
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Statistics Faculty Publications Statistics 

4-21-2017 

High-Dimensional Repeated Measures High-Dimensional Repeated Measures 

Martin Happ 
University of Salzburg, Austria 

Solomon W. Harrar 
University of Kentucky, solomon.harrar@uky.edu 

Arne C. Bathke 
University of Kentucky, arne@uky.edu 

Follow this and additional works at: https://uknowledge.uky.edu/statistics_facpub 

 Part of the Statistical Theory Commons 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Repository Citation Repository Citation 
Happ, Martin; Harrar, Solomon W.; and Bathke, Arne C., "High-Dimensional Repeated Measures" (2017). 
Statistics Faculty Publications. 25. 
https://uknowledge.uky.edu/statistics_facpub/25 

This Article is brought to you for free and open access by the Statistics at UKnowledge. It has been accepted for 
inclusion in Statistics Faculty Publications by an authorized administrator of UKnowledge. For more information, 
please contact UKnowledge@lsv.uky.edu. 

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/statistics_facpub
https://uknowledge.uky.edu/statistics
https://uknowledge.uky.edu/statistics_facpub?utm_source=uknowledge.uky.edu%2Fstatistics_facpub%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/214?utm_source=uknowledge.uky.edu%2Fstatistics_facpub%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
https://uknowledge.uky.edu/statistics_facpub/25?utm_source=uknowledge.uky.edu%2Fstatistics_facpub%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


High-Dimensional Repeated Measures High-Dimensional Repeated Measures 

Digital Object Identifier (DOI) 
https://doi.org/10.1080/15598608.2017.1307792 

Notes/Citation Information Notes/Citation Information 
Published in Journal of Statistical Theory and Practice, v. 11, no. 3, p. 468-477. 

© 2017 Martin Happ, Solomon W. Harrar, and Arne C. Bathke. Published with license by Taylor & Francis 

This is an Open Access article distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which 
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work 
is properly cited, and is not altered, transformed, or built upon in any way. 

This article is available at UKnowledge: https://uknowledge.uky.edu/statistics_facpub/25 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://uknowledge.uky.edu/statistics_facpub/25


Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ujsp20

Journal of Statistical Theory and Practice

ISSN: 1559-8608 (Print) 1559-8616 (Online) Journal homepage: https://www.tandfonline.com/loi/ujsp20

High-dimensional repeated measures

Martin Happ, Solomon W. Harrar & Arne C. Bathke

To cite this article: Martin Happ, Solomon W. Harrar & Arne C. Bathke (2017) High-
dimensional repeated measures, Journal of Statistical Theory and Practice, 11:3, 468-477, DOI:
10.1080/15598608.2017.1307792

To link to this article:  https://doi.org/10.1080/15598608.2017.1307792

© 2017 Martin Happ, Solomon W. Harrar,
and Arne C. Bathke. Published with license
by Taylor & Francis

Accepted author version posted online: 17
Mar 2017.
Published online: 21 Apr 2017.

Submit your article to this journal 

Article views: 454

View Crossmark data

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=ujsp20
https://www.tandfonline.com/loi/ujsp20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/15598608.2017.1307792
https://doi.org/10.1080/15598608.2017.1307792
https://www.tandfonline.com/action/authorSubmission?journalCode=ujsp20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ujsp20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/15598608.2017.1307792&domain=pdf&date_stamp=2017-03-17
http://crossmark.crossref.org/dialog/?doi=10.1080/15598608.2017.1307792&domain=pdf&date_stamp=2017-03-17
https://www.tandfonline.com/doi/citedby/10.1080/15598608.2017.1307792#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/15598608.2017.1307792#tabModule


High-dimensional repeated measures
Martin Happa, Solomon W. Harrarb, and Arne C. Bathkea,b

aDepartment of Mathematics, University of Salzburg, Salzburg, Austria; bDepartment of Statistics, University of
Kentucky, Lexington, Kentucky, USA

ABSTRACT
Recently, new tests for main and simple treatment effects, time effects,
and treatment by time interactions in possibly high-dimensional multi-
group repeated-measures designs with unequal covariance matrices
have been proposed. Technical details for using more than one
between-subject and more than one within-subject factor are pre-
sented in this article. Furthermore, application to electroencephalo-
graphy (EEG) data of a neurological study with two whole-plot factors
(diagnosis and sex) and two subplot factors (variable and region) is
shown with the R package HRM (high-dimensional repeated
measures).
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1. Introduction

Classical methods such as the Huynh–Feldt (Huynhand Felat 1976) or the Greenhouse–Geisser
(Greenhouse and Geisser 1959; Geisser and Greenhouse 1958) approximation do not maintain
the type I error rate in general in high-dimensional repeated measures. “High-dimensional”
means that the number of repeated measurements d is larger than the number of subjects per
group. In an article byHapp et al. (2016), various simulations have been performed, demonstrat-
ing the problems that these classicalmethods exhibit, particularly in unbalanced, heteroscedastic,
and high-dimensional designs. A new approximate test had been proposed by Brunner et al.
(2012) for two treatment groups. This approach was extended in Happ et al. (2016) to multiple
treatment groups, along with asymptotic results for the situation such that the dimension d of
repeated measurements and the total number of subjects N tend to infinity.

In the present work, the test proposed in Greenhouse and Geisser (1959) is generalized
to multiple whole and sub-plot factors. Furthermore, the package HRM for the software
environment R (R core Team 2016) is presented and application is shown on high-
dimensional electroencephalography (EEG) data from Staffen et al. (2014).

2. Data example

From 160 subjects, electroencephalography (EEG) data have been measured in a study by
Staffen et al. (2014). The patients were classified as either having Alzheimer’s disease (AD),
mild cognitive impairment (MCI), or subjective cognitive complaints without any sig-
nificant clinical deficits (SCC+ or SCC–). These groups are compared using four EEG
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variables (activity, complexity, mobility, brain rate) measured at 10 different brain regions
(frontal left, frontal right, parietal left, parietal right, temporal left, temporal right, occipital
left, occipital right, central left, central right). In total, 4� 10 ¼ 40 measurements have
been taken per subject. The numbers of subjects per diagnostic group and sex are given in
Table 1. Note that the number of subjects in each group is smaller than the number of
repeated measurements per subject. This high-dimensional data set is used as an example
in section 6 in order to illustrate application of the new method proposed in this article.

3. Statistical model

We focus on the case of two crossed whole-plot factors A and S and two subplot factors B
and C, to keep the notation simple. Also, interpretation of the interaction effects might get
difficult if too many factors are used in the model.

We refer to factor A with a factor levels as the group factor and to S with s factor levels
as the subgroup factor. Factors B and C are referred to as variable and region with b and c
factor levels, respectively, where C is crossed with B. The terms used here for the factors
are motivated by the EEG data from section 2, which are analyzed in section 6.

For the statistical model, we consider the independent random vectors

Xijk ¼ ðXijk1
0;:::;Xijkb

0Þ0,Nðμij;ΣijÞ;

which are the d ¼ b� c dimensional data vectors of subject k in the ith group and jth
subgroup where Xijkl ¼ ðXijkl1; . . . ;XijklcÞ0 is a c dimensional random vector for
i ¼ 1; . . . ; a, j ¼ 1; . . . ; s, and l ¼ 1; . . . ; b.

In each group, there are nij subjects, and overall there are N ¼ P
nij subjects.

Therefore, the random variables Xijklm are the observations from the kth subject in the
ith group, i ¼ 1; . . . ; a, and the jth subgroup, j ¼ 1; . . . ; s, for the variable l ¼ 1; . . . ; b and
region m ¼ 1; . . . ; c. The expectations μij are d � 1 vectors, and the variance–covariance

matrices Σij are d � d matrices. The sample mean of the groups is denoted by the asd � 1

vector ð�X1
0; :::; �Xa

0Þ0; the sample variance is given by the d � d matrix

Σ̂ij ¼ ðnij � 1Þ�1
Xnij
k¼1

ðXijk � �Xij�ÞðXijk � �Xij�Þ0: (1)

We consider hypothesis tests for testing main effects (e.g., main effect of the region or
group), as well as interaction effects of two, three, or four factors. Thus, in total, there are
15 different hypotheses we are interested in. We denote the respective null hypotheses by
H0ðϕÞ, where

ϕ 2 Φ ¼ A; S;B;C;AS;AB;AC; SB; SC;BC;ASB;ASC;ABC; SBC;ASBCf g:

Table 1. Number of subjects per diagnostic group and sex.
AD MCI SCC+ SCC-

Male 12 27 14 6
Female 24 30 31 16
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In order to give two examples, the null hypothesis H0ðAÞ is the hypothesis of no main
effect of the factor A. As we are interpreting the factor A as the group factor, we can
describe H0ðAÞ as the null hypothesis of no main effect of the factor group. On the other
hand, the null hypothesis H0ðASBCÞ is the hypothesis of no interaction between the
factors A, S, B, and C. A more detailed description of these hypotheses is provided in
subsections 3.1 and 3.2.

It is well known that each of these linear hypotheses can be formulated as a quadratic
form with a projection matrix Hϕ. For example, HASB is the matrix used for testing the
interaction effect of the factors A, S, and B. To be more precise, the matrix Hϕ is of the
form

Hϕ ¼ ðWϕ � SϕÞ; (2)

where � denotes the Kronecker product. The part to the left of the Kronecker product
sign, namely, the matrix Wϕ ¼ ðW1ϕ �W2ϕÞ, describes the aspects of the hypotheses that
are concerning the whole-plot factors, while the matrix to the right, Sϕ ¼ ðS1ϕ � S2ϕÞ,
corresponds to the subplot factors. For stating the hypotheses, let Id denote the d-dimen-
sional identity matrix. Furthermore, we define 1d ¼ ð1; . . . ; 1Þ0, the d-dimensional vector
consisting only of ones, and the d � d matrix Jd ¼ 1d10d, as well as the centering matrix
Pd ¼ Id � 1

d Jd. The representation of Hϕ as a Kronecker product of four matrices is useful
as it allows us to easily construct matrices used for testing no main and interaction effects.
For example, let us consider the hypothesis of no interaction effect between the sub-plot
factors B and C. In this case HBC ¼ WBC � SBC, WBC ¼ 1

a Ja � 1
s Js ¼ 1

as Jas, and
SBC ¼ Pb � Pc. The dimensions of these four matrices correspond to the respective levels
of the factors A, S, B, and C. Since we only want to test the interaction effect between B
and C in this example, we can simply average over the levels of the factors A and S. This is
achieved by using 1

a Ja � 1
s Js. For the matrix SBC, we can use a Kronecker product of

centering matrices with dimensions according to the levels of factors B and C. More
details on the construction of the matrices Hϕ are given in section 3.1.

3.1. Hypotheses on main effects

The hypothesis H0ðAÞ for testing the main effect of the factor A can be written as

H0ðAÞ : �μ1��� ¼ �μ2��� ¼ . . . ¼ �μa��� (3)

or equivalently as

μ0HAμ ¼ 0: (4)

The projection matrix HA for testing this hypothesis is given by

HA ¼ ðPa � 1
s
JsÞ � ð1

b
Jb �

1
c
JcÞ (5)

and the vectors �μi���, i ¼ 1; . . . ; a, are given by

�μi��� ¼
1
sbc

Xs

j¼1

Xb
k¼1

Xc

l¼1

μijkl (6)
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for all j ¼ 1; . . . ; s, k ¼ 1; . . . ; b and l ¼ 1; . . . ; c. The other hypotheses for testing main
effects can be written in a similar manner using the following matrices

HS ¼ ð1a Ja � PsÞ � ð1b Jb � 1
c JcÞ;

HB ¼ ð1a Ja � 1
s JsÞ � ðPb � 1

c JcÞ;
HC ¼ ð1a Ja � 1

s JsÞ � ð1b Jb � PcÞ:

Derivations of these equivalent results are done in a similar manner as in Happ et al.
(2016) and can be easily extended to more than four factors.

3.2. Hypotheses on interaction effects

Similar to the main effects, we can write the null hypotheses regarding interactions
between two or more factors as quadratic forms. Specifically, the hypothesis of no
interaction effect involving all four factors (A, S, B, and C) can be written as

H0ðASBCÞ : μijkl � �μ�jkl � �μi�kl � �μij�l � �μijk� þ �μ��kl þ �μ�j�l þ �μi��l þ �μ�jk� þ �μi�k� þ �μij��
��μi��� � �μ�j�� � �μ��k� � �μ���l þ �μ���� ¼ 0;

for all i ¼ 1; . . . ; a, j ¼ 1; . . . ; s, k ¼ 1; . . . ; b, and l ¼ 1; . . . ; c. This formulation is equiva-
lent to the quadratic form

μ0HASBCμ ¼ 0; (7)

where the matrix HASBC is given by

HASBC ¼ ðPa � PsÞ � ðPb � PcÞ:

In general, the matrix Hϕ, ϕ 2 Φ, can be written as a Kronecker product of four matrices,
where each of these four matrices operates on the components of a vector representing the
levels of a specific factor. If a particular factor is selected for the formulation of an
interaction or main effect, its corresponding matrix will be the centering matrix P with
dimension r. Otherwise it will be r�1Jr, where r is the number of levels of the factor
ϕ 2 A; S;B;Cf g, and hence in our case r 2 a; s; b; cf g. In the peceding example, we are
testing the hypothesis of no interaction effect of all four factors. Therefore, the centering
matrix is used for each of the four factors .

The null hypothesis of no interaction effect between the three factors A,S, and C can be
written as

H0ðASCÞ : �μij�l � �μ�j�l � �μi��l � �μij�� þ �μi��� þ �μ�j�� þ �μ���l � �μ���� ¼ 0;

for all i ¼ 1; . . . ; a, j ¼ 1; . . . ; s, and l ¼ 1; . . . ; c. This is equivalent to

μ0HASCμ ¼ 0: (8)

Therefore, the matrix HASC is given by

HASC ¼ ðPa � PsÞ � ð1
b
Jb � PcÞ:
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Here, only the factor B is not selected in formulating the interaction effect. Therefore, we
need to average over the levels of factor B, and consequently its corresponding matrix is 1

b Jb.
Hypotheses for all other interaction effects can be constructed in a similar manner. The

equivalent formulations can be derived analogously to those for the main effects.

4. Test statistic

To test the hypotheses, already stated, we propose a generalization of the procedure
introduced in Happ et al. (2016). Specifically, let

Σϕ ¼ HϕVHϕ; (9)

where V ¼ diagðn�1
ij ΣijÞ for i ¼ 1; . . . ; a and j ¼ 1; . . . ; s. Then we consider the test

statistic

Tϕ ¼
�X0Hϕ�X

trðΣ̂ϕÞ
; (10)

where Hϕ is one of the 15 projection matrices from before, and

bΣϕ ¼ Hϕ
bVHϕ; (11)

where bV ¼ diagðn�1
ij ΣijÞ: The numerator and denominator can each be approximated by

scale multiples of χ2 random variables, where the degrees of freedom are allowed to be any
positive real number. Thus, we approximate under H0ðϕÞ

�X0Hϕ�X ,
approx

gϕχ
2
fϕ

and trðΣ̂ϕÞ ,
approx

g0;ϕχ
2
f0;ϕ
: (12)

Calculating expectation and variance of the numerator and denominator by using results
about the distribution of quadratic forms—see, for example, Searle et al. (1997) — we
obtain expressions for the degrees of freedom fϕ and f0;ϕ of these two χ2 distributions. Now
noting that the numerator and denominator are independent,

f0;ϕg0;ϕ
fϕgϕ

�X0Hϕ
�X

trðΣ̂ϕÞ
,

approx
Ffϕ;f0;ϕ (13)

under H0ðϕÞ. Straightforward calculations show f0;ϕg0;ϕ
fϕgϕ

¼ 1, and therefore

Tϕ ,
approx

Ffϕ;f0;ϕ (14)

under H0ðϕÞ. As this approximation goes back to Box (1954a; 1954b), it is referred to as

Box approximation. Let Hϕ and Wϕ ¼ W1;ϕ �W2;ϕ as defined in section 3 and let wð1Þ
ii;ϕ

and wð2Þ
jj;ϕ denote the diagonal elements of W1;ϕ and W2;ϕ, respectively. Then the degrees of

freedom are given by

fϕ ¼ ½trðΣϕÞ�2
trðΣ2

ϕÞ
; (15)
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f0;ϕ ¼ ½trðΣϕÞ�2
Pa
i¼1

Ps
j¼1

ðwð1Þ
ii;ϕw

ð2Þ
jj;ϕÞ

2

n2ijðnij�1Þ tr½ðSϕΣijÞ2�
: (16)

More details regarding the decomposition of Hϕ are provided in sections 3 and 3.1. In Eqs.
(15) and (16), the matrices Σij (respectively Σϕ) are in general unknown and have to be
estimated. Instead of estimating the matrices Σij directly, we simply estimate their traces.
Appropriate trace estimators have already been used in Brunner et al. (2012) and Happ
et al. (2016), and they are given by

EðijÞ1 ¼ nijðnij � 1Þ
ðnij � 2Þðnij þ 1Þ ð½trðSϕΣ̂ijÞ�2 � 2

nij
tr½ðSϕΣ̂ijÞ2�Þ; (17)

EðijÞ2 ¼ ðnij � 1Þ2
ðnij � 2Þðnij þ 1Þ ð½tr½ðSϕΣ̂ijÞ2� � 1

nij � 1
½trðSϕΣ̂ijÞ�2Þ; (18)

Eðij;klÞ
3 ¼ trðSϕΣ̂ijÞ trðSϕΣ̂klÞ; (19)

Eðij;klÞ
4 ¼ trðSϕΣ̂ijSϕΣ̂klÞ; (20)

for i; k ¼ 1; . . . ; a and j; l ¼ 1; . . . ; s, and ði; jÞ�ðk; lÞ. Those four estimators satisfy the
following statements:

EðEðijÞ
1 Þ ¼ ½trðSϕΣijÞ�2; (21)

EðEðijÞ2 Þ ¼ tr½ðSϕΣijÞ2�; (22)

EðEðij;klÞ
3 Þ ¼ trðSϕΣijÞ trðSϕΣklÞ; (23)

EðEðij;klÞ
4 Þ ¼ trðSϕΣijSϕΣklÞ: (24)

That is, each of these estimators is unbiased.

5. R package HRM

The test described in section 4 has been implemented for the statistical software environ-
ment R (R Core Team 2016) in the package HRM (high-dimensional repeated measures,
Happ et al. 2016) and is available via CRAN. There are currently four functions
implemented:

● hrm.test.matrix (data, alpha),
● hrm.test.dataframe (data, alpha, group, subgroup, factor1, factor2, subject, response),
● hrm_test (formula, data, alpha = 0.05, subject),
● hrm.plot (data, group, factor1, subject, response, xlab = “dimension”, ylab =
“means”).
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The function hrm.test.matrix can be used for testing main and simple treatment effects
(whole-plot factor), the main effect of the factor time (subplot factor), and the interaction
between treatment and time. A more detailed description and thorough simulation study
for this particular function can be found in Happ et al. (2016).

Tests for models with up to two whole-plot factors or two subplot factors can be
performed with hrm.test.dataframe. Here the variables group, subgroup, factor1, and
factor2 are used to indicate which columns of the data matrix are used as factors. If, for
example, factor2 is not specified, then only one subplot factor, factor1, is being used for
testing. But at least one wholeplot factor and one subplot factor need to be specified. The
variable subject is necessary to identify the subjects, and response indicates in which
column the measured response variable of the data set is stored. hrm.test.dataframe tests
main effects as well as all interaction effects. If four factors are used, 15 hypotheses are
tested by this function. In this regard, it should be noted that the results are not adjusted
for multiple testing.

For the function hrm_test, a formula object can be used instead of specifying in which
columns the whole- and subplot factors can be found. A formula object is of the form

response variable , whole�plot factor � subplot factor:

In this context

whole-plot factor � subplot factor

is an abbreviation for

whole-plotfactorþ subplot factorþ whole-plot factor : subplot factor

where : refers to the interaction effect of whole� plot and subplot factor. The function
hrm_test supports up to two whole- and three subplot factors, but at least one of each has
to be used and the maximum number of factors is four. The function automatically detects
whether a column is a whole- or a subplot factor. For example, by using the notation from
the EEG data from section 2 and the formula

value , group � sexþ variableþ region

the function hrm_test is testing for the main effects of the factors group, sex, variable, and
region and the interaction effect between group and sex. By using

value , group : sex : region : variable

we only test for the interaction effect between group, sex, region, and variable.
The only difference between the function hrm.test.matrix and the functions hrm.test.data-

frame and hrm_test is the way the data need to be organized. For the former function, one needs
to use one data.frame for each group, the rows are considered to be the subjects, and the
columns are the repeated measurements. For the functions hrm.test.dataframe and hrm_test, all
data need to be stored in one data.frame, which contains columns as described before.

The function hrm.plot provides an easy and fast way to plot the profiles in case of
exactly one whole- and one subplot factor. It is basically just a wrapper for the package
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ggplot2 (Wickham 2009). Similar to the function hrm.test.dataframe, the variables group,
factor1 need to be specified in order to indicate which columns of the data.frame should
be used as factors. An example of a profile plot generated by this function can be seen in
Figure 1 for the EEG data. The corresponding R code is as follows:

library(HRM)
hrm.plot(EEG, group=“group”, factor1=“dimension”, subject=“subject”,
response=“value”)

From Eq. (10), we can see that we have to calculate the trace of a matrix product. If we
have many repeated measurements d ¼ bc, say d > 103, then these matrices will have
dimension ðasdÞ � ðasdÞ. In this case, the calculation of matrix product and trace may
take very long. A much faster method uses the identity

trðM1M2Þ ¼ 10mM1 �M0
21m

where Mi are m�m matrices for i ¼ 1; 2, and * is the Hadamard–Schur product.
Another problem is presented by calculating trðΣijΣklÞ for i; k 2 1; � � � ; af g and j; l 2

1; � � � ; sf g if the number of repeated measurements is large. We can use the fact that
empirical variance–covariance matrices can be written as quadratic forms with an nij � nij
idempotent matrix Mij:

cΣij ¼ ~XijMij
~X0

ij

0

2

4

0 10 20 30 40

dimension

m
ea

ns

SCC+

SCC−

MCI

AD

Figure 1. Profile plot of the diagnostic groups SCC+, SCC-, MCI and AD.
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where ~Xij ¼ ðXij1; � � � ;XijnijÞ is a d � nij matrix containing the data of group i and
subgroup j. Then using the fact that the trace of a matrix is invariant under cyclic
permutations, we obtain

trðΣijΣklÞ ¼ trðMÞ;

where M ¼ Mij
~X0

ij~XklMkl
~X0

kl ~XijMij is an nij � nij matrix. These two improvements for
working with high-dimensional data have already been used by Brunner et al. in a
technical report associated with Brunner et al. (2012).

6. Data example revisited

We now apply the R package HRM from section 5 to the EEG data described in section 2.
Here, the data are stored as a data.frame, and the repeated measurements corresponding
to a subject are each given by a row. There is one column specifying each of group
(diagnosis), subgroup (sex), the first subplot factor (variable), and the second subplot
factor (region). The structure of the data.frame can be seen in Table 2. All 15 hypotheses
are calculated with the R code

library(HRM)
hrm_test(value , group * sex * region * variable, data=EEG,
subject=“subject”)

where EEG is the data.frame from Table 2. The output of this code is given in Table 3.

Table 2. Overview of the data matrix.
Group Value Sex Subject Variable Region

SCC+ 2.80 F 1 1 1
SCC+ 2.29 F 1 1 2
SCC+ 1.47 F 1 1 3
SCC+ 1.55 F 1 1 4
SCC+ 2.16 F 1 1 5
SCC+ 2.14 F 1 1 6

Note. The variables are coded with 1 to 4; the 10 regions are coded with 1 to 10. Sex is either female (F) or male (M) and
the group is either SCC+, SCC–, MCI or AD.

Table 3. Results of the tests for main and interaction effects without adjustments for multiple testing.
Hypothesis df1 df2 crit test p value

group 3.04 116.29 2.67 1.66 0.18
sex 1.00 116.29 3.92 6.05 0.02
variable 1.51 178.72 3.36 4930.69 <0.001
region 5.59 246.82 2.18 196.60 <0.001
group: sex 3.04 116.29 2.67 0.18 0.91
group: variable 4.52 178.72 2.33 3.34 0.01
group: region 14.09 246.82 1.73 0.80 0.67
sex: variable 1.51 178.72 3.36 4.89 0.02
sex: region 5.59 246.82 2.18 0.99 0.43
variable: region 7.76 299.89 1.99 143.58 <0.001
group: sex: variable 4.52 178.72 2.33 0.26 0.92
group: sex: region 14.09 246.82 1.73 0.58 0.88
group: variable: region 18.75 299.89 1.63 1.04 0.41
sex: variable: region 7.76 299.89 1.99 1.26 0.27
group: sex: variable: region 18.75 299.89 1.63 0.74 0.77
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It is not surprising to neurologists that the variables activity, complexity, and mobility
yield rather different values. Our test confirms this by rejecting the hypothesis of no main
variable effect. But also the factor region (e.g., parietal left, parietal right, frontal left,
frontal right, etc.), and the interaction between variable and region are highly significant.
From the whole-plot factors only sex is significant with a p value of about 0.0154.
Furthermore, the interaction between group and variable, and the interaction between
sex and variable are also significant with p values of 0.0085 and 0.0152.
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