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     With regards to the common probiotic bacteria Lactobacillus and 

Bifidobacterium, inulin feeding significantly increased levels of these bacteria, 

irrespective of exposure.  However, exposure to PCB 126 in inulin fed mice 

further increased the levels of these bacteria. This may be due to a toxic effect of 

PCBs on other bacterial populations, allowing the proliferation of Bifidobacterium 

and Lactobacillus.  Inulin feeding is well accepted to stimulate Bifidobacterium 

and Lactobacillus.  For example, in humans, inulin supplementation has been 

demonstrated to increase Bifidobacterium and Lactobacillus following 14 days of 

supplementation [246].  Furthermore, in a randomized, double-blind placebo-

controlled crossover study, increases in Bifidobacterium and Lactobacillus were 

observed in healthy adults administered long-chain inulin for 14 days [247].  

Additionally, studies found that these genera were not only increased following 

prebiotic supplementation, but that this increase was associated with 

improvements in metabolic health and glucose metabolism [203, 204].  

Bifidobacterium and Lactobacillus exhibit very little proteolytic activity and are 

predominantly saccrolytic, which some argue, is beneficial [127].  Along these 

lines, in inulin fed mice reductions in circulating p-cresol were observed (data not 

shown), product of microbial proteolytic fermentation.  This suggests a reduced 

capacity for proteolytic fermentation in inulin-fed mice, which may confer a health 

benefit to the host [127].  Overall, inulin exhibited pronounced effects on the 

microbiota which may contribute to our observations of improved systemic host 

health and protection against pollutant toxicity.   
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     The intestinal environment, in addition to harboring important microbial 

populations, functions in hormonal regulation of appetite and metabolism [248].  

Quantification of circulating metabolic hormone levels revealed differential effects 

of diet and exposure.  Peptide YY (PYY) is an enteroendocrine peptide that is 

secreted by intestinal L cells and aids in the regulation of body weight [249].  

PYY is known as an anorexigenic hormone, and signals to reduce appetite.  

Interestingly, PYY levels were overall higher in inulin fed mice compared to 

cellulose fed mice and exposure exhibited an overall reductive effect on PYY.  It 

is well accepted that dietary fiber consumption increases PYY secretion and 

induces satiety [249].  Furthermore, it has been observed that short chain fatty 

acid (SCFA) production from microbial fermentation of fiber can contribute to the 

regulation of PYY secretion [250, 251].  The overall exposure-induced reductions 

in PYY levels we observe could suggest that SCFA levels are modified or that 

there is disruption in intestinal L cell health.  We will further explore this potential 

mechanism through quantification of SCFA levels in the plasma and feces and 

examination gene expression coding for these metabolic hormones within the 

ileum.    

    Leptin, a well characterized adipokine, contributes to regulation of energy 

balance through inhibition of hunger and modulation of glucose and fatty acid 

metabolism [252].  Serum levels of leptin were significantly reduced in cellulose-

fed exposed mice.  This finding has been reported previously in the literature with 

exposure to persistent organic pollutants.  For example, in the Yusho cohort, a 

Japanese population of dioxin-exposed individuals, a significant reduction in 
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serum leptin levels was observed [253]. Interestingly, there are several studies 

demonstrating that leptin exerts an insulin-like effect [252].  For example, leptin 

administration has been demonstrated to contribute to normoglycemia and 

improving insulin responses in response to streptozotocin-induced diabetes 

[254].  Therefore, detriments to leptin levels in cellulose-fed exposed mice could 

contribute to our observed disruptions in glucose homeostasis.  Our observation 

of a reduced level of leptin is not surprising due to the reduced level of body fat 

observed in our cellulose-fed exposed mice, however this finding highlights a role 

of the adipose tissue in PCB toxicity and protection with inulin consumption that 

needs to be further explored.   

     Aside from microbial modulation and hormone modulation, another potential 

mechanism of inulin-induced improvements host health and metabolism is 

reduction in metabolites associated with cardiovascular disease.  In the liver, a 

significant increase in ceramide species, including 18:1/20:0 and 18:1/24:1 was 

observed in exposed mice fed cellulose, while mice fed inulin were protected 

from this increase.  It has recently been accepted that ceramides are a biomarker 

of cardiovascular disease risk, increasing inflammation, reactive oxygen species, 

and causing cellular dysfunction [255].  Ceramides are not only linked with 

cardiovascular disease but also with NAFLD [256].  For example, an increased 

serum level of ceramides was observed in obese children with NAFLD [257].  It 

has also been demonstrated that modulation of ceramide production in NAFLD 

helps reduce the progress of atherosclerosis, highlighting the strong tie between 

the hepatic and cardiovascular systems [258].  In support of our ceramide 
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concentrations in the liver, a PCB-induced decrease in Mttp was observed in 

cellulose fed mice and attenuated in inulin-fed mice.  Mttp is a critical protein 

involved in the transfer of ceramides from the liver to the plasma [259].  

Consistent with these data, PCB-induced increases in ceramides within the 

plasma were not observed. (data not shown).  Our observations of increases in 

hepatic ceramides along with presence of hepatic steatosis and inflammation are 

noteworthy in that they are major risk factors of cardiometabolic disease.  

Furthermore, to our knowledge this is the first study demonstrating that exposure 

to PCBs increases ceramide production, highlighting a new mechanism of PCB 

toxicity to be explored in future studies.        

     The present study adds significantly to the growing body of literature 

demonstrating the beneficial effects of nutrition on combatting pollutant toxicity, 

however there are a few limitations to note that should be addressed in 

subsequent experiments.  Firstly, it is recommended that humans consume 14g 

of fiber per 1000 calories [218].  The traditional level of fiber in purified diets and 

our previous study is 5%, equating to 12g per 1000 calories.  The diets in the 

current study both had fiber present at the 8% level, equating to 21g per 1000 

calories.  Therefore, the cellulose and inulin diets used in the present study can 

be considered high fiber diets and thus future studies should examine all levels of 

fiber intake (i.e. low, adequate, high) to fully understand the interactions between 

fiber consumption and pollutant exposure.  It is also important to note that the 

present study only utilizes male mice.  Future studies should employ male and 

female mice as there are various differences including that of specific aspects of 
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metabolism and gut microbiota populations.  Finally, there are still measurements 

to be made to further elucidate the mechanisms driving the observed phenotypes 

in this study.  To better understand the role of the microbiota in the inulin-driven 

protection against PCB toxicity we will quantify SCFA levels in the feces and 

plasma.  As discussed in chapter one, SCFA levels are sensed by specific G-

protein coupled receptors (GPRs), GPR41 and GPR43, which are involved in 

numerous systemic processes including the regulation of glucose and lipid 

metabolism [86, 91]. Therefore, quantification of SCFA is important to follow up 

on due to our present observed effects of PCBs on glucose metabolism and lipid 

accumulation as well as the PCB effects on SCFA production in observed both 

chapter two and chapter three.  Additionally, quantification of fecal, plasma, and 

hepatic levels of PCBs will be conducted to examine if cellulose or inulin drive 

different deposition profiles of these pollutants, thereby influencing their toxicity.  

Inulin has been well demonstrated to reduce cholesterol and improve lipid 

profiles in humans [127].  Therefore, quantification of cholesterol and 

triglycerides both in the liver and in plasma will also be conducted to observe if a 

reduction in these could be a potential mechanism by which inulin attenuates 

inflammation and hepatic steatosis.  Finally and importantly, atherosclerotic 

lesions will be quantified to examine if the observed protective effects of inulin 

translate to an attenuated atherosclerotic risk.     

     Overall, the data presented demonstrates that consumption of the prebiotic 

inulin is capable of attenuating PCB 126-induced disruption of gut microbial 

population, host metabolism and systemic inflammation.  Importantly, the 
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elevated level of fiber in the control group compared to our previous study (8% 

cellulose vs. 5% cellulose) may confer metabolic alterations and may also impact 

the toxicity of PCB 126, which is a parameter that needs further examination.  

We hypothesize that through alterations in gut microbial populations and 

microbial metabolite production, that inulin is able to reduce cardiometabolic 

disease risk.  This study is important in that increasing dietary inulin consumption 

is an easily attainable means for all human populations and poses little to no risk 

for health.  More research is needed to elucidate the direct mechanisms of 

attenuations in PCB toxicity induced by inulin feeding.   
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Table 4.1. Diet Formulation 
 8% Cellulose 8% Inulin 
 gm kcal gm kcal 

Protein 18.6 20.0 19.2 20.0 
Carbohydrate 64.9 70.0 64.0 70.0 

Fat 4.1 10.0 4.2 10.0 
Total  100.0  100.0 

Kcal/gm 3.71  3.83  
     

Ingredient     
Casein, Lactic 200 800 200 800 

L-Cystine 3 12 3 12 
     

Corn Starch 375 1500 343.1 1372.4 
Maltodextrin 10 125 500 125 500 

Sucrose 200 800 200 800 
     

Cellulose 87.5 0 0 0 
Inulin 0 0 84.8 127.2 

     
Soybean Oil 25 225 25 225 

Cocoa Butter 20 180 20 180 
     

Mineral Mix S10021 10 0 10 0 
Dicalcium Phosphate 13 0 13 0 

Calcium Carbonate 5.5 0 5.5 0 
Potassium Citrate 16.5 0 16.5 0 

     
Vitamin Mix V10001 10 40 10 40 

Choline Bitartrate 2 0 2 0 
     

Cholesterol 1.6 0 1.6 0 
     

Total 1094.10 4057 1059.50 1094.10 
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Table 4.2.  Genera level differences in gut microbial populations 
 Cellulose + 

Vehicle 
Cellulose + 

PCB 126 
Inulin +  
Vehicle 

Inulin + 
PCB 126 

Other 371.9 + 67.0 229.8 + 25.8 527.4 + 25.6* 709.4 + 73.1*‡ 
Bifidobacterium 12.1 + 3.0 24.1 + 9.7 597.2 + 136.7*  1432.5 + 

196.6*‡ 
Lactobacillus 19.8 + 6.7 13.1 + 4.8 152.1 + 41.9* 403.1 + 95.9*‡ 
Lactococcus 219.6 + 42.7 212.1 + 72.4 123.7 + 19.5 161.3 + 31.3 
Turicibacter 38.5 + 10.4 11.7 + 3.0‡ 3.6 + 0.8* 3.9 + 1.3 
Clostridium 18.4 + 4.3 19.6 + 2.9 4.2 + 1.4* 2.5 + 0.7* 
Dehalobacterium 74.2 + 8.8 43.9 + 7.7 88.3 + 23.2 46.3 + 7.9 
Coprococcus 302.0 + 38.0 863.6 + 234.4‡ 61.9 + 21.0* 108.7 + 23.5 
Dorea 126.0 + 14.7 41.2 + 13.4‡ 21.3 + 8.2* 16.4 + 4.7* 
[Ruminococcus] 462.0 + 58.0 560.4 + 35.1 129.0 + 16.3 908.0 + 193.5‡ 
rc4-4 1405.0 + 

409.1 
0.8 + 0.5‡ 211.0 + 96.1* 249.0 + 44.9* 

Oscillospira 2755.2 + 
352.2 

1784.1 + 
214.2‡ 

1251.0 + 215.7* 1115.0 + 118.4 

Ruminococcus 727.4 + 63.9 861.8 + 85.1 545.6 + 75.5 340.8 + 58.4* 
Allobaculum 5064.8 + 

1593.3 
2007.5 + 565.8 12019.1 + 

2319.5* 
14419.7 + 
1895.7* 

Coprobacillus 66.9 + 14.2 82.8 + 16.1 1.0 + 0.5* 2.8 + 1.0* 
Sutterella 772.2 + 

295.0 
1092.1 + 178.2 1585.3 + 135.0* 993.7 + 133.1 

Desulfovibrio 2129.3 + 
811.1 

6.2 + 1.4‡ 2.6 + 0.8* 7.6 + 3.6 

Akkermansia 37403.2 + 
2784.1 

43081.5 + 
3849.6 

21070.1 + 
2235.5* 

31416.8 + 
2044.5* 

*indicates a significant difference compared to cellulose diet; ‡ indicates a significant difference compared to vehicle of 

same diet (n=10).  Data analyzed by two-way ANOVA with post hoc comparisons of the means. 
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Figure 4.1. Inulin consumption protects against PCB-induced wasting.   

 
 

Figure 4.1. Inulin consumption protects against PCB-induced wasting.  

Male Ldlr-/- mice were fed an atherogenic diet containing 8% cellulose or 8% 

inulin for 12 weeks and exposed to PCB 126 (1µmol/kg) or vehicle at weeks 2 

and 4. A. Weight change (g) from baseline to the end of the study. Cellulose fed 

mice exposed to PCBs had significantly greater weight gain than exposed inulin 

mice. B. Fat composition quantified using EchoMRI.  PCB exposure reduced 

body fat percentage in the cellulose-fed group, which was attenuated by inulin 

consumption. C.  Average energy intake (kcals) per day. Data are presented as 

mean + S.E.M (n=10 per group). Statistical significance is denoted by * (p<0.05). 
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Figure 4.4. Inulin feeding drives shifts in microbial composition at the phyla level 

 
 
Figure 4.4. Inulin feeding drives shifts in microbial composition at the phyla 

level.  Male Ldlr-/- mice were fed an atherogenic diet containing 8% cellulose or 

8% inulin for 12 weeks and exposed to PCB 126 (1µmol/kg) or vehicle at weeks 

2 and 4.  Cecum contents were also collected at the conclusion of the study.  

16S rRNA sequencing was conducted and data was analyzed using QIIME.  A. 

Differences in the phyla level composition of the gut microbiota.  Inulin feeding 

decreased Verrucomicrobia and increased Actinobacteria.  *indicates a 

significant difference compared to cellulose diet and ‡ indicates a significant 

difference compared to vehicle of same diet. Data are presented as relative 

abundances. B. Firmicutes/Bacteroidetes ratio. Inulin feeding had a significant 

overall effect of lowering the Firmicutes/Bacteroidetes ratio.  C. Alpha diversity 

(Shannon Diversity Index).  PCB exposure had a significant overall effect of 

lowering alpha diversity.  Data are presented as mean + S.E.M (n=10 per group; 

two-way ANOVA with post hoc comparisons of the means).  Statistical 

significance is denoted by * (p<0.05).  
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Figure 4.5. Inulin and PCB exposure modulate gut microbial populations 

 
Figure 4.5. Inulin and PCB exposure modulate gut microbial populations.  

Male Ldlr-/- mice were fed an atherogenic diet containing 8% cellulose or 8% 

inulin for 12 weeks and exposed to PCB 126 (1µmol/kg) or vehicle at weeks 2 

and 4.  Cecum contents were also collected at the conclusion of the study.  16S 

rRNA sequencing was conducted and data was analyzed using QIIME.  PCB 

exposure increased Coprococcus abundance in cellulose fed mice, which was 

attenuated in mice fed inulin.  PCB exposure increased the level of Akkermansia 

irrespective of diet.  Irrespective of exposure, inulin feeding increased levels of 

Bifidobacterium, Lactobacillus, and Allobaculum compared to cellulose feeding.   

Data are presented as mean + S.E.M (n=10 per group; two-way ANOVA with 

post hoc comparisons of the means).  Statistical significance is denoted by * 

(p<0.05)  
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Figure 4.6. Inulin attenuates PCB-induced changes in hepatic inflammatory and 
detoxification markers 

 
 
Figure 4.6. Inulin attenuates PCB-induced changes in hepatic inflammatory 

and detoxification markers.  Male Ldlr-/- mice were fed an atherogenic diet 

containing 8% cellulose or 8% inulin for 12 weeks and exposed to PCB 126 

(1µmol/kg) or vehicle at weeks 2 and 4.  Liver samples were collected at the 

conclusion of the study. mRNA units were determined using the relative 

quantification method (ΔΔCT), normalized to control values. 18S was used as the 

housekeeping gene for all hepatic gene expression quantifications. A. mRNA 

quantification of hepatic markers of inflammation.  PCB exposure increased 

expression of tumor necrosis factor alpha (Tnfα) and lipopolysaccharide binding 

protein (Lbp), which was attenuated by inulin consumption.  B. mRNA 

quantification of hepatic markers of xenobiotic detoxification.  PCB-induced 
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increases in cytochrome p450 (Cyp1a1) expression was lower in inulin fed mice 

compared to cellulose fed mice.  Multidrug resistance protein (Mrp2) expression 

was lower in exposed inulin fed mice compared to exposed cellulose fed mice. 

Data are presented as mean + S.E.M (n=10 per group). Statistical significance is 

denoted by * (p<0.05).  
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Figure 4.7. Inulin attenuates PCB-induced increase in hepatic ceramides 

 

Figure 4.8. Inulin attenuates PCB-induced increase in hepatic ceramides.  

Male Ldlr-/- mice were fed an atherogenic diet containing 8% cellulose or 8% 

inulin for 12 weeks and exposed to PCB 126 (1µmol/kg) or vehicle at weeks 2 

and 4.  Liver samples were collected at the conclusion of the study. A. Hepatic 

quantification of ceramide levels via lipidomics.  PCB exposure increased hepatic 

ceramide species 18:1/20:0 and 18:1/24:1 and total ceramides in cellulose fed 

mice but not inulin fed mice.   B. mRNA quantification of microsomal triglyceride 

transport protein (Mttp).  In mice fed cellulose, PCB exposure decreased 

expression of Mttp, which was attenuated in exposed mice fed inulin.  mRNA 

units were determined using the relative quantification method (ΔΔCT), 

normalized to control values.  18S was used as the housekeeping gene for all 

hepatic gene expression quantifications. Data are presented as mean + S.E.M 

(n=10 per group). Statistical significance is denoted by * (p<0.05). 
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Figure 4.8. PCB disruption of glucose metabolism is attenuated by inulin   

 
 

Figure 4.8. PCB disruption of glucose metabolism is attenuated by inulin.  

Male Ldlr-/- mice were fed an atherogenic diet containing 8% cellulose or 8% 

inulin for 12 weeks and exposed to PCB 126 (1µmol/kg) or vehicle at weeks 2 

and 4.  Liver samples were collected at the conclusion of the study. mRNA units 

were determined using the relative quantification method (ΔΔCT), normalized to 

control values. 18S was used as the housekeeping gene for all hepatic gene 
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expression quantifications.  PCB exposure reduced expression of rate limiting 

glycolytic enzymes glucokinase/hexokinase (Gck) and pyruvate kinase (Pklr), 

which was not observed in inulin fed mice.  Overall, inulin feeding increased 

gluconeogenic enzyme expression including PEP carboxykinase (Pck1) and 

glucose-6-phosphate (G6pc) irrespective of exposure.  Data are presented as 

mean + S.E.M (n=10 per group). Statistical significance is denoted by * (p<0.05). 
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Figure 4.9. PCB 126 and inulin alter circulating metabolic hormones 

 
 

Figure 4.9. PCB 126 and inulin alter circulating metabolic hormones.  Male 

Ldlr-/- mice were fed an atherogenic diet containing 8% cellulose or 8% inulin for 

12 weeks and exposed to PCB 126 (1µmol/kg) or vehicle at weeks 2 and 4. 

Circulating hormones related to energy metabolism were quantified via Magpix 

technology.  PCB exposure reduced leptin levels in cellulose fed mice but not in 

inulin fed mice.  An overall effect of inulin consumption on increasing PYY levels 

was observed while a reductive effect of PCB exposure on PYY was noted. Data 

are presented as mean + S.E.M (n=10 per group). Statistical significance is 

denoted by * (p<0.05). 
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Chapter 5 Overall Discussion 
 
5.1 Discussion 

 
5.1.1 Summary 

     The research presented in this dissertation discusses novel observations into 

the effects of polychlorinated biphenyl (PCB) exposure on the gut microbiota and 

how this impacts overall host health.  Our primary goal is to find means by which 

to decrease the negative health effects of pollutant exposure; thus, this 

dissertation provides insight into a novel avenue of nutritional mediation in 

pollutant exposures, the consumption of prebiotics (i.e. dietary fiber).  The gut 

microbiota is influenced by a variety of factors including dietary intake as well as 

environmental exposures and has been implicated in the development of several 

diseases, including cardiovascular disease and diabetes.  We demonstrated that 

PCB exposure detrimentally impacts the gut microbiota, specifically by 

decreasing diversity, increasing the inflammatory-associated Firmicutes to 

Bacteroidetes ratio, and decreasing specific beneficial bacterial genera.  

Furthermore, we elucidated that PCB exposure directly impacts certain bacteria 

through membrane disruption, leading to an overall change in fermentation acid 

production in the host and thus increasing the risk of metabolic diseases.  Finally, 

we demonstrated the role of prebiotic (i.e. inulin) consumption in attenuating 

PCB-induced microbial and metabolic dysfunction.   
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5.1.2 PCB 126 disrupts microbial fermentation of a prebiotic substrate 

     There is evidence that exposure to environmental pollutants can impact gut 

microbial populations but the mechanisms and specific bacterial populations 

affected remains unknown.  It has been shown that pollutants including 2,3,7,8 

tetrochlorodibenzofuran, benzo[a]pyrene, and PCBs can alter gut microbial 

pollutions as well as induce intestinal inflammation [18, 19, 178, 185, 193].  

However, these studies did not address the direct impact of these various 

pollutants on the bacteria themselves.  Conversely, research on environmental 

bacterial populations and pollutants has substantiated that there is indeed an 

interplay between pollutants and bacterial populations [157, 158].  For example, 

research on the ability of particular bacterial populations to degrade pollutants 

such as polyaromatic hydrocarbons has been appreciably studied and has 

yielded promising results [260].  Due to the vast presence of PCBs in the 

environment, past research has examined their effects on soil bacterial 

populations and determined that there was no convincing evidence that PCBs 

exert genotoxicity but instead may have effects on the bacterial cell membrane 

[157, 158]. While these findings provide some insight into the interactions 

between pollutants and bacteria, it is important to note that the bacteria found in 

soil environments are primarily aerobes while the bacteria residing in the 

mammalian gut are primarily anaerobes, which may cause differences in 

metabolism and response to pollutant exposure.  The work described in chapter 

two of this dissertation attempted to address this gap in the literature by studying 

the direct effects of PCB exposure on isolated gut microbial populations.   
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     Using an inulin-fermenting isolate from murine feces, we determined that as 

concentrations of PCB 126 increased, there was a significant impediment on 

bacterial viability.  To determine if PCBs were membrane disruptive in an 

anaerobic gut microbe, we quantified intracellular potassium and confirmed our 

observed reductions in viability to be due to perturbations in the bacterial cell 

membrane.  This is important in that this is the first instance in which it has been 

demonstrated that PCBs can exert direct toxic effects on specific gut microbial 

populations.  Furthermore, our findings that these disruptions translated to overall 

alterations in fermentation acid production from a mixed fecal microbial sample 

demonstrate the impact that PCB disruption of gut microbiota can have on the 

overall host.  Importantly, upon increasing the prebiotic inulin substrate, the 

bacteria were able to overcome the disruptions in fermentation acid production. 

Fermentation acid or short chain fatty acid (SCFA) production has been more 

recently understood to influence numerous properties that affect host health [84, 

91].  The primary SCFAs acetate, propionate, and butyrate all exert differential 

effects throughout the human body.  Butyrate functions primarily within the 

intestine, serving as a preferential energy source for colonocytes and has been 

associated with improved intestinal health [245].  Acetate and propionate exert 

functions within the liver and peripherally, modulating glucose and lipid 

metabolism [85].  Therefore, PCB-induced disruptions in gut microbial production 

of SCFAs could be responsible for the observed disruptions in hepatic 

metabolism, glucose tolerance, and intestinal inflammation.   Overall, our findings 

of PCB-induced disruption of gut microbial fermentation, alleviated by increased 
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prebiotic substrate, highlights that the bacteria that can proliferate at a higher 

level of inulin are likely not sensitive to PCB exposure.  Therefore, focusing our 

research on elucidating and targeting the effected populations could be greatly 

beneficial for host health. 

 

5.1.3 Exposure to PCB 126 disrupts gut microbial and metabolic homeostasis 

     Dioxin-like pollutants are found in many animal food products and thus human 

exposure is initiated upon consumption, with the first impact being on the 

gastrointestinal tract.  Thus, in work described within chapter three of this 

dissertation we attempted to address the role of the gut in the PCB-toxicity.  We 

hypothesized that PCB toxicity initiated in the gut and influenced the 

development of peripheral inflammation and disease.   

     It has been well established that cardiometabolic disease is strongly linked to 

gastrointestinal health and the gut microbiome.  It has been demonstrated that 

individuals with cardiometabolic diseases possess unique microbial signatures, 

suggesting a potential interplay of the microbiota in the pathogenesis of these 

diseases.  For example, individuals with atherosclerosis and type 2 diabetes 

exhibit increases in Firmicutes and reductions in Bacteroidetes [261].  

Additionally, an epidemiological study investigating cardiovascular health 

indicated that stool populations of Prevotella 2 and Prevotella 7 were associated 

with an increased lifetime risk for cardiovascular disease [262].   Interestingly, 

treatment with antibiotics was able to lower circulating levels of TMAO, a 

biomarker that has been identified as a risk factor for cardiovascular disease.  
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Furthermore, these researchers demonstrated that antibiotic-induced reduction in 

TMAO correlated with a decrease in aortic plaque and a decreased number of 

macrophages within the plaque [104, 263].  These data highlight the critical 

interplay of the gut microbiota in the pathogenesis of disease.   

     It has also been well established that dioxin-like pollutant exposure can 

increase the risk of cardiovascular disease developments [38].  Recently, our lab 

demonstrated that exposure to PCB 126 increases systemic inflammation and 

accelerates the development of atherosclerosis in a mouse model of 

cardiometabolic disease [181].  To expand on this previous finding and to 

elucidate the effect of PCB exposure on the gut microbiota and how this may 

play a role in cardiometabolic disease, LDLr-\- mice were fed an atherogenic diet 

and exposed to a low dose of PCB 126 and parameters of metabolic and 

microbial health were analyzed.  We found that PCB exposure induced disruption 

of gut microbial populations, primarily in the cecum contents.  PCB exposure 

reduced gut microbial diversity and increased the Firmicutes to Bacteroidetes 

ratio, both of which are observed in chronic inflammatory conditions and 

cardiometabolic diseases.  This finding is consistent with other studies 

demonstrating that pollutant exposure, specifically dioxin, results in increases in 

the Firmicutes to Bacteroidetes ratio, which correlated with liver and immune 

toxicity [193]. 

     We also observed PCB-induced reduction of Oscillospira, Bifidobacterium, 

and Lactobacillus, all of which have been correlated with positive health 

outcomes for the host.  Importantly, we observed a significant positive correlation 
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between circulating levels of glucagon like peptide-1 (GLP-1) and 

Bifidobacterium that was dependent on PCB exposure.  This finding is important 

due to the role of GLP-1 on modulating glucose metabolism through control of 

insulin secretion as well as studies demonstrating that Bifidobacterium 

supplementation can improve insulin sensitivity [206].  Along with this, our 

observations of hyperinsulinemia in the absence of glucose intolerance in PCB-

treated mice suggest a prediabetic phenotype.  Other labs have observed 

impairments in glucose tolerance in response to PCB-exposure, but our finding is 

the first to highlight that these impairments may be linked to gut microbial 

disruption. 

     Additionally, we conducted hepatic metabolomics to examine the impact of 

PCB exposure on metabolism.  We observed that PCB exposure reduced 

glycolytic intermediates, increased fatty acid metabolism intermediates, and 

induced alterations in metabolites that have been demonstrated to be influenced 

by host-microbial interactions (e.g. N-acetylphenylalanine, dimethylglycine).  We 

hypothesized that our observed shift away from carbohydrate metabolism to fatty 

acid metabolism could be a consequence of hyperinsulinemia.  Due to these 

findings of altered liver metabolites, the subsequent study (chapter four) focuses 

on following up on this finding and examining hepatic metabolism and health 

more thoroughly.   

    Overall, we hypothesize that our findings of increased inflammation, metabolic 

disruption, and gut dysbiosis in PCB-exposed mice may occur concurrently and 

have a feed-forward effect on each other.  These findings reveal a novel 
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opportunity for intestinally-targeted nutritional intervention to attenuate the 

detrimental effects of PCBs on both gut dysbiosis and overall host health.   

 

5.1.4 Inulin consumption reduces gut and systemic toxicity of PCB 126 

     It is well understood that a healthful diet, rich in fruits, vegetables, and foods 

high in bioactive compounds, can confer a benefit on cardiometabolic disease 

risk and reduction [218].  Our lab has shown previously that flavonoids and 

polyphenols can be protective against PCB-related endothelial cell dysfunction, a 

beginning pathological step in the development of atherosclerosis [264]. 

Furthermore, we have also demonstrated that consumption of bioactive 

components can reduce pollutant-induced oxidative stress, which is a known 

player in the development of metabolic dysfunction [73].  In work described within 

chapter three of this dissertation, we attempted to expand the scope of nutritional 

modulation of PCB toxicity to parameters that are well known to have an 

influence on gut health and the gut microbiota, specifically the prebiotic fiber 

inulin.  Inulin is an inulin type fructan found in many vegetables (e.g. onions, 

leeks, and chicory root) and is composed of chains of fructosyl groups linked by 

(2-1) glycosydic bonds, terminated with an -D(1-2)-glucopyranoside ring group 

on the reducing end [128, 134].  Inulin is added to many food products to 

increase fiber content and provide sweetness without adding significant caloric 

content.  It has been found that in the US, most individuals fall below the 

recommendations of 25g or 38g of fiber per day for women and men, 

respectively [113, 125].  This provides an important avenue for intervention due 
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to fiber’s known benefits on gastrointestinal health, cardiometabolic health, and 

weight management.  Importantly, PCB exposure has been demonstrated to 

have detrimental impacts on all of these health conditions, and thus consumption 

of a diet rich in fiber is a feasible means by which to address and attenuate the 

negative effects of pollutant exposure.  In the work described within chapter four 

of this dissertation we attempted to elucidate the role of inulin in modulating 

pollutant toxicity by supplementing mice with a diet high in inulin and 

subsequently exposing them to low levels of PCB 126. 

     We found that exposure to PCB 126 induced significant fat mass loss in 

cellulose fed mice.  Interestingly, this wasting was attenuated in exposed mice 

fed inulin.  The lipophilic nature of dioxin-like pollutants such as PCBs cause 

them to accumulate in adipose tissue where they can induce inflammation and 

cause disruption in adipocyte metabolism [158].  Furthermore, research has 

shown that if PCB exposed obese mice undergo weight loss, the PCBs are 

released into circulation where they can exacerbate inflammation and diabetic 

symptoms, indicating a somewhat protective role of adipose tissue in preventing 

pollutant toxicity in other organs [162].  We hypothesize that the wasting induced 

by PCB exposure resulted in greater circulating levels of these pollutants, which 

could contribute to disruptions in host health and metabolism.  We intend to 

follow up on levels of PCBs both in circulation and within the feces to address 

this hypothesis.    

     While cellulose fed mice exposed to PCBs exhibited a lower percent body fat, 

their livers were actually heavier and harbored a greater amount of 
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microvesicular fat.  It is well accepted and understood that hepatic steatosis can 

contribute to metabolic disruptions and inflammation [233, 234]. If our hypothesis 

of greater circulating levels of PCBs in cellulose fed mice is correct, their 

participation in enterohepatic circulation could exacerbate the effects on the 

hepatic and gastrointestinal systems.  Consistent with our observations of 

hepatic steatosis, PCB-exposed mice exhibited higher levels of inflammatory 

markers and inulin feeding was able to attenuate these increases.  Furthermore, 

we observed that PCB exposure altered expression of key glycolytic and 

gluconeogenic enzymes and that inulin feeding was able to blunt these effects, 

suggesting a potential mechanism for our observations in disrupted glucose 

tolerance with PCB exposure and amelioration by inulin.    

     In chapter three, we established that PCBs induced alterations in the gut 

microbiota and that some of these alterations correlated with disruptions in 

metabolic markers.  Due to inulin’s high prebiotic capacity, we hypothesized that 

inulin feeding would attenuate PCB-induced disruptions in the microbiota and 

that these alterations would lead to overall improved host health.  Indeed, we 

observed several effects of inulin feeding on microbial populations.  Inulin is 

known to be a bifidogenic compound, stimulating the growth of Bifidobacterium 

[133].  As expected, we observed significant increases in the levels of 

Bifidobacterium in inulin fed mice, irrespective of exposure.  Interestingly, 

exposure to PCB 126 in inulin fed mice further increased the levels of these 

bacteria.  We hypothesize that this finding is due to a toxic effect of PCBs on 

other bacterial populations, thereby allowing for the proliferation of 
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Bifidobacterium.  Furthermore, we also observed that inulin fed mice exhibited a 

lower Firmicutes:Bacteroidetes ratio, irrespective of exposure, suggesting a 

“healthier” microbial signature.  Inulin appeared to exert a stronger effect on 

influencing microbial populations than did PCB exposure, which could be 

expected due to inulin’s known prebiotic capabilities.  

     Due to our more thorough exploration of hepatic effects of pollutant exposure 

in this study, we discovered an avenue that has not previously been explored by 

our lab.  In chapter four, we identified that hepatic ceramide levels were 

increased with PCB exposure.  This is important in that ceramides have been 

more recently accepted as a biomarker for cardiometabolic disease risk [255].  

Furthermore, we observed that inulin feeding was able to attenuate this increase.  

We also determined that hepatic microsomal triglyceride transfer protein (Mttp) 

expression was reduced with PCB exposure, which has been demonstrated to 

function in ceramide transport out of the liver [259].  Consistent with our findings, 

the level of Mttp expression was restored with inulin feeding, indicating a 

potential mechanism that needs to be further explored.  To our knowledge, this is 

the first instance in which ceramide levels were examined with PCB exposure 

and thus this finding opens up a new avenue of exploration into PCB-toxicity.    

     When comparing the toxicity and effects of PCB exposure in the studies 

described in chapter three and chapter four, we observed discrepancies that 

should be noted.  The only difference between the models used in these 

chapters is the level of fiber.  In chapter three, the level of fiber in the control 

group was 5% from microcrystalline cellulose, whereas in chapter four, the level 
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of fiber in the control groups (cellulose) were 8% from microcrystalline cellulose.  

While a higher level of fiber consumption is believed to be more beneficial to host 

health, in chapter four we actually observed greater toxicity of PCB exposure 

despite a higher level of fiber.  When comparing the exposed groups in both 

studies, we observed exacerbation of wasting and glucose tolerance in mice fed 

8% cellulose but this was not observed in mice fed 5% cellulose.  Interestingly, 

the microbial effects of PCB exposure in cellulose fed were not as apparent in 

the study described in chapter four compared to our previous findings in chapter 

three.  Quantification of PCB levels in the feces and plasma is an ongoing 

analysis to better compare the body burden of PCBs between these two studies.  

Overall, we observed a discrepancy between the level of cellulose fiber (5% vs 

8%) that may influence the toxicity of PCBs and will be followed up on in future 

studies.   

 

5.2 Future directions and conclusions 

The levels of environmental pollutants throughout the world continue to rise, 

despite numerous efforts towards reduction [2, 3].  Because pollutant exposure is 

mostly unavoidable, it is important to not only understand its impacts on human 

health, but also to elucidate means to provide protection against and/or 

ameliorate symptoms of exposure.  One of the primary routes of exposure to 

lipophilic pollutants such as PCBs is through the ingestion of contaminated food 

products (e.g. fatty fish, meat, and dairy) and thus, focusing on the 

gastrointestinal tract is critical to understand the whole scope of PCB toxicity [2]. 
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There are numerous future directions that can be pursued related to the work 

described within this dissertation.  Firstly, to elucidate role of the microbiota in the 

influence of pollutant-induced disease, studies utilizing mouse models in which 

the microbiota has been manipulated could provide critical information.  The 

research described in chapter two and three of this dissertation highlighted that 

PCB exposure can impact viability and fermentative properties of specific gut 

microbial populations and can do so through membrane disruptive mechanisms.  

However, it is still unknown what proportion of the impacts on the microbiota we 

observed are from direct disruption of specific bacteria or from indirect disruption 

through host inflammation and disease progression.  Therefore, utilizing means 

of eliminating, reducing, or shifting gut microbial populations could be helpful in 

elucidating their role in PCB toxicity.  One such means to do so would be the use 

of broad-spectrum antibiotic treated mice to eradicate a large proportion of the 

microbiota.  Antibiotic treated mice have been used for studies investigating the 

role of eradicating specific groups of bacteria and for investigating the effect of 

disrupting the gut microbiome at various host life stages [265].  The use of 

antibiotic-treated mice is easily attainable and maintained with minimal costs but 

does not allow complete control of microbial population and elucidation of 

specific host-microbe interactions [265].  Furthermore, there is the potential of 

drug-pollutant interactions that could influence the actions of PCBs and/or 

antibiotics.  Another, more rigorous, method of elucidating the role of the 

microbiota is to use germ free mouse models.  The terminology germ free is 

defined as an animal free of bacteria, viruses, fungi, parasites, and protozoa from 
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birth [266].  The use of a germ-free mouse model to examine PCB-induced 

toxicity would allow us to understand the role that the microbiota in a 

mechanistic, more extreme sense.  While this model will provide further insight 

into host-microbe interactions in PCB exposure, due to the extreme nature of this 

model, it can lack translatability.  GF mice often need to be supplemented with 

vitamins, specifically K and B, and have a less developed and less functional 

small intestine, making energy absorption and utilization less efficient [266].  

While utilizing GF models will provide us with critical information on the microbial 

influence of PCB toxicity, due to our labs interest on cardiometabolic disease and 

pollutant exposure, a logical next step would be the utilization of gnotobiotic 

mouse models.  Gnotobiotic, derived from the Greek “gnōtos” (known) and 

“biotic” (life), simply means that GF mice are colonized with a specific microbial 

population, often from humans, to generate a humanized mouse model [267].  

Humanized mouse models developed from GF mice have been used in a variety 

of areas of research including those focusing on cardiovascular diseases, 

neurological diseases, and metabolic diseases [267].  Thus, our lab could utilize 

the microbial population taken from individuals with 

cardiovascular/cardiometabolic disease and develop gnotobiotic mouse models 

to better understand the interactions between host physiology and a dysbiotic 

microbiota.  Employing this method would provide us with the most translatable 

data, regarding the microbiota, to date and allow us to explore novel mechanisms 

of pollutant toxicity and develop interventions that better target these 

mechanisms.  The use of the above discussed methods in a stepwise fashion 
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could allow us to garner critical data regarding host-microbe-pollutant interactions 

that examine a range potential mechanisms. 

Another future direction for the laboratory could be to look more into the 

effects of PCBs and dietary fiber on gut microbial derived metabolites that reach 

peripheral circulation.  One of the primary mechanisms that the gut microbiota 

influence host health outcomes is through the generation of metabolites that can 

exert differential effects on various host tissues [173].  The most understood 

metabolites produced by the gut microbiota are short chain fatty acids (SCFA), 

but there are numerous other metabolites that have not been explored or even 

discovered.  Discovery of novel microbial derived metabolites from PCB and/or 

fiber exposure could open new avenues of exploration of the mechanisms by 

which PCBs exert their toxicity and the observed protective effects that we 

observed with fiber consumption.   

Our lab has extensive expertise in examining the protective effects of 

polyphenols against pollutant-induced toxicity.  Because dietary fiber and 

polyphenolic compounds are found predominantly in plant matter (i.e. fruits and 

vegetables), examining the potential of these compounds in combination could 

be greatly efficacious and highly translatable to the human population.  The aryl 

hydrocarbon receptor (AhR) is critical in gut health and intestinal immunity [268].  

However, as discussed throughout this dissertation, PCBs exert their effects 

through strong binding to AhR, leading to the upregulation of cytochrome p450 

(Cyp1a1) and production of reactive oxygen species that lead to cellular 

dysfunction and inflammation [2].  It has been demonstrated that certain gut 
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microbial derived metabolites can act as AhR agonists and/or antagonists [269].  

Importantly, it was found that the tryptophan metabolite indole functioned as an 

AhR antagonist and inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced 

Cyp1a1 expression [270].  Gut microbial derived tryptophan metabolites, as 

discussed in chapter one, of this dissertation have been demonstrated to exert 

protective effects on intestinal immunity and overall host health [94, 96, 98, 270].  

High levels of tryptophan can be found in numerous food products, both animal 

and plant derived.  One of the highest tryptophan content plant foods is broccoli, 

which also is high in dietary fiber [95].  Because of our discovery that fiber 

consumption can be protective against PCB-induced toxicity and the known 

effects of tryptophan metabolites, a combination of these could be highly 

therapeutic as well as translatable. 

In conclusion, this dissertation demonstrates that exposure to PCB 126 

exerts deleterious effects on gut microbiota both directly through membrane 

disruptive mechanisms and indirectly through inflammatory mechanisms within 

the gut and peripherally.  Our lab has previously shown that nutritional 

interventions, specifically polyphenol consumption is able to modulate the toxicity 

of PCBs and thus, are a potential means by which to prevent toxicant-induced 

diseases [73, 264].  To expand the scope of nutritional modulation of pollutant 

toxicity beyond just polyphenols, in this dissertation we have shown that 

consumption of prebiotic dietary fiber is not only able to attenuate PCB-induced 

changes in the gut microbiota, but also able to prevent against peripheral 

inflammation and hepatic steatosis.  Taken together, the data presented in this 
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dissertation support the growing body of literature indicating that use of dietary 

prevention and/or intervention measures may be a practicable approach to 

diminish disease risks associated with environmental pollutant exposure.   
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