8-2017

Enhancements in Mass Transfer for Carbon Capture Solvents Part I: Homogeneous Catalyst

Leland R. Widger
University of Kentucky

Moushumi Sarma
University of Kentucky, moushumi.sarma@uky.edu

Jonathan J. Bryant
University of Kentucky

David S. Mannel
University of Kentucky, david.mannel@uky.edu

Jesse G. Thompson
University of Kentucky, jesse.thompson@uky.edu

See next page for additional authors

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/caer_facpub

Part of the [Catalysis and Reaction Engineering Commons](https://uknowledge.uky.edu/caer_facpub), and the [Oil, Gas, and Energy Commons](https://uknowledge.uky.edu/caer_facpub)

Repository Citation
https://uknowledge.uky.edu/caer_facpub/26
Authors
Leland R. Widger, Moushumi Sarma, Jonathan J. Bryant, David S. Mannel, Jesse G. Thompson, Cameron A. Lippert, and Kunlei Liu

Enhancements in Mass Transfer for Carbon Capture Solvents Part I: Homogeneous Catalyst

Notes/Citation Information

© 2017 Elsevier Ltd. All rights reserved.

This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/.

The document available for download is the author's post-peer-review final draft of the article.

Digital Object Identifier (DOI)
https://doi.org/10.1016/j.ijggc.2017.05.019
Enhancements in Mass Transfer for Carbon Capture Solvents Part I: Homogeneous Catalyst

Leland R. Widger¹, Moushumi Sarma¹, Jonathan J. Bryant¹, David S. Mannel¹, Jesse G. Thompson¹, Cameron A. Lippert*¹ and Kunlei Liu*¹,²

¹Center for Applied Energy Research, 2540 Research Park Drive, University of Kentucky, Lexington, KY 40511, United States
²Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506

*To whom correspondence should be addressed, Phone: +1 (859)-257-0293, Fax: +1 859-257-0302, e-mail: Kunlei.Liu@uky.edu

Abstract

The novel small molecule carbonic anhydrase (CA) mimic [Co⁢III(Salphen-COO⁻)Cl]HNEt₃ (I), was synthesized as an additive for increasing CO₂ absorption rates in amine-based post-combustion carbon capture processes (CCS), and its efficacy was verified. I was designed for use in a kinetically slow but thermally stable blended solvent, containing the primary amines 1-amino-2-propanol (A2P) and 2-amino-2-methyl-1-propanol (AMP). Together, the A2P/AMP solvent and I reduce the overall energy penalty associated with CO₂ capture from coal-derived flue gas, relative to the baseline solvent MEA. I is also effective at increasing absorption kinetics of kinetically fast solvents, such as MEA, which can reduce capital costs by requiring a smaller absorber tower. The transition from catalyst testing under idealized laboratory conditions, to process relevant lab- and bench-scale testing adds many additional variables that are not well understood and rarely discussed. The stepwise testing of both I and the novel A2P/AMP solvent blend is described through a transition process that identifies many of these process and evaluation
challenges not often addressed when designing a chemical or catalytic additive for industrial CCS systems, where consideration of solvent chemistry is typically the primary goal.

Keywords: Post-combustion; CO₂ capture; Mass transfer; Amine; Catalyst; Additives.

1. **Introduction**

Increasing concern over global CO₂ emissions has led to new regulations from the US Environmental Protection Agency (EPA) for coal-fired power generation, which is responsible for the emission of billions of tons annually. As of January 2014, new coal burning units require carbon capture and storage (CCS) processes to reduce CO₂ emissions to 1100 lb/MW.¹ Amine-based carbon capture is the most widely studied, and most likely to be implemented commercially, method for CO₂ purification from flue gas.² However, the cost of these systems is still prohibitive, and reduction in both capital and operational costs, relative to the Department of Energy (DOE) reference case 12, 30 wt.% monoethanolamine (MEA), is necessary.³ In general, capital costs arise on the absorption side of the process, while operational costs arise on the CO₂ stripping/solvent regeneration side. Construction of the absorption tower (absorber) alone accounts for approximately 20% of the initial capital investment for construction of a carbon capture system; therefore significant effort has focused on understanding and increasing absorption kinetics of the amine solvent in the absorption tower.²⁻⁴⁻⁷

Research toward increasing CO₂ absorption in solvent-based CCS processes has focused on three main strategies: (1) solvent development/amine blends,⁸⁻¹⁴ (2) modification of the packing material to increase wetted surface area,¹⁵⁻¹⁶ and (3) the addition of catalysts, such as small-molecule carbonic anhydrase (CA) mimics,¹⁷⁻²⁰ to increase the chemical kinetics of absorption and desorption²¹ reactions. The development of new amines and solvent blends has been delivering
incremental gains, as there is always a tradeoff between reactivity and stability, where increased absorption kinetics is generally associated with higher regeneration energy and reboiler duty.22-23 In addition, the emission of amine degradation products,24-25 particularly carcinogenic nitrosamines from secondary amine solvents,26 rises concerns over the use of some potentially effective absorption solvents. Absorption catalyst development has also been plagued with process difficulties, and the most widely studied (1) carbonic anhydrase (CA), and (2) the CA mimic, [Zn(cyclen)(H\textsubscript{2}O))(ClO\textsubscript{4})\textsubscript{2}, are ineffective under CCS conditions.27,22

Recent work has led to the first reported examples of homogenous CO\textsubscript{2} hydration catalysts that allowed for mass transfer enhancement in kinetically-fast primary amine solvents.27-29 These catalysts incorporate electron donating ligand environments and ionic secondary coordination sphere groups to increase solubility in aqueous solutions, promote CO\textsubscript{2} hydration, and facilitate bicarbonate dissociation away from the metal center. Previous reports have detailed the synthesis, characterization, and preliminary laboratory testing of these catalysts under conditions conducive to carbon capture processes, i.e. low CO\textsubscript{2} concentration (0.14 atm), and high amine concentration (5 M). These previously reported complexes were shown to be stable toward the high temperatures (up to 145 °C) and oxidizing flue gas contaminants (SO\textsubscript{x} and NO\textsubscript{x}) associated with industrial CCS processes. Herein we report the testing and analysis of the novel catalyst [CoIII(Salphen-COO-)Cl]HNEt\textsubscript{3} (1), and describe the difficulties associated with integrating the new additive into a bench scale, heat-integrated absorber-stripper process.

2. Experimental

2.1. General. Reagents for solvent mixtures, catalyst synthesis, and kinetics studies were purchased from Sigma Aldrich, monoethanolamine was purchased from Univar. Solutions of monoethanolamine (MEA, 5 M) and the A2P/AMP blended solvent (0 – 30 wt. % of each
component) were prepared by weight % and adjusted to an alkalinity of 5.0 mol N/Kg. Experimental methods for pH drop, total inorganic carbon loading, and alkalinity measurements were conducted according to reported procedures. The surface tension and the surface elasticity data were acquired at 22 °C on a Biolin Scientific Optical Tensiometer, using Oneattension software. The viscosity of the solutions were determined by using the Brookfield DVI viscometer. Catalyst loading of 2.3 g/L is used based on previously reported studies. Foaming volume measurements were conducted in a 100 mL graduated cylinder, with 10 mL of solvent, under study. Simulated flue gas (14% CO₂ with balance N₂) gas was purged through a gas impinger at a constant flow rate (0.6 L/min). The volume of the foam formed with continuous purging of CO₂ was then recorded as a function of time.

2.2. Synthesis of [Co³⁺(Salphen-COO⁻)Cl]HNEt₃ (1). N,N’-disalicylidene-4-carboxy-1,2-phenylenediamine (Salphen-COOH) was synthesized by stirring salicylaldehyde (1.80 mL, 16.9 mmol) and 3,4-diamino benzoic acid (1.01 g, 6.5 mmol) in ethanol (40 mL) overnight, then collecting the orange solid (2.05 g, 86% yield) by filtration and washing with ethanol and diethyl ether. The Salphen-COOH ligand was suspended in ethanol (30 mL), followed by addition of triethylamine (2.80 mL, 20.1 mmol). An ethanolic (30 mL) solution of CoCl₂●6H₂O (1.49 g, 6.2 mmol) was added to the reaction mixture drop wise over 15 min to give dark brown solution, and the reaction mixture was stirred overnight at room temperature. Diethyl ether (50 mL) was added, and the resulting brown precipitate was collected by vacuum filtration. The solid product was washed with methanol (30 mL), diethyl ether (30 mL), and allowed to air dry, giving 1 (3.07 g, 93%) as a brown powder. FTIR-ATR (cm⁻¹): 3369 (s), 2979 (m), 1601 (vs, C=N), 1539 (s), 1442 (s), 1369(s), 1304(s), 1151(s). ESI-ToF (m/z): 417.02777 [1 – Et₃N – Cl⁺]. Elemental analysis [1
• 2H₂O]. Anal. Calc. for C₂₇H₃₃ClCoN₃O₆: C, 54.97; H, 5.64; N, 7.12. Found: C, 55.43; H, 5.64; N, 6.82.

![Proposed structure of 1.](image)

Figure 1. Proposed structure of 1.

2.3. **Breakthrough Solvent Evaluation Apparatus:** Breakthrough experiments were conducted as previously reported.²⁷ ²⁹ In a representative procedure, the breakthrough solvent evaluation apparatus (Figure 2) consists of a 30 ml gas saturator, a 30 ml bubbler, a condenser, and a CO₂ analyzer. Both the saturator and the bubbler are made of Pyrex®, and are immersed in a water bath maintained at 40 °C. A CO₂ feed gas stream (12%-14%) balanced with N₂ is saturated with water in the saturator and bubbled through a 30 wt% MEA solution in the bubbler (1L/min). The gas effluent is dried over drierite and analyzed for CO₂ concentration (vol%) using a CO₂ analyzer (VIA-510, HORIBA, 0.5% precision). Data of CO₂ outlet concentration with respect to time is continuously recorded with 1 second interval using an in-house Labview program.

The difference of inlet and outlet CO₂ concentration represents the absorbed amount of CO₂ at a particular time. The integration of the concentration difference represents the CO₂ loading, as expressed in equation (1),

\[
\text{CO}_2 \text{ Loading (mol CO}_2/\text{kg solution)} = \int_0^t (C_{in} - C_{out}(t)) \, dt \quad (1)
\]
where C_{in} is the CO\textsubscript{2} feed gas rate in mol/s, C_{out} is the CO\textsubscript{2} effluent rate in mol/s, t is time in second, and m_{sol} is the mass of solution in kg.

In addition, the absorption rate can be described by the derivate of CO\textsubscript{2} loading with respect to time is given by equation (2),

$$\text{Absorption rate (mol CO}_2/\text{kg solution/s}) = \frac{d \text{ CO}_2 \text{ Loading}}{dt} \tag{2}$$

Figure 2. Schematic of breakthrough apparatus

2.4. Determination of Mass Transfer Coefficient by Wetted Wall Column (WWC): Wetted wall column experiments were conducted as previously reported.31 A schematic of the WWC used in this test is shown in **Figure 3.** In a representative procedure, 30 wt% aqueous MEA is loaded to a mol CO\textsubscript{2}/mol MEA level of approximately 0.1 with CO\textsubscript{2} by sparging the solution reservoir with a concentrated 30 vol\% CO\textsubscript{2}/N\textsubscript{2} mixture for 6-12 min. Catalyst was added to the solution (1, 2.3 g/L) to give a clear, yellow solution. The solution is then heated to 40 °C by circulating through a heat exchanger bath at 180 ml/min. Once the solution is thermally stable, a CO\textsubscript{2} gas feed mixed with N\textsubscript{2} at 6.6 L/min (3-14.7 vol\%), pre-heated and water saturated by a direct contact heat exchanger, is allowed to contact with the liquid countercurrent on the surface of the column.
Absorption or desorption of CO$_2$ occurs across the contacting area, which gives a CO$_2$ concentration difference in the gas stream between the inlet and outlet of the column. Flux and driving force can be obtained from the concentration difference. Four different CO$_2$ concentrations in the gas stream were tested at the same carbon loading. Liquid samples downstream of the WWC were collected during the process for carbon loading, viscosity, density, and pH measurements. The above procedure was repeated for different carbon loadings.

The overall mass transfer coefficient at the operating condition can be calculated from equation (3),

$$K_G = \frac{N_{CO_2}}{A \Delta P_{CO_2}}$$ \hspace{1cm} (3)

in which N_{CO_2} is the flux of CO$_2$, K_G is the overall mass transfer coefficient, ΔP_{CO_2} is the log mean of CO$_2$ partial pressure, and A is the contacting surface area. Diffusivity of CO$_2$, which is not directly measured in this work, can be calculated from a modified Stokes-Einstein equation in equation (4),

$$\left(D_{CO_2} \right)_{\text{amine soln}} = \left(D_{CO_2} \right)_{\text{water}} \left(\frac{\eta_{\text{water}}}{\eta_{\text{amine soln}}} \right)^{0.8}$$ \hspace{1cm} (4)

in which D_{CO_2} is the diffusivity of CO$_2$ in amine solution or water, and η is the viscosity of amine solution or water.

The flux is calculated by the CO$_2$ concentration difference at the inlet and outlet of the wetted wall column as shown equation 5,
in which the molar flow rates N_i were calculated from total volume flue rate at standard condition,

y_i is the molar fraction of component i.

Since the CO$_2$ dynamically transfers from gas phase to liquid phase, the partial pressure of CO$_2$ decreases along the wetted wall column. To better represent the true average partial pressure of CO$_2$ in the column, log mean of the driving forces was taken at the inlet and the outlet of the column, as given by equation (6),

$$
\Delta P_{CO_2} = \frac{P_{in}^{CO_2} - P_{out}^{CO_2}}{\ln(P_{in}^{CO_2} - P_{CO_2}^*) - \ln(P_{out}^{CO_2} - P_{CO_2}^*)}
$$

in which $P_{CO_2}^i$ is the partial pressure of CO$_2$, as shown in equation (7).

$$
P_{CO_2}^i = y_{CO_2}^i (P_{total} - P_{water})
$$

As the feed gas is saturated with water in the saturator, the partial pressure of water can be written as its saturation pressure at the temperature T from equation (8).

$$
P_{water}^i = \exp\left(725.5 - \frac{7207}{T} - 7.139n(T) + 4.046 \times 10^6 T^2\right)
$$

The equilibrium partial pressure of CO$_2$, $P^{*}_{CO_2}$, can be calculated by making the flux N_{CO_2} to be zero at zero driving force through an iterative routine in MATLAB where the two equations are
simultaneously solved. A typical relationship of flux N_{CO2} and driving force of CO_2 is shown in Figure 4. The linearity of the two indicates a pseudo first order approximation.

Figure 3. Schematic of wetted wall column apparatus utilized for mass transfer coefficient measurements.
Figure 4. A typical relationship of flux N_{CO2} and driving force of CO$_2$ from wetted wall column experiment.

2.5. Effects of Flue Gas Contaminants on Catalyst Activity. In a representative procedure, a stock solution of 1 at a loading of 2.3 g/L was prepared in 5 M aqueous MEA (250 mL). A 25 mL aliquot of the stock solution was treated with 1000 ppm NaNO$_2$ (0.250 g of NaNO$_2$) for 24 hours followed by evaluation in the pH-drop apparatus for the above method. This method was repeated for treatments with 1000 ppm NaNO$_3$, Na$_2$SO$_4$, and combination of the three for a total concentration of 3000 ppm NO$_x$ and SO$_x$ derived salts. Gaseous NO$_x$ contaminants were generated in-situ and bubbled through a 25 mL aliquot of the stock solution containing 1 for 30 min prior to evaluation via the pH-drop apparatus. For the generation of NO$_x$ gas, a 100 mL two-necked round bottom flask was charged with solid NaNO$_2$ (2.25 g, 33 mmol) and a magnetic stir bar. One neck was sealed with a rubber septum, and the other was fitted with a glass adapter containing a hose barb. Rubber tubing was attached via the hose barb adapter and a needle was fitted to the end of the rubber tubing. Concentrated sulfuric acid was added drop wise through the septum with constant stirring resulting in the immediate appearance of a brown fume.

2.6. Thermal Stability. In a representative procedure, a stock solution of 1 (2.3 g/L) was prepared in 5 M aqueous MEA solution. A 50 mL aliquot was taken from the stock solution and 14% CO$_2$ gas with N$_2$ span was bubbled through the solution until a pH of 10.5 was reached. The solution was transferred to an autoclave, sealed, placed in an oven, and heated at 145 °C for 92 hours. The autoclave was then removed from the oven and cooled to room temperature. The activity of the catalyst was assayed by taking a 25 mL aliquot and evaluating via the pH-drop method as described above.

2.7. Integrated Bench Scale CO$_2$ Capture System.
Figure 5. Simplified process flow diagram of integrated bench scale CO₂ capture system.

Figure 5 shows the schematic of the integrated bench-scale absorption/regeneration system which consists of a 7.6 cm ID clear PVC scrubber with a 2 m height of packing, a 7.6 cm ID stainless steel stripper with a 2 m height of packing, and a condenser for solvent recovery in the stripper exhaust. The packing inside both absorber and stripper are 6x6 mm ceramic Raschig rings. A decoupled heater and a chiller are installed to provide sensible heat for rich solvent heating and lean solvent cooling to enhance the flexibility of the experimental matrix. A hot oil system is installed to provide necessary heat for solvent regeneration. Liquid flow rate is controlled by 2 centrifugal pumps. Two in-line flow meters have been installed to monitor the volumetric solvent flow rates both entering and exiting the stripper. Feed gas is supplied by two mass flow controllers (MFC) deployed to control the CO₂ and N₂ flow rates. CO₂ and N₂ are mixed to simulate flue gas conditions of 14% CO₂ at a total flow rate of 30 L/min. The gases are sent through a water saturator.
and then injected to the bottom of the absorber. A Horiba CO$_2$ analyzer is used to measure the online CO$_2$ concentration at the absorber outlet.

The measurements of CO$_2$ absorption efficiency and rich solution regeneration energy requirement at various conditions were performed during the bench-scale parametric study. The CO$_2$ absorption efficiency is related to the gas inlet and outlet CO$_2$ flow rates by equation (9):

$$
\varphi_{CO_2} = \frac{n_{CO_2}^{in} - n_{CO_2}^{out}}{n_{CO_2}^{in}}
$$ \(\text{(9)}\)

where φ_{CO_2}, CO$_2$ capture efficiency, %; $n_{CO_2}^{in}$, gas inlet CO$_2$ mole flow rate, mol/s; $n_{CO_2}^{out}$, gas outlet CO$_2$ mole flow rate, mol/s. The inlet CO$_2$ flow rate, $n_{CO_2}^{in}$ was calculated directly from the CO$_2$ MFC flow rate. The outlet CO$_2$ flow rate was calculated by equation (10):

$$
n_{CO_2}^{out} = c_{CO_2}^{out} \frac{V_{N_2}^{in}}{1 - c_{CO_2}^{out}}
$$ \(\text{(10)}\)

where $c_{CO_2}^{out}$, outlet CO$_2$ concentration, %; $V_{N_2}^{in}$, inlet N$_2$ flow rate, L/min. The outlet CO$_2$ concentration, $c_{CO_2}^{out}$ was measured by an Horiba CO$_2$ analyzer, which was calibrated before each test. The inlet N$_2$ flow rate, $V_{N_2}^{in}$ was obtained from the MFC.

The rich CO$_2$ solution regeneration energy is calculated from the reboiler heat duty assuming an adiabatic system by equation (11):

$$
Q_{CO_2}^{ov} = \frac{Q_R}{n_{CO_2}^{in} - n_{CO_2}^{out}}
$$ \(\text{(11)}\)

where $Q_{CO_2}^{ov}$, overall regeneration energy per unit of CO$_2$ regeneration, kJ/mol CO$_2$; Q_R, reboiler heat duty, kW. The reboiler heat was provided by hot oil recirculation, the heat duty Q_R is calculated by equation (12):

$$
Q_R = c_p^{oil} m_{oil} \rho_{oil} (T_R^{in} - T_R^{out})
$$ \(\text{(12)}\)
where C_p^{oil}, hot oil heat capacity, kJ/g/K; m_{oil}, hot oil flow rate, L/s; ρ_{oil}, hot oil density, g/L; T_{R}^{in}, reboiler inlet temperature, °C; T_{R}^{out}, reboiler outlet temperature, °C. Mobiltherm 603 heat transfer oil was used in the reboiler system.

3. Results

3.1. Solvent Properties. The development of homogenous CO$_2$ hydration catalysts for industrial CCS processes is a complex task, with multiple competing determinate factors. Monoethanolamine (MEA) is the most widely investigated solvent due to its low cost and fast kinetics for CO$_2$ absorption. However, there are concerns over the commercial implementation due to the high energy cost for solvent regeneration and thermal degradation rates associated with MEA solvents. To circumvent these disadvantages we formulated a blended solvent consisting of a thermally stable primary amine and a sterically-hindered primary amine, 1-amino-2-propanol (A2P) and 2-amino-2-methyl-1-propanol (AMP). Sterically-hindered amines such as AMP tend to exhibit slower kinetics of CO$_2$ absorption, making them ideally suited for enhancement by the addition of a catalytic additive to increase capture rate. If the absorption rate of a hindered amine solvent can be brought close to that of a fast solvent such as MEA, the combination of a faster reaction rate, lower degradation rate, and lower regeneration energy would give a preferable solvent mixture with fast absorption, low energy requirements, and low solvent makeup.

The reactions of aqueous alkanolamines with CO$_2$ have been studied by a variety of methods, and are widely discussed in the literature. The rate of MEA-carbamate formation with CO$_2$ (k_2) is widely debated in the literature and varies from 4000 M$^{-1}$s$^{-1}$ to 8000 M$^{-1}$s$^{-1}$, with the most common values between 5000 – 6000 M$^{-1}$s$^{-1}$, depending on the method, conditions, pH, and temperature. Additional studies have discussed the individual kinetics of A2P and AMP
amine solutions.35,39-40,46,50 The reported k_2 (298 K) values for the reaction of CO$_2$ with A2P are $4400 – 5300$ M$^{-1}$s$^{-1}$,35,50 while the more sterically-hindered AMP is much slower with reported values of $502 – 810$ M$^{-1}$s$^{-1}$.40,46 The blended A2P/AMP solvent is therefore expected to exhibit slower kinetics than the MEA base case, however the addition of a catalyst to boost absorption kinetics in combination with lower regeneration energy and decreased solvent makeup from degradation (\textit{vide infra}) would make the A2P/AMP solvent blend a competitive alternative to MEA.

In order to have a robust solvent for commercialization, long-term thermal stability of the amines is critical, as the capture solvents are often exposed to high temperatures during the CO$_2$ capture process which is solvent- and stripper operating pressure-dependent. MEA has well-documented thermal degradation at temperatures above 120 °C.51-53 The thermal stability of the novel A2P/AMP solvent blend was examined, relative to MEA, through extended and constant exposure to elevated temperatures of 125 °C, 135 °C, and 145 °C for 168 hours. The A2P/AMP blend shows a 70% decrease in the rate of amine loss (as percent of initial) at the high temperatures associated with stripper conditions over a 168 hour period (\textbf{Figure 6}).
Figure 6. Thermal degradation (% loss) of carbon loaded MEA and A2P/AMP at stripping temperatures over 168 h, $\alpha = 0.45$ mol C/mol N, for both MEA and A2P/AMP.

Physical solvent properties such as viscosity54 and surface tension55 are known to impact the solution side diffusion and mass transfer resistance for reactants and products, and an increase in these properties have been associated with decreasing mass flux of CO$_2$ into capture solutions. Surface elasticity is an indication of surfactant-like behavior and is a key factor in solvent foaming,56 which can lead to detrimental process implications for industrial systems.57 For these reasons it was imperative to determine the effect of 1 on the solvent physical properties, if notable. The viscosity, surface tension, and elasticity of the carbon capture solutions were measured at carbon loadings across the solvent operational range ($\alpha = 0 - 0.55$) in the absence and presence of 1. Solutions of MEA and A2P/AMP solvent containing 2.3 g/L of 1 were compared to baseline solutions of the solvent with no additional additive. As can be seen in Figure 7a and 7b, there are no observable differences in viscosity for both solvents, and a small decrease in surface tension in MEA at high loadings ($\alpha > 0.3$) by the addition of 1. The surface elasticity of A2P/AMP solutions is unaffected by the addition 1, indicating 1 is not acting as a surfactant in A2P/AMP, however there is a sharp increase in elasticity upon the addition of 1 to MEA (Figure 7c). This increase in surface elasticity is accompanied by the presence of solvent foaming when simulated flue gas is bubbled into solutions of MEA + 1 (Figure 7d), which is also observed in pH drop and breakthrough experiments, and precluded the use of this solvent mixture in packed column experiments (vide infra).
Figure 7. (a) Viscosity (b) surface tension and (c) surface elasticity versus carbon loading for carbon capture solutions with and without additive 1. (d) Foaming versus time for carbon capture solutions with and without additive 1. (■ = 30 wt.% MEA, ▲ = MEA + 2.3 g/L 1, ○ = A2P/AMP, ♦ = A2P/AMP + 2.3 g/L 1).

3.2. Initial Screening. For evaluation of the influence of 1 on reaction kinetics, a pH drop method was used as a quick screening process. The activity of 1 and its propensity to improve overall mass transfer was evaluated by bubbling simulated flue gas (14% CO₂ / N₂ balanced) into solutions of 5 M MEA and A2P/AMP containing 1, and compared to the reference amine solutions. As the acid gas (CO₂) is absorbed into an amine solvent, there is a decrease in the pH of the solution as protons are released to balance carbamate/bicarbonate formation. Therefore, in pH drop experiments a more negative slope is a qualitative indication of a more rapid absorption of CO₂ by
the solvent under the same setup and operating conditions. As shown in Figure 8, a significant enhancement in CO$_2$ absorption is observed upon the addition of 1 to both solvents, as indicated by the increased slope of the pH drop curve (Figure 8a) (e.g. increased rate of CO$_2$ absorption, Figure 8b), relative to additive-free baseline for both 5 M MEA and the A2P/AMP blended solvent. The large difference between the MEA and A2P/AMP baseline rates is expected, as MEA is well known to be a kinetically fast solvent, while A2P/AMP is formulated to be kinetically slower with lower solvent regeneration energy and higher thermal stability. These preliminary pH drop experiments indicate that addition of 1 results in an increased CO$_2$ absorption rate in both solvents, however the observation of foaming in solutions of MEA + 1 at higher loadings is concerning from a process standpoint, and the surfactant-like activity of 1 in MEA makes it difficult to determine if the observed enhancement in MEA is from catalytic activity, surfactant-like behavior, or a combination of both.

![Figure 8](image_url)

Figure 8. (a) pH drop kinetics testing of 5M MEA (−), 5M MEA with additive 1 (−−), A2P/AMP (−), and A2P/AMP with additive 1 (−−), and (b) corresponding CO$_2$ removal rate.

3.3. Determination of CO$_2$ Removal Rate.

After the success of the initial activity screening by pH drop, we sought to obtain a more quantitative determination of the enhancement in CO$_2$
removal kinetics enhancement facilitated via the addition of 1 into MEA and A2P/AMP capture solutions. In the breakthrough experiment there is extensive mixing between the gas bubbles and the liquid, and therefore diffusion resistance in the gaseous layer and bulk liquid is lowered to allow for observation of the kinetics from the reaction resistance. The breakthrough data in Figure 9a shows an increase in CO₂ removal rate (relative to the solvent baseline), over the entire absorption range, upon the addition of 1 to both 5 M MEA and A2P/AMP solvents. However, foaming of the MEA + 1 solution is again observed at higher loadings (α > 0.3).

Figure 9. (a) Breakthrough data for carbon capture solvents with and without additive 1 in MEA and A2P/AMP (14% CO₂ inlet). (b) Percent enhancement in CO₂ removal rate upon addition of 1 to MEA (blue) and A2P/AMP (red) capture solvents.

In a typical absorber column, absorption kinetics are faster at the top of the column where the capture solution is lean (α < 0.30), and the rate decreases as more CO₂ is absorbed and the concentration of free amine decreases. The slowest absorption rates are observed with rich solutions (α > 0.40) at the bottom of the column, requiring additional residence time or absorber height, for diminishing returns at higher loadings. The MEA samples show a higher removal rate than A2P/AMP as expected, but both solvents show enhancement upon addition of 1. A greater degree of enhancement would translate to less additional absorber height required to obtain a
similar increase in rich loading, and save on capital cost in absorber construction. As observed in controlled laboratory-scale testing, additive 1 enhanced mass transfer at higher carbon loadings ($\alpha > 0.40$) where decreasing concentration of free amine limits the overall mass transfer rate, and increasing viscosity of the capture solvent increases liquid resistance to mass transfer. The results shown in Figure 9b demonstrate that the catalyst provides mass transfer enhancement over the entire range, however the degree of enhancement is not uniform. The percent enhancement at lower loadings is between 7 – 13 % upon addition of 1, but at higher loadings ($\alpha > 0.4$ for MEA and $\alpha > 0.25$ for A2P/AMP) the enhancement increases significantly. Interestingly, the two curves cross at $\alpha = 0.35$ and a much larger maximum enhancement is observed for the slower A2P/AMP solvent (55 % at $\alpha = 0.5$), while the faster MEA solvent shows a 33% enhancement at $\alpha = 0.5$. The increased enhancement at higher loadings is a good indication that 1 is preforming as designed, catalyzing the CO$_2$ hydration reaction that becomes more prevalent at higher loadings where the concentration of free amine is diminished.

To include the liquid side diffusion resistance in the experiment, the mass transfer coefficient of CO$_2$ transfer was measured in 5 M MEA and A2P/AMP solvents, with and without 1, at 40 °C on a wetted wall column (WWC) to approximate conditions in the absorber. The data in Figure 10a shows the effect of carbon loading on the mass transfer coefficient, as an average of three (3) replicate runs. As with the breakthrough data, addition of 1 to the 5 M MEA capture solvent showed improvement in mass transfer over the entire experimental range, but at a relatively low magnitude.
Figure 10. (a) Overall mass transfer coefficient (K_G) versus CO$_2$ loading from wetted wall column. 5 M MEA baseline (solid blue), 5 M MEA + 2.3 g/L 1 (blue dashed); A2P/AMP baseline (red solid), A2P/AMP + 2.3 g/L 1 (red dashed). (b) Percent enhancement versus carbon loading for MEA and A2P/AMP solutions containing 1 over respective baseline.

The effect of 1 on mass transfer was also examined for solutions of A2P/AMP (Figure 10a), although no significant enhancement was observed. The mass transfer of both the baseline and solutions containing 1 are equal near $\alpha = 0.5$ (Figure 10b). This lack of activity in A2P/AMP is inconsistent with the breakthrough data described in Figure 9, but represents one of the difficulties encountered in transitioning from highly controlled fundamental laboratory tests to more process relevant testing approaches. While the breakthrough experiment lowers diffusion resistance in order to isolate and analyze changes in the reaction resistance, the wetted-wall experiment maximizes diffusion resistance to allow for the identification of the mass transfer coefficients (K_g).

By maximizing diffusion resistance in a kinetically slow, more viscous solvent such as the A2P/AMP blend, it is not surprising that no enhancement is observed in the WWC from a catalyst such as 1 that is designed to reduce only the reaction resistance. However, neither of these experiments are actually representative of conditions in a packed absorber column and it is important to conduct packed-column testing to determine enhancement when reaction and diffusion resistance are combined under process-relevant conditions (*vide infra*).

3.4. Catalyst Integrity

Flue gas contaminants, including NO$_x$ and SO$_x$, are minor byproducts of coal combustion but are strong oxidants that have the potential to deactivate complexes such as 1.
In order to examine the stability of 1 toward degradation by NO$_x$ and SO$_x$, pH drop experiments were conducted in both capture solvents in the presence of 1000 ppm NO$_x$, and SO$_x$ derived products. These concentrations are considered to be in the operational range of an amine-based capture process, and no decrease in activity was observed (Figure 11a). Experiments were also conducted where solutions containing 1 were exposed to a large excess NO$_x$ gas, generated from NaNO$_2$ and H$_2$SO$_4$ (see experimental section 2.5), as well as with all contaminants combined together. As shown in Figure 11b, negligible changes were observed in the pH drop testing, suggesting that NO$_x$ and SO$_x$ derived components do not affect the ability of 1 to increase mass transfer of the capture solutions.

Elevated temperatures in the carbon capture process are another source of chemical degradation, and an important barrier to commercial viability. It is imperative that any solvent component be stable at the temperatures observed in the stripping process for solvent regeneration. In order to
verify the thermal stability of \(1 \), activity assays via pH drop were performed after exposing solutions of 5 M MEA with and without \(1 \) to 145 °C for 72 hours and solutions of A2P/AMP with and without \(1 \) to 145 °C for 144 hours. As shown in Figure 11, there is no decrease in activity observed upon heating for the solvent baseline, or for solutions containing \(1 \). Assuming 10% residence time in the stripper, we estimate \(1 \) would have a lifetime of over 1500 hours in an industrial CCS process.

![Figure 11](image)

Figure 11. Thermal stability of \(1 \) in solutions of 5 M MEA (a) and the A2P/AMP (b) at 145 °C.

3.5. Integrated Bench-Scale CO\(_2\) Capture System.

The improved performance and effect on overall energy penalty upon addition of \(1 \) was determined using a bench-scale integrated CO\(_2\) capture unit. The energy demand and performance of the A2P/AMP + \(1 \) solvent blend was compared to both A2P/AMP and 30% MEA. Solutions of MEA + \(1 \) were not evaluated in the bench-scale apparatus, due to foaming concerns and the possibility of damaging equipment from solvent overflow. To accurately compare the different solvents tested, CO\(_2\) capture efficiency was maintained at 90% and the energy penalty was minimized through adjustment of process parameters (i.e. liquid flow rate (L/G), stripper pressure, and hot oil temperature). The energy penalty for the MEA and A2P/AMP baseline cases were very similar, at 234 and 236 kJ/mol CO\(_2\), respectively. Although A2P/AMP is designed to improve the overall thermodynamics with the
addition of AMP while maintaining faster kinetics with the addition of A2P, the blended A2P/AMP solvent has similar cyclic capacity as MEA but achieves a much lower rich loading in the absorber column (2.00 vs. 2.51 mol CO₂/kg). Upon the addition of I to the A2P/AMP solvent blend, the enhanced absorption kinetics increased the overall capture efficiency, and the liquid flow was decreased in order to maintain the 90% capture condition. Decreasing the liquid load increases cyclic capacity, as seen in **Table 2**, reducing the sensible heat requirement and decreasing the overall energy penalty of the A2P/AMP solvent by 21%.

Table 2. Reaction conditions and energy demand for CO₂ capture in Bench Unit for different solvents.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Energy Demand (kJ/mol CO₂)</th>
<th>Capture Efficiency (%)</th>
<th>Stripper Pressure (kPa)</th>
<th>Cyclic Capacity (mol CO₂/kg)</th>
<th>Solvent Flowrate (mL/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEA</td>
<td>234</td>
<td>92</td>
<td>110</td>
<td>0.84</td>
<td>150</td>
</tr>
<tr>
<td>A2P/AMP</td>
<td>236</td>
<td>92</td>
<td>128</td>
<td>0.72</td>
<td>150</td>
</tr>
<tr>
<td>A2P/AMP+1</td>
<td>187</td>
<td>89</td>
<td>179</td>
<td>1.37</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Rich Loading (mol CO₂/kg)</th>
<th>Lean Loading (mol CO₂/kg)</th>
<th>Reboiler T (°C)</th>
<th>Qₐ (kW)</th>
<th>Rich Viscosity (cP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEA</td>
<td>2.51</td>
<td>1.67</td>
<td>92</td>
<td>0.72</td>
<td>3.3</td>
</tr>
<tr>
<td>A2P/AMP</td>
<td>2.00</td>
<td>1.28</td>
<td>91</td>
<td>0.72</td>
<td>7.2</td>
</tr>
<tr>
<td>A2P/AMP+1</td>
<td>2.08</td>
<td>0.707</td>
<td>106</td>
<td>0.52</td>
<td>7.4</td>
</tr>
</tbody>
</table>

4. Discussion

4.1. Catalytic Solvent Evaluation Challenges

Transitioning from the lab-scale testing methods, pH drop and breakthrough, to the more quantitative engineering testing methods such as the wetted-wall column introduces physical changes in the capture process. The decrease in the overall relative activity of I within the transition process, i.e. from breakthrough to wetted-wall, raises questions about how these physical differences affect the solvent evaluation between the solvent mixtures since the chemistry *in situ* remains unchanged. Bubbling simulated flue gas into the capture solution, as in the breakthrough experiment, minimizes the liquid side diffusion resistance.
in equation (13), which is maximized in the wetted-wall column. However, the wetted-wall column is heavily influenced by physical properties of the solvent, such as viscosity and surface tension, due to the lack of turbulent force from counter-current gas flow and shearing force from the liquid flow through packing material. These turbulent forces destabilize the liquid film in a packed column and provide more liquid-gas contact to decrease the effect of liquid-side diffusion resistance.

\[
\frac{1}{k_g'} = \sqrt{\frac{D k_2[M]}{H}} + \frac{1}{k_{l, prod}^\circ} \frac{\Delta P_{CO_2}^*}{\Delta \alpha \cdot [M]}
\]

(13)

While the addition of I to the capture solutions had no effect on the solution viscosity and only minor effects on MEA surface tension, there is a dramatic increase in the elasticity of MEA upon the addition I. The surfactant-like activity of I in solutions of MEA make determining the source of any enhancement difficult to isolate, although previous studies have shown the addition of surfactants to capture solutions may cause formation of a single layer film on the surface that blocks CO₂ gas diffusion into the liquid and artificially depress the local amine concentration, decreasing overall mass transfer. However, the constant surface tension and elasticity in solutions of A2P/AMP and A2P/AMP + I indicates there is no surfactant-like activity in this solvent blend and any enhancement is likely a result of the catalyst performing as designed. The lack of correlation between the surface properties and capture efficiency in these solutions seems counter-intuitive when compared to traditional models of mass transfer in these systems, however as other recent work has shown, caution must be taken when predicting improvements based on
fundamental and idealized laboratory testing methods, as counter-intuitive behavior was observed upon the addition of surfactants to stirred-reactor experiments with a flat gas/liquid interface, much like the wetted-wall experiments here. We previously concluded that although the addition of surfactant lowers surface tension of the solution, it does not serve to promote bulk solvent mixing on its own in these flat interface systems. The lack of bulk mixing is likely exacerbated in the current wetted-wall experiments, due to the lack of mechanical mixing.

The lower rich loading of the A2P/AMP makes it an ideal candidate for addition of 1 and its increased CO₂ absorption properties to both increase the rich loading of the solvent and thereby decrease the overall energy demand of the system. Upon addition of 1 to A2P/AMP, the energy demand was reduced to 187 kJ/mol CO₂, a 21% reduction. This reduced energy penalty was achieved by decreasing the liquid flowrate from 150 mL/min down to 60 mL/min, while maintaining 90% CO₂ capture and increasing the stripper pressure to 180 kPa (Table 2). The reduced liquid flowrate achieved upon addition of 1 nearly doubled the cyclic capacity of the solvent (0.72 to 1.37 mol CO₂/kg). This increased cyclic capacity of the solvent reduces the sensible heat required to heat the solvent and remove the CO₂ in the stripper. The increased rich loadings, in addition to the increased cyclic capacity, reduces the energy demand through an increased CO₂/H₂O (water vapor) ratio in the stripper. This allows for the higher stripper pressures, lowering downstream compression costs, while reducing the energy consumption per unit of CO₂ produced.

4.2. Solvent and Catalyst Behavior. The absorption reactions for any amine based system can be broken into two primary reactions as depicted in Scheme 1. The absorption of CO₂ is primarily dictated by the reaction of the primary amine (SC) to form carbamate. The SC reaction generates one mole of proton for each mol of CO₂ captured, leading to primary amines being generally
limited on a molar basis to 0.5 CO₂:1 N. The A2P/AMP solvent utilizes the primary amine A2P as the main component; with AMP added to principally act as a proton receiver (PC) in the solution. The PC serves to free more of the main component, enabling it to react with CO₂, and stabilizes the bicarbonate anion at higher carbon loadings. This allows a more carbon rich solution to be achieved. The pKₐ of this proton receiver (AMP) is 9.8, which is higher than that of A2P (9.2) used in solvent. Therefore, the PC preferentially associates with the proton allowing more of the main component to react with CO₂. The reaction from the proton receiver to directly produce bicarbonate is prohibitively slower (100x), as is carbamate hydrolysis.

Scheme 1. Schematic for reactions occurring in the CO₂ capture cycle. In the illustration: SC - The constituents of the primary amine; PC - The constituents of the proton receiver/hindered amine. Complex 1 in this work was designed as a carbonic anhydrase (CA) mimic to catalyze CO₂ hydration. Thus, it is expected to function similarly to CA’s in directly catalyzing the reaction of dissolved CO₂ in solution to form bicarbonate and a proton. The proton is then trapped by the PC component (**Scheme 1**) of the solvent, thereby enhancing the overall mass transfer and capacity. Due to the nature of the solvent chemistry it can be expected that a greater benefit from the addition of 1 will be observed at higher carbon loadings where CO₂ hydration and bicarbonate formation dominates the capture regime.

4.3. Catalyst Cost and Scalability. The economic considerations are imperative when scaling-up a new technology. 1 is synthesized in a simple three-step process using all easily acquired commercial reagents, and the product from each step is isolated via filtration without the need for
further purification. The simplistic synthesis methodology attunes itself to already existing large-scale manufacturing processes. We estimate the cost of 1 to be ~$0.25 per liter of carbon capture solvent, which roughly equates to $100 - $200 per megawatt of electricity generated. Cost of any solvent additive is required to be low enough so that it can be treated as a disposable material as it will be removed from the capture system during the thermal solvent reclamation process. Additionally, 1 contains a non-toxic 3d metal and is not expected to impart any hazardous waste requirements onto the solvent for disposal.

5. Conclusions

Herein we have demonstrated the development and transition from fundamental and idealized laboratory investigations to CCS process relevant testing of catalyst, 1, for the purpose of enhancing overall mass transfer of CO₂ into carbon capture solvents for post-combustion acid gas scrubbing technologies and reducing operational costs. Taken together, these studies provide valuable insight into the performance of 1, and more importantly considerations that should be taken into account when testing new chemical additives for CCS processes. In laboratory experiments that limit diffusion resistance, such as the pH drop and breakthrough methods, the performance of 1 is as expected. Catalyzing the CO₂ hydration reaction increases max flux, especially at higher loadings when the diminishing concentration of free amine and increasing viscosity of the solvent slow CO₂ absorption. In the wetted-wall column, when diffusion resistance is significant, the activity of 1 is greatly reduced due to the lack of bulk solvent mixing. Process relevant testing of the A2P/AMP + 1 solvent was demonstrated in an integrated bench-scale capture unit, and the activity of 1 decreases the capture energy of CO₂ in an integrated process by 21% compared to a 30 wt. % MEA base case by increasing the cyclic capacity and decreasing the sensible heat required for solvent regeneration.
Acknowledgements

This work was supported by the U.S. Department of Energy (DE-FE0012926), and the Carbon Management Research Group (CMRG): Louisville Gas and Electric & Kentucky Utilities, Duke Energy, Kentucky Department for Energy Development and Independence, and the Electric Power Research Institute, Inc.

References

