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Abstract 

Src is the founding member of a diverse family of intracellular tyrosine kinases, and Src has a 

key role in promoting cancer growth, in part through its association with receptor tyrosine 

kinases.  However, some Src-related proteins have widely divergent physiological roles, and 

these proteins include the Rak tyrosine kinase (also called Frk for Fyn-related kinase), which 

inhibits cancer cell growth and suppresses tumorigenesis.  Rak phosphorylates and 

stabilizes the Pten tumor suppressor, protecting it from degradation, and Rak associates with 

the Rb tumor suppressor.  However, the role of Rak in receptor-mediated signaling is largely 

unknown.  Here, we demonstrate that Rak associates with EGFR (epidermal growth factor 

receptor), increasing in activity and EGFR binding after EGF stimulation, when it decreases 

the pool of EGFR present at the plasma membrane.  EGFR-Rak binding is direct, requires 

the SH2 and SH3 domains of Rak for efficient complex formation and is not dependent on the 

Grb2 adaptor protein.  EGFR mutations are associated with increased EGFR activity and 

tumorigenicity, and we found that Rak associates preferentially with an EGFR exon 19 

mutant, EGFR747-749/A750P, compared to wild-type EGFR.  Furthermore, Rak inhibited 

mutant EGFR phosphorylation at an activating site and dramatically decreased the levels of 

EGFR747-749/A750P from the plasma membrane.  Together, the results suggest that Rak 

inhibits EGFR signaling in cancer cells and has elevated activity against EGFR exon 19 

mutants. 
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Introduction 

Cancer progression is driven by a combined increase in proliferative signals and a 

decrease in tumor suppressor function.  EGFR is one of the receptors driving tumor growth in 

a number of cancers (1), including lung cancer, and therapeutics targeting EGFR are a 

promising treatment approach for the disease (2).  Current therapeutics include small 

molecule kinase inhibitors, such as erlotinib, and antibody fragments such as cetuximab (3-

5).  EGFR is mutated in a minority of cancer patients, and those with mutations in the ATP 

binding site have better response to EGFR small molecule inhibitors (6-8), while K-Ras 

mutations correspond with a poor response to the inhibitors.   

Upon ligand stimulation, EGFR is internalized through a series of phosphorylation and 

ubiquitination reactions and either degraded or recycled to the plasma membrane (9).  A 

number of intracellular sites of EGFR are phosphorylated during this process, and Y1173 is 

thought to contribute to EGFR internalization (10) and ERK activation (11), although in some 

cases Y1173 may also be important in receptor activation (12).  EGFR also associates with 

Grb2, an SH3-SH2-SH3 (Src homology) adaptor protein (13), upon EGF stimulation (14).  

SH2 domains associate with phosphorylated tyrosine residues, while SH3 domains bind to 

proline-rich motifs (15).  Many of the binding partners for EGFR during this process have 

been extensively characterized, but there are significant gaps in our knowledge of the 

trafficking and recycling of EGFR.   

Rak (also called Frk for Fyn-related kinase) is a Src-related tyrosine kinase (16-19) 

containing SH2 and SH3 domains at its amino terminus and a carboxy-terminal tyrosine 

residue (20).  Unlike many Src-related kinases, which have varying degrees of transforming 

activity (20), Rak is a putative tumor suppressor in breast cancer that arrests cell growth and 

suppresses tumorigenesis (21-23).  The apparent mouse homologue of Rak, called Iyk (24), 

is lost in tumors (25) and inhibits cell growth in culture (26).  In spite of its profound activity in 

cultured cells, mice lacking Iyk do not form tumors (27), suggesting that additional 
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tumorigenic events are necessary for Rak’s tumor suppressor function to be detectable in an 

intact organism.   

Rak binds and phosphorylates the tumor suppressor Pten (28), stabilizing Pten levels 

and triggering growth arrest (23).  Many tumor types are deficient in Pten, suggesting that 

Rak may have other intracellular functions.  Indeed, Rak binds to the retinoblastoma tumor 

suppressor Rb (21), although the biological consequences of this interaction are unclear.  

Rak also phosphorylates Src on the C-terminal tyrosine of Src (17), a negative regulatory 

site, suggesting that Rak may have broad effects on signaling. 

Virtually nothing is known about the role of Rak in regulating receptor-mediated 

signaling.  Src family kinases, which are structurally similar to Rak (17), bind to receptor 

tyrosine kinases and mediate receptor signaling.  In the present study, we show that Rak 

phosphorylates EGFR on Y1173 and associates with EGFR in punctate intracellular sites, 

increasing the intracellular pool of EGFR.  Furthermore, Rak preferentially associates with a 

mutant form of EGFR that is associated with tumor formation.  The results suggest that Rak’s 

tumor suppressive activities include the down regulation of receptor tyrosine kinases, 

including EGFR. 

 

RESULTS 

Rak alters EGFR Y1173 phosphorylation.   

Rak is not readily expressed in many cancer cells and causes cell cycle arrest.  For that 

reason, we utilized an adenovirus driving the expression of an epitope-tagged form of Rak 

(22) and infected A549 human lung cancer cells.  With increasing doses of adenovirus, Rak 

was readily expressed (Figure 1A, first panel) and did not affect EGFR levels (Figure 1A, 

second panel), but suppressed EGFR-Y1068 phosphorylation (Figure 1A, third panel) and 

increased EGFR-Y1173 phosphorylation (Figure 1A, fourth panel).  As for Y1068, EGFR-

Y992 phosphorylation was progressively decreased with Rak expression (Supplemental 
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Figure 1).  EGFR-Y1068 and Y992 are generally associated with activation of the receptor, 

while EGFR-Y1173 phosphorylation has been linked to receptor down-regulation (10, 11, 29). 

 Rak expression altered EGFR tyrosine phosphorylation in multiple cell lines.  In NCI-

H226 human squamous cell lung cancer cells, Rak expression (Figure 1B, top panel) did not 

affect EGFR levels (Figure 1B, second panel) and had only a minor effect on EGFR-Y1068 

phosphorylation (Figure 1B, third panel) but increased EGFR-Y1173 phosphorylation (Figure 

1B, fourth panel).  We were concerned that adenoviral infection may have accounted for the 

change in phosphorylation, but an equal titer of a control adenovirus did not affect EGFR 

phosphorylation (Figure 1A and 1B, lane 1).  Furthermore, transfection of Rak into HEK293 

cells (Figure 1C, top panel) also decreased EGFR-Y1068 phosphorylation (Figure 1C, third 

panel) and increased EGFR-Y1173 phosphorylation (Figure 1C, fourth panel).  Rak 

expression is minimal in many cancer derived cell lines, particularly lung cancer, but Rak 

expression is relatively abundant in Ovcar-3 ovarian cancer cells.  RNAi targeting of Rak 

resulted in a decrease in EGFR-Y1173 phosphorylation after EGF stimulation (Figure 1D, 

lanes 3 and 4). 

 To determine whether Rak directly phosphorylated EGFR, or whether the increased 

phosphorylation occurred through a secondary partner, we tested Rak activity towards 

purified, recombinant EGFR 1141-1211 in an in vitro kinase assay.  Because the EGFR 

fusion protein contains two tyrosine residues, phosphorylation was measured by western blot 

using an EGFR-pY1173-specific antibody, and Rak efficiently phosphorylated the fusion 

protein (Figure 1E, upper panel, lane 2).  For the assays, Rak was immunoprecipitated 

(Figure 1E, middle panel) and incubated with purified fusion protein (Figure 1E, lower panel).  

The activity was not autophosphorylation from EGFR in the reactions, because precipitated 

EGFR did not phosphorylate the fusion protein (Figure 1F, upper panel, lane 2).  We 

conclude that Rak increases EGFR-Y1173 phosphorylation, at least in part through direct 

phosphorylation of the receptor. 
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Rak co-precipitates and co-localizes with EGFR.   

EGFR associates directly with Src family tyrosine kinases, and we found that EGFR 

precipitated in a complex with Rak (Figure 2A, top panel, lane 2) when Rak was immuno-

precipitated from HEK293 cells (Figure 2A, second panel, lane 2).   As a control, the same 

precipitation conditions in cells transfected with a control plasmid failed to precipitate either 

protein (Figure 2A, top two panels, lane 1).  The level of EGFR in the lysates prior to the 

precipitations was unaffected (Figure 2A, third panel).  The reverse experiment, immuno-

precipitation of EGFR, yielded bands for both Rak (Figure 2B, top panel, lane 2) and EGFR 

(Figure 2B, lower panel, lane 2), while neither was present in control precipitation reactions 

(Figure 2B, lane 1).  Unlike EGFR, precipitated Met tyrosine did not exist in a complex with 

Rak (Supplemental Figure 2A).  

We then performed analogous experiments in A549 NSCLC cells, and again, EGFR 

precipitated with Rak (Figure 2C) and Rak precipitated with EGFR (Figure 2D).   As above, 

the loading of each protein was equivalent in cell lysates. Rak is poorly expressed in tumor 

cells, perhaps because of its tumor suppressor function, and the above experiments relied on 

transfected Rak.  However, Rak and EGFR are co-expressed in multiple cell lines, including 

SW480 human colon cancer cells, A431 human epitheloid cancer cells (Figure 2E) and 

HEK293 human embryonic kidney cells (Supplemental Figure 2B).  In precipitation reactions 

of endogenous EGFR from each cell line, endogenous Rak was readily detectable (Figure 2F 

and Supplemental Figure 2C).   

 

Rak decreases extracellular EGFR.   

EGFR-Y1173 phosphorylation has been implicated in intracellular uptake of EGFR (10).  To 

determine whether Rak affected the fraction of EGFR at the plasma membrane, we 

biotinylated the extracellular surface proteins of A549 cells infected with a control virus or an 

adenovirus driving Rak expression.  Rak caused a decrease in EGFR levels on the 
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extracellular surface (Figure 3A, top panel, compare lanes 3 and 4).  While the majority of 

Rak was intracellular (Figure 3A, second panel, lane 2), a fraction was labeled with biotin, 

suggesting a sub-population of the protein at the cell surface (Figure 3A, second panel, lane 

4).  PCNA served as a control for intracellular proteins and was enriched in the non-

biotinylated fraction (Figure 3B).  In contrast to EGFR, the levels of biotinylated Met were 

unaffected by Rak expression, suggesting a measure of specificity in the Rak-EGFR 

interaction (Figure 3C).  The overall levels of membrane proteins were not markedly different, 

as judged by Coomassie staining of the fractionated proteins (Figure 3D).  The EGFR 

analysis was repeated in triplicate and quantitation is shown in panel 3E, with the result  

being a 5-fold drop in extracellular EGFR.  We obtained a similar result by transfecting Rak 

into A549 cells, although the extent of EGFR internalization was limited by the efficiency of 

the transfection procedure (Supplemental Figure 3). 

To gain insights into the potential function of the Rak-EGFR complex, we determined 

the sub-cellular localization in which the proteins overlap.  The localization of Rak is 

controversial, having been detected in the nucleus and cytoplasmic puncta (17, 21, 22).  We 

expressed Rak in A549 NSCLC cells and detected Rak in a perinuclear region resembling 

the endoplasmic reticulum, in cytoplasmic puncta and to a lesser degree at the cell periphery 

(Figure 3F, lower center panel).  In the absence of Rak, EGFR was readily detectable at the 

plasma membrane (Figure 3F, upper left panel, triangles), while EGFR localized to the 

perinuclear region when Rak was expressed (Figure 3F, lower left panel, triangles), where it 

co-localized with Rak (Figure 3F, lower right panel).  The results suggest that Rak may 

associate with EGFR during the receptor’s production, transport or processing. 

 

The Rak SH2 and SH3 domains collaborate to increase the Rak-EGFR interaction.   

Like other Src-related proteins, Rak has amino-terminal SH2 and SH3 domains and a 

carboxy-terminal regulatory tyrosine residue (17).  We deleted the SH2 and SH3 domains, 
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separately or together, and tested co-precipitation with EGFR.  Deletion of SH2 and SH3 

domains increased Rak-EGFR binding by 5- and 3-fold, respectively (Supplemental Figure 

4A, second panel, plotted in panel B).  A western blot of the input lysates for the reactions is 

shown in the third and fourth panels.  In contrast, deletion of both the SH2 and SH3 domains 

decreased EGFR binding by approximately 4-fold (Figure 4A, upper panel, lane 6, summary 

graph in Figure 4B), indicating that these domains collaborate to direct Rak-EGFR binding.  

While deletion of the amino-terminal domains decreased binding, a kinase-deficient mutant 

(K262R) or mutation of the carboxy-terminal Y497 had little effect on EGFR binding (Figure 

4A, lanes 4 and 2, respectively).  The kinase-deficient mutant also had no effect on EGFR-

Y1173 phosphorylation, while wild-type Rak increased Y1173 phosphorylation (Supplemental 

Figure 4C). 

EGFR is activated by ligand stimulation, and we determined the extent to which the 

Rak-EGFR complex changed upon stimulation.  EGF increased the levels of Rak co-

precipitating with EGFR by 3.3-fold within 5 minutes of treatment and remained elevated by 

3.4-fold within 30 minutes (Figure 5A, top panels).  There was also a 27% decrease in Rak 

expression after EGF stimulation (Figure 5A, lower panels).  The results suggest that Rak-

EGFR binding occurs at the highest levels during the internalization of the receptor.   Because 

Rak phosphorylates EGFR, we then tested the extent to which Rak activity is altered by EGF 

stimulation.  Five minutes after EGF stimulation, Rak activity increased by 2.8-fold (Figure 

5B, lane 2) using an EGFR-Y1173-containing fusion protein as a substrate for an in vitro 

kinase assay.   

 One potential mediator of Rak-EGFR binding is the Grb2 adaptor protein, which is 

predicted to bind to Rak in protein interaction databases.  Indeed, Grb2 co-precipitated 

(Figure 5C, third panel) with both Rak and EGFR (Figure 5C, top two panels, lane 2).  In 

contrast, an inactivating Grb2-R86K mutation largely eliminated binding to Rak and EGFR 

(Figure 5C, top two panels, lane 3).  We posited that Grb2 might act as an adaptor between 



9 

 

Rak and EGFR, but the levels of Rak co-precipitating with EGFR increased when the 

inactivating Grb2 mutant was co-expressed with the two proteins (Figure 2D, top panel, 

compare lanes 2 and 4), suggesting that the Rak-EGFR association is not dependent on 

Grb2.  Because Grb2 binding was not essential for the Rak-EGFR interaction, we tested the 

possibility that Rak binds directly to EGFR.  A GST fusion protein containing amino acids 

1141-1121 of EGFR was incubated with Rak-transfected HEK293 cell lysates and analyzed 

by western blot. Rak was readily detected in an affinity precipitation with the EGFR fusion 

protein (Figure 5E, lane 2), while there was no binding of Rak to GST alone (Figure 5E, lane 

1).   

  

Rak binding is decreased in an EGFR mutant.  

EGFR is capable of being activated by mutations, including the EGFR-747-749/A750P 

mutation in exon 19 (6), which we will refer to as EGFR-747.  Wild-type and EGFR-747 

were expressed in MDA-MB-435 melanoma cells, which do not express EGFR (Figure 6A, 

first panel, lane 1), and the EGFR-747 had an elevated level of tyrosine phosphorylation 

compared to the wild-type receptor (Figure 6A, second panel).  Rak was co-expressed 

(Figure 6A, third panel), and EGFR-747 co-precipitated with 4.4-fold higher levels of Rak 

than wild-type EGFR (Figure 6A, fifth panel and graph).  To determine the effect of Rak on 

EGFR-747 activation, cells were transfected with EGFR-747, alone or in combination with 

Rak.  Rak reduced EGFR-Y1068 phosphorylation by 4.8-fold (Figure 6B, compare lanes 2 

and 3), and the effect was partially abrogated by EGF stimulation (Figure 6B, lanes 5 and 6).   

Because Rak altered the membrane localization of wild-type EGFR, we considered 

that it may affect EGFR-747.  Wild-type or mutant EGFR were co-expressed with Rak, and 

cell surface proteins were monitored by biotinylation, as in Figure 3.  The total levels of 

biotinylated proteins in the extract and of wild-type and mutant EGFR were equivalent in the 
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samples (Supplemental Figure 5A and B).  Compared to wild-type EGFR, Rak expression 

dramatically decreased EGFR-747 membrane levels (Figure 6C, lanes 5 and 6).  EGFR-

747 was not detected in the unbiotinylated pool, except on very long blot exposures 

(Supplemental Figure 5C) possibly because activated EGFR frequently associates with a 

“triton-insoluble fraction” (30), and the extraction buffer for the membrane fractionation 

procedure contains 1% triton X-100 as detergent.  Unlike A549 cells (Figure 3A, lower panel), 

Rak was not detectable at the plasma membrane in MDA-MB-435 cells (Figure 6C, second 

panel) and co-localized with PCNA inside the cell (Figure 6C, lower panel).    In the absence 

of Rak, EGFR-747 localized prominently to the plasma membrane (Figure 6D, upper panel, 

lane 5) until Rak was co-expressed (Figure 6D, upper panel, lane 6).  We conclude that Rak 

preferentially associates with the EGFR-747 mutant and potently down-regulates the mutant 

receptor. 

 

Discussion 

 Rak is a Src-related tyrosine kinase that differs from other Src family members (20) in 

that it lacks an amino-terminal myristilation site and has growth inhibitory, rather than 

transforming, activity (21-23).  Src-related kinases play an important role in multiple signaling 

pathways, including signaling by RTKs.  Rak alters signaling by phosphorylating Pten on 

Y336, stabilizing Pten levels (23), but a direct role of Rak in receptor-mediated signaling is 

unknown.  Here, we demonstrate that Rak precipitates with EGFR in cancer cells, 

phosphorylates EGFR directly, and alters the pool of EGFR at the plasma membrane.  

 Rak expression was very low in lung cancer cell lines (17), although Rak RNA is 

detectable in normal lung (17).  Rak mutations have also been detected in lung cancer 

patients (31), although it is unclear whether heterozygous mutations alone can increase 

susceptibility to lung cancer.  In addition to point mutations, Rak localizes to chromosome 
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6q21, a region that is commonly deleted in lung cancers (32).  The Rak-related Iyk kinase is 

also frequently lost in cancers (25).  In contrast, the related PTK6/BRK is present in the 

majority of tumors and has a more complex role in regulating cell growth (33), in that it 

inhibits growth of normal epithelial cells (34) but promotes growth of tumor cells, at least in 

part by phosphorylating p130cas (35), -catenin (36) and Akt (37).  PTK6/Brk also binds to 

EGFR in breast cancer cells, sustains EGFR activation and phosphorylates EGFR, but on 

Tyr845 (38), which is distinct from Rak.  Potential interactions between Rak and PTK6/Brk 

are unknown and are the subject of ongoing investigation.  In addition to EGFR, we also 

examined potential interactions between Rak and Met and did not detect a complex 

(Supplemental Figure 2).  However, we cannot exclude the possibility that other receptor 

tyrosine kinases precipitate with Rak. 

We found that individual deletion of the Rak SH2 or SH3 domains elevates levels of 

co-precipitating Rak and EGFR, which suggests that Rak does not bind to a single 

phosphorylated tyrosine or proline-rich sequence of EGFR.  In contrast, deletion of both 

domains decreased EGFR binding, suggesting that the Rak SH2 and SH3 domains function 

in atypical manner for kinases related to the Src family.  Indeed, Src family kinases are 

activated enzymatically by deletion of their amino-terminal domains, while Rak enzymatic 

activity is relatively unaffected (22).  One possible explanation is that the Rak SH2 and SH3 

domains act as a single entity for some substrates, rather than as individual modules.     

We considered the model that the carboxy-terminal tyrosine of Rak might bind to an 

adaptor protein, bridging it to EGFR.  However, Rak mutants deleted for the carboxy-terminal 

tyrosine bind normally to EGFR, which does not support the model.  We then tested the 

hypothesis that Rak associates with EGFR via an EGFR-Grb2 complex (1).  Indeed, Rak co-

precipitates with wild-type Grb2, and the complex between Rak and Grb2 was absent when 

expressing a Grb2 mutant with an inactive SH2 domain (Figure 5), suggesting that the Grb2 

SH2 domain is required for Rak binding.  However, Rak lacks the consensus pY-X-N-X Grb2-
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SH2 consensus sequence (39), suggesting that Grb2 may bind indirectly to Rak through an 

additional partner.   Surprisingly, co-expression of Grb2, Rak and EGFR had little effect on 

the levels of the Rak-EGFR complex, and the dominant-negative Grb2 mutant elevated the 

Rak-EGFR association.  We conclude that Rak-Grb2 binding inhibits Rak-EGFR binding, 

perhaps through competition between the Rak-Grb2 and Rak-EGFR complexes. 

 Our results support a model in which Rak-EGFR complexes increase after EGF 

stimulation.  Rak activity is stimulated by EGF, and Rak phosphorylates EGFR directly on 

Y1173 in a biochemical assay.  Phosphorylation of EGFR-Y1173 has been associated with 

increased EGFR uptake, and Rak hyper-expression decreased EGFR levels at the plasma 

membrane.  In contrast, Rak decreased the phosphorylation of EGFR-Y1068, a binding site 

for Grb2 (40), along with Y1086 (41).  EGF stimulation increased EGFR-Rak complex 

formation, Rak activity and EGFR-Y1173 phosphorylation.   

EGFR mutations are frequently activating, drive tumor growth and increase 

susceptibility of tumors to EGFR inhibitors (8).  The class I EGFR-747-749/A750P mutant 

was isolated twice from erlotinib-responding lung cancer patients (6) and is transforming (42).   

The EGFR-747-749/A750P mutant is closely related to the EGFR-746-750 mutant (7), 

which exhibits increased downstream signaling and suppressed ubiquitination and 

internalization (43, 44).  The regulation of EGFR by ligand binding is complex, involving 

phosphorylation, ubiquitination and binding of multiple proteins that usher EGFR to 

endosomes, where it is recycled to the plasma membrane or degraded (9).  Our current 

model is that increased binding of Rak to the EGFR-747-749/A750P mutant may increase 

endocytosis or slow recycling of the mutant protein.  One prediction of this model is that Rak 

expression will be attenuated in tumors expressing mutant EGFR, and a test of this 

hypothesis is in progress.      
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The co-localization of Rak and wild-type EGFR in punctate intracellular sites (Figure 

3) suggests that it may stabilize or delay the transit of an endosomal population of EGFR.  

These populations could include newly synthesized EGFR, in transit to the plasma 

membrane, or endocytosed EGFR.  It is unclear whether EGFR exon 19 mutants are 

trafficked through the same pathways as the wild-type protein or whether Rak contributes to 

these pathways.  However, our results suggest that Rak has the potential to attenuate 

signaling in tumor cells expressing EGFR exon 19 mutants.  This may clinical implications in 

cancer patients expressing EGFR mutants and may potentially lead to therapeutics targeting 

the mutant EGFR receptors.   

 

EXPERIMENTAL PROCEDURES 

Cell lines and plasmids- A431, A549, BT549, H226, Ovcar-3 and SW-480 cells were 

obtained from the ATCC, cultured under the suggested conditions and verified by Genetica 

LLC (Cincinnati, OH).  MDA-MB-435 melanoma cells were a generous gift from Dr. Rina 

Plattner and Sourik Ganguly.  Cells were maintained in DMEM containing 10% serum 

supreme and antibiotics, except where described.  The control and HA-Rak adenoviruses 

(based on the pShuttle-CMV plasmid) have been described previously (22).  Rak siRNA was 

from Santa Cruz Biotechnology (Santa Cruz, CA) and was transfected using Oligofectamine 

(Invitrogen, Grand Island, NY).  Purified epidermal growth factor was from Axcell Biosciences 

(Newtown, PA).  

 For the GST-EGFR fusion protein, a PCR product including the 3421-3633 sequence 

of the EGFR open reading frame was amplified using the primers EGFR+3421F-Bam 

(AATGGATCCACTGTCCAGCCCACCTG) and EGFR+3633R-Xho 

(AATCTCGAGTCATGCTCCAATAAATTCACTGCT), digested with BamHI and XhoI and 

cloned into the comparable sites of pGEX-4T-1, forming the plasmid pLJ1.  Rak was myc-

tagged by sub-cloning into the XhoI and NotI sites of the plasmid pCMV-myc-N (BD 
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Clontech, Mountain View, CA) using the plasmid pcDNA3.1-Rak (21) as a template with 

Rak+1F-Xho (AATTCTCGAGGTATGAGCAACATCTGTCAGAGG) and Rak+1518R-Not 

(AATTGCGGCCGCTCATCTTATGAAGTTATTTGCATC) as primers, forming the plasmid 

pLJ3.  Rak mutants lacking the single SH2 and SH3 domains were sub-cloned using the 

same approach from the plasmids pGFP-Rak-SH2 and pGFP-Rak-SH3 (22), forming the 

plasmids pLJ4 and pLJ5, respectively.  The Rak-Y497F and Rak-K262R (KD) mutants were 

also sub-cloned similarly from the templates pGFP-Rak-Y497F and pGFP-Rak-KD (22), 

forming the plasmids pLJ7 and pLJ6.  The Rak mutant lacking both SH2 and SH3 domains 

was constructed by amplifying the plasmid pLJ3 with the primers Rak+595F-Kpn 

(AATGGTACCGGCCTGTGTGTCAAGCTGGG) and Rak+138R-Kpn 

(AATGGTACCGTAGTGCCATGAATCTGTGA), forming the plasmid pLJ8.  The pcDNA3.1-

Rak-flag vector has been published previously (22). 

The pcDNA3.1-EGFR vector was a gift from Drs. Penni Black of the University of 

Kentucky College of Pharmacy and William Pao of the Vanderbilt University Department of 

Medicine.  The pBabe-EGFR-747-749/A750P plasmid was purchased from Addgene 

(Cambridge, MA). Plasmids were transfected using the Transgin (APSBio, Gaithersburg, MD) 

reagent following the manufacturer’s instructions. 

Protein analysis- For immunoprecipitations, cells were lysed in 1% Triton Buffer (20 

mM HEPES, pH 7.4, 50 mM KF, 50 mM -glycerol phosphate, 150 mM NaCl, 2 mM EGTA, 1 

mM sodium vanadate, 10% glycerol, 1% Triton X-100 and 1X protease inhibitor cocktail 

(Thermo Scientific, Rockford, IL) and precipitated with antibody and protein A/G-plus agarose 

(Santa Cruz Biotechnology, Santa Cruz, CA).  Precipitated proteins were collected by 

centrifugation, washed five times with 1% Triton Buffer.  For the first and third washes, 

pellets were washed with 1% Triton Buffer containing 500 mM NaCl.  For affinity 

precipitations with a GST-EGFR fusion protein, 20 g of GST fusion protein was incubated 
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with 2 mg of cell lysate in 1% Triton Buffer and incubated overnight.  Centrifuged pellets were 

then washed three times with 1% Triton Buffer, and bound proteins were eluted by boiling in 

1X SDS-PAGE loading buffer.   

The antibodies used in the study were anti-Flag (Sigma, St. Louis, MO), HA (HA11, 

BAbCo, Richmond, CA), EGFR (1005, Santa Cruz), anti-EGFR (IMC-C225/ Erbitux, ImClone 

Systems, Branchburg, NJ), EGFR-pY992 (Millipore, Bellerica, MA), EGFR-pY1068 (R&D 

Systems, Minneapolis, MN), EGFR-pY1173 (Santa Cruz), ku70 (sc-5309, Santa Cruz), anti-

Met (C-12, Santa Cruz), anti-proliferating cell nuclear antigen (PCNA, PC-10, Santa Cruz) 

and Rak (MAB3766, R&D Systems).  For western blots of immunoprecipitation reactions of 

myc- and flag-tagged proteins, antibodies were biotinylated using the Amersham protein 

biotinylation system (GE Healthcare, Piscataway, NJ) and western blots were probed with 

horseradish peroxidase-conjugated streptavidin (Thermo Scientific) at a concentration of 125 

ng/ml. 

For kinase assays, immunoprecipitated kinases were washed twice with kinase buffer 

(10 mM HEPES, pH 7.4, 10 mM MgCl2 and 1 mM DTT) and resuspended in 30 l kinase 

buffer containing 30 M ATP and 1 g kinase substrate (GST-EGFR-1141-1211) and 

incubated at 30oC for 30 minutes.  The reaction was terminated with SDS and boiling before 

analysis by western blot.  To measure cell surface EGFR levels, cells were biotinylated with 

sulfo-NHS-SS-biotin and purified with avidin-agarose using the Cell Surface Isolation Kit 

(Thermo Scientific) according to the manufacturer’s instructions.  In some cases, proteins 

that remained unbound to the avidin-agarose served as a control for intracellular proteins. 

Imaging- For EGFR immunofluorescence, cells were fixed with formaldehyde, 

permeabilized with Triton X-100 and stained as described previously (45).  However, for Rak 

immunofluorescence, cells were permeabilized with methanol.  EGFR was stained using the 

Ab-13 antibody (Thermo Scientific) and Rak was stained with a monoclonal antibody 
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(MAB3766, R&D).  Images were captured on a Leica DM IRBE inverted microscope at the 

University of Kentucky Imaging Core Facility. 
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FIGURE LEGENDS 

Figure 1. Rak increases EGFR-Y1173 phosphorylation directly.  (A) A549 NSCLC cells 

were infected with a control adenovirus (Ad-GFP, lane 1) or increasing doses of an 

adenovirus driving expression of Rak fused to an HA epitope tag sequence (lanes 2-4).  

Lysates were analyzed by western blot for HA-Rak (upper panel), total EGFR (second panel), 

EGFR-phosphoY1068 (third panel), EGFR-phosphoY1173 (fourth panel) and ku70 as a 

loading control (fifth panel).  (B) NCI-H226 squamous cell lung cancer cells were infected 

with the same doses of the same viruses as in panel A and analyzed for the same proteins 

and phosphorylation sites.  (C) HEK293 embryonic kidney cells were transfected with a 

control plasmid (lane 1) or a plasmid encoding Rak fused to a myc epitope tag (lane 2) and 

analyzed for the same protein and phosphorylation sites as described in panels A and B.  (D) 

Ovcar-3 human ovarian cancer cells were transfected with a control siRNA (lanes 1 and 3) or 

an siRNA pool targeting Rak (lanes 2 and 4) and were untreated (lanes 1 and 2) or 

stimulated with 20 nM EGF for 5 minutes.  Rak knockdown was confirmed by western blot 

(top), while EGFR was unaffected (second panel) and EGFR-pY1173 decreased (third panel, 

compare lanes 3 and 4).  (E) A549 cells were transfected with a control plasmid (lane 1) or a 

plasmid encoding flag-tagged Rak (pcDNA3.1-Rak-flg, lane 2), and immunoprecipitated Rak 
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was analyzed by western blot (middle panel) or incubated in a kinase assay with a purified 

fusion protein of glutathione S-transferase (GST) fused to amino acids 1141-1211 of EGFR 

(lower panel, Coomassie staining).  The kinase assay was then analyzed by western blot for 

EGFR-Y1173 (top panel).  The lower band is a non-specific band caused by the antibody 

light chain in the precipitation reaction.  (F) The same reactions as described in panel E 

were performed with immunoprecipitated EGFR (middle panel), resulting in negligible Y1173 

phosphorylation (upper panel). 

 

Figure 2. EGFR and Rak co-precipitate and co-localize.  (A) HEK293 cells were co-

transfected with a plasmid encoding EGFR and either a control plasmid (lane 1) or a plasmid 

encoding myc-tagged Rak (lane 2).  Rak was immunoprecipitated using an anti-myc 

antibody, and precipitates were analyzed for EGFR (upper panel) or Rak (middle panel).  The 

lower panel shows a western blot of cell lysates for EGFR.  (B) HEK293 cells were co-

transfected with plasmids encoding EGFR and Rak and precipitated with a control antibody 

(lane 1) or an anti-EGFR antibody (lane 2), and precipitates were probed for myc-Rak (top 

panel) or EGFR (lower panel).  (C) A549 NSCLC cells were transfected with a control 

plasmid (lane 1) or a plasmid encoding myc-tagged Rak (lane 2).  Rak was immuno-

precipitated, and western blots were probed for EGFR (upper panel) and Rak (middle panel).  

The lower panel shows EGFR expression in cell lysates.  (D) A549 cells were transfected 

with a plasmid encoding myc-tagged Rak and precipitated with a control antibody (lane 1) or 

an anti-EGFR antibody (lane 2).  Precipitates were probed for myc-Rak (top panel) or EGFR 

(middle panel).  (E) Rak (top) and EGFR (bottom) were detected by western blot in SW480 

human colon cancer cells and A431 human carcinoid cells.  (F) EGFR was 

immunoprecipitated (lane 2) from SW480 (top) or A431 cells (bottom) and analyzed by 

western blot for Rak or EGFR.  Lanes 1 and 3 are immunoprecipitation reactions with control 

mouse immunoglobulin.  
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Figure 3. Extracellular EGFR levels decrease with Rak expression.   (A) A549 cells were 

infected with a control adenovirus (A-B, lanes 1 and 3) or a matched virus encoding Rak (A-

B, lanes 2 and 4).  Cell surface proteins were biotinylated and purified by avidin-agarose.  

Extracellular proteins bound avidin (lanes 3-4) while intracellular proteins remained unbound 

(lanes 1-2).  (A) Extracellular EGFR decreased following Rak expression (lanes 3 and 4), and 

the majority of Rak was detected in the intracellular pool (lanes 2 and 4).  (B) PCNA was a 

marker of intracellular proteins and localized to the intracellular pool.  The samples in panels 

C and D were the same as in panels A and B, lanes 3 and 4.  (C) Extracellular Met levels 

were unchanged and the proportion of labeled proteins was not generally affected (D).   (E) A 

bar graph represents the amount of extracellular, avidin-bound EGFR in cells from panel A, 

lanes 3 and 4.  (F) Immunofluorescence for EGFR (using the Ab-13 antibody, see Methods), 

Rak (HA epitope tag) or a merged image (right) following infection with a control adenovirus 

(top panels) or a Rak adenovirus (lower panels).  EGFR membrane localization (white 

arrowheads) decreased with Rak expression, and EGFR co-localized with Rak in intracellular 

punctate sites. 

 

Figure 4.  The Rak SH2 and SH3 domains cooperate to increase EGFR binding.   (A) 

HEK293 cells were transfected with plasmids encoding EGFR and wild-type Rak (lanes 7 

and 8) or Rak mutants Y497F (carboxy-terminal tyrosine, lanes 1 and 2), K262R (kinase-

inactivating mutation, lanes 3 and 4) and deletion of both the SH2 and SH3 domains (lanes 5 

and 6).  Lysates were precipitated with control mouse immunoglobulin (odd lanes) or an 

antibody to EGFR (even lanes), and precipitated protein complexes were probed with 

antibodies to Rak (upper panel) or EGFR (second panel).  The lower panels show western 

blots of Rak (third panel) and EGFR (bottom panel) expression in the lysates, where the 

lower migration reflects the deleted portions of the protein.  The SH2 and SH3 domain 
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deletion caused a marked reduction in EGFR complex formation.  (B) Quantitation of band 

intensities from panel A, reflecting bands from the upper panel divided by those in the second 

panel. 

 

Figure 5. Rak-EGFR binding increases after receptor stimulation.  (A) HEK293 cells 

were transfected with plasmids encoding EGFR and myc-tagged Rak and stimulated with 20 

ng/ml EGF for increasing amounts of time.  Lysates were then immunoprecipitated with a 

control antibody (lanes 1, 3 and 5) or an anti-EGFR antibody IMC-C225 (lanes 2, 4 and 6), 

and the precipitated proteins were analyzed by western blot for Rak (top) or EGFR (bottom).  

The blots showed that the EGFR-Rak complex increased in abundance following EGF 

stimulation and persisted for 30 minutes post-stimulation.  There was a small decrease in 

Rak abundance relative to a ku70 loading control.  (B) HEK293 cells expressing myc-tagged 

Rak and EGFR were untreated (lane 1) or treated with EGF (lane 2) for 5 minutes.  Myc-Rak 

was analyzed by western blot (middle panel) or immuno-precipitated and tested in a kinase 

assay using EGFR-GST (lower panel) as a substrate, as in Figure 1.  EGF treatment led to 

an increase in Rak activity in a western blot for EGFR-pY1173 (upper panel).  The results 

from triplicate experiments are quantitated in the lower panel.   (C) HEK293 cells were 

transfected with plasmids encoding EGFR, myc-tagged Rak and either a control vector (lane 

1), flag-tagged Grb2 (lane 2), or a Grb2 inactivating R86K mutant (lane 3).  Grb2 was 

immunoprecipitated (third panel), and EGFR (upper panel) and Rak (second panel) co-

precipitated with wild-type Grb2, but not the R86K mutant.  EGFR (fourth panel) and Rak 

(lower panel) expression was unchanged in the three reactions.  (D) HEK293 cells were 

transfected with the same plasmids described in panel C, but lysates were precipitated with 

control antibodies (lanes 1 and 3) or antibodies to EGFR (lanes 2 and 4).  Precipitated EGFR 

(third panel) associated with Rak (top panel) and wild-type Grb2 (second panel, lane 2).  

EGFR did not precipitate with mutant Grb2 (second panel, lane 4), and co-precipitating Rak 
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increased when mutant Grb2 was co-expressed (top panel, lane 4).  Rak (fourth panel) and 

Grb2 (lower panel) expression was unchanged in the reactions. (E) In an affinity precipitation 

assay, lysates from HEK293 cells transfected with Rak were tested for binding to a column-

bound GST fusion protein (lane 1) or GST-EGFR (lane 2).  Rak binding to GST-EGFR was 

detected by western blot (upper panel), and the lower panel is a Coomassie-stained gel of 

the fusion proteins.  

 

Figure 6.  Elevated Rak binding to mutant EGFR.  (A) MDA-MB-435 melanoma cells were 

transfected with a vector control (lane 1, vec) or plasmids encoding wild-type EGFR (lane 2, 

WT) or EGFR-747 (lane 3, mut).  Lysates were either western blotted for EGFR, 

phosphotyrosine, myc-tagged Rak or ku70 (as indicated) or precipitated with antibodies to 

EGFR and blotted for Rak or EGFR (as indicated).  The ratio of precipitated Rak as a percent 

of input Rak is plotted below.  (B) MDA-MB-435 cells were transfected with vector control 

(lane 1) or plasmids encoding EGFR-747 (lane 2 and 5), EGFR-747 plus Rak (lanes 3 and 

6), or Rak alone (lanes 4 and 7) and were untreated (lanes 1-4) or stimulated with EGF for 5 

minutes.  Lysates were blotted for EGFR, ku70, Rak or EGFR-pY1068, as indicated.  Results 

were quantitated and plotted below.  (C) MDA-MB-435 cells were transfected with a plasmid 

encoding Rak and either a vector control (lanes 1 and 4) or plasmids encoding wild-type 

EGFR (lanes 2 and 5) or EGFR-747 (lanes 3 and 6).  Cells were biotinylated and purified as 

described in Figure 3.  Intracellular proteins (lanes 1-3) included Rak and PCNA (lower two 

panels).  EGFR-wild-type localized to the plasma membrane (lane 5), while mutant EGFR 

was not detectable at the extracellular surface when Rak was expressed (lane 6).  (D) MDA-

MB-435 cells were transfected with a vector control (lanes 1 and 4), a plasmid encoding 

EGFR-747 (lanes 2 and 5) or plasmid encoding EGFR-747 and Rak (lanes 3 and 6).  Cells 

were biotinylated and purified as described in Figure 3.  In the absence of Rak, EGFR-747 
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localized to the plasma membrane (lane 5) and then disappeared from the extracellular 

surface when Rak was expressed (lane 6). 

 

Supplemental figure 1. Rak expression decreased the phosphorylation of EGFR tyrosine 

992.  The samples are identical to those of Figure 1A and showed unchanged EGFR levels 

but decreased EGFR-Y992 phosphorylation. 

 

Supplemental figure 2.  Rak does not co-precipitate with Met but associates with 

endogenous EGFR.  (A) HEK293 cells were co-transfected with a control plasmid (lane 1) or 

a plasmid encoding myc-tagged Rak (lane 2).  Rak was immunoprecipitated using an anti-

myc antibody, and precipitates were analyzed for Met (upper panel) or Rak (second panel).  

The lower panel shows a western blot of cell lysates for Met (third panel) and Rak (lower 

panel).  (B) Rak (upper panel) and EGFR (lower panel) were endogenously expressed in 

HEK293 cells, although at lower levels than post-transfection.  (C) HEK293 lysates were 

precipitated with a control antibody (lane 1) or an anti-EGFR antibody (lane 2), and 

precipitates were probed for endogenous Rak (top panel) or EGFR (lower panel) .   

 

Supplemental figure 3.  Rak decreases plasma membrane EGFR levels in HEK293 cells.  

Rak and EGFR were transiently transfected into HEK293.   Cell surface proteins were 

biotinylated and purified by avidin-agarose.  Extracellular proteins bound avidin (lanes 3-4) 

while intracellular proteins remained unbound (lanes 1-2).  Extracellular EGFR decreased 

following Rak expression (A, lanes 3 and 4), and the majority of Rak was detected in the 

intracellular pool (B, lanes 2 and 4).  PCNA was a marker of intracellular proteins and 

localized to the intracellular pool (C).  Quantitation of EGFR levels is shown in panel D.  
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Supplemental figure 4.  Rak-EGFR binding does not require the presence of the Rak SH2 

or SH3 domains independently. (A) HEK293 cells were transfected with plasmids encoding 

EGFR and wild-type Rak (lanes 5 and 6) or Rak mutants deleted in the SH2 and SH3 

domains (lanes 1-2 and 3-4, respectively), and lysates were immunoprecipitated with a 

control antibody (lanes 1, 3 and 5) or an antibody to EGFR (lanes 2, 4 and 6).  Precipitated 

protein complexes were probed with antibodies to Rak (upper panel) or EGFR (second 

panel).  The lower panels show western blots of Rak (third panel) and EGFR (bottom panel) 

expression in the lysates, where the lower migration reflects the deleted portions of the 

protein.  (B) Quantitation of band intensities from panel A, reflecting bands from the upper 

panel divided by those in the second panel.  (C) A Rak kinase-inactive mutant does not 

increase EGFR-Y1173 phosphorylation.  A549 cells were transfected with a control plasmid 

(lane 1, con) or plasmids expressing kinase-deficient Rak (lane 2, KD) or wild-type Rak (lane 

3, WT) and analyzed for Rak (top panel), EGFR (second panel), EGFR-pY1068 (third panel), 

EGFR-pY1173 (fourth panel) or ku70 (lower panel).  

 

Supplemental figure 5.  Loading controls for Rak biotinylation experiments.  (A) Each of the 

three biotinylated lysates from Figure 6C contained equivalent amounts of protein (upper 

panel), and EGFR expression was approximately equal by western blot (lower panel).   (B) 

Analogous experiments as described in panel A for the samples in Figure 6D.  (C) The panel 

shows a longer exposure of the western blot in panel 6C.  The intensities of the EGFR bands 

in lanes 2 and 3 are approximately the same.   
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