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Article

Therapeutic development of group B Streptococcus
meningitis by targeting a host cell signaling
network involving EGFR
Ningyu Zhu1, Chengxian Zhang1, Atish Prakash1, Zheng Hou1, Wei Liu1, Weifeng She1, Andrew Morris2

& Kwang Sik Kim1,*

Abstract

Group B Streptococcus (GBS) remains the most common Gram-posi-
tive bacterium causing neonatal meningitis and GBS meningitis
continues to be an important cause of mortality and morbidity. In
this study, we showed that GBS penetration into the brain
occurred initially in the meningeal and cortex capillaries, and
exploits a defined host cell signaling network comprised of S1P2,
EGFR, and CysLT1. GBS exploitation of such network in penetration
of the blood–brain barrier was demonstrated by targeting S1P2,
EGFR, and CysLT1 using pharmacological inhibition, gene knockout
and knockdown cells, and gene knockout animals, as well as inter-
rogation of the network (up- and downstream of each other). More
importantly, counteracting such targets as a therapeutic adjunct
to antibiotic therapy was beneficial in improving the outcome of
animals with GBS meningitis. These findings indicate that investi-
gating GBS penetration of the blood–brain barrier provides a novel
approach for therapeutic development of GBS meningitis.

Keywords blood–brain barrier; CysLTs; EGFR; GBS meningitis; S1P
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Introduction

Group B Streptococcus (GBS) remains the most common Gram-posi-

tive bacterium causing neonatal meningitis and GBS meningitis

continues to be an important cause of mortality and morbidity

(Kim, 2008, 2010; Romain et al, 2018; O’Sullivan et al, 2019). Group

B Streptococcus strains are uniformly susceptible to penicillins, and

poor outcome of GBS meningitis is not due to emergence of non-

susceptible GBS strains. These findings indicate new approaches are

needed for development of improved therapy for GBS meningitis. A

major limiting factor for discovery of new therapeutic targets is our

incomplete understanding of the pathogenesis of GBS meningitis

(Kim, 2008; Maisey et al, 2008).

Several lines of evidence from human cases and experimental

animal models of GBS meningitis suggest that GBS penetration into the

brain occurs in the cerebral microvessels (Berman & Banker, 1966;

Ferrieri et al, 1980; Doran et al, 2005; Tazi et al, 2010), but it remains

incompletely understood how GBS penetrates the blood–brain barrier.

Meningitis-causing pathogens penetrate the blood–brain barrier via

transcellular, paracellular and/or hijacking infected phagocytes, so-

called Trojan-horse mechanisms (Kim, 2008). Transcellular mecha-

nism is defined as microbial penetration through barrier cells without

exhibiting any microbes between the cells and/or disruption of

intercellular tight junction, while paracellular mechanism refers to

microbial penetration between barrier cells with and/or without

demonstration of tight junction disruption (Kim, 2008). Currently,

controversy exists on whether GBS exploits transcellular and/or para-

cellular penetration of the blood–brain barrier (Doran et al, 2016).

Group B Streptococcus penetration into the brain has been shown

to occur without affecting the blood–brain barrier permeability and

without accompanying immune cells (Kim et al, 1997), suggesting

that GBS invasion of the brain is likely to exploit a transcellular

penetration of the blood–brain barrier. This concept was shown in

the current study, where GBS penetration occurred initially in the

meningeal and cortex capillaries, and there was no leakage of

intravascular small molecule tracer (sulfo-NHS-biotin with a molec-

ular weight of 443 Da) and no recruitment of immune cells to the

sites of GBS penetration.

Since GBS penetrates into the cerebral microvasculature, we used

the in vitro blood–brain barrier model with human brain microvas-

cular endothelial cells (HBMECs) to investigate how GBS penetrates

the blood–brain barrier. Our HBMEC monolayer upon cultivation on

collagen-coated Transwells exhibits spatial organization of tight and

adherens junction proteins as well as a polarized monolayer, a

unique property of the blood–brain barrier endothelial cells (Stins

et al, 1997, 2001; Nizet et al, 1997; R€uffer et al, 2004; Kim et al,

2004). We showed that GBS invasion of HBMEC monolayer
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occurred without affecting the integrity of HBMEC monolayer, as

assessed by live/dead staining (Molecular Probes) as well as

measurement of transendothelial electrical resistance (TEER) before

and after infection (Nizet et al, 1997; Maruvada et al, 2011). These

in vitro and in vivo findings demonstrate that GBS invasion of the

brain is likely to occur via a transcellular penetration of the blood–

brain barrier and less likely to exploit paracellular and Trojan-horse

mechanisms.

We hypothesize that elucidation of GBS invasion of the blood–

brain barrier will enhance our knowledge on the pathogenesis of

GBS meningitis. We carried out transcriptome analysis of HBMEC

(RNA-seq) in response to GBS infection. The network analysis of

the RNA-seq data revealed that the epidermal growth factor receptor

(EGFR) pathway is activated during GBS infection. The contribution

of EGFR to GBS invasion of the blood–brain barrier is supported by

our demonstration that gefitinib, a FDA-approved inhibitor of EGFR

(Wakeling et al, 2002), significantly inhibited GBS invasion of

HBMEC monolayer as well as penetration into the brain. We eluci-

dated host cell signal transduction pathways involving EGFR that

contributed to GBS penetration of the blood–brain barrier. We

showed that sphingosine 1-phosphate (S1P)-S1P2 represents

upstream molecules of EGFR, while cytosolic phospholipase 2a
(cPLA2a), cysteinyl leukotrienes (CysLTs), and ezrin–radixin–

moesin (ERM) represent downstream molecules of EGFR and that

S1P2-EGFR-CysLTs formed a defined host cell signaling network

exploited by GBS for penetration of the blood–brain barrier in vitro

and in vivo. More importantly, counteracting such network as a

therapeutic adjunct to antibiotic therapy improved the outcome of

animals with GBS meningitis.

This is the first report that GBS exploits a defined host cell signal-

ing network comprised of specific host factors (S1P2, EGFR, and

CysLT1) for penetration of the blood–brain barrier and that counter-

acting such network represents a new approach for development of

therapeutic targets for GBS meningitis.

Results

RNA-seq analysis of HBMEC in response to GBS infection

To investigate GBS interaction with the blood–brain barrier, we

performed the HBMEC transcriptional responses to GBS infection for

2 and 6 h and determined upstream regulator analysis on the sets of

host genes that were differentially expressed with and without infec-

tion (P < 0.05) (Dataset EV1; Liu et al, 2015; Watkins et al, 2018)

by the Ingenuity Pathway Analysis (IPA) software (Ingenuity

Systems; http://www.ingenuity.com). The raw sequencing reads

have been submitted to the NCBI sequence read archive (SRA)

under BioProject accession no. PRJNA632824. Analysis of differen-

tially expressed genes predicted the modulation of a total of 178 dif-

ferent signaling proteins from HBMEC infected with GBS during at

least one time point of the infection, including 132 activated signal-

ing proteins and 46 repressed signaling proteins. We then performed

a protein–protein interaction enrichment analysis using Metascape

(http://metascape.org; Li et al, 2018; Zhou et al, 2019) and identi-

fied six protein–protein interaction networks (Fig EV1). The signifi-

cantly up-regulated EGFR is the core of one protein network,

suggesting that EGFR plays a role in GBS infection of HBMEC

(Fig 1A).

GBS penetration into the brain without affecting the functional
and structural alterations of the blood–brain barrier

In order to study the role of EGFR in GBS penetration into the brain,

we used the mouse model of experimental hematogenous GBS

meningitis. We showed that GBS penetration occurred initially in

the meningeal and cortex capillaries. This was shown by the demon-

stration of intravenously administered GBS in the meningeal and

cortex capillaries at 1 h following bacterial inoculation. A few bacte-

ria were found outside the capillaries of the meninges and cortex

▸Figure 1. Group B Streptococcus (GBS) exploits host EGFR for penetration of the blood–brain barrier.

A Protein–Protein interaction enrichment analysis of differentially expressed host factors in HBMEC with and without GBS infection revealing signaling network
involving EGFR.

B Wild-type mice received strain GFP-K79 via the tail vein and 1 h later, animals were perfused and the meninges, cortex and choroid plexus were obtained for
demonstration of intravenously injected bacteria. The arrows represent bacteria co-localized with capillaries (e.g., within capillaries), and arrowheads represent
bacteria outside the capillaries (e.g., exited from the capillaries). A few bacteria were successfully passed through the meningeal and cortex capillaries, but no bacteria
were demonstrated in the choroid plexus at this time. Scale bar = 100 lm. The completed figures with control and 12 h infection group were shown in Fig EV2A–C.

C Sulfo-NHS-biotin was administered via intraperitoneal injection 10 min before perfusion for assessing the blood–brain barrier permeability, i.e., extravasation is
indicative of leakage from the intravascular lumen. Sulfo-NHS-Biotin was confined to the capillaries of the meninges and cortex (as shown with arrows), and there
was no evidence of extravasation. Scale bar = 100 lm. The completed figures with control and 12 h infection group were shown in Fig EV2D and E.

D Relative invasion frequency of GBS strain K79 in HBMEC with or without EGFR inhibitor (gefitinib). Data represent the means � SEM from three independent
experiments, with statistical analysis by Student’s t-test, **P = 0.0020, ***P = 8.6E-06 (from left to right).

E Bacterial counts recovered from the blood and brain in wild-type mice receiving vehicle control (n = 5) or gefitinib (10 mg/kg) (n = 6), infected with strain K79 for
1 h. Data represent the means � SEM with Wilcoxon rank sum test, **P = 0.0038.

F Tyrosine phosphorylation of EGFR in HBMEC in response to GBS strain K79 infection at 15-min and 60-min post-infection.
G EGFR protein expression in EGFR knockout HBMEC using CRISPR/Cas9 (left panel) and relative invasion frequency of 8 meningitis isolates of GBS strains in EGFR

knockout and control HBMEC (right panel). Data represent the means � SEM from three independent experiments, with statistical analysis by Student’s t-test. From
left to right, P value of K79 is 0.0059, P value of K160 is 0.00024, P value of K161 is 0.00080, P value of K181 is 0.00042, P value of K226 is 0.00011, P value of K237 is
0.00072, P value of K238 is 0.0093, and P value of P539 is 0.00013 (right panel).

H GBS strain K79 traversal of HBMEC monolayer was significantly decreased in EGFR knockout HBMEC compare to control HBMEC. Data represent the means � SEM
from three independent experiments, with statistical analysis by Student’s t-test, **P = 0.0027.

I Bacterial counts recovered from the blood and brain of EGFR conditional knockout (n = 5) and control mice (n = 5) 1 h after intravenous inoculation with strain K79.
Data represent the means � SEM with statistical analysis by Student’s t-test, ***P = 0.00026.

Source data are available online for this figure.
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(Figs 1B and EV2), indicating successful penetration of GBS into the

brain at this time, while there was no demonstration of GBS in the

choroid plexus (Figs 1B and EV2). These findings demonstrate that

the meningeal and cortex capillaries, not the choroid plexus, are the

portal of entry for circulating GBS penetration into the brain, but

more GBS were found to be present in the meningeal capillaries,

indicating that GBS invasion involved initially meningeal and subse-

quently cortex capillaries. It is important to note that intravascular

small molecule tracer (i.e., Sulfo-NHS-biotin with m.w. of 443 Da)

was confined to the meningeal and cortex capillaries, and there was

no extravasation (Figs 1C and EV2). We also examined the

structural integrity of the blood–brain barrier during the GBS pene-

tration of the blood–brain barrier, by assessing claudin-5 staining to

visualize the tight junction of the barrier endothelial cells. The

claudin-5 staining one hour after GBS administration via the tail

vein demonstrated GBS in the brain capillaries and successful pene-

tration into the brain, and there was no disruption of the claudin-5

continuity (Fig EV3A). Taken together, these findings indicate that

GBS penetration into the brain occurs in the meningeal and cortex

capillaries without affecting the blood–brain barrier permeability

even to a small molecule and without disruption of the blood–brain

barrier structural integrity, demonstrating that GBS exploits a

A

C

F

H I

G

D E

B

Figure 1.
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transcellular penetration of the blood–brain barrier, and supporting

the use of HBMEC monolayer for investigating the pathogenesis of

GBS meningitis.

GBS exploits EGFR in penetration of the blood–brain barrier

The network analysis of RNA-seq data suggested the role of EGFR in

GBS infection of HBMEC monolayer, and we examined gefitinib, a

FDA-approved selective inhibitor of EGFR, for its effect on GBS inva-

sion of the blood–brain barrier in vitro and in vivo. We showed that

gefitinib inhibited GBS invasion of HBMEC monolayer in a dose-

dependent manner (Fig 1D). We also examined the effect of gefi-

tinib in GBS penetration into the brain by intraperitoneal adminis-

tration 1 h before intravenous challenge of bacteria and determining

bacterial counts recovered from the brain. Gefitinib (10 mg/kg) was

efficacious in inhibiting GBS penetration into the brain (Fig 1E). A

high-degree of bacteremia is a primary determinant for GBS penetra-

tion into the brain (Ferrieri et al, 1980; Kim, 1987a, 1987b; Maru-

vada et al, 2011), but the magnitudes of bacteremia did not differ

between the recipients of gefitinib and vehicle control. The

decreased GBS penetration into the brain of the recipients of gefi-

tinib is, therefore, not likely from having lower degrees of bacter-

emia compared to those of vehicle control. These in vitro and

in vivo findings with gefitinib suggest that its target, EGFR, is likely

to contribute to GBS invasion of the blood–brain barrier.

To support the contribution of EGFR to GBS invasion of the

blood–brain barrier, we showed that EGFR activation occurred in

response to GBS in a time- and inoculum-dependent manner in

HBMEC (Figs 1F and EV3B). The role of EGFR in GBS invasion of

the blood–brain barrier was next examined in HBMEC with EGFR

knockout by CRISPR/Cas9. EGFR knockout HBMEC, as expected,

exhibited no discernible EGFR expression (Fig 1G). We showed that

eight CSF isolates of GBS belonging to prevalent hypervirulence

clone sequence type ST-17 or less common ST-23 exhibited signifi-

cantly decreased invasion in EGFR knockout HBMEC compared to

control HBMEC (Fig 1G). We also showed that GBS transcytosis of

HBMEC monolayer was inhibited in EGFR knockout cells compared

to control HBMEC (Fig 1H). Gefitinib did not inhibit GBS invasion

in EGFR knockout HBMEC, indicating the effect of gefitinib is speci-

fic to EGFR (Fig EV4A).

The role of EGFR in GBS penetration into the brain in vivo was

examined using the tamoxifen-inducible, endothelial-specific EGFR

knockout mice. Endothelial-specific conditional EGFR knockout was

induced by a 5-day intraperitoneal administration of tamoxifen.

2 days later the mice were infected GBS. The bacterial counts recov-

ered from the brains were significantly less in conditional EGFR

knockout mice than in control Tek-RFP-CreERT2 mice treated with

tamoxifen (Fig 1I), while the bacterial counts from the blood did not

differ between the two groups. These findings with EGFR knockout

experiments demonstrate that meningitis isolates of GBS exploit

EGFR for penetration of the blood–brain barrier in vitro and in vivo.

Sphingosine-1 phosphate (S1P)-Sphingosine-1 phosphate
receptor 2 (S1P2) is upstream of EGFR in GBS penetration of the
blood–brain barrier

It remains unclear how EGFR activation occurs in response to GBS

and contributes to GBS penetration of the blood–brain barrier. We

determined whether inhibitors of specific host cell signaling mole-

cules known to be involved in microbial invasion of the blood–brain

barrier affected EGFR activation in response to GBS (Kim, 2008).

We showed that EGFR activation in response to GBS was inhibited

in HBMEC pretreated with JTE-013 (an antagonist of sphingosine 1-

phosphate receptor 2, S1P2) (Fig 2A). Sphingosine 1-phosphate

(S1P) is known to function by binding to and signaling through its

A

C

D E

B

Figure 2. Group B Streptococcus (GBS) exploits host S1P2 for penetration
of the blood–brain barrier.

A Tyrosine phosphorylation of EGFR in HBMEC pretreated with 20 lM S1P2
antagonist (JTE-013) or vehicle control and infected with GBS strain K79
infection for 60 min. EGFR phosphorylation in control and S1P2 knockout
HBMEC infected with K79.

B Relative invasion frequency of strain K79 in HBMEC with or without SphK1
and SphK2 inhibitors. All the inhibitors were used at 10 lM. Data represent
the means � SEM from three independent experiments, with statistical
analysis by Student’s t-test. From left to right, P value of DJB-V-39 is 0.0047,
P value of SKI is 0.0062, P value of FTY720 is 0.0022, and P value of HB56 is
0.0045.

C S1P2 protein expression in S1P2 knockout HBMEC using CRISPR/Cas9 (left
panel). Relative invasion frequency of 8 meningitis isolates of GBS in S1P2
knockout HBMEC. Data represent the means � SEM from three
independent experiments, with statistical analysis by Student’s t-test. From
left to right, P value of K79 is 0.0018, P value of K160 is 0.0091, P value of
K161 is 0.0054, P value of K181 is 0.00040, P value of K226 is 0.00032, P
value of K237 is 0.040, P value of K238 is 0.041, and P value of P539 is
0.0025.

D GBS strain K79 traversal of HBMEC monolayer was significantly decreased
in S1P2 knockout HBMEC compare to control. Data represent the
means � SEM from three independent experiments, with statistical
analysis by Student’s t-test, **P = 0.00084.

E Bacterial counts recovered from the blood and brain of wild-type (n = 5)
and S1P2

�/� mice (n = 5) infected with strain K79 for 1h. Data represent
the means � SEM with statistical analysis by Student’s t-test, ***P = 4.6E-
05.

Source data are available online for this figure.
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specific cell-surface receptors (S1P1-5) (Maceyka et al, 2009; Blaho &

Hla, 2014). There is no information on whether GBS exploits S1P for

penetration of the blood–brain barrier.

We showed that S1P levels were significantly higher in HBMEC

infected with GBS strain K79 compared to uninfected control, as

measured by HPLC coupled tandem mass spectrometry after lipid

extraction of HBMEC as previously described (Wang et al, 2016).

The S1P content was normalized to lipid phosphate in the extracted

samples and expressed as pmol/nmol lipid phosphate (mean � SD

of three samples), being at 2.75 � 0.37 after 30 min at 37°C in

HBMEC incubated with strain K79 vs. 1.19 � 0.45 in uninfected

cells (P< 0.05). S1P synthesis is catalyzed by sphingosine kinases 1

and 2 (SphK1 and SphK2) (Maceyka et al, 2009; Wang et al, 2016),

and the role of S1P in GBS invasion of the blood–brain barrier was

examined by determining the involvement of SphK1 and SphK2

using specific inhibitors (Wang et al, 2016). SphK1 inhibitors and

SphK2 inhibitors significantly inhibited GBS invasion of HBMEC

(Fig 2B), suggesting that S1P generation via SphK1 and SphK2 is

likely to contribute to GBS invasion of the blood–brain barrier.

S1P is shown to function by interaction with its specific cell-

surface receptors (S1P1-5) (Maceyka et al, 2009; Blaho & Hla, 2014).

We next determined the role of S1P receptors in GBS invasion of the

blood–brain barrier using selective receptor antagonists (VPC23019

for S1P1 and S1P3, and JTE-013 for S1P2) (Blaho & Hla, 2014; Wang

et al, 2016). JTE-013 exhibited a dose-dependent inhibition of strain

K79 invasion of HBMEC, while VPC23019 failed to exhibit such inhi-

bition (Fig EV3C). These findings suggest that S1P interaction with

S1P2 is likely to play a role in GBS invasion of the blood–brain

barrier. The contribution of S1P2 to GBS invasion of the blood–brain

barrier was examined in HBMEC with S1P2 knockout by CRISPR/

Cas9 (Fig 2C). Eight CSF isolates of GBS exhibited significantly

decreased invasion in S1P2 knockout HBMEC compared to control

HBMEC (Fig 2C). We also showed that GBS penetration across

HBMEC monolayer was inhibited in S1P2 knockout cells compared

to control HBMEC (Fig 2D). Biological relevance of decreased GBS

invasion in S1P2 knockout HBMEC was examined in S1P2
�/� mice

compared to wild-type C57BL/6j mice. GBS strain K79 penetration

into the brain, as determined by the bacterial counts recovered from

the brain, was significantly less in S1P2
�/� mice than in the wild-

type animals without affecting the magnitudes of bacteremia

(Fig 2E). EGFR activation in response to GBS was also inhibited in

S1P2 knockout HBMEC (Fig 2A).

EGFR is upstream of cPLA2a-CysLT1-ERM in GBS penetration of
the blood–brain barrier

Our findings thus far indicate that GBS exploits host S1P-S1P2-EGFR

for penetration of the blood–brain barrier, but it remains unclear

how EGFR contributes to GBS penetration. EGFR transactivation has

been linked to cPLA2a activation (Slomiany & Slomiany, 2009), and

cPLA2a activation is shown to be involved in GBS invasion of the

blood–brain barrier (Maruvada et al, 2011). We hypothesize that

EGFR exploits cPLA2a for GBS invasion of the blood–brain barrier.

This hypothesis is supported by our demonstration that cPLA2a acti-

vation in response to GBS was inhibited in HBMEC pretreated with

gefitinib and also in EGFR knockout HBMEC (Fig 3A and B). These

findings demonstrate that EGFR is likely to function upstream of

cPLA2a in GBS invasion of the blood–brain barrier (EGFR-cPLA2a).
cPLA2a release of arachidonic acid from the outer nuclear

membrane is utilized for the biosynthesis of cysteinyl leukotrienes

(CysLTs) (Peters-Golden & Henderson, 2007). We hypothesize that

GBS might exploit CysLTs for penetration of the blood–brain barrier.

CysLTs exhibit their biological actions via interaction with their G-

protein coupled receptors, including CysLT1 and CysLT2 (Peters-

Golden & Henderson, 2007). The roles of CysLTs in GBS invasion of

the blood–brain barrier were determined initially by pharmacologi-

cal inhibition, using the CysLT1 antagonist (montelukast) and the

CysLT2 antagonist (BayCysLT2; Peters-Golden & Henderson, 2007).

Pretreatment of HBMEC with montelukast significantly inhibited

GBS invasion in a dose-dependent manner, while BayCysLT2 did

not exhibit such a dose-dependent inhibition (Fig EV3D). CysLT1

knockdown HBMEC was used to demonstrate that the effect of

▸Figure 3. GBS exploits host EGFR, S1P-S1P2, and cPLA2a-CysLT1-ERM for penetration of the blood–brain barrier.

A Serine phosphorylation of cPLA2a in response to GBS strain K79 in HBMEC pretreated with gefitinib or vehicle control and in EGFR knockout HBMEC.
B Serine phosphorylation of cPLA2a in response to GBS strain K79 in control, EGFR knockout, and S1P2 knockout HBMEC.
C Bacterial counts recovered from the blood and brain in wild-type mice (n = 5) and CysLT2�/� mice (n = 5) infected with strain K79 for 1h. Data represent the

means � SEM with statistical analysis by Student’s t-test, P = 0.074.
D CysLT1 protein expression in CysLT1 knockdown HBMEC using shRNA (left panel) and relative invasion frequency of 8 GBS isolates in CysLT1 knockdown and

control HBMEC. Data represent the means � SEM from three independent experiments, with statistical analysis by Student’s t-test. From left to right, P value of
K79 is 0.0039, P value of K160 is 0.0082, P value of K161 is 0.00091, P value of K181 is 0.0087, P value of K226 is 0.00020, P value of K237 is 0.0039, P value of K238 is
0.00066, and P value of P539 is 1.76E-05 (right panel).

E GBS strain K79 traversal of HBMEC monolayer was significantly decreased in CysLT1 knockdown HBMEC compare to control. Data represent the means � SEM
from three independent experiments, with statistical analysis by Student’s t-test, **P = 0.0021.

F Bacterial counts recovered from the blood and brain in wild-type mice (n = 7) and CysLT1�/� mice (n = 7) infected with strain K79 for 1 h. Data represent � SEM
with statistical analysis by Student’s t-test, *P = 0.021.

G Ezrin protein expression in ezrin knockdown HBMEC using shRNA (left panel) and relative invasion frequency of GBS strain K79 in ezrin knockdown and control
HBMEC (right panel). Data represent the means � SEM from three independent experiments, with statistical analysis by Student’s t-test, **P = 0.0044.

H, I Ezrin phosphorylation in HBMEC pretreated with CysLT1 antagonist (montelukast) and infected with GBS strain K79 for 60 min (left panel) and ezrin
phosphorylation in the homogenates of brain capillaries of CysLT1�/� and control mice infected with GBS strain K79 for 1h (right panel).

J Intracellular K79 co-localization with EGFR and ezrin in control and S1P2 knockout HBMEC (as shown by arrows, cyan). Percentage of co-localization was
calculated by counting numbers of all GBS and co-localized intracellular GBS from at least three representative fields, and expressing as numbers of co-localized
GBS/all GBS × 100. Data represent the means � SEM of at least 60 GBS from three fields, with statistical analysis by Student’s t-test. In left panel, *P = 0.034. In
right panel, **P = 0.0048.

Source data are available online for this figure.
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montelukast was specific to CysLT1, as shown by the demonstration

that montelukast did not inhibit GBS invasion in CysLT1 knock-

down cells (Fig EV4A). The selective activity of BayCysLT2 on

CysLT2 is dose-dependent, involving 0.1 µM or less, and

BayCysLT2 doses greater than 1 µM are shown to affect CysLT2 and

CysLT1. BayCysLT2 inhibition of GBS invasion of HBMEC at 10 µM

is, therefore, likely due to its action on CysLT1. This concept is

supported by the demonstration that GBS penetration into the brain

was not affected in CysLT2�/� compared to wild-type animals, as

the bacterial counts recovered from the brains did not differ signifi-

cantly between CysLT2�/� and wild-type animals (Fig 3C). It is

important to note that montelukast at 50 µM and BayCysLT2 at

10 lM did not affect the growth of GBS strain K79 and also did not

affect the integrity of HBMEC monolayer, as assessed by live/dead

staining (Molecular Probes). These findings demonstrate that GBS is

likely to exploit CysLT1 for invasion of the blood–brain barrier.

A

D

G

J

H I

E F

B C

Figure 3.
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The contribution of CysLT1 to GBS invasion of HBMEC mono-

layer was demonstrated by significantly less invasion of eight

meningitis isolate of GBS in CysLT1 knockdown HBMEC compared

to control HBMEC (Fig 3D). We also showed that GBS penetration

across HBMEC monolayer was inhibited in CysLT1 knockdown

HBMEC compared to control HBMEC (Fig 3E). We next examined

the effect of pharmacological inhibition and gene deletion of

CysLT1 in GBS penetration into the brain in experimental animal

model of hematogenous meningitis. Administration of montelukast

(5 mg/kg, a dose which exhibits CysLT1 antagonist activity in

mice) (Zhu et al, 2010) intraperitoneally 1 h before intravenous

injection of GBS significantly inhibited GBS penetration of the brain

of BALB/c mice, as shown by significantly decreased bacterial

counts recovered from the brains of the recipients of montelukast

compared to those of vehicle control (Fig EV3E). This finding is

consistent with that of a previous report demonstrating that monte-

lukast inhibited GBS penetration into the brain (Syu et al, 2019).

The contribution of CysLT1 to GBS penetration into the brain was

verified in CysLT1 knockout animals, as the bacterial counts recov-

ered from the brain were significantly less in CysLT1�/� mice than

in the wild-type animals (Fig 3F). In contrast, the levels of bacter-

emia did not differ between the recipients of montelukast and vehi-

cle control, and also between CysLT1�/� and wild-type animals, as

shown by similar numbers of bacterial counts recovered from the

blood (Figs 3F and Fig EV3E), indicating that decreased GBS pene-

tration into the brains of animals receiving montelukast and

CysLT1�/� mice did not stem from lower degrees of bacteremia

compared to control animals. These findings demonstrate that GBS

exploits host CysLT1 for penetration of the blood–brain barrier

in vitro and in vivo.

Our findings demonstrate that EGFR is upstream of cPLA2a-
CysLT1 in GBS invasion of the blood–brain barrier (EGFR-cPLA2a-
CysLT1). It remains, however, unclear how host CysLT1 contributes

to GBS invasion of the blood–brain barrier. CysLT1 represents G-

protein coupled receptor and regulates diverse cellular responses in

endothelial cells including stress fiber formation (Duah et al, 2013).

ERM are key proteins linking plasma membrane to actin filaments

(Arpin et al, 2011; Kawaguchi et al, 2017), and we hypothesize that

CysLT1 exploits ERM in host cell actin cytoskeleton rearrangements,

a prerequisite for GBS invasion of HBMEC monolayer (Nizet et al,

1997; Kim, 2008). This hypothesis is supported by our demonstra-

tion that ezrin contributes to GBS invasion of blood–brain barrier,

as evidenced by significant reduction of GBS invasion in the ezrin

shRNA knockdown HBMEC (Fig 3G). The concept of CysLT1

exploitation of ezrin in GBS invasion of HBMEC was also supported

by our demonstration that ezrin activation occurring in response to

GBS was inhibited in HBMEC pretreated with montelukast (Fig 3H).

In addition, ezrin activation occurring in homogenates of the brain

capillaries derived from infected wild-type BALB/c mice was inhib-

ited in homogenates of the brain capillaries of infected CysLT1�/�

mice (Fig 3I). These in vitro and in vivo findings support that ezrin

is likely to be involved in CysLT1-mediated GBS invasion of the

blood–brain barrier (CysLT1-ezrin).

We showed that EGFR is upstream of cPLA2a-CysLT1 in GBS

penetration of the blood–brain barrier. Since S1P-S1P2 is shown to

be upstream of EGFR, we examined whether cPLA2a activation in

response to GBS (which is downstream of EGFR, Fig 3A) can be

inhibited in S1P2 knockout HBMEC compared to control HBMEC.

cPLA2a activation in response to GBS was, as expected, inhibited in

S1P2 knockout HBMEC (Fig 3B). Taken together, these in vitro and

in vivo findings demonstrate for the first time that GBS exploits host

S1P-S1P2, EGFR, and cPLA2a-CysLT1-ezrin for penetration of the

blood–brain barrier and that S1P-S1P2 and cPLA2a-CysLT1-ezrin
represent upstream and downstream molecules of EGFR, respec-

tively, in GBS penetration of the blood–brain barrier (synopsis fig-

ure). This concept is also supported by the demonstration of co-

localizations of internalized GBS strain K79 with EGFR and ezrin in

control HBMEC, while such co-localizations were significantly less

in S1P2 knockout HBMEC compared to control HBMEC (Fig 3J).

Targeting host factors identified from investigating GBS invasion
of the blood–brain barrier improves the outcome of animals with
experimental GBS meningitis

Antimicrobial therapy alone has limited efficacy in improving the

outcome of animals with experimental hematogenous GBS meningi-

tis (Kim, 1987b). At present, no strategy exists for development of

an improved therapy for GBS meningitis. We, therefore, examined

whether blockade of targets derived from investigating GBS invasion

of the blood–brain barrier might represent a beneficial adjunct to

antimicrobial therapy in improving the outcome of animals with

GBS meningitis. This issue was examined using pharmacological

antagonist of CysLT1 in experimental settings mimicking clinical

scenario, e.g., animals with established GBS meningitis were treated

with an antibiotic (ceftriaxone), CysLT1 antagonist (montelukast),

or combination of ceftriaxone and montelukast. CysLT1 antagonists

have been studied extensively in clinical trial (Kemp, 2005).

Animals received intravenously GBS and 24 h later were randomly

divided to receive ceftriaxone and montelukast alone or in combina-

tion daily for 7 days (randomization was done at the time of GBS

inoculation to minimize any selection bias) and assessed for

survival, neuronal injury and apoptosis, astrocytes and microglial

activation, and memory function. All animals with GBS meningitis

receiving montelukast alone died within 2 days of treatment.

Survival was significantly greater (P = 0.015) in animals with GBS

meningitis receiving ceftriaxone and montelukast compared to

animals receiving ceftriaxone alone (Fig 4A), suggesting that coun-

teracting CysLT1 as an adjunctive therapy was beneficial in improv-

ing survival of animals receiving ceftriaxone.

Neuronal injury occurs commonly in survivors of GBS meningitis

(Kim, 2010; Romain et al, 2018; O’Sullivan et al, 2019). Animals

with GBS meningitis receiving ceftriaxone and montelukast exhib-

ited significantly less neuronal injury as assessed by Nissl and

TUNEL stains (Fig 4B and C), less activation of microglia and astro-

cytes (Fig 4D), and less memory impairment as assessed by Y-maze

(Fig 4E).

We next examined whether inhibition of other host factors in the

network was beneficial in improving the survival of animals with

GBS meningitis and particularly whether inhibition of host factors

together was more efficacious in survival than inhibition of individ-

ual factors by the method described above. Pharmacological inhibi-

tion of EGFR in combination with antibiotic therapy significantly

improved the survival compared to antibiotic therapy alone.

However, survival did not differ between animals receiving ceftriax-

one plus inhibitors of both CysLT1 and EGFR vs single inhibitors

(Fig EV4B). These findings are consistent with those of our in vitro
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experiments, where gefitinib did not further decrease GBS invasion

in CysLT1 knockdown HBMEC and montelukast did not exhibit

additional decrease in GBS invasion in EGFR knockout HBMEC

(Fig EV4A). Taken together, these findings demonstrate that GBS

penetration of the blood–brain barrier exploits S1P2-EGFR-CysLT1

and suggest that contributions of individual host factors to GBS

meningitis are not additive.

Taken together, GBS penetration of the blood–brain barrier

exploits a defined network comprised of specific host factors (S1P2,

EGFR, and CysLT1). We showed that counteracting such network,

A

C

D

E

B

Figure 4.
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as exemplified with pharmacological inhibition of CysLT1, was a

beneficial adjunct to antibiotic therapy of GBS meningitis, as shown

by improved survival, decreased neuronal injury and neuroin-

flammation, resulting in less functional impairment and neurologi-

cal sequelae.

Discussion

GBS remains the leading cause of neonatal bacterial meningitis and

GBS meningitis continues to be an important cause of mortality and

morbidity (Kim, 2010; Romain et al, 2018; O’Sullivan et al, 2019). A

major contributing factor to such mortality and morbidity is our

incomplete understanding of the pathogenesis of GBS meningitis.

Meningitis isolates of GBS exhibit the ability to invade HBMEC

monolayer and penetrate into the brain (Kim, 2008; Maruvada et al,

2011). Group B Streptococcus strains have been shown to invade

HBMEC monolayer without affecting the integrity of HBMEC mono-

layer (Nizet et al, 1997; Maruvada et al, 2011), and GBS penetration

into the brain occurs without affecting the blood–brain barrier

permeability and influx of immune cells (Kim et al, 1997; Doran

et al, 2005; Tazi et al, 2010). This concept was recapitulated in this

study, where GBS penetration occurred initially in the meningeal

and cortex capillaries, and subsequent invasion into the brain with-

out extravasation of intravascular small molecule tracer, which was

shown under a stringent condition for assessing the blood–brain

barrier permeability using a small molecule of 443Da as well as

without affecting structural integrity of the blood–brain barrier.

These findings support that GBS strains exploit a transcellular pene-

tration of the blood–brain barrier and elucidation of GBS invasion of

the blood–brain barrier is likely to enhance the pathogenesis of GBS

meningitis. GBS serotype III strains are common in causing meningi-

tis, and ST-17 is predominant (70–80%) in meningitis isolates of

GBS (Tazi et al, 2010), but it remains incompletely understood how

GBS strains including those belonging to ST-17 penetrate the blood–

brain barrier.

Meningitis-causing pathogens exploit host cell signaling mole-

cules to promote their penetration of the blood–brain barrier (Kim,

2008), but the underlying mechanisms vary depending upon the

pathogens. Our findings reported here demonstrate that type III GBS

strains belonging to ST-17 and less common ST-23 isolated from

neonates with meningitis exploit a network of specific host cell

signaling molecules (S1P2, EGFR, and CysLT1) for penetration of

the blood–brain barrier. The proposed network comprised of S1P2,

EGFR, and CysLT1 has not been previously recognized for their

contribution to GBS meningitis and this is the first report to demon-

strate the contribution of such network to GBS penetration of the

blood–brain barrier in vitro and in vivo.

A high-degree of bacteremia is shown to be a primary determi-

nant for GBS penetration of the blood–brain barrier in vivo, and the

mechanisms involved with a high-degree of bacteremia for GBS

invasion of the BBB remain incompletely understood. Our data

showed that EGFR activation in response to GBS was inoculum-

dependent, suggesting that one mechanism requiring a high-degree

of bacteremia is related to dose-dependent activation of host cell

signaling molecules involved in GBS invasion (Fig EV3B). It is

important to document that decreased GBS penetration into the

brain occurring with inhibition and/or blockade of the above-

mentioned host factors is not due to a lower magnitude of bacter-

emia (Kim, 1987b; Maruvada et al, 2011). Pharmacological inhibi-

tion and gene deletion of S1P2, EGFR, and CysLT1 did not affect the

magnitudes of GBS bacteremia, but resulted in decreased GBS pene-

tration into the brain, indicating that the contributions of S1P2,
EGFR, and CysLT1 to GBS penetration into the brain are not due to

lower magnitudes of bacteremia.

Pharmacological inhibition can point to specific targets of interest

such as gefitinib for EGFR, JTE-013 for S1P2, and montelukast for

CysLT1, but not without any concern about off-target effects. This

off-target issue was addressed by targeting specific genes such as

knockout and knockdown approaches in HBMEC as well as using

gene knockout animals, e.g., CRIPSR/Cas9 knockout of EGFR and

S1P2, shRNA knockdown of CysLT1, and knockout animals for

S1P2, EGFR, and CysLT1. The specificity of inhibitors for their

targets was also demonstrated by no inhibition of GBS invasion in

respective target knockout/knockdown HBMEC. For example, gefi-

tinib and montelukast inhibited GBS invasion in control HBMEC,

but not in EGFR knockout and CysLT1 knockdown HBMEC, respec-

tively. These findings indicate that S1P2, EGFR, and CysLT1 are

indeed involved in GBS penetration of the blood–brain barrier

in vitro and in vivo.

Of a particular novel finding is our demonstration that the contri-

butions of S1P2, EGFR, and cPLA2a-CysLT1-ezrin to GBS penetration

◀ Figure 4. Use of montelukast as an adjunct to an antibiotic (ceftriaxone) in therapy of experimental GBS meningitis.

A Survival of wild-type mice receiving drug administration for 7 days after infection with GBS strain K79. Data are presented as a Kaplan–Maier plot with a log-rank
test used to compare percentage of survival between the groups, CFX group n = 18, and CFX + MONT group n = 10 *P = 0.015. (CFX: ceftriaxone; MONT:
montelukast).

B Nissl staining of the hippocampus CA1, CA2, and CA3 regions (low magnification) and cortex region (higher magnification) (left) and histograms showing the
number of Nissl-stained bodies (right) Scale bar, 50 lm. Data represent the means � SEM from three independent experiments, with statistical analysis by one-
way ANOVA, P value between control group and Ceftriaxone group is 0.00021, P value between Ceftriaxone group and Ceftriaxone + Montelukast group is 0.013.

C, D Representative immunofluorescence images (left) and quantification (right) of TUNEL bodies, astrocyte (GFAP), and microglia (Iba1) in cortex of wild-type mice
after 7 days of therapy. Scale bar, 50 lm. Data represent the means � SEM from three independent experiments, with statistical analysis by one-way ANOVA, P
value of TUNEL bodies between CFX group and MONT + CFX group is 0.0012, P value of astrocyte between CFX group and MONT + CFX group is 0.0068, and P
value of microglia cells between CFX group and MONT + CFX group is 0.0029.

E Y-maze test for spatial learning and memory of different group of wild-type mice. The total duration of time spent at novel arm (left) and the percentage of entries
to novel arm of Y-maze (right). Data represent the means � SEM was statistically analyzed by one-way ANOVA, P value of total duration of time spent at novel
arm between control group (n = 6) and CFX group (n = 5) is 0.00012, P value between CFX group (n = 5) and MONT + CFX group (n = 6) is 0.00017; P value of
total duration of % of entry to novel arm between control group (n = 6) and CFX group (n = 5) is 0.0102, and P value between CFX group (n = 5) and
MONT + CFX group (n = 6) is 0.0216.

Source data are available online for this figure.
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of the blood–brain barrier were inter-related. This concept is shown

by the demonstration that (i) pharmacological inhibition and knock-

out of S1P2 and EGFR inhibited cPLA2a activation in response to

GBS and (ii) pharmacological inhibition and knockout of S1P2
resulted in inhibition of EGFR activation in HBMEC. These findings

demonstrate that S1P2 is upstream of EGFR, while cPLA2a-CysLT1
is downstream of EGFR in GBS penetration of the blood–brain

barrier. In addition, we showed that ezrin is downstream of CysLT1,

as shown by inhibition of ezrin activation in response to GBS in

HBMEC pretreated with the CysLT1 antagonist and in brain capillar-

ies derived from CysLT1�/� mice, demonstrating for the first time

that CysLT1 exploits ezrin in GBS invasion of the blood–brain

barrier. In addition, our determinations of host factors contributing

to GBS penetration of the blood–brain barrier by themselves (S1P2,

EGFR, and CysLT1) and by elucidating up and downstream connec-

tions through our defined network (S1P2-EGFR-CysLT1) support the

contribution of such network to GBS penetration of the blood–brain

barrier.

We have shown that EGFR-CysLT1 contributes to E. coli invasion

of the blood–brain barrier (Zhu et al, 2020), but the mechanisms

involved with E. coli differ from those with GBS. For example, host

cell signaling pathway exploited by E. coli invasion involves both

the EGFR-CysLT1-dependent and independent pathways, as shown

by the demonstration that decreased E. coli invasion in EGFR and

CysLT1 knockout/knockdown HBMEC can be further reduced by

montelukast and gefitinib, respectively. In contrast, GBS invasion

was dependent upon the EGFR-CysLT1 pathway, as shown by no

additional inhibition of GBS invasion by gefitinib and montelukast

in CysLT1 and EGFR knockdown/knockout HBMEC, respectively

(Fig EV4A and C). Additional studies are needed to elucidate the

molecular basis of S1P2, EGFR, and CysLT1 for their contribution to

GBS penetration of the blood–brain barrier.

More importantly, our network-based targeted approach was

beneficial in development of an adjunct therapy to an antibiotic

therapy in improving the outcome of animals with established GBS

meningitis. This concept was shown by improved survival, less

neuronal injury, less activation of microglia and astrocytes, and

less memory impairment in animals with GBS meningitis who

received the combination therapy of an antibiotic and a CysLT1

antagonist compared to those receiving antibiotic therapy alone.

This issue is particularly relevant to GBS meningitis because GBS

strains are uniformly susceptible to penicillins and poor outcome

of GBS meningitis is not due to emergence of non-susceptible GBS

strains, necessitating development of an adjunct therapy for GBS

meningitis. At present, no strategy exists to develop a target(s) for

adjunct therapy. Our findings indicate that development of an

adjunct therapy can be feasible by counteracting targets identified

from investigating GBS invasion of the blood–brain barrier (e.g.,

SphK, EGFR, CysLT1). SphK inhibitors, EGFR inhibitors, and

CysLT1 antagonists have been studied in clinical trials (Mendel-

sohn & Baselga, 2003; Kemp, 2005; Britten et al, 2017; Thomas

et al, 2017), and it remains to be determined whether inhibition of

such targets exhibits therapeutic benefits similar to those of

CysLT1 in improving the outcome of experimental GBS meningitis.

It is important to acknowledge that administration of two inhibi-

tors together did not provide additional improved survival

compared to individual inhibitors. Studies are needed to elucidate

how targets derived from investigating GBS invasion of the blood–

brain barrier can function as adjunct therapeutic targets for GBS

meningitis. An adjunct therapy for GBS meningitis is likely to be

used once for a brief period of time (e.g., our regimen for 7 days),

minimizing any associated adverse effects of potential drugs, and

clinical trials will determine whether targets shown in this report

is beneficial as an adjunct therapy.

Taken together, this is the first demonstration that meningitis

isolates of GBS exploit S1P2 for EGFR activation and exploit EGFR

for cPLA2a-CysLT1 activation in penetration of the blood–brain

barrier in vivo and in vitro, indicating that S1P2-EGFR-cPLA2a-
CysLT1 represents a novel host cell signaling network for investigat-

ing the pathogenesis and therapy of GBS meningitis.

Materials and Methods

GBS strains

Eight GBS type III strains, belonging to hypervirulence clone

sequence type 17 (ST-17), strains K79, K160, K161, K181, K226,

K237, K238, accounting for 70–80% of GBS meningitis, and less

common ST-23, strain P539, were derived from neonates with

meningitis, as previously described (Kim, 1987a, 1987b; Maruvada

et al, 2011).

Reagents

Arachidonyltrifluoromethyl ketone (AACOCF3; cPLA2 inhibitor) was

purchased from Biomol Laboratories (Plymouth Meeting, PA).

Montelukast (cysteinyl leukotriene type 1 receptor antagonist),

BayCysLT2 (cysteinyl leukotriene type 1 receptor antagonist), JTE-

013 (S1P2 antagonist), VPC23019 (S1P1 and S1P3 antagonist), and

gefitinib (EGFR tyrosine kinase inhibitor) were purchased from

Cayman Chemical Company (Ann Arbor, MI). cPLA2 (1:1,000) and

phospho-cPLA2a (1:1,000) antibodies were purchased from Cell

Signaling Technologies (Danvers, MA). Cysteinyl leukotriene type 1

receptor (CysLT1) (1:1,000), CD31 (1:200 for tissue staining), and

EGFR (1:1,000 for Western blot, and 1:200 for IHC) antibodies were

purchased from Santa Cruz Biotechnology (Santa Cruz, CA). DAPI,

anti-phospho-ezrin antibody (1:1,000), anti-claudin-5 (1:200 for

tissue staining), anti-mouse IgG Alexa Fluor 488-conjugated

secondary antibody (1:1,000), and EZ-LinkTM Sulfo-NHS-Biotin were

from Thermo Fisher Scientific (Waltham, MA). Anti-phosphoty-

rosine antibody clone 4G10 (used at 1:1,000) and anti-ezrin

(1:2,000) were purchased from Millipore Sigma (St Louis, MO). The

anti-S1P2 (1: 500) antibody was purchased from Proteintech (Rose-

mont, IL). Iba-1 antibody (1:200 for tissue staining) was purchased

from Abcam (Cambridge, MA). The glial fibrillary acidic protein

GFAP antibody (1:200 for tissue staining) was purchased from Dako

(Denmark). The Texas Red� Streptavidin (1:1,000) was purchased

from Vector Laboratories (Burlingame, CA).

RNA-seq and gene expression analysis

The HBMEC transcriptional responses to GBS were determined as

previously described (K�a�nov�a et al, 2019). Briefly, the HBMEC

(1.2 × 106 cells/dish) were seeded in 100 mm dishes and cultured

for 4 days till confluence in RPMI medium supplemented with 10%
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FBS, 10% Nu-serum, 1% MEM vitamin, 1% MEM non-essential

amino acids, 1 mM sodium pyruvate, and 100 U/ml penicillin–

streptomycin. The HBMEC was incubated for 1 h in experimental

medium composed of Medium 199 and Ham’s F12 (1:1) supple-

mented with 5% FBS before infection assay. GBS strain K79,

3 × 108 cells/dish at a multiplicity of infection (MOI) of 100 was

loaded into 100-mm dishes and incubated for 2 h and 6 h RNA was

purified from HBMEC using Quick-RNA Microprep (ZYMO

Research, R1050).

Total RNA was purified from HBMEC for RNA-seq analysis as

described previously (Liu et al, 2015; Watkins et al, 2018). All

RNA-seq libraries (non-strand-specific, paired end) were prepared

using TruSeq RNA Sample Prep kit (Illumina). The total RNA

samples isolated from HBMEC infected with GBS were subject to

poly(A) enrichment as part of the TruSeq protocol. One hundred

nucleotides of sequence were determined from each end of each

cDNA fragment using the HiSeq platform (Illumina). Sequencing

reads were annotated and aligned to the Ensembl GRCh38 of the

human reference genome (Cunningham et al, 2015) using TopHat2

(Kim et al, 2013). The alignment files from TopHat2 were used to

generate read counts for each gene, and a statistical analysis of dif-

ferential gene expression was performed using the edgeR package

from Bioconductor (Robinson et al, 2010). Cut-offs include a P

value of 0.05 or less and an absolute log2 fold change of 1. The

values are log2 fold change of infected vs uninfected HBMEC. The

Ingenuity Pathway Analysis (IPA) software (Ingenuity Systems;

http://www.ingenuity.com) was used for upstream regulator anal-

ysis on the sets of host genes that were differentially expressed

(P < 0.05) between the infection groups and the uninfected control

group (Liu et al, 2015; Watkins et al, 2018). This software could

assess the overlap between RNA-seq derived gene lists and an

extensively curated database of target genes for each of several

hundred known regulatory proteins. It then uses the statistical

significance of the overlap and the direction of differential gene

expression to make predictions about activation or repression of

these regulatory proteins. These proteins were then performed a

protein–protein interaction enrichment analysis using Metascape

(http://metascape.org). It utilizes physical protein–protein interac-

tions captured in BioGrid as the main data source and also it inte-

grates more recent human interactome datasets including

InWeb_IM and OmniPath to provide additional interactome cover-

age (Zhou et al, 2019). The visualized protein interaction

presented the connection between these host factors and revealed

the potential signal transduction networks.

For HBMEC, short tandem repeat (STR) profiling was used to

authenticate HBMEC lines used in this manuscript using FTA

Sample Collection Kit for human cell authentication service, ATCC

135-XV, and there was no mycoplasma contamination.

Mice

GBS penetration into the brain in the presence and absence of

pharmacological inhibitors was examined in wild-type BALB/c and

C57BL/6 mice, both male and female, between 4 and 5 weeks old.

We also used specific knockout mice along with their strain-

matched wild-type animals for delineating specific host factors in

GBS penetration into the brain; CysLT1�/�, CysLT2�/� mice and

BALB/c, and S1P2
�/� and C57BL/6 mice (Kono et al, 2007;

Maekawa et al, 2008). All procedures and handling techniques

were approved by The Johns Hopkins Animal Care and Use

Committee.

Construction of EGFR conditional knockout mice

The EGFR knockout mice are embryonically lethal, and the tamox-

ifen-inducible, endothelial-specific EGFR knockout mice were gener-

ated by crossbreeding floxed EGFR mice (Lee & Threadgill, 2009)

with Tek-RFP-CreERT2 mice in the background of C57BL/c as

described previously (Chen et al, 2015; Zhao et al, 2018). EGFRfl/fl

mice were crossed with Tek-RFP-CreERT2 mice to generate EGFRfl/fl

/Tek-RFP-CreERT2mice. Genotyping was performed by PCR of tail

DNA with the Cre primers (Cre forward: 5’- CTA AAC ATG CTT

CAT CGT CGG TC �3’; Cre reverse: 5’- TCT GAC CAG AGT CAT

CCT TAG CG �3’) and Lox3 primers (Lox3 forward: 5’- CTT TGG

AGA ACC TGC AGA TC �3’; Lox3 reverse: 5’- CTG CTA CTG GCT

CAA GTT TC �3’). CreERT2 consists of Cre conjugated with a

mutated estrogen receptor (ERT2) that binds poorly to endogenous

estrogen but with high affinity to the estrogen derivative tamoxifen

(Thomas et al, 2017). Endothelial-specific knockout of EGFR was

induced by a 5-day intraperitoneal administration of tamoxifen

(1 mg/kg). 2 days later, the mice were infected with GBS, and the

bacteria counts from the blood and brain were determined as

described above. Tek-RFP-CreERT2 littermates treated with tamoxifen

were served as controls.

GBS invasion assays in HBMEC

HBMEC were isolated, characterized, and used for GBS invasion

assays as described previously (Nizet et al, 1997; Stins et al, 1997,

2001; Maruvada et al, 2011). Briefly, GBS strains grown overnight

in Todd–Hewitt broth (Difco Laboratories, Detroit, MI) were resus-

pended in experimental medium [M199-HamF12 (1:1) containing

5% heat-inactivated fetal bovine serum, 2 mM glutamine, and

1 mM pyruvate] and added in a MOI of 100 to HBMEC. After 2 h

of incubation at 37�C, HBMEC were washed with RPMI 1640 and

incubated with experimental media containing penicillin (10 µg/

ml) and gentamicin (100 µg/ml) for 1 h to kill extracellular bacte-

ria. The cells were washed again with PBS, lysed in 0.025% Triton

X-100, and the released intracellular bacteria were enumerated by

plating on sheep blood agar plates. The invasion results were

calculated as a percent of the initial inoculum and expressed as

percent relative invasion compared to percent invasion of GBS in

the presence of vehicle control (DMSO). Each set was run in

triplicates.

Assays for GBS penetration across HBMEC monolayer

HBMEC were cultured on Transwell polycarbonate tissue culture

inserts with a pore diameter of 8 µm (Corning Costar) for 5 days.

On the morning of the assay, HBMEC monolayer was washed with

experimental medium and GBS (MOI = 10) were added to the upper

chamber (Nizet et al, 1997; Stins et al, 2001). After 1.5 h of incuba-

tion at 37°C, samples were taken from the lower chamber and

plated for determinations of CFUs. The integrity of the HBMEC

monolayer was assessed by measurements of the transendothelial

electrical resistance (TEER) before and after assays as well as live/

ª 2021 The Authors EMBO Molecular Medicine 13: e12651 | 2021 11 of 16

Ningyu Zhu et al EMBO Molecular Medicine

http://www.ingenuity.com
http://metascape.org


dead staining (Molecular Probes), as previously described (Stins

et al, 2001).

Immunoblotting and immunoprecipitation

The lysates of HBMEC and homogenates of the mouse brain capil-

laries with and without GBS infection were prepared for Western

blotting and immunoprecipitation as described previously (Stins

et al, 1997; Das et al, 2001; Zhu et al, 2010; Maruvada et al, 2011;

Wang et al, 2016).

Measurement of sphingosine 1-phosphate (S1P) in HBMEC by
HPLC coupled tandem mass spectrometry

HBMECs were grown to confluence in 100-mm tissue culture dish,

serum-starved overnight, and infected with GBS strains K79 at a

MOI of 100 for 30 min at 37°C. Sphingolipids of the HBMECs were

extracted and quantified by HPLC coupled tandem mass spectrome-

try as previously described (Wang et al, 2016).

Construction of EGFR and S1P2 CRISPR knockout HBMECs

Cas9 gene was incorporated into the HBMECs by lentivirus

produced by lentiCas9-Blast plasmid (Addgene #52962) in 293T

(Wang et al, 2016; Joung et al, 2017). The EGFR target DNA

sequences and S1P2 target DNA sequences were cloned into

LentiGuide-puro plasmid (Addgene #52963) using primers EGFR-

CRISPR-3A-F CACCGTGCGCTCTGCCCGGCGAGTC, EGFR-CRISPR-

3A-R AAACGACTCGCCGGGCAGAGCGCAC, EGFR-CRISPR-4B-F CAC

CGCCGGCTCTCCCGATCAATAC, EGFR-CRISPR-4B-R AAACGTATT

GATCGGGAGAGCCGGC: primers S1P2-CRISPR-1F CACCGCAGCT

CTCCAGTGGGAGGA T, S1P2-CRISPR-1R AAACATCCTCCCACTGG

AGAGCTGC, S1P2-CRISPR-2F CACCGCGCCTGTAATCCCAGCAATT,

S1P2-CRISPR-2F AAACAATTGCTGGGATTACA GGCGC. The 293T

cells were transfected with 10 µg of the transfer plasmid Lenti-

Guide-puro-EGFR or S1P2, 5 µg pVSV-G, 7.5 µg psPAX2, 100 µl of

Plus Reagent (Life Technologies), and 50 µl of Lipofectamine 2000

(Life Technologies) to produce the CRISPR lentivirus targeting

EGFR or S1P2. HBMEC-Cas9 cells were infected by CRISPR lenti-

virus targeting EGFR or S1P2 and selected by HBMEC complete

media supplemented with 1 µg/ml puromycin for CRISPR knock-

out cells. The single cells of EGFR or S1P2 CRISPR knockout

HBMECs were sorted to 96-well tissue culture plate by flow cytom-

etry and grown to confluence in HBMEC complete media supple-

mented with 1 µg/ml puromycin. The expression of EGFR and

S1P2 was verified by Western blotting with anti-EGFR and S1P2
antibodies, respectively.

Construction of CysLT1 and ezrin shRNA knockdown HBMECs

The shRNA lentiviral plasmids targeting CysLT1 or ezrin and green

fluorescent protein (shRNA control) were purchased from TRC

shRNA libraries at High Throughput Biology Genomic Resources of

Johns Hopkins University (http://hitcores.bs.jhmi.edu/). The 293T

cells (ATCC CRL-3216) were cultured at 37 �C and 5% CO2 in

Modified Eagle’s Medium (DMEM) (ATCC # 302002) comple-

mented with heat inactivated 10% fetal bovine serum (FBS) (ATCC

# 302020), 2 mM L-glutamine (ATCC # 302214), and 1%

penicillin/streptomycin. During transfection, 1.5 × 106 293T cells

were cultured in 6-well tissue culture plates overnight in 5 ml

Opti-MEM (Life Technology # 31985070) and transfected with 3 µg

lentiviral plasmids containing the target DNA sequence, 2 µg pack-

aging plasmid psPAX2 (Addgene # 12260), 1 µg envelop plasmid

pCMV-VSV-G (Addgene # 8454), and 6 µl Fugene Transfection

Reagent (Promega # 2691) overnight. The Opti-MEM media of

293T cell culture was changed to HBMEC complete media, and

cells were incubated overnight. HBMEC were infected by lentivirus

in the 0.22 µm filtered 293T cell culture supernatant for 48–72 h

and the shRNA knockdown HBMECs were selected with HBMEC

complete media supplemented with 1 µg/ml puromycin. The

expression of the CysLT1 and ezrin was verified by Western blot-

ting.

Mouse model of experimental hematogenous meningitis

Each mouse received 1 × 107 CFUs of GBS strain K79 in 100 µl PBS

via the tail vein. One hour later, mouse chest was cut open, and

blood from right ventricle was collected and plated for bacterial

counts, which were expressed as CFUs/ml of blood. The mouse

was then perfused with a mammalian Ringer’s solution by transcar-

diac perfusion through a 23-gauge needle inserted into the left

ventricle of the heart under the perfusion pressure of about

100 mmHg as previously described (Zhu et al, 2010; Maruvada

et al, 2011). The brains were removed, weighed, and homogenized

in 2 ml RPMI followed by plating for bacterial counts, which were

expressed as CFUs/gm. In some experiments, montelukast and gefi-

tinib, applied at therapeutic doses (5 mg/kg for montelukast, and

10 mg/kg for gefitinib) (Wang et al, 2009; Wang et al, 2016; Zhu

et al, 2017), were intraperitoneally administrated 1 h before bacte-

rial challenge. For therapy of established GBS meningitis, animals

received GBS via the tail vein, and 24 h later, received ceftriaxone

(100 mg/kg), montelukast (10 mg/kg), or combination daily for

7 days.

Examination of entry sites for circulating GBS penetration into
the brain and assessment of the blood–brain barrier permeability

Each mouse received 1 × 107 CFUs of GFP-K79 in 100 µl PBS via

the tail vein as described above. At 1 and 12 h later, animals were

perfused with PBS followed by 2% paraformaldehyde (PFA). The

brains and skullcap were removed, fixed overnight with 2% PFA at

4°C, and then re-hydrated in 1× PBS at 4°C for 3 h. The brains were

embedded in 3% agarose and cut into sections of 150 lm thickness

using a vibratome (Leica). The meninges were carefully detached

from the skullcap. To assess the blood–brain barrier permeability

with GBS penetration into the brain, 200 ll solution (20 mg/ml) of

Sulfo-NHS-biotin (a low molecular weight tracer with m.w. of

443 Da) was intraperitoneally injected 10 min before intracardiac

perfusion. Covalently, immobilized Sulfo-NHS-biotin was visualized

with fluorescent streptavidin, and extravasation is indicative of leak-

age from the brain microvessels. The brain sections and meninges

were incubated with CD31 antibody (a marker for capillaries)

diluted in 1 × PBSTC (1 × PBS + 1% Triton X-100 + 0.1 mM

CaCl2) + 5% BSA overnight at 4°C. Then, they were washed 3 times

with 1 × PBSTC and subsequently incubated overnight with dif-

ferent secondary antibodies or Texas Red streptavidin diluted in
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1 × PBSTC + 5% BSA. The next day, the brain sections and

meninges were washed 3 times with 1 × PBSTC, and flat-mounted

using ProLong Gold antifade reagent (Invitrogen). The tissues were

imaged using a Zeiss LSM700 confocal microscope and processed

with ImageJ (Wang et al, 2019).

Examination of structural integrity of the blood–brain barrier
during GBS penetration

The mice received 1 × 107 CFUs of GFP-K79 in 100 µl PBS via the

tail vein as described above. One hour later, the mice were perfused

with PBS and 2% PFA. The brain sections were stained with

claudin-5 antibody (a marker for tight junction proteins) diluted in

1 × PBSTC + 5% BSA overnight. After washing three times, the

sections were incubated with 568-conjugated secondary antibody

and assessed by the Zeiss LSM700 confocal microscope. The 2D fig-

ures and 3D figures were generated by Zen software and analyzed

by ImageJ.

Immunofluorescence in HBMEC

Control and S1P2 knockout HBMEC were grown on collagen-

coated glass slide to confluence and incubated with GFP-K79 at

MOI of 1:100 at 37°C for 90 min. Cells were washed with PBS to

remove the free, unbound bacteria, and then fixed with 4%

paraformaldehyde. The cells were incubated with rabbit anti-GBS

antiserum (1:500) diluted in PBS for 30 min at room temperature

to distinguish intracellular and extracellular GBS. Then, the cells

were washed by PBS and permeabilized with 0.25% Triton X-100

solution for 10 min, and blocked with 5% BSA for 1 h. The cells

were then incubated with EGFR or Ezrin monoclonal antibody and

subsequently incubated with anti-mouse Alexa Fluor-488 and anti-

rabbit Fluor-568 labeled secondary antibody. The glass slide was

mounted and visualized using fluorescence microscopy as previ-

ously described (Wang et al, 2016). Percentage of co-localization

was calculated by counting numbers of all GBS and co-localized

intracellular GBS from at least three representative fields, and

expressing as numbers of co-localized GBS/all GBS × 100. All data

correspond to the mean � SEM of at least 60 GBS from three

fields.

Histopathology assessment of neuronal injury

Animals were anesthetized with an intraperitoneal administration of

100 µl dose per mouse of cocktail of ketamine (87.5 mg/kg) and

xylazine (12.5 mg/kg) and perfused transcardially with a phos-

phate-buffered saline, and the brains were fixed with fixing solution

(4% PFA, in 0.1 M PBS, pH 7.2) through infusion pump. Brains

were post-fixed in 4% PFA at 4°C for 24 h and cryoprotected in

35% sucrose (w/v) in PBS for at least 2 days at 4°C. Fixed brains

were cut into 20 micrometer thick coronal slices on gelatin-coated

slides by cryostat (Leica).

Nissl staining

Sections were then defatted for 10 min in a mixture of methanol/

acetone (1:1, vol). Slices were dehydrated in a series of ethanol

washes (70–100%). Sections were immersed in 1% nissl stain dye

for 5 s then rinsed in dH2O, followed by a series of graded alcohols,

cleared in xylene, and coverslipped with a mounting medium.

Images were acquired on a Zeiss LSM microscope. Neurons with

only healthy morphological characteristics of nucleus were counted

in the cortex region of the brain section. Data were obtained from

six fields per slide, and the average numbers of cells in each hemi-

sphere, in five sections from each animal was analyzed for quan-

tification, and the mean was used for the statistical analysis. Graph

results are expressed as the number of Nissl bodies (Del Toro et al,

2017).

Apoptosis assay

The extent of apoptosis TUNEL assay (TdT-mediated dUTP-X nick

end labeling) from all the groups was analyzed using an in situ

cell death detection kit (Roche), according to the manufacturer’s

instructions and counterstained with DAPI for nuclei in the

cryosection of brain slide. The images were taken using a fluores-

cence microscope (Zeiss LSM microscope). The mean TUNEL-

positive nuclei will be counted from three different sections per

animal for quantification.

Immunohistochemistry of microglia and astrocytes

Brain sections were immunostained by first blocking non-specific

binding sites with 2% IgG-free bovine serum albumin (BSA, Sigma)

and then incubating the tissue with 0.2% Triton X-100. The sections

were then incubated overnight at 4°C with a primary antibody

against microglia marker (Iba-1, 1:2,000, Abcam) and glial fibrillary

acidic protein (GFAP 1:500, Dako, Denmark) followed by fluores-

cence labeled secondary antibody Alexa Fluor 647 and 488 (Invitro-

gen). The nuclei were counterstained with VectaShield DAPI

(Vector Labs), and photomicrographs of cortical and hippocampal

subfields were obtained on a fluorescence microscope (Zeiss). In the

microphotomicrographs, the number of cells immunoreactive to

Iba-1 and GFAP were quantified in the different region of cortex and

hippocampus (Chen et al, 2015).

Assessment of memory function following GBS meningitis
using Y-maze

A Y-shaped white-painted timber with arms 29.5 cm long × 7.5 cm

wide × 15.5 cm high was used. All mice were subjected to a 2-trial

Y-maze test separated by a 24 h intertrial interval to assess spatial

recognition memory, with all testing performed during the light

phase of the circadian cycle. The 3 identical arms were randomly

designated start arm, novel arm, and other arm. Visual cues were

placed on the walls of the maze. The first trial (training) was for

10 min, and the mice were allowed to explore only 2 arms (starting

arm and other arm). For the second trial (retention), mice were

placed back in the maze in the same starting arm and allowed to

explore for 5 min with free access to all 3 arms. Behaviors were

recorded on video during a 5-min trial, and the Ethovision video-

tracking system was used for analysis. Data are expressed as the

total duration of novel arm and percentage of entries in novel arm

made during the 5-min second trial. Calculation of percentage of

entries in novel arm is as follows: entry of novel arm/total entry

(novel + start + other) × 100 (Zhao et al, 2018).
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Ethics statement

Our animal studies were carried out in strict accordance with the

current recommendations in the Guide for the Care and Use of

Handling Animals, NIH publication DHHS/USPHS. Numbers of

animals for experimental groups were determined by power analy-

ses based on our preliminary data. The animal protocol was

approved by The Johns Hopkins Animal Care and Use Committee

(Animal Welfare Assurance Number: A3272-01). All efforts were

made to provide the ethical treatment and minimize suffering of

animals employed in this study.

Statistical analysis

Data are expressed as mean � SEM. Differences of bacterial counts

in the brain (CFUs/gm) between different groups of mice were

determined by Wilcoxon rank sum test or Student’s t-test. Dif-

ferences of bacterial invasion in HBMEC monolayer were deter-

mined by Student’s t-test. Survival curves were generated using the

Kaplan–Meier method, and differences were assessed by a two-sided

log-rank (Mantel-Cox) test (GraphPad software, version 6.0). One-

way ANOVA followed by multiple comparison of Bonferroni’s post

hoc test was used to determine differences of quantification of

image analysis, morbidity, and motor activity scores as well as Y-

maze data. P < 0.05 was considered significant. N-values for experi-

mental groups were determined by power analyses based on our

preliminary data. All in vivo analyses were performed in a double-

blind manner.

Data availability

• The datasets produced in this study are available in the following

databases: RNA sequencing: NCBI sequence read archive (SRA),

BioProject accession no. PRJNA632824 (https://www.ncbi.nlm.

nih.gov/bioproject/PRJNA632824/).

• All data necessary to understand and evaluate the conclusion of this

report are available in the paper and/or supplementary materials.

The paper explained

Problem

GBS meningitis continues to be an important cause of mortality and
morbidity. GBS strains are uniformly susceptible to penicillin and poor
outcome of GBS meningitis is not due to emergence of non-suscepti-
ble GBS strains. At present, no strategy exists for development of
improved therapy.

Results
Our findings reveal that development of an adjunct therapy for
improving the outcome of GBS meningitis is feasible by targeting host
factors involved in GBS invasion of the blood–brain barrier.

Impact
Determination of targets as an adjunct therapy of GBS meningitis is a
breakthrough concept for GBS meningitis, encouraging continued
investigation of host factors involved in GBS invasion of the blood–
brain barrier.

Expanded View for this article is available online.
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