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Abstract

Objectives: Cuncaicha, a rockshelter site in the southern Peruvian Andes, has yielded

archaeological evidence for human occupation at high elevation (4,480 masl) during

the Terminal Pleistocene (12,500–11,200 cal BP), Early Holocene (9,500–9,000 cal

BP), and later periods. One of the excavated human burials (Feature 15-06),

corresponding to a middle-aged female dated to ~8,500 cal BP, exhibits skeletal oste-

oarthritic lesions previously proposed to reflect habitual loading and specialized

crafting labor. Three small tools found in association with this burial are hypothesized

to be associated with precise manual dexterity.

Materials and methods: Here, we tested this functional hypothesis through the appli-

cation of a novel multivariate methodology for the three-dimensional analysis of

muscle attachment surfaces (entheses). This original approach has been recently vali-

dated on both lifelong-documented anthropological samples as well as experimental

studies in nonhuman laboratory samples. Additionally, we analyzed the three-

dimensional entheseal shape and resulting moment arms for muscle opponens pollicis.

Results: Results show that Cuncaicha individual 15-06 shows a distinctive entheseal

pattern associated with habitual precision grasping via thumb-index finger coordina-

tion, which is shared exclusively with documented long-term precision workers from

recent historical collections. The separate geometric morphometric analysis revealed

that the individual's opponens pollicis enthesis presents a highly projecting morphol-

ogy, which was found to strongly correlate with long joint moment arms

(a fundamental component of force-producing capacity), closely resembling the form

of Paleolithic hunter-gatherers from diverse geo-chronological contexts of Eurasia

and North Africa.

Discussion: Overall, our findings provide the first biocultural evidence to confirm that

the lifestyle of some of the earliest Andean inhabitants relied on habitual and forceful

precision grasping tasks.

K E YWORD S

Andes, Early Holocene, entheses, muscle attachments, opponens pollicis
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1 | INTRODUCTION

The biocultural evolution of Homo sapiens is characterized by envi-

ronmental adaptability during dispersal across the world, which

allowed early human populations to flourish across a diverse range

of ecological conditions (Roberts & Stewart, 2018). One of the

major objectives of bioarchaeology is to elucidate the subsistence

strategies of prehistoric humans, identifying the habitual practices

that led to their survival in diverse environments. In this frame-

work, high-altitude archaeological sites show that prehistoric

hunter-gatherer groups inhabited ecosystems characterized by

extremely cold temperatures and hypoxia, in which human survival

depends on the development of refined subsistence strategies

(e.g., Aldenderfer, 2006; Ossendorf et al., 2019; Rademaker

et al., 2014; Rick, 1980). Accurate reconstructions of habitual

behavior in such early human communities is only feasible through

the establishment of reliable associations between their biological

(skeletal) and cultural remains.

One of the highest-altitude Pleistocene archaeological sites

worldwide is the Cuncaicha rockshelter, located within the Pucuncho

Basin of the Peruvian Andes, lying at 4,480 m above sea level. The

dated occupational sequence of the site involves four different phases

of human habitation, the oldest of which is dated to

12,500–11,200 cal BP. These findings demonstrate the presence of

Terminal Pleistocene populations in a highly demanding environment,

within ~2,000 years of the earliest lowland sites in South America.

Subsequent occupations at Cuncaicha occurred during the Early Holo-

cene (9,500–9,000 cal BP), the Late Middle Holocene,

(5,700–5,000 cal BP) and the Late Holocene (<4,000 cal BP)

(Rademaker et al., 2014).

Five adult human burials have been identified at Cuncaicha,

including three individuals dated to the Early Holocene

(9,100–8,400 cal BP), and two dated to the Late Holocene

(4,290–4,080 cal BP and 3,370–3,180 cal BP) (Francken, Beier,

Reyes-Centeno, Harvati, & Rademaker, 2018; Posth et al., 2018;

Rademaker & Hodgins, 2018). Several isolated and undated skeletal

fragments indicate the presence of additional individuals, including a

subadult (Francken et al., 2018). Formal comparative craniometric

analysis of the earliest Cuncaicha skull with others from throughout

South America indicates morphological similarity in respiratory and

masticatory components among the earliest crania studied, from

Lagoa Santa, Brazil and Lauricocha Cave in the north-central Peruvian

Andes (Menéndez, Rademaker, & Harvati, 2019). These findings may

indicate deep-shared ancestry among these widely distributed individ-

uals, as well as convergent morphological adaptations to high-altitude

environments in the latter cases (Cuncaicha and Lauricocha). Ancient

DNA analysis of the earliest individual from Cuncaicha revealed an

Early Holocene lineage distinct from the Clovis-associated genome

identified in other early individuals from Brazil and Chile, while two

Late Holocene Cuncaicha genomes indicated a population change by

about 4,200 years ago (Posth et al., 2018). This genetic change corre-

sponds with demographic expansions into South America, possibly

associated with a shift from foraging subsistence to the adoption of

pastoralism in the Andes (Goldberg, Mychajliw, & Hadly, 2016;

Moore, 2016; Posth et al., 2018).

Throughout its occupation sequence, the Cuncaicha rockshelter

contains abundant faunal remains, demonstrating the hunting of large

and small herbivores and onsite butchering and extensive processing

of animal carcasses (Moore, 2013, 2016). Stone tools reflect hunting,

cutting, hide working, and other tasks (Rademaker et al., 2014). Con-

sistent with these insights from material assemblages, carbon and

nitrogen stable isotope measurements of bone collagen from the five

adult human skeletons buried in Cuncaicha indicate a diet with protein

resources procured from the high-altitude plateau (Haller von

Hallerstein, 2017).

One of the recovered skeletons, Feature 15-06, was dated to

8,537–8,386 cal BP (Rademaker & Hodgins, 2018) and belongs to a

middle-aged female. This individual was found in association with two

small obsidian scrapers and a bone tool bearing red ochre (Figure 1)

(Francken et al., 2018). According to past experimental research on

lithic implements, the production and use of similar tools for various

cutting or scraping tasks requires the use of forceful precision grasp-

ing relying on the thumb and index finger (Key & Lycett, 2018; see

also discussion in Karakostis, Hotz, Tourloukis, & Harvati, 2018). Such

a scenario would agree with previous assessments of the habitual

technology-producing activities of females from 32 ethnographic for-

aging societies that rely heavily on hunting for subsistence

(Kelly, 2007; Murdock, 1981; Murdock & Provost, 1973;

Waguespack, 2005). In these societies, women performed tasks such

as house building, production of pottery, basketry, rope, and woven

articles, butchery, and hide-scraping (i.e., cutting, scraping, peeling,

stretching, and softening hides), many of which involve a high degree

of intense manual precision (Waguespack, 2005; see also relevant

case study by Becker, 2016). In all ethnographic cases where 50% or

more of the diet was composed of meat, women did 100% of the hide

working (Waguespack, 2005). Such a system would be expected

among hunter-gatherers of the Peruvian puna (i.e., high-elevation

grassland and shrubland ecological zone of the Andean plateau),

where large and small herbivores are abundant, economically useful

F IGURE 1 The three tools with traces of red ochre found in
association with Cuncaicha individual 15-06, including two lithic
scrapers (AS 150808 and AS 150810) and a potential bone crayon
(AS 150809). Composite image: Erica Cooper
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plants are rare, and hunting-based subsistence is well documented by

the terrestrial model (Johnson, 2014) and empirical archaeological evi-

dence (Rademaker & Moore, 2018). Importantly, a previous paleo-

pathological analysis of Feature 15-06 conducted by some of us

(Francken et al., 2018) identified a distribution of bone attrition in the

skeleton that can be associated with the habitual practice of crafting

labor, such as weaving or curing of hides, which require coordinated

corporal movement and manual precision (Francken et al., 2018).

However, the previous study emphasized that further research was

required to test this biomechanical hypothesis.

The present study therefore aims to evaluate the hypothesis that

the lifestyle of this early high-altitude Andean individual 15-06, relied

on habitual forceful precision grasping tasks. We rely on a novel and

repeatable three-dimensional (3D) approach for analyzing hand mus-

cle attachment sites (entheses) through multivariate statistical proce-

dures (Karakostis, Hotz, Scherf, Wahl, & Harvati, 2017; Karakostis,

Hotz, Tourloukis, & Harvati, 2018; Karakostis & Lorenzo, 2016). In

contrast to other approaches for analyzing entheses, this original

method for reconstructing physical activity has been validated on the

basis of anthropological samples with life-long occupational documen-

tation (Karakostis et al., 2017; Karakostis, Hotz, Tourloukis, &

Harvati, 2018) and with blind experimental studies different labora-

tory animal species (Karakostis, Jeffery, & Harvati, 2019; Karakostis,

Wallace, Konow, & Harvati, 2019). In addition, considering the distinc-

tive findings for the metacarpal enthesis of the opponens pollicis mus-

cle, we use a repeatable 3D geometric morphometric approach

(Karakostis, Hotz, Tourloukis, & Harvati, 2018) for quantifying its

projecting shape and assessing its statistical correlation with the mus-

cle's resulting moment arms for abduction and flexion

(i.e., fundamental components of torque and biomechanical efficiency;

Ward, Winters, & Blemker, 2010; Maki & Trinkaus, 2011).

2 | MATERIALS AND METHODS

2.1 | Background information

The skeletal remains of the individual 15-06 were recovered from the

surface of the Terminal Pleistocene stratum in Unit 13, at approxi-

mately 80 cm depth. The 15-06 skeleton is incomplete, consisting of

lower and upper limb segments, pelvic remains, four lumbar vertebrae

(second–fifth) as well as several rib fragments (Francken et al., 2018).

While most skeletal elements are fragmentary, hand bones are well

preserved. Additional cranial elements belonging to this individual

appear to have been translocated to a higher stratigraphic position

~4,000 cal BP when a seated burial was interred in Unit 13 atop indi-

vidual 15-06. These cranial elements, including a mandible and molar

that does not fit within the mandible, were assigned to individual

15-06 based on direct radiocarbon dates (Francken et al., 2018;

Rademaker & Hodgins, 2018).

Two accelerator mass spectrometry (AMS) dates on ultrafiltered

(UF) bone collagen were obtained from a distal tibia (AA107844,

7,676 ± 44 BP), and the mandible ramus (AA107846, 7,701 ± 44 BP).

A third UF AMS measurement (AA109417, 7,689 ± 31 BP) was made

on dentine of the molar. Based on these three concordant AMS dates,

a pooled mean age of 7,689 ± 22 BP, or 8,536–8,386 cal BP (using

SHCal13, Hogg et al., 2013), is assigned to individual 15-06

(Rademaker & Hodgins, 2018).

Burial 15-06 was situated on her right side with crossed legs and

the upper arms alongside the body axis, which was roughly in an east

to west direction. The lower left arm was angled at the elbow with

the hand positioned on the pelvis, while the lower right arm was paral-

lel to the body axis (Francken et al., 2018). Just south of individual

15-06 and at the same depth was the lower half of another burial,

individual 15-05. This burial was deposited on the back with legs in a

flexed and upright position. Two AMS dates on UF bone collagen pro-

vide a pooled mean age of 8,986–8,691 cal BP for individual 15-05.

Bayesian modeling of the date ranges of the two adjacent early Holo-

cene burials indicates that the lifetimes of these people did not over-

lap (Rademaker & Hodgins, 2018).

Individual 15-06 is a middle aged (30–50 years old) female of rel-

atively small stature (estimated at 154 cm) (Francken et al., 2018).

These demographic characteristics (sex, age, and stature) were

assessed based on the individual's well-preserved pelvic and femoral

traits (Francken et al., 2018). As mentioned above, individual 15-06

presented arthritic lesions across multiple joints of her skeleton,

including those of the inferior lumbar spine, right hand, right wrist, left

knee, and multiple foot joints (Francken et al., 2018). As far as the

hand and wrist bones are concerned, individual 15-06 presented evi-

dence of osteoarthritis (i.e., combination of osteophytes, eburnation,

and microporosis) in several wrist bones (lunate, capitate, trapezium,

and hamate), metacarpals, and phalanges. The frequency and intensity

of osteoarthritis in the left hand is less severe than in the right

(Francken et al., 2018).

Next to the right elbow joint two obsidian scrapers (AS 150808

and AS 150810) and a pointed bone tool (AS 150809) were discov-

ered in situ (Figure 1). All three artifacts display traces of red ochre.

Although small, anthropogenically introduced red ochre nodules are

present in sediments spanning the Cuncaicha occupation sequence,

there are only five chipped stone tools and one bone tool containing

traces of red ochre within the site. That ochre-covered tools are rare

in Cuncaicha, and half of the site's ochre-covered tools are found in

direct association with the 15-06 burial, suggest that these objects

were part of this woman's personal equipment or were purposefully

placed with her burial.

Both AS 150808 and 150810 are approximately 3 cm long and

2–3 cm wide, with a thicker working surface at the distal ends of the

tools and smaller proximal ends. AS 150808 is an end scraper made

on a thin obsidian flake, with a steep, convex working edge typical of

this tool form. AS 150810 is a multiple scraper made on a thick flake,

with steep working edges on the lateral and distal margins. The manu-

facture of both tools involved careful, precise flaking and re-

sharpening of working edges involving fine pressure retouch. Likely

used as hide-working implements, the tools may have been hafted or

hand-held. AS 150809 is an elongated bone tool fragment with polish

and traces of red ochre on the pointed, rounded distal surface. The
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bone tool was likely hand-held and may have been used to apply red

ochre to some other material.

2.2 | Bone elements and comparative samples

Due to absence or low preservation of important muscle attachment

sites on the left hand of the individual, this study focuses on the rela-

tively complete right hand skeleton. For the purposes of this study,

we selected a total of seven entheses, corresponding to eight muscles

attaching onto the thumb and index finger bones (see Table 1; see

detailed depictions in Karakostis & Lorenzo, 2016; Karakostis

et al., 2017; Karakostis, Hotz, Scherf, Wahl, & Harvati, 2018;

Karakostis, Hotz, Tourloukis, & Harvati, 2018; Karakostis,

Vlachodimitropoulos, Piagkou, et al., 2018). These muscle attachment

sites correspond to muscle groups that play a central role for human

manual grasping movements dichotomized into power versus preci-

sion grips (Clarkson, 2000; Kivell, 2015). Previous studies have used

them to successfully distinguish individuals of different lifelong occu-

pation, differentiating, for example, laborers like stonemasons who

exert primarily power-grip tasks versus workers like tailors or painters,

who practice primarily precision-grasping activities (Karakostis

et al., 2017; Karakostis, Hotz, Tourloukis, & Harvati, 2018). Impor-

tantly, in individual 15-06, these entheses were well-preserved and

showed no pathological lesions (i.e., no osteophytic or osteolytic

enthesopathies). Unfortunately, other potentially informative

entheses, such as those of the fifth ray (see Karakostis et al., 2017;

Karakostis, Hotz, Tourloukis, & Harvati, 2018), were damaged and,

therefore, not studied further. Following Karakostis, Jeffery, and

Harvati (2019), Karakostis and Lorenzo (2016), Karakostis, Wallace,

et al. (2019), we developed 3D models of the muscle attachment

areas using a Breuckmann SmartScan structured-light scanner

(Hexagon Inc., Baden, Germany), whose structured-light technology

can provide a measuring accuracy of 9 μm.

Our comparative approach relies on the use of 3D scans from

45 male skeletons belonging to the mid-19th century anthropological

collection Basel-Spitalfriedhof, which is housed in the Museum of

Natural History of Basel, Switzerland. These scans were developed

using the same surface scanning technology (Karakostis et al., 2017).

Permission for access has been officially granted by the latter institu-

tion, which is fully responsible for the curation and scientific study of

these human skeletons (according to Swiss law). The lifelong occupa-

tion of these individuals is documented in detail. Furthermore, they

were below 50 years old at the time of death and were not directly

related. Unlike other documented anthropological collections, the

archived records for our sample preserve information on the long-

term occupational activities of each individual, including different pro-

fessions, their durations, exact position at work (hierarchy), and hiring

organizations or institutions (Hotz & Steinke, 2012; Karakostis

et al., 2017). Moreover, there is archived information available on the

individuals' official medical records, genealogical information, and

socioeconomic data (Hotz & Steinke, 2012). Previous research applied

our novel methods of entheseal analysis on this rarely documented

sample and found that the multivariate patterns of hand entheses

directly reflect the individuals' long-term occupational activities

(Karakostis et al., 2017).

In order to provide additional insight on modern human occupa-

tional variability, we included in the comparative sample 3D models

from the hand skeletons of five Paleolithic modern human individuals

(two females and three males) from diverse geo-chronological con-

texts in Eurasia and North Africa (Table 2). These were selected

because they present relatively complete and well-preserved hand

bonesets, with nonpathological muscle attachment sites. Previous

research conducted by some of us found that they can present dis-

tinctive power- or precision-grasping entheseal patterns (Karakostis,

Hotz, Scherf, et al., 2018; see also results of this study).

2.3 | Precise delineation of entheseal 3D surfaces

The method used to define the exact borders of muscle attachment

surfaces on the bones has been previously introduced and tested in

Karakostis, Jeffery, and Harvati (2019), Karakostis and Lorenzo (2016),

Karakostis, Wallace, et al. (2019); also see paragraph below), pre-

senting significant intraobserver and interobserver repeatability (maxi-

mum mean error was 0.60%). Furthermore, this method is proven to

show significant precision across different scanning technologies

(i.e., computed-tomography scanning, laser scanning, and structured-

TABLE 1 The anatomical location of the seven entheses used and the function of their eight associated muscles

Muscles Abbreviation Main action Analyzed attachment site

Abductor pollicis ABP Abducts the thumb Radial base of the first proximal phalanx (same

entheseal area for both muscles)

Flexor pollicis brevis FPB Flexes the first metacarpophalangeal joint

Adductor pollicis ADP Adducts the thumb Ulnar base of the first proximal phalanx

First dorsal interosseous DI1 Abducts the second finger Radial base of the second proximal phalanx

First palmar interosseous PI1 Draws second finger towards the third finger Ulnar base of the second proximal phalanx

Oponnens pollicis OP Abducts, rotates, and flexes the thumb Radial diaphysis of the first metacarpal

Flexor pollicis longus FPL Flexes the first distal phalanx Palmar diaphysis of the first distal phalanx

Extensor pollicis brevis EPB Extends the thumb Dorsal base of the first proximal phalanx
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light scanning) (Karakostis, Hotz, Scherf, et al., 2018; Karakostis, Hotz,

Tourloukis, & Harvati, 2018; Karakostis, Vlachodimitropoulos,

Piagkou, et al., 2018). In addition to diverse modern human samples, it

has also been successfully applied on fossil hominins and laboratory

animal species (rats and turkeys) (Karakostis et al., 2017; Karakostis,

Hotz, Tourloukis, & Harvati, 2018; Karakostis, Jeffery, &

Harvati, 2019; Karakostis & Lorenzo, 2016; Karakostis, Wallace,

et al., 2019). The entire delineation process (see paragraph below) can

be carried out using the tools and filtering algorithms of the open-

access software Meshlab version 1.3.3 (CNR-INC, Rome, Italy).

During this procedure, the entheseal areas are digitally delineated on

the bone 3D models based on surface elevation, coloration, and irregular-

ity (Karakostis et al., 2017; Karakostis, Hotz, Tourloukis, & Harvati, 2018;

Karakostis, Jeffery, & Harvati, 2019; Karakostis & Lorenzo, 2016;

Karakostis, Wallace, et al., 2019). The exact steps of the applied protocol

are illustrated in Figure 2. Among these three criteria, the most important

one is the presence of distinctive surface elevation (i.e., projecting or

depressed bone surface). Evaluating these criteria is carried out with the

assistance of 3D imaging filters that color-map the surface of the bone

depending on its coloration (i.e., using Meshlab's “equalize vertex colors”

filter; Figure 2b) and/or its elevation and irregularity (i.e., using surface

curvature filters available in Meshlab, such as “discrete curvatures”;

Figure 2c). Subsequently, for optimal use of these filters in defining the

exact borders of entheses on the bone, the observer should apply them

on a bone region that encompasses the muscle attachment site as well as

its immediately surrounding bone area (i.e., a flatter zone of surface circu-

lating the enthesis; see Figure 2d), using filters such as “curvature principal

directions” or “calculation of geodesic distances” within entheseal areas

(Figure 2e). Finally, the flatter area surrounding the entheseal surface

(i.e., dark blue zone in Figure 2e) is virtually removed and the resulting 3D

area is computed in square mm (Figure 2f) or extracted as PLY files for

geometric morphometric analysis (see last section of Section 2).

2.4 | Multivariate 3D analysis of muscle synergy
groups

Following our recently developed approach (Karakostis et al., 2017), the

resulting surface area measurements (in square mm) were adjusted for

overall size using the geometric mean approach (Mosimann, 1970; Jungers,

TABLE 2 Basic characteristics of the comparative samples used in this study, including specimen names, sex, location, and chronology in
cal BP

Specimen (s) Sex Location Date

Individual 15-06 Female Peruvian Andes 8,536–8,386

Abri Pataud 3 Female Europe 28,000–26,000

Qafzeh 9 Female Near East 130,000–100,000 / 92,000 ka

Arene Candide 2 Male Europe 11,800–10,900

Ohalo 2 Male Near East circa 19,000

Nazlet Khater 2 Male North Africa 44,000–32,000

Basel-Spitalfriedhof Collection (45 individuals) Males Europe Mid-19th century

F IGURE 2 A step-by-step summary of the protocol applied for
delineating the 3D areas of entheses on the bones, previously
introduced and tested by Karakostis, Jeffery, and Harvati (2019),
Karakostis and Lorenzo (2016), Karakostis, Wallace, et al. (2019). The
example depicted corresponds to the insertion site of muscle
opponens pollicis in the right first metacarpal of Feature 15-06, from a
lateral (a, b, c, and f; distal is up) or proximolateral (d and e; distal is
down) point of view. The process includes the development of high-
resolution 3D surface models (a), color filtering using the filter
“equalize vertex colors” (b), surface curvature filtering using the filter
“discrete curvatures” (c), selection of the entheseal surface in addition
to a thin zone of flatter surrounding “normal” bone area (d),

determination of the exact borders of entheses using the filter
“curvature principal directions” or “calculation of geodesic distances”
(e), cropping of the surrounding flatter bone area (i.e., blue zone in
panel e), and calculation of entheseal surface size in square mm (f).
The resulting 3D area can also be exported for precise landmark-
based 3D shape analysis (Karakostis, Hotz, Tourloukis, &
Harvati, 2018)
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Falsetti, & Wall, 1995; e.g., see Almecija, Moya-Sola, & Alba, 2010;

Karakostis et al., 2017; Karakostis, Hotz, Tourloukis, & Harvati, 2018;

Karakostis, Jeffery, & Harvati, 2019 for applications to hand bones). This

specimen-by-specimen technique has been recommended as a highly effi-

cient way for isometrical size adjustment (Elewa, 2010; Lycett, Cramon-

Taubadel, & Foley, 2006). Following this approach, each entheseal mea-

surement (in square mm) was divided by the geometric mean of all seven

measurements from the same individual (Almecija et al., 2010; Karakostis

et al., 2017). Therefore, the resulting values represent each entheseal

area's proportion of the individual's geometric mean (Figure 3).

The adjusted measurements of all seven entheses were used as vari-

ables in a principal component analysis (PCA), without any prior group

assumptions for the individuals (Figure 4). A correlation matrix was used

due to distinctive ranges among variables. The seven variables met all

basic assumptions for a PCA, including sample size requirements

(a minimum of five specimens per variable), approximately normal distri-

bution (based on normal probability plots; Field, 2013), and no significant

outliers (based on the z-scores approach; Field, 2013). The number of

principal components (PCs) plotted was decided based on the scree-plot

approach (Cattell, 1966; Field, 2013).

2.5 | Analysis of opponens pollicis' entheseal 3D
shape and muscle moment arms

The entheseal patterns exhibited by 15-06 were characterized by the

great proportional size of the attachment for opponens pollicis

(Figure 3; Tables 1 and 3), a muscle of central importance for thumb

opposition and precision grasping. Therefore, we investigated

whether the 3D shape of this individual's enthesis was proportionally

more projecting, possibly providing the attaching muscle with greater

moment arm lengths and force-producing capacities (Karakostis, Hotz,

Scherf, et al., 2018; Karakostis, Hotz, Tourloukis, & Harvati, 2018;

Karakostis, Vlachodimitropoulos, Piagkou, et al., 2018; Maki &

Trinkaus, 2011; Ward et al., 2010); also see arguments in Section 4).

For this objective, we employed a recent approach for analyzing

entheses using landmark-based 3D geometric morphometrics

(Karakostis, Hotz, Tourloukis, & Harvati, 2018) with verified

intraobserver and interobserver precision (i.e., landmark placement

error was less than 4% across landmarks; Karakostis, Hotz,

Tourloukis, & Harvati, 2018).

Briefly, the delineated and cropped 3D surfaces of entheses (PLY

files) were imported into the Geomorph package of R-CRAN

(Adams & Otárola-Castillo, 2013). Then, following the approach of

Karakostis, Hotz, Scherf, et al., 2018; Karakostis, Hotz, Tourloukis, &

Harvati, 2018; Karakostis, Vlachodimitropoulos, Piagkou, et al., 2018,

we digitized a total of six geometrically defined landmarks at the out-

line of the enthesis (Figure 5). Based on these fixed points, we calcu-

lated a set of 30 equidistant semilandmarks on the entheseal surfaces,

which were allowed to slide along tangent planes on the 3D surface

following a minimum bending energy criterion (Adams, Rohlf, &

Slice, 2013). Subsequently, we applied Procrustes superimposition on

the raw coordinates of the 36 landmarks, in order to transform them

into Procrustes coordinates and use them as variables for a shape

F IGURE 3 Jitter plots showing the entheseal surface values (square mm) for Cuncaicha 15-06 (black) and the comparative samples across
seven muscles, after adjusted for size using the geometric mean. The entheses of the four thenar muscles—and especially that of opponens
pollicis—are proportionally high. The muscles abbreviated are opponens pollicis (OP), abductor pollicis/flexor pollicis brevis (ABP/FPB), adductor
pollicis (ADP), extensor pollicis brevis (EPB), dorsal interosseous 1 (DI1), palmar interosseous 1 (PI1), and flexor pollicis longus (FPL)
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PCA (Figure 6). Shape changes were visualized using warped surfaces

(using the thin-plate spline method), following Adams et al. (2013).

In addition, to verify that greater entheseal projection for

opponens pollicis influences joint torque by regulating moment arm

lengths (Maki & Trinkaus, 2011; Ward et al., 2010), we estimated

these for each individual hand skeleton in our samples using the 3D

models of their metacarpals and associated trapezia. Moment arms

were calculated for both actions of opponens pollicis (Maki &

Trinkaus, 2011; Marzke et al., 1999), involving thumb abduction (see

side illustration in Figure 7) and flexion (see bottom illustration in

Figure 8) at the carpometacarpal joint. Both processes were carried

out using the software Avizo (Thermo Fisher Scientific Inc., Wal-

tham, MA). First, we virtually placed the two bones in full articula-

tion and increased the distance between their adjoining articular

surfaces by 1.5 mm (i.e., the mean inter-articular joint space for the

F IGURE 4 Plots of the correlation principal component analysis
based on seven entheseal variables (size-adjusted surface
measurements) and all 51 individuals: (a) principal component 1 to
principal component 2, with sample legend and (b) principal
component 3 to principal component 4. No prior group assumptions
were made but convex hulls were added a posteriori for visualization

TABLE 3 Statistics of the correlation principal component analysis based on seven entheseal variables (size-adjusted surface measurements)
and all 51 individuals. For muscle abbreviations, see Table 1

Principal component Eigenvalue Variance explained (%)

Factor loadings

OP ABP/FPB ADP EPB FPL DI1 PI1

1 2.05 29.23 0.61 0.78 0.36 −0.74 −0.55 0.30 −0.04

2 1.65 23.57 0.35 0.02 0.54 −0.14 0.60 −0.74 −0.56

3 1.15 16.47 0.19 −0.03 −0.32 −0.48 0.36 −0.33 0.74

4 0.96 13.77 0.56 0.19 −0.65 0.35 −0.07 −0.16 −0.22

Total 83.03

F IGURE 5 Lateral view of a male right thumb metacarpal from
the mid-19th century Basel-Spitalfriedhof collection (distal is up),
indicating the locations of the six geometrically defined landmark
points on the insertion enthesis of opponens pollicis, which were used
in the geometric morphometric analysis. These comprised the basis
for calculating 30 surface sliding semilandmarks
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thumb's carpometacarpal joint in modern humans; Koff, Ugwonali,

Strauch, Rosenwasser, & Ateshian, 2003). Subsequently, as demon-

strated in Figures 7 and 8, we drew a vector representing the mus-

cle's line of action, which was defined by linking the most central

point of the muscle's origin enthesis on the trapezium's tubercle

with the most central point of the metacarpal's insertion site. The

most central point of each enthesis was defined as its geometric

center, virtually calculated using the tools of the Avizo software. For

the metacarpal insertion site, this was typically located within the

most elevated region of the attachment surface area (e.g., see bot-

tom illustration of Figure 8). In cases where the trapezium was not

preserved or unavailable (i.e., for fossil individual Arene Candide 2),

the likely position of the trapezium tubercle was approximated. The

resulting lines of action in our samples (e.g., see illustrations in Fig-

ures 7 and 8) reflect those indicated and/or depicted in previous

biomechanical and morphological research on this muscle (Maki &

Trinkaus, 2011; Marzke et al., 1999). Then, after virtually defining

the geometric center of the intrajoint space area (i.e., the axis of

rotation), we quantified moment arm by measuring its perpendicu-

lar distance to the muscle's line of force action (Lieber &

Ward, 2011; Ward et al., 2010), both for abduction (see side illus-

tration of Figure 7) as well as flexion (see side illustration of

Figure 8) at the carpometacarpal joint. Given that moment arm is

affected by the overall size of individuals, we also calculated “rela-

tive moment arm” by dividing each moment arm value by the

corresponding metacarpal bone length (see Katzenberg &

Grauer, 2018), which was also measured in mm using Avizo. For

each muscle action (abduction or flexion), we assessed the degree

of correlation between entheseal shape (PC1 scores) and moment

arm (both raw and relative values) using the Spearman's Rho coeffi-

cient (Field, 2013). Moreover, for each of the two muscle actions,

we compared raw and relative moment arm between the 45 recent

modern humans and the 6 early foragers using Mann–Whitney

U tests. These nonparametric tests were preferred due to normality

violations. For ensuring measuring repeatability, all moment arms

F IGURE 6 Plot of the shape principal component analysis of the 3D insertion area of muscle opponens pollicis (principal components 1 and
2). Individuals were colored by group following the sample legend of Figures 3 and 4 (i.e., Cuncaicha 15-06: black, Eurasian Paleolithic
foragers: red, lifelong precision laborers: green, lifelong heavy manual laborers: blue). The upper side figures represent the pattern of shape
variation along the first principal component based on the visualization technique of warped surfaces (Adams et al., 2013), while the lower
side illustrations of metacarpals (palmar aspect, distal is up) demonstrate how these shape differences represent the degree of entheseal
projection away from the surrounding bone area (the muscle's line of force is depicted in Figures 7 and 8). Factor loadings are provided in
Table 3
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were measured twice by the same author (F. A. K.) and the

intraobserver error was found to range between 0 and 3.66%.

3 | RESULTS

As demonstrated in Figure 3, the size-adjusted entheseal measure-

ments of the thenar muscles (i.e., the insertion sites of opponens

pollicis, adductor pollicis brevis, and the common insertion area of

abductor pollicis brevis and flexor pollicis brevis) are relatively large in

Cuncaicha individual 15-06. The most striking value is that of the

insertion site of opponens pollicis, a muscle of fundamental contribu-

tion to thumb opposition for numerous power and precision grasping

tasks (Karakostis et al., 2017; Karakostis, Hotz, Tourloukis, &

Harvati, 2018; Kivell, 2015). For that enthesis, 15-06 has the highest

size-adjusted value across our prehistoric and recent samples. By con-

trast, the other four entheses are proportionally small in comparison

to other individuals. Nevertheless, these low values are mainly the

effect of size-adjusting using the geometric mean for each individual

(see in Karakostis, Jeffery, & Harvati, 2019. Essentially, the scores of

these four entheses appear proportionally low for individual 15-06

due to the unusually high values of the three thenar entheses.

3.1 | Multivariate 3D analysis focusing on muscle
synergy groups

We ran a PCA on the size-adjusted variables to identify potential mul-

tivariate correlations across entheses that may link 15-06 with a dis-

tinctive muscle synergy group and/or occupational tendency

(Karakostis et al., 2017). Based on the recommendation of the scree-

plot technique (Field, 2013), we plotted four PCs, representing

83.03% of total variance in the sample (Figure 4). Our multivariate

approach revealed a main axis of variance (i.e., PC1; 29.23% of total

variance) where scores clearly differentiated long-term heavy manual

workers (presenting a power-grasping entheseal pattern) from lifelong

F IGURE 7 Left: A summary of the technique applied for
measuring each individual's abduction moment arm (r) for muscle
opponens pollicis, after virtually defining the muscle's line of action
(LOA) and axis of rotation (C). The exact steps of the process are
described in Section 2. The thumb bone 3D models are shown from a
palmar point of view and correspond to individual 15-06's right
trapezium, metacarpal, proximal phalanx, and distal phalanx (from
bottom to up). Right: Bivariate plot of shape principal component
1 (shape PC1) versus relative moment arm, including the significant
output of the Spearman's Rho correlation test (upper right side of the
plot). The results of the test before size-adjustment are outlined in
Section 3. Relative moment arm was calculated by diving the raw
measurements by the corresponding metacarpal length (see Section 2)

F IGURE 8 Below: A summary of the technique applied for
measuring each individual's flexion moment arm (r) for muscle
opponens pollicis, after virtually defining the muscle's line of action
(LOA) and axis of rotation (C). The exact steps of the process are
described in Section 2. The thumb bone 3D models are shown from a
lateral point of view (palmar is up) and correspond to individual
15-06's right trapezium, metacarpal, proximal phalanx, and distal
phalanx (from left to right). Above: Bivariate plot of shape principal
component 1 (shape PC1) versus relative moment arm, including the
significant output of the Spearman's Rho correlation test (upper right
side of the plot). The results of the test before size-adjustment are
outlined in Section 3. Relative moment arm was calculated by diving
the raw measurements by the corresponding metacarpal length (see
Section 2)
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workers of lower intensity and more precise daily labor (showing a

precision-grasping entheseal pattern involving the thumb and index

finger) (Figure 4a). Early modern humans show both positive and neg-

ative PC1 values. Specifically, two of them show a precision grasping

pattern, another two exhibit a power-grasping pattern, and one pre-

sents an intermediate PC1 score (Figure 4a).

Individual 15-06 shows a very high positive PC1 value that

reflects a strong multivariate correlation among her entheses for the

thumb's thenar muscles and the first dorsal interosseous muscle of

the index finger (see Figure 4a and Table 3). This distinctive score cau-

ses 15-06 to overlap exclusively with lifelong precision workers, such

as professional tailors and painters (Karakostis et al., 2017), and to

clearly differ from lifelong heavy manual laborers (i.e., construction

workers). The scores on PC2 and PC3 are less informative for the pur-

poses of this study, as they represent entheseal patterns that show

extensive overlapping across all groups (Figure 4 and Table 3). Finally,

the value of Feature 15-06 on PC4 (13.77% of total variance) is indic-

ative of a proportionally very large enthesis for muscle opponens

pollicis, which differentiates this individual from all recent and prehis-

toric specimens of the sample (Figure 4b).

3.2 | Opponens pollicis' entheseal 3D shape and
biomechanical efficiency

Considering that both our univariate and multivariate approaches

highlighted the distinctively large proportional size of the opponens

pollicis' enthesis (Figures 3 and 4a; Table 3), we carried out a separate

3D analysis to investigate its shape characteristics (Figure 6) and

whether they correlate with the attaching muscle's moment arm for

abduction (Figure 7) and flexion (Figure 8). In contrast to the results of

the multivariate analyses focusing on the relationship among different

entheses (Figure 4), the 3D shape analysis of the metacarpal enthesis

of opponens pollicis showed extensive overlapping between the two

occupational groups, in all shape PCs (Figure 6). Variation along PC1

(31.42% of sample variance) represents shape differences in the

degree of entheseal surface projection and breadth (see depicted

shape changes in the side illustrations of Figure 6). The remaining

shape PCs were not depicted because they presented extensive over-

lapping across all populations and occupational groups, without pro-

viding relevant information on the shape attributes of 15-06.

Along with a few recent modern humans, all prehistoric foragers

in our sample showed high negative PC1 values, reflecting relatively

elevated and wide entheseal surfaces. The scores of shape PC1 were

found to be strongly correlated with the attaching muscle's moment

arm, both for abduction (Figure 7) as well as flexion (Figure 8). When

focusing on abduction (Figure 7), the correlation was strong both

when using raw moment arm measurements (p-value <.01; rs-value:

−.78) as well as size-adjusted values (p-value <.01; rs-value: −.83)

(Figure 7). Individuals 15-06 and Abri Pataud 1 (Upper Paleolithic

female from Europe) share similarly long moment arms (9.78 and

9.49 mm, respectively) and extreme negative PC1 scores. The signifi-

cant differences in abduction moment arm between recent modern

humans (mean: 7.61 mm; SD: 0.77) and early foragers (mean:

8.94 mm; SD: 0.71) was confirmed by the results of the Mann–

Whitney U tests, both on the raw measurements (p-value <.01; U-

value: 18) and the size-adjusted values (p-value <.01; U-value: 41.5).

The average difference between the groups was 17.41 and 22.22%,

respectively. Similarly, regarding thumb flexion, a strong and negative

correlation was found between shape PC1 and raw (p-value <.01; rs-

value: −.73) as well as size-adjusted (p-value <.01; rs-value: −.78)

moment arm estimations. Again, female individuals 15-06 and Abri

Pataud 1 presented very long moment arms (7.91 and 7.63 mm,

respectively). The Mann–Whitney U tests indicated a statistically sig-

nificant difference in flexion moment arms between early foragers

(mean: 7.57 mm; SD: 0.22) and recent modern humans (mean:

6.44 mm; SD: 0.76), both when using raw moment arm measurements

(p-value <.01; U-value: 20) as well as size-adjusted values (p-value

<.01; U-value: 9). The mean difference between the groups was 17.55

and 20.00%, respectively.

4 | DISCUSSION

4.1 | Evidence for habitual precision grasping
behavior

Previous research hypothesized that the Peruvian high-altitude indi-

vidual 15-06 from Cuncaicha shows a distribution of bone attrition in

her skeleton that could be the result of intense crafting physical activi-

ties relying on coordinated corporal movement and manual precision.

This hypothesis, which aligns with the interpretation of habitual activi-

ties in Paleoindian hunter-gatherer communities derived from modern

ethnographic paradigms (Waguespack, 2005), is also supported by the

discovery of three small associated tools (Figure 1), whose manufac-

ture and use would require a certain degree of precision grasping

involving the thumb and the index finger (e.g., Key & Lycett, 2018).

Based on the literature, such habitual tasks could have involved lithic

tool knapping, food processing (e.g., cutting, defleshing, and

disarticulating animal carcasses), or hide processing for garment mak-

ing (Marzke, 2013; Key & Lycett, 2018; also see Karakostis, Hotz,

Tourloukis, & Harvati, 2018). Similar associations between bone attri-

tion and precise crafting labor have also been made for more recent

female individuals from other high-altitude archaeological sites

(e.g., Becker, 2016). For instance, a recent study of a middle-aged

female from the Bolivian highlands (Tiwanaku culture, ~1,000 cal BP)

reported a very similar distribution of osteoarthritis in the skeleton

(Becker, 2016). The hand remains from that burial presented osteoar-

thritis particularly at the thumb and index finger joints, while the

enthesis of opponens pollicis on the pollical metacarpal was pro-

nounced. Based on the artifacts associated with this burial, as well as

the surrounding archaeological context, Becker (2016) linked the

above osteological characteristics with the habitual performance of

precise crafting labor (likely pottery making or weaving).

Similarly, the Cuncaicha individual 15-06 is also a middle-aged

female presenting an osteoarthritis distribution that possibly reflects
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precise crafting labor body postures (Francken et al., 2018). The find-

ings of our two separate analyses indicate that this individual shows a

proportionally large and projecting attachment site for muscle

opponens pollicis (Figures 3 and 6), together with a multivariate pattern

among entheseal surface areas that directly reflects a precision-

grasping muscle synergy group involving the thumb and the index fin-

ger (Figure 4a). Such a precision-grasping pattern was only found

among habitual precision workers of a recent historical sample with

lifelong occupational documentation (e.g., professional long-term tai-

lors or painters). In this study, the separation between the dichoto-

mized occupational tendencies of power versus precision grasping

groups appears to be slightly lower than in our previous research on

the same reference sample (Karakostis et al., 2017), as observed in the

PCA analysis involving different entheseal surface areas (Figure 4a).

This slight discrepancy is due to the exclusion of two entheses of the

fifth ray as a result of their bad preservation in individual 15-06 (see

Section 2).

4.2 | Biomechanical implications of the 3D shape
analysis (opponens pollicis)

Based on our previous anthropological and animal laboratory studies

on entheses (Karakostis et al., 2017; Karakostis, Jeffery, &

Harvati, 2019; Karakostis, Wallace, et al., 2019), physical activity can

be accurately predicted using multivariate analyses that focus on cor-

relations among different entheses of muscles that act synergistically.

In contrast, directly comparing the morphology of each entheseal

structure across distinct individuals or groups seems to be more prone

to the effects of numerous factors of entheseal variability, such as

gene variants, biological age, body size, hormones, nutrition, and

others (Karakostis, Jeffery, & Harvati, 2019; Schrader, 2019). This

observation is consistent with the present study's findings on the 3D

shape of the metacarpal enthesis of opponens pollicis (Figure 6), which

showed clear overlap between heavy manual laborers and precision

workers (in contrast to our multivariate analyses; see Figure 4).

Even though that 3D geometric morphometric analysis of a single

enthesis was not informative on the individuals' habitual grasping ten-

dencies, it revealed that Feature 15-06's opponens pollicis attachment

is highly projecting away from the surrounding metacarpal bone sur-

face and its joints (see side illustrations of Figure 6 depicting entheseal

variation relative to surrounding bone area; also see Figures 7 and 8).

That trait was shared with Paleolithic hunter-gatherers from diverse

geographic and chronological contexts (Eurasia and North Africa), as

well as a few robust recent individuals from Basel (Figure 6; Table 2).

More importantly, our analyses showed that this relative bone projec-

tion is strongly correlated with the attaching muscle's moment arms

(for abduction and flexion), which significantly differ between early

foragers and our recent human sample (see Results). This association

occurs because greater bone surface elevation at this muscle attach-

ment site directly increases moment arm lengths and naturally affects

joint torque (see side illustration of Figure 7 and bottom illustration of

Figure 8), which is mathematically defined as the product of muscle

force and moment arm (Lieber & Ward, 2011). Joint torque comprises

a direct indicator of biomechanical efficiency and force-producing

capacity (Ward et al., 2010). On this basis, our results suggest that a

diverse group of Paleolithic foragers and the Early Holocene Andean

individual 15-06 shared an increased force-producing capacity for

thumb opposition, which has been suggested as a vital component of

Paleolithic subsistence practices for either power- or precision-

grasping movements (Key & Lycett, 2018; Maki & Trinkaus, 2011;

Niewoehner, 2006). Furthermore, the observed strong correlations

between moment arms and entheseal 3D morphology (Figures 7 and

8) provide original evidence for the functional importance of the

opponens pollicis' muscle attachment area and its direct contribution

to biomechanical efficiency (Maki & Trinkaus, 2011).

Previous work on human cadaveric hands has questioned the

connection between entheses and biomechanical efficiency by

reporting no statistical linear association between muscle attachment

size and the maximum force-producing capacities of the attaching

muscle (represented by the physiological cross-sectional area;

Williams-Hatala, Hatala, Hiles, & Rabey, 2016). However, the individ-

uals used in that work were of advanced biological age (mean of 77.9

± 12 years old), a factor known to deteriorate the mechanisms of

activity-induced muscle remodeling, as well as entheseal bone change

(Foster, Buckley, & Tayles, 2014; Maïmoun & Sultan, 2011). Funda-

mentally, such analyses and interpretations do not consider entheseal

bone projection and the associated muscles' moment arm lengths,

which comprises one of the two fundamental components of biome-

chanical efficiency (Ward et al., 2010). Such a strategy is limited

because it has been biomechanically demonstrated that torque can

vary substantially due to moment arm differences, even when com-

paring two identical muscles that exert the same exact forces

(e.g., Lieber & Ward, 2011; Ward et al., 2010). Essentially, the results

of the present study (Figures 7 and 8) demonstrate that, even if a

muscle's maximum force-generating capacity was indeed not associ-

ated with the raw 3D size of the associated enthesis (Williams-Hatala

et al., 2016), the attachment's position on the bone and degree of rel-

ative projection can still directly influence moment arms and, thus, net

force production (Figures 7 and 8).

Furthermore, given that larger muscle units (i.e., greater physio-

logical cross-sectional areas) produce higher muscle forces that tend

to be less controllable during manipulation (Clarkson, 2000), one

would expect that precise manual activities mostly rely on relatively

smaller muscle forces that can be more accurately directed and coor-

dinated. For such muscle contractions, a longer moment arm would

serve to amplify the net power of such lower -but more easily con-

trolled muscle forces. On this basis, considering the results for Feature

15-06 in the two distinct analyses of this study, it is possible that the

habitual precise grasping behavior of this individual (indicated by the

3D multivariate analysis; Figure 4) was combined with an ability to

produce thumb opposition movements that could be forceful but per-

haps more precisely coordinated (indicated by the 3D shape analysis

and strong moment arm correlations; Figures 7 and 8). Nonetheless, it

must be emphasized that longer moment arms for opponens pollicis

would comprise a biomechanical advantage both for precision as well
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as power-grasping movements relying on thumb opposition

(e.g., those reflected on the entheses of other forager individuals in

Figure 4).

4.3 | The effects of sexual dimorphism and future
research horizons

We note that our thoroughly documented comparative sample is cur-

rently restricted to one sex within a single population. In light of the

functional mechanisms described above, we expect that including

females in our comparative sample would yield a similar entheseal

separation between individuals exerting primarily power grips versus

those exerting primarily precision grasping in their occupations.

Aspects of sexual dimorphism in entheses are described primarily in

terms of entheseal size (Foster et al., 2014; Karakostis &

Lorenzo, 2016; Karakostis, Zorba, & Moraitis, 2014), where males

tend to have larger muscle attachments than females. Because our

approach focuses either on entheseal multivariate patterns

(i.e., proportions among size-adjusted surface area measurements) or

3D shape coordinates (geometric morphometric analysis), and in light

of the archaeological context of the 15-06 burial, we consider our

interpretations to be robust. Furthermore, it is worth noting that both

the male and the female prehistoric foragers of our sample shared

similar 3D shape attributes (Figures 6–8), while the occurrence of

power- and precision-grasping entheseal patterns in both sexes has

been previously verified in past applications of our multivariate

entheseal approach (Karakostis & Lorenzo, 2016).

Nevertheless, future work specifically addressing variation,

including sexual dimorphism in other geographically and temporally

diverse populations of known lifelong occupation, will serve to refine

our results. In addition, the inclusion of individuals from other Early to

Middle Holocene archaeological sites in the central Andean region,

such as Quiqché, Quipa Pucusana, or Santo Domingo (Beynon &

Siegel, 1981), where similar patterns of degenerative osteological

changes have been reported, will further enhance our understanding

of manual activities and foraging strategies in the region.

5 | CONCLUSIONS

The results of our study provide original biocultural evidence of

precise manual activities in one of the oldest archaeological con-

texts of the Peruvian highlands. By proposing a meaningful link

between individual 15-06's habitual grasping performance,

arthritic lesions, and associated artifacts, our findings confirm pre-

dictions about the precise manual tasks of early New World female

hunter-gatherers (Waguespack, 2005). Furthermore, the highly

projecting entheseal 3D shapes and relatively long moment arms

for muscle opponens pollicis in 15-06 and other prehistoric hunter-

gatherers are directly indicative of high force-generating capacity

for thumb opposition. Overall, we argue that such subsistence and

crafting practices were vital for the survival of early human

hunter-gatherer groups, such as those inhabiting the Peruvian

Andes. Given that similar activity patterns are also observed in

much later archaeological contexts from this area (e.g., see

Becker, 2016), as well as among recent hunter-gatherer groups

(Waguespack, 2005), our observations provide support for the

value of ethnographic evidence in making biomechanical infer-

ences for past populations based on skeletal activity markers.
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