restored a light-dark phase locomotor activity 

difference in the db/db-ATRF group (Fig. 3.2.3.2C) without altering the mean locomotor 

activity during the 24-hour day (Fig. 3.2.3.2D). Surprisingly, ATRF also significantly 

increased the locomotor activity in the control mice during the dark-phase (Fig. 

3.2.3.2C), which resulted in an increase in the mean locomotor activity during the 24-

hour day in the control mice (Fig. 3.2.3.2D). Analysis of the daily locomotor activity 

oscillation demonstrated that, in the db/db mice, ATRF significantly enhanced the daily 

activity oscillation robustness (Fig. 3.2.3.2F) and forward shifted the acrophase (Fig. 

3.2.3.2G) without changing the amplitude (Fig. 3.2.3.2E). Interestingly, in control mice, 

ATRF significantly increased the daily oscillation amplitude (Fig. 3.2.3.2E) and robustness 

(Fig. 3.2.3.2F) without shifting the acrophase (Fig. 3.2.3.2G).  

The ATRF induced an increase in the sleep percentage and decrease in the locomotor 

activity during the light-phase, and had the opposite effects on the sleep percentage 

and locomotor activity during the dark-phase in the db/db mice; this shift likely 

contributed to the prevention/restoration of the BP daily rhythm in the db/db mice.  
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Figure 3.2.3.1(1) 
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Figure 3.2.3.1(2) 
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Figure 3.2.3.1 ATRF improved the daily rhythm of sleep time in the db/db mice. Sleep 
was monitored using the PiezoSleep system. (A and D) The time course of the 
percentage of sleep time (A) and sleep bout length (D) during the light- and dark-phase 
in the control (Ctrl) and db/db mice before and after ATRF. (B and E) The baseline and 
the average of day 3 to day 5 sleep time percentage (B) and sleep bout length (E) after 
ATRF during the light- and dark-phase. (C and F) The baseline and the average of day 3 
to day 5 sleep time percentage (C) and sleep bout length (F) after ATRF during the 24-
hour day. n=6-8. *, p<0.05; ***, p<0.001; ****, P<0.0001; ns, not significant. 
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Figure 3.2.3.2 
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Figure 3.2.3.2 ATRF improved the daily rhythm of locomotor activity in the db/db 
mice. The locomotor activity was recorded by indirect calorimetry. (A and B) The 72-
hour recording of the locomotor activity in the control (A) and db/db (B) mice with ALF 
or ATRF. The light grey box indicates the dark-phase. (C) 12-hour average locomotor 
activity during the light-phase (L) and dark-phase (D). (D) Daily locomotor activity. (E-G) 
The amplitude (E), robustness (F) and acrophase (G) of locomotor activity oscillation; 
control groups: n=4-5; db/db groups: n=3. *, p<0.05; **, p<0.01; ***, p<0.001; ****, 
P<0.0001; ns, not significant.  
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3.2.3.2 The effects of ATRF on the BP-regulatory hormones 

The BP-regulatory hormones play an important role in the BP homeostasis. We first 

explored the renin-angiotensin system (RAS) by determining the mRNA levels in the four 

groups of mice (Ctrl-ALF; db/db-ALF; Ctrl-ATRF and db/db-ATRF) at 6-hour intervals of 

the following genes: angiotensinegin [Fig. 3.2.3.4A (liver) and Fig. 3.2.3.4B (kidney)], 

renin (Fig. 3.2.3.4C, kidney), angiotensin converting enzyme [Fig. 3.2.3.4D (ACE, kidney), 

Fig. 3.2.3.4E (ACE2, kidney) and Fig. 3.2.3.4F (ACE/ACE2, kidney)], angiotensin II receptor 

1a [Fig. 3.2.3.4G (kidney) and Fig. 3.2.3.4H (and renal gland)]. The results demonstrated 

that the kidney ACE was significantly diminished (Fig. 3.2.3.4D) while the kidney 

angiotensinogen (Fig. 3.2.3.4B) was significantly increased in the db/db mice when 

compared with that in the control mice in all four time points of the day.  However, no 

dramatic effects were observed by ATRF in either the control or the db/db mice, 

suggesting the RAS does not play a critical role in the ATRF initiated protection of BP 

daily rhythm.  

We then measured three hormones that are important for BP regulation: aldosterone, 

corticosterone, and epinephrine in urine samples collected every 6 hours from the 

db/db-ALF and db/db-ATRF groups. The results showed that in the db/db-ALF mice, all 

three hormones retained the time-of-day variations with a peak at the sample collected 

between ZT12-18 (Fig. 3.2.3.5A-3.2.3.5C). ATRF significantly improved the time-of-day 

variation by decreasing the aldosterone (Fig. 3.2.3.5A) and corticosterone (Fig. 3.2.3.5B) 

at the ZT6-12 sample and by enhancing the epinephrine (Fig. 3.2.3.5C) at the ZT12-18 
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sample. While these improvements of the time-of-day variations in humoral factors may 

participate in the protective effects of ATRF on the BP daily oscillation, additional factors 

are likely involved for the striking effective protection. 
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Figure 3.2.3.4 
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Figure 3.2.3.4 ATRF had no effect on the renin-angiotensin-system (RAS). Control and 
db/db mice with ALF or ATRF were euthanized at ZT5, ZT11, ZT17 and ZT23 and the 
time-of-day mRNA expression of RAS components were detected by real-time PCR. (A 
and B) Agt in the liver (A) and kidney (B). (C-F) Renin (C), Ace (D), Ace2 (E) and Ace/Ace2 
ratio (F) in the kidney. (G and H) At1a in the kidney (G) and adrenal gland (H). Agt: 
angiotensinogen; Ace: angiotensin-converting enzyme; At1a: angiotensin II receptor type 
1a. At each time point, Ctrl-ALF: n=6-7; Ctrl-ATRF: n=4-5; db/db-ALF: n=4-5, db/db-ATRF: 
n=3-5. *, p<0.05; **, p<0.01; ***, p<0.001; ns, not significant. 
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Figure 3.2.3.5 
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Figure 3.2.3.5 ATRF improved the time-of-day variations in the urinary excretion of 
aldosterone, corticosterone and epinephrine. Urine was collected every 6 hours at ZT6, 
ZT12, ZT18 and ZT0 from the db/db-ALF and db/db-ATRF mice. The urinary contents of 
aldosterone (A), corticosterone (B) and epinephrine (C) were calculated by the 
concentration times the urine volume. n=4-5. *, p<0.05; **, p<0.01. 
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3.2.3.3 The autonomic nervous system (ANS) mediates, at least in part, the protective 

effects of ATRF on BP daily rhythm 

We next investigated the ANS as it is the prominent regulator of the BP circadian 

rhythm. Several approaches were employed to investigate the involvement of the ANS. 

Firstly, we determined the circadian rhythm of heart rate (HR) as the HR is primarly 

determined by the ANS. As shown in Fig. 3.2.3.6A and 3.2.3.6B, in mice that started the 

ATRF regimen at 6-weeks-old, the ALF-fed db/db mice had a similar HR oscillation as the 

ALF-fed control mice. Interestingly, ATRF had no effect on the light-phase HR in the 

control mice (Ctrl-ALF vs. Ctrl-ATRF), but dramatically decreased the light-phase HR in 

the db/db mice (db/db-ALF vs. db/db-ATRF)(Fig. 3.2.3.6A and 3.2.3.6B). Cosine analysis 

revealed the amplitude and robustness of the HR oscillation were significantly increased 

in the db/db-ATRF mice compared to the db/db-ALF mice (Fig. 3.2.3.6C and 3.2.3.6D). In 

addition, the HR oscillation amplitude of the db/db-ATRF mice was even greater than 

the Ctrl-ATRF mice (Fig. 3.2.3.6C). Similar effects of ATRF on the HR were observed in 

the db/db mice started on the ATRF regimen at 16-weeks-old (Fig. 3.2.3.7).  

Secondly, we calculated the spontanous baroreflex sensitivity (BRS) across the 24-hour 

day in the consious and free-moving mice using the sequence method (Di Rienzo, Parati 

et al. 2001) . As shown in Fig. 3.2.3.8A, in the Ctrl-ALF group, there was a time-of-day 

variation in the BRS, as we and others have reported (Hossmann, Fitzgerald et al. 1980, 

Di Rienzo, Parati et al. 2001, Xie, Su et al. 2015). Such variation was abolished in the 

db/db-ALF group (Fig. 3.2.3.8A). ATRF induced the time-of-day variation of BRS in the 



133 
 

db/db mice that were on the ATRF regimen at both 6-weeks-old (Fig. 3.2.3.8B) and 16-

weeks-old (Fig. 3.2.3.8C).  

Thirdly, we determined the heart rate variability (HRV) across the 24-hour day as HRV is 

considered as an indication of autonomic function in some studies. The HRV was 

calculated by frequency domain and time domain. For frequency domian, there are 

inconsistent cut-offs of the low frequency (LF) and high frequency (HF) ranges for mice 

between different literatures. We chose the cut-off at 0.15-0.6Hz for the LF, as 

optimized by (Baudrie, Laude et al. 2007). The HF cut-off we used was 1.5-4Hz since 

Thireau et al found this cut-off allows for a better evaluation of parasympathetic 

modulation in mice (Thireau, Zhang et al. 2008). We first used atropine, a muscarinic 

receptor antagonist that inhibits parasympathetic nervous system (PNS) and 

metoprolol, a β1-adrenergic receptor antagonist that inhibits sympathetic nervous 

system (SNS) function to the heart, to test the cut-offs of the LF and HF. We found that 

when the cut-off was defined at 0.15-0.6Hz for the LF and 1.5-4Hz for the HF, atropine 

decreased both the LF and HF (Fig. 3.2.3.9A) and metoprolol only decreased the LF (Fig. 

3.2.3.9B). This is consistent with the indications of LF and HF in humans, that the LF is 

determined by both the SNS and PNS, and the HF is dominated by the PNS (Draghici and 

Taylor 2016). Next we calculated the hourly LF and HF using the above cut-offs. As 

shown in Fig. 3.2.3.10A and 3.2.3.10C, there were time-of-day variations in both the LF 

and HF in the ALF-fed control mice: both the LF and HF tended to be higher during the 

light-phase and lower during the dark-phase; however, such variations were lost in the 

ALF-fed db/db mice. When the ATRF was started at 6-weeks-old, the ATRF increased the 
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light-phase LF and HF in the db/db mice, resulting in the time-of-day variations in the LF 

and HF in the db/db mice that were equivalent to those of the control mice (Fig. 

3.2.3.10B and 3.2.3.10D). The LF/HF was lower in the db/db-ALF mice than in the Ctrl-

ALF mice (Fig. 3.2.3.10E), and the difference persisted after ATRF (Fig. 3.2.3.10F). For the 

time domain, the root mean square of successive RR interval differences (rMSSD), which 

is demonstrated to be associated with HF, exhibited similar trend and response to ATRF 

as the HF of the db/db mice (Fig. 3.2.3.10G and 3.2.3.10H). Equivalent effects of ATRF on 

the HRV were observed in the db/db mice started on the ATRF regimen at 16-weeks-old 

(Fig. 3.2.3.11). These results suggest that at least, the day and night difference in the 

PNS activity was restored in the db/db mice when they were on the ATRF regimen. 

Fourthly, we measured the sympathetic neurotransmitter norepinephrine (NE) and its 

metabolite normetanephrine in the 6-hour urine samples collected across a 24-hour 

day. As shown in Fig. 3.2.3.12A and 3.2.3.12B, no time-of-day variations in the NE and 

normetanephrine were detected in the ad libitum fed db/db mice (p>0.05 by JTK-

CYCLE). The JTK-CYCLE is a algorithm that can distinguishes between rhythmic and non-

rhytmic transcripts (Hughes, Hogenesch et al. 2010). The ATRF effectively recovered the 

time-of-day variations of the urinary NE and normetanephrine mostly by decreasing 

their excretion during the light-phase. The correlation between the decrease in urinary 

excretion of sympathetic transmitter and the decrease in BP during the light-phase 

suggest that modulation of sympathetic tone is involved in the ATRF’s protection of the 

BP daily oscillation. The change in the urinary excretion of NE is unlikely due to the 

alternations of the biosynthesis and/or the disposition of NE, as the mRNA expression of 
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adrenal tyrosine hydroxylase (Th) and dopamine beta (β)-hydroxylase (Dbh), enzymes 

resposible for the NE biosynthesis did not differ between the control and db/db mice 

with either ALF or ATRF (Fig. 3.2.3.13A and 3.2.3.13B). For the diposition of NE, the 

mRNA expression of the adrenal phenylethanolamine N-Methyltransferase (Pnmt), an 

enzyme that methylates NE to form epinephrine, was higher at ZT11 in db/db-ATRF mice 

compared with the db/db-ALF mice (Fig. 3.2.3.13C). However, the Pnmt expression was 

still at a high level at ZT5 and increased PNMT is shown to be associated with increased 

BP (Nguyen, Peltsch et al. 2009), therefore, the increase in the Pnmt expression unlikely 

accounts for the ATRF initiated BP decrease during the light-phase.  

Fifthly, to further explore a potential cause and effect relationship between the 

sympathetic activity and BP daily oscillation, we determined the extent of BP drop in 

response to the bloackade of sympathetic vascular function by α1 adrenergic receptor 

antagonist prazosin at ZT5 and ZT 17 respectively. As shown in Fig. 3.2.3.14A and 

3.2.3.14B, the control mice had higher BP at ZT17 than at ZT5; prazosin decreased the 

BP to similar levels. These data indicated a major role of higher sympathetic vascular 

tone underlying the higher BP during the dark-phase than during the light-phase in the 

control ALF-fed mice. In contrast, in the db/db-ALF mice, no difference in the BP was 

detected between ZT5 and ZT 17, and prazosin induced comparable extents of BP drop 

(Fig. 3.2.3.14C and 3.2.3.14D). Importantly, the ATRF restored the BP day and night 

difference in the db/db-ATRF mice and the prazosin decreased the BP to similar levels 

(Fig. 3.2.3.14E and 3.2.3.14F), indicating a prominent role of sympathetic vascular tone 

in the restoration of the BP difference between the light- and dark-phase.  
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Figure 3.2.3.6 

A   B 
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Figure 3.2.3.6 ATRF improved the heart rate (HR) oscillation in the db/db mice started 

on the ATRF regimen at 6-week-old. (A) 2-hour average HR in the control and db/db 

mice with ALF or ATRF. (B) 12-hour average HR during the light-phase (L) and dark-phase 

(D).  (C-E) The amplitude (C), robustness (D) and acrophase (E) of HR oscillation. Ctrl-

ALF: n=13; Ctrl-ATRF: n=12; db/db-ALF: n=12; db/db-ATRF: n=5. *, p<0.05; **, p<0.01; 

***, p<0.001; ****, p<0.0001; ns, not significant.  
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Figure 3.2.3.7 

A          B 
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Figure 3.2.3.7 ATRF improved the HR oscillation in the db/db mice started on the ATRF 

regimen at 16-week-old. (A) 2-hour average HR in the db/db mice at baseline and after 

9 days of ATRF. (B) 12-hour average HR during the light-phase (L) and dark-phase (D).  

(C-E) The amplitude (C), robustness (D) and acrophase (E) of HR oscillation. n=5. *, 

p<0.05; **, p<0.01; ***, p<0.001; ****, P<0.0001; ns, not significant.   

0 12 24 36 48 60 72
200

300

400

500

600

Baseline

ATRF

Time (Hour)

H
e
a
rt

 R
a
te

 (
b
e
a
ts

/m
in

)
Interaction

Feeding

Time

****

****

****

L D L D
0

200

400

600

H
e

a
rt

 R
a
te

 (
b

e
a
ts

/m
in

)

Baseline ATRF

***

****
*

A
m

p
lit

u
d

e
 (

b
e

a
ts

/m
in

)

B
as

el
in
e 

A
TR

F

0

20

40

60

80

100 ***

R
o

b
u
s
tn

e
s
s
 (

%
)

B
as

el
in
e

A
TR

F

0

20

40

60

80 **

A
c
ro

p
h
a
s
e

 (
Z

T
 t
im

e
)

B
as

el
in
e 

A
TR

F

0

5

10

15

20 ns



138 
 

Figure 3.2.3.8 

A    B 
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Figure 3.2.3.8 ATRF induced the time-of-day variation of baroreflex sensitivity (BRS) in 

the db/db mice. The hourly average BRS was calculated using the sequence method. (A) 

BRS in the Ctrl-ALF and the Ctrl-ATRF mice that started the ATRF regimen at 6-week-old. 

(B and C) BRS in the db/db mice that started the ATRF regimen at 6-week-old (B) and at 

16-week-old (C). Ctrl-ALF, n=4; db/db-ALF, n=10; Ctrl-ATRF, n=5; db/db-ATRF, n=6; 

baseline and ATRF, n=4. *, p<0.05; **, p<0.01; ****, P<0.0001; ns, not significant. 
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Figure 3.2.3.9 
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Figure 3.2.3.9 The effects of atropine and metoprolol on the low frequency (LF) and 

high frequency (HF) range of heart rate variability (HRV). (A) The LF and HF of HRV 

before and after i.p. injection of 1mg/kg atropine. (B) The LF and HF of HRV before and 

after i.p. injection of 4mg/kg metoprolol. The cut-off for the LF is 0.15-0.6Hz and for the 

HF is 1.5-4Hz. n=5-6. *, p<0.05; **, p<0.01; ****, P<0.0001; ns, not significant.  
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Figure 3.2.3.10(1) 
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Figure 3.2.3.10(2) 
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Figure 3.2.3.10 ATRF induced the time-of-day variations of the HRV in the db/db mice 

started on the ATRF regimen at 6-week-old. (A-B) LF of the control and db/db mice with 

ALF (A) or ATRF (B). (C-D) HF of the control and db/db mice with ALF (C) or ATRF (D). (E-

F) LF/HF of the control and db/db mice with ALF (E) or ATRF (F). (G-H) The rMSSD of the 

control and db/db mice with ALF (G) or ATRF (H). rMSSD: root mean square of 

successive RR interval differences. n=6-8. **, p<0.01; ***, P<0.001; ****, P<0.0001; ns, 

not significant. 
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Figure 3.2.3.11 
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Figure 3.2.3.11 ATRF induced the time-of-day variations of the HRV in the db/db mice 

started on the ATRF regimen at 16-week-old. (A to D) LF (A), HF (B), LF/HF (C) and 

rMSSD (D) of the db/db mice before and after 9 days of ATRF. rMSSD: root mean square 

of successive RR interval differences. n=3-4. **, p<0.01; ***, P<0.001; ****, P<0.0001; 

ns, not significant. 
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Figure 3.2.3.12 
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Figure 3.2.3.12 ATRF improved the time-of-day variations in the urinary excretion of 

norepinephrine (NE) and normetanephrine. Urine was collected every 6 hours at ZT6, 

ZT12, ZT18 and ZT0 from the db/db-ALF and db/db-ATRF mice. The urinary contents of 

NE (A) and normetanephrine (B) were calculated by the concentration times the urine 

volume. n=4-5. *, p<0.05; **, p<0.01. 
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Figure 3.2.3.13(1) 
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Figure 3.2.3.13 The effects of ATRF on the mRNA expression of the enzymes 

responsible for NE biosynthesis and disposition. Control and db/db mice with ALF or 

ATRF were euthanized at ZT5, ZT11, ZT17 and ZT23 and the time-of-day mRNA 

expressions of the enzymes responsible for NE biosynthesis and disposition were 

detected by real-time PCR. (A-F) The mRNA expressions of Th (A), Dbh (B), Pnmt (C), 

Comt (D), MaoA (E) and MaoB (F) in the adrenal gland. Th: tyrosine hydroxylase; Dbh: 

dopamine beta (β)-hydroxylase; Pnmt: phenylethanolamine N-methyltransferase; Comt: 

catechol-O-methyltransferase; MaoA and MaoB:  monoamine oxidase A and B. At each 

time point, Ctrl-ALF: n=6-7; Ctrl-ATRF: n=4-5; db/db-ALF: n=4-5, db/db-ATRF: n=3-5. *, 

p<0.05; **, p<0.01; ***, p<0.001; ns, not significant. 
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Figure 3.2.3.14 
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Figure 3.2.3.14. ATRF induced the day and night difference in prazosin induced BP 

reduction in the db/db mice. (A, C and E) The MAP response to prazosin (1mg/kg) i.p. 

injection at ZT5 and ZT17 in the control mice at baseline (A) and the db/db mice at 

baseline (C) and after ATRF (E). (B, D and F) Average peak response of MAP to prazosin 

injection at ZT5 and ZT17 in the control mice at baseline (B) and the db/db mice at 

baseline (D) and after ATRF (F). control-basal, n=8; db/db-basal, n=9; db/db-ATRF, n=4. 

*, p<0.05, **, p<0.01, ns, not significant. 
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3.2.4 Investigation of whether the clock genes participate in the ATRF initiated 

protection of BP circadian rhythm in the db/db mice. 

3.2.4.1 ATRF restored the clock gene Bmal1 mRNA daily oscillations in multiple tissues 

in the db/db mice.  

Clock genes are the molecular mechanisms underlying the intrinsic biological rhythms. 

We and others have demonstrated that the clock gene daily oscillations were altered in 

the db/db mice (Su, Xie et al. 2012). To investigate whether ATRF restores the daily 

oscillation of clock genes in the db/db mice, we determined the mRNA expressions of 

clock genes Bmal1, Clock, Per1, Per2, Cry1, Cry2, Rev-erbα and Rorc at ZT5, ZT11, ZT17 

and ZT23 in the liver, mesentery arteries (MA), kidney, heart and adrenal gland from the 

control and db/db mice fed ALF or ATRF. We found that the time-of-day expression of 

several clock genes showed tissue-dependent alternations in the db/db-ALF mice 

compared with the Ctrl-ALF mice (Fig 3.2.4.1-3.2.4.5). Moreover, ATRF recovered some 

of the altered clock genes in most of the tissues in the db/db-ATRF mice (Fig. 3.2.4.1-

3.2.4.5). Among all the clock genes investigated, Bmal1 mRNA showed the most 

consistent alterations in the db/db-ALF group and recovery in the db/db-ATRF group 

(Fig. 3.2.4.1A, 3.2.4.2A, 3.2.4.3A, 3.2.4.4A and 3.2.4.5A). The JTK cycle analysis showed 

the oscillations of Bmal1 mRNA expressions were retained in the db/db-ALF and –ATRF 

mice (P<0.05); however, the oscillation acrophase was shifted forward by 6.32 hours in 

liver, 3.78 hours in the MA, 5.13 hours in the kidney, 5.51 hours in the heart and 4.73 

hours in the adrenal gland in the db/db-ALF mice when compared with that in the Ctrl-
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ALF mice (Table 3.2.4.1). ATRF nearly completely shifted the acrophase phase back to 

control mice in all the tissues investigated (Table 3.2.4.1). Another consistent change in 

Bmal1 oscillation is the suppressed amplitudes of the oscillations, which are also nearly 

restored by ATRF (Table 3.2.4.1).  
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Figure 3.2.4.1 
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Figure 3.2.4.1 The mRNA expression of clock genes in the liver. Control and db/db mice 

with ALF or ATRF were euthanized at ZT5, ZT11, ZT17 and ZT23 and the time-of-day 

mRNA expressions of the clock genes were detected by real-time PCR. (A) Bmal1, (B) 

Clock, (C) Per1, (D) Per2, (E) Cry1, (F) Cry2, (G) Rev-erbα and (H) Rorc. At each time 

point, Ctrl-ALF: n=6-7; Ctrl-ATRF: n=4-5; db/db-ALF: n=4-5, db/db-ATRF: n=3-5. *, 

p<0.05; **, p<0.01; ***, p<0.001; ns, not significant. 
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Figure 3.2.4.2 
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Figure 3.2.4.2 The mRNA expression of clock genes in the mesentery arteries (MA). 

Control and db/db mice with ALF or ATRF were euthanized at ZT5, ZT11, ZT17 and ZT23 

and the time-of-day mRNA expressions of the clock genes were detected by real-time 

PCR. (A) Bmal1, (B) Clock, (C) Per1, (D) Per2, (E) Cry1, (F) Cry2, (G) Rev-erbα and (H) 

Rorc. At each time point, Ctrl-ALF: n=6-7; Ctrl-ATRF: n=4-5; db/db-ALF: n=4-5, db/db-

ATRF: n=3-5. *, p<0.05; **, p<0.01; ***, p<0.001; ns, not significant. 
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Figure 3.2.4.3 
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Figure 3.2.4.3 The mRNA expression of clock genes in the kidney. Control and db/db 

mice with ALF or ATRF were euthanized at ZT5, ZT11, ZT17 and ZT23 and the time-of-

day mRNA expressions of the clock genes were detected by real-time PCR. (A) Bmal1, 

(B) Clock, (C) Per1, (D) Per2, (E) Cry1, (F) Cry2, (G) Rev-erbα and (H) Rorc. At each time 

point, Ctrl-ALF: n=6-7; Ctrl-ATRF: n=4-5; db/db-ALF: n=4-5, db/db-ATRF: n=3-5. *, 

p<0.05; **, p<0.01; ***, p<0.001; ns, not significant. 
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Figure 3.2.4.4 
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Figure 3.2.4.4 The mRNA expression of clock genes in the heart. Control and db/db 

mice with ALF or ATRF were euthanized at ZT5, ZT11, ZT17 and ZT23 and the time-of-

day mRNA expressions of the clock genes were detected by real-time PCR. (A) Bmal1, 

(B) Clock, (C) Per1, (D) Per2, (E) Cry1, (F) Cry2, (G) Rev-erbα and (H) Rorc. At each time 

point, Ctrl-ALF: n=6-7; Ctrl-ATRF: n=4-5; db/db-ALF: n=4-5, db/db-ATRF: n=3-5. *, 

p<0.05; **, p<0.01; ***, p<0.001; ns, not significant. 
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Figure 3.2.4.5 
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Figure 3.2.4.5 The mRNA expression of clock genes in the adrenal gland. Control and 

db/db mice with ALF or ATRF were euthanized at ZT5, ZT11, ZT17 and ZT23 and the 

time-of-day mRNA expressions of the clock genes were detected by real-time PCR. (A) 

Bmal1, (B) Clock, (C) Per1, (D) Per2, (E) Cry1, (F) Cry2, (G) Rev-erbα and (H) Rorc. At each 

time point, Ctrl-ALF: n=6-7; Ctrl-ATRF: n=4-5; db/db-ALF: n=4-5, db/db-ATRF: n=3-5. *, 

p<0.05; **, p<0.01; ***, p<0.001; ns, not significant. 
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Table 3.2.4.1 ATRF recovered the amplitude and acrophase of Bmal1 mRNA time-of-

day expressions in multiple tissues. 

Tissue Groups Amplitude Acrophase ADJ.P 

Liver 

Ctrl-ALF 1.1153 23.08 1.32E-08 

Ctrl-ATRF 1.1393 23.06 9.94E-05 

db/db-ALF 0.9791 17.48 1.99E-06 

db/db-ATRF 1.6204 22.44 7.13E-06 

Mesentery 

Artery 

Ctrl-ALF 0.6011 1.4 5.80E-06 

Ctrl-ATRF 0.9758 0.81 4.85E-07 

db/db-ALF 0.375 21.62 0.013453 

db/db-ATRF 0.7463 0.4 9.94E-05 

Kidney 

Ctrl-ALF 2.0724 22.59 5.61E-09 

Ctrl-ATRF 2.0812 22.89 1.49E-05 

db/db-ALF 1.7639 17.46 0.000556 

db/db-ATRF 2.8298 22.23 5.55E-06 

Heart 

Ctrl-ALF 0.8144 0.91 1.43E-11 

Ctrl-ATRF 0.9091 0.64 3.73E-08 

db/db-ALF 0.5121 19.4 0.00265 

db/db-ATRF 0.9676 23.42 1.49E-05 

Adrenal gland 

Ctrl-ALF 4.0315 21.4 5.27E-11 

Ctrl-ATRF 4.0976 21.72 4.85E-07 

db/db-ALF 3.4306 16.67 0.000228 

db/db-ATRF 3.7691 20.64 0.015956 
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The amplitude, acrophase and ADJ.P of Bmal1 mRNA expressions in the liver, mesentery 

arteries, kidney, heart and adrenal gland.  
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3.2.4.2 Bmal1 is partially required for ATRF initiated protection of BP daily rhythm 

To further test whether the clock gene Bmal1 is required for the protection of BP daily 

rhythm by ATRF, we investigated the BP daily rhythm in an inducible global Bmal1 

knockout mouse model (iG-Bmal1-KO). As shown in Fig. 3.2.4.6A and 3.2.4.6B, the 

normal BP daily rhythm was abolished by global deletion of Bmal1, which is associated 

with a complete loss of food intake rhythm (Fig. 3.2.4.7). Imposing ATRF resulted in 

partial recovery of BP daily rhythm (Fig. 3.2.4.6A and 3.2.4.6B). Cosine analysis revealed 

the BP daily oscillation amplitude (Fig. 3.2.4.6C), robustness (Fig. 3.2.4.6D) and 

acrophase (Fig. 3.2.4.6E) in the iG-Bmal1-KO mice under ATRF condition remained 

significantly suppressed when compared with the control mice under ALF, indicating 

that Bmal1 is essential for the normal BP daily rhythm.  

Since the daily rhythm of locomotor acitivity was associtated with ATRF induced 

protection of BP oscillation, we tested the locomotor activity in the iG-Bmal1-KO mice 

before and after ATRF. As expected, the locomotor activity daily rhythm was abolished 

in the iG-Bmal1-KO-ALF mice; however, ATRF restored the oscillation almost completely 

(Fig. 3.2.4.8A and 3.2.4.8B). The locomotor activity oscillation amplitude (Fig. 3.2.4.8C) 

and robustness (Fig. 3.2.4.8D) were restored to the levels that are similar to the Flox 

mice, although there was still a shift in the acrophase (Fig. 3.2.4.8E). As ANS plays a 

critical role in ATRF induced protection of BP daily rhythm, we then tested whether the 

time-of-day variations in the HR, BRS and urinary NE excretion are recoved by ATRF in 

the iG-Bmal1-KO mice. As shown in Fig. 3.2.4.9A-3.2.4.9F, the deletion of Bmal1 
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abolished oscillations of HR (Fig. 3.2.4.9A-3.2.4.9E), BRS (Fig. 3.2.4.9F) and attenuated 

the day and night difference in the urinary NE excretion (Fig. 3.2.4.9G) in the iG-Bmal1-

KO-ALF mice. When the iG-Bmal1-KO mice were fed on the ATRF regimen, the 

oscillations of HR (Fig. 3.2.4.9A-3.2.4.9E) and BRS (Fig. 3.2.4.9F) were completely 

restored, except the overall level of HR was lower in the iG-Bmal1-KO-ATRF mice than 

the Flox-ALF mice (Fig. 3.2.4.9A and 3.2.4.9B). On the contrary, no significant difference 

of NE was found in the iG-Bmal1-KO mice between ALF and ATRF in either the light- or 

dark-phase (Fig. 3.2.4.9G).  
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Figure 3.2.4.6 
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Figure 3.2.4.6 ATRF partially restored the abolished MAP oscillation in the iG-Bmal1-

KO mice. (A) 2-hour average MAP in the Flox-ALF, iG-Bmal1-KO-ALF and iG-Bmal1-KO-

ATRF mice. (B) 12-hour average MAP during the light-phase (L) and dark-phase (D).  (C-

E) The amplitude (C), robustness (D) and acrophase (E) of MAP oscillation. n=12. **, 

p<0.01; ***, p<0.001; ****, P<0.0001; ns, not significant. 
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Figure 3.2.4.7 
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Figure 3.2.4.7 The daily rhythm in the food intake was disrupted in the iG-Bmal1-KO 

mice. (A and B) The daily rhythm of food intake measured using indirect calorimetry in 

the Flox-ALF (A) and iG-Bmal1-KO-ALF (B) mice. The grey box indicates the dark-phase. 

(C) 12-hour average food intake during the light- (L) and dark-phase (D). n=5-6. *, 

p<0.05; **, p<0.01; ***, p<0.001; ns, not significant.  
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Figure 3.2.4.8 
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Figure 3.2.4.8 ATRF completely restored the abolished locomotor activity oscillation in 

the iG-Bmal1-KO mice. (A) 2-hour average locomotor activity in the Flox-ALF, iG-Bmal1-

KO-ALF and iG-Bmal1-KO-ATRF mice. (B) 12-hour average locomotor activity during the 

light-phase (L) and dark-phase (D).  (C-E) The amplitude (C), robustness (D) and 

acrophase (E) of locomotor activity oscillation. n=12. *, p<0.05; **, p<0.01; ***, 

p<0.001; ****, P<0.0001; ns, not significant. 
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Figure 3.2.4.9 

A 

 

 

 

B       C      D 

  

 

 

 

E                F           G  

 

 

 

 

Figure 3.2.4.9 The effects of ATRF on the autonomic function in the iG-Bmal1-KO mice. 

(A) 2-hour average HR in the Flox-ALF, iG-Bmal1-KO-ALF and iG-Bmal1-KO-ATRF mice. 

(B) 12-hour average HR during the light-phase (L) and dark-phase (D).  (C-E) The 

amplitude (C), robustness (D) and acrophase (E) of HR oscillation. (F) The hourly BRS. (G) 

The urinary NE excretion during the light- (L) and dark-phase (D). n=6-12. *, p<0.05; **, 

p<0.01; ***, p<0.001; ****, P<0.0001; ns, not significant. 
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3.2.4.3 ATRF improves daily oscillations of RER and EE in mice lacking Bmal1. 

We have demonstrated that the oscillations of RER and EE in the db/db mice were 

improved with ATRF. To determine if the improvements were dependent upon the 

presence of require Bmal1, we monitored the RER and EE using indirect calorimetry 

system in Flox and iG-Bmal1-KO mice before and after ATRF. As shown in Fig. 3.2.4.10A, 

the RER daily oscillation was altered in the iG-Bmal1-KO-ALFmice with an increased 

light-phase RER (Fig. 3.2.4.10B). ATRF significantly improved the oscillation of RER in 

both the Flox-ATRF and iG-Bmal1-KO-ATRF mice (Fig. 3.2.4.10B). Interestingly, the 

oscillation of RER in iG-Bmal1-KO-ATRF mice is even more robust than the Flox-ATRF 

mice (Fig. 3.2.4.10B), which was reflected by greater amplitude in the iG-Bmal1-KO-

ATRF than Flox-ATRF mice (Fig. 3.2.4.10E). The advanced acrophase of RER oscillation in 

the iG-Bmal1-KO-ALF mice was corrected (Fig. 3.2.4.10G). Of note, the 24-h RER in the 

iG-Bmal1-KO mice was higher than the Flox mice in both feeding regimens (Fig. 

3.2.4.10D). Regarding EE, the deletion of Bmal1 altered the EE oscillation (Fig. 

3.2.4.11A), characterized by increased light-phase EE (Fig. 3.2.4.11C). ATRF increased EE 

oscillation in both the Flox and iG-Bmal1-KO mice (Fig. 3.2.4.11B). Cosinor analysis 

revealed the amplitude and robustness of EE oscillation was enhanced in both strains of 

mice after ATRF compared to ALF; however, the amplitude and robustness was still 

significantly lower in the iG-Bmal1-KO-ATRF mice than that of the Flox-ATRF mice (Fig. 

3.2.4.10E and F). The advanced acrophase was corrected in the iG-Bmal1-KO-ALF mice 

(Fig. 3.2.4.10G). No differences were found in 24-h EE between Flox and iG-Bmal1-KO 

mice with either ALF or ATRF (Fig. 3.2.4.10D). 
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Figure 3.2.4.10 
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Figure 3.2.4.10 ATRF drives robust daily rhythm of respiratory exchange ratio (RER) in 

the iG-Bmal1-KO mice. RER was recorded by indirect calorimetry. (A and B) The 72-hour 

recording of the RER in the Flox and iG-Bmal1-KO mice with ALF (A) or ATRF (B). The 

light grey box indicates the dark-phase. (C) 12-hour average RER during the light-phase 

(L) and dark-phase (D).  (D) Daily RER. (E-G) The amplitude (E), robustness (F) and 

acrophase (G) of RER oscillation; Flox groups: n=6; iG-Bmal1-KO groups: n=5. *, p<0.05; 

**, p<0.01; ***, p<0.001; ****, P<0.0001; ns, not significant.   
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Figure 3.2.4.11 
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Figure 3.2.4.11 ATRF improves the daily rhythm of energy expenditure (EE) in the iG-

Bmal1-KO mice. EE was recorded by indirect calorimetry. The plotted EE is normalized 

to lean mass in each mouse. (A and B) The 72-hour recording of the RER in the Flox and 

iG-Bmal1-KO mice with ALF (A) or ATRF (B). The light grey box indicates the dark-phase. 

(C) 12-hour average EE during the light-phase (L) and dark-phase (D).  (D) Daily EE. (E-G) 

The amplitude (E), robustness (F) and acrophase (G) of EE oscillation; Flox groups: n=6; 

iG-Bmal1-KO groups: n=5. *, p<0.05; **, p<0.01; ***, p<0.001; ****, P<0.0001; ns, not 

significant.   
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3.2.5 Determination of whether the 8-hour ATRF induced protection of BP daily 

rhythm is attributable to time-restriction or calorie-restriction. 

3.2.5.1 8-hour ATRF decreased total calorie intake in the db/db mice.   

When calculating the total food intake in the control and db/db mice on the ALF or ATRF 

regimens, we found the db/db-ALF mice consumed a significant greater amount of food 

than the Ctrl-ALF mice (Fig 3.2.5.1A). The 8-hour ATRF had no effect on the amount of 

daily food intake in the control mice (Ctrl-ALF vs. Ctrl-ATRF, Fig 3.2.5.1A); however, it 

significantly decreased the daily food consumption in the db/db mice (db/db-ALF vs. 

db/db-ATRF, Fig 3.2.5.1A). Since calorie restriction is known to be beneficial to the 

health (Heilbronn and Ravussin 2003), it is important to understand whether time-

restriction itself is able to induce the protective effects. 

3.2.5.2 The 12-hour ATRF restored the BP daily rhythm in the db/db mice without 

reducing calorie intake.  

In order to test whether time-restriction alone restores the BP daily rhythm in the db/db 

mice, we increased the food available time from 8-hour to 12-hour (this experiment was 

done by Wen Su). As shown in Fig. 3.2.5.1B, the food intake in the db/db mice with 12-

hour ATRF was comparable to that on the ALF regimen. Importantly, we found the 

disrupted BP daily rhythm in the db/db mice can be recovered with 12-hour ATRF (Fig. 

3.2.5.2, this experiment was done by Wen Su), indicating the time-restriction without 

reducing calorie intake is able to restore BP daily rhythm.  
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Figure 3.2.5.1 

A   B 

 

 

 

 

 

 

Figure 3.2.5.1 The daily food intake in the control and db/db mice with ALF or ATRF. 

(A) Daily food intake in the control and db/db mice with ALF or 8-hour ATRF. (B) Daily 

food intake in the control and db/db mice with ALF or 12-hour ATRF (done by Wen Su). 

n=5-10. ***, p<0.001; ****, P<0.0001; ns, not significant. 
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Figure 3.2.5.2 
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Figure 3.2.5.2 The 12-hour ATRF restored the BP daily rhythm in the db/db mice (done 

by Wen Su). (A) 2-hour average MAP in the control and db/db mice with ALF or 12hr-

ATRF. (C) 12-hour average MAP during the light-phase (L) and dark-phase (D).  (D-F) The 

amplitude (D), robustness (E) and acrophase (F) of MAP oscillation. n=5; db/db-ATRF: 

n=5. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001; ns, not significant.  
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3.2.6 Investigation of the effects of aldosterone and phenylephrine on the clock gene 

expression. 

3.2.6 Aldosterone induced time-dependent phase shift in Per2::luc expression in the 

aorta and mesentery artery explants.  

We have shown that the altered time-of-day expressions of clock genes mRNA were 

restored in the db/db mice with ATRF. However, the underlying mechanisms for this 

restoration are not clear. Although the ATRF improved the time-of-day variations in the 

urinary excretion of glucocorticoid (corticosterone), mineralocorticoid (aldosterone) and 

sympathetic transmitter (NE) in the db/db mice; and although glucocorticoid is a known 

factor to induce the phase shift of clock genes, it is not known whether the 

mineralocorticoid and sympathetic neurotransmitter also induce the phase shift of clock 

gene. To determine the effect of mineralocorticoid and sympathetic neurotransmitter 

on the clock gene, we treated the explants of aorta and mesentery arteries (MA) 

isolated from the mPer2Luc mice with 100nM aldosterone and 100nM phenylephrine 

(PE) at 3-hour interval across 24 hours and generated a phase response curve (PRC). We 

also treated the aorta and MA with 1nM dexamethasone as positive controls. As 

expected, dexamethasone induced a time-dependent phase shift of Per2::luc in the 

aorta and MA (Fig. 3.2.6A and 3.2.6B). In both the aorta and MA, the phase of Per2::luc 

advanced when the dexamethasone was added at 0-hour, 3-hour, and 21-hour relative 

to the Per2::luc peak, delayed at 6-hour, 9-hour and 12-hour and shifted relative less at 

15-hour and 18-hour (Fig. 3.2.6A and 3.2.6B). To our surprise, aldosterone also induced 
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a similar time-dependent phase shift as dexamethasone in the aorta and MA (Fig. 3.2.6C 

and 3.2.6D). However, the PE did not induce a clear PRC in either the aorta or MA (Fig. 

3.2.6E and 3.2.6F). 
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Figure 3.2.6 

A      B 
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Figure 3.2.6 The phase response curve (PRC) of dexamethasone, aldosterone and 

phenylephrine on the Per2::luc expression in the aorta and mesentery arteries (MA) 

explants. 1nM dexamethasone (Dex), 100Nm aldosterone (aldo) and phenylephrine (PE) 

was added at indicated times relative to the Per2::luc peak. (A and B) The PRC of dex on 

the aorta and MA. (C and D) The PRC of aldo on the aorta and MA. (E and F) The PRC of 

PE on the aorta and MA.  
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CHAPTER IV. GENERAL DISCUSSION 

4.1 Summary 

In project 1, we generated a novel type 2 diabetic db/db-mPer2Luc mouse model 

to explore the role of clock genes in the disruption of BP circadian rhythm in diabetes. 

Using this model, we found: 1) the db/db-mPer2Luc mice are obese, hyperglycemic, and 

glucose-intolerant and thus resemble type 2 diabetic patients; 2) the db/db-mPer2Luc 

mice are normotensive but exhibite a compromised BP daily rhythm, which is associated 

with the disruption of daily rhythms in baroreflex sensitivity, locomotor activity, and 

metabolism, but not heart rate or food and water intake; 3) a desynchrony of peripheral 

tissue oscillation is caused by various extents of phase advances of the mPer2 oscillation 

ex vivo of many tissues except the central SCN pacemarker; 4) the similar desynchrony 

of mPer2 phase is also observed in vivo in the kidney, liver, and submandibular gland.  

In project 2, we tested the effects of active-time restricted feeding on BP 

circadian rhythm to explore a potential theraputic strategy for the disrupted BP 

circadian rhythm in diabetes. The major findings are: 1) the disruption of BP daily 

rhythm is associated with altered food intake rhythm in the db/db mice; 2) inactive-time 

restricted feeding (ITRF) alters BP daily rhythm in the healthy C57BL/6J mice; 3) active-

time restricted feeding (ATRF) prevents and restores the disruption of BP daily rhythm in 

the db/db mice; 4) ATRF has minimal effects on body weight, body composition, blood 

glucose, plasma insulin and fatty acid, and insulin sensitivity in the db/db mice; 5) ATRF 

improves the rhythms of energy metabolism, sleep-wake cycle, BP-regulatory hormones 
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and of the autonomic nervous system in the db/db mice; 6) ATRF improves the time-of-

day variations in the mRNA expression of clock genes, especially Bmal1; 7) Bmal1 is 

partially required for ATRF to protect the BP circadian rhythm. 

4.2 The db/db-mPer2Luc mouse models 

The db/db mice have been used extensively for studying the pathogenesis of 

obesity and diabetes. Interestingly, the diabetic phenotype of db/db mice varies 

depending on the genetic background. The hyperglycemia is more severe when the 

leptin receptor mutation is expressed on a C57BL/KsJ background than on a C57BL/6J 

background (Leiter, Coleman et al. 1981). Probably because of its severe diabetic 

phenotype, the C57BL/KsJ-db/db mice are most commonly used. Interestingly, the 

db/db-mPer2Luc mice have significantly higher body weight than the age-matched 

C57BL/KsJ-db/db mice (65.72 ± 1.38 g vs. 47.07 ± 1.05 g; n=12; P<0.001). However, the 

hyperglycemia in the db/db-mPer2Luc mice is much less severe than that in the 

C57BL/KsJ-db/db mice (320.3 ± 18.46 mg/dl vs. 585.9 ± 9.163 mg/dl; n=12; P<0.001). 

These results suggest that while the C57BL/KsJ-db/db mice are more like the maturity-

onset condition of diabetic patients with obesity and marked hyperinsulinemia, while 

the db/db-mPer2Luc mice more closely resemble the C57BL/6J-db/db mice (Hummel, 

Coleman et al. 1972) and more closely mimic diabetic patients with obesity, moderate 

hyperglycemia, and glucose intolerance. 

In agreement with the severity of the diabetic phenotypes, the db/db-mPer2Luc 

mice are normotensive, which contrasts with the hypertensive C57BL/KsJ-db/db mice 
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(Park, Bivona et al. 2008, Su, Guo et al. 2008, Goncalves, Tank et al. 2009, Senador, 

Kanakamedala et al. 2009). Despite this difference, the db/db-mPer2Luc mice also 

exhibite non-dipping BP, similar to the C57BL/KsJ-db/db mice (Park, Bivona et al. 2008, 

Su, Guo et al. 2008, Goncalves, Tank et al. 2009, Senador, Kanakamedala et al. 2009), 

which is typified by a lack of BP fall during the inactive light phase.  

4.3 Mechanisms underlying diabetes induced BP circadian rhythm disruption 

As described in Chapter 1.2.4, the BP circadian rhythm is regulated by multiple 

factors. However, the mechanisms by which diabetes induces BP circadian rhythm 

disruption are not well understood. Using the db/db-mPer2Luc mice, we have 

demonstrated that, in the absence of any change in the phase of SCN, the phase of the 

mPer2 protein daily oscillation was advanced to various extents in a tissue-specific 

manner in peripheral tissues.  This finding was revealed by monitoring mPer2 protein 

oscillation in real-time in our novel db/db-mPer2Luc mice. In agreement with the 

important role of Bmal1 in the renal, smooth muscle, and fat tissues in the regulation of 

BP rhythm under physiological conditions (Tokonami, Mordasini et al. 2014, Xie, Su et al. 

2015, Chang, Xiong et al. 2018), we found that the phase of mPer2 protein oscillation 

was advanced in the WAT, kidney, MA, and aorta from the db/db-mPer2Luc mice to 4.6, 

2.21, 1.71, and 0.99 hours, respectively. These results are also consistent with previous 

studies reporting mPer2 mRNA daily oscillation was altered in these tissues from db/db 

mice (Su, Guo et al. 2008, Caton, Kieswich et al. 2011, Su, Xie et al. 2012, 

Nernpermpisooth, Qiu et al. 2015). In contrast, it was surprising that the phase of mPer2 

protein daily oscillation in the adrenal gland, an important source of hormones that 
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regulate the BP circadian rhythm, was not significantly changed in the db/db-mPer2Luc 

mice relative to control mice. It was also surprising that the phase of mPer2 protein 

daily oscillation in the thymus, an important organ that produces T lymphocytes, was 

advanced up to 4.23 hours. This result is consistent with a previous report that T 

lymphocytes play a critical role in angiotensin II-induced hypertension (Guzik, Hoch et al. 

2007), and suggests that clock genes in T lymphocytes may be crucially involved in the 

disruption of the BP circadian rhythm in diabetes.  

It has been long believed that the BP circadian rhythm, just like other 

physiological and behavioral circadian rhythms, is mostly controlled by the master 

pacemaker in the SCN. However, the current study demonstrated that the phase of 

mPer2 protein daily oscillation was not significantly altered in the SCN tissue from the 

db/db-mPer2Luc mice compared to controls. These results confirm previous reports that 

there is little or no change of the SCN mPer2 mRNA daily oscillation in db/db mice 

(Kudo, Akiyama et al. 2004, Nernpermpisooth, Qiu et al. 2015, Grosbellet, Dumont et al. 

2016). These results are also consistent with previous reports that peripheral clock gene 

oscillations are altered in some tissues from diabetic patients (Ando, Takamura et al. 

2009, Pappa, Gazouli et al. 2013) and db/db mice (Kudo, Akiyama et al. 2004, Caton, 

Kieswich et al. 2011, Su, Xie et al. 2012, Nernpermpisooth, Qiu et al. 2015). In addition, 

in db/db mice, the alternations of peripheral clock expression occur as early as 6-8 

weeks of age (Kudo, Akiyama et al. 2004, Caton, Kieswich et al. 2011) whereas the 

disruption of BP circadian rhythm is not detectable in db/db mice until 11-weeks or 

older, indicating that peripheral clock impairment precedes the disruption of the BP 
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circadian rhythm. Taken together, these results suggest that the peripheral oscillators, 

in contrast to the master SCN pacemaker, are strongly affected by diabetes and may 

ultimately be responsible for the disruption of BP circadian rhythm.  

Besides the desynchrony of peripheral clocks, we also examined other factors 

that may contribute to diabetes associated BP circadian rhythm disruption. The results 

from both the db/db-mPer2Luc and db/db mice demonstrate for the first time that the 

disrupted BP daily rhythm in the diabetic mice is associated with loss of daily rhythm in 

spontaneous baroreflex sensitivity.  The baroreflex is a critical mechanism for 

maintaining BP homeostasis, and baroreflex sensitivity exhibits daily variations in 

humans (Hossmann, Fitzgerald et al. 1980, Di Rienzo, Parati et al. 2001). Interestingly, 

the observed loss of daily variation in baroreflex sensitivity resembles the loss of 

baroreflex sensitivity daily variation we reported in the smooth muscle Bmal1 knockout 

mice (Xie, Su et al. 2015); this  indicates that loss of baroreflex sensitivity daily variation 

in the diabetic mice may contribute to the decreased nocturnal BP decline phenotype.  

The sleep-wake cycle is critical to BP circadian rhythm. In this dissertation, we 

have demonstrated that db/db mice have decreased daytime sleep and increased 

nighttime sleep compared to control mice. The sleep bout lengths are significantly 

shortened during the daytime. Previous study also revealed an altered diurnal rhythm of 

sleep time and increased sleep fragmentation in db/db mice (Laposky, Bradley et al. 

2008). This earlier study demonstrated that the NREM sleep is increased during the 

nighttime; the REM sleep is increased during the daytime and decreased during the 
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night. Although the sleep stages cannot be distinguished in the present dissertation, the 

overall decreased daytime sleep may contribute to the increase of BP during this period. 

In addition, the shortened sleep bout length during the daytime suggests increased 

sleep fragmentation. In humans, sleep fragmentation index is associated with increased 

awake arterial BP (Morrell, Finn et al. 2000). Although these are no investigations on 

sleep fragmentation and BP circadian rhythm, it is possible that sleep fragmentation is 

associated with abnormal BP circadian rhythm since sleep fragmentation is a major 

characterization of obstructive sleep apnea (OSA) (Kimoff 1996). Previous study has 

demonstrated that the severity of OSA is an independent predictor of BP circadian 

rhythm (Nabe, Lies et al. 1995). Therefore, changes in sleep fragmentation may 

contribute to the non-dipping BP in db/db mice.  

The daily rhythm of locomotor activity is abolished in both the db/db-mPer2Luc 

and db/db mice. This finding is consistent with previous reports that the daily locomotor 

activity rhythm is lost in the C57BL/KsJ-db/db mice (Su, Guo et al. 2008). We speculate 

that the loss of locomotor activity rhythm in both strains of db/db mice results from 

their severe obesity, i.e., that they are too heavy to move around. Although the loss of 

locomotor activity rhythm may potentially contribute to the loss of the BP daily rhythm, 

the loss of locomotor activity mainly occurred during the night in the db/db-mPer2Luc 

mice, whereas the loss of BP dipping occurred during the day. Therefore, it is unlikely 

that the loss of locomotor activity accounts for the disrupted BP daily rhythm in the 

diabetic mice.  
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The neuroendocrine system is prominently involved in the generation of the BP 

circadian rhythm. We have determined the mRNA expression of renin-angiotensin-

system (RAS) at four time points in control and db/db mice. We found no apparent time-

of-day variations in the mRNA expression of RAS in either control or db/db mice, 

suggesting that the variation of BP may not be regulated at transcription level of RAS. 

Numerous studies have demonstrated that plasma renin activity (PRA) exhibits circadian 

variation (Gordon, Wolfe et al. 1966, KATZ, ROMFH et al. 1975, Modlinger, Sharif-Zadeh 

et al. 1976, Cugini, Manconi et al. 1980, Beilin, Deacon et al. 1983, Cugini, Salandi et al. 

1983, Kawasaki, Uezono et al. 1983, Stern, Sowers et al. 1986, Kawasaki, Cugini et al. 

1990, Portaluppi, Bagni et al. 1990, Brandenberger, Follenius et al. 1994). Therefore, it is 

possible the BP circadian rhythm is achieved by the oscillation of PRA. Further 

experimentation on the oscillation of PRA in db/db mice is needed. We observed 

apparent daily variations in urinary aldosterone and corticosterone excretion in db/db 

mice. However, due to limited sample collection in control mice, we were not able to 

measure aldosterone and corticosterone in control mice. Consequently, it is not known 

whether there is a difference between control and db/db mice regarding the variations 

of urinary aldosterone and corticosterone excretion. For the autonomic nervous system 

(ANS), we have reported indirect, but compelling evidence that db/db mice have 

increased sympathetic nervous activity and decreased parasympathetic nervous activity 

compared to control mice. These findings are consistent with previous studies and 

confirmed the critical role of ANS in BP circadian rhythm.  
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The db/db mice have a leptin receptor mutation. One may speculate that 

impaired leptin signalling contributes to the disruption of BP circadian rhythm in db/db 

mice, particularly given the fact that leptin signaling is implicated in obesity associated 

hypertension (Simonds, Pryor et al. 2014). However, several considerations suggest that 

it is unlikely that the abnormal BP daily rhythm in the db/db mice is directly mediated by 

the loss-of-function mutation in the leptin receptor. First, the leptin is demonstrated to 

increase arterial BP. In the human, the level of plasma leptin is positively associated with 

the BP level (Barba, Russo et al. 2003), and the loss-of-function mutations in the gene 

encoding leptin are associated with low BP (Simonds, Pryor et al. 2014). In diet-induced 

obese (DIO) mice, increasing the level of leptin significantly elevates BP, while blocking 

the actions of leptin reverses the effect (Simonds, Pryor et al. 2014). However, the loss-

of-function mutation of leptin receptor in db/db mice does not lower BP, but rather 

increases BP, indicating the change in the BP of the db/db mice is not due to the leptin 

signaling deficiency. Second, the circulating leptin levels in humans have a 24-hour 

oscillation that is higher during the night and lower during the day (Sinha, Ohannesian et 

al. 1996). This pattern is opposite to the BP circadian rhythm. Since leptin is positively 

associated with BP, it is unlikely that the circadian rhythm of BP is mediated by the 

oscillation of leptin. Third, while the leptin receptor mutation is present thoughout the 

life of the db/db mice, the disruption of BP circadian rhythm in the db/db mice is only 

detectable in mice older than 11-weeks (Senador, Kanakamedala et al. 2009). These 

indicate the loss of BP circadian rhythm in diabetes is not due to deficiency of leptin 

signialling. 
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4.4 Mechanisms of diabetes induced clock gene disruption 

In this dissertation, we found the shifts of mPer2 phase observed in vitro from 

tissues explanted from the db/db-mPer2Luc mice reflect phase shifts observed in vivo. 

This raises the question as to whether the mPer2 phase shifts in the db/db mice might 

be caused directly by leptin receptor mutation within cells or indirectly by hyperphagia, 

obesity, and diabetes. Although it is currently uncertain, there is some evidence to 

support all possibilities. First, leptin is an adipocyte-derived hormone that binds to the 

leptin receptor and promotes weight loss by reducing appetite and food intake and by 

increasing energy expenditure (Kelesidis, Kelesidis et al. 2010). Circulating leptin levels 

display diurnal variations in both humans and rodents (Sinha, Ohannesian et al. 1996, 

Ahren 2000, Cha, Chou et al. 2000). There is also evidence that leptin can directly 

regulate clock gene oscillations. For example, leptin can phase advance the electrical 

activity rhythm in the rat SCN in vitro (Prosser and Bergeron 2003). Thus, leptin receptor 

mutation in various tissues may directly advance the mPer2 oscillations in vivo.  Second, 

consistent with a previous report (Ktorza, Bernard et al. 1997), the current study 

demonstrated that both the db/db-mPer2Luc and db/db mice consumed more food than 

the control mice. It is possible that increased food intake due to impaired leptin 

signaling alters circadian rhythms. In fact, evidence that increased food intake affects 

behavioral, metabolic, and molecular circadian rhythms has been demonstrated in HF 

diet-fed mice (Kohsaka, Laposky et al. 2007, Hatori, Vollmers et al. 2012, Pendergast, 

Branecky et al. 2013, Branecky, Niswender et al. 2015) and db/db mice (Kennedy, 

Ellacott et al. 2010).  Thus, hyperphagia may mediate leptin receptor mutation-
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associated phase advance of the mPer2 oscillation in vivo. Third, the current dissertation 

has demonstrated hyperglycemia, hyperinsulinemia, and glucose intolerance in the 

db/db-mPer2Luc mice. Both glucose and insulin have been shown to alter clock gene 

expression rhythms in vitro and in vivo. For example, glucose down-regulates Per1 and 

Per2 mRNA expression in rat-1 fibroblasts (Hirota, Okano et al. 2002). The amplitude of 

circadian expression of REV-ERBα and DBP was enhanced with 0.5mM glucose 

compared to 25mM glucose in fibroblasts (Lamia, Sachdeva et al. 2009).  Decreasing the 

amount of glucose in the medium significantly increased the circadian period length and 

decreased the circadian amplitude of U2OS cells stably expressing Bmal1-luciferase 

(Lamia, Sachdeva et al. 2009) and also increased the circadian period of Per2-luciferase 

expression in mouse fibroblasts cells (Putker, Crosby et al. 2018). 5.5mM glucose 

significantly shortened the period and delayed the phase of Per2 mRNA levels compared 

to 0.5mM glucose in cultured mHypoE-37 neurons (Oosterman and Belsham 2016). 

Insulin is able to induce phase-dependent bi-directional phase shifts in diabetic rat livers 

(Yamajuku, Inagaki et al. 2012). In addition, insulin suppresses Bmal1 transcriptional 

activity by promoting postprandial Akt-mediated Ser42-phosphorylation of Bmal1, 

which affects its intracellular localization in mouse liver (Dang, Sun et al. 2016). 

Therefore, it is likely that diabetes resulting from leptin receptor mutation may also 

have an indirect effect on the mPer2 phase advances in peripheral tissues in vivo. 

Nevertheless, future studies are required to distinguish these potential mechanisms. 

Another interesting finding is that there are some similarities with respect to the 

effects of high-fat diet and leptin receptor mutation (db/db-mPer2Luc mice) on the 
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mPer2 rhythm. For example, using ex vivo bioluminescent analyses, Pendergast et al 

demonstrated that mice fed a high-fat diet for 1 week display about a 4 hour phase 

advance in the mPer2 rhythm of the liver but not in the SCN or lung (Pendergast, 

Branecky et al. 2013). Using the same ex vivo assay, the current study demonstrated the 

db/db-mPer2Luc mice also exhibit more than 3 hours phase advance in the mPer2 

rhythm in the liver, while no phase shift is found in the SCN or lung. These results 

suggest that the liver clock is sensitive whereas the SCN and lung are resistance to both 

high-fat diet and leptin receptor mutation. Both the high-fat diet and leptin receptor 

mutation are associated with alternations in food intake. In particular, a high-fat diet 

changes the food intake pattern such that more food is consumed during the light-phase 

when fed high-fat diet than when fed the chow diet (Pendergast, Branecky et al. 2013). 

Leptin receptor mutation in the db/db-mPer2Luc mice leads to increased total food 

intake throughout the day and night without changing the food intake pattern. 

Therefore, increased food intake during the light-phase may be a primary determinate 

of the liver clock. Despite these similarities, there were some differences with respect to 

the effects of high-fat diet and leptin receptor mutation on the mPer2 rhythm. For 

example,  the mPer2 rhythm in the white adipose tissue (WAT) and aorta explants show 

more than 4 hour and 1 hour phase advance, respectively, in the db/db-mPer2Luc mice, 

but no change is seen in the high-fat diet fed mice (Pendergast, Branecky et al. 2013). 

These results indicate that either the high-fat diet has no effect on Per2 expression in 

WAT and aorta or that one week of high-fat feeding is not long enough to change Per2 

expression in WAT and aorta. It is probably the latter possibility since attenuated Per2 
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mRNA expression in WAT is observed after 6 weeks of high-fat diet (Kohsaka, Laposky et 

al. 2007). However, due to the limitation of sampling, the phase of Per2 was not 

calculated (Kohsaka, Laposky et al. 2007).  

4.5 Effects of ATRF on BP 

Multiple studies have investigated the effects of time-restricted feeding on 

metabolic health. However, no study has examined the relationship between food 

intake pattern and BP circadian rhythm. In this dissertation, we first monitored food 

intake pattern and BP circadian rhythm simultaneously in free-moving mice and 

demonstrated that non-dipping db/db mice have an altered food intake pattern. In 

addition, when imposing the abnormal feeding rhythm (i.e. the inactive-time restricted 

feeding; ITRF) on healthy mice, their BP daily rhythm is significantly altered. Importantly, 

active-time restricted feeding (ATRF) significantly decreased the light-phase (i.e., resting 

phase) BP, resulting in the restoration of BP daily rhythm in the db/db mice. These 

results demonstrate that the altered food intake pattern is associated with the loss of 

BP circadian rhythm. However, whether there is a cause-effect of this food intake 

pattern and the BP circadian rhythm is not known. Interestingly, the db/db-mPer2Luc 

mice have similar non-dipping BP as the db/db mice. However, the food intake rhythm 

of db/db-mPer2Luc mice remains normal, that they eat similar percents of food during 

both the light- and dark-phase compared to the control mice. However, other regulatory 

factors of the BP circadian rhythm, such as the daily rhythms of locomotor activity and 

baroreflex sensitivity and the time-of-day variations of clock genes, are similarly affected 

in both the db/db-mPer2Luc and db/db mice. Therefore, it is possible the diabetes-
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associated circadian rhythm disruptions in other aspects rather than the food intake 

rhythm contribute to the abnormal BP circadian rhythm.  

Despite the difference in the food intake rhythm between the db/db-mPer2Luc 

and db/db mice, both strains of the mice consume significantly greater amounts of food 

compared to their controls. In addition, the ATRF regimen not only reduces food intake 

time, but also decreases total amount of food intake. These results raise the possibility 

that change in calorie intake (overfeeding or fasting) may contribute to the BP circadian 

rhythm disruption, especially given the results that calorie restriction achieved by 

decreasing the calorie intake every day or intermittent fasting is able to reduce BP level 

in humans and laboratory animals (Nakano, Oshima et al. 2001, Wan, Camandola et al. 

2003, Mager, Wan et al. 2006, Harvie, Pegington et al. 2011). However, in human 

studies, since both the daytime and nighttime SBP is reduced after calorie restriction, it 

is not known whether the circadian variation of BP is also changed (Nakano, Oshima et 

al. 2001, Harvie, Pegington et al. 2011). In animal studies, the calorie restriction is 

always accompanied with time restriction as the food was given at a certain time of the 

day (Wan, Camandola et al. 2003, Mager, Wan et al. 2006). And again, the circadian 

variation of BP has not been examined in the calorie-restricted animals (Wan, 

Camandola et al. 2003, Mager, Wan et al. 2006). In this dissertation, we performed time 

restriction without calorie restriction by prolonging the duration of food available time. 

We found the db/db mice consumed similar amounts of food with 12-h ATRF compared 

to ALF. Importantly, the BP daily rhythm can also be restored. These data indicate time 
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restriction without calorie restriction is able to restore BP circadian rhythm in db/db 

mice.   

We further explored the mechanisms underlying ATRF induced BP circadian 

rhythm restoration in db/db mice. We found ATRF significantly improves the rhythm of 

the sleep-wake cycle and increases the sleep bout length during the light-phase. Few 

studies have examined the effects of food intake pattern on sleep. Afaghi et al found the 

meal given 4-h before bedtime significantly shortened sleep onset latency (SOL) 

compared to the same meal given 1-h before bedtime (Afaghi, O'Connor et al. 2007). 

Another study demonstrated that caloric intake at night in women (represented as 

percent of total caloric intake, %) positively correlates with sleep latency and negatively 

correlates with sleep efficiency (Crispim, Zimberg et al. 2011). These results are 

consistent with the present study and indicate that an early dinner time and less calorie 

intake during dinner are associated with increased sleep quality. The daily variations of 

urinary aldosterone and corticosterone excretion are also improved with ATRF. The 

effects of time-restricted feeding on aldosterone rhythm have not been reported 

previously. However, the rhythm of corticosterone in response to time-restricted 

feeding was documented as early as 1970s. The peak of corticosterone shifts in 

response to food available time: when feeding only occurs during the light-phase of rat, 

the peak of corticosterone has a 12-h shift (KRIEGER 1974). The most dramatic change 

with ATRF is time-of-day variation in autonomic nervous system (ANS) activity. We have 

demonstrated indirect evidence that ATRF significantly decreases sympathetic nervous 

system (SNS) activity and increases parasympathetic nervous system (PNS) activity 
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during the fasting period compared to ALF, resulting in restored ANS daily variation in 

db/db mice. ATRF is a repeated switching between feeding and fasting state every 24 h. 

Although there is no study of the effects of time-restricted feeding on ANS rhythm, 

various studies have demonstrated that fasting is able to suppress the sympathetic 

nervous system (SNS) (Young and Landsberg 1977, Prinz, Halter et al. 1979, Young, 

Saville et al. 1982, Young, Rosa et al. 1984) and the suppression is reversed by feeding 

(Young and Landsberg 1977). However, the effect of fasting on SNS in previous studies 

was tested after 2 days of fasting, which is impractical in any clinical application. In this 

dissertation, we have demonstrated that 16-h of fasting is able to suppress the SNS and 

subsequently lower BP during the fasting period, resulting in the restoration of BP 

circadian rhythm in db/db mice. Previous studies proposed that the mechanism 

underlying dietary mediated modulation of SNS might be through the alternation of 

insulin secondary to changes in carbohydrate intake (Landsberg 1986). For example: 

alterations in carbohydrate and fat enhance SNS activity without increasing total calorie 

intake (Young and Landsberg 1977, Schwartz, Young et al. 1983, Walgren, Young et al. 

1987); and a diet with low carbohydrate decreases SNS (Jung, Shetty et al. 1979, 

DeHaven, Sherwin et al. 1980). In addition, insulin infusion increases SNS activity in the 

absence of a glucose change (Rowe, Young et al. 1981).  In this dissertation, we found 

ATRF decreases SNS activity during the fasting period without changing plasma insulin 

level, indicating that other mechanisms may have participated. Using the iG-Bmal1-KO 

mice, we have demonstrated that the urinary norepinephrine (NE) excretion is not 

decreased during the fasting period after ATRF compared to ALF, and importantly, that 
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ATRF cannot completely restore the BP in iG-Bmal1-KO mice. In addition, study from the 

embryonic Bmal1-KO mice showed that the sympathoadrenal function is impaired as 

the plasma NE and epinephrine (Epi) levels are significantly reduced in the embryonic 

Bmal1-KO mice at both ZT2 and ZT14 compared to control mice (Curtis, Cheng et al. 

2007). These data indicate that Bmal1 may play an important role in dietary induced 

modulation of SNS as well as of BP. Studies of the effects of time-restricted feeding on 

parasympathetic nervous system (PNS) function are rare. Results from dietary 

restriction, achieved by intermittent fasting or calorie restriction, have been shown to 

increase PNS activity in rats (Mager, Wan et al. 2006). In humans, 6-months of calorie 

restriction also increases PNS activity (de Jonge, Moreira et al. 2010). In this dissertation, 

we first demonstrated that the PNS activity is increased during the fasting period of 

ATRF. The mechanisms underlying dietary induced PNS modulation need further 

investigation.  

4.6 Effects of ATRF on metabolism  

Results from previous studies demonstrate that ATRF is beneficial to metabolic 

health in high-fat fed mice, including decreased body weight, total cholesterol, 

triglyceride, glucose intolerance, insulin and insulin resistance (Hatori, Vollmers et al. 

2012, Sherman, Genzer et al. 2012, Tsai, Villegas-Montoya et al. 2013, Chaix, Zarrinpar 

et al. 2014, Yasumoto, Hashimoto et al. 2016). The mechanisms of the beneficial effects 

of ATRF on metabolism are implicated in multiple pathways. Hatori et al and Chaix et al 

from the Panda group revealed that ATRF have profound effects on the enzymes and 

proteins involved in the regulation of nutrient hemostasis (Hatori, Vollmers et al. 2012, 
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Chaix, Zarrinpar et al. 2014). In the liver, the mRNA expression of fatty acid synthase 

(Fasn), stearoyl coA desaturase1 (Scd1) and elongation of very long chain fatty acids 

protein 5 (Elovl5) are reduced upon ATRF. The Fasn, Scd1 and Elovl5 genes encode 

enzymes involved in lipid synthesis, desaturation and elongation respectively. 

Conversely, the expression of hepatic lipase (Lipc) gene, which encodes the enzyme that 

catalyzes the hydrolysis of triglyceride, is enhanced, along with increased expression of 

3-hydroxybutyrate (BHBA), one of the end products of β-oxidation. Therefore, ATRF 

shifts lipid toward degradation. In addition, the expression of peroxisome proliferator-

activated receptor gamma (Ppar), a key regulator of lipid storage, is significantly 

repressed in the liver and brown adipose tissues (BAT), which may explain reduced 

hepatic steatosis and BAT lipid droplets. Since hepatic lipid homeostasis contributes to 

cholesterol and bile acid metabolism, Hatori et al and Chaix et al determined the mRNA 

expressions of squalene epoxidase (Sqle) and 7-dehydrocholesterol reductase (Dhcr7), 

two key enzymes involved in de novo cholesterol biosynthesis. They found both the Sqle 

and Dhcr7 mRNA expressions are enhanced, along with increased protein levels of sterol 

regulatory element-binding proteins (SREBPs), suggesting increased cholesterol 

biosynthesis. On the other hand, the peak expression of cholesterol 7 alpha-hydroxylase 

(Cyp7a1), a gene that encodes the rate limiting enzyme in cholesterol breakdown to bile 

acid, is also elevated. Consequently, the overall levels of cholesterol are decreased.  For 

glucose hemostasis, the mRNA expressions of pyruvate carboxylase (Pcx) and glucose-6-

phosphatase (G6pc), genes that encode enzymes that mediate the committing step in 

gluconeogenesis, are reduced. On the contrary, the expressions of glucose-6-phosphate 
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dehydrogenase (G6pdx), a gene that encodes the rate-limiting enzyme of the pentose 

phosphate cycle (PPC) and the levels of its substrate, glucose-6-phosphate (G6-P), are 

elevated, suggesting increased activity of the PPC.  Since PPC pathway is in parallel with 

glycolysis, the elevated activity of the PPC indicates increased glycolysis. Therefore, 

ATRF reprograms glucose metabolism away from gluconeogenesis toward glycolysis. 

ATRF also improves protein homeostasis in the liver. In high-fat fed mice under ad 

libitum, the oscillation of phospho-ribosomal protein S6 (pS6), an indicator of protein 

synthesis, is blunted while ATRF restores the oscillation. Energy homeostasis is also 

improved with ATRF. The levels of 5' adenosine monophosphate-activated protein 

(AMP) and phospho- acetyl CoA carboxylase (ACC) (pACC, relative to total ACC) are 

increased, which reflects increased activity of AMP-kinase (AMPK), a key regulator of 

energy metabolism. AMPK also plays an important role in diabetes as the net effects of 

AMPK activation inhibit lipogenesis, stimulate fatty acid oxidation, lipolysis and glucose 

uptake, and modulate insulin secretion from pancreatic beta-cells (Winder and Hardie 

1999). In addition, the expressions of uncoupling protein 1/2/3 (UCP1/2/3), which 

encodes proteins participate in thermogenesis, are increased in the BAT, suggesting 

increased energy expenditure. In summary, the alternations in nutrient and energy 

homeostasis participate in the beneficial effects of ATRF on high-fat fed mice.  

In this dissertation, however, we did not observe significant improvements of 

ATRF on nutrient hemostasis of the db/db mice, including fat body mass, non-fasting 

blood glucose, insulin sensitivity, plasma insulin, NEFA or cholesterol. These results are 

in contrast to the effects of ATRF on high-fat fed mice. A possible explanation for the 
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discrepancy between db/db and high-fat fed mice is that effective impacts of ATRF on 

metabolism may require intact leptin signaling, given the consideration that the db/db 

mice have a loss-of-function mutation of the leptin receptor. Actually, in high-fat fed 

mice under ATRF, the leptin levels are significantly decreased compared to ad libitum 

feeding (Hatori, Vollmers et al. 2012, Chaix, Zarrinpar et al. 2014). As reviewed by Stern 

et al (Stern, Rutkowski et al. 2016), leptin interacts with glucose and lipid metabolism in 

multiple tissues. For example, leptin increases glucose uptake and glycogen synthesis in 

vivo (Barzilai, She et al. 1999) and in vitro in soleus muscle (Ceddia, William Jr et al. 

1999), cultured L6 muscle cells (Bates, Gardiner et al. 2002), C2C12 myotubes (Kellerer, 

Koch et al. 1997) and adipocytes (Müller, Ertl et al. 1997). It also inhibits glycogenolysis 

and gluconeogenesis in hepatocytes (Ceddia, Lopes et al. 1999). In addition, leptin 

modulates function of the pancreas by inhibiting insulin secretion in the pancreatic β 

Cell (Ceddia, William Jr et al. 1999, Seufert, Kieffer et al. 1999, Laubner, Kieffer et al. 

2005) and glucagon secretion in the α Cell (Soedling, Hodson et al. 2015) (Tudurí, 

Marroquí et al. 2009). For lipid metabolism, leptin has been shown to inhibit lipogenesis 

and increase fatty acid oxidation and triglyceride hydrolysis in adipocytes (William, 

Ceddia et al. 2002), liver (Huang, Dedousis et al. 2006, Huynh, Neumann et al. 2013) and 

skeletal muscles (Minokoshi, Kim et al. 2002). Reduced body weight with ATRF in high-

fat fed mice has consistently been observed in other studies (Arble, Bass et al. 2009, 

Hatori, Vollmers et al. 2012, Sherman, Genzer et al. 2012, Tsai, Villegas-Montoya et al. 

2013, Chaix, Zarrinpar et al. 2014, Yasumoto, Hashimoto et al. 2016). However, the body 

weight of the db/db mice is not significantly decreased following ATRF, despite less food 
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consumption vs. ALF.  One explanation for the unchanged body weight is that ATRF 

decreases energy expenditure (EE) in the db/db mice. Therefore, we monitored the EE 

and found that ATRF significantly decreases the 12-h light-phase EE, but leaves the 12-h 

dark-phase EE unchanged in the db/db mice; therefore, the 24-h daily EE is reduced. 

Lowered light period EE is also observed in dark-phase high-fat fed mice; however, dark-

phase high-fat feeding also significantly increases their EE during the dark period, 

therefore resulting in unaltered 24-h EE (Bray, Ratcliffe et al. 2013). Interestingly, in the 

current study, there is a trend of decrease in the light-phase EE and increase in the dark-

phase EE in chow-fed control mice with ATRF, while the 24-h daily EE is unchanged, 

which is consistent with high-fat fed mice.  Therefore, the different EE response to ATRF 

between control and db/db mice may be attributable to impaired leptin signaling due to 

leptin receptor mutation in the db/db mice. Actually, leptin is known to stimulate EE 

through its action on the hypothalamus (Meier and Gressner 2004), and plays a critical 

role in the regulation of body weight (Halaas, Gajiwala et al. 1995, Friedman and Halaas 

1998). However, whether the improved nutrient homeostasis and increased EE during 

the dark-phase with ATRF in high-fat fed mice is dependent upon leptin signaling need 

further investigations.  

Another intriguing finding of this dissertation is that both the db/db-mPer2Luc 

and db/db mice lose their rhythms in RER, and ATRF partially restores the RER oscillation 

in the db/db mice. In normal mice, there are apparent time-of-day variations in RER, 

with higher values during the active-phase indicating the preferential use of 

carbohydrates and lower values during the inactive-phase indicating the preferential use 
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of fats. This is consistent with previous observations in humans (van Moorsel, Hansen et 

al. 2016) and rodents (Bray, Ratcliffe et al. 2013, Oosterman, Foppen et al. 2015, Sun, 

Wang et al. 2015). Previous studies also demonstrated RER in the db/db mice is 

decreased at one specific time of the day (Osborn, Sanchez-Alavez et al. 2010, Choi, Kim 

et al. 2015). However, it is surprising that it has not been reported whether the daily 

rhythm of RER is disrupted in the db/db mice. The current study first demonstrated that 

the leptin receptor mutant mice, regardless of gene background, lose the RER time-of-

day variations. These results suggest that the flexibility to use different sources of fuel is 

compromised in diabetic mice. Importantly, imposing ATRF partially restores the RER 

oscillation in the db/db mice. However, it is not clear whether the attenuated RER daily 

rhythm is associated with compromised BP dipping and whether the recovery of RER 

oscillation after ATRF contributes to the restoration of BP rhythm. 

We further investigated whether the improved oscillation of RER and EE upon 

ATRF is Bmal1-depenent. In contrast to the partial recovery of BP daily rhythm with 

ATRF in iG-Bmal1-KO mice, ATRF dramatically improves the RER oscillation that is even 

more robust than the flox mice. These results are comparable with the results of a 

recent published paper that ATRF drives the rhythms of RER in mice lacking clock genes 

(Chaix, Lin et al. 2018). In that paper, the authors monitored the RER in three different 

strains of clock gene knockout mice, the liver-specific Bmal1 knockout mice (Bmal1-

LKO), liver-specific Rev-erbα/β double knockout mice (Rev-erb α/β LDKO) and Cry1/2 

double knockout (CDKO) mice. The oscillations of RER are blunted in all the three strains 

of mice and ATRF restores the rhythms, suggesting the feeding and fasting cycle is able 
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to drive the rhythm of RER in mice lacking clock genes. Regarding EE, ATRF also 

significantly increased the EE oscillation in both the iG-Bmal1-KO and Flox mice; 

however, the amplitude and robustness were still lower in the iG-Bmal1-KO mice. In 

addition, the 24-h EE in the iG-Bmal1-KO mice are not significantly different between 

ATRF and ALF. These results are in contrast to the results of the Chaix et al study, which 

showed increased EE upon ATRF in high-fat fed Bmal1-LKO, Rev-erb α/β LDKO and CDKO 

mice (Chaix, Lin et al. 2018). One possible explanation for this difference is the mice in 

Chaix et al study were fed with high-fat diet while the iG-Bmal1-KO mice were fed with 

chow diet. It is possible that the EE responses to ATRF are different between different 

diets, especially considering the fact that high-fat diet itself has been shown to decrease 

EE (Choi, Kim et al. 2015). In addition, the body weight in the mice with ATRF is lower 

than the mice fed ad libitum; therefore when the EE is normalized to body weight, the 

resulting EE will be higher in the mice with smaller body weight if assuming the EE 

before normalization are equal between ALF and ATRF. However, the body weights 

between ATRF and ALF in the iG-Bmal1-KO mice fed chow diet are not significantly 

different; hence the normalized EE with ATRF is the same as the mice with ALF. An 

alternate explanation is that the deletion of Bmal1 in this dissertation is global, in both 

SCN and peripheral tissues, while the Bmal1 KO mice in Chaix et al study is liver-specific. 

The SCN has been shown to control EE (Coomans, van den Berg et al. 2012). Therefore, 

the EE responses to ATRF might be different in mice with and without intact central 

clock.  
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4.7 Limitations and Future directions 

The major limitation of this dissertation is the diabetic mouse model. The 

diabetic phenotypes of the db/db mice are caused by the leptin receptor mutation. 

However, the leptin receptor mutation in humans is rare, and it is not known whether 

the protective effect of ATRF on the BP circadian rhythm in the db/db mice also 

applicable to the diabetic patients whose the diabetic symptoms are often induced by a 

change of lifestyle. Therefore, testing the effect of ATRF on the BP circadian rhythm is 

needed in different diabetic animal models, such as the high-fat diet induced diabetic 

mouse.  

The second limitation of this dissertation is all the experiments were done in 

male mice. It is not known whether there is a gender difference in the mechanisms of 

diabetes-associated BP circadian rhythm disruption and whether ATRF is equally 

applicable to female diabetic animals.  

We have demonstrated that the ANS participates, in part, in the protection of 

ATRF on the BP circadian rhythm; however, we did not find any changes with ATRF in 

the time-of-day mRNA expressions of the norepinephrine biosynthesis/ disposition 

enzymes or the adrenergic receptors in the vascular. It is possible that the effects of 

ATRF on the enzymes and receptors are at translational, or post-translational, levels. It 

could also be that the ATRF affects the activities of the enzymes, rather than on their 

expressions. In addition, the effects of ATRF on the autonomic nervous system may act 
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in the brain. Therefore, further experiments are needed to understand the underlying 

mechanisms of the ATRF on the ANS.  

Using the iG-Bmal-KO mice we have demonstrated that Bmal1 partially 

participates in the protection of ATRF on the BP circadian rhythm. It is not known 

whether other clock genes, such as Cry1, also play a role. Previous studies have reported 

that Cry1/2 double knockout mice exhibit abnormal BP circadian rhythm (Masuki, Todo 

et al. 2005, Doi, Takahashi et al. 2010). Importantly, the time-of-day expression of Cry1 

is also altered in the db/db mice and recovered with ATRF. Therefore, it is interesting to 

test the role of Cry1 in the protection of ATRF on the BP circadian rhythm. 

We have demonstrated that ATRF effectively prevented and restored the 

disrupted BP circadian rhythm in diabetic mice. It would be interesting to test whether 

ATRF is also able to prevent or restore the BP circadian rhythm in diabetic patients.  

4.8 Concluding remarks 

Findings from this dissertation demonstrate that the desynchronization of 

peripheral tissues participates in the compromised BP circadian rhythm in diabetes. 

Moreover, the active-time restricted feeding may serve as a novel and effective therapy 

against the disruption of BP circadian rhythm in diabetes.  
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