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ABSTRACT OF THESIS 

THE NATURE AND ORIGIN OF CYCLICITY IN THE CLEVELAND MEMBER OF THE 
OHIO SHALE (UPPER DEVONIAN), NORTHEASTERN KENTUCKY, U.S.A. 

The Cleveland Shale displays a characteristic and distinctive pattern of 
promontories and recessed intervals on weathered outcrops, which appears to 
represent cyclicity. This weathering pattern can be observed in other shales, both 
within and outside the Appalachian Basin; so determining the nature of these cycles 
may be critical for understanding the origin of, not only the Cleveland Shale, but 
also of black shales in general. Cyclicity in the Cleveland was examined on a 
decimeter-to-meter scale using lithologic characterization, gamma-ray stratigraphy 
and x-ray fluorescence, and on a millimeter-to-centimeter scale using organic 
petrography. Lithologic characterization and gamma-ray stratigraphy revealed  
Milankovitch-band fourth- and fifth-order cyclicity related to changes in the earth’s 
orbital eccentricity (100 ka) and obliquity of the earth’s axis (42 ka), respectively. 
Sedimentological changes associated with these cycles were identified through 
organic petrography and x-ray fluorescence. A depositional model was developed 
from these data sets, which suggests that cyclic changes in local climate — from cold 
and wet to warm and dry — controlled advancing and retreating glaciation in the 
adjacent Acadian mountains as well as concomitant sea-level rise and fall in the 
Black-Shale Sea. Such changes would have controlled sediment influx to the sea and 
are thought to be reflected in the cycles. 

KEYWORDS:  Organic petrography, black shale, Devonian, cyclicity, depositional 
model 
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CHAPTER 1: INTRODUCTION 

1.1. Background 

Although there has been long-standing interest in black shales for their 

hydrocarbon and mineral content (e.g., Thiessen et al., 1925; Conant et al., 1961), 

black shales as oil and gas sources have become a popular topic of study since the 

1970s during the first oil crisis. Once the crisis had passed, interest in these shales 

waned in favor of conventional hydrocarbon resources. However, as the world 

supply of petroleum has continued to decrease, interest in non-traditional 

hydrocarbon resources, in particular oil and gas shales, has grown. The two largest 

accumulations of oil-shale deposits are found in the United States; the largest is the 

Eocene Green River Formation in Colorado, Utah, and Wyoming and a close second 

are the Upper Devonian to Lower Mississippian oil and gas shales of Indiana, 

Kentucky, Ohio and Tennessee. The explored portions of these deposits are known 

to contain a mean of 7.5 million barrels (1.19x106 m3) of undiscovered oil (MMBO), 

which is about 14% of the total undiscovered oil in the Appalachian Basin Province 

(Milici et al., 2003). The Devonian siltstones and shales also contain a significant 

amount of continuous, or unconventional, gas resources; the current quantitative 

estimate is that these rocks contain a mean of 1293.6 billion cubic feet (3.663x1010 

m3) of undiscovered gas (BCFG) (Milici et al., 2003). Given this resource potential, 

there are ample reasons to enhance our understanding of the origins of these shales.  
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Kentucky is an excellent place to study Devonian black shales as they crop 

out in certain parts of the state. Additionally, Kentucky has an extensive collection of 

black-shale cores stored at the Well Sample and Core Library operated by the 

Kentucky Geological Survey. One of these cores, the D2 from Bath County was 

selected for study (Fig. 1.1). This core contains the full thickness of Cleveland Shale, 

the uppermost member of the Ohio Shale in Kentucky, and a well-known black-shale 

unit with significant hydrocarbon potential.  

 

1.2. Purpose 

Despite the continued economic interest in these shales, their nature and 

origin are still incompletely understood. It is the intention of this study to further 

enhance this understanding. This study will focus on the Cleveland Member of the 

Ohio Shale, one of the most promising and economically significant stratigraphic 

intervals in North America (Ettensohn, 1995). A distinctive and widespread 

Figure 1. 1. Locations of D2 core (Bath County), as well as of the Devonian 
outcrop belt in Kentucky (purple). 
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characteristic of the Cleveland Member is the pattern of promontories and recessed 

intervals displayed on weathered outcrops (Fig. 1.2).  

 

The promontories contain more organic matter than the recessed intervals, 

which makes them more massive and less prone to weathering (Ettensohn et al., 

2009a). Although this weathering pattern has been well documented, the nature and 

origin of the cyclicity has yet to be determined. Considering the characteristic 

cyclicity, not only of these black shales, but of black shales in general, understanding 

Figure 1. 2. “Ribbed” black shales from Cleveland Member of the Ohio Shale in 
Rowan County off of State Route 801 (Ettensohn et al., 2009a) 
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the origin of this cyclicity may be critical in understanding the origin of the shales 

themselves. 

1.3. Stratigraphy 

The Cleveland Shale is part of the larger black-shale sequence in Kentucky 

which includes up to ten units (Ettensohn et al., 1988) (Fig. 1.3A, 1.3B). The 

sequence is underlain by a basal unconformity, which places the Upper Devonian 

black shales overlying rocks ranging in age from Late Ordovician to the Middle 

Devonian (Ettensohn et al., 1988).  The basal-most units of the black-shale sequence 

in central and west-central Kentucky are the Middle Devonian Portwood Member, 

commonly referred to as the Duffin or the Blocher Members of the New Albany 

Shale. The Portwood is largely a carbonate unit composed of organic-rich limestone 

or dolostone, dolomitic breccia, and dolomitic or calcareous gray to black shales; the 

top and bottom of this unit are defined by sandy lag horizons. This is the only 

“black-shale” unit that contains an in-place, benthic fossil assemblage. The Blocher is 

a massive, black, calcareous or dolomitic shale, with thin, dark dolostone and 

siltstone layers present locally. It is heavily bioturbated and contains benthic fossils, 

but breccias and gray shales like those in the Portwood are absent. Together, the 

Portwood and Blocher represent the least radioactive members of the Appalachian 

black-shale sequence; they can be observed on a gamma-ray curve as a series of 

negative deflections with prominent, rounded shoulders at the base of the unit. The 

Rhinestreet Shale Member of the West Falls Formation is a lower Upper Devonian 

black shale in eastern Kentucky (Fig. 1.3B), which has a homogenous, organic-rich 

microfacies. This unit produces one to three narrow, positive deviations on a 
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gamma-ray log (Fig. 1.3B). It is overlain by the upper Olentangy Shale, an Upper 

Devonian, greenish-gray, clay shale (Fig. 1.3B), which represents a time of yoking 

between the Appalachian Basin and the Illinois Basin (Ettensohn, 2008) (Fig. 1.4).  

 

The shale in this unit is commonly bioturbated; dolomitic mudstones and 

calcareous lenses and concretions are locally present in the organic-deficient 

microfacies. In cores and at the outcrop scale, the upper Olentangy Shale can be 

Figure 1. 3A. (left): Gamma-ray log for Ohio Shale through the Borden 
Formation. The Cleveland Shale’s characteristic high-low-high pattern of 
deflections is clearly visible (Ettensohn et al., 2009b). B (right): Typical gamma-
ray and bulk-density log signatures for Appalachian black-shale sequence 
(Ettensohn et al., 1988). 
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delimited by sandy lag horizons which occur at the base and top of the unit. On 

gamma-ray logs, the upper Olentangy can be identified by a series of uniformly 

negative deviations with right-angle shoulders at the top and bottom (Fig. 1.3B). 

The units described above are generally not a part of the Ohio Shale in east-

central Kentucky. In east-central Kentucky, where the study area is located, the 

Cleveland Shale is one of three units that comprise the Ohio Shale: in 

stratigraphically ascending order they are the Huron Shale Member, the Three Lick 

Bed, and the Cleveland Shale Member (Fig. 1.3A). The Ohio Shale is the Appalachian 

Basin equivalent of the New Albany Shale in the Illinois Basin across the Cincinnati 

Arch (Ettensohn et al., 1988). The Huron can be divided into three subunits based 

largely on gamma-ray signatures (Fig. 1.3A). The lower Huron is a very radioactive 

unit that displays a distinctive high-low-high pattern on gamma-ray logs, a response 

to laminated, organic-rich and organic-deficient microfacies. The middle Huron is 

the thickest part of the unit, and displays a uniform series of negative deviations 

caused by the increasing silt and clay content in the laminated, organic-rich 

microfacies. The Protosalvinia (Foerstia) biostratigraphic zone is a regional marker 

bed that is present in the Huron at, or just below, the contact of the middle and 

upper Huron. The upper Huron, consisting of laminated, organic-rich microfacies, is 

the thinnest part of the Huron. It is marked by moderately high, uniformly positive 

deviations, which distinguish it from the underlying middle Huron. The Three Lick 

Bed is a regional marker bed that can be correlated from outcrop to outcrop across 

central Ohio, north-central Tennessee, and into both the Appalachian Basin in 

eastern Kentucky and the Illinois Basin of west-central Kentucky (Figs. 1.3A, B, 1.4.). 
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The Three Lick Bed consists of three beds of gray shale separated by two beds of 

ribbed black shale (Fig. 1.3A), and appears on gamma-ray logs as three closely 

spaced negative deviations separated by two positives ones (Fig. 1.3A, B). The 

Cleveland Shale, the unit studied here, is the uppermost member of the Ohio Shale. 

Like the lower Huron, this unit has a high-low-high pattern of deflections on 

gamma-ray logs (Fig 1.3A, B), but unlike the Huron, this unit is composed almost 

entirely of laminated organic-rich microfacies. The Cleveland has a very high  

 
organic-carbon content, high concentrations of heavy elements, and phosphate 

concretions, all of which are associated with the increased radioactivity of the unit 

(Ettensohn et al., 1988).                                                                 

Figure 1. 4. A schematic northeast–southwest section (AB) through the central 
Appalachian Basin in West Virginia and Kentucky, showing entire Appalachian 
black-shale sequence in relation to the shape of the basin and time (Ettensohn 
and Lierman, 2012). 
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The Bedford-Berea Sequence is an Upper Devonian clastic sequence and, as 

such, is the least radioactive unit in the Appalachian black-shale sequence (Fig. 1.3A, 

B). It is composed of gray silty shales, black shales, and minor sandstones that 

intertongue complexly. The Sunbury Shale is the youngest unit in the black-shale 

sequence, and is generally the most radioactive unit with a narrow, sharp, high-low-

high pattern of very positive deflections on gamma-ray logs (Fig. 1.3A, B). Like the 

Cleveland, it has high concentrations of organic carbon, abundant phosphorite 

nodules, and high concentrations of heavy metals. It is composed of homogenous, 

organic-rich microfacies (Ettensohn et al., 1988).  

1.4. Tectonic, paleogeographic, and paleoclimatic setting  

The breakup of Rodinia in late Neoproterozic time generated several smaller 

continents including Gondwana and Laurentia, the latter representing the ancestral 

North American continent. After western Europe (Baltica) collided with Laurentia in 

Silurian time, the continent was called Laurussia. The modern Appalachian area 

underwent several marked climatic changes as Laurentia/Laurussia drifted across 

different latitudes. From Late Precambrian through Early Cambrian time, it had a 

humid to sub-humid climate and was located between latitudes 40–60° south. In 

Middle Cambrian to Late Mississippian time, when the Cleveland was deposited, 

Laurentia resided between latitudes 15–35° south and had an arid, subtropical 

climate (Ettensohn, 2008) (Fig. 1.5.), although local climate within the basin may 

have been cold and humid, with relatively low mean annual temperatures (Elrick et 

al., 2009). The Late Mississippian to Late Permian Laurussian climate was humid to 

perhumid, and tropical due to the continent’s location between +/-5° of the equator.  
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From the Late Permian time onward, Laurussia was in the northern tropical belt 

between the paleoequator and 5° north (Ettensohn, 2008).   

The modern Appalachian Basin is a multistage, composite, retro-arc foreland 

basin. It was the product of tectonic loading during the four nearly continuous 

orogenies on the eastern margin of Laurentia/Laurussia during the assembly of 

Pangaea: the Taconian, Salinic, Acadian/Neoacadian, and Alleghanian. Of these, the 

Acadian/Neoacadian was largely responsible for the Appalachian black-shale 

sequence (Ettensohn, 2008). The Acadian/Neoacadian orogeny itself can be divided 

Figure 1. 5. Paleogeographic reconstruction of Laurussia during Late 
Devonian time. Location of study area is noted (Ettensohn et al., 1988). 
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into four tectophase cycles, each giving rise to an unconformity-bound sedimentary 

sequence (Ettensohn, 1985). The first tectophase saw the microcontinent Avalonia 

docking at the St. Lawrence Promontory and the subsequent infilling of a basin in 

New England and the Canadian Maritime provinces (Ettensohn, 2008). Tectophases 

two and three overlapped significantly with the docking of the Carolina Terrane at 

the New York promontory, and deformation continued to migrate southward with 

the impending collision of the Carolina Terrane and the Virginia Promontory.  This 

series of events produced the Catskill Delta complex and was responsible for the 

deposition of the Marcellus Shale and other related black shales in the Appalachian 

foreland basin. The fourth, and final, tectophase involved Neoacadian dextral sheer 

and accretion of the Carolina terrane at the Virginia promontory and the accretion 

of the Dahlonega terrane and Hillabee back-arc volcanics at the Alabama 

Figure 1. 6. Schematic diagrams showing relationships 
between foreland-basin generation, sediment infill, 
and deformational loading (Ettensohn, 2008). 
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Promontory. An important formation deposited during the fourth tectophase is the 

Sunbury Shale, which is the darkest, most organic-rich, and most radioactive of all 

the shales in the Appalachian black-shale sequence (Ettensohn and Lierman, 2012).  

The sediments that accumulate as a tectophase proceeds typically reflect the same 

general stratigraphic sequence (Ettensohn, 2008; Ettensohn and Lierman, 2012) 

(Fig. 1.7). As deformational loading in the orogeny proceeds a foreland basin 

develops just cratonward of the load, and on the distal margin of the basin, as subtle 

bulge is generated and moves cratonward such that bulge uplift generates a regional 

unconformity on and near the bulge (Fig. 1.6A). This period of erosion and non-

deposition is typically followed by the deposition of shallow-water, transgressive 

sediments, related to rapid subsidence of the foreland basin. Since most of the 

aforementioned deformational loading occurs in the subsurface, there is often no 

external sediment source, and decaying organic matter in the water column 

becomes the major sediment (Fig. 1.6A). As the basin continues to subside and 

deepen, the waters become suboxic to anoxic, allowing for organic matter to be 

buried and preserved, eventually forming black, organic-rich shales (Fig. 1.7). The 

deposition of dark shales continues as long as deformational loading occurs, but 

once enough relief and sufficient drainage nets have been generated in the 

deformational load to form a major sediment source, coarse, immature debris is 

transported into the basin, generating flysche-like sedimentation (Figs. 1.6B, 1.7). 

While the basin is infilled with sediment, the surface load continues to be eroded.  

As the basin fills and the subaerial load erodes, a thin interval of either carbonates 

or mixed carbonates and shale is deposited in the resulting shallow sea (Fig. 1.7). As 
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the orogen continues to erode, and the surface load is largely removed, isostatic 

rebound leads to the formation of a broad peripheral sag that migrates towards the 

rebounding area over time (Ettensohn, 1995). The sediments that accumulate in this 

low area typically reflect a transgressive sequence of open-marine shales or shales 

and carbonates. The final phase of the typical foreland-basin sedimentary cycle is 

deposition of fine-grained siliciclastic sediments as the clastic wedge progrades 

cratonward. These sediments are often described as “post-orogenic,” “molasse-like,” 

or “deltaic,” and generally consist of siltstone, silty-shale, shale, mudstone, redbeds, 

or shaly carbonate facies (Ettensohn, 1995, 2004, 2008) (Fig. 1.7). Of course, in this 

study, it is the early phase of organic-rich, black-shale deposition that is being 

critically examined.   

Figure 1. 7. Parts of an ideal tectophase cycle for subduction-type 
orogenies (Ettensohn and Lierman, 2012). 
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Late Devonian time has often been characterized as a greenhouse world, but 

this interpretation is now being questioned. Glacial deposits in South America 

(Elrick et al., 2009) and in the Appalachian Basin Province (Brezinski et al., 2008, 

2009, 2010; Ettensohn, 2008) provide clear evidence that glaciation was present at 

this time, but the full extent of glacial cover is still unclear. The South American 

glacial deposits have been known for some time (Caputo, 1985), but were 

interpreted as being deposited only at latitudes greater than 70° (Frakes et al., 

1992).  

Probable glacial deposits from the Appalachian Basin, equivalent to the 

Cleveland Shale, are known from the Spechty Kopf and Rockwell formations, a 

diamictite-mudstone-sandstone sequence (Fig. 1.8A) in the central Appalachian 

Basin, long viewed to represent subaqueous debris flows (Bjerstedt and Kammer, 

1988; Sevon, 1969, 1979) or tsunami deposits (Sevon et al., 1997). New work has 

reinterpreted these deposits to represent a sequence of glacial deposits (Brezinski 

et al., 2010). More than 500-km away, in the Upper Devonian Cleveland black shales 

of northeastern Kentucky, an in-situ dropstone (Fig. 1.8B) has been described,  and 

related, via stratigraphy and biostratigraphy, to the central Appalachian diamictites 

(Ettensohn et al., 2009a). 

Boulders of this type have been known in Kentucky for some time (Ettensohn 

et al., 2008). However, none had previously been found in-situ, and they had 

previously been interpreted to be the result of Pleistocene glaciation. The age and 

lithology of the in-situ boulder indicate an Appalachian or Laurentian origin, and the 

shape of the boulder, with flattened sides with rounded edges and corners (Fig. 
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1.8B), indicates that it is most likely a glacial erratic (Ettensohn et al., 2008). 

Knowing that the boulder has a glacial origin, however, does not explain its 

presence in the black shale; the only mechanism through which this quandary can 

be explained is ice-rafting (Ettensohn et al., 2008). Previous models require glacial 

ice to have been transported at least about 200km across an alluvial plain from the 

Acadian highlands to the epicontinental sea in the Appalachian Basin (Fig. 1.9). It is 

Figure 1. 8. A. Example of a diamictite from the central 
Appalachian Basin (Sideling Hill, MD). B. In-situ 
Robinson boulder (Ettensohn et al., 2009a). 
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more likely that glacial tongues extended across the alluvial plain separating the 

highlands from the sea, and that calving icebergs launched boulder-bearing icebergs 

into the sea (Ettensohn et al., 2008). Ultimately, the conclusion to be drawn from 

this work is that Late Devonian cooling was more severe and had more extreme 

global effects than previously thought, or it is possible that the Neoacadian 

mountains (thrust sheets on Fig. 1.10) were high enough to support alpine glaciers 

that moved westwardly toward the Black Shale (Cleveland) Sea (Figs. 1.6, 1.10).

Figure 1. 9. Block diagram of interpreted depositional scenario giving 
oblique perspective of the central Appalachian Basin during the 
latest Devonian (Brezinski et al., 2009). 
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Figure 1. 10. Late Devonian paleogeographic reconstruction of southeastern 
Laurussia showing location of probable Kentucky dropstone relative to 
likely Late Devonian wind and current directions (Ettensohn et al., 2008). 
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CHAPTER 2: PREVIOUS WORK 

Jaminski et al. (1998) undertook the task of characterizing the fine-scale 

compositional variations within the Cleveland Shale in order to create a depositional 

model for controls on the accumulation of sedimentary organic matter at lamina to 

basin-wide scales. The Cleveland was selected for study because of the 

characteristic ribbed pattern the unit displays in outcrop (Fig. 1.2.); this ribbing 

reflects decimeter-scale compositional variation. Characterization of the laminated 

organic-rich sediments that comprise this unit allowed for the evaluation of the 

“instantaneous” environmental conditions during the time of deposition, which are 

recorded in individual laminae. Ultimately, it was proposed that the cyclicity 

observed in the Cleveland had a climatic origin, and a model was developed wherein 

weakly coupled freshwater and terrigenous clastic fluxes, both climate-sensitive 

parameters, were the controlling factors for cyclicity (Jaminski et al., 1998). These 

authors based their conclusions on organic petrography, carbon-sulfur elemental 

analysis, major- and trace-element analysis, and degree of pyritization. Their model, 

which included slow accumulation of organic matter, provides time for extensive 

bacterial reworking of organic matter. Such reworking would account for the high 

total-carbon content of the Cleveland Shale, as well as for the large amounts of 

degraded, amorphous organic matter. The authors suggested that increasing 

freshwater fluvial discharge into the basin, coupled with increasing clastic sediment 

flux, would have depressed and strengthened the pycnocline (Jaminski et al., 1998). 

This, in turn, would have reduced upward mixing of bottom waters, lowered the 

surface productivity and decreased the deposition rate of organic-rich sediments. 
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The inverse would have occured following a decrease in freshwater fluvial discharge 

into the basin (Jaminski et al., 1998). 

A second important consideration is the control on the accumulation of 

organic matter within the black shales. It has been proposed that the “master 

variable,” when discussing organic-matter accumulation, is relative sea-level 

change, with the rise and fall of the world’s oceans controlling clastic dilution, 

biological productivity, and preservation of organic matter (Sageman et al., 2003). A 

rise in the local sea level can lead to sediment starvation and the concentration of 

organic matter, as well as less seasonal and more episodic mixing of bottom waters. 

The decreased regularity of the mixing would have provided a longer build-up 

interval for remineralized nutrients, so that when episodic mixing occurred, it was 

followed by a period of enhanced organic production due to nutrients having been 

released in the enriched bottom waters. Correspondingly, a fall in the local sea level 

would have initiated increased sediment delivery and enhanced water-column 

mixing in the basin. Such increased sediment delivery to the basin would have 

diluted the sea-surface, organic matter, allowing respiratory demand to be met by 

the increased oxygen supply and preventing the accumulation of organic-enriched 

strata (Sageman et al., 2003). 

The presence of icebergs in the Devonian epicontinental sea would have also 

had impacts on the chemical and biologic activity in iceberg-prone areas. Recent 

work indicates that icebergs are hotspots of enhanced organic productivity and 

carbon sequestration (Smith et al., 2007). These hotspots, as well as changes in sea 

level and climate, would have left distinct signatures in the stratigraphic record. For 
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example, the absence of glaciation would have very likely generated unique 

chemical signatures when compared to the presence of glaciation. In fact, stable-

isotope geochemistry has been a particularly useful proxy for determining changes 

in seawater temperature, regression, and glaciation (Brezinski et al., 2010). There 

have been numerous studies of the stable-isotope composition of Devonian strata in 

the Appalachian Basin, and of the greater continental US, as well as throughout the 

world. In particular, oxygen isotopes from conodont-apatite, collected from Early-

Middle Devonian rocks in the Western US (Nevada) and the Czech Republic (Prague 

Basin), show large, rapid isotopic shifts that are best explained by growth and 

melting of continental ice sheets (Elrick et al., 2009; Elrick and Scott, 2010). This 

same trend was documented by Joachimski et al. (2009) in a series of conodont-

apatite samples from Europe, North America, and Australia, where a complete 

paleotemperature record for the latest Silurian through Devonian time was 

developed. After the period of cooling in Middle Devonian time (the minimum 

temperature was approximately 22°C), average sea-surface temperatures rose 

throughout the Frasnian and Early Famennian time to an average of 30-32°C. At this 

point, a short-term cooling trend, marked by the increase of δ18O in conodont 

apatite, very likely records to glaciation in Latest Devonian time (Joachimski et al., 

2009). 

The interval of black shales between the Huron Shale Member of the Ohio 

Shale and the Sunbury Shale (Figs. 1.3A, B) has been geochemically and 

petrographically examined by previous workers to determine the chemistry of the 

kerogen and to aid in correlative efforts. Variations in organic-matter source and 
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associated environmental conditions are reflected in the petrographic composition 

of the shale (Rimmer et al., 2004). Previous work has established that the overall 

percentage of organic matter increases up-section. This increase is mostly related to 

the bituminite composition, as the proportion of vitrinite and inertinite remains 

relatively constant throughout (Robl et al., 1987). The bituminite and alginite 

concentrations, on the other hand, have a variable, and generally inverse, 

relationship. In fact, the constancy of the vitrinite and inertinite content indicates 

that there was a fairly uniform source of terrigenous material throughout the period 

of deposition. The vitrinite was probably sourced from Devonian forests in the 

northeastern United States and transported to the Appalachian basin by rivers along 

the coast. The fusinite is most likely oxidized plant debris that was transported to 

the basin as charcoal (Robl et al., 1987). Alternatively, some of the fusinite may 

represent oxidized marine kerogen (Rimmer et al., 2004). 
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CHAPTER 3: METHODS 

Since the 1970’s and the Arab oil embargo, there has been an ongoing 

interest in these Devonian-Mississippian black shales, initially as oil shales, and for 

the last six years, as gas shales. In the 1970’s these shales were extensively cored 

along the circumference of the Jessamine Dome (Fig. 1.1) in order to characterize 

them for oil and gas reserves. The core examined in this study, D2, was part of this 

Eastern Gas Shales Project (EGSP). 

 

Figure 3. 1. Example of the D2 core laid out in 
storage box.  
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3.1. Lithologic Characterization and Gamma-Ray Stratigraphy 

3.1.1. Lithologic Characterization  

 The D2 core, which contains the entire thickness of the Cleveland Shale, was 

examined and described from the Three Lick Bed to the Bedford/Berea (Fig. 1.3A, 

B). The lithologic characterization of the core included the division of the Cleveland 

into discrete cycles of lighter-gray and darker-gray shales (Fig.  3.1.). The 

subdivision into cycles was based on the degree of fissility, color, and wettability.  

3.1.2 Gamma-Ray Stratigraphy  

 Gamma-ray curves and radioactivity profiles are useful for lithologic 

discrimination of siliciclastic rocks (Rider, 1986), and in areas such as the 

Appalachian Basin, where the thick shale deposits have a  generally homogenous 

appearance, gamma-ray stratigraphy is the basis upon which formation boundaries 

are determined (Ettensohn et al., 1979; Ettensohn et al., 1988). U.S. Department of 

Energy studies in the 1970s (such as Ettensohn et al., 1988) established a link 

between color, amount of organic material and the intensity of gamma radiation, 

showing that dark-grey to black shales could be distinguished from light-grey to 

green shales based on gamma-ray signatures. The dark-grey to black shales 

generally contain more organic matter than the lighter shales, and consequently, 

have more intense gamma-ray signatures. This increase in radioactivity is closely 

tied to the clay mineralogy of the unit and to the amount of included organic matter. 

Clay minerals, which contain abundant K and 40K, as well as U and Th, are easily 

adsorbed onto the clay lattice (Fertl, 1982). In addition, radiation in the dark shales 
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is generated by U, closely associated with the abundant organic matter (Conant and 

Swanson, 1961), which can trap additional U through the reduction of U from 

seawater (Durrance, 1986). The radiation in green shales is mostly generated by 40K 

incorporated into clay minerals (W.H. Blackburn, oral communication, 1978, in 

Ettensohn et al., 1979). Additional sources of radioactivity include U and Th 

adsorbed onto clay lattices (Fertl, 1982). Siltstones and sandstones are significantly 

less radioactive than the shales, because as grain size increases, the clay content 

generally decreases, which leads to decreased radioactivity (Rider, 1986).  

For this study a synthetic gamma-ray curve was generated with a hand-held 

scintillometer. These synthetic curves are not exactly the same as gamma-ray 

curves, as they comprise of a series of closely spaced, connected points in which 

radioactivity is measured in counts per second, in contrast to gamma-ray curves 

which are continuous and measured in API units, a standardized unit established by 

the American Petroleum Institute in 1959 based on the use of a permanent 

calibration facility (Ettensohn et al., 1979). However, the two curves are similar 

enough that they can be quantitatively correlated (Ettensohn et al., 1979). Such 

synthetic curves are generated by laying the core out on a flat surface and 

measuring the radioactivity in counts per second using a hand-held scintillometer. 

Scintillometer measurements were taken at approximately the middle of each 

designated cycle; if the designated cycle exceeded 10 cm in length, multiple 

scintillometer measurements were taken. The radioactivity measurements were 

then plotted against depth below surface. Lithologic descriptions and scintillometer 
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measurements were carried out at the Kentucky Geologic Survey Well Sample and 

Core Library.  

3.2. Organic Petrography 

Two standard methods exist for conducting microscopic studies of organic 

matter in shale: reflected-light petrography and transmitted-light with kerogen 

concentrates. This study utilized reflected-light petrography, because the benefits of 

reflected-light petrography include: 1) the ability observe organic matter in original 

context with orientation preserved, 2) the ability to distinguish autochthonous and 

reworked vitrinite and inertinite, and 3) the ability to distinguish between different 

types of liptinitic particles. Using transmitted-light and kerogen concentrates can 

also be useful because it makes the identification of palynomorphs easier. A variety 

of plants have been identified from Devonian strata, indicating that the typical 

Devonian plant community included progynmosperm trees, such as Archaeopteris, 

lycopsids, early vascular plants and ferns, such as Rhacophyton (Berry and Fairon-

Demaret, 2001; Hawkins, 2006); however, sorting prior to deposition, especially in 

marine environments, may have taphonomically eliminated all but the most 

resistant plant material (Berry and Fairon-Demaret, 2001). Therefore, attempting to 

identify palynomorphs would not have been a useful addition to this study. Also, the 

use of kerogen concentrates and transmitted light means that all the liptinitic 

particles, plus bituminite, are classified as amorphous organic matter, because it 

becomes impossible to distinguish the different types of liptinitic particles 

(Teichmüller, 1986).  
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The petrographic identification of organic matter in shale is based on the 

principles of organic petrography established through the study of coal. The 

International Committee for Coal and Organic Petrography (ICCP) has published 

several papers that describe the standard methods for identification of vitrinite, 

huminite, and inertinite; official guidelines for the microscopic identification of 

liptinite have not yet been published. However, the principles of coal petrography 

cannot be directly applied to shale petrography, as modifications must be made for 

the nature of the material being studied. Some of these organic-shale-specific 

modifications are detailed in Hutton (1987) and Hutton et al. (1994). 

Organic particles are classified into maceral groups based on reflectance, 

morphology, relief, and fluorescence. These particles are commonly grouped into 

four large categories: inertinite, vitrinite, liptinite, and mineral material (Fig. 3.2.), 

each of which can be subdivided further. For example, inertinite, which consists of 

preserved charcoal, includes the subgroups fusinite, semifusinite, and 

inertodetrinite. Vitrinite, which consists of preserved woody material, includes the 

subgroups vitrinite and vitrodetrinite. Liptinite, derived from soft-bodied and lipid-

rich materials, consists of alginite (telalginite and lamalginite), sporinite, bituminite, 

and liptodetrinite. The macerals of the liptinite group can have either a terrestrial or 

marine source; alginite and bituminite represent marine, algal material, whereas 

sporinite represents preserved, terrestrial spores. It can be difficult to assign either 

a terrestrial or marine source to liptodetrinite particles as, by definition, they cannot 

be assigned to any of the other liptinite groups (ICCP, 1976). Inertinite and vitrinite 

are both primarily derived from terrestrial plant material; they can be distinguished 
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based on reflectance and color. Inertinite is more highly reflective than vitrinite and 

tends to be white to very-light grey; inertinite is also more likely to exhibit complete 

cell lumens, though some cell structure may occasionally be visible in vitrinite. 

Liptinites are the primary fluorescing macerals and are best identified under blue-

light excitation. It is worth noting, however, that, depending on thermal maturity, 

vitrinite may also exhibit fluorescent properties (Teichmuller and Durand, 1983; 

Figure 3. 2. Upper right: Vitrinite; upper left: single telalginite; lower left: 
fusinite, semifusinite, vitrinite, and pyrite; lower right: lamalginite.  
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ICCP, 1998). Depending on the maturity of the sample, liptinite particles can 

fluoresce a variety of colors, ranging from yellow-green to red-brown, and at very 

high maturities, fluorescence may disappear completely. Loss of florescence, 

however, is generally not an issue in oil and gas shales, as the maturity is typically 

low enough that the liptinitic material maintains its fluorescent properties. 

Moreover, the different types of liptinite are distinguished based on the intensity of 

the fluorescence and morphology. Telalginite has a strong yellow-green 

fluorescence and can appear as spherical particles or flattened, elongate disks, and 

commonly the internal structure of the algal precursor is visible. In addition, the 

boundaries of telalginite particles are smooth and unadorned. Lamalginite also 

fluoresces yellow-green but tends to fluoresce at a weaker intensity relative to 

telalginite; lamalginite particles also tend to be thinner, more elongate, and have a 

less regular appearance than telalginite. In contrast, the sporinite observed in these 

samples has flattened, ellipsoid shapes and fluoresces red-brown.   

Bituminite is a type of amorphous organic matter which often comprises a 

significant portion of the organic matter in oil and gas shales (Stasiuk and Goodarzi, 

1988).  Definitions of bituminite differ between labs and a variety of terms, 

including amorphinite, sapropelic groundmass, sapropelinite I and II and 

humosapropelinite, and heba- and fluoramorphonite (Stasiuk and Goodarzi, 1988) 

have been used to describe bituminite. Attempts to standardize the identification of 

bituminite have been made (e.g., Stach’s Textbook of Coal Petrology [Stach et al., 

1982], “Petrographic classification of oil shales” [Hutton, 1987], and Organic 

Petrology: a new handbook incorporating some revised parts of Stach’s Textbook of 
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Coal Petrology [Taylor et al., 1998]), however, the ICCP has not updated the official 

guidelines for bituminite identification and classification since the publication of the 

International Handbook of Coal Petrology (2nd ed.) in 1976.  

 

The definition of bituminite utilized in this study largely follows the 

definition of Teichmüller (1974) and Teichmüller and Ottenjann (1977) who first 

established criteria for the identification of bituminite. In accordance with this 

definition bituminite may display a relatively weak, pale green-yellow or dull 

orange-brown fluorescence under blue-light excitation and can occur in several 

different forms. It can have a fine, granular appearance where the granules have 

diffuse, smudgy margins, it may have a diffusive, amorphous appearance with no 

recognizable internal structure, or it may occur as fine streaks or lenses (Araujo et 

Figure 3. 3. Examples of bituminite observed in the D2 core. Left: Bituminite 
with amorphous appearance and diffuse margins. Right: Bituminite occurring 
as Schlieren strands with an amorphous appearance and no visible internal 
structure.  
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al., 2010) (Fig. 3.3). Bituminite can also be incorporated into the matrix material as a 

“fine, delicate mesh,” this form of bituminite can cause the mineral matrix to display 

a weak fluorescence (Teichmüller, 1986).  

Macerals with the -detrinite suffix are identified by their small size. The 

official ICCP guidelines for the identification of inertinite state that particles which 

are less than 10 µm in the maximum dimension for compact grains (e.g., equant or 

spherical),  less than 10 µm in the minimum dimension, and 2 µm in the maximum 

dimension for elongate or thread shaped grains, are classified as inertodetrinite. The 

official guidelines for huminite and vitrinite specify the same dimensions, with the 

addition that all fragments that cannot be grouped with certainty are to be called 

detrovitrinite, even if they are greater than 10 µm. Because no official guidelines for 

liptinite macerals have been published, the same dimensional guidelines have been 

applied to the identification of liptodetrinite for the purposes of this study.  

Using the above guidelines, a four-foot section from the lower Cleveland 

Member of the D2 core from 89–93 ft was prepared for organic petrology. 

Preparation was accomplished by dividing the core into approximately 1-in 

sections, preserving the original orientation, and preparing them as 1.5- inch 

polished pellets with epoxy resin according to standard procedures (Pontolillo and 

Stanton, 1994) at the University of Kentucky Center for Applied Energy Research 

(CAER). The prepared pellets were examined by oil immersion on a Leitz 

petrographic microscope under plane-polarized, reflected, white light and blue-light 

excitation. Combined white-light and blue-light point-count analysis to 500 points, 

or to an end point above 500 at the end of a transect, was conducted on each pellet. 
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Petrographic composition was determined based on the concentration of macerals 

(total inertinite, total vitrinite, and total liptinite) and mineral matter. The organic 

macerals were classified using the ICCP System 1994 nomenclature (ICCP, 1998, 

2001) with organic-shale-specific modifications based on Hutton (1987) and Hutton 

et al. (1994), as well as those previously described.  

3.3. X-ray Fluorescence and Total Organic Carbon 

A limited number of x-ray fluorescence measurements to determine major-

element oxides and trace-element concentrations were taken using a TYCO portable 

XRF gun on loan to the KGS from CIMAREX. Twenty-three total measurements were 

taken between 94.5 and 86.1 ft (depth in core); the average spacing was 0.3 ft (0.09 

m). This provided readings for the following elements in ppm: Cr, Si, Al, P, Ti, U, Cu, 

Th, Ni, Co, Ag, Pd, Nb, Zn, Mn, Mo, Zr, Sr, Rb, Pb, Se, Fe, K, S, Sh, W, Re, Bi, Hg, Au, V, 

Sc, As, Ca, Ta, Sb, Cd, Hf, Cl, and Mg. The measurements taken with the portable XRF 

gun are internally consistent and can be used to generate cycle curves.  

Ti, K, and Si are elements that have been used as proxies for clastic influx 

when normalized against Al. Ti/Al can be used as a proxy for coarse clastic influx 

because Ti occurs in clay, sand, and silt-sized particles, whereas Al only occurs in 

clay minerals. Ti concentration has also been used as an indicator of paleo-wind 

strength (Boyle, 1983; Shimmield, 1992; Bertrand et al., 1996). K/Al represents the 

fraction of clastic input, and changes in the K/Al ratio indicate that there were 

changes in clay mineralogy. For example, increasing K/Al is suggestive of micaceous 

clay or possibly fine-grained K-feldspar (Rimmer, 2004). Si occurs in all grain sizes, 

but a significant increase in Si/Al can indicate an increase in quartz silt and sand. 
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Both Al-normalized and trace-element ratios can be used as paleo-redox proxies 

(Rimmer, 2004). For this study Mo/Al, V/(V+Ni), and V/Cr were used. 

Total organic carbon was determined by measuring total carbon with a Leco 

SC-432 carbon/sulfur analyzer, and then subtracting out inorganic carbon through 

standard coulometric techniques (Huffman, 1977). These measurements were 

carried out at KGS facilities at the University of Kentucky.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31 
 



CHAPTER FOUR: RESULTS 

 The D2 core was collected in 1980 in Bath County, Kentucky, in the Olympia 

quadrangle as part of the Eastern Gas Shales Project and has been stored at either 

the CAER or the KGS Core Library since then. The bottom of the Cleveland Shale was 

identified in the core by its contact with the Three Lick Bed; the top was identified 

by its contact with the overlying Berea-Bedford Formation. The core was chosen 

because it was deemed to be “average” in thickness and character for the black-

shale sequence in the eastern Kentucky outcrop belt.  

4.1. Lithologic Characterization 

In the studied core segment of the lower Cleveland Shale, lithologic 

characterization revealed 56 complete cycles and one incomplete cycle over 48 ft 

(14.63 m), which gives an average cycle thickness of 0.85 ft (0.26 m). The minimum 

cycle thickness was 0.20 ft (0.06 m)(cycles 39 and 38) and the maximum cycle 

thickness was 3.25 ft (0.99 m) (cycle 42). Cycle 33 marks the location of the middle 

of the studied core segment with approximately 24 ft (7.32 m) of core above and 

below this point. The cycles become thicker toward the top of the unit in the core. 

The first 33 cycles have an average thickness of 0.77 ft (0.23 m), whereas the second 

23 cycles (34 through 56) are 0.98-ft (0.30-m) thick on average, about 1.3-times 

thicker than the cycles in the lower section of the core (Fig. 4.1).  
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Figure 4. 1. Left-hand column shows core lithology. Second column 
shows lithologic cycles; color serves only to differentiate between 
cycles and does not represent any particular characteristic of the 
cycles. Curve on the far right is a synthetic gamma-ray curve in counts 
per second (1x). The broader color changes indicate different 
segments of the curve, defined in terms of wavelength (See Fig. 4.2). 
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4.2. Gamma-ray stratigraphy  

The studied core segment was divided into three complete gamma-ray cycles 

(4th order cycles) and one incomplete cycle using complete cycle wavelengths to 

identify cycle boundaries (Figs. 4.2, 4.3). These cycles were designated Segment 1 

through 4 (Figs. 4.2, 4.3). The cycles average approximately 14-ft (4.27-m) thick, 

but, in reality, the cycles at this scale become increasingly thinner toward the top of 

the unit. The thickest cycle, Segment 1, is 18.85-ft (5.75-m) thick, and the thinnest, 

Segment 4, is 5.75-ft (1.75-m) thick (Table 4.1). Each of these large cycles can be 

Figure 4. 2. Synthetic gamma-ray curve generated for the D2 core. Radiation was 
measured in counts per second (1x). The dark line shows the smoothed curve 
pattern and was used to define cycle segments. 

Segment 1 

Segment 2 

Segment 3 

Segment 4 
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subdivided into several sub-cycles that are designated by a number to indicate of 

which large cycle they are a part, followed by a letter, for example, 1a-1g (Table 4.2). 

Segment 1 was divided into seven sub-cycles, which had an average thickness of 

2.76 ft. Segment 2 was divided into five sub-cycles which averaged 2.67 ft each. 

Segment 3 was divided into four sub-cycles which had an average thickness of 2.60 

ft. Segment 4, only a partial cycle, was divided into three sub-cycles which averaged 

1.68 ft each; segment 4 was the thinnest of the larger cycles and also had the 

thinnest sub-cycles.  A complete table showing radiation values measured in counts 

per second is available in Appendix A. 

Table 4. 1. Sub-cycle thickness within larger cycle segments, as 
defined in Figs. 4.1-4.3 and Table 4.1. 

Sub-cycle 
designation 

Sub-cycle 
thickness (ft) 

Average sub-
cycle thickness 

(ft) 
4c 1.05  

 
1.68 

4b 1.45 
4a 2.55 
3d 2.40  

 
 

2.60 

3c 4.85 
3b 1.65 
3a 1.50 
2e 2.65  

 
 
 

2.67 

2d 2.85 
2c 2.65 
2b 2.05 
2a 3.15 
1g 4.60  

 
 
 
 
 

2.76 

1f 2.15 
1e 3.25 
1d 2.55 
1c 1.85 
1b 2.60 
1a 2.30 
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4.3. Organic petrography 

On a whole-rock basis, vitrinite particles make up 4.38% by volume of the 

particles identified; the minimum volume of vitrinite counted was 0.40% at 91.82ft 

and the maximum volume was 14.14% at 92.51 ft. When only organic macerals are 

considered, vitrinite makes up an average of 36.25% of the total-maceral volume. 

Inertinite particles account for 2.29% of the total-rock volume and 20.67% of the 

maceral fraction. The minimum occurs at 89.96 ft and the maximum occurs at 93 ft. 

Liptinites are the most commonly identified organic macerals in the study interval. 

They compose 4.71% of the total whole-rock volume on average and 41.87% of the 

Figure 4. 3. Individual radiation cycle segments with smoothed curve patterns 
superimposed. 
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total-organic maceral fraction. The maximum volume of liptinite occurs at 89.0 ft 

and the minimum occurs at 89.9 ft. (Fig.4.4; Table 4.3). The complete results of 

organic petrographic analysis, both whole-rock and mineral-free, are shown in 

Appendix B.  

Table 4. 2. Percent by volume on a whole-rock basis of vitrinite, inertinite, 
liptinite, and mineral matter. 

 Total 
Vitrinite % 
(by volume, 

whole 
rock) 

Total 
Inertinite % 
(by volume, 
whole rock) 

Total 
Liptinite % 

(by 
volume, 
whole 
rock) 

Total 
Mineral 

Matter % 
(by volume, 
whole rock) 

min 0.40 0.78 1.58 79.68 
max 14.14 5.04 8.93 94.94 

average 4.38 2.29 4.71 88.49 
 

4.3.1. Mineral Matter  

Mineral matter composes a minimum of 79.7% and can account for up to 

94.9% by volume of these samples, with an average volume of mineral matter of 

88.5% (Fig. 4.5; Table 4.4). The minimum value occurs near the base of the study 

Figure 4. 4. Whole-rock percent by volume of mineral matter, vitrinite, inertinite, 
and liptinite determined through point counting plotted against depth in core and 
measured radiation. 

37 
 



interval; then, from 92 to 89.75ft, the volume of mineral matter stays high before 

decreasing from 89.75ft to the top of the study interval (Fig. 4.4). The large volume 

of clay, counted as matrix material, was the controlling variable for the previously 

described trend. The volume of silicate minerals (i.e., quartz) varied dramatically 

with depth (Fig. 4.5). A modest amount of quartz is present in the first half-foot of 

the study interval; then the silicate volume decreases dramatically and in some 

samples is completely absent. Then, at 92.25 ft, silicate minerals re-appear and the 

percent volume remains moderately high to high, for the rest of the study interval 

with the exception of half-foot intervals around 90.75 ft and 90 ft.  

Figure 4. 5. Whole-rock percent by volume of mineral matter, including silicates, 
sulfides and phosphates. The percentage of clay-rich matrix material was 
determined by point counting and is plotted against depth in core. 
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Table 4. 3. Percent by volume on a whole-rock basis of silicates, sulfides and 
phosphates, and clay-rich matrix material. 

 Silicates % (by 
volume, whole 

rock) 

Sulfides & 
Phosphates % 

(by volume, 
whole rock) 

Clay-rich matrix 
% (by volume, 

whole rock) 

Min 0.00 2.33 62.99 
Max 13.46 14.29 89.11 

average 4.78 6.24 77.46 
 

The volume of sulfides and phosphates remains fairly constant with depth, 

with the exception of a positive excursion near 90.5 ft where the volume of sulfides 

and phosphates increases to 14.3% by volume (Fig. 4.5). The last half foot of the 

study interval also shows slightly higher-than-average sulfide and phosphate 

composition (Fig. 4.5). 

 

4.3.2. Vitrinite and inertinite 

The total volume of vitrinite in the samples decreases up-section (Figs. 4.4, 

4.6; Table 4.5). Within the vitrinite group, particles designated as vitrinite follow the 

same trend, whereas, particles designated as vitrodetrinite show the opposite trend 

and increase in volume up-section (Fig.4.6). Vitrinite macerals were not observed to 

fluoresce; this is most likely a function of the excitation filter used in this study. The 

volume of inertinite, as a group, does not vary that much in relation to core depth, 

staying within a 4.26% range throughout the study interval (Fig. 4.4). In contrast, 

however, the composition of the inertinite particles does show variance with core 

depth. Fusinite and semifusinite compose the majority of the inertinite from 93 to 

92 ft, at which point inertodetrinite appears and begins to make up a significant 

portion of the inertinite.  Fusinite and semifusinite continue to make up a significant 
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portion of the inertinite from 92 to 91 ft, but by 91 ft inertodetrinite makes up the 

majority of the inertinite fraction.  

 

Table 4. 4. Whole-rock percent by volume of vitrinite and inertinite groups as shown 
in Fig. 4.6. 

 Vitrinite Vitrodetrinite Fusinite Semifusinite Inertodetrinite 

min 0.39 0.00 0.00 0.00 0.00 

max 14.14 4.46 2.85 1.17 3.36 

average 3.60 0.79 1.08 0.12 1.08 

Figure 4. 6. Whole-rock percent by volume of the vitrinite group (upper row), 
including particulate vitrinite and vitrodetrinite, and of the inertinite group (lower 
row), including fusinite, semifusinite (plotted together on lower left), and 
inertodetrinite. 
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4.3.3. Liptinite  

Like the inertinite group, the total volume of liptinitic particles in the study 

interval varied within a fairly restricted range (Fig. 4.4), the difference between the 

maximum and minimum values being only 7.35% (Fig. 4.7; Table 4.6). Once again, 

though, where the liptinitic macerals are viewed separately, variations with depth 

do emerge (Fig. 4.7). Lamalginite and bituminite are most abundant below 91.5 ft, 

but their volumes decrease between 91.5 ft and the top of the study interval. After 

initially composing a relatively high percent of the liptinite fraction, the volume of 

telalginite decreases between 92.5 ft and 91.5 ft, after which the total percent of 

Figure 4. 7. Whole-rock percent by volume of the liptinite group, including 
lamalginite, bituminite, telalginite, and liptodetrinite. 
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telalginite increases again. Liptodetrinite is almost absent until 92 ft, where an 

anomalous peak occurs (Fig. 4.8). The liptodetrinite content then rapidly decreases 

until the volume generally stabilizes from 91.5 ft to the top of the section.  

Table 4. 5. Whole-rock percent by volume of the liptinite group, including 
lamalginite, bituminite, telalginite, and liptodetrinite. 

 Sporinite Telalginite Liptodetrinite Lamalginite Bituminite 

Min 0.00 0.39 0.00 0.00 0.00 

Max 0.00 4.55 2.96 4.34 5.44 

average 0.00 1.68 0.52 1.41 1.10 

 

4.4. X-ray Fluorescence 

The measured proxies for clastic influx all show somewhat similar trends 

(Fig. 4.9) with high ratios occurring between 92 and 91.5 ft, followed by a low ratio, 

then by a high ratio that peaks at about 90.5 ft. Another interval of low ratios 

reaches its minimum at about 90 ft, with overlying ratios then increasing at about 

89.75 ft before falling again toward the top of the study interval. R-mode cluster 

analysis (Dendrogram available in Appendix D) shows that Si content is primarily 

responsible for variations within the elemental data; nonetheless, the elements can 

be divided into two prominent clusters. The first group clusters under Al and 

contains the elements K, Ca, and Fe; this group represents the clay fraction of the 

clastic input. The second group clusters under Ti and appears to represent the more 

coarse-grained sediments; this is indicated by the presence of Zr in the group, as 

titanium and zircon tend to reside in rutile and zircon grains (Jaminski et al., 1998).  
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Both Al-normalized and trace-element ratios can be used as paleo-redox 

proxies (Rimmer, 2004). For this study, (Mo/Al)x104, V/(V+Ni), and V/Cr have been 

used as paleo-redox proxies (Fig. 4.9). V/(V+Ni), and V/Cr displayed very similar 

trends when plotted against core depth, and the overall shape of these curves 

generally parallels that of the synthetic gamma-ray curve, with highs occurring 

Figure 4. 8. Proxies for clastic influx, Ti/Al, K/Al, and Si/Al, plotted against depth 
in core, radiation (cps, 1x), and lithology. 

Figure 4. 9. Paleo-redox proxies Mo/Al, V/(V+Ni), and V/Cr plotted against depth in 
core, radiation (cps, 1x), and lithology. 
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between 92 and 91.5 ft and again between 90 and 89.5 ft with lower values in 

between. The (Mo/Al)x104 curve, on the other hand, varies strongly with lithology. 

Peaks in the Mo/Al ratio coincided with more organic-rich sections of the core, 

whereas the lows coincided with the less organic-rich sections.  

A complete inventory of the major and trace-element readings is available in 

Appendix C. 

 

4.5. Total Carbon and Sulfur  

Total carbon varies between 2.81 and 9.12% in the lower part of the 

Cleveland Shale between core depths of 97 to 87 ft (Fig. 4.10; Table 4.7). Most of the 

carbon in this part of the Cleveland sample is organic carbon (Fig. 4.10; Table 4.7). 

Inorganic carbon usually contributes less than 0.1% to the total-carbon content, 

with the exception of the sample at 92 ft, which contains 0.32%. Sulfur content over 

this interval varied between 1.64 and 2.43% (Table 4.7), most of which is thought to 

be pyritic sulfur based on the work of Taulbee et al (1990).  

Figure 4. 10. Total carbon plotted against depth in core. 
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Table 4. 6. C-S weight percent.  
Cleveland Shale Samples   

     
Sample Depth (ft) Total 

C 
Total 

IC 
Total 

OC 
Total S 

87 6.00 0.000 6.00 1.78 
88 4.06 0.001 4.06 1.95 
89 9.12 0.021 9.10 1.64 
90 3.47 0.014 3.46 2.31 
92 3.94 0.316 3.62 2.34 
93 3.81 0.000 3.81 1.68 
94 2.81 0.000 2.81 2.06 
95 2.79 0.001 2.79 2.43 

95.2 3.69 0.027 3.66 1.80 
96 3.22 0.001 3.22 1.85 
97 2.87 0.016 2.85 2.18 
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CHAPTER 5: DISCUSSION 

5.1. Lithology 

Conodont zonal analysis and zonation allow for the temporal correlation of 

units across time horizons. The original conodont zonation used for the Famennian 

was proposed by Ziegler (1962) and modified by Ziegler and Sandberg (1990). 

Using this zonation, as well as work done by Woodrow et al. (1988) and Ziegler 

(1990), Jaminski et al. (1998) estimated that the Cleveland Shale had been deposited 

over a duration of 2.5 ka. However, recent work on the Devonian S. preasulcata zone 

by Over et al. (2009) has shown that the Cleveland Shale Member of the Ohio Shale 

extends downward into the upper P. expansa zone (Fig. 5.1). Plotting this 

information against the Devonian radiometric timescale (Becker et al., 2012) 

constrains the deposition of the Cleveland to 361.7– 359.3 Ma, giving it a total 

Figure 5. 1. Biostratigraphic timescale for 
Famennian with limits of Cleveland Shale 
deposition marked (Becker et al., 2012). 
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formation duration of 2.4 (±0.3) Ma (Figure 5.1).  Based on lithologic 

characterization of the core, 56 complete lithologic cycles were identified (Fig. 5.2). 

Assuming that each cycle is of the same approximate thickness and that depositional 

rates were uniform, the average cycle length is therefore about 40 (± 2.5) ka (Table 

5.1). 

The typical gamma-ray curve for the Cleveland is commonly assumed to be a 

high (positive deflection) – low (negative deflection) – high (positive deflection) 

Figure 5. 2. Synthetic gamma-ray curve with third-order 
cycles represented by different colors and fourth-order 
cycles marked with black lines. To the right, core 
lithology and fifth-order cycles. Each brown/blue pair 
represents one cycle. 
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pattern of deflections (Ettensohn et al., 1988). However, in this core the pattern is a 

little more complex with a high – low – high – low – high pattern. However, when 

compared to Cleveland gamma-ray signatures across the Appalachian Basin 

(Kepferle et al., 1978), the signature is not so unusual, as these signatures change 

with proximity to source areas to the east–northeast and the influx of siltstones into 

the section. The presence of thin siltstones (< 0.05-ft thick) in this section may 

reflect a similar situation. Nonetheless, the synthetic gamma-ray curve generated 

during this study (Figs. 4.1, 4.2) shows that there were three complete cycles which 

can be correlated with the regional cycles observed in the “type-log” for this section. 

Based on the temporal scale of Becker et al. (2012), each of these cycles represents 

approximately 600 ka, assuming equal cycle lengths (Fig 5.2; Table 5.1). The 

gamma-ray curve can be further divided into 19 smaller cycles, which represented 

119 (±8.1) ka on average (Fig. 5.2; Table 5.1).  

 

Table 5. 1. Cycle order and probable cause (Mitchum and Van Wagoner, 1991; Filer, 
1994) based on method and average duration. 

Method 
Number of 
Complete 

cycles 

Average 
Duration 

(ka) 

Cycle 
Order Probable Cause 

Gamma-ray 3 600 
Third to 
Fourth-
order 

Changes in mid-
oceanic ridge growth 
and continental ice 
growth and decay 

Gamma-ray 19 120 Fourth-
order Eccentricity 

Lithology 56 40 Fifth-  
order Axial tilt, obliquity 
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 The combined data from lithologic characterization and gamma-ray 

stratigraphy reveal three levels of cyclicity (Fig. 5.2). The length of the large gamma-

ray cycles, which is variable but approaches a million years in the lower Cleveland, 

makes it possible that these cycles represent third-order cyclicity (Table 5.1). The 

average duration of the 19 smaller gamma-ray cycles suggests fourth-order cyclicity 

(Table 5.1). Finally, the 56 complete lithologic cycles represent a previously 

unknown fifth-order cyclicity in the Cleveland Shale (Table 5.1).  

5.2. Discussion of organic petrography results  

The reflectance of vitrinite and vitrinite-like material increases with maturity 

(Hutton et al., 1994). The measured vitrinite reflectance of the Cleveland Shale is 

approximately 0.5%, indicating that this shale is fairly immature (Rimmer et al., 

1993). Although thermal alteration does occur, even at this low thermal maturity, 

changes in the organic material are minimal compared to samples at higher ranks 

(>1.0%). Therefore, it can be assumed that the geochemical and petrographic 

composition of the Cleveland Shale largely reflects conditions at the time of 

deposition (Rimmer et al., 2004).  

Before interpretations about organic-maceral depositional systems can be 

made, the origin of the organic matter must be considered, that is, fundamentally, 

whether the organic matter was generated within the basin or outside the basin and 

then transported before being deposited. Determining where the organic matter 

was generated is best accomplished by comparing the relative amounts of the 

different maceral populations based on their likely generation points. Inertinite and 

vitrinite are generally accepted to have had terrestrial origins, whereas liptinite, 
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with the exclusion of sporinite, is typically assumed to have had a marine origin. In 

other words, vitrodetrinite and inertodetrinite are allochthonous and liptodetrinite 

is autochthonous. The terrestrial/marine ratio for this section shows an overall 

decrease up-section (Fig. 5.3), so that more of the organic matter is of marine origin 

when moving up-section. Additionally, there is a subtle cyclicity in the T/M ratio 

which appears to be controlled by lithology as the sections with the greatest volume 

of terrestrially derived organic matter coincide with less organic-rich sections of the 

core (Fig. 5.3). The areas adjacent to siltstones in the core also contain more 

terrestrial- than marine-derived organic matter, indicating that this organic matter 

was most likely transported with the more coarse-grained sediments.  

 This trend of declining terrestrial organic matter toward the top of the core 

appears to be contrary to previous work, which indicated that the overall amount of 

terrestrial organic matter increases from the base of the Cleveland to the top (Robl 

et al., 1987; Rimmer et al., 1993, 2004). These differences, however, are most likely 

explained by the location of the examined section and the fact that this study does 

Figure 5. 3. Variation in organic petrographic composition with depth (shown 
as %, mineral-free basis), T/M = terrestrial/marine. Radiation and lithology 
are shown for comparison. 
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not examine the entire core. In fact, the section of core that was examined in this 

study was only from the base of the Cleveland. The Cleveland in the D2 core begins 

at 97 ft and extends upward to 49 ft, and the section that was chosen for organic 

petrography only includes parts of the core from 93 to 89 ft. Another possible 

explanation is the inherent difficulty of positively differentiating finely-divided 

vitrinite from bituminite. Some of the material identified as bituminite in this study 

may have been identified as vitrinite in previous studies, which would have altered 

the terrestrial/marine ratio.  However, because the examined section of the core 

was so close to the base of the Cleveland Shale Member, it is not surprising that this 

section had more marine than terrestrial organic matter as this part of the section 

represents major deepening and transgression following the Three Lick 

progradation.  

Of course, simply stating that a greater percent of organic matter has a 

marine origin than terrestrial does not fully explain the processes through which the 

organic matter accumulated. Changes in the depositional regime are commonly 

reflected in the changing volume of individual maceral groups as well as by maceral 

morphology and size. Hence, examining the terrestrial organic matter can provide 

important information about the processes through which sediment was 

transported into the basin. Comparison of the silicate and clay-rich matrix material 

with the terrestrial macerals (Fig. 5.4), for example, shows that the amounts of 

vitrodetrinite and inertodetrinite were related to the volume of silicate minerals 

(r=0.532 and 0.305 respectively; significant at the 99% confidence level), and that 

the combined volume of fusinite and semifusinite was related to the volume of the  
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clay-rich matrix material (r=0.354). The association of very tiny fragments of 

terrestrial vitrinite and inertinite with silicate minerals indicates that these 

macerals were broken down during transportation from the source area into the 

Appalachian basin and suggests fluid transport. Fusinite and semifusinite (fossil 

charcoal) are typically transported by wind, because after wood and swamp fires, 

pieces of charcoal accumulate and blow away easily. The same is true for fine humus 

on dried-out peat surfaces, as black, carbon-rich dust settles in water to form 

sediment there. Therefore, the association of the clay-rich material in these samples 

with inertinite indicates that eolian processes deposited a significant amount of the 

sediment that formed the Cleveland Shale.  

Another line of evidence for the concept of multiple methods of deposition 

and/or varying rates of deposition within the basin is the presence of two vitrinite 

populations. There are two populations of vitrinite observed in this study; one, 

which will be referred to as “true vitrinite”, and another, which will be called 

“dispersed vitrinite.” The true vitrinite consists of larger vitrinite particles, which 

Figure 5. 4. Variation in volume of silicate minerals, clay-rich matrix material, 
vitrinite and vitrodetrinite, and inertinite and inertodetrinite. The mineral 
matter is shown as a whole-rock basis and the organic macerals are shown as %, 
mineral-free basis. Lithology and gamma-ray curve shown for comparison. 

52 
 



display relief against the surrounding matrix material and a medium-gray reflective 

surface (Fig. 5.5, left); these particles can be up to 200-µm across and locally 

preserve cell structure. Dispersed vitrinite, in contrast, occurs in dark, elongate 

bands of varying width and often has matrix material and vitrodetrinite 

incorporated into it (Fig. 5.5, right). The volume of vitrinite, excluding vitrodetrinite, 

has a negative correlation with the volume of silicate minerals in these samples (r=- 

 

0.273; significant at the 97.5% confidence level), so it appears that increased silicate 

sedimentation is related to decreases in the volume of vitrinite. This relationship is 

likely due to the previously mentioned fluid-transport mechanism of terrestrial 

material, which acted to break down larger pieces of vitrinite into detrinite-size 

particles.  Due to the large size of the “true” vitrinite, it is unlikely that these 

particles represent windblown sediments, and, because these particles occur alone 

in sediment containing abundant marine organic matter, it is most likely that these 

Figure 5. 5. Left: true vitrinite showing preserved cell structure. Right: stringy, 
dark bands of dispersed vitrinite.  
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particles were transported into the basin via rafting (possibly ice rafting) as has 

been documented in the Campo Chico Formation in Venezuela (Berry and Fairon-

Demart, 2001).  Once the true vitrinite entered the basin, deposition would have 

been rapid and the particles would have experienced little secondary degradation.  

Dispersed vitrinite, on the other hand, was likely deposited as the result of 

eolian processes and prolonged exposure to degradational processes in a stratified 

water column. This population of vitrinite macerals would have been carried into 

the basin by winds blowing off the Acadian highlands, possibly across glacial 

outwash plains, and then would have been distributed across the Appalachian Basin 

by Eckman transport. Due to its small size, dispersed vitrinite probably had a slower 

settling rate than the true vitrinite, so that these particles were exposed to oxygen 

and bacterial reworking in the water column for an extended period of time. This 

degraded vitrinite would have then been deposited in a thin film so that the 

observed morphology in cross section would be thin, elongate bands such as the 

ones observed in this study (Fig. 5.5, right). The slow settling rate would also 

explain the inclusion of matrix material in these bands, as the dispersed vitrinite 

would have been deposited at approximately the same rate as the clay minerals, or 

perhaps combined with the clay (mineral matrix) as floccules. 

Results from this study (Figs. 4.4, 4.6, 4.7, 5.6) show that inertodetrinite and 

liptodetrinite began entering the sedimentary record at approximately the same 

point, that is, they both first appeared in the same petrographic pellet. Some of this 

inertodetrinite likely originated within the basin, and, in fact, up to 2-4% of the 

inertodetrinite could have originated through the severe degradation of algal 
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material (Rimmer et al., 2004). However, without clear evidence to suggest a marine 

origin it is assumed, based on its reflectance (Jones et al., 1991) and morphology 

(Jones and Chanoler, 1991), that the overwhelming majority of the inertodetrinite 

had a terrestrial origin. On the other hand, electron-microscope studies have shown 

that the most common components of liptodetrinitic materials are fragmented 

alginite and suberinite, as well as tiny, unicellular algae (Madler, 1968; Teichmṻller 

and Ottenjann, 1977). However, as no suberinite was observed in these samples, 

and, as suberinite has only been observed in Tertiary and Mesozoic coals 

(Teichmṻller et al. 1998), the liptodetrinite here can be assumed to be primarily 

composed of fragmented, marine alginite. Therefore, depositional mechanisms must 

be able to account for the presence of both terrestrial and marine organic matter. 

0.00 10.00 20.00 30.00 40.00 50.00 60.00
89.00
89.28
89.55
89.83
90.10
90.38
90.65
90.93
91.20
91.48
91.76
92.03
92.31
92.58
92.86

Detrinite % (mineral-free basis)

Vitrodetrinite Inertodetrinite Liptodetrinite

Figure 5. 6. Volume of detrinite-size macerals plotted against depth on 
a mineral-free basis. 
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One such mechanism is reflected in changes in the volume of fluvial runoff into the 

basin. The impact of fluvial runoff is supported by evidence from modern coastal 

settings, such as the Amazon River (Gibbs, 1967, 2009) and the Zaire River (Cadee, 

1978; van Bennekom et al., 1978), which showed that fluvial runoff can increase 

productivity in estuaries and restricted areas of coastal oceans and seas (Piper and 

Calvert, 2009). As a restricted basin, the Black Shale Sea (Figs. 1.5, 1.10) would have 

been sensitive to changes in the volume of fluvial runoff. An increase in fluvial runoff 

would have increased the volume of inertodetrinite and vitrodetrinite that was 

transported into the basin, and the increased nutrient load would have stimulated 

the growth of marine algae and created more liptodetrinite.   

 Differences in the maceral ratios can also provide clues as to sedimentation 

rates and the amount of bacterial reworking at the time of deposition. The amount 

of bituminite, relative to the amount of vitrinite and alginite, is particularly useful 

for this. Bituminite is formed through the bacterial degradation of organic matter, 

and therefore, changes in the alginite/(alginite+bituminite) ratio reflect changes in 

the amount of bacterial degradation (Taulbee et al., 1990). The 

vitrinite/(vitrinite+bituminite) ratio is useful because terrestrial organic matter is 

more resistant to decomposition than marine organic matter (Hedges et al., 1988), 

so that increases in the amount of well-preserved terrestrial organic matter are 

indicative of slow rates of deposition (Canfield, 1994). In the lower Cleveland, the 

alginite/(alginite+bituminite) and the vitrinite/(vitrinite+bituminite) ratios were 

fairly high, with the volume of well-preserved organic matter dominating the 

volume of degraded organic matter (Fig. 5.7), indicating that there was little 
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bacterial reworking of the organic matter prior to deposition. Moreover, the 

consistently high vitrinite/(vitrinite+bituminite) ratio indicates that the overall rate 

of deposition was slow. Additionally, the alginite/(alginite+bituminite) ratio does 

not significantly diverge from the vitrinite/(vitrinite+bituminite) ratio, meaning that 

marine productivity must have remained high, because otherwise the 

alginite/(alginite+bituminite) ratio would have been lower than the 

vitrinite/(vitrinite+bituminite) ratio.  

Figure 5. 7. Maceral ratios for core interval. Abbreviations for 
maceral ratios: v = vitrinite, b = bituminite, and a = alginite; high 
ratios indicate an increase in the volume of well-reserved 
organic matter relative to poorly preserved, bacterially 
reworked organic matter. 
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There are exceptions to these generalizations, and negative deflections are 

observed in the curves of these ratios at 92.75 ft, between 92.25 and 91.75 ft, at 

90.50 ft, and just above 89.50 ft (Fig. 5.7). At these depths the 

alginite/(alginite+bituminite) and the vitrinite/(vitrinite+bituminite) ratios 

decrease significantly, likely the result of enhanced bacterial reworking. These 

decreases ratios are most likely not caused by an increase in the rate of 

sedimentation, because the alginite/(alginite+bituminite) ratio is significantly 

higher than the vitrinite/(vitrinite+bituminite) ratio, with the exception of the 

deflection at 90.50 ft. Large volumes of alginite and vitrinite relative to bituminite 

indicate periods of enhanced bacterial reworking. The relationship between the 

volume of bituminite and lithology is varied, likely due to the complex relationship 

between productivity, sediment flux, and redox conditions within the water column. 

However, the relative volumes of well-preserved vitrinite versus well-preserved 

alginite can be used to identify changes in sediment flux. Terrestrial organic matter 

is more resistant to bacterial reworking than marine organic matter; so where the 

volume of well-reserved alginite is greater than the volume of well-preserved 

vitrinite it is likely that marine productivity was high and that the rate of 

sedimentation was slow.  

By comparing the combined volume of sulfides and phosphates (Fig. 4.5) in 

the samples to the volume of bituminite/(bituminite+alginite), it is possible to 

determine whether the accumulation of  bituminite was controlled by the degree of 

anoxia or by productivity rates. High volumes of bituminite, associated with greater 

amounts of bacterial reworking, are related to higher rates of sulfate reduction and  
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H2S production (Jaminski et al., 1998), and, hence, to increasingly anoxic to euxinic 

conditions which promote the preservation of organic matter. When these two 

populations are plotted together (Fig. 5.8), it becomes evident that the curves 

generally parallel each other; therefore, where large volume of sulfides occur in the 

lower  Cleveland, it can be assumed most of the organic matter that was deposited in 

the anoxic zone was preserved. Under the oxygen-depleted conditions implied by 

large volumes of sulfide minerals, organic matter would have experienced little 

post-depositional alteration so that any bacterial degradation of organic matter into 

bituminite must have occurred in the upper water column before deposition. It has 

been suggested that some bituminite is derived from algal/bacterial masses 

preserved in sediments beneath the oxic/anoxic interface within the water column 

Figure 5. 8. Maceral ratios for core interval and sulfide % by volume. 
Abbreviations for maceral ratios: b = bituminite, and a = alginite. Note that the 
sulfide content has been divided by ten to more clearly demonstrate the 
relationship between the two. 
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(Sherwood and Cooke, 1984). The volume of sulfide (Fig. 5.8) shows that the 

increase in bituminite production marked by the negative deflection between 92.25 

and 91.75 ft (Fig. 5.7) (shown as a positive deflection in Fig. 5.8) was caused by 

prolonged bacterial reworking, likely due to the presence of a strongly stratified 

water column so that prolonged bacterial reworking in the upper water column was 

possible. The alginite/(alginite+bituminite) and vitrinite/(vitrinite+bituminite) 

ratios (Fig. 5.7) show that marine productivity was high and that the overall rate of 

sedimentation was slow; however, these observations alone cannot  adequately 

explain variations in the amount of bituminite. The paleo-redox proxies discussed in 

section 5.3 provide further evidence to explain these changes.   

5.3. Discussion of x-ray fluorescence results 

 The nature of paleo-redox conditions, or the degree of anoxia, in the Black 

Shale Sea is a critical question which must be answered before a depositional model 

can be proposed. These conditions can be determined through the use of several 

geochemical proxies such as V/(V+Ni), V/Cr (Fig. 5.9), (Mo/Al)x104 (Fig. 5.10), and 

the Mo Enrichment Factor (Fig. 5.10; Table 5.2). The results of this study show that 

conditions within the basin were consistently anoxic (a complete lack of oxygen in 

the bottom waters) to euxinic (no oxygen is present in the bottom waters and 

hydrogen sulfide is being produced) during deposition of the lower Cleveland. 

The V/V+Ni proxy (Fig. 5.9) is especially illustrative of this situation as 

values between 0.54-0.82 indicate anoxia, whereas values greater than 0.84 indicate 

a euxinic environment (Hatch and Leventhal, 1992). All V/(V+Ni) ratios were well 

within the anoxic range, and at several places along the core, the V/(V+Ni) ratio  
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increased into the euxinic range. The minimum value calculated for the study 

interval was 0.78 at 90.5 ft, indicating that the water at this point in time was the 

least anoxic. V/Cr ratios greater than 4.25 indicate anoxia (Jones and Manning, 

1994). With the exception of the measurements taken at 91.2 and 90.5 ft, where the 

amount of Cr was below the detection limit of the XRF gun, all V/Cr values remain 

above 4.25 (Fig. 5.9) showing that the waters were anoxic at the time of deposition. 

The implications of the negative deflection at 90.5 ft can be confirmed by comparing 

the paleo-redox proxies to the alginite/(alginite+bituminite) and 

vitrinite/(vitrinite+bituminite) ratios (Figs. 5.7, 5.8). These ratios do show 

decreases at this point, which was previously interpreted to indicate a period of 

enhanced bacterial reworking caused by prolonged exposure to oxygenated water. 

Figure 5. 9. Trace-element paleo-redox proxies V/(V+Ni) and V/Cr. Lithology 
and gamma-ray curve shown for comparison. O = oxic, D = dysoxic, A = 
anoxic, and E = euxinic. * = Cr below limit of detection.  

* 
* 
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Therefore, the paleo-redox proxies and the results of organic petrography confirm 

each other at this point in the core.   

Mo is a very redox-sensitive trace element which can be evaluated as Mo 

ppm, as an Al-normalized ratio, or as an enrichment factor so that comparisons can 

be made to “average’ shale values. The lower Cleveland has Mo values ranging from 

14-150 ppm with an average value of about 90 ppm (Fig. 5.10; Table 5.2). This is an 

enrichment factor of 15.1 when compared to the average shale which contains 2.6 

ppm Mo (Table 5.2). In this section of the Cleveland, Mo values are very sensitive to 

changes in lithology (Fig. 5.10). The more organic-rich sections of the core have 

higher ppm values of Mo, higher Al-normalized ratios, and show Mo enrichment 

relative to the less organic-rich sections of the core. Considering the relationship 

between Mo and Al, it is possible that the Mo concentration responded to very 

subtle changes in redox conditions triggered by changing volumes of clastic input.  

Figure 5. 10. Trace-element paleo-redox proxies, Mo ppm, (Mo/Al)x104, and 
Mo enrichment factor. Lithology and gamma-ray curve shown for comparison. 
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Table 5. 2. Published values for Mo ppm, Al ppm, and Mo-enrichment factors in 
average shales, average black shales, and the Cleveland Shale in the D2 core. 

Shales Mo (ppm) Al (ppm) EF 
Average Shale (Wedepohl, 
1971) 

2.6 71,400 - 

Average Black Shale (Vine 
and Tourtelot, 1970) 

10 48,800 14.3 

Cleveland Shale (this 
study) 

89.1 43,100 15.1 

  

While Mo responded to changes in lithology and amount of radioactive 

material in the Cleveland, neither the V/(V+Ni) nor the V/Cr curve showed parallel 

high peaks when compared to the synthetic gamma-ray curve. This lack of 

correlation can be attributed to signal dampening caused by the overwhelming 

influence of the clay content. While radioactivity in the Cleveland shale primarily 

varies with the liptinite content (on a mineral-free basis) (Fig. 5.2), it also shows a 

correlation with the volume of mineral matter, particularly the clay content (Fig. 

5.4). This relationship is probably related to the presence of 40K in the clay 

(Durrance, 1986). The clastic proxies, Si/Al, Ti/Al, and K/Al, can be used to better 

understand that relationship. The results of this study show that these three proxies 

have approximately parallel curves (Fig. 5.11). The Si/Al ratio shows greater 

variance than Ti/Al or K/Al ratios; however, the origin of the Si has been called into 

question with one study suggesting that upwards of 50% of quartz silt in Late 

Devonian shales is biogenic in origin (Schieber, 2000), and another supporting an 

eolian origin (Werne et al., 2002). These observations, if true, make drawing 

conclusions from the Si/Al ratio a questionable undertaking. There is a significant 
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positive deflection in the clastic proxy curves at 90.5 ft, which indicates an increase 

in clastic sedimentation at this time. Comparing the location of this deflection with 

the core lithology shows that this occurred during the deposition of one of the less 

organic-rich portions of the Cleveland Shale and occurred near the initiation of a 

fourth-order cycle.  

 
Most of the clay minerals in the Cleveland Shale are illite (38%-85%) and 

expandable clays such as mixed-layer illite-smectite (10%-60%), with kaolinite 

composing only 2-7% of the clay minerals (Toth, 2004). The association of Al-

normalized iron and calcium with K/Al indicates that these elements were most 

likely incorporated into the structure of the clay minerals (Fig. 5.12). This 

incorporation has implications for clastic input, because iron is commonly 

transported into basins as dust-borne particles (Lamy et al., 2014). Hence, where 

the volume of iron increases, it can be inferred that the volume of eolian dust being 

deposited in the basin has also increased. The increases in the Fe/Al ratio also  

Figure 5. 11. Proxies for clastic influx Ti/Al, K/Al, and Si/Al. Lithology and 
gamma-ray curve shown for comparison. 
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correspond to places where the volume of fusinite and semifusinite increases (Fig. 

5.12). These macerals were previously established to be related to eolian 

deposition, supporting the hypothesis that iron was transported into the basin via 

dust-borne particles. Additionally, increases in the calcium content indicate changes 

in the clay-mineral composition, as calcium is more commonly found in expandable 

clays than in illite. Hence, where the Ca/Al ratio is greater than the K/Al ratio, it is 

likely that expandable clays were being deposited at the expense of illite. The 

changing clay-mineral composition is likely the result of changing floral dynamics 

due to the expansion of land plants in the Late Devonian (Algeo et al., 1995, 2001). 

Increased arborescence (tree stature) and seed habit led to increased depth of root 

penetration and allowed for the colonization of drier areas (Algeo and Scheckler, 

1998), providing fuel for the fires which produced the fusinite and semifusinite 

observed in the Cleveland (Algeo and Scheckler, 1998; Algeo et al., 2001). These 

changes would have enhanced chemical weathering on late Devonian land masses, 

Figure 5. 12. Fe/Al, Ca/Al, and K/Al ratios compared to the volume of clay and 
windblown inertinite macerals (shown on a mineral-free basis).  
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and increased riverine nutrient flux (Algeo and Scheckler, 1998) which stimulated 

productivity in the Black Shale Sea. 

5.4. Depositional model for the Cleveland Shale 

 Analysis of the D2 core has revealed at least two orders of cyclicity within 

Milankovitch ranges, the 120-ka fourth-order cycles and the 40-ka fifth-order cycles, 

in Cleveland Shale (Fig. 5.2). These periodicities correspond to changes in the 

earth’s orbital eccentricity (~100 ka) and obliquity of the earth’s axis (~42 ka), 

respectively (Hays et al., 1976). These cycles, respectively, account for 25 and 50% 

of climatic variance in the past 450,000 years and have been convincingly correlated 

with the Quaternary ice ages (Hays et al., 1976; Berger et al., 1984). Similarly, 

results from this study and others (e.g., Ettensohn et al., 2009a) suggest that 

sediments in the Cleveland Shale also record evidence for periodic glaciation 

associated with these cycles.  

The proposed depositional model (Fig. 5.13) is apparently related to 

alternating highstands, which correspond to gamma-ray highs, and lowstands, 

which correspond to gamma-ray minima. These highstands and lowstands can also 

be related to lithologies in the Cleveland Shale, as highstands resulted in the 

formation of the more organic-rich sections of the shale, whereas lowstands 

contributed to the formation of the less organic-rich intervals.  Moreover, the 

highstands and lowstands seem to be linked through transitional periods, during 

which either more organic-rich shales or the less organic-rich shales could have 

formed. The different shale types were apparently related to local climatic 

variations controlled by Milankovitch-band cyclonic cooling and drying cycles. 
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These changes have also been identified through observed changes in maceral type 

and paleo-redox proxies. 

Mid-latitude cyclonic activity during latest Famennian time is thought to 

have contributed to polar transport of moisture and the development of large-scale 

coastal glaciers in Brazil and Bolivia (Streel et al., 2002).  Miospore analysis has 

shown that the coastal-lowland vegetation associated with these glaciers had a 

worldwide distribution (Streel et al., 2002); so it is possible that the same processes 

that led to the formation of coastal glaciers in South America, could have led to the 

coeval formation of glaciers in Laurussia (North America). The recent discovery of a 

glacial dropstone in the Cleveland Shale (Ettensohn et al., 2009a) and of coeval 

tillites in the Appalachian Basin (Brezinski et al., 2010), clearly indicate that 

glaciation was present during Cleveland deposition. In fact, Ettensohn et al. (2009a) 

showed that, in places, ancient tillites were deposited on top of shoreface 

sandstones, indicating that glaciers must have crossed coastal lowlands, perhaps 

during one of the proposed lowstand periods. This could have been the result of the 

periodic advance and retreat of mountain glaciers into the coastal lowlands, 

associated with the alternation between very cold, wet conditions and warmer, dry 

conditions caused by the cyclonic activity (Streel et al., 2002). 

Cold, wet phases of the climatic cycle would have triggered the formation and 

advance of alpine and piedmont glaciations (Figs. 5.13A, 5.13B). As glaciers began 

the uptake of oceanic water, lowstand periods started to ensue. Falling sea level 

during these periods allowed fluvial drainage to bypass estuaries, as the drainage 

rapidly incised existing topography to reach the sea; this process allows increased  

67 
 



Figure 5. 13. Conditions during each part of the proposed depositional model.     
A: transition (highstand to lowstand); B: lowstand, cold and wet conditions; C: 
transition (lowstand to highstand); D: Highstand, warm and dry conditions.  

A 

B 

C 

D 
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volumes of terrestrial material to be transported into the basin. Therefore, the main 

identifying characteristic of these lowstand periods is a simultaneous increase in the 

volume of silicate minerals and terrestrial, detrinite-size macerals (inertodetrinite 

and vitrodetrinite), the small size of which indicates that depositional processes 

broke the macerals into increasingly smaller particles as might happen during 

fluvial transport.  

In fact, petrography shows that the relationship between detrinite-size, 

terrestrial macerals and silicate minerals exhibited two levels of cyclicity, most 

likely related to periods of increasing fluvial runoff into the Black Shale Sea. 

Inertodetrinite, vitrodetrinite, and silicate minerals all began entering the 

sedimentary record in increased volumes between 91.5 and 91 ft, a depth in core 

that also marks a local gamma-ray minimum and the end of a 120-ka, fourth-order 

cycle (Figs. 5.2, 5.4, 5.6; Table 5.1). When compared to the lithology of the D2 core 

(Figs. 5.2, 5.4), it becomes clear that relatively high values for terrestrial, detrinite-

size macerals and silicate minerals are related to the less organic-rich sections of the 

core (Figs. 5.4, 5.6). Lithologic cycles in the D2 core also show 40-ka, fifth-order 

cyclicity, indicating that changes in the volume of fluvial runoff also occurred on a 

fifth-order scale (Fig. 5.4). This conclusion is supported by the work of Cotter and 

Driese (1998) who documented 30-50-ka cyclicity in incised valley-fill deposits in 

roughly equivalent parts of the Catskill Formation in Pennsylvania. The facies 

succession in the Catskill Formation shows that sand, plant material, and gravel, in 

this study identified by the simultaneous increases in the volume of terrestrial, 

detrinite-size macerals and the volume of silicate minerals, were transported down 
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incised valleys and spread out onto a shelf depositional ramp during periods of 

relatively low sea level. 

 The formation of the more organic-rich sections of the Cleveland Shale can 

be largely explained by the work of Armstrong et al. (2005), who applied the 

“expanding puddle” model of black-shale formation, wherein anoxic bottom-water 

conditions are inferred beneath a stratified water column (Wignall, 1991) during 

the formation of black shales in Upper Ordovician strata in Jordan. In this model, 

sea-level rise is triggered by glacial melting that results in the flooding of incised 

valleys and other shoreline topography, all of which contributes to the rapid 

expansion of accommodation space and the trapping of sediment in near-shore 

estuaries (Fig. 5.13D). Hence with the trapping of sediment, sedimentation rates in 

the basin remain constant or slow, such that the basin becomes sediment-starved 

and black-shale formation expands outwardly from areas of greatest depth (Wignall, 

1991; Armstrong et al., 2005).  

Warm, dry climates (Fig. 5.13C, D), on the other hand, are ideal for the 

establishment of highstand conditions and organic-rich-shale-forming transitional 

periods, because organic productivity is increased at the ocean surface and bottom-

water conditions are anoxic to euxinic. Moreover, as glacial melt water enters the 

basin and sea level rises during these warm periods, large amounts of nutrients are 

released into the upper water column, triggering a period of high productivity 

(Wignall, 1991). This is reflected in the changing volume of liptinite and 

liptodetrinite macerals (Figs. 4.8, 5.3, 5.6). These macerals are most commonly 

derived from marine algae, so that an increase in the volume of liptinite macerals 
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indicates a period of enhanced productivity. Additionally, density-driven circulation 

declines as the climate warms and glacial ice retreats, resulting in enhanced 

stratification of the water column (Armstrong et al., 2005). Furthermore, the 

relative volume of bituminite (Figs. 5.7, 5.8) and paleo-redox trends (Figs. 5.9, 5.10, 

5.11, 5.12) provide additional support for the presence of Cleveland bottom-water 

anoxia. In particular, the results of this study show that the volume of bituminite 

and sulfide minerals co-vary (Fig. 5.8), as would be expected in anoxic conditions. 

Hence, sections of the core where large volumes of bituminite and of sulfide 

minerals occur together are suggestive of a stratified water column and bottom-

water anoxia and correspond to the more organic-rich sections of the Cleveland 

Shale.  

As sea level rose, the previously incised valleys were flooded, resulting in the 

formation of anoxic, marine estuaries in drowned river valleys and sunken coastal 

topography. Those estuaries would have acted as sediment traps and provided 

accommodation space for the deposition of coarse-grained silicate minerals and 

fluvially transported terrestrial detrinite. These periods of highstand sediment 

trapping would have contributed substantially to sediment starvation so that 

increasing amounts of marine organic matter (liptinite) and suspended clay 

minerals get deposited in the deeper, more distal areas of the Appalachian Basin. 

Such conditions would have resulted in deposition of the darker, more organic-rich 

intervals identified in the D2 core.  

This concept of sea-level change is supported by the correlation between 

increasing relative volumes of the fusinite and semifusinite macerals (wind-
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deposited, fossil charcoal) and liptodetrinite (fragmented algal material) macerals at 

91.5 ft. Because the influence of fluvial sedimentation decreased, the importance of 

windblown debris would have increased. During dry periods, an increase in the 

volume of inertinite (fusinite and semifusinite) should be expected as charcoal is 

generated on the adjoining landmass due to the increased incidence of large-scale 

fires. Fusinite and semifusinite can be transported long distances (hundreds to 

thousands of km), which has been demonstrated by transport of the macerals with  

fine, Saharan dust into the Atlantic Ocean (Foda, 1983; Greeley and Iversen, 1985) 

after the macerals entered the atmosphere as part of a thermally buoyant plume 

during fires (Clark, 1988). Therefore, the association of fusinite and semifusinite 

with clay minerals in the lower Cleveland (Figs. 5.4, 5.12) indicates that increased 

clay sedimentation relates not only to highstand sediment trapping, but also to 

increased windblown deposition.  

Hence, the prominent, decimeter-scale recesses and promontories that 

characterize the lower Cleveland Shale (Fig. 1.2) are most likely obliquity-related 

cycles on the scale of about 40-ka years and probably manifest climatic changes that 

played out in terms of fluvial runoff, eolian influx and sea-level rise. Coeval variation 

in organic macerals, clastic input and paleo-redox proxies generally support this 

origin. In contrast, the larger 120-ka, eccentricity-related cycles, shown best on 

gamma-ray logs (Figs.  4.1, 4.2, 4.3, 5.2), may represent periods of major glacial 

advance and retreat, in which the “expanding puddle” model of Armstrong et al. 

(2005) may provide the best explanation.  The magnitude of these cycles, moreover, 
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is of the same scale as those recognized during the Pleistocene advances and 

retreats (Petit et al., 1999; EPICA Community Members, 2004). 
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CHAPTER SIX: CONCLUSIONS 

The conclusions of this study address the nature and origin of cyclicity in the 

Cleveland Shale. The resolution provided by the examination of Cleveland core 

material provided extensive insight into the association of different organic 

macerals and mineral materials with depositional pathways. The most important 

findings of this thesis are as follows: 

1. There is a hierarchy of cycles in the Cleveland Shale, which can be related to 

Milankovitch cyclicity. These include forth-order cycles of 120 ka, 

representing orbital eccentricity, and 40-ka fifth-order cycles, representing 

obliquity.

2. Sedimentological changes (source and depositional processes of sediment)

were identified through characterization of organic matter in the Cleveland

and through x-ray fluorescence of core material.

a. Detrinite-size organic macerals are related to the presence of silicate

minerals and indicate increased fluvial runoff where they occur

together.

b. Fusinite and semifusinite are related to the presence of clay minerals

and indicate the increased influence of eolian processes where they

occur together.

c. Increases in the volume of liptinite macerals are related to increases

in the volume of clay minerals, which physically protect the organic 

matter and enhance the preservation of liptinite macerals. 
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d. The volume of bituminite in these shales is related to paleo-redox 

conditions and supports the presence of a stratified water column 

during the deposition of the Cleveland Shale. 

3. Periodic glaciation during the deposition of the Cleveland Shale controlled 

sea-level rise and fall and led to changes in sediment flux into the 

Appalachian Basin. Increases in detrinite-size organic macerals and silicate 

minerals apparently represent periods of lowered sea level and the advance 

of mountain glaciers into coastal lowlands (cold-wet conditions; Fig. 5.13A, 

B). Periods of increased bituminite formation were related to enhanced 

water column stratification caused by increased freshwater runoff during 

periods of glacial melting (warm-dry conditions; Fig 5.13C). Periods of high 

fusinite and clay-mineral content seem to represent high sea levels during 

inter-glacial periods. Periods of increased liptinite deposition are also related 

to periods of high sea level and increased nutrient availability in marine 

estuaries (warm-dry conditions; Fig 5.13D). 
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CHAPTER SEVEN: APPENDICES 

Appendix A: Measured radiation on core (counts per second, 1x) with 
handheld scintillometer. 
Measured radiation on core (counts per second, 1x) 

Depth on 
core (ft) Radiation (cps, 1x) Depth on core 

(ft) 
Radiation (cps, 

1x) 
49.25 25 60 26 
49.65 22 60.45 29 

50 24 60.7 28 
50.3 27 60.85 22 
50.7 25 60.95 26 
50.9 22 61.15 25 
51.5 26 61.55 27 

51.75 24 61.8 24 
52 23 62.05 23 

52.25 23 62.25 25 
52.55 22 62.4 24 

52.7 26 62.75 28 
52.85 25 63.2 24 

53.1 26 63.5 25 
53.6 25 63.8 22 
53.9 22 64.1 25 
54.3 24 64.4 26 

54.75 23 64.7 23 
55.15 21 65.3 22 

55.4 27 65.95 23 
55.65 23 66.3 21 

56 26 66.45 27 
56.35 21 66.65 26 

56.5 25 66.9 23 
56.7 23 67.05 21 

56.85 22 67.2 23 
57.15 20 67.35 22 
57.55 23 67.45 24 

57.9 22 67.6 21 
58.35 24 67.75 22 
58.75 23 68.15 20 
58.95 22 68.5 23 

59.1 23 68.6 21 
59.25 23 68.7 19 

59.4 26 68.85 24 
59.65 25 69.2 24 
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Measured radiation on core (counts per second, 1x) (continued) 
Depth on core 

(ft) 
Radiation (cps, 

1x) 
Depth on core 

(ft) 
Radiation (cps, 

1x) 
69.5 23 80.35 26 

69.75 24 80.7 25 
70 21 81.4 25 

70.2 25 81.7 26 
70.4 20 81.95 27 
70.8 22 82.4 28 
71.2 26 82.9 25 
71.5 21 83.1 22 

71.65 25 83.5 28 
71.85 25 83.9 27 

72.2 23 84.25 27 
72.45 28 84.55 29 

72.6 24 84.9 26 
72.85 25 85.15 27 
73.15 22 85.45 27 
73.35 23 85.75 28 
73.55 26 86.1 26 
73.65 25 86.45 30 
73.95 24 86.7 27 
74.15 25 86.9 28 

74.3 24 87.35 31 
74.5 28 87.8 35 

74.65 28 88.3 31 
74.85 23 88.65 33 

75.7 21 89.3 33 
76 27 89.65 38 

76.3 23 90 35 
76.55 24 90.35 35 

76.8 21 90.65 33 
76.95 26 90.75 33 

77.3 23 90.9 31 
77.8 26 91.2 30 

78.25 22 91.5 35 
78.6 24 91.7 35 
78.7 23 91.85 39 
78.8 21 92.2 37 

79.75 26 92.6 34 
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Measured radiation on core (counts per second, 1x) (continued) 
Depth on 
core (ft) 

Radiation (cps, 
1x) 

92.7 34 
 93.05 31 
 93.5 33 
 93.9 32 
 94.4 36 
 94.65 35 
 94.8 33 
 94.95 31 
 95.4 27 
 95.7 31 
 96.15 29 
 96.5 30 
 96.7 30 
 96.85 29 
 97.1 27 
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Appendix B: D2 Core, Organic Petrography, 93–89ft. Sample ID codes (pa, pb, 
pc, and others) were assigned to each 0.75 in (1.9 cm) segment of the D2 core 
as it was sectioned for organic petrography.  

D2 Core, Organic Petrography, 93–89ft 
Sample ID code pa pb pc pd pe 
Depth on core (ft) 89.00 89.07 89.14 89.21 89.28 

W
ho

le
-r

oc
k 

pe
rc

en
t b

y 
vo

lu
m

e 

Vitrinite 3.9 5.0 3.8 2.8 2.8 
Vitrodetrinite 0.0 0.6 0.2 1.3 0.0 
Vitrinite Total 3.9 5.6 4.0 4.1 2.8 
Fusinite 1.6 1.0 0.2 0.2 1.2 
Semifusinite 0.0 0.0 0.2 0.0 0.2 
Inertodetrinite 1.2 1.4 2.0 3.4 0.8 
Inertinite Total 2.7 2.4 2.4 3.6 2.2 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 4.3 2.6 2.2 2.2 2.2 
Liptodetrinite 0.4 0.0 0.2 0.7 0.0 
Lamalginite 4.3 2.2 1.6 0.7 1.2 
Bituminite 0.0 0.8 1.6 1.5 1.4 
Liptinite Total 8.9 5.6 5.5 5.2 4.7 
Silicates 1.6 8.0 10.9 13.5 5.5 
Sulfides & Phosphates 6.0 8.0 5.5 10.5 10.2 
Carbonate 0.2 0.0 0.0 0.0 0.0 
Clay-rich matrix material 76.7 70.2 71.7 63.0 74.6 
Mineral Total 84.5 86.2 88.1 86.9 90.4 

M
in

er
al

-fr
ee

 p
er

ce
nt

 b
y 

vo
lu

m
e Vitrinite 25.0 36.2 31.7 21.4 28.6 

Vitrodetrinite 0.0 4.3 1.7 10.0 0.0 
Vitrinite Total 25.0 40.6 33.3 31.4 28.6 
Fusinite 10.0 7.2 1.7 1.4 12.2 
Semifusinite 0.0 0.0 1.7 0.0 2.0 
Inertodetrinite 7.5 10.1 16.7 25.7 8.2 
Inertinite Total 17.5 17.4 20.0 27.1 22.4 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 27.5 18.8 18.3 17.1 22.4 
Liptodetrinite 2.5 0.0 1.7 5.7 0.0 
Lamalginite 27.5 15.9 13.3 5.7 12.2 
Bituminite 0.0 5.8 13.3 11.4 14.3 
Liptinite Total 57.5 40.6 46.7 40.0 49.0 
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D2 Core, Organic Petrography, 93–89ft (continued)       
  Sample ID code pf pg ph pi pi 
  Depth on core (ft) 89.34 89.41 89.48 89.55 89.62 

W
ho

le
-r

oc
k 

pe
rc

en
t b

y 
vo

lu
m

e 
Vitrinite 2.7 4.3 1.4 2.9 3.4 
Vitrodetrinite 0.0 0.8 4.5 3.7 2.4 
Vitrinite Total 2.7 5.1 5.8 6.6 5.8 
Fusinite 0.8 1.6 1.2 0.8 1.3 
Semifusinite 0.0 0.0 0.0 0.0 0.0 
Inertodetrinite 1.6 1.8 2.3 2.3 1.7 
Inertinite Total 2.3 3.3 3.5 3.1 3.0 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 1.8 1.6 1.6 1.7 1.3 
Liptodetrinite 1.6 0.6 0.6 0.6 1.3 
Lamalginite 0.8 1.0 0.4 1.4 2.1 
Bituminite 2.1 2.3 1.9 0.8 0.6 
Liptinite Total 6.2 5.5 4.5 4.5 5.3 
Silicates 7.8 11.7 10.5 7.6 6.2 
Sulfides & Phosphates 8.0 6.2 8.1 8.3 7.7 
Carbonate 0.0 0.0 0.0 0.0 0.0 
Clay-rich matrix material 72.9 67.8 67.6 69.9 72.0 
Mineral Total 88.7 85.8 86.2 85.8 85.9 

              

M
in

er
al

-fr
ee

 p
er

ce
nt

 b
y 

vo
lu

m
e Vitrinite 24.1 30.1 9.9 20.5 24.0 

Vitrodetrinite 0.0 5.5 32.4 26.0 17.3 
Vitrinite Total 24.1 35.6 42.3 46.6 41.3 
Fusinite 6.9 11.0 8.5 5.5 9.3 
Semifusinite 0.0 0.0 0.0 0.0 0.0 
Inertodetrinite 13.8 12.3 16.9 16.4 12.0 
Inertinite Total 20.7 23.3 25.4 21.9 21.3 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 15.5 11.0 11.3 12.3 9.3 
Liptodetrinite 13.8 4.1 4.2 4.1 9.3 
Lamalginite 6.9 6.8 2.8 9.6 14.7 
Bituminite 19.0 16.4 14.1 5.5 4.0 
Liptinite Total 55.2 38.4 32.4 31.5 37.3 
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D2 Core, Organic Petrography, 93–89ft (continued)       
  Sample ID code pk pl pm pn po 
  Depth on core (ft) 89.69 89.76 89.83 89.90 89.96 

W
ho

le
-r

oc
k 

pe
rc

en
t b

y 
vo

lu
m

e 
Vitrinite 3.1 0.8 0.8 1.8 1.7 
Vitrodetrinite 1.9 2.9 2.4 0.6 0.4 
Vitrinite Total 5.1 3.7 3.2 2.4 2.1 
Fusinite 0.6 0.4 0.0 0.2 0.4 
Semifusinite 0.2 0.0 0.0 0.0 0.0 
Inertodetrinite 2.3 1.0 2.4 1.4 0.4 
Inertinite Total 3.1 1.4 2.4 1.6 0.8 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 2.3 1.2 2.4 1.0 1.7 
Liptodetrinite 0.8 0.6 0.4 0.4 0.4 
Lamalginite 1.4 1.2 2.4 0.2 1.4 
Bituminite 1.2 0.4 1.2 0.0 1.0 
Liptinite Total 5.6 3.3 6.3 1.6 4.5 
Silicates 5.4 6.5 7.5 3.0 3.1 
Sulfides & Phosphates 5.6 5.5 5.0 5.1 4.8 
Carbonate 0.0 0.0 0.0 0.0 0.0 
Clay-rich matrix material 75.1 79.6 75.6 86.3 84.7 
Mineral Total 86.2 91.6 88.1 94.5 92.6 

              

M
in

er
al

-fr
ee

 p
er

ce
nt

 b
y 

vo
lu

m
e Vitrinite 22.5 9.3 6.7 32.1 23.7 

Vitrodetrinite 14.1 34.9 20.0 10.7 5.3 
Vitrinite Total 36.6 44.2 26.7 42.9 28.9 
Fusinite 4.2 4.7 0.0 3.6 5.3 
Semifusinite 1.4 0.0 0.0 0.0 0.0 
Inertodetrinite 16.9 11.6 20.0 25.0 5.3 
Inertinite Total 22.5 16.3 20.0 28.6 10.5 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 16.9 14.0 20.0 17.9 23.7 
Liptodetrinite 5.6 7.0 3.3 7.1 5.3 
Lamalginite 9.9 14.0 20.0 3.6 18.4 
Bituminite 8.5 4.7 10.0 0.0 13.2 
Liptinite Total 40.8 39.5 53.3 28.6 60.5 
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D2 Core, Organic Petrography, 93–89ft (continued)       
  Sample ID code pp pq pr ps pt 
  Depth on core (ft) 90.03 90.10 90.17 90.24 90.31 

W
ho

le
-r

oc
k 

pe
rc

en
t b

y 
vo

lu
m

e 
Vitrinite 2.0 0.4 2.3 1.6 3.9 
Vitrodetrinite 1.0 1.2 1.0 0.8 1.8 
Vitrinite Total 2.9 1.6 3.3 2.3 5.7 
Fusinite 0.0 0.2 0.2 0.4 0.2 
Semifusinite 0.0 0.0 0.0 0.0 0.0 
Inertodetrinite 1.6 1.2 1.0 0.8 1.6 
Inertinite Total 1.6 1.4 1.2 1.2 1.8 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 1.6 0.8 2.7 1.2 2.3 
Liptodetrinite 0.8 0.6 0.8 1.2 0.8 
Lamalginite 1.0 0.6 0.2 0.6 1.8 
Bituminite 0.4 0.8 0.8 0.4 1.4 
Liptinite Total 3.7 2.8 4.5 3.3 6.2 
Silicates 2.7 3.2 5.7 4.1 11.9 
Sulfides & Phosphates 6.7 6.1 4.9 7.9 8.2 
Carbonate 0.0 0.0 0.0 0.0 0.0 
Clay-rich matrix material 82.4 84.8 80.5 81.2 66.3 
Mineral Total 91.8 94.1 91.0 93.2 86.4 

              

M
in

er
al

-fr
ee

 p
er

ce
nt

 b
y 

vo
lu

m
e Vitrinite 23.8 6.7 26.1 22.9 28.6 

Vitrodetrinite 11.9 20.0 10.9 11.4 12.9 
Vitrinite Total 35.7 26.7 37.0 34.3 41.4 
Fusinite 0.0 3.3 2.2 5.7 1.4 
Semifusinite 0.0 0.0 0.0 0.0 0.0 
Inertodetrinite 19.0 20.0 10.9 11.4 11.4 
Inertinite Total 19.0 23.3 13.0 17.1 12.9 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 19.0 13.3 30.4 17.1 17.1 
Liptodetrinite 9.5 10.0 8.7 17.1 5.7 
Lamalginite 11.9 10.0 2.2 8.6 12.9 
Bituminite 4.8 13.3 8.7 5.7 10.0 
Liptinite Total 45.2 46.7 50.0 48.6 45.7 
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D2 Core, Organic Petrography, 93–89ft (continued)       
  Sample ID code pu pv pw px py 
  Depth on core (ft) 90.38 90.45 90.52 90.58 90.65 

W
ho

le
-r

oc
k 

pe
rc

en
t b

y 
vo

lu
m

e 
Vitrinite 4.3 1.5 3.7 1.2 1.9 
Vitrodetrinite 1.9 2.3 1.4 0.8 1.0 
Vitrinite Total 6.2 3.9 5.0 2.0 2.9 
Fusinite 1.4 0.4 0.4 0.2 0.4 
Semifusinite 0.0 0.0 0.0 0.0 0.0 
Inertodetrinite 1.9 1.0 0.6 0.8 1.0 
Inertinite Total 3.3 1.3 1.0 1.0 1.4 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 2.3 1.3 1.6 2.4 1.9 
Liptodetrinite 0.6 0.4 0.6 0.6 1.0 
Lamalginite 1.7 0.2 1.2 0.6 0.6 
Bituminite 1.2 1.3 0.6 0.4 0.2 
Liptinite Total 5.8 3.3 3.9 4.1 3.7 
Silicates 10.9 7.7 6.6 5.5 2.3 
Sulfides & Phosphates 7.8 7.9 7.4 14.3 6.2 
Carbonate 0.0 0.0 0.0 0.0 0.0 
Clay-rich matrix material 66.0 75.9 76.1 72.9 83.6 
Mineral Total 84.7 91.5 90.1 92.7 92.1 

              

M
in

er
al

-fr
ee

 p
er

ce
nt

 b
y 

vo
lu

m
e Vitrinite 27.8 18.2 37.3 16.7 24.4 

Vitrodetrinite 12.7 27.3 13.7 11.1 12.2 
Vitrinite Total 40.5 45.5 51.0 27.8 36.6 
Fusinite 8.9 4.5 3.9 2.8 4.9 
Semifusinite 0.0 0.0 0.0 0.0 0.0 
Inertodetrinite 12.7 11.4 5.9 11.1 12.2 
Inertinite Total 21.5 15.9 9.8 13.9 17.1 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 15.2 15.9 15.7 33.3 24.4 
Liptodetrinite 3.8 4.5 5.9 8.3 12.2 
Lamalginite 11.4 2.3 11.8 8.3 7.3 
Bituminite 7.6 15.9 5.9 5.6 2.4 
Liptinite Total 38.0 38.6 39.2 55.6 46.3 

 

 

 

 

 

 

83 
 



D2 Core, Organic Petrography, 93–89ft (continued)       
  Sample ID code pz paa pbb pcc pdd 
  Depth on core (ft) 90.72 90.79 90.86 90.93 91.00 

W
ho

le
-r

oc
k 

pe
rc

en
t b

y 
vo

lu
m

e 
Vitrinite 1.4 1.4 2.5 5.1 5.4 
Vitrodetrinite 0.6 0.8 1.9 1.6 2.0 
Vitrinite Total 1.9 2.2 4.5 6.6 7.4 
Fusinite 0.2 0.4 0.0 0.2 0.6 
Semifusinite 0.0 0.0 0.0 0.2 0.0 
Inertodetrinite 1.4 1.6 1.9 1.6 1.8 
Inertinite Total 1.5 2.0 1.9 1.9 2.4 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 1.7 0.8 2.1 1.4 1.4 
Liptodetrinite 0.2 0.4 0.4 0.2 0.6 
Lamalginite 0.2 0.4 1.2 0.8 0.6 
Bituminite 0.4 0.6 1.0 0.8 0.6 
Liptinite Total 2.5 2.2 4.7 3.1 3.2 
Silicates 6.2 3.6 9.9 9.9 13.2 
Sulfides & Phosphates 7.4 5.2 7.0 7.0 6.6 
Carbonate 0.0 0.0 0.0 0.0 0.0 
Clay-rich matrix material 80.5 84.9 72.1 71.4 67.1 
Mineral Total 94.0 93.7 89.0 88.3 87.0 

              

M
in

er
al

-fr
ee

 p
er

ce
nt

 b
y 

vo
lu

m
e Vitrinite 22.6 21.9 22.8 43.3 41.5 

Vitrodetrinite 9.7 12.5 17.5 13.3 15.4 
Vitrinite Total 32.3 34.4 40.4 56.7 56.9 
Fusinite 3.2 6.3 0.0 1.7 4.6 
Semifusinite 0.0 0.0 0.0 1.7 0.0 
Inertodetrinite 22.6 25.0 17.5 13.3 13.8 
Inertinite Total 25.8 31.3 17.5 16.7 18.5 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 29.0 12.5 19.3 11.7 10.8 
Liptodetrinite 3.2 6.3 3.5 1.7 4.6 
Lamalginite 3.2 6.3 10.5 6.7 4.6 
Bituminite 6.5 9.4 8.8 6.7 4.6 
Liptinite Total 41.9 34.4 42.1 26.7 24.6 
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D2 Core, Organic Petrography, 93–89ft (continued)       
  Sample ID code pee pff P30 P26 P25 
  Depth on core (ft) 91.07 91.14 91.20 91.27 91.34 

W
ho

le
-r

oc
k 

pe
rc

en
t b

y 
vo

lu
m

e 
Vitrinite 4.0 3.1 3.8 1.8 1.0 
Vitrodetrinite 1.1 3.1 0.0 0.0 0.0 
Vitrinite Total 5.2 6.1 3.8 1.8 1.0 
Fusinite 0.4 0.6 1.0 1.0 1.0 
Semifusinite 0.4 0.4 0.4 0.2 0.0 
Inertodetrinite 1.7 1.0 1.4 1.0 0.8 
Inertinite Total 2.5 1.9 2.8 2.2 1.8 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 1.7 1.9 1.6 0.4 0.4 
Liptodetrinite 0.4 0.8 0.2 0.0 0.8 
Lamalginite 1.3 0.6 3.0 1.4 0.0 
Bituminite 1.5 1.3 1.4 0.6 0.8 
Liptinite Total 5.0 4.6 6.2 2.4 1.9 
Silicates 12.6 11.7 0.8 0.8 0.4 
Sulfides & Phosphates 6.3 5.2 4.8 4.4 5.4 
Carbonate 0.0 0.0 0.0 0.0 0.0 
Clay-rich matrix material 68.5 70.2 81.7 88.5 89.1 
Mineral Total 87.4 87.1 87.3 93.7 94.9 

              

M
in

er
al

-fr
ee

 p
er

ce
nt

 b
y 

vo
lu

m
e Vitrinite 31.8 23.9 29.7 28.1 19.2 

Vitrodetrinite 9.1 23.9 0.0 0.0 0.0 
Vitrinite Total 40.9 47.8 29.7 28.1 19.2 
Fusinite 3.0 4.5 7.8 15.6 19.2 
Semifusinite 3.0 3.0 3.1 3.1 0.0 
Inertodetrinite 13.6 7.5 10.9 15.6 15.4 
Inertinite Total 19.7 14.9 21.9 34.4 34.6 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 13.6 14.9 12.5 6.3 7.7 
Liptodetrinite 3.0 6.0 1.6 0.0 15.4 
Lamalginite 10.6 4.5 23.4 21.9 0.0 
Bituminite 12.1 10.4 10.9 9.4 15.4 
Liptinite Total 39.4 35.8 48.4 37.5 38.5 
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D2 Core, Organic Petrography, 93–89ft (continued)       
  Sample ID code P24 P28 P23 P22 P21 
  Depth on core (ft) 91.41 91.48 91.55 91.62 91.69 

W
ho

le
-r

oc
k 

pe
rc

en
t b

y 
vo

lu
m

e 
Vitrinite 3.7 2.6 3.0 2.2 0.4 
Vitrodetrinite 0.0 0.0 0.0 0.0 0.0 
Vitrinite Total 3.7 2.6 3.0 2.2 0.4 
Fusinite 1.6 2.0 0.0 1.4 1.6 
Semifusinite 0.0 0.8 0.0 0.4 0.4 
Inertodetrinite 1.2 1.2 1.6 0.8 0.0 
Inertinite Total 2.7 3.9 1.6 2.6 2.0 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 1.4 1.0 1.0 1.0 1.4 
Liptodetrinite 1.8 1.4 0.4 1.0 0.0 
Lamalginite 0.0 3.5 4.3 0.6 1.0 
Bituminite 2.0 0.0 0.2 2.4 1.4 
Liptinite Total 5.1 5.9 5.9 4.9 3.8 
Silicates 0.4 1.0 0.4 0.0 0.8 
Sulfides & Phosphates 4.9 3.1 4.3 3.9 6.2 
Carbonate 0.0 0.2 0.0 0.0 0.0 
Clay-rich matrix material 83.0 83.3 84.6 86.4 86.8 
Mineral Total 88.3 87.6 89.3 90.4 93.8 

              

M
in

er
al

-fr
ee

 p
er

ce
nt

 b
y 

vo
lu

m
e Vitrinite 31.7 20.6 27.8 22.4 6.5 

Vitrodetrinite 0.0 0.0 0.0 0.0 0.0 
Vitrinite Total 31.7 20.6 27.8 22.4 6.5 
Fusinite 13.3 15.9 0.0 14.3 25.8 
Semifusinite 0.0 6.3 0.0 4.1 6.5 
Inertodetrinite 10.0 9.5 14.8 8.2 0.0 
Inertinite Total 23.3 31.7 14.8 26.5 32.3 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 11.7 7.9 9.3 10.2 22.6 
Liptodetrinite 15.0 11.1 3.7 10.2 0.0 
Lamalginite 0.0 28.6 40.7 6.1 16.1 
Bituminite 16.7 0.0 1.9 24.5 22.6 
Liptinite Total 43.3 47.6 55.6 51.0 61.3 
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D2 Core, Organic Petrography, 93–89ft (continued)       
  Sample ID code P20 P19 P18 P17 P16 
  Depth on core (ft) 91.76 91.82 91.89 91.96 92.03 

W
ho

le
-r

oc
k 

pe
rc

en
t b

y 
vo

lu
m

e 
Vitrinite 2.8 2.4 4.9 8.2 4.9 
Vitrodetrinite 0.0 0.0 0.0 0.0 0.0 
Vitrinite Total 2.8 2.4 4.9 8.2 4.9 
Fusinite 1.4 1.3 2.8 2.7 2.7 
Semifusinite 0.0 0.0 0.4 1.2 0.2 
Inertodetrinite 1.6 0.0 0.0 0.0 0.0 
Inertinite Total 3.0 1.3 3.2 3.9 2.9 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 0.4 1.1 1.2 2.2 0.8 
Liptodetrinite 3.0 0.0 0.0 0.0 0.0 
Lamalginite 0.0 2.9 1.8 2.3 2.1 
Bituminite 0.6 2.6 2.2 2.7 5.4 
Liptinite Total 4.0 6.6 5.3 7.2 8.3 
Silicates 1.4 0.7 1.4 1.0 0.8 
Sulfides & Phosphates 5.5 4.0 5.9 4.9 7.0 
Carbonate 0.0 0.2 0.0 0.0 0.0 
Clay-rich matrix material 83.4 84.5 79.3 74.4 75.7 
Mineral Total 90.3 89.4 86.6 80.2 83.5 

              

M
in

er
al

-fr
ee

 p
er

ce
nt

 b
y 

vo
lu

m
e Vitrinite 28.6 22.9 36.4 41.6 29.4 

Vitrodetrinite 0.0 0.0 0.0 0.0 0.0 
Vitrinite Total 28.6 22.9 36.4 41.6 29.4 
Fusinite 14.3 12.5 21.2 13.9 16.5 
Semifusinite 0.0 0.0 3.0 5.9 1.2 
Inertodetrinite 16.3 0.0 0.0 0.0 0.0 
Inertinite Total 30.6 12.5 24.2 19.8 17.6 
Sporinite 0.0 0.0 0.0 2.0 2.4 
Telalginite 4.1 10.4 9.1 10.9 4.7 
Liptodetrinite 30.6 0.0 0.0 0.0 0.0 
Lamalginite 0.0 27.1 13.6 11.9 12.9 
Bituminite 6.1 25.0 16.7 13.9 32.9 
Liptinite Total 40.8 62.5 39.4 36.6 50.6 
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D2 Core, Organic Petrography, 93–89ft (continued)       
  Sample ID code P15 P14 P13 P12 P11 
  Depth on core (ft) 92.10 92.17 92.24 92.31 92.38 

W
ho

le
-r

oc
k 

pe
rc

en
t b

y 
vo

lu
m

e 
Vitrinite 7.5 7.0 9.0 11.5 14.1 
Vitrodetrinite 0.0 0.0 0.0 0.0 0.0 
Vitrinite Total 7.5 7.0 9.0 11.5 14.1 
Fusinite 1.8 2.2 2.7 1.4 1.6 
Semifusinite 0.4 0.0 0.2 0.0 0.6 
Inertodetrinite 0.0 0.0 0.0 0.0 0.0 
Inertinite Total 2.2 2.2 2.9 1.4 2.2 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 0.6 2.0 1.4 1.4 1.4 
Liptodetrinite 0.0 0.0 0.0 0.0 0.0 
Lamalginite 2.6 3.4 1.8 2.6 2.2 
Bituminite 1.4 0.0 0.0 0.0 0.4 
Liptinite Total 4.5 5.4 3.1 4.0 4.0 
Silicates 0.0 0.4 0.0 0.0 0.0 
Sulfides & Phosphates 4.9 6.0 6.1 7.5 6.4 
Carbonate 0.0 0.0 0.0 0.0 0.0 
Clay-rich matrix material 80.9 78.9 78.9 75.6 73.3 
Mineral Total 85.9 85.3 85.0 83.2 79.7 

              

M
in

er
al

-fr
ee

 p
er

ce
nt

 b
y 

vo
lu

m
e Vitrinite 52.8 47.3 59.7 68.2 69.6 

Vitrodetrinite 0.0 0.0 0.0 0.0 0.0 
Vitrinite Total 52.8 47.3 59.7 68.2 69.6 
Fusinite 12.5 14.9 18.2 8.2 7.8 
Semifusinite 2.8 0.0 1.3 0.0 2.9 
Inertodetrinite 0.0 0.0 0.0 0.0 0.0 
Inertinite Total 15.3 14.9 19.5 8.2 10.8 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 4.2 13.5 9.1 8.2 6.9 
Liptodetrinite 0.0 0.0 0.0 0.0 0.0 
Lamalginite 18.1 23.0 11.7 15.3 10.8 
Bituminite 9.7 0.0 0.0 0.0 2.0 
Liptinite Total 31.9 36.5 20.8 23.5 19.6 
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D2 Core, Organic Petrography, 93–89ft (continued)       
  Sample ID code P10 P9 P8 P7 P6 
  Depth on core (ft) 92.45 92.51 92.58 92.65 92.72 

W
ho

le
-r

oc
k 

pe
rc

en
t b

y 
vo

lu
m

e 
Vitrinite 6.8 1.6 2.8 1.6 6.6 
Vitrodetrinite 0.0 0.0 0.0 0.0 0.0 
Vitrinite Total 6.8 1.6 2.8 1.6 6.6 
Fusinite 2.9 2.2 1.4 1.4 0.8 
Semifusinite 0.2 0.2 0.2 0.0 0.0 
Inertodetrinite 0.0 0.0 0.0 0.0 0.0 
Inertinite Total 3.1 2.4 1.6 1.4 0.8 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 1.5 3.7 2.1 1.9 4.5 
Liptodetrinite 0.0 0.3 0.3 0.6 0.9 
Lamalginite 3.3 0.6 1.2 0.3 1.2 
Bituminite 2.2 2.5 2.1 0.9 1.8 
Liptinite Total 7.0 7.1 5.7 3.8 8.5 
Silicates 0.2 8.4 7.2 7.5 9.7 
Sulfides & Phosphates 5.5 4.0 7.5 6.3 6.1 
Carbonate 0.0 0.0 0.0 0.0 0.0 
Clay-rich matrix material 77.0 74.9 73.2 77.4 70.3 
Mineral Total 82.7 87.3 88.0 91.2 86.1 

              

M
in

er
al

-fr
ee

 p
er

ce
nt

 b
y 

vo
lu

m
e Vitrinite 39.2 14.5 25.9 19.5 36.7 

Vitrodetrinite 0.0 0.0 0.0 0.0 0.0 
Vitrinite Total 39.2 14.5 25.9 19.5 36.7 
Fusinite 16.5 20.0 13.0 17.1 4.4 
Semifusinite 1.3 1.8 1.9 0.0 0.0 
Inertodetrinite 0.0 0.0 0.0 0.0 0.0 
Inertinite Total 17.7 21.8 14.8 17.1 4.4 
Sporinite 0.0 0.0 0.0 0.0 0.0 
Telalginite 8.9 29.3 17.5 21.4 32.6 
Liptodetrinite 0.0 2.4 2.5 7.1 6.5 
Lamalginite 19.0 4.9 10.0 3.6 8.7 
Bituminite 12.7 19.5 17.5 10.7 13.0 
Liptinite Total 40.5 56.1 47.5 42.9 60.9 
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D2 Core, Organic Petrography, 93–89ft (continued) 
  Sample ID code P5 P4 P3 
  Depth on core (ft) 92.79 92.86 93.00 

W
ho

le
-r

oc
k 

pe
rc

en
t b

y 
vo

lu
m

e 
Vitrinite 6.5 3.9 3.9 
Vitrodetrinite 1.1 0.0 0.0 
Vitrinite Total 7.6 3.9 3.9 
Fusinite 2.3 2.7 0.8 
Semifusinite 0.0 0.0 0.0 
Inertodetrinite 1.5 2.3 1.5 
Inertinite Total 3.8 5.0 2.3 
Sporinite 0.0 0.0 0.0 
Telalginite 2.7 1.2 1.5 
Liptodetrinite 0.4 0.4 0.8 
Lamalginite 2.3 1.2 1.2 
Bituminite 0.0 1.2 0.8 
Liptinite Total 5.3 3.9 4.2 
Silicates 1.1 1.9 0.8 
Sulfides & Phosphates 6.1 2.3 3.9 
Carbonate 0.0 0.0 0.0 
Clay-rich matrix material 76.0 82.9 84.9 
Mineral Total 83.2 87.2 89.6 

          

M
in

er
al

-fr
ee

 p
er

ce
nt

 b
y 

vo
lu

m
e Vitrinite 38.6 30.3 37.0 

Vitrodetrinite 6.8 0.0 0.0 
Vitrinite Total 45.5 30.3 37.0 
Fusinite 13.6 21.2 7.4 
Semifusinite 0.0 0.0 0.0 
Inertodetrinite 9.1 18.2 14.8 
Inertinite Total 22.7 39.4 22.2 
Sporinite 0.0 0.0 0.0 
Telalginite 15.9 9.1 14.8 
Liptodetrinite 2.3 3.0 7.4 
Lamalginite 13.6 9.1 11.1 
Bituminite 0.0 9.1 7.4 
Liptinite Total 31.8 30.3 40.7 
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Appendix C: Major– and Trace–Element Inventories, readings taken from 
TYCO portable XRF gun on loan to KGS from CIMAREX; gun set to 75 sec 
for three filters; 30 sec, 30 sec, 15 sec.  
Major– and Trace–Element Inventories 

Reading 
Number 1400 1399 1398 1397 1396 1388 1387 

Depth on 
core (ft) 86.1 87.5 88.1 88.5 88.85 89.05 89.4 

Si 203163 213861 128260 260652 191858 231862 240866 
Al 35975.5 39023.6 27262 51400.3 35987.9 47148.3 50950.7 
Ti 2917.35 3049.81 2474.13 3410.78 2953.01 3338.26 3307.53 
Zr 135.28 145.39 109.72 159.34 148.17 144.87 142.48 

Rb 79.87 78.51 98.1 76.07 81.31 83.54 81.58 
Th 13.83 14.44 14.69 17.47 17.78 17.74 17.26 

K 20768 20179.7 20278.6 21679.1 19549.3 22534 20089.2 
Pb 18.26 13.71 25.13 16.14 18.12 14.02 32.01 
Ni 95.4 116.97 109.81 84.74 94.69 115.61 115.17 
Fe 23248.6 24143.2 39855.3 18337.1 24099.5 21859.6 31959.4 
Cr 71 69.75 < LOD 90.46 45.98 114.16 92.83 

Nb 16.18 17.43 15.72 18.48 17.28 18.79 20.07 
S 75146.5 89069.4 83285.5 64040 111442 71397.4 109189 

Zn 132.25 127.22 198.45 141.06 138.17 126.13 113 
V 496 439 453.89 483.94 487.66 529.61 559.52 
U 44.47 50.91 30.31 46.16 41.55 46.74 45.58 

Mo 128.43 153.3 58.95 123.79 98.97 123.22 67.5 
Mn 222.63 < LOD 236.83 236.08 201.77 162.9 558.37 
Ca 17292 19668.1 20877.3 16519.6 26947.4 15683.2 34162.8 

Bal 609168 578483 662902 551437 574646 574064 494532 
Sr 79.86 73.41 79.96 70.4 84.49 79.32 80.8 
Bi 11.02 9.86 10.21 15.73 12.89 14.45 13.88 
Cl 507.22 520.9 529.63 516.2 526.03 523.16 736.84 
Se < LOD 6.07 < LOD < LOD < LOD < LOD 6.99 
As 12.02 15.25 28.79 13.69 11.15 14.94 38.1 
Hg < LOD < LOD < LOD < LOD < LOD < LOD < LOD 
Au < LOD < LOD 8.99 < LOD < LOD < LOD < LOD 
Cu < LOD 40.15 23.45 48.4 27.59 30.43 50.85 
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Major– and Trace–Element Inventories (continued)     
Reading 
Number 1386 1385 1384 1383 1382 1395 1394 

Depth on 
core (ft) 89.7 90 90.2 90.5 90.9 91.2 91.4 

Si 169547 198974 196674 126820 208544 189616 224001 
Al 35153.7 52863.4 42934.4 26504.1 41361.4 51316.4 51895.4 
Ti 2810.95 2953.29 3003.04 2456.07 3110.36 3069.24 3238.59 
Zr 129.51 100.94 134.18 114.12 139.49 114.8 132.74 

Rb 86.79 97.99 88.69 90.36 83.11 101.17 86.54 
Th 14.79 21.37 16.38 12.63 16.97 18.53 17.92 

K 21871.2 25006.1 22477.8 17879.9 20526.7 22770.7 22830.3 
Pb 23.47 23.42 21.05 40.27 15.16 25.16 24.57 
Ni 88.38 76.89 90.65 95.31 71.99 89.72 108.39 
Fe 29525.2 33653 29267.2 52599.2 22817.4 33045.4 27631 
Cr 51.57 59.32 84.68 < LOD 65.32 < LOD 81.34 

Nb 16.61 13.44 18.77 13.82 16.81 15.81 16.89 
S 106462 70586 88794.6 118372 86507.4 106026 84360.8 

Zn 105.66 121.01 119.56 61.68 132.89 69.82 90.84 
V 431.04 488.86 431.87 347.33 526.28 398.18 446.88 
U 40.62 26.34 37.38 30.73 41.88 30.87 35.64 

Mo 109.51 38.06 109.49 29.52 111.11 37.84 119.15 
Mn 224.63 203.79 249.41 235.39 172.54 257.15 286.67 
Ca 19916.1 13292.5 17645.1 27070.9 20627.2 23880 17351.1 

Bal 601156 589614 585708 613152 584252 556045 555120 
Sr 87.47 79.08 75.69 106.83 93.44 97.67 95.22 
Bi 10.65 17.94 13.55 < LOD 13.07 12.68 14.83 
Cl 518.73 740.1 437.05 536.57 582.85 487.88 573.89 
Se < LOD < LOD < LOD < LOD < LOD < LOD < LOD 
As 12.45 26.93 19.26 44.22 14.31 28.31 19.36 
Hg < LOD < LOD < LOD < LOD < LOD < LOD 8.9 
Au < LOD 7.12 < LOD < LOD < LOD < LOD 8.33 
Cu 41.31 36.86 36.34 39.54 23.6 34.67 32.91 
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Major– and Trace–Element Inventories (continued)     
Reading 
Number 1393 1392 1391 1390 1389 1375 1374 

Depth on 
core (ft) 91.6 91.8 92.2 92.6 92.7 93.2 93.5 

Si 181595 187502 202172 220547 219624 216036 215713 
Al 41128.4 37784.6 41708.2 48408.6 48948.4 51271.4 58436 
Ti 3020.77 2730.14 2952.61 3040.91 3106.22 3063.58 3045.78 
Zr 122.42 130.71 149.91 149.3 130.85 126.35 120.52 

Rb 94.42 82.34 79.31 83.57 87.59 89.62 96.37 
Th 14.73 12.32 18.2 16.38 19.24 15.84 18.44 

K 23041.3 22097.5 19030.2 22639.2 23576.1 22681.8 23784.7 
Pb 25.84 20.91 18.02 15.49 20.44 22.37 25.81 
Ni 76.12 87.56 77.11 105.32 127.5 124.4 91.26 
Fe 34391.7 30353.7 21631 30337.1 26850.7 26652.1 28979.6 
Cr 49.92 64.66 47.73 53.03 78.13 82.99 61.74 

Nb 15.95 16.9 18.27 18.32 19.46 18.02 16.57 
S 102727 94125.1 99649.7 76727.8 76687.9 88287.2 109875 

Zn 90.52 114.78 249.94 172.43 163.77 93.76 63.5 
V 421.79 332.43 511.64 485.98 511.53 480.87 478.3 
U 33.65 45.59 48.74 45.06 53.15 46.46 26.62 

Mo 35.32 143.63 78.02 107.38 142.44 122.2 14.46 
Mn 213.64 178.4 277.26 224.28 264.6 222.67 309.42 
Ca 19008.2 13414.9 31584.1 7999.37 14059.7 19852.9 31392 

Bal 580750 598106 569345 576480 573722 558932 515110 
Sr 85.88 82.56 73.04 84.67 97.29 89.46 99.32 
Bi 14.56 9.72 15.09 11.64 16.09 12.48 17.71 
Cl 538.9 798.22 480.21 446.98 535.11 552.64 474.57 
Se < LOD < LOD < LOD < LOD < LOD < LOD < LOD 
As 22.26 16.71 19.61 20.91 12.14 14.32 21.52 
Hg 9.29 < LOD < LOD 10.99 < LOD < LOD < LOD 
Au < LOD < LOD < LOD < LOD < LOD < LOD 6.36 
Cu 32.67 34.94 45.27 32.41 29.11 36.83 47.02 
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Major– and Trace–Element Inventories (continued)   
Reading 
Number 1373 1372     

Depth on 
core (ft) 93.9 94.5         

Si 195033 136472 
    Al 43448.9 29249.6 
    Ti 3124.79 2360.24 
    Zr 124.48 117.58 
    Rb 87.35 93.37 
    Th 15.44 19.08 
    K 22490.7 18849.4 
    Pb 18.55 36.88 
    Ni 95.49 94.42 
    Fe 25602.6 39489.7 
    Cr 83.26 75.31 
    Nb 16.75 13.4 
    S 61274 104966 
    Zn 131.93 41.34 
 

  
  V 770.07 418.97 

  
  

 U 28.79 16.61 
    Mo 82.24 14.49 
    Mn 203.48 246.81 
    Ca 16315.6 29729.2 
    Bal 619341 624124 
    Sr 96.37 117.63 
 

    
 Bi 13.58 14.46 

    Cl 703.33 473.94 
    Se 5.61 7.32   

   As 16.37 25.75 
    Hg < LOD < LOD 
    Au < LOD 9.12 
    Cu 30.6 42.42 
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Clusters Distance Leader Joiner 

19 0.00010063 Th Nb 

18 0.00019881 Pb As 

17 0.00032717 Th Pb 

16 0.00035477 Rb Sr 

15 0.00074080 Rb Ni 

14 0.00083769 Th U 

13 0.00153015 Zr Zn 

12 0.00165056 Rb Mo 

11 0.00164064 Zr Rb 

10 0.00294152 Zr Th 

9 0.00496293 V Cl 

8 0.01666735 Zr V 

7 0.10534565 Ti Zr 

6 0.28985562 K Ca 

5 0.39491428 K Fe 

4 0.80864284 Al K 

3 1.05203126 Al Ti 

2 3.14678015 Al S 

1 7.03686201 Si Al 
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