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ABSTRACT OF THESIS 

 

 

Use of Landsat Data to Characterize Burn Severity, Forest Structure and Invasion by 
Paulownia (Paulownia Tomentosa) in an Eastern Deciduous Forest, Kentucky 

Landsat imagery has been used successfully to assess burn severity and monitor post-
fire forest structure in a variety of ecosystems, but to date there are few documented 
studies on its application in the eastern deciduous forests of the eastern United States. 
The occurrence of a wildfire in the Daniel Boone National Forest in2010 provided a rare 
opportunity for research into the use of Landsat data for assessing burn severity and its 
ecological effects. We used differenced normalized burn ratio (∆NBR) to quantify burn 
severity. The ∆NBR based burn severity classification had 70% agreement with a 
qualitative ground-based burn severity assessment. We also examined the relationship 
between the presence of an invasive species (Paulownia tomentosa), and our 
assessment of burn severity, where we found a weak but statistically significant 
relationship (adj R2 0.13, p<0.0001). We also examined the relationship between the 
normalized difference vegetation index (NDVI) and forest structure measurements. The 
relationship between NDVI and basal area was strongly and significantly related (adj R2 
0.41, p<0.0001). The relationship of NDVI with stem density was weak but significant 
(adj R2 0.23. p=0.004).These results indicate that data from Landsat imagery have great 
potential for quantifying burn severity, identifying potential hotspots for invasive 
species, and assessing post fire forest structure in the eastern deciduous forest.  

Keywords: differenced normalized burn ratio, normalized difference vegetation index, 
wildfire, remote sensing, basal area, stem density 
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  Chapter One
                                                            INTRODUCTION 

Introduction 

Wildfire, also referred to as wildland fire, is defined as an uncontrolled fire in an 

area of combustible vegetation that occurs in the countryside or wilderness area 

(Firewise, 1998). Wildfires occur in most forest ecosystems and are an important 

ecosystem process that impacts terrestrial, atmospheric and aquatic systems 

throughout the world (Lentile et al., 2006; Zimmerman, 2012). 

Many ecosystems are dependent on wildfires for establishment, development 

and maintenance of vegetation. Some of the physical impacts of wildfire are decreased 

albedo, increased soil temperature and alterations in productivity (Dyrness et al., 1989). 

Fire affects species composition and age structure of forest stands. Mosaic patterns of 

burn severity can increase habitat heterogeneity and biodiversity. Additionally, the 

absence or presence of wildfire may increase the probability of successful invasion of 

non-native invasive species to forest land (Jenkins et al., 2011). 

Wildfires have occured in eastern deciduous forests for thousands of years. 

Native Americans used fire to enhance hunting and gathering, and early settlers 

adopted these techniques (Delcourt and Delcourt, 1998). Fire in eastern deciduous 

forests are typically low-intensity, but vary spatially and temporally with severity ranging 

from benign to extreme (Maingi and Henry, 2007; Wade et al., 2000). Before European 

settlement, surface fires were regular and frequent events, occurring every 5-15 years 

over most of the region. These fires were largely confined to combustion of surface 

fuels such as small woody debris, leaf litter and understory vegetation (Anderson, 1982; 

Wade et al., 2000; Lafon et al., 2005). 

Today, forest and land managers working in this region are adopting prescribed 

fires as a silvicultural and restoration tool to address various management objectives 

including use of fire as a method for reducing fuels and restoring historical disturbance 

processes to the landscape (Arthur et al., 2012).  
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Wildfire is an important natural disturbance and driver of multi-aged stand 

creation in eastern deciduous forests, and is a major factor influencing landscape 

patterns and species diversity in these forests. (Delcourt and Delcourt, 1997). 

Monitoring and understanding the impacts of spatially and temporally variable wildfires 

has been a key challenge for forest and land managers, particularly in formulating 

strategies to monitor forest response to wildfire burned areas (Dale, 2006). Quantifying 

burn severity and its impacts on forest structure are crucial because variability in burn 

severity creates a variety of conditions for post-fire colonization that ultimately impacts 

successional dynamics (Arseneault, 2001).  

Remote Sensing and Wildfire 

Multispectral, remotely-sensed data have become widely-used for assessing 

wildlife and its effects (Key and Benson, 2005; Cansler and Mackenzie, 2012). Physical 

changes that wildfire creates on land cover, such as vegetation consumption and ground 

charring, make wildfire-burned landscapes suitable for detection by remote sensing 

(White et al., 1996). High spatial and temporal resolution make satellite imagery 

pragmatic for assessing ecological changes in response to disturbances such as wildfires. 

Topographic, vegetation, and meteorological factors create variable patterns of burn 

severity in burned areas, which can be mapped using remotely-sensed data. Forests 

where a high-severity fire has occurred typically experience an increase in mineral soil 

exposure, light level, and nutrient availability, and a decrease of canopy cover (Keeley et 

al., 2003) which creates change in spectral signatures. The change in spectral signatures 

that occur following a fire can be used to measure burn severity, and create severity 

maps to predict the effects of fire on physical and biological processes (Cocke et al., 

2005; Wimberly and Reilly, 2007). With the use of these data, other ecological attributes 

such as forest structure (basal area, stem density) of burned areas can be extracted. 

Arseneult (2001) suggested that it is important to understand and measure burn 

severity at the landscape scale because its spatial and temporal variability creates a 

variety of changes in forest structure (i.e., basal area, stem density), and favorable 

conditions for post-fire colonization of various native and nonnative invasive species 



3 
 

(NNIS). Various studies (see e.g., Fornwalt et al., 2010; Kaczynski et al., 2011) have found 

that a relationship exists between the distribution of NNIS and burn severity. Such 

studies found that NNIS abundance is directly proportional to the burn severity, i.e., 

higher burn severity is correlated with higher density of NNIS. 

NNIS can quickly spread and have detrimental impacts on the native ecosystems 

they invade (Chapin et al., 2000). Once NNIS enter an ecosystem, many possess the 

ability to quickly expand their populations and outcompete local native species, 

ultimately leading to environmental and economic loss (Pimentel, 2001). For this 

reason, accurate and reliable estimations of burn severity are necessary for studying 

and understanding the response of wildfire and its impacts on forests and NNIS. 

Several studies have revealed the usefulness of using remotely-sensed data such 

as Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) for mapping 

burn severity, assessing post-fire forest structure, and predicting the spread of NNIS. 

Key and Benson (2003) developed the vegetation index, normalized burn ratio (NBR), for 

Landsat data using near infrared and mid-infrared bands.  Normalized difference 

vegetation index (NDVI), a commonly utilized vegetation index, uses the near-infrared 

and red bands (van Leeuwen et al., 2010). The use of Landsat imagery has been 

frequently used to assess burn severity in the southwestern United States (Cocke et al., 

2005) and boreal forests in Alaska’s interior (Epting et al., 2005). Change in vegetation 

indices such as NBR and NDVI are commonly utilized in the literature and are 

particularly effective indices of burn severity and forest structure. These techniques of 

using vegetation indices have been applied primarily to study wildfire in coniferous 

forests of the western United States (Wimberly and Reilly, 2007); very few studies have 

used Landsat based vegetation indices to assess wildfire in eastern deciduous forest 

ecosystems (Picotte and Robertson, 2011; Wimberly and Reilly, 2007). It is still uncertain 

whether these methods of remote sensing will be as effective for mapping burn severity 

and assessing forest structure in deciduous forest landscapes in the eastern United 

States where the species composition and vegetation structure tends to be more 

complex than that in coniferous forests. For this reason, this research project focused on 
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using Landsat-based vegetation indices to assess burn severity and its impacts in an  

eastern deciduous forest. 

The recent occurrence of a 673.8-ha wildfire in Kentucky’s Daniel Boone National 

Forest (DBNF) provided a rare opportunity for research into the uses of remotely sensed 

data for assessing burn severity and ecological effects. Here, we assess the non-native 

invasive species, Paulownia tomentosa, and its colonization within areas of burned 

deciduous forest in DBNF across varying levels of burn severity identified using Landsat 

imagery. We examined the relationship between four classes of burn severity (i.e., 

unburned, low, moderate and high), and the relative density of NNIS. Furthermore, we 

assessed the relationship between the vegetation indices derived from Landsat data and 

post fire forest structure (i.e., basal area and stem density). 
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  Chapter Two
Assessment of burn severity and response of a non-native invasive species (Paulownia 

tomentosa) in an eastern deciduous forest using Landsat Thematic Mapper (TM) 

imagery 

Introduction 

Fire is an important disturbance in many ecosystems in the eastern United States 

(U.S.) and globally (Pyne et al., 1996; Wade et al., 2000).  Many plant communities are 

dependent on wildfire for establishment, development and maintenance, which in turn 

strongly influence landscape patterns and species diversity (Delcourt and Delcourt, 

1997).  Before European settlement, wildfires in the eastern US were regular and 

frequent events occurring every 5 to 15 years (Lafon et al., 2005; Wade et al., 2000).  

They were mostly low intensity fires consuming surface fuels such as small woody 

debris, leaf litter, and understory vegetation, which created spatially and temporally 

variable patterns of vegetation composition and structure (Anderson, 1982; Maingi and 

Henry, 2007). Recently, forest managers have been using moderate severity prescribed 

fires in eastern deciduous forest ecosystems to restore prehistoric fire regimes and alter 

forest structure with variable management goals (Arthur et al., 2012).  

Burn severity can be defined as the degree of change in the soil and vegetation 

caused by fire (Escuin et al., 2008). Variable terrain and vegetation conditions lead to 

heterogeneous burn severity in which some areas affected by wildfire experience near-

complete vegetation consumption and mineral soil exposure, whereas other areas are 

burned at very low severity or not at all (Knapp et al., 2009; Maingi and Henry, 2007). 

Understanding and mapping the distribution of burn severity following wildfire is 

essential for the forest manager tasked with formulating and implementing post fire 

treatments, restoring disturbed areas, and understanding post-fire vegetation 

succession (Escuin et al., 2008). However, using field-based methods to map severity is 

difficult in inaccessible terrain with steep slopes across large spatial extents.  

To address this challenge, Landsat imagery has been used to assess burn 

severity, especially in conifer-dominated forests of the western US (Key and Benson, 
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2006).  Wildfire effects such as vegetation combustion, exposure of mineral soil, 

charring of roots, and alteration of soil moisture can create change in the 

electromagnetic spectrum (Keeley et al., 2003; Key and Benson, 2005; White et al., 

1996). This change can be captured by remote sensing imagery and used to measure 

burn severity, map its distribution, and make predictions of fire effects on physical and 

biological changes across large landscapes (Cocke et al., 2005; Lentile et al., 2006; 

Wimberly and Reilly, 2007).  Landsat Thematic Mapper (TM) provides imagery with 

adequate spectral, temporal and spatial resolution for examining burn severity and 

conducting wildfire assessment. Reliable results compared with ground collected data 

have been reported in Douglas-fir (Pseudotsuga menziesii) forests in western Oregon 

(Kushla and Ripple, 1998), ponderosa pine (Pinus ponderosa) forests in Arizona (Cocke et 

al., 2005), spruce (Picea sp.) forests in central Alaska (Duffy et al., 2007; Epting et al., 

2005; Kasischke et al., 2008), and mixed-conifer forests in California (Miller and Thode, 

2007).  Similar studies have been conducted in other conifer forests including the 

Mediterranean coast of Spain (Garcia-Haro et al., 2001) and Kalimantan, Indonesia 

(Fuller and Fulk, 2001).  Although several burn severity indices have been evaluated, the 

differenced normalized burn ratio (ΔNBR) has emerged as an effective index to capture 

burn severity in conifer forests due to its ability to detect charred blackness after a fire 

(Bobbe et al., 2003).  Despite its widespread application in conifer forests, there are very 

few studies using ∆NBR (or any other remote-sensing derived vegetation index) to 

assess and map burn severity in eastern deciduous forests of the US. Exceptions include 

work conducted by Wimberly and Reilly (2007) in the southern Appalachians of western 

North Carolina, and Picotte and Robertson (2011) in northern Florida-southern Georgia. 

However, both study sites contained an abundant pine component. Wildfires in 

deciduous forests are predominantly surface fires that seldom remove green crown 

vegetation, thus making it more difficult to detect fire effects using satellite imagery 

(Maingi, 2005).  

Post-fire colonization by non-native invasive species (NNIS) has been reported in 

several ecosystems, emerging as a critical threat to native species biodiversity and 
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posing potentially significant ecological and economic impacts (Gucker et al., 2011; 

Hunter et al., 2006; Wilcove et al., 1998).  Government agencies annually spend 

significant amounts in NNIS removal on federal lands (Pimentel et al., 2000; Pimentel et 

al., 2001). High severity wildfires can consume most native vegetation and organic 

matter in the soil, temporarily reducing site nutrients, and increasing light penetration 

to the soil surface, creating favorable conditions for establishment of NNIS, which 

typically have lower site nutrient requirements than native species (Funk, 2013).  

Additionally, a number of traits such as the ability to sprout, prolific seed production, 

rapid growth rate, and early age to seed production contribute to the rapid dispersal of 

NNIS in fire-disturbed areas (Rebbeck, 2012).  

Several studies have reported colonization of NNIS to be related to burn severity 

(Crawford et al., 2001; Fornwalt et al., 2010; Keeley et al., 2003).  In eastern deciduous 

forests, paulownia (Paulownia tomentosa) has been found in many disturbed areas and 

reported to establish rapidly across different habitats immediately after fire (Kuppinger 

et al., 2010).  However, its relationship with burn severity has not been studied.  The 

Fish Trap fire (FTF) that occurred in 2010 in the Daniel Boone National Forest (DBNF) in 

eastern Kentucky offered an opportunity to evaluate the potential of using remotely 

sensed data to assess burn severity and its relationship with NNIS colonization, 

specifically Paulownia tomentosa.  In this study, we used pre- and post-fire Landsat 

imagery to compute the ΔNBR and used it to determine site-specific burn severity 

classes.  We also determined the relationship between Landsat-derived burn severity 

classes and the presence of paulownia. Although our investigation focuses on a case 

study in the DBNF, results are broadly applicable to the Cumberland Plateau 

physiographic region and other similar eastern deciduous forests.  

Methods 

Study Area 

The study site is the area burned by the FTF in 2010 located on the Cumberland 

Plateau, within DBNF, in Powell County, Kentucky (lat. 37° 49’ N, long. 83° 41’ W) (Figure 

2.1).  The FTF was started unintentionally by campers on 24 October 2010 and was fully 
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contained on 9 November 2010.  The exact area burned is unknown, but DBNF 

personnel installed a containment perimeter encompassing an area of 674 ha, 645 ha of 

which were within the DBNF and 29 ha on private land. The burned land occurred within 

the Red River Gorge Geological Area, a landscape of highly dissected uplands and 

streams of the Red River watershed near the western edge of the Cumberland Plateau 

in east-central Kentucky.  

The landscape is dominated by upland oak-hickory forest type. Canopy species 

include oaks [scarlet oak (Quercus coccinea Muenchh.), chestnut oak (Quercus montana 

Willd..), black oak (Quercus velutina Lam), and white oak (Quercus alba L)], hickories 

[pignut hickory (Carya glabra Mill.) and mockernut hickory (Carya tomentosa Poir.)], and 

pines [shortleaf pine (Pinus echinata Mill.), Virginia (Pinus virginiana Mill.), pitch (Pinus 

rigida Mill.), and white (Pinus  strobus L.)]. The midstory is dominated by red maple 

(Acer rubrum L.), sourwood (Oxydendrum arboreum L.), black gum (Nyssa sylvatica 

Marsh.) and sassafras (Sassafras albidum Nut.).  

Soil type along the ridges is mostly Alticrest-Ramsey (ArF) and Helechawa (HeF) 

on midslopes and Bledsoe-Berks (BsF) on lower slopes. The underlying geological 

substrate is comprised of Pennsylvanian sandstones and conglomerates (Corbin 

sandstone member of Lee formation) and shales of the lower Breathitt formation 

(Hayes, 1998). Elevation ranges from 177 - 439 m.a.s.l. Mean annual temperature is 

12.9°C, with mean high and low temperatures of 19°C and -4.3°C occurring in July and 

January, respectively. Mean annual precipitation is 119.2 cm, most of it occurring from 

March to June (Kentucky Climate Center, 2006). 
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Figure 2.1: Location of Fish Trap fire and reference site area within the Daniel Boone 
National Forest, Kentucky, USA. 
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Image Processing and Field Data 

Landsat-5 Thematic Mapper images (path 19, row 34) from October 2nd, 2010, 

were acquired to represent the pre-burn vegetation conditions encompassed in the FTF.  

Post-fire images were Landsat-5 TM from October 5th, 2011, selected to capture 

relatively similar vegetation moisture and temperature conditions to that of pre-burn 

images. Both sets of images (pre- and post-fire) were cloud free and terrain-corrected 

by the Earth Resources Observation and Science (EROS) data center, providing the 

highest level of correction available for Landsat scenes (Chander and Markham, 2003).  

Raw digital number (DN) values for each band of Landsat 5 were converted into 

top of atmosphere (TOA) spectral reflectance to account for eco-atmospheric solar 

irradiance and daily sun angle variation.  TOA is a unitless measure of the ratio between 

the amount of light energy reaching the Earth’s surface and the amount of light 

reflecting off the surface and returning to the top of the atmosphere to be detected by 

the satellite’s sensors (Chander and Markham, 2003; Johnson, 2013).  Atmospheric 

scattering is negligible in the infrared bands (Avery and Berlin, 1992; Miller and Thode, 

2007), so atmospheric correction was not performed.  

The normalized burn ratio (NBR) values were computed as follows where:  

 NBR = 1000 × �
NIR − MIR
NIR + MIR

� 

where, IR and MIR are the Thematic Mapper bands 4 and 7, respectively.  Band 4 

covers wavelengths 0.76-0.90 µm (near-infrared) and band 7 covers wavelengths 2.08-

2.35 µm (middle-infrared).  Bands 4 and 7 are sensitive to chlorophyll content of live 

vegetation and moisture (Jensen, 1996; Jensen, 2006) and are effective in identifying 

fire scars (Pereira and Setzer, 1993) and thus commonly used to map burn severity 

(White et al., 1996).  

The difference between pre-fire and post-fire NBR (∆NBR =  NBRprefire −

NBRpostfire) was also computed.  Unchanged areas typically possess values near zero, 

while positive values indicate the area burned (Key and Benson, 2006; Picotte and 

Robertson, 2011). This unburned-burned threshold of ∆NBR varies among burns in 
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different ecosystems. These differences are mostly due to natural phenological variation 

as well as site-specific pre- and post-fire vegetation differences.  As NBR values are 

sensitive to phenological and vegetation moisture changes, we used an area adjacent to 

the FTF with similar vegetation and terrain conditions as a reference site to identify 

∆NBR thresholds that capture the site-specific natural variation in vegetation conditions 

pre- and post-fire. 

The reference site was 630 ha in size (Figure 2.1) and was completely contained 

within the same two Landsat images used for the FTF.  ∆NBR values across the reference 

site were also computed.  We then fitted two normal distribution functions to the ∆NBR 

values covering the FTF site and the reference site (Figure 2.2).  Although, on average, 

both the reference and FTF sites had positive ∆NBR values (suggesting vegetation loss), 

the amount of vegetation loss in the FTF site is much larger (mean ∆NBR value of 78 vs. 

21 on the reference site), which was expected due to the fire. The positive intersection 

point between the two distributions (∆NBR = 56) was considered as the break point 

between unburned and burned areas (Figure 2.2).  This objective approach was used 

because: (i) there is more area (85% of total pixels) in the reference site that 

experienced relatively small increases in NBR (∆NBR ≤ 56) and probably reflects 

phenological variation in vegetation between the 2010 and 2011 images, and (ii) there is 

more area (45% of total pixels) in the FTF site with positive ΔNBR values, suggesting 

relatively large vegetation loss across the landscape (∆NBR > 56) assumed to be due, in 

most cases, to combustion by fire.  Consequently, pixels in the FTF with ∆NBR values ≤ 

56 were considered unburned and pixels with ∆NBR > 56 were considered burned. 

Several studies have developed ranges of ∆NBR values to classify areas into different 

burn severity classes (Key and Benson, 2005; Miller and Thode, 2007).  To identify the 

remaining three burn severity classes (low, moderate, and high) for our study, we used a 

ground-based qualitative assessment of burn severity from 30 field plots located across 

the burned area to guide our determination of the break points for range of ∆NBR 

associated with difference in burn severity. 
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Figure 2.2: Frequency distribution of the differenced normalized burn ratio values 
(ΔNBR) across the reference and FTF sites in the Daniel Boone National Forest, 
Kentucky. 
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Thirty 500 m2 (0.05 ha) circular plots were located in the burned area in the FTF 

in August 2011 for post-fire vegetation and severity assessment (Figure 2.3).  Based on 

terrain features retrieved from topographic maps, plots were located at random across 

landscape positions within the containment perimeter with the purpose of capturing 

effects within the entire range of burn severity. Within each plot the diameter at breast 

height (DBH) and species of all trees ≥2 cm DBH were recorded. Forest floor cover 

transects were measured using two perpendicular transects that intersected at the 

center of the plot.  At every 10 cm along each 25.2 m transect the soil cover was 

recorded as litter, organic matter, mineral soil, rock, tree, stump or woody debris.  In 

addition, a qualitative measure of burn severity was determined and later used to 

validate burn severity classifications generated with remotely sensed data (∆NBR). 

Assessment of burn severity was based on the presence of bare mineral soil, tree char 

damage and mortality, overall vegetation consumption, and the presence of burned out 

stump holes covered in moss (Table 2.1).
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Table 2.1: Description of characteristics used to identify qualitative burn severity classes for Fish Trap fire in the Daniel Boone 
National Forest, Kentucky, during assessments made in summer 2011 and 2013. 

Burn Severity Class Description 

Unburned No evidence of char on standing or downed vegetation or within/under litter layer 

Low Some low char on standing vegetation, very little char in litter layer; no mineral soil patches; litter 
layer intact 

Moderate Litter layer consumed in places; patches of mineral soil present, some charred; char on most 
midstory vegetation, mostly standing, with moderate mortality; some midstory stump sprouts; 
char on most overstory vegetation with low to moderate mortality 

High Majority of litter layer consumed and charred mineral soil common; midstory vegetation 
consumed and mostly absent; lots of midstory stump sprouts;  standing overstory trees have 
heavy char, and in some cases, are mostly consumed; overstory trees experience moderate to 
heavy mortality; moss patches present where tree stumps burned out 
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Figure 2.3: Location of field plots within burned areas in the Fish Trap fire for burn 
severity assessment. Thirty plots of 500m2 area were distributed over the burned area. 
Within the Fish Trap fire perimeter, paulownia stems were surveyed in areas indicated. 
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Non-native invasive species 

Paulownia tomentosa was introduced into North America from Asia in the 1840s 

(Hu, 1961) and due to its showy flowers and rapid growth, it has been widely planted in 

United States as an ornamental (Tang et al., 1980). P. tomentosa occurs in a variety of 

habitats and plant associations throughout the eastern US that are similar to those of its 

native range. It occurs in disturbed upland areas associated with early successional 

species such as maple (Acer spp.), oak (Quercus spp.), and pine (Pinus spp.) (Ramsey et 

al., 1993). Characteristics such as early maturation (8-10 years of age), heavy production 

of wind-dispersed seeds (one mature tree can produced 20 million seeds a year), and 

vigorous ryesprouting makes P.tomentosa an invasive species (Innes, 2009). 

 In 2011, USDA Forest Service personnel conducted a walk-through survey along 

the ridge where moderate or high burn severity was concentrated but also captured 

areas with all 4 burn severity classes of the FTF to search for the presence of paulownia 

and other NNIS. Of the area surveyed, 18.5% of the pixels were unburned, 25.6% had 

low severity burn, 34.2% pixels were moderately burned and 21.7% were burned at high 

severity. This area contained 15 of the 30 established field plots and was about 24 ha in 

size (Figure 2.3).  The location of single paulownia stems encountered was recorded as a 

point using a handheld GPS unit. When groups of stems growing within 3 meters were 

encountered, their location was recorded as a small polygon or line where a polygon 

represents at least 3 paulownia stems and a line may represent 2 to 10 plants.  The total 

number of stems encountered was estimated and tallied by pixel. 

Data analysis 

Linear regression analysis was used to describe the relationship between burn 

severity and paulownia stem presence, with paulownia stems as the dependent variable 

and ∆NBR as the independent variable. Analysis of variance was used to detect 

difference in attributes among burn severity classes. All statistical tests were conducted 

using the “Stats Package” in version 3.1.2 of the R-Statistical Computing Software (R 

Core Team, 2014). 
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Results 

After the wildfire, stem density and basal area of live trees were lowest on the 

plots classified as receiving moderate and high burn severity (Table 2.2). Basal area and 

stem density differed statistically among the different burn severity classes 

(F(3,26)=8.998, p<0.001) and F(3,26)=5.719, p<0.001) respectively). Sites burned with 

high severity experienced near-total mortality of trees. We found no statistically 

significant difference in forest floor cover among different burn severity classes. But 

differences in forest floor cover were more variable, and didn’t reflect burn severity 

fully.  For example, while litter cover (29 %) on the plots burned with low severity was 

higher than that on  plots burned with high (11%) or moderate (4%) severity, mineral 

soil exposure was higher on moderate and high burn severity plots compared to low 

severity, unburned plots had low litter cover and high mineral soil exposure (Table 2.2). 
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Table 2.2: Average percent cover of mineral soil, woody debris, and litter; stem density; and basal area for FTF measured 
after fire in 2011 and 2013 on 30 forest plots. Stem density and basal area include stems ≥ 2cm DBH. Same uppercase letters 
within groups are not significantly different (Tukey’s HSD, p>0.05). Standard errors are in parentheses. 

Burn Severity 
Mineral soils (%) Woody debris (%) Litter (%) Stem density 

(trees ha-1) 
Basal area 
(m2ha-1) 

2011 2013 2011 2013 2011 2013 2011 2013 2011 2013 

Unburned 40 
(12.5) 

7 
(2.0) 

13 
(2.8) 

2 A 
(0.8) 

6 
(3.1) 

81 A 
(4.1) 

550 A 
(149.4) 

573 A 
(122.5) 

23 A 
(4.7) 

23A 
(5.3) 

Low 12 
(5.6) 

5 
(2.9) 

9 
(1.6) 

3 A 
(1) 

29 
(14.3) 

76 A 
(5.6) 

560 A 
(116.6) 

932 B 
(219.2) 

19 A 
(2.5) 

19A 
(2.3) 

Moderate 38 
(5.0) 

10 
(2.7) 

8 
(1.3) 

3 A 
(0.6) 

11 
(4.3) 

60 A 
(7.6) 

450 A 
(98.2) 

447 A 
(80) 

14 A 
(2.5) 

12A 
(1.9) 

High 39 
(8.1) 

20 
(6.4) 

9 
(1.1) 

6 B 
(1.2) 

11 
(5.4) 

44 B 
(7.8) 

37 B 
(14.4) 

213 A 
(47.3) 

3 B 
(1.1) 

1B 
(0.8) 

p-Value for 
ANOVA 0.102 0.08 0.239 0.05 0.176 0.009 0.003 0.002 0.0002 0.000 
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Pre-fire, NBR values expressed a similar range on the FTF (25-730) and reference 

sites (66-735).  ∆NBR values on the FTF ranged from -164 to 622, compared to -190 to 

197 on the reference site, reflecting much greater reduction in vegetation on the FTF 

site, as expected.  As previously mentioned, pixels with ∆NBR values < 56 were classified 

as unburned (Table 2.3) based on a quantitative comparison with ∆NBR values in the 

adjacent reference site.  ∆NBR ranges for the remaining three categories were 

subjectively selected to maximize agreement with qualitative assessment of field plots, 

resulting in 5 plots classified as unburned, 4 plots as burned with low severity, 11 plots 

as burned with moderate severity, and 10 plots as burned with high severity.  Pixels with 

∆NBR values between 56-105 were classified as low burn severity, between 105-312 as 

moderate burn severity, and > 312 as high burn severity (Table 2.3). 
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Table 2.3: Range of differenced normalized burn ratio (ΔNBR) values by burn severity 
class and associated area within the Fish Trap fire study site within Daniel Boone 
National Forest (DBNF), Kentucky.  

Burn severity class ΔNBR range Area (ha) 
Percentage of FTF 

area 

Unburned < 56 366 55 

Low 56 – 105 140 21 

Moderate 105.1 – 312 127 19 

High > 312 34 5 
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The Landsat-derived burn severity and visually-assessed burn severity method 

had an overall agreement of 70%; 70% of total plots were categorized as the same burn 

severity class by both Landsat-derived burn severity and visually-assessed burn severity 

method (Table 2.4).  Producer and user accuracies – the proportion of field plots visually 

assessed as a certain burned severity class and classified as such using ∆NBR and vice 

versa, respectively – by burn severity class ranged between 50 and 88%.  For example, 

70% of plots visually assessed as burning with high severity on the ground were also 

classified as high burn severity based on ΔNBR.  And conversely, 88% of the plots 

classified as high severity based on ΔNBR were also classified as such based on the visual 

assessment. Overall accuracy refers to the percentage of ΔNBR-derived burn severity 

classes that matched with the visually-assessed burn severity class. In general, 

accuracies were lower for the unburned severity class and higher for the high burn 

severity class (Table 2.4). Based on these ∆NBR ranges for burn severity, about 55% of 

the FTF area was assigned as unburned, 21% burned with low severity, 19% moderately, 

and about 5% burned with high burn severity (Table 2.3 and Figure 2.4).  High and 

moderate burn severity areas were concentrated mostly along Auxier ridge, where the 

initial ignition occurred. 
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 Table 2.4: Accuracy results from comparing the visual assessment and of differenced 

normalized burn ratio (ΔNBR)-derived burn severity classes on the 30, 500 m2 field 

plots. The term ‘accuracy’ refers to the degree to which ΔNBR-derived burn severity 

classes matched visually-assessed burn severity class. 

Burn severity level Producer accuracy (%) User accuracy (%) 

Unburned 60 50 

Low 75 60 

Moderate 73 73 

High 70 88 

Overall Accuracy 70% 
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Figure 2.4: Burn severity surface map derived from of differenced normalized 
burn ratio (ΔNBR) values for the Fish Trap fire site, and visual burn severity 
assessment for the 30 field plots in Daniel Boone National Forest, Kentucky. 
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The NNIS walk-through survey was focused on areas that visually appeared to 

have been severely or moderately severely burned.  Based on ΔNBR values, the 

surveyed area included pixels that were in all four burn severity classes (Figure 2.5).   

There were 2,061 paulownia stems or groups of stems recorded, about 69% of which 

were located in areas burned with high severity, despite that high burn severity areas 

accounted for only 22% percent of the area surveyed for NNIS (Figure 2.5; Figure 2.6).  

Twenty six percent of recorded paulownia stems were located on moderate burn 

severity, which made up 34% of the area surveyed.  Thus, 95% of the paulownia stems 

recorded were found on 56% of the surveyed area. The remaining stems were found on 

low burn severity (2%) and unburned (3%) pixels which made up 44% of the surveyed 

area. Burn severity and number of paulownia stems were weakly, but significantly, 

related (adj. R2 = 0.13, p<0.0001) (Figure 2.7). Looking at it another way, paulownia was 

present in about 60% of pixels classified as high burn severity, 32% of pixels with 

moderate burn severity, and about 5% and 7% of pixels classified as low burn severity 

and unburned, respectively (Figure 2.5).     
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Figure 2.5: Number of pixels surveyed for paulownia, the number of pixels in which 
paulownia was recorded, by burn severity within the Fish Trap fire site in the Daniel 
Boone National Forest, Kentucky. 
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Figure 2.6: Burn severity map and location of paulownia stems within the Fish Trap fire 
site in the Daniel Boone National Forest, Kentucky. 
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Figure 2.7: The number of paulownia stems recorded per pixel within the paulownia 
survey area in the Fish Trap fire site in the Daniel Boone National Forest, Kentucky. 
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Discussion 

The use of ∆NBR derived from Landsat TM imagery was successful at assessing 

wildfire burn severity in the FTF site. We classified pixels with ∆NBR values <56 as 

unburned based on a quantitative comparison with ∆NBR values from the control site 

within the same landscape, a useful approach for determining the  ∆NBR threshold for 

the unburned severity category. Our 70% agreement of qualitative (plot based) and 

quantitative (∆NBR) methods of burn severity classification was comparable to values 

reported in other studies. For example, Cansler and McKenzie (2010) reported overall 

accuracy of 59% between ∆NBR and ground burn severity assessment. Overall, 

correlation of ground-based data and classification accuracies using ∆NBR indices is 

good, but varies among regions. French et al. (2008) reviewed 26 studies using ∆NBR 

and found the average accuracy of 73%.  

The burn severity map derived from ∆NBR values and the four burn severity 

classes shows high spatial variation in burn severity, typical of wildfire severity patterns 

in the region (Wimberly and Reilly, 2007).  The high and moderate burn severity areas 

were concentrated mostly on Auxier Ridge (Figures 2.3 and 2.4). The fire started at the 

south end of Auxier Ridge and moved counter-clockwise along ridge lines where 

vegetation was much dryer than that on mid-slopes and valleys. This pattern of fire 

severity across the landscape was further influenced by the duration of fire, topography, 

moisture conditions, species and the techniques and tools used to contain the fire 

(personal communication, Claudia Cotton, Forest Soil Scientist, DBNF, August 15, 2014). 

A similar relationship between fire severity and topography has been observed in other 

studies in the Southern Appalachians (Wimberly and Reilly, 2007). Species distribution 

likely also played a role in the spatial pattern of burn severity. Ridge tops in this area are 

typically dominated with by oaks and pines (Blankenship and Arthur, 2006), whose 

litters are more flammable than the mesophytic species typically found on lower slopes 

(Kreye et al., 2013), as well as the ericaceous species, Vaccinium and mountain laurel, 

which have higher concentration phenols and waxes, which are more flammable 

(Gilliam,2014). 
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The variability in forest floor cover found on the FTF did not reflect burn severity 

fully. Mineral soil exposure was higher on moderate and high burn severity plots 

compared to low severity; however, high mineral soil exposure was also found on 

unburned plots. Relatively high mineral soil exposure on the unburned sites is probably 

a result of turkeys scratching for food, a process that can readily scrape down to mineral 

soil, but that is dispersed very heterogeneously across the landscape. 

Fire severity influenced regeneration density of paulownia. Because of variation 

in fuels and topography, wildfire creates a variety of microsites within a burned area 

(Kuppinger, 2008). Kuppinger et al. (2010) suggests that areas burned with high severity 

will have higher variability of microsites than areas burned with lower severity and 

landscapes with high severity may provide favorable habitat for Paulownia. About 95% 

of the paulownia stems recorded were found on 56% of the surveyed area in FTF sites. 

Areas that burned with high severity contained more than half (69%) of recorded 

paulownia stems suggesting a positive relationship between Paulownia colonization and 

burn severity. The heterogeneous distribution of burn severity brought change in 

moisture regime where are area was found wetter after wildfire. The area burned with 

high severity experienced the great change in moisture regime where soil moisture 

increased tremendously because most of the vegetation got consumed. This likely led to 

better site conditions for Paulownia (Kuppinger et al., 2010).  

NNIS are an increasing threat to forest ecosystems after burning (Rebbeck, 2012) 

and wildfires can lead to an increased likelihood of colonization as high severity fires kill 

dominant vegetation, making light, nutrient and soil moisture  resources more  available 

(Fornwalt et al. 2010).  For example, paulownia requires a large scale disturbance such 

as wildfire for germination and seedling establishment (Shiu-Ying, 1961). While 

paulownia is more likely to succeed in post-fire areas with less vegetation, it may not 

persist in mature forest areas where the canopy is too dense to regenerate this shade-

intolerant species (Kuppinger, 2008). Unfortunately, paulownia grows rapidly and 

quickly becomes sexually reproductive, with a single tree producing 20 million or more 

tiny wind-dispersed seeds/year that can germinate readily in disturbed sites with 
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exposed mineral soil (Shiu-Ying, 1961; Tang et al., 1980). Thus, while paulownia may not 

persist in the burned area as the forest canopy closes, its prevalence in the burned areas 

provides a significant seed source from which to colonize nearby disturbed sites in the 

region.  

Studies conducted across a range of ecosystems have found similar relationships 

between the density of NNIS stems and burn severity (Crawford et al., 2001; Dodge et 

al., 2008; Kaczynki et al., 2011; Symstad et al., 2014). For example, in a northern Arizona 

ponderosa pine forest, NNIS comprised about 26% of the understory cover two years 

after a wildfire, with NNIS being more abundant in areas that burned with high severity 

compared to those burned moderately or unburned (Crawford et al., 2001).  Fornwalt et 

al. (2010) also found NNIS richness and cover generally increased with fire severity in a 

ponderosa pine forest in central Colorado.  Similar results were reported by Keeley et al. 

(2003) in oak savanna, chaparral and conifer forest in southern Sierra Nevada, 

California.  This study is one of the first to demonstrate a significant relationship 

between burn severity and invasion by a non-native species, Paulownia tomentosa, in 

an eastern deciduous forest. Our results confirm that remote sensing derived metrics of 

fire severity can serve as predictors of non-native invasive species response to fire. 

Remotely sensed imagery can be used to assess burn severity for large areas and can 

serve as a useful tool to locate potential outbreaks of NNIS such as Paulownia 

tomentosa.  

Conclusions and management implications 

Land managers need accurate and efficient approaches for capturing the 

complex changes in the landscape after wildfires to develop appropriate management 

activities.  While visual assessments of small-scale (less than 125 ha) disturbances are 

possible, large-scale visual assessments are impractical (USGS, 2010).  Remote sensing 

imagery such as Landsat TM can provide an efficient and cost effective approach to 

quantifying and assessing disturbances at large scales in eastern deciduous forests of 

the US.  Landsat derived information can greatly increase forest managers’ abilities to 

efficiently assess burn severity and allocate restoration treatments accordingly. 
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Results from several studies using Landsat imagery suggest that ∆NBR value 

ranges for burn severity classes vary based on forest type, topography, weather 

conditions, and other factors. The ranges of ∆NBR presented in this study for 

classification of burn severity are applicable for upland oak-hickory dominated forests of 

the Cumberland Plateau region, and should only be cautiously applied to other areas 

with different vegetation and terrain conditions.  However, our method of using a 

reference site to identify the break point between unburned and burned sites should be 

widely applicable.  

The multi-temporal approach of burn severity assessment is also helpful to 

understanding invasion by NNIS.  Our results suggest that areas burned with high 

severity have a larger chance of colonization by NNIS such as paulownia. Land and forest 

managers can use burn severity maps to design strategies to manage NNIS outbreaks 

and allocate treatments. Given limited resources, we recommend prioritizing high burn 

severity sites for monitoring the initial establishment of NNIS and predicting potential 

changes in forest communities on the DBNF. 
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  Chapter Three
Using Landsat Imagery to Monitor Post-Wildfire Forest Structure in an Eastern 

Deciduous Forest 

 

Introduction 

Fire is an important ecosystem process that significantly impacts terrestrial 

systems throughout the world (Pyne et al., 1996; Lentile et al., 2006). The prehistoric 

role of fire in eastern deciduous  forests has been well established over the past several 

decades (Delcourt and Delcourt, 1997), where fire in this region has been associated 

with the presence of humans over the past 10,000 years (Delcourt and Delcourt, 2000). 

Historically, fires in eastern deciduous forests varied from low intensity surface fires to 

high severity stand replacement fires (Wade et al., 2000). It is crucial to understand and 

assess fire’s effects for forest managers tasked with formulating and implementing 

treatments or restoring disturbed areas (Escuin et al., 2008). Since forest managers in 

the eastern deciduous forest are using fire as a tool for management (Brose et al. 2001), 

it is necessary to assess the effects of wildfire on many aspects of forests, such as 

structural, functional  and species diversity, which will help with achieving the stated 

management objectives. However, these structural measurements often depend on 

extensive and expensive fieldwork in large landscapes with rugged terrain across large 

spatial extents (Chapter 2). Remotely sensed images available at high spatial and 

temporal resolutions can extend the measurement capability where extensive field-

based measurements are in practical (Ingram et al., 2005; Wilkie and Finn, 1996). The 

alliance between remote sensing techniques and forest structure could provide valuable 

means for monitoring and assessing forest conditions after wildfire in an eastern 

deciduous forest.  

Vegetation indices derived using different bands of remotely sensed imagery can 

be used to assess the forest structure (basal area and stem density) in deciduous forests 

(Gamon et al., 1995). These indices are formed from different combinations of several 

spectral values that are quantitatively recombined in such a way as to yield a single 
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value indicating the amount or vigor of vegetation within the pixel (Campbell, 1996). 

The spectral image reflects multiple aspects of the landscape, including the reflectance 

properties of forest structure, which potentially captures aspects such as stem density 

and basal area (Ingram et al., 2005; Lee and Nakane, 1996). For example Foody et al. 

(2001) associated vegetation indices with tree species diversity and forest biomass in a 

Bornean tropical rain forest. Freitas et al. (2005) assessed the relationship between 

forest structure and vegetation indices in an Atlantic rainforest in Brazil.  

There are many vegetation indices, but the normalized difference vegetation 

index (NDVI), which uses the surface reflectance values for the red and near-infrared 

wavelengths (van Leeuwen et al., 2010), is frequently used to examine post-fire forest 

structure and vegetation response in the western US (Cocke at al., 2005; Key and 

Benson, 2006; Kushla and Ripple, 1998; Song et al., 2007). While a few recent studies 

have used Landsat data to map burn severity in eastern deciduous forest (Maingi and 

Henry, 2007; Wimberly and Reilly, 2007), they did not examine the potential of this 

freely available, high resolution remotely sensed data for assessing post-fire forest 

structure. Based on its application in other forested ecosystems, Landsat imagery has 

the potential to provide accurate and inexpensive information in support of landscape 

scale management objectives in the eastern deciduous forests. 

An initial assessment of the utility of remote sensing data for assessing forest 

structure in an eastern deciduous forest following wildfire is a crucial step towards 

developing a program for the monitoring of forest change using Landsat data. Thus, the 

objective of this study was to analyze the relationship between Landsat imagery-derived 

vegetation indices and field-measured forest characteristics of basal area and stem 

density in an eastern deciduous forest. The use of vegetation indices as an indicator of 

forest structure may be a valuable tool for planning, conservation and restoration 

strategies in a landscape burned by wildfire. 
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Methods 

FishTrap Fire 

The FishTrap fire (FTF) burned approximately 674 ha of deciduous forest in the 

Cumberland Plateau, within the Daniel Boone National Forest (DBNF), in Powell County, 

Kentucky (lat. 37° 49’ N, long. 83° 41’ W) (Figure 3.1). It was started unintentionally by 

campers on 24 October 2010 and was fully contained on 9 November 2010. Prior to 

burning forest was dominated by upland oak-hickory forest type. Oaks [scarlet oak 

(Quercus coccinea Muenchh.), chestnut oak (Quercus montana Willd..), black oak 

(Quercus velutina Lam), and white oak (Quercus alba L)], hickories [pignut hickory (Carya 

glabra Mill.) and mockernut hickory (Carya tomentosa Poir.)], and pines [shortleaf pine 

(Pinus echinata Mill.), Virginia (Pinus virginiana Mill.), pitch (Pinus rigida Mill.), and 

white (Pinus  strobus L.)] dominate the canopy  while the midstory is dominated by red 

maple (Acer rubrum L.), sourwood (Oxydendrum arboreum L.), black gum (Nyssa 

sylvatica Marsh.) and sassafras (Sassafras albidum Nut.). 

Elevation ranges from 177 - 439 m.a.s.l. across the study area. Mean annual 

temperature is 12.9°C, with mean high and low temperatures of 19°C and -4.3°C 

occurring in July and January, respectively. Mean annual precipitation is 119.2 cm, most 

of it occurring from March to June (Kentucky Climate Center, 2006). 

Plot Data 

In August 2011, after the wildfire, thirty 500m2 (0.05ha) circular plots were 

arrayed across the burned area for measurement of forest structure (Figure 3.1). Plots 

were placed at random within the FTF area, based on terrain features retrieved from 

topographic maps. Center points of plots were permanently marked with rebar and GPS 

coordinates recorded. Within each plot the diameter at breast height (DBH) and species 

of all trees >2.0 cm DBH were measured and recorded. Measurements were made in all 

plots in summer 2011 for initial post-fire assessment, and re-measured in summer 2013 

to assess change. 
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Figure 3.1: Location of Fish Trap fire and reference site area within the Daniel Boone 
National Forest, Kentucky, USA. 
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Remote Sensing Data and Image Processing 

Using Landsat imagery, two spectral vegetation indices, differenced normalized 

burn ratio (∆NBR) and normalized difference vegetation index (NDVI), were calculated 

for 2010, 2011 and 2013 to explore forest dynamics across the fire severity gradient.  

Landsat 5 TM (path 19, row 34) from October 2nd, 2010 and October 5th, 2011, and 

Landsat 8 from October 10th, 2013, images were acquired from the US Geological Survey 

and pre-processed using ArcMap 10.1. An area adjacent to the FTF with similar 

vegetation and terrain conditions was selected as a reference site to assess the pre-burn 

NDVI and its nature. All of the sites of interest are located within the same image, which 

were cloud free and terrain-corrected by the Earth Resources Observation and Science 

(EROS) data center, providing the highest level of correction available for Landsat scenes 

(Chander and Markham, 2003). The digital number (DN) for each Landsat band was 

converted into top-of-atmosphere (TOA) reflectance, a normalized, unitless measure of 

the ratio of the amount of light energy reaching the earth’s surface to the amount of 

light reflecting off the surface and returning to the top of the atmosphere and thus 

detected by the satellite’s sensors (Johnson, 2013; Stapp et al., 2015; USGS, 2013). The 

burn severity was calculated using differenced normalized burn ratio (∆NBR) which was 

used to prepare a burn severity map of FTF (Chapter 2). All pixels were classified into 

four burn severity classes, unburned (∆NBR<56), low (∆NBR=56-105), moderate (∆NBR-

105-312) and high (∆NBR>312), where 55% of FTF area was found to be unburned, 21% 

low,19 % moderate and 5% area was burned with high severity (Chapter 2).  

There are many spectral vegetation indices, but the one most commonly used 

for assessing biophysical characteristics of forests is the normalized difference 

vegetation index (NDVI), which uses the ratio between red (visible) and near-infrared 

(NIR) bands, is computed as NDVI=(NIR-RED)/(NIR+RED) (Rouse et al.,1974). The NDVI 

value is based on the difference between the reflectance of NIR and red light. It is an 

index of plant “greenness” or photosynthetic activity. The red and near-infrared bands 

are sensitive to greenness; photosynthetically active vegetation absorbs most of the red 

light while it reflects much of near-infrared light. NDVI values thus range from -1 to +1, 
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where negative values correspond to an absence of vegetation.  The vegetation index 

values were extracted from each pixel within the burned and reference areas.  

We first established that NDVI was similar across landscapes before wildfire, 

necessary due to the lack of pre-fire forest structure measurements. To do this, we used 

an area adjacent to the FTF, with similar vegetation and terrain conditions as a 

reference site (Figure 3.1). Pre-burn differences in NDVI among FTF and the reference 

site were tested with a t-test using all pixels from the reference and FTF sites in 2010.  

The wildfire burned the FTF area with varied burn severity. Thus, it was also 

necessary to establish that NDVI was similar among different future burn severity 

classes before the wildfire occurred. One-way  ANOVA was used to test pre-burn 

differences in NDVI among pixels from four different post-burn fire severity classes; 

unburned, low, moderate and high to establish that there were no pre-burn differences 

among future burn severity classes. Significance was determined with α=0.05. 

To test whether burn severity altered NDVI, two types of approaches were used. 

First, one-way ANOVA was used to test for post-burn differences in NDVI for each of the 

four burn severity classes using a sub-sample of pixels (n=75 pixels/severity class) within 

FTF. Where ANOVA results were significant, Tukey’s HSD post-hoc test was used to 

compare NDVI between burn severity classes. Secondly, as our forest structure 

measurements were measured on plot, it is important to assess the plot level 

relationship between NDVI and burn severity, to do so we used the linear regression 

analysis. 

To describe the relationship between forest structure (basal area and stem 

density) and NDVI, linear regression analysis was used, where basal area and stem 

density were used as the dependent variable and NDVI as the independent variable.  

Post-wildfire change in forest structure (basal area and stem density) was 

evaluated by (1) computing the post-wildfire percentage change in forest structure 

measurement and (2) analyzing the differences between forest structure measurements 

in different burn severity classes between 2011 and 2013. Two-way ANOVA was used to 

analyze the interaction between year and burn severity on forest structure. All statistical 
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tests were conducted using the ‘Stats Package’ in version 3.1.2 of the R Statistical 

Computing Software (R Core Team 2014). 

Results 

Pre-burn NDVI across landscape 

T-test analysis using all pixels from the reference and FTF sites (14010 pixels)  in 

2010 revealed a statistically significant but numerically small difference in mean NDVI 

between  reference and FTF sites t(14008)=3.627, p=0.0002, with mean NDVI of 0.656 

and 0.659 for reference and FTF, respectively. On the FTF site only, we found no 

statistically significant difference among the groups of pixels that would be later 

classified as having burned at varying burn severity F (3,296)=0.618, p=0.604 (Figure 3.2, 

Table 3.1).   
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extracted from pixels from area burned with different severity. Mean NDVI (+SEM) 
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p>0.05). Error bars are standard errors. 
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Table 3.1: ANOVA results for pre-fire (2010)  and post-fire (2011) NDVI in four different burn severity pixels in Fish Trap fire    
area, Daniel Boone National Forest, Kentucky. 

 Sources Df SS MS F P 

Pre-fire Burn Severity Class 3 0.0033 0.001095 0.618 0.604 

 Residuals 296 0.5243 0.001771   

Post-fire Burn Severity Class 3 1.2609 0.4203 129 <0.0001 

 Residuals 296 0.9643 0.0033   
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Does burn severity alter NDVI? 

After the wildfire, mean NDVI was significantly different among pixels burned 

with different severity (n=75/severity class with F (3,296) =129, p<0.0001 (Table 3.1)). 

Post-wildfire mean NDVI was similar between the unburned pixels in FTF (mean 

NDVI=0.636) and reference site (mean NDVI=0.639) t (148) =-0.45, p=0.646. Post hoc 

comparisons using the Tukey’s HSD test indicate that the mean NDVI did not differ 

significantly between low and unburned area, but all other burn severity classes were 

statistically significantly different from each other (Figure 3.3). 

To determine whether burn severity altered plot-based NDVI, linear regression 

analysis was used to describe the relationship between plot level NDVI and burn 

severity. We found a statistically significant relationship between burn severity and 

NDVI in 2011 as burn severity increased, NDVI decreased (adj R2 0.58, p<0.0001) (Figure 

3.4). 
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Figure 3.3: Boxplot for mean NDVI measured in year 2011 plotted by burn 
severity class (unburned, low, moderate and high) and reference site. Boxes 
with different uppercase letters are significantly different (Tukey’s HSD, 
p<0.05). 
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Figure 3.4: NDVI plotted against burn severity (differenced normalized burn ratio).   
NDVI was measured in 30 different plots in Fish Trap fire sites after wildfire (2011) in 
Daniel Boone National Forest, Kentucky. 
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NDVI and post-fire forest structure 

There was a statistically significant positive relationship (adj R2 0.41, p<0.0001) 

between NDVI and basal area (Figure 3.5). The relationship between stem density in 

2011 and NDVI was weaker but also significant and positive (adj R2 0.23, p=0.0004) 

(Figure 3.6). 
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Figure 3.5: Basal area (m2/ha) measured in 2011 plotted against post fire NDVI 
(n=30) for Fish Trap fire in Daniel Boone National Forest, Kentucky. 
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Figure 3.6: Stem density (trees/ha) measured in 2011 plotted against post fire NDVI 
(n=30) for Fish Trap fire, Daniel Boone National Forest, Kentucky. 
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 Post-fire forest structure between 2011 and 2013 

Based on field observations, basal area and stem density of live tree declined 

between 2011 and 2013, with the greatest reductions on the plots classified as 

moderate and high burn severity. The test for the effect of treatment shows a significant 

burn severity effect on basal area (F=20.401, p<0.0001) but not a significant year effect 

on basal area (F=0.20, p=0.65) (Table 3.2). Between 2011 and 2013, basal area 

decreased from 14 to 12 m2/ha (or 14% reduction), on average, in plots burned with 

moderate severity, and 66%, from 3 to 1 m2/ha in high severity plots (Figure 3.7). Stem 

density increased 4% on average from 550 to 573 trees/ha in unburned area, while 

increased 475% on average from 37 to 213 trees/ha in area burned with high severity 

(Figure 3.8).  
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Table 3.2: Results from the two-way ANOVA for the effects of years and burn severity on 
basal area (m2/ha) and stem density (trees/ha) measured in year 2011 and 2013 in 
FishTrap fire area, Daniel Boone National Forest, Kentucky. 

 

 

 

 

 

  

 Sources df SS F P 
Basal Area Burn Severity 3 3471 20.401 <0.0001 

 Year 1 11.50 0.2028 0.6543 
 Burn Severity*Year 3 8.8357 0.0519 0.984 
 Residuals 52 2949   

Stem Density Burn Severity 3 2701705 11.005 <0.0001 
 Year 1 188160 3.3682 0.0722 
 Burn Severity*Year 3 282006 1.1487 0.338 
 Residuals 52 4255222   
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Figure 3.7: Mean basal area (m2/ha) in different burn severity class for two different 
years (2011 and 2013) in Fish Trap fire area, Daniel Boone National Forest, 
Kentucky(n=30 per burn severity class). Means (+SEM) followed by the same letter 
within burn severity class are not significantly different (Tukey’s HSD, p>0.05). Error bars 
are standard errors. 
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Figure 3.8: Mean stem density (trees/ha) in different burn severity class for two 
different years (2011 and 2013) in Fish Trap fire area, Daniel Boone National Forest, 
Kentucky (n=30 per burn severity class. Means (+SEM) followed by the same letter 
within burn severity classes are not significantly different (Tukey’s HSD, p>0.05). 
Error bars are standard errors. 
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Discussion 

Prior to the Fish Trap fire, the reference and Fish Trap landscapes had 

significantly but slightly different mean NDVI, with the area eventually consumed in the 

wildfire having slightly higher NDVI values than the reference site just before the fire. 

Pettorellie et al. (2005) showed a similar type of pre-fire NDVI between reference and 

burned area. Factors such as topography (Thomas, 1997), composition of species, 

vegetation vigor, leaf properties and vegetation stress (Markon et al., 1995) are factors 

that can affect variation in NDVI within a single landscape. 

High variability in NDVI response following the FishTrap fire was not surprising as 

post-wildfire landscapes are typically characterized by a high degree of variability in 

vegetation due to variations in burn severity, which we also found for this landscape 

(Chapter 2). Areas burned with moderate and high severity had the greatest variability 

in NDVI value compared to plots unburned or burned with low severity (Figure 3.4). The 

variation in NDVI among severely burned pixels was due to pixels burned with 

heterogeneous severity which reduced the vegetation heterogeneously (Lentile et al., 

2006; Reed et al., 1994). A similar result was documented following other large wildfires 

in Spain, U.S. and Israel (van Leeuwen, 2010).   

At the landscape level, burn severity alters the forest structure which in turn 

affects the NDVI (van Leeuwan et al., 2010; Turner et al., 1999). Our results suggest a 

consistent decreasing trend in the plot level NDVI with increasing burn severity after fire 

(Figure 3.4). This may indicate that the differences in NDVI between areas burned with 

different severity are highest after the fire and slowly diminish with time after the fire.  

The relationship between a Landsat-derived vegetation index and forest 

structural measurements from the linear regression analysis demonstrate that the NDVI 

from Landsat (30 m resolution) Thematic mapper are useful for estimating forest basal 

area for the eastern deciduous forest. Ingram et al. (2005) conducted similar studies in a 

tropical forest and found a similar relationship between forest structure and NDVI. Plots 

burned with moderate to high severity experienced the lowest basal area and stem 

density. The heterogeneous pattern of distribution in forest structure was observed in 
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plots burned with moderate to high severity (Figures 3.5 and 3.6). The area burned with 

moderate to high severity experienced reduction in basal area in year 2013 from year 

2011. High variability in stem density was observed in plot unburned or burned with low 

severity this might be because there might be positive effects of fire on regeneration, 

especially the regeneration of red maple and serviceberry, where over story stems were 

not affected by burning.   

In this study, basal area and stem density showed a positive relationship with 

NDVI. This pattern between forest structure and NDVI suggests that NDVI could explain 

the structural maturity of forest. Huete et al. (1997) showed that NDVI could be 

explained by the saturation effect (asymptotic behavior of reflectance of visible and 

near-infrared band when a biophysical parameter of vegetation increases continuously), 

sensitivity over dense canopies.  Freitas et al. (2005) showed a linear relationship 

between NDVI and vegetation measurements (density of trees, tree diameter, tree 

height, basal area). They observed the constraints caused by saturation but such 

constraints were not found on deciduous forest in India (Bawa et al., 2002). This shows 

that NDVI seems to provide good estimates in deciduous forests (Freitas et al., 2005). 

This study is one of the first to demonstrate a significant relationship between 

NDVI and forest structure (basal area and stem density). Our results confirm that 

Landsat data derived vegetation index (NDVI) can be helpful on assessment of post-fire 

forest structure, particularly in areas that have high burn severity. More work is needed 

to clarify the relationship between post-fire forest stand structure and low, unburned 

and moderate burn severity. 

Conclusions and management implication 

Forest and land managers need tools to monitor the effect of wildfires on 

ecosystem health and evaluate the effect of post-fire forest management. As the forest 

structures such as basal area and stem density represents the condition of forest, they 

need information on these forests structural after wildfire for management. Remote 

sensing imagery such as Landsat TM can provide a best approach to assessing forest 
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structure after wildfire at large scales in eastern deciduous forests of eastern United 

States. 

The relationship between spectral information and ground-measured forest 

structural data can be a valuable tool to monitor modifications in structure due to forest 

disturbances (Lambin, 1999). Landsat data are shown to be an effective tool for 

monitoring both burned and unburned areas. This study has demonstrated the potential 

for using a ground-measured data and freely available Landsat thematic mapper 

spectral information from near infrared and red band for estimating the basal area and 

stem density of eastern deciduous forest. The significant relationship between Landsat 

derived NDVI and ground-measured stem density and basal area supports the utility of 

the methods presented here for assessments of stem density and basal area across a 

forest landscape in an eastern deciduous forest. The relationships between forest 

structure measurements and vegetation indices found in this study must be tested in 

other deciduous forest sites before they are widely used to assess forest structure using 

remote sensing. This tool may be useful to evaluate eastern deciduous forest instead of 

only mapping and assessing them. Such tools could provide a useful supplement to 

traditional ground-based forest inventories, which needs more time and high economic 

inputs. 
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