
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Spinal Cord and Brain Injury Research Center 
Faculty Publications Spinal Cord and Brain Injury Research 

10-1-2017 

Acute Treatment with Doxorubicin Affects Glutamate Acute Treatment with Doxorubicin Affects Glutamate 

Neurotransmission in the Mouse Frontal Cortex and Neurotransmission in the Mouse Frontal Cortex and 

Hippocampus Hippocampus 

Theresa Currier Thomas 
University of Kentucky 

Joshua A. Beitchman 
University of Arizona 

Francois Pomerleau 
University of Kentucky, francois.pomerleau@uky.edu 

Teresa Noel 
University of Kentucky, tperron@email.uky.edu 

Paiboon Jungsuwadee 
University of Kentucky, paiboon.jungsuwadee@uky.edu 

See next page for additional authors 
Follow this and additional works at: https://uknowledge.uky.edu/scobirc_facpub 

 Part of the Neurology Commons, and the Neuroscience and Neurobiology Commons 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Repository Citation Repository Citation 
Thomas, Theresa Currier; Beitchman, Joshua A.; Pomerleau, Francois; Noel, Teresa; Jungsuwadee, 
Paiboon; Butterfield, D. Allan; St. Clair, Daret K.; Vore, Mary; and Gerhardt, Greg A., "Acute Treatment with 
Doxorubicin Affects Glutamate Neurotransmission in the Mouse Frontal Cortex and Hippocampus" 
(2017). Spinal Cord and Brain Injury Research Center Faculty Publications. 26. 
https://uknowledge.uky.edu/scobirc_facpub/26 

This Article is brought to you for free and open access by the Spinal Cord and Brain Injury Research at UKnowledge. 
It has been accepted for inclusion in Spinal Cord and Brain Injury Research Center Faculty Publications by an 
authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/scobirc_facpub
https://uknowledge.uky.edu/scobirc_facpub
https://uknowledge.uky.edu/scobirc
https://uknowledge.uky.edu/scobirc_facpub?utm_source=uknowledge.uky.edu%2Fscobirc_facpub%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/692?utm_source=uknowledge.uky.edu%2Fscobirc_facpub%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/55?utm_source=uknowledge.uky.edu%2Fscobirc_facpub%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
https://uknowledge.uky.edu/scobirc_facpub/26?utm_source=uknowledge.uky.edu%2Fscobirc_facpub%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Acute Treatment with Doxorubicin Affects Glutamate Neurotransmission in the Acute Treatment with Doxorubicin Affects Glutamate Neurotransmission in the 
Mouse Frontal Cortex and Hippocampus Mouse Frontal Cortex and Hippocampus 

Digital Object Identifier (DOI) 
https://doi.org/10.1016/j.brainres.2017.07.003 

Notes/Citation Information Notes/Citation Information 
Published in Brain Research, v. 1672, p. 10-17. 

© 2017 Elsevier B.V. All rights reserved. 

This manuscript version is made available under the CC‐BY‐NC‐ND 4.0 license 
https://creativecommons.org/licenses/by-nc-nd/4.0/. 

The document available for download is the author's post-peer-review final draft of the article. 

Authors Authors 
Theresa Currier Thomas, Joshua A. Beitchman, Francois Pomerleau, Teresa Noel, Paiboon Jungsuwadee, 
D. Allan Butterfield, Daret K. St. Clair, Mary Vore, and Greg A. Gerhardt 

This article is available at UKnowledge: https://uknowledge.uky.edu/scobirc_facpub/26 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://uknowledge.uky.edu/scobirc_facpub/26


Acute Treatment with Doxorubicin Affects Glutamate 
Neurotransmission in the Mouse Frontal Cortex and 
Hippocampus

Theresa Currier Thomasa,h,i,j, Joshua A. Beitchmani,j,k, Francois Pomerleaub,c,d, Teresa 
Noele, Paiboon Jungsuwadeee,l, D. Allan Butterfieldf, Daret K. Clair St.e, Mary Voree, and 
Greg A. Gerhardta,b,c,d

aSpinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, 
Lexington, KY, USA 40536

bDepartments of Neuroscience, Neurology, Neurosurgery, Psychiatry and Electrical Engineering, 
University of Kentucky College of Medicine, Lexington, KY, USA 40536

cCenter for Microelectrode Technology, University of Kentucky College of Medicine, Lexington, KY, 
USA 40536

dBrain Research Center, University of Kentucky College of Medicine, Lexington, KY, USA 40536

eDepartment of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 
Lexington, KY, USA 40536

fDepartment of Chemistry, Redox Chemistry and Biology Core, Markey Cancer, and Sanders-
Brown Center on Aging, University of Kentucky, Lexington, KY, USA 40506

hBarrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ USA 85016

iDepartment of Child Health, University of Arizona College of Medicine, Phoenix, AZ USA 85004

jPhoenix VA Health Care System, Phoenix, AZ USA 85012

kMidwestern University, Glendale, AZ USA 85308

lSchool of Pharmacy & Health Sciences, Fairleigh Dickinson University, Florham Park, NJ, USA 
07932

Abstract

Doxorubicin (DOX) is a potent chemotherapeutic agent known to cause acute and long-term 

cognitive impairments in cancer patients. Cognitive function is presumed to be primarily mediated 
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by neuronal circuitry in the frontal cortex (FC) and hippocampus, where glutamate is the primary 

excitatory neurotransmitter. Mice treated with DOX (25 mg/kg i.p.) were subjected to in vivo 
recordings under urethane anesthesia at 24h post-DOX injection or 5 consecutive days of cognitive 

testing (Morris Water Maze; MWM). Using novel glutamate-selective microelectrode arrays, 

amperometric recordings measured parameters of extracellular glutamate clearance and 

potassium-evoked release of glutamate within the medial FC and dentate gyrus (DG) of the 

hippocampus. By 24h post-DOX injection, glutamate uptake was 45% slower in the FC in 

comparison to saline-treated mice. In the DG, glutamate took 48% longer to clear than saline-

treated mice. Glutamate overflow in the FC was similar between treatment groups, however, it was 

significantly increased in the DG of DOX treated mice. MWM data indicated that a single dose of 

DOX impaired swim speed without impacting total length traveled. These data indicate that 

systemic DOX treatment changes glutamate neurotransmission in key nuclei associated with 

cognitive function within 24h, without a lasting impact on spatial learning and memory. 

Understanding the functional effects of DOX on glutamate neurotransmission may help us 

understand and prevent some of the debilitating side effects of chemotherapeutic treatment in 

cancer survivors.

Keywords

Doxorubicin; Chemobrain; Prefrontal Cortex; Dentate Gyrus; Amperometry; Glutamate Clearance

1.0 Introduction

Doxorubicin (DOX), trade name Adriamycin, is a potent chemotherapeutic agent, often used 

synergistically with other drug regimens for the treatment of cancer. Following DOX 

chemotherapy, breast cancer survivors report persisting cognitive dysfunction (Aluise et al., 

2010; Raffa and Tallarida, 2010; Wefel et al., 2004). Chemotherapy-induced cognitive 

impairment (CICI) is a term often used to indicate significant impairments in concentration, 

verbal learning, nonverbal learning, memory function, attention and fine motor dexterity 

(Ahles et al., 2002; Tangpong et al., 2006; Wefel et al., 2004).

At the present time, little is known about the direct effects of DOX treatment on cognitive 

circuitry in vivo. DOX and it's major metabolites do not cross the blood brain barrier, yet 

cognitive impairment is often reported. Therefore, a gap in knowledge exists as to the 

mechanisms by which DOX treatment can influence cognition. Cognitive processes are 

mediated by glutamatergic communication between the frontal cortex (FC) and dentate 

gyrus (DG) of the hippocampus. We hypothesize that a single dose of DOX can produce 

changes in glutamate neurotransmission in brain areas where the primary excitatory 

neurotransmitter is glutamate (Danbolt, 2001). DOX-induced changes in glutamate 

neurotransmission would confirm that a single dose of DOX is capable of altering in vivo 
glutamate signaling in this circuitry and identify a mechanism as to how DOX treatment 

could consequently contribute to CICI acutely and after a chronic dosing regimen.

Recent technological advancements have provided enzyme-based glutamate-selective 

microelectrode arrays (MEAs) using amperometric recordings for the sub-second 
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measurements of glutamate neurotransmission in animal models (Burmeister et al., 2002). 

These techniques have been previously used to investigate phasic glutamate signaling in 

discrete brain area of rats and mice (Hinzman et al., 2010; Stephens et al., 2011; Thomas et 

al., 2009; Thomas et al., 2012). In these experiments, mice were treated with 25 mg/kg of 

DOX and subjected to in vivo recordings in 3 sub-regions of the mouse FC and the DG 24 h 

post-treatment to investigate potential acute changes in glutamate regulation (see figure 1A). 

In an alternate cohort of mice, the Morris Water Maze (MWM) test was used as an initial 

indicator of their cognitive function.

2.0 Results

2.1 Glutamate Clearance Parameters in the FC and DG

Local application of exogenous glutamate was used to evaluate the effect of DOX treatment 

on glutamate clearance from the extracellular space of the mouse brain. Two different 

parameters were calculated from the resulting peak: (1) the uptake rate constant (k-1), which 

is the linear fit of the first order decay of the glutamate signal (sec-1) and (2) T80 clearance 

time (sec), which is the time it takes for the signal to decay 80% from the maximum 

amplitude (see figure 1).

Recordings demonstrated a significant decline of the uptake rate constant measured at 

various depths in the FC (F(1,9)=7.45; p=0.02; Figure 2A), where the most profoundly 

impacted depth corresponded to the infralimbic cortex (-2.5 mm; p<0.01). The uptake rate 

constant in the averaged depths of the FC was 0.44±0.05 s-1 for saline and 0.29±0.02 s-1 for 

DOX (t13=3.25; p=0.01; Figure 2B). However, no significant change in mean uptake rate 

constant in the DG of the hippocampus was measured, with uptake rate constants of 

0.36±0.05 s-1 for saline and 0.26 ± 0.07 s-1 for DOX-treated mice (t11=1.57; p=0.15; Figure 

2C).

A repeated measures two-way ANOVA on T80 measures at various depths in the FC did not 

identify a treatment effect (F(1,9)=2.72; p=0.13; Figure 3A). Also, no differences were 

detected when the T80s for each depth was averaged to a single point per animal (saline: 

2.3±0.1 seconds, DOX: 3.2±0.4 seconds; t13=1.63; p=0.13; n=3/group; Figure 3B). 

However, in the DG, the clearance time was increased by 48% in the DOX-treated group; 

with saline-treated mice clearing 80% of glutamate in 2.9±0.2 seconds and DOX-treated 

mice taking 4.3±0.4 seconds (t11=2.83; p=0.02; Figure 3D). Taken together, these data 

indicate that DOX treatment results in decreased clearance parameters of glutamate in the 

FC and DG.

2.2 KCl-evoked Glutamate Overflow in the FC and DG

To evaluate the effect of DOX on evoked release of glutamate, local applications of an 

isotonic KCl solution were used to depolarize terminals in the FC and DG. Similar volumes 

of KCl (∼50-75 nl) elicited reproducible releases of glutamate (Figure 4C), which were 

compared between DOX-treated and control mice. Potassium-evoked glutamate overflow in 

the averaged depths of the FC was not significantly increased in saline treated mice 

(10.85±2.5 μM) as compared to in DOX-treated mice (15.68±3.0 μM) (t12=1.24; p=0.24; 
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Figure 4A). In the DG, KCl-evoked glutamate overflow was significantly greater in DOX 

treated mice compared to saline treated mice (saline:8.9±1.5 μM; DOX:25.3±5.3 μM; 

t13=2.77; p=0.02; Figure 4B). Thus, local application of KCl elicited reproducible release of 

glutamate in the FC and DG (Figure 4C); however it was only significantly altered in the DG 

of DOX treated mice.

2.3 Cognitive function as measured in the Morris Water Maze test

The MWM test was used as an assessment of cognitive function in mice treated with either 

Saline or DOX. A repeated measures two-way ANOVA revealed no significant changes in 

distance traveled to the platform over time as a function of DOX treatment (F(1,12)=0.83; 

p=0.38; Figure 5A). However, both swim speed and time to platform changed as a function 

of DOX treatment over time. With swim speed of DOX, treated animals were slower than 

controls (F(1,12)=10.04; p=0.008; Figure 5B) and consequently took longer to find the 

platform (F(1,12)=5.15; p=0.04; Figure 5C). A post-hoc multiple comparison of swim speed 

over time indicated the most profound impact of DOX was over the first 2 days following 

treatment. These data indicated that DOX significantly decreased the speed at which the 

mice traveled, but the overall distance to the platform was not impacted.

3.0 Discussion

These experiments evaluated the effect of a single, acute DOX treatment on glutamate 

neurotransmission in two anatomical structures integral to normal cognition in mice (frontal 

cortex and hippocampus). The Morris Water Maze was employed to assess cognitive 

function. To the best of our knowledge, these are the first studies to directly address the in 
vivo properties of glutamate neurotransmission following a dose of DOX in the mouse 

similar to that known to cause cognitive deficits in humans. Our results showed that at 24 h 

post-injection, glutamate dynamics were affected in different ways depending of the brain 

region. Glutamate uptake was 45% slower in the FC and in the DG, glutamate took 48% 

longer to clear than saline-treated mice. KCl-evoked glutamate release was significantly 

greater in the DG of DOX treated mice, supporting that evoked release of glutamate was 

impacted by DOX treatment (Stephens et al., 2011). These data support the hypothesis that 

systemic DOX treatment changes glutamate neurotransmission within 24 h post-

administration. Further, these changes may represent the beginning of alterations to 

glutamate neurotransmission involved in cognitive circuitry following DOX treatment that 

may lead to the development of CICI.

DOX-induced slower clearance of glutamate was identified by decreased k-1 in the FC and a 

longer T80 in the DG. Changes in glutamate clearance can result from changes in glutamate 

transporter trafficking, transport capacity, transporter affinity, transcription and translation, 

and abnormal transporter post-translational modifications (Maragakis and Rothstein, 2004). 

In these studies, the k-1 best represents the velocity of transporters, whereas the T80 is more 

representative of affinity for glutamate to the transporter. In all areas of the brain, 80-90% of 

glutamate transporters are located on astrocytes (Danbolt, 2001). Previous research in our 

lab has shown that changes in the surface expression of glutamate transporters can correlate 

with uptake parameters (Nickell et al., 2007). Thus, a decrease in the surface expression of 

Thomas et al. Page 4

Brain Res. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GLAST and/or GLT-1, the predominant glial transporters in rodents, may explain the 

findings following DOX administration. The effects of DOX on glutamate clearance could 

also represent an adaptive change to glial elements that alter the regulation of glutamate 

signaling. This has been seen in our recent work involving an animal model of traumatic 

brain injury (Hinzman et al., 2012).

From our experience, an increase in KCl-evoked glutamate overflow could represent several 

alterations: an increase in presynaptic release, output of glutamate from glia, a decreased 

capacity for glutamate clearance and possible changes in mGluR regulation of glutamate 

release. Changes in glutamate overflow could also arise from impaired extracellular 

buffering capacity (Santhakumar et al., 2003) or vesicular loading (high quantal transmitter 

concentration or more released vesicles) (Watt et al., 2000). GABA-ergic modulation is also 

important in balancing inhibitory/excitatory signaling, and changes in GABA 

neurotransmission, receptor number and function could also contribute to increased 

glutamate overflow (Jacob et al., 2008). Slower glutamate clearance parameters measured in 

these experiments likely contribute to the increased glutamate overflow in the DG, however, 

additional pharmacological studies are needed to determine the mechanism(s).

In order to assess cognitive function after DOX treatment, mice were subjected to MWM 

testing for 5 consecutive days after a single DOX administration by assessing distance 

traveled, swim speed and time to reach the platform. DOX treatment did not significantly 

impact the total distance traveled to the platform, only the speed at which the mice were 

traveling. Slower travel likely results from the single dose DOX causing lethargy, but not 

necessarily impairing cognitive function. Thus, the changes we are seeing in glutamate 

regulation may be the beginning of the functional changes that occur following DOX 

treatment that later culminate in cognitive impairment. This is in keeping with slow changes 

that are often seen in the cognitive function of cancer survivors who have been treated with 

DOX (Zimmer et al., 2015).

Currently, data support that DOX does not enter the CNS directly but accumulates outside 

the blood-brain barrier (Tangpong et al., 2006). Despite DOX's, or its major metabolite's, 

inability to traverse the blood brain barrier, DOX treatment has been reported to increase 

tumor necrosis factor-α (TNF) in serum from 1 h to 24 h post-injection. TNF could then 

infiltrate the brain, causing CNS effects by TNF-initiated production of reactive oxygen and 

nitrogen species (Gaman et al., 2016; Gutierrez et al., 1993; Joshi et al., 2007; Joshi et al., 

2010; Keeney et al., 2015; Tangpong et al., 2006; Tangpong et al., 2007). Tangpong et al. 
provides support for this mechanism by reporting increased levels of TNF in brain 

homogenates at 3 h post-injection, heavily localized to neurons in the cortex and 

hippocampus (Tangpong et al., 2006). Previous studies in rat organotypic hippocampal–

entorhinal cortex (HEC) brain slice culture suggest that TNF inhibited glutamate clearance 

through a similar mechanism as the glutamate uptake inhibitors, dihydrokainate (DHK) and 

trans-pyrrolidine-2,4-dicarboxylic acid (t-PKC) reference (Zou and Crews, 2005). Indirect 

alterations in glutamate clearance can also arise from oxidative stress; where receptor 

mediated alterations in glutamate uptake through NF-κB have been demonstrated (Zou and 

Crews, 2005). Additionally, TNF has also been shown to inhibit EAAT2 (the human 

homolog of GLT-1) in primary normal human fetal astrocytes by interacting with 
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transcription and EAAT2 promoter activity as well as decreasing mRNA and protein levels 

(Su et al., 2003). More studies are necessary to delineate mechanisms controlling glutamate 

transporter disruption after DOX treatment, especially additional studies that address the 

long-term effects and repeated administration of DOX, which would better mimic the 

routine clinical usage of DOX in cancer patients.

These data support that the FC and DG of mice are vulnerable to acute treatment with DOX. 

Clinical studies, using a variety of chemotherapy regimens, have documented long-term 

treatment-induced deficits in executive function and working memory in cancer survivors 

(Ahles and Saykin, 2007; Kesler et al., 2011; Saykin et al., 2006). Structural and functional 

magnetic resonance imaging (MRI) studies report volumetric reductions and reduced 

activation in the frontal cortex during cognitive tasks (Ahles and Saykin, 2007; McDonald, 

2011; Saykin et al., 2006). Functional MRI of patients during tasks testing executive 

function and episodic memory at 10 years post-chemotherapy treatment indicated 

hypoactivation of the dorsolateral prefrontal cortex and parahippocampal gyrus, while no 

significant changes in the hippocampus were detected (Note: 5-fluorouracil, epirubicin, 

cyclophosphamide chemotherapy regimen were administered in these experiments, where 

epirubicin, like DOX, is an anthracycline with similar mechanisms of action) (de Ruiter et 

al., 2011). In a study with monozygotic twins, where one was treated with a regimen 

including DOX, hyperactivation of the frontal cortex and parietal cortex were apparent in the 

DOX-treated twin in a functional MRI testing working memory; however performance 

accuracy was similar (Ferguson et al., 2007). Taken together, these studies support the idea 

that the FC and DG are susceptible to long-term deficits as a result of chemotherapy 

treatment (DOX and alternative anthracyclines).

Taken together, these data support the hypothesis that systemic DOX treatment results in 

changes in glutamate neurotransmission in key memory areas within 24 h, without a lasting 

impact on spatial learning and memory. The DOX dose used in these studies was similar to 

the maximum single clinical therapeutic dose, supporting that these studies likely have 

relevance to the clinical usage of DOX. Additional studies are needed as understanding the 

functional effects of DOX on glutamate neurotransmission may help us understand and 

prevent some of the debilitating side effects of chemotherapeutic treatment in cancer 

survivors.

4.0 Experimental Procedures

4.1 Subjects

Male B6C3F1J mice (∼2 months; ∼28 grams; n=30) were obtained from The Jackson 

Laboratory (Bar Harbor, ME), group-housed (2-4 per cage) with unlimited access to food 

and water, and maintained on a twelve-hour light/dark cycle (lights on at 0600 hrs). 

Protocols for animal use were approved by the Institutional Animal Care and Use 

Committee (IACUC), which is Association for Assessment and Accreditation of Laboratory 

Animal Care International approved, and all procedures were carried out in accordance with 

the National Institutes of Health Guide for Care and Use of Laboratory Animals.
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4.2 Doxorubicin Treatment

Mice were weighed and given an intraperitoneal (i.p.) injection of 25 mg/kg of DOX 

(doxorubicin hydrochloride, Ben Venue Laboratories, Inc. Bedford, OH 44146; 2 mg/ml in 

saline; NDC 55390-237-01) or an equivalent volume of saline. The DOX dose used was 

similar to the maximum single clinical therapeutic dose (60–75 mg/m2) (see (Gilliam et al., 

2009; Piscitelli et al., 1993)) calculated according to the conversion factor previously 

described (Freireich et al., 1966). The pH of saline and DOX were adjusted to 3 using 

hydrochloric acid (Bosanquet, 1986). Twenty-four–hours after injection, mice were prepared 

for amperometric recordings of glutamate neurotransmission and spatial learning and 

memory testing using the Morris Water Maze.

4.3 Surgeries for Amperometric Recordings of Glutamate

Mice were weighed and anesthetized using i.p. injections of 10% urethane solution (1.25 g/

kg). They were placed in a stereotaxic frame (David Kopf Instruments, Tujunga, CA) fitted 

with a Cunningham™ Mouse and Neonatal Rat Adaptor (Stoelting Co., Wood Dale, IL). A 

circulating heating pad (Gaymar Industries, Inc., Orchard Park, NY) coupled to a rectal 

temperature probe (Yellow Spring Instrument Co., Yellow Springs, OH) was used to 

maintain body temperature at 37°C. After a midline scalp incision, the skin and fascia were 

reflected and a bilateral miniature craniotomy over the hippocampus and frontal cortex was 

completed. A miniature Ag/AgCl reference electrode was placed in a posterior subcutaneous 

pocket formed using blunt dissection and held in position by sutures (Moussy and Harrison, 

1994; Quintero et al., 2007).

4.4 Amperometry

4.4.1 In vivo Electrochemical Recordings—The MEAs are capable of recording real-

time extracellular glutamate signaling with low limits of detection (∼0.2-1.5 μM) and high 

spatial resolution (Pt site: 333 × 15 μm) with minimal damage to the surrounding tissue 

(50-100 μm) (Burmeister et al., 2002; Hascup et al., 2009). The capability of the MEAs to be 

moved in the dorsal to ventral axis between measurements provided recordings in the 3 

layers of the FC (cingulate, infralimbic and limbic cortices) and the capability to assess the 

structure in its entirety by averaging the recording sites. The In vivo amperometric recording 

procedures are similar to our previously published methods (Hinzman et al., 2010; Thomas 

et al., 2009). Constant voltage amperometry was performed using a FAST-16 Mk-II 

electrochemistry instrument (Quanteon, L.L.C., Nicholasville, KY) using software (Fast 

Analytical Sensor Technology (FAST), Quanteon, L.L.C.,) developed for concurrent four-

channel recordings. A potential of +0.7 V was applied versus a Ag/AgCl reference electrode 

and the data were recorded at a final display frequency of 2 Hz. Current signals were 

converted to voltage by the headstage (2 pA/mV).

4.4.2 Microelectrode Array Preparation—Ceramic-based MEAs that contained 4 

platinum (Pt) recording sites (15 μm × 333 μm) in a paired configuration were prepared to 

measure glutamate. These microelectrodes were fabricated and selected for in vivo 
recordings using published methods (Burmeister et al., 2000; Burmeister et al., 2002; 

Thomas et al., 2009). Pt sites 1 and 2 were coated with a solution containing glutamate 
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oxidase (GluOx), bovine serum albumin (BSA) and glutaraldehyde, enabling these sites to 

selectively detect glutamate levels with low limits of detection (Nickell et al., 2005). Pt sites 

3 and 4 were coated with only BSA and glutaraldehyde and served as sentinels, recording 

everything channels 1 and 2 record except for glutamate (Burmeister and Gerhardt, 2001; 

Day et al., 2006). All 4 recording sites were electroplated with a size-exclusion layer, 1,3-

phenylenediamine (mPD) prior to calibration and use in vivo (Thomas et al., 2009). GluOx 

converts glutamate into α-ketoglutarate and peroxide (H2O2). The H2O2, the reporter 

molecule, traverses the mPD layer and is readily oxidized and recorded as current using the 

FAST-16 instrument.

For calibration, the microelectrode tip was submerged in 40 ml of 0.05 M PBS (pH 7.1-7.4), 

maintained at 37°C using a circulating water bath (Gaymar Industries, Inc., Orchard Park, 

NY) that was stirred using a magnetic stir bar and battery operated stir plate (Barnart Co.). 

Following 20 minutes of equilibration, aliquots of stock solutions in the amount of 500 μl 

ascorbic acid (AA; 20 mM), three 40 μl aliquots of L-glutamate (20 mM), 40 μl dopamine (2 

mM), and 40 μl H2O2 (8.8 mM) were added to the PBS to calibrate the MEA to produce 

final concentrations of 250 μM AA, 20, 40 and 60 μM glutamate, 2 μM dopamine, and 8.8 

μM H2O2; a representative recording of an in vitro calibration can be found in Figure 2B of 

(Thomas et al., 2009). From the calibration, the slope (electrode sensitivity to L-glutamate), 

selectivity (selectivity for recording glutamate over AA), and limit of detection (LOD–

smallest amount of detectable glutamate) were determined; average values for slope were 

7.6±0.4 pA/μM, selectivity averaged 98±11 to 1, and LOD (S/N of 3) averaged 1.2±0.2 μM 

(n=44 electrodes; 81 glutamate recording sites). Calibrations were performed prior to 

experiments as MEA performance is not significantly compromised as a result of 

implantation (Hinzman et al., 2010).

After the MEA was calibrated, a single barrel glass capillary with filament (1.0 × 0.58 mm2, 

6″, A-M Systems, Inc.) was pulled using a Kopf Pipette Puller (Model 720 David Kopf 

Instruments, Tujunga, CA). The pulled micropipette was bumped against a glass rod so that 

the inner diameter of the micropipette was 10-14 μm (average=12 μm). Clay was used to 

place the tip of the micropipette between the 4 Pt recording sites, approximately 50-75 μm 

(average=73 μm) away from the MEA surface. This alignment was secured using Sticky 

Wax (Kerr Manufacturing Co). The measurements were taken under a microscope with a 

calibrated reticule.

4.4.3 In vivo Experimental Protocol for Measurements of Glutamate—Prior to in 
vivo placement of the MEA-micropipette assembly, the micropipette was filled with 200 μM 

glutamate (200 μM L-glutamate in 0.9% physiological saline; pH=7.2-7.4) or isotonic 70 

mM potassium (KCl) solution (70 mM KCl, 79 mM NaCl, 2.5 mM CaCl2; pH=7.2-7.4) 

using a combination of a 1 ml syringe, a 0.22 μm sterile syringe filter (Costar Corporation), 

and a 4″ stainless steel needle (30 gauge, beveled tip; Popper and Son, Inc., NY). The 

MEA– micropipette assembly was positioned in the brain according to stereotaxic 

coordinates, where all anterior–posterior (AP) measures were from bregma, medial–lateral 

(ML) measures were from midline and dorsal–ventral (DV) measures were from the dural 

surface (FC: +2.0, ±0.5-1.0, -1.5-2.5 mm, ∼8° angle toward midline; DG: -2.5, ±1.3, -2.1 

mm; Figure 1A) (Paxinos and Franklin, 2001).
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Nanoliter volumes of glutamate or KCl were locally applied to the extracellular space of the 

mouse brain by pressure ejection, using a Picospritzer II (Parker Hannifin Corp., General 

Valve Corporation). Pressure was applied at 5-25 psi for 1 second in all experiments. The 

volume of glutamate or KCl delivered was measured by determining the amount of fluid 

ejected from the micropipette using a dissection microscope fitted with a calibrated reticule 

(Cass et al., 1992; Friedemann and Gerhardt, 1992).

4.4.4 In vivo Measurements of Glutamate Clearance—Upon stereotaxic placement 

of the MEA-micropipette assembly, 10-20 minutes of baseline data were recorded in the FC 

and DG. The microelectrode was then moved in 500 μm increments in the FC using a 

micromanipulator (MO-10; Narishige Scientific Instruments, Tokyo, Japan) and allowed to 

return to baseline for approximately 10 minutes between depths. Only one recording 

location was feasible in the DG due to size constraints.

For glutamate uptake experiments, once a steady-state signal was achieved, the exogenous 

glutamate solution was locally applied every 30-60 seconds for a total of 5 ejections. 

Parameters from 3 signals ranging from 5-20 μM in amplitude were averaged for each Pt 

electrode site at each depth. The each recording was analyzed for the uptake rate constant 

(k-1) and the time it took for 80% of the signal to decay from maximum amplitude (T80) 

(Figure 1B). Amplitude-matched signals from DOX-treated mice were compared to controls 

(Hascup et al., 2006; Thomas et al., 2009). Most glutamate measures from the paired 

microelectrode recording sites were averaged to a single point per depth.

For potassium (KCl)-evoked glutamate release, a steady-state signal was first achieved. Then 

the effects of a single local application of KCl solution on glutamate release were 

determined (Gerhardt et al., 1985; Thomas et al., 2009). The maximum amplitude was 

compared between saline- and DOX-treated mice (Figure 1B; amplitude illustrated). Data 

regarding amperometric recordings were volume-matched prior to data analysis.

4.4.5 MEA Placement Verification—After experiments, animals used for in vivo 
electrochemistry were overdosed with sodium pentobarbital (150 mg/kg; i.p.) and 

transcardially perfused with 0.9% saline followed by 4% paraformaldehyde. Electrode tracks 

were identified and registered with a standard mouse brain atlas to confirm MEA placement. 

No animals were excluded due to electrode misplacement.

4.4.6 Statistical Analysis of Amperometric Recordings—Data from the paired 

recording sites on the MEA were averaged and used as a single data point. If only one 

microelectrode site provided usable data, then the recordings were incorporated from a 

single site. Multiple depths within anatomical regions of the FC were included as distinct 

regions in a repeated measures two-way ANOVA (with treatment and depth as factors), as 

well as averaged for determination of differences in the whole anatomical structure (2-tailed 

Student's t-test). Numbers of animals differed between groups for a variety of reasons; 

electrode recording failure due to blood contacting the microelectrode, loss of exclusion 

layer (mPD) as indicated by the sentinel channels and outlier status (using Grubb's test). In 

all cases, significance was defined as p < 0.05.
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4.5 Morris Water Maze (MWM)

Eight-week-old male B6C3 mice (25-30 g) were randomly assigned to two groups and were 

injected with a single i.p. treatment with doxorubicin hydrochloride, 20 mg/kg (N=8), or the 

same volume of saline as control (N=6). On the following 5 days, the mice were given 3 

daily trials with an inter-trial interval of 10 min in the presence of the platform. All cognitive 

tests were performed in a 100 cm (diameter) tank filled with water opacified by the addition 

of nontoxic paint. The water was kept at 24±1°C and surrounded by dark walls containing 

geometric designs that served as distal visual cues. During acquisition, each animal was 

allowed a maximum of 60 s to find the submerged platform. After 60 s, mice that did not 

find the escape platform were physically guided to it and allowed to remain on the platform 

for 30 s. The path length, time and speed of the mice were recorded by a computer-based 

video tracking system (HVS Image Analysis VP-200, HVS Image, Hampton, UK). Data 

were analyzed offline by using HVS Image, and processed with Microsoft EXCEL. Data 

were analyzed using a repeated measures two-way ANOVA (factors: treatment type and time 
after single injection) with Bonferroni's multiple comparison tests.
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DOX Doxorubicin

FC frontal cortex

DG dentate gyrus

MEA microelectrode array, KCl, potassium chloride

TNF tumor necrosis factor-α

GluOX glutamate oxidase
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Highlights

• Doxorubicin is a chemotherapeutic agent that impairs cognition in cancer 

patients

• Cognitive function is mediated by glutamate signaling in the cortex and 

hippocampus

• In mice, glutamate clearance was slower 24 hours after treatment with 

doxorubicin

• Doxorubicin increased glutamate release in the hippocampus of mice

• Knowing how doxorubicin impacts brain signaling is pivotal to preventing 

cognitive side effects
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Figure 1. 
Twenty-four hours after DOX treatment, glutamate signaling was measured in both 

hemispheres of the FC and DG of the mouse hippocampus using MEAs. (A) The MEA 

placement is illustrated in the right hemispheres of the coronal sections (adapted from the 

mouse brain atlas (Paxinos and Franklin, 2001)). In the FC, recordings were first made in the 

cingulate (Cg) cortex prior to moving into the prelimbic (PrL), then infralimbic (Il) cortices. 

The lower coronal section shows the approximate placement of the MEA recording sites in 

the DG of the hippocampus. (B) The representative in vivo glutamate recording depicts the 

signaling parameters assessed in these experiments. Extracellular glutamate levels were 

calculated after the MEA reached a stable baseline (10-20 minutes) by subtracting 

recordings on the sentinel site from recordings on the glutamate-selective site (containing 

glutamate oxidase; GluOx). The arrow denotes the local application of exogenous glutamate 

where detection and subsequent clearance were recorded. Once the maximum amplitude was 

reached, the uptake rate constant (k-1) and T80 (the time required to clear 80% of the 

amplitude) were calculated from clearing signal.
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Figure 2. 
The uptake rate constant (k-1) in the FC is significantly decreased 24 h after DOX treatment. 

(A) The depth profile of the k-1 in the FC reveals depth-dependent sensitivity to DOX 

treatment; especially at the depth of -2.5 mm, which corresponds to the infralimbic cortex 

(*p<0.05). (B) When the depths were averaged, a 45% decrease of the k-1 in DOX-treated 

mice is demonstrated in comparison to saline treated animals (Saline=6, DOX=9; *p<0.05). 

(C) In the DG, there were no significant changes in k-1 due to DOX treatment in comparison 

to saline treatment (n=4/group). Statistical analyses were carried out using a RM 2-way 

ANOVA and a unpaired 2-tailed Student's t-test. Error bars represent the mean ± SEM.
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Figure 3. 
Clearance times are significantly slower in the DG after DOX treatment. (A) The depth 

profile of the T80 shows that clearance times as a function of depth and (B) combined to 

represent the entire region did not differ as a function of treatment (n=6-9). (C) 
Representative traces (baseline subtracted out) demonstrate the changes in glutamate 

clearance. The black arrow is where exogenous glutamate was locally applied within the FC. 

(D) In the DG, a 48% increase in clearance time as a function of DOX treatment (n=7) was 

also measured in comparison to saline treatment (n=6; *p<0.05). Statistical analyses were 

carried out using a 2-way ANOVA and unpaired 2-tailed Student's t-tests. Error bars 

represent the mean ± SEM.
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Figure 4. 
Potassium-evoked glutamate overflow in increased in the DG of DOX treat mice. (A) No 

differences in evoked glutamate overflow were evident following DOX treatment in the 

prefrontal cortex (n=7/group). (B) However, in the DG (Sal=7, DOX=8), glutamate overflow 

was significantly greater in DOX treated mice (*p<0.05). Statistical analysis was done using 

an unpaired 2-tailed Student's t-test. Error bars represent the mean ± SEM. (C) 
Representative raw traces of potassium-evoked glutamate release in the DG. The black 
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arrows mark where KCl was locally applied to the DG. The hash marks (//) indicate where 

∼100 seconds were removed to preserve space.
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Figure 5. 
DOX treatment impaired performance of MWM. (A) Distance traveled was similar between 

both groups. (B) Swim speed was significantly slower after DOX treatment. (C) The time it 

took to travel to the platform was significantly greater for DOX treated mice. Significance of 

the overall effect of DOX treatment using a repeated measures 2-way ANOVA is indicated 

with a black diamond (◆p<0.05). Significant differences indicated with the post-hoc 

multiple comparison are indicated with a star (*p<0.05 in comparison to control on the same 

day). Error bars represent the mean ± SEM.
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