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CHAPTER 1. INTRODUCTION 

1.1 Spinal cord injury 

Spinal cord injuries (SCI) are life-threatening events that cause permanent 

disruptions of central nervous system (CNS) physiology, leading to impaired mobility 

and loss of independence, which dramatically impacts injured individuals’ quality of life. 

Depending on the severity and level of injury, these events can damage both motor and 

sensory function, as well as autonomic control throughout the body from the neck down. 

Worldwide there are estimated to be up to 500,000 new SCI cases each year and close to 

300,000 people are currently living with an SCI in the United States alone.1,2 The 

majority of individuals who sustain SCIs are males and either above the age of 60 or 

under the age of 30.1 In America’s aging population, an increasing number of injuries, 

close to 32%, are due to falls, although most result from vehicular accidents.2 In addition 

to the physical toll of the injury, SCI is a source of significant financial burden, costing 

over $1 million in the first year after a high cervical injury.2 Injured persons whose 

economic status is below the poverty line have a 62% higher mortality rate than those 

considered to be above the poverty line.2,3 Despite decades of research dedicated to SCI 

research, life expectancy after injury has not increased since the 1980’s and there are 

currently no treatments clinically approved that effectively restore function.2,4 While 

numerous experimental strategies have been effective in improving outcomes after SCI in 

a preclinical animal models, and many have entered clinical trials, few have shown 

sufficient efficacy in the human SCI population to be successfully translated for 

widespread clinical use. This indicates that there may be heretofore overlooked or 

understudied factors in the human population that influence how individuals recover after 
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injury and how this recovery, whether spontaneous or in response to therapeutics, varies 

from person to person. Elucidating the role that genetic background and sex differences 

play in determining the propensity for recovery or the efficacy of treatment strategies in 

unique individuals may aid us understanding and overcoming translational barriers for 

SCI therapeutics. 

 

1.1.1 SCI Pathology 

SCI is a complex and heterogeneous injury. Over a century ago, it was proposed 

that spinal cord injury pathophysiology could be divided into primary and secondary 

insults.5 The primary injury consists of the initial event that damages the tissue of the 

spinal cord and disrupts the neural circuitry housed within. The spinal cord is a crucial 

bidirectional relay between the brain and the periphery, transmitting signals that supply 

the brain with sensory information, as well as carrying inputs for the control of motor and 

autonomic functions. In addition to functioning as a relay, the control of many crucial 

physiological functions and reflexes also originates in the cord, which contains circuits 

and central pattern generators that are distinct from those located supraspinally6–9. Any 

mechanical force that damages these pathways can lead to motor and sensory deficits. 

However, this initial trauma is not the only concern for people who sustain an SCI. 

Following the primary injury, a cascade of events wreak havoc on the damaged spinal 

cord tissue. Hypoxia due to a loss of blood flow, excitotoxicity from excessive glutamate 

release, activation and infiltration of inflammatory cells, mitochondrial dysfunction, and 

the production of oxidative compounds lead to additional cell death.10–13  
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The depletion of both neuronal and non-neuronal cells, along with axonal 

demyelination and Wallerian degeneration lead to cavitation of the spinal cord at the 

lesion epicenter.14–17 Axonal and myelin debris, cytokines, and oxidative stress trigger the 

activation of glial cells hours after injury.18,19 In an attempt to aid in wound repair, 

astroglial processes hypertrophy and overlap, forming a barrier around the lesion cavity.20 

Astrocytes also upregulate production of chondroitin sulfate proteoglycans (CSPGs) and 

other components of the extracellular matrix that contribute to formation of the glial scar. 

Injury also stimulates peripheral monocyte-derived macrophage infiltration of the spinal 

cord. These cells accumulate with CNS-resident macrophages in the lesion cavity.21 

Macrophages then recruit perivascular fibroblasts to accumulate in the lesion site.22 By 7 

days post injury, the lesion core is filled with a fibronectin matrix secreted by these 

fibroblasts, forming a fibrotic scar in the lesion core that is encompassed by the glial 

scar.23,24 

In addition to the astrocytes and fibroblasts that accumulate at the lesion site after 

injury, immune cells from both the CNS and the periphery also contribute to secondary 

the injury, scarring, and tissue repair. Microglia are the resident immune cells of the 

central nervous system. In the uninjured CNS, microglia dynamically function as 

sentinels, extend and withdrawing their processes in a matter of minutes to monitor their 

surroundings. These processes are capable of engulfing components of the surrounding 

tissue and transporting them back to the soma.25 Microglial processes monitor synaptic 

functioning by directly contacting synapses in response to neuronal activity, which aids 

in their crucial role of synaptic pruning during development and after injury.26,27 Upon 

CNS insult, microglia are activated and polarized into M1 or M2 phenotypes, which are 
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classically considered pro-inflammatory or anti-inflammatory, respectively, in 

resemblance to macrophage classification. M1 macrophages and microglia secrete 

reactive oxygen species and cytokines such as IL-12, IL-1, and IFN which contribute 

to tissue damage after injury.28,29 Conversely, the cytokine expression profile of cells with 

an M2 phenotype primarily consists of anti-inflammatory molecules including IL-10, IL-

13, and IL-7, which encourage neuron growth.28,29  

In recent years, the accuracy of classifying macrophages and microglia in a strict 

M1 or M2 dichotomy has been called into question. After CNS injury, macrophages and 

microglia in the lesion penumbra simultaneously express both M1 and M2 markers and 

the expression of these molecules changes over time, indicating that their response to 

injury is too complex and dynamic to be characterized dichotomously as either pro- or 

anti- inflammatory.30 One such example of how these terms can be misleading is in 

reference to the cytokine TNF-. Historically, TNF- has been considered pro-

inflammatory. Evidence shows that TNF- damages mitochondria, leading to reactive 

oxygen species production, and ultimately causing apoptotic or necrotic cell death.31,32 

However, TNF- also plays an important role in synaptic plasticity. TNF- signaling 

stimulates an upregulation of synaptic AMPA receptors and strengthens excitatory 

synapses, demonstrating that it has divergent functions in cytotoxicity and protection of 

synaptic integrity.33,34 Indeed, the inflammatory milieu initiated by SCI may be a driver 

of secondary tissue damage, while also presenting a potent and dynamic process that 

could be harnessed to enhance plasticity, and subsequently, recovery. 
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1.1.2 Assessment of Injury Severity 

Both primary and secondary injury contribute to the overall severity of an 

individual’s SCI. Within the first 72 hours after injury, clinicians assess the extent of the 

neurological injury using the American Spinal Injury Association Impairment Scale 

(AIS). The AIS identifies the neurological level of injury (NLI) and evaluates both 

sensory and motor function below this level. The NLI is identified as “the most caudal 

segment of the spinal cord with intact sensation and antigravity muscle function”.35 The 

injury is then designated as “complete” if there is no sparing of sensory or motor function 

at the sacral spinal cord. Complete injuries receive an AIS grade of A. Otherwise, the 

injury is deemed incomplete and given a grade of B-E, depending on the amount of motor 

and sensory function preserved caudal to the NLI. An AIS grade E represents normal 

sensation and motor function.35 In people who experience a complete injury, a zone of 

partial preservation may be observed. This refers to dermatomes and myotomes caudal to 

the NLI that retain partial innervation.36  

Over time after the initial injury, individuals’ AIS grade can be re-evaluated to 

measure spontaneous rate of recovery  and is used as a outcome measure in clinical trials 

for SCI treatment strategies.37–39 The majority of people with injuries of AIS grade B and 

C improve by one AIS grade by 6 months post injury without any intervention. However, 

only a third of people with AIS A injuries changed classification by 6 months and only 

10% of AIS D patients show improvement in AIS grade during this time.39 Some 

concerns over the utility of the AIS have been raised due to its emphasis on sparing of 

sensorimotor function at the sacral levels, which could distract from the overall 

neurological severity and consequently diminishes the reliability of the scale as an 
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outcome measure.39 In fact, the design of the AIS allows it to reflect an increase in grade 

despite functional deterioration and vice versa.40 

Additional assessment of injury severity include quantitative sensory testing, in 

which vibratory and thermal stimuli are applied to dermatomes caudal to the NLI in order 

to evaluate the function of the dorsal columns and spinothalamic tract, respectively. This 

testing provides a more quantitative analysis of sensation than the AIS sensory score.41 

Conduction in the spinal cord can also be measured by electromyography (EMG) or 

motor-evoked potentials, approaches that are advantageous due to their efficacy in 

unconscious patients. These evaluations of descending motor tracts are predictive of 

functional outcome, allowing clinicians to tailor treatment plans for individuals in order 

to maximize their functional improvement.42,43 In addition to sensorimotor assessments, it 

is also crucial to monitor impairments of the autonomic nervous system. Exposure to 

stimuli that cause vasoconstriction leads to an increase in blood flow to the skin that can 

be measured above and below the NLI. Since vasoconstriction is controlled by the 

sympathetic nervous system, vasomotor reflex responses can provide an indication 

autonomic damage after SCI.44 

An emerging strategy for assessing severity and predicting outcomes after SCI is 

the discovery and classification of biomarkers. Biomarkers can be sampled in a variety of 

ways, with recent studies evaluating imaging techniques or collection of serum or 

cerebrospinal fluid (CSF). T2-weighted MRI provides visualization of grey versus white 

matter, allowing for the detection of compression, which is predictive of motor and 

sensory deficits in non-traumatic SCI.45 Data published by Brian Kwon and colleagues 

demonstrates the potential of measuring protein levels of IL-6, IL-8, and GFAP, as well 
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as certain subsets of microRNAs in CSF to indicate current AIS grade and provide a 

prognosis for AIS improvements over time.46,47 Similarly, GFAP and neurofilament 

protein concentrations in serum also have diagnostic value in predicting SCI severity and 

outcomes.48,49 Analysis of these biomarkers associated with specific AIS grades or injury 

severities has potential to aid the assessment of patients who cannot be graded on the AIS 

due to unconsciousness, damage to other body systems, or other issues of noncompliance. 

Accurate biomarkers could therefore contribute to accurate characterization of injuries for 

enrollment in SCI clinical trials and provide additional outcome measures for therapeutic 

efficacy.50 

 

1.1.3 Supportive Care After Injury 

 There are currently no FDA-approved drugs that are recommended as standard of 

care for the treatment of spinal cord injury. However, first responders and clinicians can 

take action to minimize damage to the spinal cord tissue and prevent disturbances in other 

body systems. One of the first decisions that must be made is whether to perform surgical 

decompression to relieve pressure on the spinal cord and if so, when. In cases of central 

cord syndrome or other stable or non-traumatic spinal cord injuries, spinal decompression 

may not always be necessary due to the high likelihood of spontaneous improvement.51 

However, in many cases of traumatic SCI, surgical decompression is recommended 

within the first 24 hours after injury due to its correlation with greater improvements in 

neurological outcome or AIS grade.52 Non-surgical decompression using spine traction, 

in which weight is applied to the skull in order to pull it away from the shoulders and 

lengthen the cervical spine, has also proved efficacious for some cervical level injuries.53 
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 In the first day after injury, SCI patients are at risk for hemodynamic instability 

due to autonomic dysreflexia or loss of sympathetic tone during neurogenic shock. 

Compression of the spinal cord can also prevent blood flow to the lesion penumbra, 

creating a hypoxic state. In order to prevent hypoperfusion, hypotension, and 

bradycardia, guidelines in the last decade have recommended that mean arterial pressure 

(MAP) is maintained at 85-90 mmHg during the first week post injury.54 This aggressive 

maintenance of MAP is associated with enhanced neurological outcomes measured by 

AIS grade conversion, walking ability, and bladder function.55,56 Unfortunately, 

administration of vasopressors comes with risks that must also be considered. Use of 

common vasopressors cause complications including tachycardia, bradycardia, atrial 

fibrillation, and even elevations in troponin, a biomarker of heart damage.57 Recent 

research in humans and animal models has explored when and to what extent MAP 

should be elevated after injury.58–60 Even chronically after injury, the spinal cord tissue 

caudal to the injury can remain in a state of hypoxia, limiting the potential for functional 

recovery.12 

 A major concern for individuals with impaired mobility and sensation after SCI is 

the development of pressure ulcers. The second most prevalent cause of death after SCI is 

septicemia, often as a result of epidermal ulceration.61 Pressure ulcers develop in 

response to prolonged pressure on the skin, especially over bony areas, which results in a 

period of ischemia. Numerous studies have examined the impact of body positioning 

while patients are in supine or prone recumbency on the development of pressure 

ulcers.62,63 While body positioning techniques can be used to reduce pressure on the skin 

overlying the sacrum, trochanters, and hips, an additional approach is to develop a 
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schedule for regularly turning patients in bed.64,65 This redistributes pressure and restores 

blood flow to areas that are at risk for developing ulcers. Similarly, once quadriplegics or 

paraplegics are maintaining a sitting position for extended periods after injury, pressure 

relief maneuvers, such as leaning forward, reclining, and doing push-ups must be 

performed regularly to reduce the risk of developing ulcers.66–68 However, multiple 

factors, including individual skin physiology, age, weight, and response to stress must be 

taken into consideration, emphasizing the need for personalized care in the SCI field. 

For people who sustain an injury at or above the T6 spinal level, preventing 

episodes of autonomic dysreflexia (AD) becomes a constant concern beginning a few 

months after injury. Below the level of injury there is a disruption in the regulation of 

preganglionic sympathetic neurons, which reside in the intermediolateral nucleus of the 

spinal cord between the first thoracic and second lumbar level.69 The sympathetic 

division of the autonomic nervous system is crucial in the control of hemodynamics.70 

After injury, sympathetic tone below the level of injury becomes independent of 

supraspinal control, while above the lesion it is still governed by brainstem inputs. 

Unperceived noxious stimuli including hyperextension of the bowel or bladder, ill-fitting 

clothes or shoes, pressure ulcers, or skin lacerations caudal to the injury activate the 

sympathetic nervous system.71 The sympathetic “fight or flight” response instigates 

vasoconstriction to increase arterial blood pressure, which is sensed by baroreceptors of 

the carotid sinus.71,72 Baroreceptor feedback to the medullary nucleus solitarius initiates a 

conversion from sympathetic to parasympathetic dominance to slow the heart rate and 

decrease blood pressure. However, sympathetic neurons below the NLI that lack 

supraspinal input remain uninhibited and continue to maintain vasoconstriction, leading 
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to systolic arterial pressures as high as 325mmHg.73,74 If left untreated, AD puts patients 

at risk for stroke, cardiac arrest, seizures, and death.75 

Maladaptive plasticity in the spinal cord after injury may cause hypersensitivity 

and enhanced nociception, increasing the likelihood of a stimulus being perceived as 

noxious.76,77 Since the stimuli initiating AD are unperceived by the patient due to deficits 

in sensory function, episodes of AD can happen multiple times a day. They are 

characterized by sweating, headache, stuffy nose, and flushing above the level of injury.71 

Once AD has been triggered, the most effective way to terminate it is by identifying and 

removing the stimulus. However, AD is also be treated pharmacologically with 

nitroglycerine paste or an L-type calcium channel blocker, which relax smooth muscle to 

alleviate vasoconstriction.78,79 

 

1.1.4 Clinical trials for SCI interventions 

Although there are currently no FDA-approved drugs for the treatment of SCI, a 

search on clinicaltrials.gov produces over 800 clinical trials for spinal cord injury, 

including 427 that have already reached completion. Many of these trials aim to alleviate 

a variety of comorbidities associated with SCI including neuropathic pain, cardiovascular 

disease, sleep apnea, and loss of muscle mass. Other trials are focused on the translation 

of drugs or other therapeutic approaches that have shown potential for improving motor 

and sensory function to enhance independence and quality of life. Representative 

examples of currently ongoing clinical trials for SCI that target a variety of complications 

that can result from the injury are presented in Table 1.  
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Table 1.1 

 

 

Target Intervention 
ClinicalTrials.gov 

Identifier 

Principle 

Investigator 

Neuropathic 

pain 
Capsaicin patch NCT02441660 

Michelle 

Trbovich 

Cardiovascular Systemic hypothermia NCT02991690 Alan D. Levi 

Spasticity Intrathecal Baclofen NCT02903823 Peter Kondrad 

Maintenance 

of muscle mass 
Testosterone NCT01652040 Ashraf Gorgey 

Preservation of 

bone mass 
Zoledronic acid NCT01642901 

Christina V. 

Oleson 

Sleep Apnea Episodic hypoxia NCT02922894 
M. Safwan 

Badr 

Inflammation MT-3921 NCT04096950 

Mitsubishi 

Tanabe Pharma 

Development 

Motor/Sensory 

functional 

improvement 

Riluzole NCT01597518 
Michael 

Fehlings 

Lexapro (selective serotonin 

reuptake inhibitor) 
NCT01788969 

Thomas G. 

Hornby 

FAB117-HC (human adipose 

derived mesenchymal stem 

cells) 

NCT02917291 

Ferrer 

Internacional 

S.A. 

Epidural stimulation NCT04123847 Susan Harkema 

Rehabilitation/Training NCT03504826 Emily J. Fox 
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In addition to these experimental treatments, many clinical trials have also tested 

the efficacy of neuroprotective drugs that could reduce secondary injury. Minocycline, an 

antibiotic which reduces apoptosis of oligodendrocytes and microglia, was proved safe 

and feasible in a Phase II trial80 and is now being investigated in an ongoing Phase III 

trial (NCT01828203). Inhibition of endogenous opioids after injury has also shown 

neuroprotective effects, leading to the development of clinical trials for opioid blockers 

such as naloxone and thyrotropin-releasing hormone.81,82 These antagonists have shown 

preclinical efficacy in dampening excitotoxicity, preventing ischemic damage, and 

improving functional recovery after SCI, although results from clinical trials were less 

conclusive.81–83 

Importantly, the only drug ever approved for acute SCI was also a neuroprotective 

agent. Methylprednisolone sodium succinate (MP) is a glucocorticoid with antioxidant 

capabilities that showed efficacy in preventing lipid peroxidation and neurofilament 

degradation, while also improving blood flow to the injured cord. 84,85 In a series of three 

clinical trials known collectively as the National Acute Spinal Cord Injury Studies 

(NASCIS I, NASCIS II, NASCIS III), various dosages of MP were tested at different 

time points after injury for a duration ranging from 1 day up to 10 days. Results from 

these studies demonstrated that high dose MP administered within 8 hours of injury 

resulted in improved sensory and motor recovery at 6 weeks and 6 months.82,86,87 

However, subsequent criticism of the studies’ analyses and concerns over gastrointestinal 

side effects and increased infection risk led to removal of MP from standards treatment of 

SCI in the United States.88,89 
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1.1.5 Experimental approaches for preserving and restoring function after SCI 

A plethora of diverse experimental therapeutic approaches have been evaluated for 

their potential to preserve or improve function after SCI in preclinical animal models and 

in clinical trials. For simplicity, these techniques can be divided into the categories of: 

neuroprotection, those enhancing plasticity, and those promoting regeneration. In 

addition to these unimodal methods, combinatorial approaches have also been developed 

that target both the preservation of existing tissue and the cultivation of new axon growth 

and synaptic connectivity.  

As described in section 1.1.2, initial damage caused by an SCI leads to subsequent 

secondary injury events including scarring, inflammation, oxidative stress, mitochondrial 

dysfunction, and axon demyelination and degeneration. Neuroprotective strategies are 

those that aim to mitigate or prevent secondary injury cascades in order to preserve tissue 

and functional neural circuitry in the spinal cord. Some neuroprotective compounds have 

already entered into clinical trials, including MT-3921 and Riluzole, seen in Table 1. 

Indeed, the only drug that has been approved by the FDA for the treatment of SCI was 

the neuroprotective corticosteroid methylprednisolone.82,87 These trials also investigated 

other neuroprotective agents naloxone and tirilazad, both of which were less effective in 

restoring function. While later clinical guidelines advised against the use of MP, these 

guidelines remain a subject of contention for clinicians.90 Regardless, MP’s ability to 

improve functional recovery emphasizes that neuroprotective agents are powerful tools in 

the search for SCI treatment strategies. 
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It was once thought that damaged axons in the CNS were incapable of regeneration 

due to inhibitory properties of the CNS environment.91,92 Indeed, in 1981, David and 

Aquayo proved that injured spinal cord axons are capable of elongating over long 

distances when the CNS environment is replaced by a peripheral nerve graft.93 This 

seminal discovery led to decades of research dedicated to finding treatment strategies that 

create a CNS microenvironment that is more conducive to axon growth. In addition to 

peripheral nerve grafts, growth permissive environments have been inserted into the 

spinal cord in the form lab-manufactured scaffolds of various materials.94 Therapeutic 

approaches also include amplifying the presence of neurotrophic factors such as BDNF 

(brain-derived neurotrophic factor), NT-3 (neurotrophin-3), or GDNF (glial cell-derived 

neurotrophic factor) to activate genes associated with regeneration.95,96  

Instead of increasing growth-promoting molecules in the CNS microenvironment, 

other strategies remove molecules that are inhibitory to outgrowth. A promising 

therapeutic target is the degradation of chondroitin sulfate proteoglycans (CSPGs), which 

are found in the perineuronal net surrounding CNS neurons. CSPGs are upregulated 

following SCI, creating a barrier around the lesion site that halts axon elongation and 

entraps regenerating end bulbs.97,98 Degradation of CSPGs using the bacterial enzyme 

chondroitinase-ABC (ChABC) removes this inhibitory boundary and permits axon 

outgrowth and regeneration through the injury site, leading to new functional synaptic 

connections.99 Further studies have also shown the efficacy of interfering with 

interactions between CSPGs and their neuronal receptors.100,101  
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Ablation of reactive astrocytes, mediators of glial scar formation after SCI, can 

also create a growth-permissive state at the cost of exacerbating the inflammatory 

response to injury.102,103 However, some of these immune responses to injury can actually 

stimulate axon growth. For example, macrophage-mediated release of oncomodulin 

promotes optic nerve regeneration.104,105 Despite some beneficial effects acutely, 

sustained immune activation leads to neuronal and glial cell death, making it difficult to 

modulate inflammation to stimulate favorable responses while avoiding detrimental 

outcomes.106 In the 1980’s, Schwab and colleagues realized that the myelin produced by 

oligodendrocytes in CNS white matter also acts as a nonpermissive growth substrate and 

neutralization of myelin membrane proteins promotes corticospinal tract regeneration 

through an SCI.107–109 Since these discoveries, approaches that knockout or otherwise 

inhibit receptor binding of the myelin proteins Nogo, MAG (myelin associated 

glycoprotein), and OMgp ( oligodendrocyte myelin glycoprotein) have shown efficacy in 

stimulating both regeneration of injured axons and sprouting of spared fibers.110–113 

Altogether, studies manipulating the injury milieu have provided valuable evidence for 

the competency of CNS axons to regenerate when neuron-extrinsic barriers to growth are 

removed.  

In contrast to approaches that aim to remove inhibitory factors from the 

microenvironment to promote axon elongation, others modulate neural intrinsic factors to 

stimulate the neuronal growth machinery. In a pivotal 2008 study, Park et al. found that 

deletion of cell growth control genes significantly impacted cell survival and axon 

regeneration. Specifically, deletion of the tumor suppressor gene PTEN (phosphatase and 

tensin homolog) promoted axon growth well beyond an optic nerve lesion.114 This effect 
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has also been reproduced in the injured spinal cord, even when PTEN is only transiently 

inhibited by an antagonist peptide or when downstream targets of PTEN are directly 

activated.115–117 Axon regeneration is an energy-intensive process, requiring 

transportation of mitochondria to the growth cone.118,119 Inhibition of PTEN activates 

genes associated with mitochondrial transport and enhanced regenerative capacity, 

indicating that mitochondrial motility may be a key intrinsic factor that influences axon 

regeneration.119,120 In a similar manner to PTEN, expression of a GTPase known as RhoA 

is also implicated in preventing axon elongation.121 RhoA expression is upregulated after 

SCI, leading to downstream increases in inflammation and growth cone to collapse, 

effectively preventing neurite outgrowth.122 The FDA-approved non-steroidal anti-

inflammatory drug ibuprofen suppresses Rho signaling and promotes axonal sprouting.123 

Another fascinating, yet paradoxical way to stimulate the growth machinery of spinal 

axons is through a peripheral conditioning lesion.124 Lesioning the peripheral branch of 

dorsal root ganglion neurons activates signaling pathways that promotes regeneration of 

dorsal column axons after SCI.125 

Although regeneration and sprouting of CNS axons may be considered a form of 

structural plasticity, henceforth plasticity will refer to alterations in the number or 

strength of synaptic connections. While CNS plasticity will be discussed in greater detail 

in section 1.2.3, some therapeutic approaches that target spinal plasticity in the context of 

SCI will be addressed here. Following SCI, spinal plasticity can either be beneficial, 

leading to functional improvement, or maladaptive, often exacerbating spasticity, pain, 

and autonomic dysreflexia. One way to combat maladaptive plasticity is through training 

and rehabilitation strategies, which can reduce spasticity and normalize spinal reflex 
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Figure 4.7 IH-induced BDNF protein synthesis is not altered according to 

APOE genotype.  

Quantification of BDNF protein levels in APOE targeted replacement male (A. 1-way 

ANOVA p=0.216) and female (B. 1-way ANOVA p=0.137) mice.   
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CHAPTER 5. DISCUSSION 

5.1 APOE genotype and respiratory motor plasticity 

 Because survival is dependent upon breathing function, the neural control of 

breathing must be able to adapt and maintain oxygen homeostasis in response to changes 

in the external environment or fluctuations in activity level and O2 consumption. 

Although some of these ventilatory modifications endure only as long as the stimulus is 

present, others last long after the stimulus is removed. These long-lasting changes, 

comparable to a sort of “memory”, are collectively known as respiratory motor 

plasticity.507 These forms of plasticity can manifest naturally over time, as observed 

throughout development, or in response to injury or disease.420,508,509 Alternatively, 

respiratory motor plasticity can be induced through a variety of experimental or 

therapeutic approaches, many of which rely on a mechanism of increased 5-HT signaling 

in the spinal cord.224,510,511 While respiratory plasticity is important for maintaining O2 

homeostasis in healthy individuals, its potential to compensate for or even restore lost 

breathing function has even greater implications for people whose breathing circuitry has 

been damaged. Therefore, it is crucial that we understand how factors in the human 

population, such as sex, genetic make-up, and age, may positively or negatively impact 

individuals’ ability to express this plasticity. 

 

5.1.1 Respiratory Response to IH in the Presence of Human ApoE 

 The human population consists of individuals who are genetically dissimilar and 

it is likely that this heterogeneity results in varying aptitudes for expressing respiratory 
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plasticity. Therefore, to investigate the role of genotype in modulating the propensity for 

plasticity, we examined the impact of human apolipoprotein E (apoE) isoforms on a well-

characterized model of respiratory motor plasticity. Although polymorphisms in a variety 

of human genes could alter spinal plasticity, a few of which were discussed in Chapter 

1.3, the three alleles of the APOE gene were of particular interest due to the vast body of 

literature describing their influence on brain plasticity in health and disease, which 

starkly contrasts with the lack of knowledge regarding their impact in the spinal cord. 

Despite the relative paucity of information on apoE’s role in spinal plasticity, previous 

work has shown that individuals who have experienced a spinal cord injury (SCI) 

demonstrate less motor recovery when at least one 4 allele is present.348,349 This suggests 

that APOE genotype does influence the plasticity of spinal circuits after injury. The 

current work aimed to determine if this effect was also present in the neural control of 

breathing and whether it was a result of spinal cord insult or if it could be observed in the 

intact state as well. 

 As a model of respiratory motor plasticity, we utilized long term facilitation 

(LTF), which is characterized by a measurable and prolonged increase in breathing motor 

output.224,507 LTF was first discovered as a response to repeated stimulation of the carotid 

sinus nerve.386 Subsequently, numerous studies in rats have investigated the signaling 

mechanism in phrenic motor neurons (PMNs) that leads to the augmentation of breathing 

activity seen during LTF, finding that it could also be induced through exposure to 

intermittent hypoxia (IH) or episodic intrathecal 5-HT dosing.224,268,382,387 By applying the 

episodic 5-HT dosing protocol described by MacFarlane and Mitchell (2009)382 to rats 

that had human apoE3 or E4 protein present in the spinal cord, we discovered that the 
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respiratory response to IH was not altered by the variant forms of apoE in spinally intact 

femaless. However, this lack of observable difference could have been due to insufficient 

sensitivity of diaphragmatic EMGs. It therefore did not rule out the possibility of apoE 

isoform-dependent influences at the synaptic level. Quantification of synaptic glutamate 

receptors, which are necessary for the induction of LTF384, showed no difference between 

E3 and E4 animals. However, rats treated with E3 demonstrated a slight increase in 

synaptic AMPA receptors in response to episodic 5-HT while E4 animals did not. 

Although the difference in synaptic receptor levels did not reach significance, this may 

indicate that human E4 protein diminishes the potential for inducing synaptic plasticity in 

response to stimuli.  

To determine whether isoform-dependent influences on spinal plasticity would be 

altered by SCI, these experiments were replicated in animals that undergone a C2 

hemisection. The majority of SCIs occur at the cervical level, which contains axons from 

brainstem respiratory nuclei, as well as PMNs themselves.464 Damage these bulbospinal 

fibers can disrupt breathing function, leading to diaphragm paralysis, ventilator 

dependence, and increased risk of life-threatening respiratory infections.178,180 However, 

in a rat C2 hemisection model of SCI, LTF is capable of restoring breathing function to 

the ipsilateral paralyzed hemidiaphragm.139,247 Following SCI in our animals, a trend 

emerged in which E3-treated rats demonstrated the expected 5-HT-induced augmentation 

of breathing activity while those receiving E4 did not. This trend did not reach 

significance, possibly due to small group sizes or inadequate sensitivity of diaphragmatic 

EMGs. Perhaps more insightful were the changes observed at the synaptic level. Episodic 

5-HT dosing led to a significant decline in the number of synaptic NMDA receptors 
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localized to PMNs in spinal cords that had been treated with human apoE4. Since 

signaling through NMDA receptors is necessary for LTF induction, this synaptic 

weakening could lead to a deficits in spinal plasticity and functional recovery after SCI in 

individuals that express the 4 allele.385 

 

5.1.2 Interactions of Sex and APOE Genotype in Modulating Respiratory Plasticity  

Initial studies utilizing rats treated with exogenous human apoE protein were 

valuable due to the amount of available literature describing the induction and 

manifestation of LTF in that model, which simplified experimental design and the 

interpretation of results. However, APOE targeted replacement mice that endogenously 

express the human apoE isoforms at physiological levels provide a more clinically 

relevant model. Therefore, subsequent studies examined allele-dependent influences on 

the propensity for LTF in humanized APOE mice. To explore the mechanism behind the 

lack of synaptic strengthening demonstrated by apoE4-treated rats, we also quantified 

signaling molecules that are required for LTF upstream of glutamate receptor trafficking 

in the mouse model. 

 The few studies that have characterized LTF in mice have induced LTF through 

exposure to IH instead of the episodic 5-HT dosing previously described in rats.231–234 

Therefore, we utilized IH as a means of inducing LTF in our humanized mice. 

Comparison of diaphragmatic EMG activity in hemisected APOE mice that 

homozygously express the 3 or 4 allele showed no allele-dependent differences in the 

respiratory response to IH. However, because sex is an important biological variable that 

modulates many processes that are relevant to the current work, such as CNS plasticity, 
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breathing function, APOE  allele effects, and individuals’ response to therapeutics, we 

also independently analyzed data from males and females.355,358,362,442,512 There was no 

significant difference in diaphragmatic activity between E3 and E4 males, although IH 

appeared to decrease burst amplitude in those expressing 3. This data contradicts the 

trend observed in the brain, where the 4 allele is typically associated with attenuated 

plastic responses. This indicates that allele-dependent outcomes could be region-specific 

in the CNS, further emphasizing the need for deeper understanding of the influence of the 

unique apoE isoforms in the spinal cord. In contrast to the detrimental impact of 3 

observed in injured males, it was the 4 allele that correlated with a significant decline in 

diaphragmatic burst amplitude in females. These results are in alignment with previous 

studies in the Alzheimer’s literature reporting that detrimental effects of apoE4 are 

aggravated in females.336,442  

LTF is a serotonin-dependent form of plasticity.224 Manifestation of LTF after 

SCI is dependent upon the sprouting of 5-HT fibers in the spinal cord, suggesting that 

barriers to sprouting or regeneration would limit the capacity for respiratory motor 

plasticity.247 One notable barrier to regeneration and sprouting is the presence of CSPG 

(chondroitin sulfate proteoglycan) molecules. The secretion of these molecules is 

upregulated in response to SCI, although prior to the current study, it remained unknown 

whether the magnitude of this upregulated is modulated by human APOE alleles.99,409,422 

Despite increased levels of CSPGs located around the PMNs of E4 females, this did not 

correspond to a deficiency in 5-HT in the same region. Indeed, 5-HT levels were 

significantly increased in E4 animals, compared to those expressing the 3 allele. Since 

CSPGs are known to impede growth of 5-HT fibers after SCI, and because E4 females 
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also demonstrate elevated 5-HT levels in the intact state, this may be the result of a 

compensatory mechanism that maintains PMN excitability in the presence of apoE4, 

which is associated with loss of synaptic integrity and impaired excitatory synaptic 

signaling.209,218,407,422,513 Although the availability of 5-HT in the phrenic motor nucleus 

may not cause the abatement of respiratory plasticity in E4 females, further studies are 

needed to determine whether 5-HT receptor expression and synaptic localization are 

altered by apoE4. 

 Activation of the chemosensitive carotid bodies during a single bout of hypoxia 

stimulates the hypoxic ventilatory response (HVR), characterized by a transient increase 

in respiratory output.430 Interestingly, mice utilized in the current study displayed a 

decrease in breathing activity in response to a single 10 minute bout of hypoxia, as well 

as during the first 5 minute hypoxic bout during IH. Intrigued by this unexpected result, 

as well as the lack of IH-induced ventilatory augmentation that we observed in uninjured 

apoE-treated rats, we next investigated the respiratory response to IH in spinally intact 

APOE mice. Similar to hemisected mice, there was no difference between genotypes 

when males and females were grouped together. However, upon separating the sexes for 

further analysis, 4 males and 3 females displayed significant IH-induced reductions in 

breathing activity, opposite of the trends observed after IH in injured mice. Quantification 

of CSPGs and 5-HT in intact mice revealed that E4 was again associated with higher 

levels of both molecules when compared to E3, although this did not reach significance. 

As part of the signaling cascade that leads to LTF, 5-HT signaling stimulates synthesis of 

new BDNF in PMNs, which is necessary for IH-induced augmentation of ventilation.268 

Therefore, we also measured BDNF mRNA and protein levels in the region of the 
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phrenic motor nucleus, which revealed no genotype-dependent differences, indicating 

that apoE isoform-dependent influences on LTF signaling occur downstream of BDNF 

synthesis. 

5.1.3 Significance of Findings 

 Together, results from our studies in two rodent species reveal that both sex and 

APOE  genotype modulate spinal and respiratory motor plasticity. While no APOE 

genotype-dependent differences are evident when males and females are grouped for 

analysis, the 3 and 4 allele are each associated with IH-induced decline in 

diaphragmatic activity, depending on which sex is being evaluated. Interestingly, these 

effects also seem to change in response to SCI (illustrated in Figures 5.1 and 5.2). In the 

presence or absence of injury, LTF is induced through a mechanism of increased 5-HT 

signaling, which strengthens synaptic connections on PMNs by stimulating BDNF 

synthesis to activate downstream phosphorylation and trafficking of glutamate 

receptors.224,268,288 Presence of 5-HT around putative PMN and synthesis of BDNF were 

not dependent on APOE genotype. However, levels of synaptic NMDA receptors were 

decreased in the presence of E4, suggesting a deficit in the signaling pathway 

downstream of BDNF synthesis that prevents NMDA receptor trafficking. This 

deficiency perhaps lies in BDNF activation of the TrkB receptor or in TrkB’s kinase 

activity, although more in-depth mechanistic studies are needed to determine how the 

human isoforms of apoE interact with this signaling cascade. Primarily, our data 

emphasizes the importance of understanding how factors that contribute to diversity in 

the human population, but are often incompletely represented by preclinical animal 

models, can modify the efficacy of therapeutic approaches in spinally injured individuals. 
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This is especially crucial in the context of therapeutic IH, which has undergone clinical 

trials to evaluate its efficacy in enhancing breathing recovery, as well as for a variety of 

other functional outcomes after SCI.41,140,142,403,404 By recognizing how factors such as sex 

and genetic background impact the response to therapeutics, we can begin to develop 

personalized approaches to overcome innate barriers to plasticity, regeneration, and 

neuroprotection, thereby facilitating translation of therapeutics and improving functional 

outcomes for people living with an SCI.  

5.2 Methodological Considerations and Limitations  

To accurately interpret our results, we must consider the limitations and potential 

pitfalls of our experimental approaches. Fortunately, a vast body of literature describing 

protocols of IH and other approaches to induce LTF, as well as the signaling required for 

its manifestation in spinally intact or injured rats, is available to provide context for our 

data. However, the same is not true regarding respiratory plasticity in mice. While this 

presented challenges for both experimental design and data analysis, it also enhances the 

value of the current studies for the field of SCI and neural plasticity. Examining the 

respiratory response to IH in both sexes of a humanized mouse model will pave the way 

for the use of more translationally relevant preclinical models. Due to the availability of 

transgenic mice that express a variety of human genes, they are powerful tools for 

exemplifying the diversity found in the human SCI population. 

 

5.2.1 Induction of LTF in Rats Treated with Human ApoE Protein 

Although LTF has been well-characterized as an augmentation of breathing 

activity in response to IH or episodic 5-HT dosing, rats in the current study did not 
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exhibit the expected increases in ventilation.139,224,268,382 In the absence of injury, 

diaphragmatic activity remained constant in response to episodic 5-HT. Following C2 

hemisection, E3-treated animals did exhibit a slight increase in diaphragmatic activity, 

but this change did not reach significance. Although we followed the 5-HT dosing 

protocol that MacFarlane and Mitchell (2009) showed to be effective in rats, some 

aspects of our experimental preparation differed from those previously described. 

Notably, many studies record phrenic neurograms instead of diaphragmatic 

EMGs.247,268,382 This technique requires a phrenicotomy at least unilaterally, which 

removes phrenic afferent feedback and alters PMN excitability.514,515 Indeed, rats that 

undergo phrenicotomy prior to IH display enhanced LTF compared to those with intact 

phrenic nerves.514 Therefore the presence of intact phrenic nerves in our animals may 

have prevented more dramatic alterations in activity.  

Many LTF preparations also include bilateral vagotomy and artificial ventilation 

of animals in order to gain control of blood gases without interference from lung stretch 

receptor feedback.247,268,516 Because our apoE-treated rats were freely breathing, both 

phrenic and vagal feedback could have masked IH-induced breathing changes. An 

additional consequence of performing diaphragmatic EMG recordings in freely breathing 

animals without pCO2 monitoring is that we could not control for changes in metabolic 

rate. Small mammals such as rats and mice can respond to hypoxic exposures by 

activating hypoxic hypometabolism, a decrease in metabolic rate which decreases O2 

consumption to negate the need for increased ventilation when exposed to low 

environmental O2.
441 Due to confounding factors that may have decreased our sensitivity 

for detecting LTF, it is even more remarkable that we observed a divergence in the 
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breathing response to IH in injured E3 and E4 rats. Although the observed trend did not 

reach statistical significance, we did observe significant E4-dependent changes in 

synaptic NMDA receptor levels, indicating that human apoE4 may prevent neural 

plasticity and synaptic strengthening in the injured spinal cord.384,385 

Inherent in our dosing protocol is some uncertainty regarding the diffusion pattern 

of intrathecal 5-HT and apoE, as well as what cell types these molecules interacted with. 

This 5-HT dosing protocol has been shown to induce LTF of phrenic nerve activity 

without altering activity of the hypoglossal nerve, suggesting that 5-HT reaches PMN in 

the cervical ventral horn but does not communicate with brainstem respiratory nuclei.382 

Therefore, human apoE proteins, which were applied to the spinal cord in the same 

manner presumably followed a similar diffusion pattern. However, we did not assess the 

distribution of apoE in the spinal cord or brainstem. ApoE, especially in its lipidated form 

binds receptors in the LDLR family, which are expressed by a variety of cell types 

(neurons, microglia, astrocytes, and oligodendrocytes), to activate an assortment of 

downstream signaling pathways.517–520 Intrathecal administration of apoE could have led 

to inconsistent distribution of the protein between cell types, as well as differences 

between animals, increasing variability in our data. To address this uncertainty and to 

ensure that human apoE isoforms were present at physiologically relevant levels in the 

spinal cord throughout developmental stages and recovery after SCI, subsequent studies 

in APOE targeted replacement mice were crucial. 
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5.2.2 Insights into a Novel Approach for Studying Respiratory Motor Plasticity in Mice 

 The literature describing the respiratory response to IH in mice is sparse. 

Consequently, there is a lack of knowledge regarding best practices for induction and 

measurement of LTF on this model. Although a few studies have shown that mice do 

express LTF, the methods of induction, as well as the type of LTF evaluated (e.g. 

hypoglossal, ventilatory, etc.) are inconsistent. None of them utilized spinally injured 

animals.231–233 Therefore, the optimal IH protocol for injured animals was determined 

based on previous studies in rats and mice, as well as our own observations in mice. 

Previous studies have shown that spontaneous recovery of diaphragmatic activity occurs 

by 2 weeks after lateral C2 hemisection in 40% of mice.287 All but two animals in this 

study recovered EMG activity by three weeks post injury (94% had spontaneous 

recovery), indicating that the mice had viable synaptic inputs on phrenic motor neurons 

that could undergo synaptic strengthening in response to IH. In rats, which recover 

diaphragmatic activity much more slowly after hemisection when compared to mice 

(Warren et al. 2018, personal observation), the crossed phrenic pathway (CPP) is not 

capable of mediating IH-induced LTF for over 2 weeks post injury due to lack of 5-HT in 

the phrenic motor nucleus. However, Michel-Flutot et al. (2021) recently shown that the 

mouse CPP is effective in response to respiratory challenge such as mild transient 

asphyxia as early as seven days post injury521. Based on data from previous studies, three 

weeks post injury was determined to be the time point when mice would be capable of 

inducing LTF through synaptic strengthening of CPP inputs on phrenic motor neurons, 

although further studies are needed to determine how expression of mouse LTF may be 

enhanced or depressed at more chronic timepoints after injury. 
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 In addition to the timing of therapeutic IH after injury, we also needed to 

determine the optimal IH protocol for inducing LTF. While much is known about impact 

of hypoxia severity and length on spinal plasticity in rats, this has not been well-

described in mice.230 Considering previous IH protocols that have been effective in mice, 

we chose a protocol similar to that used in freely breathing mice by Terada et al. (2008). 

The protocol in the current study applied three 5-minute hypoxic (11% O2) bouts 

separated by normoxic periods of 5-minute duration. This was sufficient to induce 

increases in breathing when preliminarily tested in wild type mice (data not shown). This 

protocol also replicates the “modest” IH exposures commonly applied to rats in order to 

activate the Q pathway to LTF without increasing blood pressure, systemic inflammation, 

and oxidative stress, which can result from more “severe” IH.224,268,522,523 The Q pathway 

is initiated through IH-induced release of 5-HT from spinal projections of the raphe.465 

This stimulates 5-HT2 receptor signaling on PMNs and results in synthesis of new BDNF 

that signals through the TrkB receptor.226,268,288,524 In contrast, more severe or sustained 

exposure to IH induces LTF through a 5-HT7 or adenosine 2a receptor-dependent 

signaling cascade that activates PKA to stimulate synthesis and transactivation of 

TrkB.477,525,526 

 Both the Q and S pathway are thought to activate phosphorylation and trafficking 

of glutamate receptors downstream of TrkB activation, thereby strengthening synaptic 

connections on PMN.226 However, simultaneous activation of Q and S cascades leads to 

crosstalk inhibition, preventing augmentation of breathing activity.229,479,480 Because LTF 

signaling mechanisms have not been so thoroughly scrutinized in mice, it is unknown 

whether signaling pathways and crosstalk events are comparable across species. 
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Therefore, we are uncertain whether the IH protocol utilized in our study activated the Q 

pathway, S pathway, or both. Further studies examining how different IH strategies alter 

signaling in mouse PMNs will allow for optimization of IH protocols in mice, thereby 

ensuring that results are not confounded by crosstalk inhibition. 

 Another factor to be considered in the interpretation of our data and in future 

studies is the influence of circadian rhythms on breathing control and plasticity. Humans 

and rodents exhibit oscillations in body temperature, metabolism, and ventilation 

throughout a 24-hour period.527 Diaphragmatic EMG recordings in our rats and mice 

were performed at varying times throughout the day and therefore animals were not 

consistently in the same part of the circadian cycle. In addition to potential impacts on 

baseline respiratory activity in these animals, the circadian clock also regulates various 

types of neuroplasticity, including respiratory motor plasticity in the form of LTF.528–530 

Activity of the serotonergic raphe exhibits rhythmicity with the sleep/wake cycle and 

PMNs themselves express circadian clock genes.530,531 Expression of 5-HT2 receptors, 

BDNF, and TrkB also changes throughout the day, suggesting that animals exposed to IH 

or episodic 5-HT at different times may have varied in their propensity for plasticity.530 

Although disregarding time of day as a biological variable may have dampened the 

treatment effect in our animals, it simultaneously increases clinical relevance because 

studies investigating the neuroplastic response to IH in spinally injured individuals have 

also not performed IH at the same time of day in every subject.41,142,381,403,404 

 Similar to influences of circadian rhythms, hormone cycles could also impact the 

propensity for plasticity in our animals. The estrous cycles of the female rats and mice in 

the current studies were not tracked to determine levels of progesterone or estrogen at the 
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time of treatment or diaphragmatic EMG recording. Progesterone and estrogen receptors 

are present in the CNS, including in the region of raphe serotonergic neurons. Here, 

signaling of these hormones increases expression of tryptophan hydroxylase, the rate-

limiting enzyme of 5-HT synthesis.532 Estrogen has also been shown to enhance levels of 

5-HT2 receptors and progesterone functions as a breathing stimulant that has been used to 

treat respiratory disorders.374,533,534 Interestingly, LTF in males requires conversion of 

testosterone to estradiol and female LTF is more pronounced during stages of the estrus 

cycle when 5-HT levels are high, emphasizing the importance of sex steroid hormones in 

5-HT-depended spinal plasticity.372,373,535 Indeed, Dougherty et al. (2017) found that 

induction of LTF is enhanced when circulating estradiol levels are highest. After 

ovariectomy-induced abolishment of LTF, administration of exogenous estradiol is 

sufficient to restore respiratory motor plasticity.536 Because we did not control for estrous 

cycle phase in our female animals, differences in hormone and 5-HT levels may have 

increases inter-animal variability and limited our ability to detect apoE isoform-

dependent effects. 

 Measuring the respiratory response to episodic 5-HT dosing and IH without 

controlling for time of day and levels of sex hormones may contribute to variability in 

our data and limit the interpretation thereof. However, this paradigm more accurately 

reflects the condition of human subjects receiving therapeutic IH in clinical investigations 

where conditions cannot be so tightly controlled. A limitation for the translational 

applicability of the current studies is that homogenous animal populations and preclinical 

injury models are not representative of human SCI. While the lateral C2 hemisection is a 

reproducible injury that ensures the sparing of crossed phrenic fibers, it does not 
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accurately model the diversity of SCIs seen in people. Human injuries are more closely 

replicated by contusive injury models. While less reproducible, contusion injuries 

realistically injure a variety of spinal fibers, including those of the CPP, which are likely 

to be damaged in individuals who have experienced a cervical SCI. Unfortunately, this 

means that C2 contusive injury models, unlike C2 hemisections, can lead to complete 

loss of breathing function in animals, presenting ethical and logistical concerns. To most 

accurately examine the potential for plasticity and recovery of function after cervical SCI, 

previous work has shown the viability of contusing the cord caudal to our hemisection 

injury at the C3/C4 level to preserve independent ventilation.210,537,538 Performing a 

similar contusive injury in APOE mice would strengthen the clinical relevance of our 

studies, an effort that is crucial to improving translation of therapeutic approaches for 

SCI. Indeed, a recent review by Fouad et al. (2020) emphasizes the importance of 

incorporating factors which cannot be controlled in the human population (sex, age, 

genetics, injury pathology, etc,) into preclinical studies to increase the validity of animal 

models, despite the risk of contributing to data variability.377 

5.3 Future Directions 

While the above data provides evidence that both APOE genotype and sex 

influence spinally mediated plasticity in rodent models of LTF, our results have also 

generated many more questions regarding the mechanisms behind these changes. Of 

particular interest is our description of how humanized mice respond to IH, which differs 

from the ventilatory response in rats. Future studies will contribute to our understanding 

of the role of apoE isoforms in modulating the function and plasticity of neural circuitry, 

including its interactions with various cell types in the spinal cord. Crucially, based on 
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our findings, future investigations will examine ways to address apoE isoform-dependent 

deficiencies in recovery of function and the response to SCI therapeutics. This will 

enhance the potential for translation of therapeutic approaches that will better serve the 

spinal cord injured population.  

 

5.3.1 ApoE-astrocyte interactions in spinal and respiratory plasticity.  

Astrocytes are the primary producers of apoE in the central nervous system.303 

ApoE that is synthesized and lipidated by astrocytes is internalized by neurons upon 

receptor binding, thereby providing cholesterol for growth and synaptogenesis.308 While 

this uptake of apoE is crucial for the modulation of neuronal activity, apoE also impacts 

the functioning of astrocytes themselves. During development, these cells play an 

important role in synapse remodeling. Each astrocyte can ensheath thousands of synapses 

and is sensitive to synaptic activity. In response to prolonged inactivity of excitatory or 

inhibitory synapses, astrocytes can phagocytose and degrade synaptic material to refine 

developing neural circuitry.323,539 Interestingly, during the first step of this process, the 

function of phagocytic receptors are modulated by ABCA1, the transporter responsible 

for astrocytic lipidation of apoE.540 The three isoforms of apoE uniquely interact with 

ABCA1, leading to different lipidation profiles of brain apoE.395,397 In addition to 

transporting lipids extracellularly, ABCA1 also translocates lipids within the membrane, 

suggesting that the apoE isoforms may alter how ABCA1 controls local membrane 

phospholipid composition and phagocytic receptor localization.540 During development, 

this could lead to APOE allele-dependent differences in synaptic connectivity in the 

breathing circuitry. Specifically, apoE4 impairs phagocytosis, which could explain the 
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increased 5-HT+ fiber staining in the phrenic motor nucleus of 4 mice in the current 

study (Chapter 3&4).324 Future studies investigating synaptic pruning mediated by in 

spinal cord astrocytes from APOE targeted replacement mice would provide further 

insights into the development of breathing circuitry and PMN synaptic connectivity in 

intact, genetically distinct spinal cords. 

Following SCI, phagocytosis is crucial to remove debris created by injury-

induced Wallerian degeneration, apoptosis, and demyelination. In the presence of apoE4, 

reduced phagocytosis could allow lingering breakdown products to activate persistent 

immune responses, aggravating secondary injury cascades and potentially leading to 

auto-immunity in the CNS.541,542 Investigating phagocytic processes in spinal astrocytes 

could reveal whether the APOE alleles alter the ability to remove inflammatory mediators 

from the injury milieu in order to prevent tissue damage. Genotype-dependent differences 

in this process could perhaps contribute to the neuroanatomical-functional paradox of 

SCI described by Fouad et al. (2020). 

In addition to phagocytic processes, the apoE isoforms also modulate astrocytic 

metabolism. Astrocytes are not only important for exporting lipids for apoE-mediated 

transport, they are also the primary CNS cell type performing -oxidation of fatty 

acids.543 Indeed, cortical astrocytes contain higher levels of tricarboxylic acid (TCA) 

cycle enzymes than neurons, contributing significantly to the 20% of energy produced in 

the brain that is produced by fatty acid oxidation.501,544,545 The fatty acid octanoate easily 

crosses the blood brain barrier and is responsible for much of the brain’s anaplerotic flux, 

contributes to gluconeogenesis for glucose oxidation, and itself undergoes fatty acid 

oxidation to provide energy.544 Due to the importance of metabolism of lipids such as 
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octanoate as precursors to ATP synthesis in the CNS, APOE genotype-dependent effects 

on lipid homeostasis have been of interest in the Alzheimer’s Disease literature. Human 

subjects expressing the 4 allele perform -oxidation at a higher rate than those who lack 

4.546,547 This hyperactivity and increased ATP synthesis is associated with cognitive 

impairment, an effect aggravated by age.548,549 However, some studies also indicate that 

the apoE4 protein leads to mitochondrial dysfunction and reduced ATP synthesis.506,550 In 

addition to its influence on lipid metabolism, apoE4 has also been associated with 

impaired glucose uptake and hypometabolism.502,551 Despite contradictory conclusions 

about the impact of apoE isoforms on ATP production, these studies demonstrate that 

apoE modulates flux through metabolic pathways in neurons and astrocytes. 

Measuring bioenergetics of astrocytes found in the phrenic motor nucleus or 

brainstem respiratory nuclei before and after SCI could reveal how apoE isoforms 

influence metabolism to change breathing function. SCI induces to a significant loss of 

mitochondrial function, leading to free radical production and exacerbating secondary 

damage, which may be further intensified depending upon apoE isoform-dependent 

impacts on mitochondria in the cervical spinal cord.11 Mitochondria could therefore be a 

powerful therapeutic target for alleviating isoform-dependent deficits in metabolism to 

enhance respiratory plasticity and the recovery of motor function after SCI.552,553 

Astrocytes contribute to the neural control of breathing in both the intact and 

injured state. In the rhythmic pre-Bötzinger complex (preBötC), astrocytes contribute to 

central chemosensation. Ablation of brainstem astrocytes attenuates the HVR, similar to 

the effect of inhibiting peripheral chemosensation of the carotid body, emphasizing the 

importance of this central CO2 sensitivity. Detection of elevated pCO2 and low pH 
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stimulates the release of vesicular ATP.554–556 Rhythmogenic preBötC neurons are 

excited by ATP and respond to purinergic signaling by increasing inspiratory frequency, 

thereby augmenting breathing activity upon astrocytic detection of low pH.557,558  

At the level of the phrenic motor nucleus in the cervical spinal cord, astroglial 

cells interdigitate with PMN, preventing direct communication between the motor neuron 

dendrites.559 Within hours after a C2 hemisection, these astrocytic processes actively 

retract, allowing the number of dendrodendritic appositions to increase, which is 

accompanied by the formation of additional excitatory bulbospinal synaptic connections 

on PMNs.560,561 This is thought to be a mechanism of plasticity contributing to activation 

of the latent crossed phrenic pathway after cervical SCI. APOE genotype-dependent 

influences on astrocytic metabolism or Ca2+ homeostasis may impact their ability to 

undergo structural reorganization that prompts strengthening of PMN connectivity. ApoE 

isoforms could also alter their capacity for sensing and transmitting information about 

brainstem CO2 levels through ATP release, potentially attenuating the respiratory 

response to hypoxia. Future studies investigating the impacts of apoE on astrocytes’ 

chemosensation function and capacity for remodeling in the breathing circuitry would 

contribute to our understanding of how genetic diversity in the human population may 

influence individuals’ capacity for respiratory plasticity in response to injury and 

ventilatory challenge.  

 

5.3.2 The inflammatory milieu after SCI: impact of APOE genotype   

As discussed in Chapter 1.1.1, the inflammatory response to SCI is a dynamic 

process that can paradoxically contribute to secondary injury, as well as neuroprotection 
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and neural plasticity. Interestingly, compared to apoE3 animals, humanized E4 mice 

express higher levels of pro-inflammatory cytokines after CNS insult, which is associated 

with a decline in synaptic markers.562–565 Clinically, the importance of understanding how 

apoE isoforms modulate CNS inflammatory responses is underscored by data showing 

that anti-inflammatory drugs can reduce risk of Alzheimer’s, but only in individuals 

expressing apoE4. This suggests that some detrimental effects of the E4 isoform may be 

alleviated by targeting neuroinflammation.566  

In addition to APOE genotype-dependent influences, inflammatory profiles after 

neurotrauma are also modulated by factors such as age and sex. Genotype-dependent 

effects in our data diverged according to sex, indicating that it will be important to 

investigate the mechanism behind the observed sex differences. As previously discussed, 

LTF itself is modulated by levels of sex hormones, especially estrogens, which are 

required for LTF even in males.371–373,434 Following neurotrauma, the acute inflammatory 

response to CNS injury also differs between males and females, with males exhibiting 

greater microglial activation and peripheral myeloid cell infiltration.567,568 The divergent 

response of immune cells is attributed to the immunosuppressive properties of estrogens. 

These female sex hormones attenuate the release of pro-inflammatory cytokines, 

upregulate anti-inflammatory cytokines, and enhance the T-cell response to clear myelin 

debris and improve functional outcomes in females.569,570 In contrast to estrogens, 

testosterone is associated with excitotoxicity and oxidative stress after SCI.571,572 Sex 

hormones also impact mitochondrial function, as demonstrated by the role of estrogens in 

maintaining metabolic homeostasis.573 Breakdown of metabolic processes after SCI 

further exacerbates secondary injury cascades, suggesting an additional neuroprotective 
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advantage provided by female sex hormones.11,574 Conclusions from these previous 

studies indicate that APOE genotype and sex may interact to modulate the inflammatory 

response to SCI, leading to differences in respiratory plasticity and functional recovery.  

To determine how sex and APOE alters respiratory and spinal plasticity through 

modulating inflammation, future studies will utilize a more recently characterized model 

of plasticity that relies on the presence of inflammatory mediators. This form of 

respiratory motor plasticity is known as inactivity-induced motor facilitation (iPMF) and 

leads to augmentation of breathing activity similar to that observed during LTF.238 

However, it differs from LTF in both its means of induction and the signaling pathways 

that lead to its manifestation. While LTF develops in response to heightened inspiratory 

drive elicited by exposure to hypoxia, iPMF results from a lack of respiratory drive. High 

levels of mechanical ventilation removes the drive to breath, leading to a neural apnea. 

When inspiratory drive is restored and phrenic nerve activity returns, compensatory 

plasticity becomes evident in the form of enhanced phrenic activity.238 This facilitation is 

dependent upon signaling of the TNF- cytokine, implicating the involvement of 

inflammatory responses to apnea.237 Therefore, evaluating lesion characteristics and 

iPMF in male and female mice expressing human APOE alleles will provide insight into 

how sex and APOE genotype impact both immune activation and plasticity after SCI.  

Astrocytes may also be key mediators in the induction of iPMF. Astrocytes are 

known to respond to synaptic inactivity by releasing TNF-. This signaling stimulates 

synaptic localization of glutamate receptors in neurons, thereby strengthening synaptic 

connections.241 Although this mechanism is typically associated with gradual changes in 

synaptic scaling, it could also contribute to more acute synaptic enhancements that lead to 
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the development of iPMF34. Utilizing iPMF as a model of plasticity in intact and spinally 

injured animals will allow for the investigation of how astrocytic activation and 

signaling, glutamate receptor trafficking, and respiratory plasticity are impacted by APOE 

genotype.  

 

5.3.3 Considering age as a biological variable in studies of the apoE isoforms.  

APOE rose to notoriety in the Alzheimer’s Disease field as the most significant 

genetic risk factor for developing this disease. However, Alzheimer’s is a disease of 

aging, and accordingly, age is the primary determinant of Alzheimer’s risk. Aging further 

exacerbates apoE4- and sex-dependent effects on brain pathology and cognitive decline. 

Indeed, previous data indicates that apoE4 may enhance synaptic plasticity in some brain 

regions in young humanized APOE mice, but this effect disappears with age.447,448 

Females are at greater risk of developing Alzheimer’s, as well as more pronounced E4-

dependent tau pathology and deficits in neural circuitry connectivity even before disease 

onset.575,576 In aged mice expressing 4, estradiol replacement therapy enhances LTP, 

improves memory, and reduces Alzheimer’s risk, indicating that female sex hormones are 

neuroprotective against detrimental effects of apoE4 in the CNS.577,578  

Together, evidence from the Alzheimer’s Disease literature underlines the 

importance of considering both age and sex as biological variables when investigating the 

influence of apoE isoforms on neural plasticity and CNS disease outcomes. This is 

especially relevant for the current work because spinal cord injuries are becoming 

increasingly common in older individuals. SCIs used to be a young person’s injury, with 

an average age of 29 at the time of injury in the 1970’s. As people live longer and the 
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population ages, the average age has increased, with falls emerging as a more prevalent 

cause of injury in the older population. Although the average age of injury is currently 

43, SCIs have a bimodal distribution, proving to be most common in young adults and 

elderly individuals.2,579 In our study, APOE humanized mice were 3 months old 

(representative of young adults) when they received an SCI. Future experiments using 

aged animals would be valuable in determining whether age exaggerates genotype and 

sex effects on spinal and respiratory plasticity in a manner agreeing with trends described 

in the neurodegeneration literature.  

SCI in older individuals elicits pathological responses that are distinct from those 

found in young adults, activating secondary injury cascades that could determine the 

extent of tissue damage, injury severity, and the response to therapeutic interventions.580–

583 Clinically, it is difficult to isolate age-dependent influences on outcomes after SCI due 

to a variety of covariates including age-related comorbidities, lack of precise outcome 

measures, and variability in injury characteristics.584 For example, lengths of stay in 

rehabilitation facilities are reduced in the older SCI population because older individuals 

are more likely to sustain incomplete lesions. Despite the higher prevalence of complete 

injuries, younger people still recover independent walking after SCI more frequently than 

elderly individuals.585 Due to the challenging nature of clinical SCI aging studies, it is 

important to develop preclinical models that will accurately reflect the human condition, 

including representation of genetic diversity, sex, and age. By utilizing humanized mouse 

models, future studies will provide a means of studying how APOE genotype-dependent 

injury pathology evolves with age.  
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Previous studies have shown that mitochondrial function declines with age, 

leading to increased production of reactive oxygen species.586 Some types of age-

dependent mitochondrial dysfunction are more pronounced in the spinal cord than in the 

brain, suggesting that if apoE isoforms inhibit spinal plasticity through altering 

mitochondrial bioenergetics, these detrimental effects will be exacerbated by aging.587  

Accordingly, the E4 isoform is associated with heightened oxidative damage in the 

Alzheimer’s brain, although E4’s impact on spinal cord ROS production remains 

unexplored.588 However, in wild type animals, increased mitochondrial ROS production 

after SCI activates spinal cord macrophages, which more commonly develop a pro-

inflammatory phenotype in aged animals.580,581 Strikingly, even M2 macrophages, which 

are typically considered protective in young animals, produce more ROS while 

concurrently releasing fewer anti-inflammatory cytokines after SCI in older 

animals.580,582 Reducing macrophage activation and ROS production enhances 

neuroprotection and improves functional recovery after SCI in aged mice, presenting a 

promising therapeutic target if apoE isoform-dependent effects on oxidative stress and 

immune activation are discovered.583  

 

5.3.4 Therapeutic interventions for overcoming apoE-induced constraints on breathing 

plasticity 

The emergence of APOE genotype-dependent impacts on respiratory and spinal 

plasticity in our data raises a critical question: how do we ameliorate functional deficits 

that result from an individual’s genetic make-up? While sex differences also contributed 

to genotype effects in humanized mice, it is possible that sex effects could be ameliorated 
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through hormone replacement. In the brain, estradiol replacement has shown efficacy in 

enhancing plasticity to improve learning and memory in women who express the 4 

allele.577,578 Estradiol may similarly restore spinal plasticity in 4 females, while also 

acting as a neuroprotective antioxidant after SCI.589 Because previous data has also 

indicated that excess hormone replacement can exacerbate brain aging in females who 

lack the 4 allele, the effects of estradiol on CNS function and plasticity in the presence 

of human APOE alleles must be further investigated to assess its potential risks and 

benefits.590 Estrogen signaling is also important for plasticity in the male CNS, which is 

emphasized by data showing that estradiol is required for LTF in male rats.372 Indeed, 

estradiol treatment can improve functional outcomes in male rats that sustain a traumatic 

brain or spinal cord injury, emphasizing the importance of testing its therapeutic potential 

in both sexes of humanized APOE mice.370,591,592  

Although modulating the levels of sex hormones may alleviate some of the 

observed impacts of APOE genotype on the propensity for plasticity in our animals, a 

more effective approach may be to directly target apoE proteins. To overcome barriers to 

plasticity that arise from the unique structures and molecular interactions of each apoE 

isoform in the brain, apoE mimetic peptides and structure correctors have been 

developed. The amino acid substitutions at positions 112 and 158 lead to different 

intramolecular interactions in apoE isoforms, altering their ability to interact with other 

molecules.593 Protein levels of apoE in the CNS are also APOE allele-dependent, with 

lower levels observed in individuals expressing 4.594 This suggests that interactions 

between apoE and its receptors are altered in E4 animals due to both its structure and 

decreased availability in the CNS.396 Mimetic peptides are derived from the receptor 
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binding domain of apoE, which is common between the E2, E3, and E4 proteins. This 

allows the peptides to interact with apoE receptors and mediate the neuroprotective and 

anti-inflammatory actions of apoE3.595–597 Indeed, mimetic peptides have shown 

preclinical efficacy in reducing CNS inflammation and improving functional outcomes 

after SCI and TBI, in addition to protecting against Alzheimer’s pathology.598,599 

Mimetic peptides increase apoE receptor activation by increasing levels of the 

receptor binding domain that can effectively bind apoE receptors. In contrast, small 

molecule structure correctors interact with the apoE4 protein itself in order to interrupt 

intramolecular domain interactions that result from the Cys112Arg substitution. This 

causes E4 to acquire a more open tertiary structure that resembles E2 or E3.600–602  

Structure correctors prevent apoE4-induced impairment of neurite outgrowth and 

mitochondrial dysfunction.601,603 Although this therapeutic strategy has not been tested in 

the context of SCI, future exploration of the possibility of converting apoE4 into the 

functional equivalent of apoE3 could reveal enhanced respiratory plasticity in spinally 

injured E4 females. 

While directly targeting the structure or molecular interactions of apoE isoforms 

may alleviate their detrimental impacts on CNS function and plasticity, they could also 

have unintended side effects in the periphery, where apoE is also highly expressed.317 

Therefore, it may be more translationally relevant to target signaling pathways that are 

altered by apoE isoforms in the brainstem and spinal cord where the neural circuitry that 

mediates breathing is housed. One crucial signaling molecule that is modulated 

differentially by the apoE isoforms in the CNS is calcium.604 Specifically, apoE4 disrupts 

Ca2+ homeostasis by increasing influx of extracellular Ca2+. The resulting increase in 
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intracellular calcium levels is associated with increased neuronal cell death.328 SCI also 

stimulates Ca2+ influx, further exacerbating the disruption of Ca2+ homeostasis caused by 

apoE4, which could explain why detrimental effects of E4 were only observed after 

injury in our rat model.605  

Mitochondria function as cellular Ca2+ regulators. Excessive Ca2+ can interrupt 

mitochondrial bioenergetics and lead to opening of the mitochondrial permeability 

transition pore, allowing for the release of reactive oxygen species and apoptotic 

proteins.553,606 As previously discussed, oxidative damage stimulates inflammatory 

processes and vice versa, demonstrating that loss of Ca2+ homeostasis has significant 

implications for metabolism and secondary injury after SCI.  

High calcium levels could also inhibit synaptic plasticity through activation of 

calcineurin, a Ca2+-dependent phosphatase607. While some entry of Ca2+ through calcium-

permeable AMPA receptors can be lead to beneficial enhancement of synaptic 

transmission, excessive Ca2+ signaling can have the opposite effect.608 Increased Ca2+ 

influx in mice expressing 4 is associated with heightened activity of calcineurin, which 

reduces the density of dendritic spines and inhibits synaptic plasticity, possibly through 

dephosphorylation of glutamate receptors.329,609 Together, previous studies describing the 

interactions of apoE isoforms, Ca2+ signaling, cytotoxity, and synaptic plasticity suggest 

that restoring calcium homeostasis may alleviate E4-associated deficits in respiratory 

plasticity before or after SCI. The therapeutic efficacy of approaches that prevent 

mitochondrial permeability transition or which reduce calcineurin activity, such as 

cyclosporine A or FK-506, respectively, should also be investigated for their ability to 

promote neuroprotection and spinal plasticity in humanized APOE mice.610–613  
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5.4 Conclusion  

Together, our data shows that both sex and human APOE genotype determine the 

propensity for spinal and respiratory plasticity. When considered in the context of the 

neurotrauma and Alzheimer’s Disease literature, this general conclusion is not surprising, 

although the specific genotype-dependent responses did not follow the patterns that have 

previously been described in the brain. The 4 allele has previously been associated with 

attenuated synaptic plasticity and worse functional outcomes in traumatic brain injury 

and Alzheimer’s, effects which are more pronounced in females. However, the current 

study demonstrated that both the 3 and 4 alleles can inhibit spinal and respiratory 

plasticity, depending on sex and the injury status of the spinal cord. This is the first 

investigation of how genetic diversity in the human population may alter the propensity 

for spinal and respiratory plasticity, as well as the ability to respond to SCI therapeutics. 

Our novel findings underscore the importance of considering biological variables in the 

human SCI population when developing therapeutic approaches. While preclinical animal 

models can never comprehensively represent the extent of diversity found in people, 

utilizing multiple species, transgenic animals, both sexes, and clinically relevant injury 

models can provide better predictors of the efficacy of treatment strategies in diverse 

patient populations. Understanding how factors such as APOE genotype impact the 

response to therapeutics that are entering clinical trials, including IH, will aid in the 

development of personalized strategies to overcome barriers to functional recovery. 

Fundamentally, our data will pave the way for improving translation of SCI therapeutics 

in order to improve functional outcomes and quality of life for individuals living with 

SCI. 
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Figure 5.1 Graphic summarizing sex- and genotype-dependent differences in 

the respiratory response to IH  

Injured (left) and C2 hemisected (right) APOE targeted replacement mice displayed 

unique responses to IH, which were dependent upon sex and APOE genotype. (Created 

with BioRender.com)  
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Figure 5.2 Graphic illustrating the signaling pathway that leads to 

manifestation of LTF. 

Numbers indicate the molecules that were quantified in APOE targeted replacement mice 

or apoE-treated rats. The panel on the bottom right summarizes whether there were apoE 

isoform-dependent differences in the levels of these molecules: 1-2) Injured APOE mice 

displayed genotype-dependent differences in the amount of 5-HT density of the PNN 

around phrenic motor neurons. 3) ApoE isoforms did not influence the levels of BDNF in 
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apoE-treated rats or APOE mice. 4) ApoE4 was associated with a decline in synaptic 

NMDA receptors in C2 hemisected rats. (Created with BioRender.com)  
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APPENDICES 

Appendix 1. List of Abbreviations: 

 

ABCA1 = ATP binding cassette A1 

AD = Autonomic dysreflexia 

AIS = American Spinal Injury Association Impairment Scale 

AMPA = -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

ANOVA = Analysis of variance 

ApoE = Apolipoprotein E 

ATP = Adenosine triphosphate 

BDNF = Brain derived neurotrophic factor 

CNS = Central nervous system 

CPP = Crossed phrenic pathway 

CSPG = Chondroitin sulfate proteoglycan 

DP = Diaphragm pacing 

ELISA = Enzyme-linked immunosorbent assay 

GDNF = Glial cell-derived neurotrophic factor 

HIV = Human immunodeficiency virus 

HVR = Hypoxic ventilatory response 

LDLR = Low density lipoprotein receptor 

LTF = Long term facilitation 

LTP = Long term potentiation 

MP = Methylprednisolone 

MRI = Magnetic resonance imaging 

NADPH = Nicotinamide adenine dinucleotide phosphate 

NIH = National Institutes of Health 

NLI = Neurological level of injury 

NMDA = N-methyl-D-aspartic acid 

NMDA = NMDA receptor 

NSAID = Nonsteroidal anti-inflammatory drug 

NTS = Nucleus tractus solitarius 

OCT = Optimal cutting temperature 

PBS = Phosphate buffered saline 

PFA = Paraformaldehyde 

PMN = Phrenic motor neuron 

PNN = Perineuronal net 

RMANOVA = Repeated measures ANOVA  

ROI = Region of interest 

SCI = Spinal cord injury 

TBI = Traumatic brain injury 

TMS = Transcranial magnetic stimulation 

VLDL = Very low density lipoprotein 
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Appendix 2. Copyright for published data 

 

 

Data from Chapter 3 has been published in eNeuro. The following is their statement 

regarding use and reproduction of published material: 

 

“This is an open-access article distributed under the terms of the Creative Commons 

Attribution 4.0 International license, which permits unrestricted use, distribution and 

reproduction in any medium provided that the original work is properly attributed.” 
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