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ABSTRACT OF THESIS 

 
 

TREM2: Gene Expression and Role in Alzheimer’s Disease 
 

 

 Genetic mutations in the TREM2 gene are highly correlated with risk of 
Alzheimer’s disease, but alternative splicing patterns of TREM2 transcripts have not been 
fully described. Characterization of TREM2 alternative splicing will be of significant use 
to the scientific community as the field of Alzheimer’s disease research progresses. 
 The goal of this study was to fully describe splicing patterns in TREM2, as 
different splicing isoforms of genes can alter express and/or function of the final protein. 
Human blood and anterior cingulate cortex brain tissue from 61 individual donors was 
processed and used for PCR and quantitative PCR as well as western blotting in order to 
identify and quantify novel TREM2 isoforms.  
 Previously described transcripts of TREM2 which lacked exons 3 or 4, or which 
retained part of intron 3 were replicated in this study. Additionally, we identified a novel 
isoform lacking exon 2, D2-TREM2, as well as several novel isoforms lacking multiple 
exons. D2-TREM2 mRNA in the brain comprised approximately 10% of total TREM2 
RNA in the brain. Quantitative expression of TREM2 and frequency D2-TREM2 were 
compared between subjects with and without Alzheimer’s disease, revealing no 
significant difference between the two groups. The novel splice isoforms identified in this 
study were found across multiple tissue types. D2-TREM2 was found with similar 
frequency in non-brain tissues, ranging from 5.3-13.0%. D2-TREM2 was found to be 
translated to protein and shares localization and cell trafficking patterns with full-length 
TREM2. Both D2-TREM2 and full-length TREM2 are predominantly retained in the 
Golgi complex. Additionally, D2-TREM2 was confirmed to be expressed in the brains of 
subjects with Alzheimer’s disease as well as those without Alzheimer’s disease.  
 Exon 2 of TREM2 encodes for the ligand-binding domain, which is essential for 
its function as a receptor and thus function of cells on which it is present, such as 
microglia in the central nervous system. As D2-TREM2 lacks exon 2, we hypothesize that 
D2-TREM2 may inhibit full-length TREM2 function and that targeting TREM2 splicing 
may offer a novel therapeutic approach for Alzheimer’s disease. 
 
  

KEYWORDS: TREM2, Alzheimer’s Disease, Gene Splicing, Gene Expression, 
Microglia 
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CHAPTER 1. TREM2: BACKGROUND 

Abstract 

 Polymorphisms in the TREM2 gene are considered one of the strongest risk 

factors for Alzheimer’s disease. Several mutations have been identified and described but 

splicing of the TREM2 gene has not been fully characterized previously. TREM2 splicing 

isoforms with exon 3 or 4 skipped or intron 3 retained have been reported, and in this 

study, we describe novel isoforms. TREM2 remains a significant topic in the field of 

Alzheimer’s disease research, and characterization of TREM2 may prove essential to the 

ongoing mission in the medical field of developing treatments for Alzheimer’s disease. 

The purpose of this introduction is to provide background information on the genetics of 

the TREM2 gene, the physiology of the TREM2 protein, and the role these play as a 

mechanism in human disease.  
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TREM2 Physiology 

TREM2, or triggering receptor expressed on myeloid cells 2, is a protein in the 

immunoglobulin family of proteins expressed on myeloid lineage cells including 

osteoclasts, microglia, and other phagocytes[1]. The TREM2 protein presents both as a 

transmembrane receptor protein and as soluble TREM2 (sTREM2) after proteolytic 

cleavage or expression of the transcript lacking the transmembrane domain[2]. The 

TREM2 gene contains 5 exons, each coding for a portion of the 230-amino acid full-

length protein. Exon 1 codes for the cell-translocation signal peptide, prompting the cell 

to move the full-length protein to the endoplasmic reticulum. Exon 2 codes for an 

immunoglobulin-like V-set (IgV) domain, responsible for interaction of TREM2 with 

ligands. Exon 3 codes for a short stalk, connecting the IgV domain with the 

transmembrane domain, encoded by exon 4. Finally, exon 5 codes for the cytosolic tail of 

TREM2[3]. Each exon and its corresponding amino acid sequence is vital for proper 

function of full-length TREM2.  

In its transmembrane form, TREM2 binds ligands and regulates several crucial 

physiological roles, including cell survival and proliferation, phagocytosis, and immune 

cell function. TREM2 is of particular significance in its role in the central nervous system 

(CNS) via regulation of microglial functions[4]. In particular, TREM2 stimulation in 

microglia is a strong activator for phagocytosis. Interestingly, TREM2 can stimulate 

phagocytosis in microglia without inducing inflammation via the NF-κB pathway, which 

promotes expression of pro-inflammatory cytokine and chemokine genes. This is 

contrary to other activators of phagocytosis, such as toll-like receptors (TLRs), which are 

often strong activators of the NF-κB pathway. Experimentally, overexpression of TREM2 
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in microglia has been shown to induce phagocytosis of apoptotic neurons while 

simultaneously reducing transcription of pro-inflammatory cytokines such as IL-1β and 

TNF-α[5].  

TREM2 signaling is transmitted primarily through the DAP12 co-receptor signaling 

subunit, while also displaying interactions with DAP10. When TREM2 binds a ligand, 

TREM2 and DAP12 interact in the membrane via oppositely charged residues. Upon 

initiation of this interaction, DAP12 cytosolic residues in its Immunoreceptor Tyrosine-

Based Activation Motifs (ITAMs) are phosphorylated and facilitate intracellular 

transduction of the TREM2 signal[6]. This interaction of TREM2 with DAP12 results in 

mobilization of calcium, activation of protein kinases, and remodeling of actin[7].  

TREM2 in Human Disease 

Nasu-Hakola Disease 

Polymorphisms in the TREM2 gene are strongly associated with several human 

diseases. One of the first diseases implicating TREM2 mutations as a cause is polycystic 

lipomembranous osteodysplasia with sclerosing leukoencephalopathy, also known as 

PLOSL or Nasu-Hakola disease. Nasu-Hakola disease presents as early-onset dementia 

associated with microglial dysfunction and presence of bone cysts due to chronic 

dysfunction of osteoclasts, a key cell type in the bone which mediates bone 

remodeling[8]. The polymorphisms in TREM2 associated with Nasu-Hakola disease 

include missense mutations, which are changes in a single base pair within a codon, 

changing the amino acid which is formed during translation of the transcript. The specific 

mutations for Nasu-Hakola disease include Y38C, W50C, T66M, and V126G. These 
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deviations from normal the normal TREM2 gene alter the structure of the final TREM2 

protein, causing steric issues and disrupting normal ligand binding. Dysfunction of the 

TREM2 protein due to these mutations prevents normal functioning of microglia and 

osteoclasts, resulting in characteristic Nasu-Hakola disease pathology[9]. 

Alzheimer’s Disease 

TREM2 mutations have also been implicated as a risk factor for Alzheimer’s disease 

as well as contribution to the severity of the disease. As TREM2 is a key receptor in 

mediating microglial phagocytosis, mutations in the TREM2 gene are associated with 

reduced ability to clear neuronal debris, including beta-amyloid (Aβ). This leads to build-

up of Aβ, resulting in formation of Aβ “plaques”, a key feature of Alzheimer’s disease 

pathology[10]. Genome-wide association studies indicate that a particular TREM2 

mutation, R47H, increases late-onset Alzheimer’s disease risk by 3-fold[11]. A 3-fold 

risk increase is similar to the risk of the apolipoprotein E (APOE) ε4 allele, a heavily 

implicated and widely studied Alzheimer’s disease risk factor. The R47H mutation, 

similar to the mutations implicated in Nasu-Hakola disease, is proposed to disrupt normal 

ligand binding in TREM2, preventing activation and proper function of microglia in the 

CNS, including the aforementioned clearance of Aβ. In cell culture, the R47H mutation 

has been shown to disrupt proper cell surface expression of TREM2 and modify 

expression of other genes regulating immunity and proliferation. These effects 

overlapped significantly with TREM2 knockout cells in culture, providing further 

evidence of the disruptive nature of the mutation[12]. Since the discovery of the R47H 

mutation and its role as a risk factor for Alzheimer’s disease, a variety of other mutations 

in the TREM2 gene have been discovered. The effects of many of these mutations remain 
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unknown. However, some mutations, such as R62H and rs7759295, have been found in 

subjects displaying significant Alzheimer’s disease pathology[13]. Alternative splicing of 

TREM2 has also been reported, focusing on specific splicing isoforms. While the 

majority of Alzheimer’s disease-associated TREM2 mutations are found on exon 2 of the 

TREM2 gene, others have been found on exons 3 and 4 as well, and more may yet be 

undiscovered[14]. This led us to further investigate TREM2 splicing patterns and seek to 

fully characterize splicing variations in the TREM2 gene. 
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CHAPTER 2.  MATERIALS AND METHODS 

Characteristics and Preparation of Samples 

Samples of blood and anterior cingulate cortex autopsy tissue from 61 donors were 

obtained from the University of Kentucky’s Sanders-Brown Alzheimer’s Disease Center. 

The characteristics and cDNA synthesis strategies for these samples have been previously 

described[15]. All research methodology was conducted under protocol number 48095 of 

the University of Kentucky Institutional Review Board. The samples obtained included 

both individuals with confirmed Alzheimer’s disease pathology and individuals with no 

significant Alzheimer’s disease pathology. Alzheimer’s disease blood and tissue samples 

were from individuals aged 81.7 ± 6.2 years, while non-Alzheimer’s disease samples were 

obtained from individuals aged 82.4 ± 8.7 years. Postmortem interval was 3.4 ± 0.6 hours 

for Alzheimer’s disease subjects and 2.8 ± 8 hours for non-Alzheimer’s disease subjects. 

Alzheimer’s disease subjects were 55% female and 45% male, while non-Alzheimer’s 

disease subjects were 46% female and 54% male. Previous (premortem) Mini-Mental State 

Exams were conducted on patients, and average scores were 11.9 ± 8 for Alzheimer’s 

disease subjects and 28.4 ± 1.6 for non-Alzheimer’s disease subjects. RNA samples were 

prepared using Qiagen RNeasy Lipid Tissue Mini Kits (Qiagen #74804) according to 

included protocols. Reverse transcription of RNA into cDNA was conducted using 

SuperScript IV (Invitrogen  #18091050) according to included protocols. For the cross-

tissue TREM2 splicing analysis, fetal RNA from the various tissue types were obtained 

from Stratagene and cDNA preparation methods have been previously described[16]. 

Protein homogenate was obtained from hippocampal tissue of three Alzheimer’s disease 

and three non-Alzheimer’s disease subjects. Approximately 100mg of tissue was added to 
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sucrose buffer: 0.25M sucrose, 20mM EDTA, 20mM EGTA, 100mM Tris, pH of 7.4. The 

tissue was then homogenized with pestle in a microcentrifuge tube. One volume of 2X 

RIPA buffer (300mM NaCl, 2% NP-40, 2% w/v deoxycholate, 0.2% sodium dodecyl 

sulfate, 50mM Tris-HCl, pH of 7.4) was added to homogenized samples. Sucrose and RIPA 

buffers contained a final concentration of protease and phosphatase cocktails of 1X.  

Cell Culture 

HMC3 human microglial cell line was obtained from American Type Culture 

Collection (ATCC CRL-3304). Both HEK293 and HMC3 cells were maintained in Eagle’s 

Modified Minimum Essential Medium, ATCC modification (ATCC 30-2003) with 10% 

fetal bovine serum defined (HyClone, GE Healthcare SH30070.03); 50U/mL penicillin, 

50μg/mL streptomycin (Gibco 22400-089). Cells were grown at 37°C in 5% CO2 and air 

atmosphere.  

TREM2 Splice Isoform Identification: PCR and Sequencing 

cDNA samples obtained from anterior cingulate cortex were amplified using TREM2 

exon 1 primers (5’-CCTGACATGCCTGATCCTCT-3’) and exon 5 primers (5’-

GTGTTCTTACCACCTCCCC-3’) using Q5 high-fidelity hot-start polymerase (NEB 

#M0493L). Parameters for PCR thermocycling were as follows: 98°C 30 s; 98°C 5 s, 67°C 

5 s, 72°C 45 s, 30 cycles; 72°C 2 min, 25°C hold. PCR products were run on 8% acrylamide 

gel and subsequently imaged on a BioRad ChemiDoc XR imager. Bands were extracted 

from these gels for amplification, using the same settings as above, and purified with 

Monarch PCR Cleanup Kits (NEB #T1030L). Purified PCR products were sequenced by 
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ACGT (Wheeling, IL) and compared to reference transcript NM_018965.4 to identify 

splicing patterns.  

TREM2 Transcript Quantification  

Quantitative PCR was used to quantify expression of TREM2 transcripts. Primers 

corresponding to sequences within exons 1 and 2 were used for expression quantification 

of TREM2 exon 2 (forward, 5’-CCTTGGCTGGGGAAGGG-3’; reverse, 5’-

GGGCATCCTCGAAGCTCT-3’) along with primers corresponding to exon 1-3 junction 

and within exon 3 to ultimately quantify the TREM2 exon 2 skipped (D2-TREM2) 

isoform (forward, 5’-TTACTCTTTGTCACAGACCC-3’; reverse, 5’-

GGGCATCCTCGAAGCTCT-3’). PCR was performed using initial 2 min incubation at 

95°, followed by 40 cycles of 10 s at 95°C, 20 s at 60°C, and 20 s at 72°C. 20μL 

reactions contained 1μM of each primer, 1X PerfeCTa SYBR Green Super Mix (Quanta 

Biosciences), as well as 20ng cDNA. Samples were amplified in parallel using serially 

diluted standard generated by PCR of cDNA with indicated primers and subsequently 

purified and quantified by UV absorbance. Sample results were compared to standard 

curve to determine number of copies per sample. Overall TREM2 expression was sum of 

copy numbers of TREM2 exon 2 present and exon 2 skipped. All assays were performed 

in duplicate and normalized to Iba1 expression as the housekeeping gene. Iba1 was used 

due to the fact that CNS TREM2 is expressed exclusively in microglia. For cross-tissue 

fetal cDNA comparisons, percent exon 2 skipping was calculated by dividing exon 2 

skipped copies by sum of exon 2 skipped and mean exon 2 present copies. Cross-tissue 

comparison utilized six technical replicates.  
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TREM2 Transcript Cloning 

TREM-2 and D2-TREM2 cDNA transcripts for immunofluorescence experiments 

were amplified using PCR with primers corresponding to DNA sequences within exons 1 

and 5, as above. For D2-TREM2 size standard used for Western Blot, D2-TREM2 

transcripts were cloned with the aforementioned exon 1 primers and reverse primer 

corresponding to DNA sequence in the 3’ untranslated region (5’-

CCAGCTAAATATGACAGTCTTGGA-3’) in order to preclude an epitope tag. For PCR 

amplification, Platinum Taq (Invitrogen #10966034) was used with the following cycle 

parameters: 2 min at 94°C; 30 sec at 60°C, 2 min at 72°C (30 cycles), 7 min at 72°C, 

25°C hold. For cloning, pcDNA 3.1-V5/His TOPO-TA cloning kit (Invitrogen 

#K480001) was used according to the included protocol. Clones were sequenced for 

verification by ACGT (Wheeling, IL) and grown at midi-scale production and 

purification with Qiagen Plasmid Plus Midiprep kits (Qiagen #12943). 

Transfection of HMC3 and HEK293 Cells 

Transfection of HMC3 human microglia and/or HEK293 cells was performed using 

Lipofectamine 3000 with Plus reagent (Invitrogen #L3000001) according to included 

protocols. Quantities used were: 0.8μL Lipofectamine, 1μL Plus reagent, 250ng plasmid 

per well in 8 well glass chamber slides (MatTek CCS-8). All cells were incubated for 24 

hours, then HMC3 cells were processed for microscopy and HEK293 cells were 

processed for Western Blot.  
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Confocal Immunofluorescence Microscopy 

HMC3 cells, after transfection, were fixed using 10% neutral buffered formalin 

(Fisher Scientific SF100-4) for 30 minutes and then blocked and permeabilized for 30 

minutes using 10% goat serum (Sigma S26-LITER), 0.1% Triton X-100 (Fisher 

Scientific BP151-500) in PBS (Fisher BioReagents BP665-1). Primary and secondary 

antibodies were diluted in the above blocking and permeabilization buffers, then 

incubated at room temperature for 90 minutes. Cells were washed three times in the 

above blocking and permeabilization buffers in between primary and secondary antibody 

treatment, then three times in the above PBS prior to slide mounting with Prolong Glass 

using NucBlue mounting media (Invitrogen #P36981) and high-tolerance No. 1.5 cover 

glass (ThorLabs CG15KH1). Imaging was performed using a Nikon A1R HD inverted 

confocal microscope with 60X oil objective lens and NIS Elements AR software.  

Western Blot 

Protein quantification was performed using a Pierce 660 assay (Invitrogen 

#1861426) and 40μg loaded per well on 10-20% Tricine gel (Invitrogen #EC6625BOX) 

then transferred to a 0.22μm PVDF membrane. This membrane was blotted overnight 

with antibody against sequence within the TREM2 cytosolic domain (Cell Signaling 

#91068) and probed with goat and anti-rabbit secondary antibody AlexaFluor 800 

(Invitrogen #A32735). 
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Statistical Analysis 

Statistical analyses were performed using GraphPad Prism 8.4.2 software. 

Quantitative data were checked for normality by the D’Agostino & Pearson test. The 

normally distributed data were analyzed using Welch’s t-test, and data not normally 

distributed were analyzed using a two-tailed Mann Whitney test[17]. 
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CHAPTER 3. ANALYSIS OF TREM2 SPLICING AND EXPRESSION 

TREM2 Alternative Splicing in the Human Brain 

TREM2  cDNA from anterior cingulate cortex was PCR-amplified with primers 

corresponding to sequence within exons 1 and 5. A gene map of TREM2 is shown in 

Figure 1 (top), displaying introns and exons of the gene. Significant alternative splicing 

was found in the brains of both Alzheimer’s disease and non-Alzheimer’s disease 

individuals, shown on acrylamide gel in Figure 1. Each splicing isoform was identified 

and sequenced directly to confirm the nature of alternative splices. This study identified 

several novel splicing isoforms of TREM2, including isoforms with single exons skipped, 

multiple exons skipped, and intron sequence retained.  

The study suggested that the TREM2 isoform with exon 2 skipped (D2-TREM2) was 

the most abundant alternative splicing isoform. Thus, TREM2 and D2-TREM2 were 

quantified in an assay using multiple brain samples. The number of copies of TREM2 was 

normalized to AIF1 (allograft inflammatory factor 1), a protein highly expressed in 

microglia, where TREM2 is exclusively found in the CNS. The study suggests that total 

TREM2 expression does not differ significantly between Alzheimer’s disease and non-

Alzheimer’s disease individuals. However, in high-pathology vs. low-pathology 

Alzheimer’s disease brains, TREM2 expression appears to increase significantly with 

pathology (shown in Figure 2B; p = 0.0014, Welch’s t-test). D2-TREM2 expression was 

also investigated with respect to Alzheimer’s disease status. D2-TREM2 expression was 

found to be correlated with total TREM2 expression (shown in Figure 2C), but no 
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significant difference was observed in D2-TREM2 expression between Alzheimer’s 

disease and non-Alzheimer’s disease individuals.  

Analysis of TREM2 Alternative Splicing Across Tissue Types 

Fetal cDNA libraries from several tissues; aorta, lung, kidney, heart, skeletal muscle, 

brain, and liver; were PCR amplified using primers from TREM2 exons 1 and 5 to 

determine if TREM2 alternative splicing occurs across tissue types. Each splicing isoform 

was observed in the study, despite individual tissues not all containing every isoform 

(Figure 3). Quantitatively, a high abundance of the isoform lacking exons 2 and 3  as well 

as the isoform lacking exons 2 and 4 were observed. It is worth noting that shorter DNA 

fragments are amplified more efficiency and thus PCR may have biased this result. D2-

TREM2 was abundant across all tissue types, similar to the findings in the adult brains. 

D2-TREM2 frequency was similar across each tissue type (Figure 4). 

Analysis of D2-TREM2 Localization 

D2-TREM2 and full-length TREM2 were cloned into expression vectors and 

transfected into HMC3 human microglial cells. Confocal microscopy was used to 

determine if D2-TREM2 is trafficked and localized in the same manner as full-length 

TREM2. Staining patterns were similar between full-length TREM2 (shown in Figure 

5A) and D2-TREM2 (shown in Figure 5B). The pattern of staining has been previously 

reported, and the assay performed in this study showed consistent results[18]. Thus, D2-

TREM2 and full-length TREM2 appear to localize in the same manner. Both D2-TREM2 
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and full-length TREM2 are primarily retained in the Golgi complex (D2-TREM2 shown 

in Figure 5C, full-length TREM2 shown in Figure 5D).  

D2-TREM2 Protein in Human Hippocampus Samples 

Hippocampal protein from Alzheimer’s disease and non-Alzheimer’s disease 

samples was subjected to Western blotting using antibody against the cytosolic tail of 

TREM2 (also present in D2-TREM2), shown in Figure 6. This assay was performed in 

order to determine if the D2-TREM2 protein is present in the human brain. Short 

exposure time of the blot (shown in  Figure 6A) revealed proteins labeled by TREM2 

antibody in transfected cells but not in non-transfected cells. This confirms that the bands 

on the Western blot are products of D2-TREM2. Long exposure of the blot (shown in 

Figure 6B) displays a doublet of bands at 12 and 13 kDa, matching the pattern of D2-

TREM2 transfected cells. The carboxyl-terminal fragment of TREM2 has a predicted 

molecular weight of 8 kDa and the predicted molecular weight of D2-TREM2 is 11 kDa. 

Based on this information, both carboxy-terminal fragments and D2-TREM2 migrate at a 

higher molecular weight than predicted, by 3 kDa. It can be concluded, based on the 

assay performed, that D2-TREM2 protein is present in both Alzheimer’s disease and non-

Alzheimer’s disease brains.  
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Figure 1. Extensive Alternative Splicing of TREM2. 

TREM2 undergoes significant alternative splicing. A diagram of the TREM2 gene and its 

corresponding role in the mature protein is shown. Several novel splicing isoforms were 

identified, skipping one or more exons (numbered 1 through 5), or retaining part of an 

intron. cDNA from Alzheimer’s disease subjects was compared to non-Alzheimer’s 

disease subjects. Exons shown in grey (right) represent sequence after a frameshift 

mutation.  

 

Reprinted from Journal of Alzheimer’s Disease, Vol 87 Issue 4, Shaw et al., An Alternatively Spliced TREM2 Isoform Lacking the 

Ligand Binding Domain is Expressed in Human Brain, Page No. 1650, Copyright 2022, with permission from IOS Press. 
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Figure 2. Quantification of TREM2 and D2-TREM2 in Human Brain Tissue. 

qPCR was used to quantify TREM2 transcripts. TREM2 is normalized to AIF1 (expressed 

on microglia) to compare copy number of TREM2 in Alzheimer’s disease vs. non-

Alzheimer’s disease subjects (A). TREM2 expression is compared between low-

pathology and high-pathology subjects (B), p = 0.0014, Welch’s t-test. Number of D2-

TREM2 copies and full-length TREM2 copies is compared between Alzheimer’s disease 

and non-Alzheimer’s disease subjects (C). The percent of total TREM2 copies that were 

D2-TREM2 copies were compared between AD non non-AD subjects(D). 

 

Reprinted from Journal of Alzheimer’s Disease, Vol 87 Issue 4, Shaw et al., An Alternatively Spliced TREM2 Isoform Lacking the 

Ligand Binding Domain is Expressed in Human Brain, Page No. 1651, Copyright 2022, with permission from IOS Press. 
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Figure 3. TREM2 Alternative Splicing Patterns are Present Across Tissue Types. 

cDNA from fetal aorta, lung, kidney, heart, skeletal muscle, brain, and liver were 

analyzed for TREM2 splicing. The splicing isoforms found in adult human brain tissue 

were present across tissues.  

 

Reprinted from Journal of Alzheimer’s Disease, Vol 87 Issue 4, Shaw et al., An Alternatively Spliced TREM2 Isoform Lacking the 

Ligand Binding Domain is Expressed in Human Brain, Page No. 1652, Copyright 2022, with permission from IOS Press. 
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Figure 4. Quantification of TREM2 and D2-TREM2 Across Tissue Type. 

cDNA from multiple fetal tissue types was quantified to investigate percent of D2-

TREM2 skipped among total TREM2 copies. D2-TREM2 was found to be an abundant 

splicing isoform across tissue types. Exon 2 is skipped at a frequency between 5.3-13%. 

Data points reflect technical replicates from pooled cDNA libraries. 
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Figure 5. TREM2 and D2-TREM2 Share Localization Patterns. 

Transfected HMC3 human microglial cells were analyzed with confocal 

immunofluorescence microscopy. Full-length TREM2 (A) and D2-TREM2 (B) exhibit 

similar staining patterns. Both D2-TREM2 (C) and full-length TREM2 (D) appear to be 

primarily retained in the Golgi complex. 
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Figure 6. Western Blot of Human Brain Indicates Presence of D2-TREM2 Protein. 

Western blotting using an antibody tag recognizing the cytosolic tail of TREM2 was 

performed. Short exposure (A) shows two proteins labeled by TREM2 antibody in 

transfected cells, but not non-transfected cells, confirming presence of D2-TREM2. 

Longer exposure (B) shows a doublet of bands at 12 and 13 kDa, matching the pattern in 

D2-TREM2 transfected cells. The bands are again present in transfected cells but not non-

transfected cells, confirming presence of D2-TREM2. 
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CHAPTER 4. DISCUSSION AND FUTURE DIRECTION 

Summary of Findings 

The results of this study provide new insights into the splicing patterns of the 

TREM2 gene. The findings show that TREM2 undergoes more extensive splicing patterns 

than was previously published. Previously available literature has described a number of 

alternative splicing isoforms, such as sTREM2 lacking the transmembrane domain, exons 

3 and 4 skipped individually, and intron 3 retained, but this study characterized the full 

range of TREM2 splicing isoforms in the CNS. The D2-TREM2 splicing isoform has been 

reported on recently, providing similar findings to the ones described in this study, 

including lack of immunoglobulin domain expression causing a loss of function in the 

final protein and similar cell trafficking characteristics to full-length TREM2[19 20]. This 

study identifies several novel splicing isoforms of TREM2, shown in Figure 1, which 

were not listed on gene library websites such as Ensembl. This provides the scientific 

community with a better understanding of the extent to which the TREM2 gene 

undergoes alternative splicing and offers a potential basis on which to further investigate 

these isoforms. 

The study also included investigation of whether a correlation exists between the 

common D2-TREM2 splicing isoform and Alzheimer’s disease pathology. Ultimately, it 

was determined that there was no significant correlation between frequency of the D2-

TREM2 isoform and Alzheimer’s disease related pathology. This provides meaningful 

insight, as investigation of the TREM2 protein and underlying genetic mechanisms is 

considered an important current topic in the field of Alzheimer’s disease research[21]. 



22 

While there are still a wide range of questions to be answered regarding the mechanism 

behind the involvement of TREM2 in the progression of Alzheimer’s disease pathology, 

establishing a strong understanding of the genetic background of TREM2 is paramount.  

Localization and cell trafficking patterns of the TREM2 protein were also 

investigated in this study. Presence of TREM2 on the cell surface and its receptor activity 

have been previously described[22], but localization of splicing isoforms of TREM2 in 

comparison to the full-length protein have not been fully characterized. This study 

utilized confocal microscopy and immunofluorescent staining in order to determine if 

D2-TREM2 localized similarly to full-length TREM2. It was discovered that the D2-

TREM2 isoform shares highly similar localization with the full-length protein: both were 

primarily located in the intracellular Golgi complex (shown in Figure 5C and 5D). Cell 

culture experiments indicate that TREM2 exhibits a “feed-forward” mechanism which 

elicits cellular activity in response to a stimulus. TREM2 within the transmembrane 

Golgi pool is trafficked to the cell surface due to calcium flux[18]. We speculate that D2-

TREM2 may interfere with this mechanism, as it lacks the immunoglobulin domain 

which is vital  for signaling that may lead to TREM2 trafficking within the cell.  

Western blot also revealed that the D2-TREM2 isoform is present in the human 

brain as protein (shown in Figure 6). While the preliminary findings of this study 

confirmed that D2-TREM2 mRNA is present and abundant in the human brain, the 

presence of the mature D2-TREM2 protein is a novel finding. The correlation between 

amount of D2-TREM2 mRNA and protein, when compared to full-length TREM2, is 

significantly lower. This may indicate that the D2-TREM2 protein is not readily 



23 

translated as efficiently in the cell, or that the protein itself loses stability when lacking 

the amino acid sequence corresponding to exon 2.  

Future Direction 

TREM2 as a Therapeutic Target 

 Genetic mutations in the TREM2 gene have been known to be significant risk 

factors for Alzheimer’s disease for many years[23]. Certain TREM2 variants have some 

of the highest odds-ratios for late-onset Alzheimer’s disease risk, surpassed only by the 

APOE4 gene, making it a heavily investigated topic in the field of Alzheimer’s disease 

research[24 25]. In particular, the ligand-binding disruption, thought to be a partial loss-

of-function, caused by the R47H and R62H mutations in TREM2 are considered high-risk 

mutations for developing late-onset Alzheimer’s disease[26 27]. We speculate that D2-

TREM2 is functionally null and thus disrupts normal cell signaling and trafficking when 

present on the cell surface, which may lead to complications contributing to generation of 

Alzheimer’s disease-related pathology. This would be similar to what has been shown in 

studies related to the CD33 gene, which also has a splicing isoform which lacks the 

ligand-binding domain[28]. 

 Currently, there is no FDA-approved therapeutic for Alzheimer’s disease 

targeting TREM2. There is one ongoing clinical trial targeting  TREM2 with monoclonal 

antibodies, AL002 (Alector, NCT04592874), which is currently in phase 2 and has 

garnered the interest of the scientific community. It is possible that modulation of TREM2 

splicing patterns could attenuate onset and progression of Alzheimer’s disease, though 

more research into the mechanisms behind TREM2 and its role in the disease will be 
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necessary. According to existing literature, the possibility also exists that sTREM2 is  

protective for Alzheimer’s disease[29 30]. We report in this study that the TREM2 

isoform lacking exon 4 (D4-TREM2) lacks the transmembrane domain, making it likely 

to be secreted as sTREM2. This finding, combined with the possibility that sTREM2 is 

protective against Alzheimer’s disease, suggests that targeting TREM2 mRNA to enhance 

expression of the D4-TREM2 isoform may have potential for therapeutics.  

 We speculate that the D2-TREM2 isoform may act similarly to R47H and R62H 

variants, as D2-TREM2 lacks the immunoglobulin domain, which is essential for 

signaling, and the R47H and R62H mutations alter the immunoglobulin domain and 

change its function. In vivo studies have shown in mice that targeting TREM2 may serve 

to reduce Alzheimer’s disease-related pathology. Targeting TREM2 with monoclonal 

antibodies in an R47H mouse model reduced amyloid plaques, neurite dystrophy, and 

inflammatory response over time[31]. These results suggest potential for a therapeutic 

that may slow the progression of Alzheimer’s disease by targeting TREM2 in patients 

with mutations to the gene that increase Alzheimer’s disease risk. Interestingly, TREM2 

function as it relates to Alzheimer’s disease appears to change as the disease progresses. 

It has been suggested that TREM2 and sTREM2 are beneficial in the early stages of 

Alzheimer’s disease progression but exacerbates pathology later in the disease[32]. 

TREM2 microglial function plays a significant role in the immune inflammatory 

response, thus exacerbation of inflammation in later stages of Alzheimer’s disease likely 

worsens related pathology. If the role of TREM2 in Alzheimer’s disease indeed changes 

over the course of the disease, targeting TREM2 splicing in a patient-specific manner may 
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prove to be a valuable therapeutic strategy. A model of a potential way to exploit TREM2 

as a therapeutic is shown in Figure 7.  

mRNA Therapeutics 

 Targeting intracellular mRNA with therapeutic drugs has become a prominent 

topic of biomedical research. Antisense oligonucleotide (ASO), antisense RNA (asRNA), 

short interfering RNA (siRNA), and micro-RNA (miRNA) are blossoming as classes of 

drugs that target mRNA sequence in order to interfere with the processes which allow it 

to be translated into protein[33]. These drugs are DNA or RNA molecules themselves 

and contain sequence complementary to the targeted mRNA. When interacting with the 

target mRNA, the drug-mRNA complex effectively prevents gene expression by 

preventing translation or via induction of RNase activity which cleaves the double-

stranded RNA or DNA-RNA complex[34]. In particular, antisense oligonucleotides have 

shown promising results in treating genetic diseases such as spinal muscular atrophy and 

age-related macular degeneration. 

 There is a growing list FDA-approved drugs targeting mRNA in the United 

States. One of the most prominent is nusinersen, marketed under the brand name 

Spinraza®. Nusinersen is an antisense oligonucleotide used to treat 5q spinal muscular 

atrophy (SMA), which is caused by mutations in the survival motor neuron 1 (SMN1) 

gene. These mutations prevent the production of functional protein from SMN1 

transcripts and leave only the survival motor neuron 2 gene (SMN2, which has a near-

identical sequence to SMN1) to produce the survival motor neuron protein. SMN2 is 

expressed at significantly lower rates than SMN1 in healthy individuals due to splicing 

differences causing truncation of SMN2 mRNA. Thus, SMN1 protein is produced at 
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insufficient levels in individuals with SMN1 mutations, leading to widespread muscle 

atrophy which is fatal without treatment. Nusinersen targets SMN2 pre-messenger (pre-

splice) RNA in order to alter splicing and ultimately produce more mature full-length 

mRNA which can be translated into survival motor neuron protein[35]. Effectively, this 

drug makes up for the lack of protein produced from SMN1 transcripts by increasing the 

protein production viability of SMN2 transcripts. Nusinersen significantly increases 

quality of life of SMA patients, including positive outcome criteria such as walking 

independently and ability to swallow. 

 While there is currently no FDA-approved drug targeting TREM2 mRNA 

transcripts, the potential exists for an oligonucleotide-based therapeutic. Though more 

research is necessary to pinpoint if and when splicing variants of TREM2 modulate 

Alzheimer’s disease related pathology, antisense oligonucleotide technology could be 

used to silence particular variants of the TREM2 transcript. If TREM2 signaling is 

protective in early Alzheimer’s disease, decreasing expression of D2-TREM2 may be 

beneficial to slow progression of the disease. If TREM2 signaling exacerbates 

Alzheimer’s disease pathology later progression, decreasing expression of FL-TREM2 

may also slow this stage of progression by limiting the number of functional TREM2 

receptors on cells. An example of antisense oligonucleotides accomplishing these goals is 

shown in Figure 8. 
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Figure 7. Model to Exploit TREM2 Splicing as a Potential Alzheimer’s Disease 

Therapeutic. 

Early in Alzheimer’s disease, TREM2 signaling may be protective. Thus, decreasing D2-

TREM2 and increasing full-length TREM2 may be beneficial (left). Conversely, TREM2 

may be detrimental later in Alzheimer’s disease, which may make decreasing full-length 

TREM2 and increasing D2-TREM2 beneficial by increasing the number of functionally 

null receptors (right). 
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Figure 8. Antisense Oligonucleotide Model Targeting FL-TREM2 or D2-TREM2 

Model using antisense oligonucleotides to target FL-TREM2 or D2-TREM2. An 

oligonucleotide against FL-TREM2 targets sequence at the beginning of exon 2 RNA (A) 

in order to reduce FL-TREM2 expression. An oligonucleotide against D2-TREM2 targets 

sequence at the exon 1 – exon 3 junction (B), a feature not present in FL-TREM2, in 

order to reduce D2-TREM2 expression. 

 
Created with BioRender.com  
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