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we find that the 2-dimensional Gale transform is given by

M =

 −1 −2 −1 1 2 1
1.5 0 −1.5 −1.5 0 1.5
1 1 1 1 1 1

 , M =

 1 0 0 −1 2 −2
0 1 0 −2 3 −2
0 0 1 −2 2 −1

 .
If we form a Gale diagram by scaling the points onto the unit sphere centered at

the origin in R3, we obtain Figure 1.11.

Figure 1.11: Gale diagram regions - hexagon example, k = 0

It is not easy to see from the static picture of the 3-dimensional sphere, but by
“removing” the boundaries of all cones of 3 elements of M , we obtain 14 distinct
regions on the sphere which correspond to the 14 possible regular triangulations of
the hexagon. This correctly reflects the number of vertices of the corresponding
secondary polytope, which is also known as the associahedron corresponding to the
hexagon, see [9], [3], and [13]. This polytope was pictured in Figure 1.4i. ♦

In [1], Billera, Filliman, and Sturmfels demonstrated another method to construct
the secondary polytope Σ0(A) corresponding to the point set A. In this construc-
tion, the point set A is translated so that

∑
v∈A v = 0 prior to constructing the Gale

diagram M . This way, we can consider the original set of points as the Gale diagram
of M and vice versa. We then think about moving the origin about in the interior
of conv(A) such that it never lies on an affine hyperplane through d elements of A.
Each new placement of the origin in A will correspond to a scaling of the points of
M , thus we can form polytopes Pi = conv(M) for i ranging from 1 to R = #(regions
of conv(A) formed by all hyperplanes through d elements). By taking the Minkowski
sum of the polars of these polytopes, we obtain a polytope P whose normal fan is
a common refinement of the normal fans of the polars of P1,P2, . . . ,PR, and which
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was demonstrated to be combinatorially equivalent to the secondary polytope Σ0(A).

The following theorem describes how to alter the Gale diagram construction to
describe the set of k deletion-induced triangulations associated to various general
liftings ω of our point set A.

Theorem 1.3.12 Let M be a Gale diagram corresponding to the point set A, rep-
resented by the matrix M , where the nonzero points have been scaled to lie on the
unit sphere centered at the origin in Rn−(d+1). Denote the columns of M , v1, . . . ,vn,
and their opposites, −v1, . . . ,−vn, as the positive and negative elements of M , re-
spectively, and let z be placed so that it lies on no hyperplane spanned by n− (d+ 1)
elements from {±v1, . . . ,±vn}. Then a collection F ⊂ M of points forms a lower
hull facet of the lifting ω(A) ∪ {z} (for some placement of z in the Gale diagram)

after the deletion of a cardinality k set K̃ of M iff there exists a (possibly empty)

subset K ⊆ K̃ such that 0 ∈ relint(conv((M \ (F ∪K)) ∪ −K)).

Proof. We have previously seen that if we focus on the Gale diagram consisting of
v1, . . . ,vn and z in general position, then the polytope P which possesses this Gale
diagram can be thought of as the convex hull of a general lifting ω (determined by the
placement of z) of the points of A and a point z at infinity. If F = {vi1 , . . . ,vis} ⊂M

denotes a lower hull facet of P after the k-deletion of some points K̃ = vj1 , . . . ,vjk ⊂
M (F ∩ K̃ = ∅), then there is some hyperplane with normal n and subset K ⊆ K̃
(possibly empty) such that

n · v = n · v′ ∀ v,v′ ∈ F , n · v > n · v′ ∀ v ∈ F , v′ ∈ K,

and n · v < n · v′ ∀ v ∈ F , v′ ∈M \ (F ∪K).

Thus if we let r = [n, −(n ·vi1)] ∈ Rd+1 be a row vector, then we see that we can
interpret the row vector rM as a vector in the set [0,+,−]n. Specifically, coordinate
i of rM is a 0 precisely if vi ∈ F , is positive (+) precisely when vi /∈ F ∪K, and is
negative (−) when vi ∈ K for 1 ≤ i ≤ n. This new row vector rM is in the row span
of M , and is hence perpendicular to each row of M . Thus we have

[
v1 v2 . . . vn

]
· (rM)> =

 0
...
0


1×n

which implies that F is a facet of the lower hull of conv(A \ K) precisely when

0 ∈ relint(conv(F ′ ∪ (−K))), where F ′ = M \ (F ∪K) and −K denotes the nega-
tives of the points in K.

As is the case when studying facets of the lower hull of liftings of A with the Gale
diagram, it is easy to see that if there are some subsets K,F ′ ⊂ M , K ∩ F ′ = ∅,
|K| ≤ k, such that 0 ∈ relint(conv(F ′ ∪ (−K))), then the previous argument may

be reversed to show that the set F ⊂ M corresponding to M \ (K ∪ F ′) will form a
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face of the lower hull of P after the deletion of any k point collection K̃ such that
K ⊆ K̃ and F ∩ K̃ = ∅. Similarly, if some set of k deletion-induced triangulations
is realizable by some lifting ω of A, then a placement of z can be determined in the
Gale diagram which will correspond to the set of points ω(A) ∪ {z} where z is the
point at infinity, which will hence produce the correct lower hulls after k-deletions.

Example 1.3.13 If we alter the Gale diagram for the set of 4 points on a line dis-
cussed in Example 1.3.9 by adding in the negatives of every point, we obtain the
diagram in Figure 1.12 which can be seen to split the circle into eight regions if we
remove the boundaries of all cones formed by two distinct positive points vi and vj
(which tell us which simplices are in the original lower hull) and cones formed by a
positive and a negative point vi and −vj (which tell us which simplices only appear
in the lower hull after deletion of the point vj ∈ A ∪ {z}). Note we do not consider
cones involving more negative elements of M as we only go so far as to take k = 1
deletions for a set of this size in this dimension.

Figure 1.12: Gale diagram regions, line example, k = 1

If we place negative z in each region, then Theorem 1.3.12 guarantees that the
collection of representative polytopes conv(ω(A)∪ {z}) corresponding to each place-
ment of −z will contain liftings which realize every possible 1-compound GKZ-vector
corresponding to the point set A. Figure shows 8 representative liftings obtained by
the placement of −z in the corresponding region of Figure 1.12.

For an example of how to interpret what sort of lifting is produced from each
region, suppose that −z is placed in region I. Then we see that −z is in the cones
formed by (v1,v4), (v1,v2), and (v3,v4), which implies that (v2,v3), (v3,v4), and
(v1,v2) are original lower hull facets, respectively. Next we want to consider what
new minimal sets can capture the origin with z when we consider cones with one
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(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Figure 1.13: Representative liftings - line example, k = 1

negative element. Since −z in this region does not lie in a cone formed by −v1 and
any positive vi, we see no new lower hull facets are introduced after the deletion of v1,
similarly with the deletion of v4 . Since −z is in the cones (v1,−v3) and (v4,−v2), we
gather that (v2,v4) forms a new lower hull facet after the deletion of v3 and (v1,v3)
forms a new lower hull after the deletion of v2.

To see the particular effects of the further subdivision of the sphere by the addi-
tion of the negative elements of M , focus on regions IV, V, and VI in Figure 1.12. We
see that these regions formed the single region III in Figure 1.9 of Example 1.3.10.
This reflects the fact that all representative liftings of regions IV, V, and VI, have
the same original lower hull, but have differing 1 deletion-induced triangulations. ♦

Example 1.3.14 We can also alter the Gale diagram for the hexagon discussed in
Example 1.3.11 by adding in the negatives of every point. In this example, however,
we have the option to choose k as high as 2.

Figure 1.14i is the diagram that we would use to study the 1-deletions of the
hexagon. In this diagram, we have removed all boundaries of cones formed by 3 posi-
tive elements of M (these corresponded to the original lower hull) and the boundaries
of cones formed by 2 positive elements of M and 1 negative element (these cor-
responded to new lower hull facets which appear after the 1-deletion of the point
corresponding to the negative element used in the cone). We see that some new arcs
(removed boundaries of cones) appear, specifically between positive and negative el-
ements of M . This subdivides the sphere into more regions than were present in
Figure 1.11, and reflects the fact that two liftings ω and ω′ which had the same origi-
nal lower hulls, i.e., represented the same region in Figure 1.11, may have had distinct
1-deletion induced triangulations, which would require them to lie in distinct regions
of Figure 1.14i. The deletion-induced polytope corresponding to this subdivision of
the sphere was shown in Figure 1.4ii.
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(i) (ii)

Figure 1.14: Gale diagram regions - hexagon example, k = 1, k = 2

Figure 1.14ii is the diagram that we would use to study the 2-deletions of the
hexagon. We remove the same cones as we did for k = 1, but now we also remove
cones which are formed by two negative elements and 1 positive element of M . These
cones allowed us to detect the new lower hull simplices which would appear after
the deletion of the two points corresponding to the negative elements of the cone.
We see that the surface of the sphere is subdivided further by arcs connecting two
negatives of elements of M . The polytope corresponding to this maximal subdivision
was shown in Figure 1.4iii. ♦

We have seen that if we choose a maximal value for k, then by removing the bound-
aries of all cones formed by k′ up to n− (d+ 2) negative elements and n− (d+ 1)−k′
positive elements of M , we obtain the finest possible subdivision of the sphere ob-
tained by deleting the boundaries of cones consisting of any set of n − (d + 1) pos-
itive/negative elements of M . In particular, this finest possible subdivision of the
surface of the sphere can be thought of as being induced by deleting a particular cen-
tral hyperplane arrangement from Rn−(d+1), which leads us to a second construction
of the zonotope Σn−(d+2)(A).

The creation of this particular zonotope via a hyperplane argument is discussed
in [1]. In particular, we saw that knowledge of the orientation of every set of d + 2
points in a general lifting ω(A) of our point set will determine the k deletion-induced
triangulations for any k; in particular k = n− (d+ 2). The set of sets of compatible
orientations that can be placed on the (d+ 2)-tuples of points in A can be put into a
natural bijection with the cells of the hyperplane arrangement given by the zero sets
of the polynomials arising from the (d+ 2)× (d+ 2) minors of the matrix
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 v1 v2 v3 . . . vn
x1 x2 x3 . . . xn
1 1 1 . . . 1


(d+2)×n

,

where the vi correspond to the points of A in column vector form and the variables
xi give an arbitrary lifting vector ω = 〈x1, x2, . . . , xn〉. Thus if we let n1, . . . ,n( n

d+2)
denote the normal vectors to the various hyperplanes in our arrangement, then defin-
ing li to be the line segment from 0 to the tip of the vector ni in Rn for 1 ≤ i ≤

(
n
d+2

)
,

we have that our zonotope is combinatorially equivalent to the Minkowski sum∑( n
d+2)
i=1 li ⊂ Rn ([13]).

Lastly, we outline a construction for deletion-induced polytopes similar to the
method used to construct the secondary in [1], which was described earlier. To
this end, we note that we had considered the positions of the negatives of points
−v1, . . . ,−vn in the Gale diagram when studying the lower hull facets after particu-
lar deletions, but we hadn’t thought of these points as proper members of the Gale
diagram. We see that by considering these points as part of the collection M , then
the corresponding point set A must increase by n points and increase in dimension
by n. In particular, adding the negatives of points in the Gale diagram corresponds
to applying Lawrence extensions to the point set A ([13], [7]).

Definition 1.3.15 If V is a point set in Rd, adding the negative of an element −vi
into M , for some vi ∈M , produces a new Gale diagram corresponding to a Lawrence
extension on V . A Lawrence extension σi(V ), 1 ≤ i ≤ |V |, is the point set we obtain
from V by replacing the point vi ∈ V with v+

i := vi+c1 ·ed+1, and v−i := vi+c2 ·ed+1,
where 0 < c1 < c2 ∈ R, and ed+1 is the (d+ 1)st standard basis vector. Note that the
“lower” point v+

i is assigned a “+” because it corresponds to the positive version of
vi in the Gale diagram, and v−i corresponds to −vi. Traditionally, we choose c1 = 1
and c2 = 2, but by varying the value of these weights, we end up with a construction
which is combinatorially equivalent (In the sense that the convex hull of σi(V ) has
the same combinatorial structure).

For a point set V ⊂ Rd with no coloops (i.e., the deletion of any single vector from
the set of vectors corresponding to V still leaves a set which spans Rd), the Lawrence
Polytope corresponding to the point set V , Λ(V ), is defined by

Λ(V ) := σ1 ◦ σ2 ◦ · · · ◦ σ|V |(V ) ⊂ Rd+|V |.

Example 1.3.16 The Lawrence polytope Λ(V ) corresponding to V = {v1, v2, v3}
consisting of three copies of the origin in R0 is depicted in Figure 1.15. ♦
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Figure 1.15: Lawrence polytope Λ(V )

This means that for a particular k-subset, K ⊂ A, the different possible deletion-
induced triangulations of the set A \ K should be, in some way, connected to the
secondary polytope corresponding to the “k-Lawrence extension” LK , where

LK := σvi1
◦ · · · ◦ σvik

(A), where K = {vi1 , . . . ,vik} ⊂ A.

This follows from the fact that both of these combinatorial structures rely on varying
the general placement of z into the Gale diagram given by the points {v1,v2, . . . ,vn}∪
{−vi | vi ∈ K}.

Example 1.3.17 Suppose we wish to study the deletion-induced triangulations of
the point set studied in Example 1.8, specifically where we are deleting the element
v2 = 1 from A. This means we only consider adding −v2 into the Gale diagram,
producing Figure 1.16.

If we think of adding the opposite of z, −z, into the various regions depicted
in Figure 1.16, we determine 5 representative liftings which model the only possible
triangulations induced after the deletion of v2 = 1 ∈ A. Five possible representative
liftings for the corresponding regions in Figure 1.16 are shown in Figure 1.17 (read
left to right, top to bottom), along with the triangulations induced by their original
lower hulls T∅ (top) and lower hulls after the deletion of v2 = 1, T2 (bottom).
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Figure 1.16: v2-deletion Gale diagram
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T∅ :

T2 :

T∅ :

T2 :

T∅ :

T2 :

Figure 1.17: v2-deletion-induced triangulations
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The compound GKZ-vectors obtained by adding the characteristic vectors corre-
sponding to the triangulations T∅ and T2 for the representative liftings of each region
in Figure 1.16 are shown below:

Region I: 〈1, 2, 2, 1〉+ 〈2, 0, 3, 1〉 = 〈3, 2, 5, 2〉,
Region II: 〈2, 0, 3, 1〉+ 〈2, 0, 3, 1〉 = 〈4, 0, 6, 2〉,
Region III: 〈3, 0, 0, 3〉+ 〈3, 0, 0, 3〉 = 〈6, 0, 0, 6〉,
Region IV: 〈1, 3, 0, 2〉+ 〈3, 0, 0, 3〉 = 〈4, 3, 0, 5〉,
Region V: 〈1, 3, 0, 2〉+ 〈2, 0, 3, 1〉 = 〈3, 3, 3, 3〉.

Next, we will utilize the same diagram in Figure 1.16, but we will instead use it
to study the regular triangulations corresponding to the Lawrence extension σv2(A)
(using c1 = 2, c2 = 4), pictured in Figure 1.18.

Figure 1.18: Lawrence extension σv2(A)

The 5 regular triangulations of this Lawrence extension corresponding to the place-
ment of −z in the 5 regions of Figure 1.16 are shown in Figure 1.19.
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