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RESEARCH Open Access

Impaired right ventricular contractile
function in childhood obesity and its
association with right and left ventricular
changes: a cine DENSE cardiac magnetic
resonance study
Linyuan Jing1,2, Arichanah Pulenthiran1,2, Christopher D. Nevius1,2, Abba Mejia-Spiegeler1,2, Jonathan D. Suever1,2,
Gregory J. Wehner3, H. Lester Kirchner2, Christopher M. Haggerty1,2 and Brandon K. Fornwalt1,2,4*

Abstract

Background: Pediatric obesity is a growing public health problem, which is associated with increased risk of
cardiovascular disease and premature death. Left ventricular (LV) remodeling (increased myocardial mass and
thickness) and contractile dysfunction (impaired longitudinal strain) have been documented in obese children, but
little attention has been paid to the right ventricle (RV). We hypothesized that obese/overweight children would
have evidence of RV remodeling and contractile dysfunction.

Methods: One hundred and three children, ages 8–18 years, were prospectively recruited and underwent cardiovascular
magnetic resonance (CMR), including both standard cine imaging and displacement encoding with stimulated echoes
(DENSE) imaging, which allowed for quantification of RV geometry and function/mechanics. RV free wall longitudinal
strain was quantified from the end-systolic four-chamber DENSE image. Linear regression was used to quantify
correlations of RV strain with LV strain and measurements of body composition (adjusted for sex and height). Analysis
of variance was used to study the relationship between RV strain and LV remodeling types (concentric remodeling,
eccentric/concentric hypertrophy).

Results: The RV was sufficiently visualized with DENSE in 70 (68%) subjects, comprising 36 healthy weight (13.6 ± 2.
7 years) and 34 (12.1 ± 2.9 years) obese/overweight children. Obese/overweight children had a 22% larger RV mass index
(8.2 ± 0.9 vs 6.7 ± 1.1 g/m2.7, p < 0.001) compared to healthy controls. RV free wall longitudinal strain was impaired in
obese/overweight children (−16 ± 4% vs −19 ± 5%, p = 0.02). Ten (14%) out of 70 children had LV concentric hypertrophy,
and these children had the most impaired RV longitudinal strain compared to those with normal LV geometry (−13 ± 4%
vs −19 ± 5%, p = 0.002). RV longitudinal strain was correlated with LV longitudinal strain (r = 0.34, p = 0.004), systolic blood
pressure (r = 0.33, p = 0.006), as well as BMI z-score (r = 0.28, p = 0.02), waist (r = 0.31, p = 0.01), hip (r = 0.40, p = 0.004) and
abdominal (r = 0.38, p = 0.002) circumference, height and sex adjusted.
(Continued on next page)
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Conclusions: Obese/overweight children have evidence of RV remodeling (increased RV mass) and RV
contractile dysfunction (impaired free wall longitudinal strain). Moreover, RV longitudinal strain correlates with
LV longitudinal strain, and children with LV concentric hypertrophy show the most impaired RV function.
These results suggest there may be a common mechanism underlying both remodeling and dysfunction of
the left and right ventricles in obese/overweight children.

Keywords: DENSE, Right ventricle, Strain, Pediatric obesity

Background
Childhood obesity is a rapidly growing public health
problem. Recent studies in the United States show that
17% of children and adolescents (2–19 years) are obese,
while 5.8% are severely obese [1]. A longitudinal study
which followed over two million adolescents into adult-
hood showed that pediatric obesity is linked to increased
risk of mortality in adulthood [2]. Although the exact
mechanisms are not well understood, evidence suggests
that this premature mortality is likely attributed to early
onset of cardiovascular diseases [3].
Prior research has focused primarily on changes in the

structure and function of the left ventricle (LV) in
obese/overweight children using echocardiography or
cardiovascular magnetic resonance (CMR). Major find-
ings include: LV remodeling, evidenced by increased LV
myocardial mass and wall thickness [4–6]; contractile
dysfunction, measured by impaired LV longitudinal and
circumferential strain [6–8]; and diastolic dysfunction,
indicated by reduced early (E) and late (A) relaxation
velocity as well as decreased E/A ratio [4, 5]. Moreover,
approximately 25% of obese children have LV concentric
hypertrophy [9], the type of remodeling that is most
closely related to early mortality in adults [10]. A recent
CMR study showed that obese children with LV concen-
tric hypertrophy demonstrate the most impaired LV
longitudinal and circumferential strains, despite normal
ejection fraction [6].
Despite mounting evidence of LV remodeling and dys-

function, little is known about the right heart in obese
children. There is growing appreciation that right ven-
tricular (RV) dysfunction is related to adverse outcomes
[11–13]. RV remodeling (larger RV mass and volumes)
and impaired systolic and diastolic function have been
documented in overweight and obese adults [14–17].
Moreover, there is evidence of potential links between
LV and RV function in obese adults [14]. Thus, obese
children with LV concentric hypertrophy and impaired
LV strain/function may also suffer from RV remodeling
and impaired RV function. Information on RV geometry
and function could facilitate the identification of obese
children who are at high risk of adverse outcomes, as
well as provide new insights into the etiology underlying
cardiac dysfunction in the setting of pediatric obesity.

Only a few studies have investigated obesity-related
changes in RV geometry and function in children, but
the findings are conflicting [4, 5, 18–21]: both no change
and a decrease in RV systolic function were reported.
These conflicting reports may result from the fact that
all previous studies have utilized echocardiography
(tissue Doppler imaging) to quantify RV function. This
methodology suffers from poor image quality and high
angle dependency of the imaging plane, especially in the
RV [22]. These limitations preclude direct and compre-
hensive characterization of RV structure and function
with echocardiography. Magnetic resonance imaging has
excellent image quality and is the gold standard for
reproducibly imaging the RV [23]. Moreover, cine dis-
placement encoding with stimulated echoes (DENSE),
an advanced CMR technique, encodes displacement of
myocardial tissue into CMR phase images, providing ad-
equate resolution to quantify displacement and strain of
the RV [24]. To our knowledge, no study has investi-
gated changes in RV structure and function in obese
children using CMR. We hypothesized that obese chil-
dren would have enlarged RV mass as well as impaired
contractile function (strain), and that these changes
would be associated with LV remodeling and function.

Methods
Study population
Children ages 8–18 years were prospectively recruited
from University of Kentucky (the High BMI Diagnostic
Clinic, and the Center for Clinical and Translational
Science volunteer database) and Geisinger Medical
Center. Children were categorized based on their body
mass index (BMI) percentiles defined by the United
States Centers for Disease Control and Prevention
(CDC) growth charts [25]: obese (BMI ≥95th percentile),
overweight (BMI 85th–95th percentile) and healthy weight
(BMI 5th–85th percentile). Exclusion criteria included dia-
betes, diagnosed hypertension, history of heart disease,
contraindications for CMR, or a waist circumference
>125 cm due to the circumference limitation of the bore
of the CMR scanner. Children with conditions that could
potentially alter right heart function (e.g. obstructive sleep
apnea, pulmonary hypertension or lung disease) were
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excluded. A subgroup (two-thirds) of the subjects were
included in a previous study focused on LV remodeling
and function (strain) [6].

Clinical assessment
At the time of the CMR scan, height and weight, each
averaged from two readings, were measured, and BMI
(weight/height2 in kg/m2) percentiles were determined.
Measurements of the waist, abdominal, and hip circumfer-
ences were taken twice with a tailor’s scale, and the average
values were reported. After being seated for at least 10 min,
an appropriately sized cuff was used to measure resting
blood pressure by auscultation three times, 5 min apart.
The average of the last two readings was reported. All
children had a normal 12-lead electrocardiogram (ECG).

CMR imaging
All subjects underwent CMR on a 3 T system (Tim Trio,
Siemens Healthcare, Erlangen, Germany) using 6-element
chest and 24-element spine coils. All CMRs were con-
ducted solely for research purposes and not for clinical in-
dications. Standard ECG-gated balanced steady-state free-
precession (SSFP) images in two- and four-chamber views
were acquired during 10–15 s breath-holds. Depending on
the size of the heart, a stack of 7–11 short-axis SSFP images
spanning both ventricles were acquired for assessment of
cardiac geometry. Acquisition parameters were: repetition
time (TR) = 3.16–3.37 ms, echo time (TE) = 1.3–1.5 ms,
field of view (FOV) = [292–400] × [340–400] mm2, image
matrix = [208–256] × 256, flip angle = 50°, temporal
resolution = 16.4–49.9 ms, slice thickness = 8 mm, slice
gap = 0–3.7 mm.
Spiral cine DENSE imaging was performed in the two-

chamber and four-chamber long-axis views to quantify
LV and RV longitudinal strain. A respiratory navigator

with an acceptance window of ±3 mm was used to
maintain consistent breath-hold position. The acquisi-
tion parameters for DENSE images were: 6 or 18 spiral
interleaves, in-plane simple displacement encoding (ke =
0.1 cycles/mm), TE/TR = 1.08/17 ms, flip angle = variable
20°, voxel size = 2.8 × 2.8 × 8 or 1.6 × 1.6 × 8 mm3, FOV
= 360 × 360 or 340 × 340 mm2, image matrix = 128 × 128
or 214 × 214, temporal resolution = 34 ms (view sharing
was used to achieve 17 ms between reconstructed tem-
poral frames). CSPAMM was used for echo suppression.

Image analysis
Endocardial and epicardial boundaries of the RV were
manually delineated on end-diastolic and end-systolic
frames on all short-axis SSFP slices covering the whole
ventricle. Simpson’s rule was used to calculate RV end-
diastolic (EDV) and end-systolic (ESV) volumes. RV
stroke volume (SV = EDV - ESV) and ejection fraction
(SV/EDVx100%) were also derived. RV myocardial mass
was calculated from the epicardial and endocardial con-
tours on the end-diastolic frame, assuming a myocardial
density of 1.05 g/mL, and indexed to height (meters2.7).
RV free wall longitudinal strain was quantified from

the four-chamber DENSE acquisition (Fig. 1). End-
systolic phase images encoding the horizontal (Fig. 1a)
and vertical (Fig. 1b) displacements were acquired using
2D spiral cine DENSE. The RV free wall and the inter-
ventricular septum were segmented using DENSEanaly-
sis [26]. DENSE post-processing was customized [27] to
remove temporal smoothing and instantaneously quan-
tify strain using only the end-systolic frame, as deter-
mined visually based on the minimum chamber area.
Specifically, the displacements for each pixel in the sys-
tolic image (black dots in Fig. 1c) relative to end-diastole
(grey dots in Fig. 1c) were extracted directly from the
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Fig. 1 Right ventricular (RV) strain analysis. End-systolic phase images encoding the horizontal (a) and vertical (b) displacements were acquired
using 2D spiral cine DENSE. The displacements for each pixel in the end-systolic image (black dots in c) relative to end-diastole (grey dots in c)
were extracted directly from the phase images. A mesh of the RV myocardium was deformed from diastole to systole using these displacements
(d), and strains were computed for each mesh element
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phase images. Using these displacements, a mesh of the
RV myocardium was deformed from diastole to systole
(Fig. 1d) and strains were computed for each mesh elem-
ent. Only RV free wall elements were retained for the
analysis. Notably, the analysis of a single time phase in
this way was the original approach used for DENSE
imaging, prior to the development of the cine version of
DENSE [28].
Standard DENSE post-processing was performed to

compute LV longitudinal strain in order to study its
relationship with RV strain. Analysis included manual
segmentation of the LV myocardium, phase unwrapping,
tissue tracking throughout the cardiac cycle to derive
displacements of the myocardial tissue, and strain calcula-
tion as previously described [29, 30]. LV peak longitudinal
strain was averaged from the two- and four-chamber
views.
To investigate the relationship between RV function/

strain and LV remodeling, epicardial and endocardial
boundaries of the LV were manually drawn on end-
diastolic and end-systolic frames of the SSFP slices.
These contours were then used to reconstruct 3D endo-
cardial and epicardial surfaces using a custom algorithm
written in MATLAB (The Mathworks, Natick, MA) as
previously described [6]. LV volumes, LV myocardial
mass (assuming a myocardial density of 1.05 g/mL), and
ejection fraction were then calculated from the 3D
models. LV myocardial mass was indexed to height
(LVMI, grams/meters2.7) [31]. Cardiac remodeling types
(normal geometry, concentric remodeling, eccentric
hypertrophy, concentric hypertrophy) were determined
based on previously defined cutoff values for mass/vol-
ume ratio (0.69) and LVMI (27.52 g/m2.7) in a healthy
cohort [6].

Reproducibility
To quantify inter-observer reproducibility of RV lon-
gitudinal strain in all subjects, the end-systolic frame
of the DENSE images was independently determined,
segmented and analyzed by two different investigators.
Bland-Altman limits of agreement and bias were
computed [32].

Statistics
Continuous variables from obese/overweight and healthy
groups were compared with a 2-sample student’s t-test
and presented as mean ± standard deviation (SD).
Fisher’s exact test was used to compare the sex distribu-
tion between groups. Analysis of covariance (ANCOVA)
was used to estimate the differences in cardiac remodel-
ing and function between groups, while accounting for
age.
Analysis of Variance (ANOVA) was used to test for a

difference in RV strains among different LV remodeling

types. Due to the small observed sample sizes, the
concentric remodeling and eccentric hypertrophy groups
were combined. The concentric hypertrophy group and
the combined concentric remodeling/eccentric hyper-
trophy group were both compared to the normal geometry
group using Dunnett’s multiple comparison procedure.
Pearson’s correlation coefficients were used to investigate
relationships between LV and RV structural and functional
measurements.
A modified coefficient of variation (CoV), which com-

pares the variability of a given variable × relative to its
mean, was used to quantify inter-observer reproducibil-
ity for RV longitudinal strain [33]. A CoV within 20%
was considered reproducible. Given measurements from
two observers (Ob1 and Ob2), the CoV was calculated
as follows:

CoV ¼
XN

i¼1
St:Dev: XOb1; XOb2ð Þi
� �

XN

i¼1
XOb1 þ XOb2ð Þ=2ð Þi

� ����
���

Multivariable linear regression was used to investigate
the relationship between body composition (BMI z-
score, waist, hip, abdominal circumference, and waist/
hip ratio) and RV remodeling and function. Height and
sex were controlled in the model to account for somatic
growth and sex differences. Statistical significance was
defined as p ≤ 0.05. All statistical analyses were per-
formed in R [34] (Version 3.3.1 with packages multcomp
[35] and car [36]).

Results
Demographics and clinical assessment of the study
population
A total of 103 subjects were prospectively recruited and
underwent CMR. Of those, two subjects did not
complete the CMR study. In 31 (30%) subjects, the RV
was either insufficiently visualized or the phase images
were not able to be unwrapped properly during post-
processing due to poor image quality. The remaining 70
(68%) subjects, including 36 healthy weight and 34 over-
weight/obese children, were included in subsequent data
analysis. Characteristics of these subjects are summa-
rized in Table 1.
Compared to healthy weight children, systolic blood

pressure was slightly elevated in the obese/overweight
group. In addition, waist, hip, and abdominal circumfer-
ences were substantially larger (by 27, 20 and 31%, re-
spectively) in obese/overweight children (all p < 0.001).
The waist/hip ratio was also higher in obese/overweight
children.
We further investigated the characteristics of the

30% of subjects who were excluded from the data
analysis. No significant differences were identified in
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demographic parameters between the excluded sub-
jects and those included for subsequent analysis [see
Additional file 1: Table S1]. In addition, the weight
group distribution was similar between the two
groups: 18 (58%) of the 31 excluded subjects were
obese/overweight compared to 34 (49%) out of 70 in
the included group, p = 0.4.

Right ventricular geometry and function
After adjusting for age, obese/overweight children had a
22% larger RV mass index (8.2 ± 0.9 vs 6.7 ± 1.1 g/m2.7,
p < 0.001), while RV volumes were comparable to healthy
controls (Table 2). There was no difference in RV ejec-
tion fraction between the two groups. However, RV free
wall longitudinal strain was impaired in obese/over-
weight children compared to healthy weight controls
(−16 ± 4% vs −19 ± 5%, p = 0.02, Fig. 2).

Association between LV and RV remodeling and function
Consistent with previous studies [4–6], obese/overweight
children had a greater LVMI and a higher mass/volume
ratio compared to healthy controls (Table 2) after adjust-
ing for age. Furthermore, LVMI correlated with RV mass
index (Fig. 3a). Based on cutoff values defined in a previ-
ous study [6], ten (14%) subjects had concentric LV
hypertrophy, thirteen (19%) subjects had eccentric LV
hypertrophy or concentric LV remodeling, and forty-six
(66%) had normal LV geometry (Fig. 4). RV free wall lon-
gitudinal strain differed among these remodeling groups
(p = 0.01, Fig. 4), as children with concentric LV hyper-
trophy had significantly impaired RV strain compared to
those with normal LV geometry (−13 ± 4% vs −19 ± 5%,
p = 0.002). There was no significant difference between
the combined concentric remodeling/eccentric hyper-
trophy group and the normal geometry group (−17 ± 3%
vs −19 ± 5%, p = 0.46).
In addition, obese/overweight children had impaired

LV longitudinal strain (−14 ± 2% vs −15 ± 2%, p = 0.02,

Table 1 Demographics and Clinical Parameters (mean ± SD) of
the Study Population

Obese/Overweight
n = 34

Healthy
n = 36

p

Age (years) 12.1 ± 2.9 13.6 ± 2.7 0.03

Female (%) 56 47 0.49

Weight (kg) 71 ± 23 50 ± 14 <0.001

Height (cm) 155 ± 13 160 ± 17 0.23

Body Mass Index (kg/m2) 29 ± 6 19 ± 2 <0.001

Body Mass Index Percentile 96 ± 4 48 ± 23 <0.001

Body Mass Index z-score 2.0 ± 0.4 −0.1 ± 0.7 <0.001

Heart rate (beats/min) 72 ± 9 70 ± 8 0.09

Systolic blood pressure (mmHg) 116 ± 13 109 ± 8 0.02

Diastolic blood pressure (mmHg) 73 ± 6 71 ± 6 0.32

Mean arterial pressure (mmHg) 87 ± 8 84 ± 6 0.07

Abdominal Circumference (cm) 94 ± 16 72 ± 7 <0.001

Waist Circumference (cm) 85 ± 14 67 ± 6 <0.001

Hip Circumference (cm) 101 ± 16 84 ± 10 <0.001

Waist/Hip Ratio 0.85 ± 0.09 0.80 ± 0.07 0.01

Table 2 Cardiac Geometry and Function (mean ± SD)

Obese/Overweight
n = 34

Healthya

n = 36
p, age adjusted

LV geometry and function

LV mass index (g/m2.7) 27 ± 4 22 ± 3 <0.001

LV end diastolic volume (mL) 135 ± 31 133 ± 41 0.85

LV mass/volume ratio 0.68 ± 0.10 0.60 ± 0.06 <0.001

LV ejection fraction (%) 62 ± 5 62 ± 4 0.99

RV geometry and function

RV end diastolic volume (mL) 149 ± 38 147 ± 46 0.80

RV end systolic volume (mL) 60 ± 17 59 ± 23 0.84

RV stroke volume (mL) 89 ± 23 88 ± 25 0.80

RV mass (g) 27 ± 6 24 ± 7 0.01

RV mass index (g/m2.7) 8.2 ± 0.9 6.7 ± 1.1 <0.001

RV ejection fraction (%) 60 ± 5 61 ± 5 0.68

Strain

LV longitudinal strain (%) −14 ± 2 −15 ± 2 0.02

RV free wall longitudinal strain (%) −16 ± 4 −19 ± 5 0.02

Abbreviations: LV left ventricular, RV right ventricular
aOne of the 36 healthy weight subjects did not complete cine SSFP imaging and was therefore not included in any of the measures of cardiac geometry or
ejection fraction
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Table 2) compared to healthy controls, and the LV longi-
tudinal strain correlated with RV longitudinal strain
(Fig. 3b). Finally, systolic blood pressure also correlated
with RV longitudinal strain (Fig. 3c).

Correlation between RV function and body composition
Associations of RV function and strain with body com-
position measurements are summarized in Table 3. Sex
and height were included in the multivariate linear
regression model to account for somatic growth. Both
RV mass index and RV free wall longitudinal strain
moderately correlated with most measurements of body
composition except waist/hip ratio (Fig. 5), and the
correlations were stronger with RV mass index. RV
mass index correlated most strongly with BMI z-score
(r = 0.56, p < 0.001), while RV strain was more strongly
correlated with abdominal (r = 0.38, p = 0.002) and hip
(r = 0.40, p = 0.004) circumferences.

Reproducibility
The CoV for inter-observer reproducibility of RV longi-
tudinal strain was 10%. This coefficient corresponds with
a bias of 0.57 and 95% limits of agreement of [−5.65,
6.79] % (Fig. 6).

Discussion
We imaged 70 children (36 healthy weight and 34
obese/overweight) with CMR to quantify changes in RV
volumes and function in the setting of pediatric obesity.
We found that: 1) compared to healthy weight controls,
obese/overweight children have increased RV mass index
without changes in RV volumes or RV ejection fraction;
2) RV systolic function, measured by free wall longitu-
dinal strain, is impaired by 14% in obese/overweight

children 3) There is evidence of a common mechanism
underlying RV and LV dysfunction in obese/overweight
children, since RV longitudinal strain associates with LV
longitudinal strain and RV longitudinal strain is most
severely impaired (by 30%) in obese children with LV
concentric hypertrophy; 4) RV mass and RV longitu-
dinal strain are related to measures of body compos-
ition; 5) inter-observer reproducibility is good for RV
longitudinal strain measured with DENSE at end-
systole. To our knowledge, this is the first study to
comprehensively characterize RV geometry and func-
tion in obese children using CMR.

Obese/OverweightHealthy p=0.02
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RV remodeling and function in pediatric obesity
While RV remodeling (increased mass and volumes) and
impaired systolic and diastolic function have been docu-
mented in overweight and obese adults, this information
is mostly missing and inconclusive in childhood obesity.
One study by Labombarda et al. [18] reported enlarged
RV end-diastolic dimension in obese children compared
to healthy controls, while Mahfouz et al. [19] and

Zeybek et al. [20] observed no change in RV dimensions.
RV systolic function in obese children was documented
by a few studies using tricuspid annular plane systolic
excursion (TAPSE) or systolic velocity; however, both no
change [4, 18] and decreased function [19, 21] were re-
ported. Only one study [20] quantified RV ejection frac-
tion, a commonly used metric for ventricular function
clinically, and found no significant changes in obese chil-
dren. In the current study, we found increased RV mass
index and comparable RV volumes and ejection fraction
between obese children and healthy weight controls,
suggesting that the RV remodels with preserved ven-
tricular volumes and global systolic function in the early
stages of obesity.
Measures of cardiac mechanics, such as strain, are

more sensitive metrics of cardiac function than ejection
fraction and are more closely related with outcomes
such as death [37]. RV free wall strain and strain rate in
obese children were documented by several studies using
echocardiography, but their findings are again contra-
dictory: Barbosa et al. [4] found increased RV strain and
strain rate, while Di Salvo et al. [5] found decreased RV
strain and strain rate in obese children. Using the ad-
vanced and highly reproducible DENSE CMR technique,
our results show a 14% reduction in RV free wall longi-
tudinal strain (Fig. 2, Table 2) in obese/overweight chil-
dren compared to healthy weight controls. This finding
suggests that subclinical RV contractile dysfunction
exists in obese/overweight children, despite preserved
RV ejection fraction.
It is worth noting that not all obese/overweight chil-

dren had impaired longitudinal strain. Using previously
defined cutoff values of LVMI and LV mass/volume ratio
[6], we identified a subgroup of children (n = 10, 14%)
with LV concentric hypertrophy. These children had the
most impaired RV longitudinal strain (by 30%) com-
pared to those with normal LV geometry (Fig. 4), while
children with LV concentric remodeling/eccentric hyper-
trophy had relatively normal RV longitudinal strain.
Similar findings about LV longitudinal and circumferen-
tial strain have also been reported in obese children [6].
This group of children with LV concentric hypertrophy
and reduced LV and RV strain may represent a particu-
larly high-risk phenotype with increased risk of cardio-
vascular disease and premature death, which deserves
further investigation.

Mechanisms for RV remodeling and dysfunction
While this study did not explore the mechanisms under-
lying the observed ventricular remodeling and dysfunc-
tion, which are presently not well understood, the
observation of several associations of RV function with
LV structure and function are suggestive of common, in-
trinsic causal factors. For example, insulin resistance is a

Normal

Concentric
Remodeling

Eccentric 
Hypertrophy

Concentric 
Hypertrophy

0.69
27

.5

*p = 0.002 

*

Normal Concentric Remodel /
Eccentric Hypertrophy

Concentric
Hypertrophy

Obese/OverweightHealthy

15 20 25 30 35 40 45
0.4

0.6

0.8

1

Left Ventricular Mass Index (g/m2.7)

LV
 M

as
s 

to
 V

ol
um

e 
R

at
io

−35

−30

−25

−20

−15

−10

−5R
V

 L
on

gi
tu

di
na

l S
tr

ai
n 

(%
)

Fig. 4 Children with concentric LV hypertrophy (top) had the most
impaired longitudinal strain in the RV free wall (bottom). *The reported
p-value (0.002) is for the comparison between the concentric hypertrophy
and normal geometry group

Table 3 Correlation between RV Function and Body
Composition after Adjusting for Sex and Height

RV Longitudinal Strain RV Mass Index

r p r p

BMI z-scorea 0.28 0.02 0.56 <0.001

Waist circumference 0.31 0.01 0.44 <0.001

Hip circumference 0.40 0.004 0.46 <0.001

Abdominal circumference 0.38 0.002 0.44 <0.001

Waist/Hip Ratio 0.07 0.61 0.26 0.052

Multivariate linear regression was used for each pair of predictor (body
composition) and outcome (function) variables with adjustment for sex
and height
aBMI z-score was only adjusted for sex
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common comorbidity in childhood obesity and is present
in up to 50% of obese children [38]. Hyperinsulinemia in
the setting of insulin resistance is a mediator of cardiac
growth which could potentially result in hypertrophy
and remodeling in both ventricles [39]. Further, hyper-
insulinemia could alter contractile function directly

[40]. Additionally, we also showed a significant correl-
ation between RV longitudinal strain, RV mass index
and measures of body composition independent of
somatic growth (Table 3, Fig. 6), suggesting potential
impact of excess adipose tissue on RV systolic dysfunc-
tion. This contribution of adiposity may be mediated
through obesity-related metabolic changes such as in-
sulin resistance and systemic inflammation, which
could contribute to RV dysfunction through various
growth factors and inflammatory markers [41, 42].
Additional explanations for the observed RV dysfunc-

tion include direct mechanical factors. Interactions be-
tween the LV and RV [43, 44] are indicated by the facts
that obese/overweight children with concentric hyper-
trophy had the most impaired RV longitudinal strain
(Fig. 4), and that LV longitudinal strain and systolic
blood pressure were both correlated to RV longitudinal
strain (Fig. 3). Pulmonary hypertension and obstructive
sleep apnea have a significant effect on RV dysfunction;
however, we did not include children who were known
to have those conditions. In addition, previous studies
have shown no changes in pulmonary artery pressure in
obese children [5, 18].

Imaging techniques for the RV
Due to its complex geometry and thin myocardial wall,
imaging the RV is inherently difficult. All previous stud-
ies of RV function in the setting of obesity have used
echocardiographic imaging techniques (Tissue Doppler
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or 2D speckle tracking), which suffer from poor image
quality, limited acoustic windows and angle dependency.
Physical interference of excessive adiposity with the
imaging signal makes echocardiography even more chal-
lenging in obese subjects. CMR overcomes these limita-
tions and is therefore superior to echocardiography for
studying both geometry and function (strain) of the RV.
As shown in the current study, 68% of subjects had
adequate image quality for strain analysis, and the inter-
observer reproducibility for RV longitudinal strain by
DENSE was good with a coefficient of variation of 10%.
To our knowledge, this is the first study to assess and
report good reproducibility of RV longitudinal strain in
obese children. The superior reproducibility of CMR is
therefore favorable for detecting subclinical RV changes
in obese children.

Limitations
This study has several limitations. Cross-sectional design
of the study precludes determination of onset and devel-
opment of RV dysfunction in obese children. There was
a small difference in age between the healthy weight and
obese/overweight groups; however, this difference was
accounted for during statistical analysis.
Differences in LV and RV strains between the healthy

and obese/overweight groups were relatively small. Des-
pite reasonable inter-observer reproducibility, the limits
of agreement were larger than the detected difference
between the groups. This could be explained by the fact
that we only enrolled uncomplicated obese children in
the current study, who are likely to be at the early stage
of obesity. Furthermore, due to the limitation of the
CMR bore circumference, most severely obese children,
who were expected to have the most structural and
functional impairment, were excluded from the study.
In addition, 30% of the enrolled subjects were excluded

from RV strain analysis due to the poor quality of DENSE
images, although demographics of these subjects were
similar to those included in the analysis. Potential explana-
tions include inconsistent breathing pattern or subject
movement during the scan, which lead to blurry images
and mis-registration due to through-plane motion. Future
studies with higher resolution and three-dimensional
DENSE imaging could improve image quality and there-
fore, increase the success rate in imaging the RV [24, 45].
Finally, although obesity-related metabolic changes (in-

sulin resistance, systemic inflammation) have been shown
to contribute to ventricular remodeling and dysfunction,
we did not collect any blood samples to explore the role of
insulin resistance and inflammatory biomarkers in RV re-
modeling and dysfunction observed in the current study.
Future studies need to measure insulin resistance and
other inflammation markers to elucidate their contribution
to RV remodeling and dysfunction in obese children.

Conclusion
Obese/overweight children have increased right ventricu-
lar mass and impaired RV contractile function compared
to healthy weight children. These changes are associated
with left ventricular remodeling, as those children with left
ventricular concentric hypertrophy have the most im-
paired right ventricular longitudinal strain. These results
suggest there may be a common mechanism underlying
both remodeling and dysfunction of the left and right
ventricles in obese/overweight children. Further study is
warranted to identify these mechanisms, as well as the
prognostic consequences and potential treatment options
for these patients with sub-clinical cardiac dysfunction.

Additional file

Additional file 1: Table S1. Comparison of demographic parameters
between included and excluded subjects. (DOCX 51 kb)

Abbreviations
ANCOVA: Analysis of covariance; ANOVA: Analysis of variance; BMI: Body
mass index; CMR: Cardiac magnetic resonance; CoV: Coefficient of variation;
DENSE: Displacement encoding with stimulated echoes; EDV: End-diastolic
volume; ESV: End-systolic volume; LV: Left ventricle; LVMI: Left ventricular
mass index; RV: Right ventricle; SD: Standard deviation; SSFP: Steady-state
free-precession; SV: Stroke volume

Acknowledgements
Not applicable.

Funding
This project was supported by the NIH via grants P20 GM103527 and UL1
TR000117, and by the American Heart Association Great Rivers Affiliate via grant
14POST20310025. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the funding sources.

Availability of data and materials
The datasets generated and/or analyzed during the current study are
available on reasonable request with approval of the corresponding author.

Authors’ contributions
LJ collected and analyzed data, assisted with study design and drafted the
manuscript. AP and AM analyzed data and helped with data collection and
revision of the manuscript. CN helped with subject recruitment and helped to
collect the data and revise the manuscript. JS and GW assisted with data
acquisition and analysis, and helped with critical revision of the manuscript. HLK
helped with statistical analysis for the study and critical revision of the
manuscript. CH contributed to study design, data collection and interpretation,
and helped with critical revision of the manuscript. BF conceived the study,
participated in study design and implementation, and assisted with critical
revision of the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The study was approved by Institutional Review Boards at both the
University of Kentucky (13-0201-P6H) and Geisinger Health System (2015–0159).
All subjects and their parents/legal guardians provided written and informed
consent or assent.

Jing et al. Journal of Cardiovascular Magnetic Resonance  (2017) 19:49 Page 9 of 11

dx.doi.org/10.1186/s12968-017-0363-5


Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Imaging Science and Innovation, Geisinger Health System,
100 North Academy Avenue, Danville 17822-4400, PA, USA. 2Biomedical and
Translational Informatics Institute, Geisinger Health System, Danville, PA, USA.
3Department of Biomedical Engineering, University of Kentucky, Lexington,
KY, USA. 4Department of Radiology, Geisinger Health System, Danville, PA,
USA.

Received: 5 January 2017 Accepted: 17 May 2017

References
1. Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK,

Flegal KM. Trends in Obesity Prevalence Among Children and Adolescents
in the United States, 1988–1994 Through 2013–2014. JAMA. 2016;315:2292.

2. Twig G, Yaniv G, Levine H, Leiba A, Goldberger N, Derazne E, Ben-Ami Shor
D, Tzur D, Afek A, Shamiss A, Haklai Z, Kark JD. Body-Mass Index in 2.3
Million Adolescents and Cardiovascular Death in Adulthood. N Engl J Med.
2016;374:2430–40.

3. Cote AT, Harris KC, Panagiotopoulos C, Sandor GGS, Devlin AM. Childhood
obesity and cardiovascular dysfunction. J Am Coll Cardiol. 2013;62:1309–19.

4. Barbosa JA, Mota CCC, Simões E Silva AC, Nunes MDCP, Barbosa MM.
Assessing pre-clinical ventricular dysfunction in obese children and
adolescents: the value of speckle tracking imaging. Eur Heart J Cardiovasc
Imaging. 2013;14:882–9.

5. Di Salvo G, Pacileo G, Del Giudice EM, Natale F, Limongelli G, Verrengia M,
Rea A, Fratta F, Castaldi B, D’Andrea A, Calabrò P, Miele T, Coppola F, Russo
MG, Caso P, Perrone L, Calabrò R. Abnormal myocardial deformation
properties in obese, non-hypertensive children: an ambulatory blood
pressure monitoring, standard echocardiographic, and strain rate imaging
study. Eur Heart J. 2006;27:2689–95.

6. Jing L, Binkley CM, Suever JD, Umasankar N, Haggerty CM, Rich J, Wehner GJ,
Hamlet SM, Powell DK, Radulescu A, Kirchner HL, Epstein FH, Fornwalt BK.
Cardiac remodeling and dysfunction in childhood obesity: a cardiovascular
magnetic resonance study. J Cardiovasc Magn Reson. 2016;18:28.

7. Koopman LP, McCrindle BW, Slorach C, Chahal N, Hui W, Sarkola T, Manlhiot
C, Jaeggi ET, Bradley TJ, Mertens L. Interaction between myocardial and
vascular changes in obese children: a pilot study. J Am Soc Echocardiogr.
2012;25:401–10. e1.

8. Saltijeral A, Isla LP, Pérez-Rodríguez O, Rueda S, Fernandez-Golfin C, Almeria C,
Rodrigo JL, Gorissen W, Rementeria J, Marcos-Alberca P, Macaya C, Zamorano
J. Early Myocardial Deformation Changes Associated to Isolated Obesity: A
Study Based on 3D-Wall Motion Tracking Analysis. Obesity. 2011;19:2268–73.

9. Dhuper S, Abdullah RA, Weichbrod L, Mahdi E, Cohen HW. Association of
obesity and hypertension with left ventricular geometry and function in
children and adolescents. Obesity (Silver Spring). 2011;19:128–33.

10. Krumholz HM, Larson M, Levy D. Prognosis of left ventricular geometric
patterns in the Framingham Heart Study. J Am Coll Cardiol. 1995;25:879–84.

11. La Gerche A, Claessen G, Dymarkowski S, Voigt JU, De Buck F, Vanhees L,
Droogne W, Van Cleemput J, Claus P, Heidbuchel H. Exercise-induced right
ventricular dysfunction is associated with ventricular arrhythmias in
endurance athletes. Eur Heart J. 2015;36:1998–2010.

12. Kirsch J, Johansen CK, Araoz PA, Brady PA, Williamson EE, Glockner JF.
Prevalence of fat deposition within the right ventricular myocardium in
asymptomatic young patients without ventricular arrhythmias. J Thorac
Imaging. 2010;25:173–8.

13. Vigneault DM, Te Riele ASJM, James CA, Zimmerman SL, Selwaness M,
Murray B, Tichnell C, Tee M, Noble JA, Calkins H, Tandri H, Bluemke DA.
Right ventricular strain by MR quantitatively identifies regional dysfunction
in patients with arrhythmogenic right ventricular cardiomyopathy. J Magn
Reson Imaging. 2015;43(5):1132–9.

14. Barbosa MM, Beleigoli AM, De Fatima DM, Freire CV, Ribeiro AL, Nunes MCP.
Strain imaging in morbid obesity: insights into subclinical ventricular
dysfunction. Clin Cardiol. 2011;34:288–93.

15. Chahal H, McClelland RL, Tandri H, Jain A, Turkbey EB, Hundley WG, Barr RG,
Kizer J, Lima JAC, Bluemke DA, Kawut SM. Obesity and right ventricular
structure and function. Chest. 2012;141:388–95.

16. Orhan AL, Uslu N, Dayi SU, Nurkalem Z, Uzun F, Erer HB, Hasdemir H, Emre
A, Karakus G, Soran O, Gorcsan J, Eren M. Effects of isolated obesity on left
and right ventricular function: a tissue Doppler and strain rate imaging
study. Echocardiography. 2010;27:236–43.

17. Wong CY, O’Moore-Sullivan T, Leano R, Hukins C, Jenkins C, Marwick TH.
Association of subclinical right ventricular dysfunction with obesity. J Am
Coll Cardiol. 2006;47:611–6.

18. Labombarda F, Zangl E, Dugue AE, Bougle D, Pellissier A, Ribault V,
Maragnes P, Milliez P, Saloux E. Alterations of left ventricular myocardial
strain in obese children. Eur Heart J Cardiovasc Imaging. 2013;14:668–76.

19. Mahfouz RA, Dewedar A, Abdelmoneim A, Hossien EM. Aortic and
pulmonary artery stiffness and cardiac function in children at risk for
obesity. Echocardiography. 2012;29:984–90.

20. Zeybek C, Aktuglu-Zeybek C, Onal H, Altay S, Erdem A, Celebi A. Right
ventricular subclinical diastolic dysfunction in obese children: the effect
of weight reduction with a low-carbohydrate diet. Pediatr Cardiol. 2009;
30:946–53.

21. Kamal HM, Atwa HA, Saleh OM, Mohamed FA. Echocardiographic evaluation
of cardiac structure and function in obese Egyptian adolescents. Cardiol
Young. 2012;22:410–6.

22. Grothues F, Smith GC, Moon JCC, Bellenger NG, Collins P, Klein HU, Pennell
DJ. Comparison of interstudy reproducibility of cardiovascular magnetic
resonance with two-dimensional echocardiography in normal subjects and
in patients with heart failure or left ventricular hypertrophy. Am J Cardiol.
2002;90:29–34.

23. Hudsmith† L, Petersen† S, Francis J, Robson M, Neubauer S. Normal Human
Left and Right Ventricular and Left Atrial Dimensions Using Steady State
Free Precession Magnetic Resonance Imaging. J Cardiovasc Magn Reson.
2005;7:775–82.

24. Suever JD, Wehner GJ, Jing L, Powell DK, Hamlet SM, Grabau JD, Mojsejenko
D, Andres KN, Haggerty CM, Fornwalt BK. Right Ventricular Strain, Torsion,
and Dyssynchrony in Healthy Subjects using 3D Spiral Cine DENSE
Magnetic Resonance Imaging. IEEE Trans Med Imaging. 2017;36:1076–85.

25. Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z,
Wei R, Curtin LR, Roche AF, Johnson CL. 2000 CDC Growth Charts for the
United States: Methods and Development. Vital Heal Stat. 2002;11:1–190.

26. DENSEanalysis [https://www.denseanalysis.com]
27. Framewise DENSEanalysis [https://github.com/fornwaltlab/framewise_strain_

plugin]
28. Aletras AH, Balaban RS, Wen H. High-resolution strain analysis of the human

heart with fast-DENSE. J Magn Reson. 1999;140:41–57.
29. Kim D, Gilson WD, Kramer CM, Epstein FH. Myocardial tissue tracking with

two-dimensional cine displacement-encoded MR imaging: development
and initial evaluation. Radiology. 2004;230:862–71.

30. Spottiswoode BS, Zhong X, Hess AT, Kramer CM, Meintjes EM, Mayosi BM,
Epstein FH. Tracking myocardial motion from cine DENSE images using
spatiotemporal phase unwrapping and temporal fitting. IEEE Trans Med
Imaging. 2007;26:15–30.

31. de Simone G, Daniels SR, Devereux RB, Meyer RA RA, Roman MJ, de Divitiis
O, Alderman MH. Left ventricular mass and body size in normotensive
children and adults: assessment of allometric relations and impact of
overweight. J Am Coll Cardiol. 1992;20:1251–60.

32. Bland JM, Altman D. Statistical methods for assessing agreement between
two methods of clinical measurement. Lancet. 1986;1:307–10.

33. Haggerty CM, Kramer SP, Binkley CM, Powell DK, Mattingly AC, Charnigo R,
Epstein FH, Fornwalt BK. Reproducibility of cine displacement encoding with
stimulated echoes (DENSE) cardiovascular magnetic resonance for measuring
left ventricular strains, torsion, and synchrony in mice. J Cardiovasc Magn
Reson. 2013;15:71.

34. R Core Team: R: A language and environment for statistical computing.
2016.

35. Hothorn T, Bretz F, Westfall P. Simultaneous Inference in General Parametric
Models. Biom J. 2008;50:346–63.

36. Fox J, Weisberg S. An {R} Companion to Applied Regression. Second Edi.
Thousand Oaks: Sage Publications; 2011.

37. Stanton T, Leano R, Marwick TH. Prediction of all-cause mortality from
global longitudinal speckle strain: comparison with ejection fraction and
wall motion scoring. Circ Cardiovasc Imaging. 2009;2:356–64.

38. Lee JM, Okumura MJ, Davis MM, Herman WH, Gurney JG. Prevalence and
determinants of insulin resistance among U.S. adolescents: a population-
based study. Diabetes Care. 2006;29:2427–32.

Jing et al. Journal of Cardiovascular Magnetic Resonance  (2017) 19:49 Page 10 of 11

https://www.denseanalysis.com/
https://github.com/fornwaltlab/framewise_strain_plugin
https://github.com/fornwaltlab/framewise_strain_plugin


39. Phillips RA, Krakoff LR, Dunaif A, Finegood DT, Gorlin R, Shimabukuro S.
Relation among left ventricular mass, insulin resistance, and blood pressure
in nonobese subjects. J Clin Endocrinol Metab. 1998;83:4284–8.

40. Fu Q, Xu B, Liu Y, Parikh D, Li J, Li Y, Zhang Y, Riehle C, Zhu Y, Rawlings T,
Shi Q, Clark RB, Chen X, Abel ED, Xiang YK. Insulin inhibits cardiac
contractility by inducing a Gi-biased β2-adrenergic signaling in hearts.
Diabetes. 2014;63:2676–89.

41. Aurigemma GP, de Simone G, Fitzgibbons TP. Cardiac remodeling in
obesity. Circ Cardiovasc Imaging. 2013;6:142–52.

42. Tadic M, Cuspidi C. Childhood obesity and cardiac remodeling. J Cardiovasc
Med. 2015;16:538–46.

43. Lumens J, Ploux S, Strik M, Gorcsan J, Cochet H, Derval N, Strom M,
Ramanathan C, Ritter P, Haïssaguerre M, Jaïs P, Arts T, Delhaas T, Prinzen FW,
Bordachar P. Comparative electromechanical and hemodynamic effects of left
ventricular and biventricular pacing in dyssynchronous heart failure: electrical
resynchronization versus left-right ventricular interaction. J Am Coll Cardiol.
2013;62:2395–403.

44. Geva T. Repaired tetralogy of Fallot: the roles of cardiovascular magnetic
resonance in evaluating pathophysiology and for pulmonary valve
replacement decision support. J Cardiovasc Magn Reson. 2011;13:9.

45. Zhong X, Spottiswoode BS, Meyer CH, Kramer CM, Epstein FH. Imaging
three-dimensional myocardial mechanics using navigator-gated volumetric
spiral cine DENSE MRI. Magn Reson Med. 2010;64:1089–97.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Jing et al. Journal of Cardiovascular Magnetic Resonance  (2017) 19:49 Page 11 of 11


	University of Kentucky
	UKnowledge
	6-28-2017

	Impaired Right Ventricular Contractile Function in Childhood Obesity and its Association with Right and Left Ventricular Changes: A Cine DENSE Cardiac Magnetic Resonance Study
	Linyuan Jing
	Arichanah Pulenthiran
	Christopher D. Nevius
	Abba Mejia-Spiegeler
	Jonathan D. Suever
	See next page for additional authors
	Repository Citation
	Authors
	Impaired Right Ventricular Contractile Function in Childhood Obesity and its Association with Right and Left Ventricular Changes: A Cine DENSE Cardiac Magnetic Resonance Study
	Notes/Citation Information
	Digital Object Identifier (DOI)


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study population
	Clinical assessment
	CMR imaging
	Image analysis
	Reproducibility
	Statistics

	Results
	Demographics and clinical assessment of the study population
	Right ventricular geometry and function
	Association between LV and RV remodeling and function
	Correlation between RV function and body composition
	Reproducibility

	Discussion
	RV remodeling and function in pediatric obesity
	Mechanisms for RV remodeling and dysfunction
	Imaging techniques for the RV
	Limitations

	Conclusion
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher’s Note
	Author details
	References

