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FORUM REVIEW ARTICLE

Repair of Oxidative DNA Damage and Cancer:
Recent Progress in DNA Base Excision Repair

Timothy L. Scott, Suganya Rangaswamy, Christina A. Wicker, and Tadahide Izumi

Abstract

Significance: Reactive oxygen species (ROS) are generated by exogenous and environmental genotoxins, but also
arise from mitochondria as byproducts of respiration in the body. ROS generate DNA damage of which
pathological consequence, including cancer is well established. Research efforts are intense to understand the
mechanism of DNA base excision repair, the primary mechanism to protect cells from genotoxicity caused by
ROS. Recent Advances: In addition to the notion that oxidative DNA damage causes transformation of cells,
recent studies have revealed how the mitochondrial deficiencies and ROS generation alter cell growth during the
cancer transformation. Critical Issues: The emphasis of this review is to highlight the importance of the cellular
response to oxidative DNA damage during carcinogenesis. Oxidative DNA damage, including 7,8-dihydro-8-
oxoguanine, play an important role during the cellular transformation. It is also becoming apparent that the
unusual activity and subcellular distribution of apurinic/apyrimidinic endonuclease 1, an essential DNA repair
factor/redox sensor, affect cancer malignancy by increasing cellular resistance to oxidative stress and by posi-
tively influencing cell proliferation. Future Directions: Technological advancement in cancer cell biology and
genetics has enabled us to monitor the detailed DNA repair activities in the microenvironment. Precise un-
derstanding of the intracellular activities of DNA repair proteins for oxidative DNA damage should provide
help in understanding how mitochondria, ROS, DNA damage, and repair influence cancer transformation.
Antioxid. Redox Signal. 20, 708–726.

Introduction

Shogyo Mujo: nothing can stay unchanged, a layman’s
term equal to the second law of thermodynamics. Genes

cannot escape this truth, but can only delay the destruction of
DNA through cellular mechanisms of genome integrity
maintenance, that is, DNA repair (80). DNA repair pathways,
which are enzymatically carried out in our body, have
evolved to solve a number of stressful situations to survive as
a single cell and as a multicellular organism. Decades of re-
search have established several distinct DNA repair path-
ways: direct reversal, base excision repair (BER), nucleotide
excision repair (NER), mismatch repair (MMR), damage by-
passing, DNA double-strand breaks (DSBs) repair via non-
homologous end joining (DSBR via NHEJ), and DSBR via
homologous recombination (DSBR via HR) (Fig. 1). The
frameworks of the DNA repair pathways modeled in the 70s
and 80s have been revised with subpathways as details

emerged. Interactions among the repair pathways became
apparent as studies identified particular repair proteins in-
volved in multiple repair pathways. The convergence of DNA
repair pathways demonstrates how organisms have evolved
to respond and utilize available DNA repair proteins in a
variety of environments. Despite the advances in the field, it is
still far from clear how cells survive through many types of
DNA damage in the genome, and elucidating each of these
requires complicated modeling based on in vitro and in vivo
experiments. However, these studies are necessary for de-
signing future preventive medicine and therapeutic strategies
for a plethora of diseases that rely on precise predictions of
DNA damage responses. It has recently become apparent that
reactive oxygen species (ROS) originated in the cells play a
fundamental role in cellular transformation (139). This review
discuses ROS generation from mitochondria first, as the cel-
lular response to oxidative stress and DNA damage is closely
linked to carcinogenesis. Then the primary DNA repair
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mechanism against oxidative DNA damage will be described
in-depth, followed by discussion of how the components of
the repair pathways may influence the cancer transformation.

ROS Generation in the Cell

ROS generation in mitochondria

Eukaryotic cells utilize oxidative phosphorylation
(OXPHOS) in the mitochondria to generate more than 90% of
the intracellular ATP (42). Although ROS can be generated by
the enzymatic reactions of various intracellular oxidases, such
as glucose oxidase and NADPH oxidase, mitochondria are the
major source of ROS generation in the cells. The energy
pooled by the proton (H + ) gradient between the mitochon-
drial matrix and the space between inner and outer membrane
is converted to ATP, while O2 is converted to H2O through
electron transfer mediated by mitochondrial complex I, III,
and IV (C-I, C-III, and C-IV, respectively) (101) (Fig. 2). The
complexes ubiquinone (coenzyme Q10, CoQ10) and cyto-
chrome b-c (cyto c) are the central molecules to transfer elec-
trons (e - ) from NADH (from C-I) or FAD (C-II) to O2. When
Q10 and O2 directly contact, O2 is converted to more reactive
O2

- , the superoxide anion radical (29, 42). Rotenone, a plant
extract commonly used as a pesticide, is a potent inhibitor of
C-I and causes electron leakage from C-I and O2

- formation
(9). C-I is in the inner membrane of mitochondria and O2

-

from C-I is mainly generated inside the matrix. In contrast,
C-III inhibitor antimycin A produces O2

- outside of the inner
membrane, and thus, O2

- may be released from mitochondria

(29). Subsequently, O2
- can be converted to other reactive

species, such as peroxynitrite (ONOO - ) in the presence of
nitric oxide, or cause lipid peroxidation (19, 26, 123). Helping
to counteract the adverse effects of O2

- , cells possess super-
oxide dismutases (SOD) that scavenges O2

- and converts it
into H2O2. H2O2 generated by the reactions of Cu/Zn-SOD
(SOD1) and Mn-SOD (SOD2), present in the cytoplasm and
mitochondria, respectively, can quickly convert O2

- to H2O2,
which is further catalyzed to H2O by catalase or glutathione
peroxidases (93). Once O2

- is converted to H2O2, however, a
highly reactive hydroxyl radical OH� may be produced via
Haber–Weiss reaction (19).

These ROS have profound influences on a number of cel-
lular activities, including cell growth, inflammatory re-
sponses, and apoptosis (51). Although mitochondrial DNA
has been shown to be the direct target, it has not been clear
whether genomic DNA damage are caused by ROS directly
derived from mitochondrial O2

- generation. However,
studies indeed showed that ROS generated in mitochondria
cause oxidative DNA damage and mutations in nuclei (82,
104). A recent study also showed that rotenone treatment
induced 7,8-dihydro-8-oxoguanine (8-oxoG) and cH2AX foci
in the genomic DNA of undifferentiated Caco-2 cells, a human
colorectal adenocarcinoma cell line (130). Considering that
DNA damage increased within 2 h and significant apoptosis
was not observed, it is likely that ROS generated by C-I in-
terruption by rotenone was responsible for the genomic DNA
damage directly or through lipid peroxidation. Whether or
not ROS generated in mitochondria can travel into the nucleus
and damage the genomic DNA is an important question that
would help clarify the role of ROS generated in the mito-
chondria in genomic DNA damage and mutation.

Effect of ROS from mitochondria
on cancer transformation

In addition to the direct effect of ROS on genomic DNA,
ROS also trigger signal transduction cascades, including

FIG. 1. DNA repair pathways in mammals. The five major
DNA repair pathways are direct reversal, DNA BER, NER,
DNA MMR, and DNA DSBR. The Venn diagram illustrates
relations of repair systems to one another. A few DNA repair
enzymes function in multiple pathways, as denoted by the
overlaps in the diagram. DNA damage can be bypassed
during DNA replication by bypassing DNA polymerases.
BER, base excision repair; NER, nucleotide excision repair;
MMR, mismatch repair; DSBR, double-strand break repair.

FIG. 2. Generation of O2
2 in mitochondria. Electron

transfer from Complex I and Complex II (at high redox po-
tential) is carried by coenzyme Q to generate proton gradient
between the inner membrane and inner and outer membrane
space in mitochondria, before oxidized into H2O (at the
lowest redox potential) (101). Immaturely trapped electrons
generate O2

- .
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apoptosis activation (48). A high spike of ROS can also
increase the vulnerability of mitochondrial membrane
permeability transition, which may result in cell death
unless the controlled autophagy (mitophagy) process takes
place. Besides mitochondrial respiration, ROS are also
generated from reactions catalyzed by oxidases, such as
the glucose oxidases and NADPH oxidases, and impor-
tantly from macrophages that cause inflammation in the
surrounding microenvironment.

Recent studies indicate the link between ROS generation
and cell growth signaling influencing cell proliferation and
stress response. Basal activity of c-Jun N-terminal kinase
( JNK) is kept low due to its association with glutathione
S-transferase pi (GSTp). Upon stress induction, including
ROS, GSTp is oligomerized resulting in its dissociation from
and activation of JNK (1). Therefore, ROS production at mi-
tochondria may modulate cell proliferation signaling.
Ohsawa et al. (99) discovered that in Drosophila, mitochondrial
deficiency combined with a particular Ras oncogene mutation
(RasV12) led to ROS generation, which triggered JNK activa-
tion and induction of IL-6 and Wnt homologue, paracrine
factors that promoted cell growth of surrounding cells (non-
autonomous cell growth). Interestingly, growth of the pro-
vocative cells that contained the Ras mutation and
mitochondrial deficiency were not activated; rather, these
cells were weak and eventually dissipated. The study is
among many recent reports that highlight the importance

of mitochondrial activity for the tumor microenvironment
(107, 136).

Cancer cells are, in many cases, found in hypoxic condi-
tions due to its unusual cell growth rate in undeveloped
vasculature, and thus, maintain a lower mitochondrial res-
piration rate than normal tissues. This phenomenon is named
the Warburg effect after Otto Warburg’s pioneering obser-
vation. Importantly, the Warburg effect may lead to a lower
rate of ROS generation due to their low OXPHOS reactions
compared to normal cells. Indeed, using a high-sensitivity
random mutation capture assay (15), Ericson et al. (41) re-
cently found that the mutation rate in mitochondria was
lower in cancer cells than in normal cells. This was a striking
contrast from their previous report that cancer cells showed a
higher rate of random mutations in the genomic DNA than
normal cells (16). Therefore, the rates of mitochondrial DNA
damage and mutations of transformed cells may be lower
than previously studied. While many studies found muta-
tions in mitochondrial DNA of cancer cells (53, 100, 115, 132),
there are also studies that show no statistical difference in the
mitochondrial mutation frequency between cancer and nor-
mal cells (88, 113). The observation reported by Ohsawa et al.
implies that the growth initiating cells, that is, those with Ras
and mitochondrial deficiency, are intrinsically weak and thus,
may not be detected at the time patients are diagnosed with
cancer. Importantly, these growth initiating cells may have
completely different genetic traits and cellular characteristics

FIG. 3. Advance of BER study. Above the time line shown are the major BER reports that impacted the study field. Selected
DNA repair studies other than BER are shown below the timeline as a perspective. Impact of base damage: (81); PARP and
DNA ligase: (34); 8-OH-G discovery: (73); APE1 cloning: (38, 108, 117); MPG cloning: (27, 114); BER reconstitution: (119, 120);
BER ko mice: (52, 121, 146); PTM of BER: (14, 22, 47, 55, 56, 148); BER and hypermutability: (74); cancer resistance: (17);
demethylation: (32, 33, 54). APE1, apurinic/apyrimidinic endonuclease 1; PARP, poly (ADP-ribose) polymerase; PTM,
posttranslational modification; 8-OH-G, 8-hydroxyguanine; ko, knockout.
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from malignant cancer cells. To understand the influence of
mitochondrial activity on cancer transformation, it may be
necessary to involve the cancer microenvironment where
stromal cells, including cancer associated fibroblasts, may
facilitate the growth of cancer cells. While not showing a ro-
bust cell growth themselves, these stromal cells may provide
the growth initiation through mitochondrial dysfunction or
elevated OXPHOS and the associated increases of ROS gen-
eration. The mutation frequency of the mitochondrial DNA of
the stromal cells may be completely different from the tumor
cells whether benign, invasive or metastatic.

Damaged mitochondria are continuously removed and
replaced with newly generated mitochondria. Cellular ability
to maintain the mitochondrial integrity has a profound effect
and is closely associated with the pathophysiology of cells,
including cancer. Many kinds of DNA damage are generated
by ROS attack (19, 43). In the following sections studies of
DNA BER, the primary DNA repair mechanism for the oxi-
dative DNA damage will be reviewed. Then the influence of
the oxidative DNA damage and BER enzymes on cancer
transformation and malignancy will be discussed.

DNA Base Excision Repair

An overview of BER with a simple scheme

BER was once regarded as the simplest DNA repair
mechanism, next to direct reversal. The main reason for this
perception was that separate biochemical analyses of each
step of BER were possible. Thus, in vitro reconstituted BER
assays and structural studies flourished with availability of
recombinant proteins in the 90s (Fig. 3). A testament to the
BER simplicity is that cDNAs of eukaryotic DNA glycosylases
and the AP endonuclease can complement Escherichia coli
mutants of the corresponding orthologous genes (108). In-

deed, the human MPG (aka MAG) cDNA (N-methylpurine
DNA glycosylase) was cloned based on a screening to com-
plement an alkylation sensitive mutant of E. coli (27, 114). The
studies were conceptual extensions of the pioneering study in
this field that cloned the mammalian O6-methylguanine DNA
methyltransferase (MGMT) gene, a DNA repair protein that
complements an E. coli ada mutant via direct reversal of the
alkylated guanine (128). This capability of interspecies com-
plementation by some BER genes is a clear difference from
other DNA repair pathways, such as NER in which the repair
proteins need to interact with each other and with the tran-
scription machinery (30). However, it is now clear that con-
servation between E. coli and the higher eukaryotes is limited,
and that many mammalian specific factors and reactions are
necessary for the whole BER pathway. In addition, the activity
of BER to ‘‘edit’’ small base adducts and damage is utilized for
nonrepair activity in the cells, for example, inducing hyper-
mutability in immunoglobulin genes (74) and maintaining
demethylated status of cytosine in the genome (32, 54, 63,
118). Conversely, it can also be argued that the high conser-
vation of essential BER genes from prokaryotes to humans
underscores the importance of BER for maintenance of ge-
nome integrity.

BER repairs most of the oxidized DNA damage. The basic
components of BER are DNA glycosylases, AP-endonucleases,
DNA polymerases, and DNA ligases (Fig. 4). The BER process
can be considered as a series of DNA processing reactions each
of which is carried out by a DNA repair enzyme. Briefly, the BER
process from base adducts to repair completion are (i) base
removal step, (ii) 3¢-OH generation (3¢-end cleaning) step, (iii) 5¢-
end cleaning step, (iv) DNA synthesis step, and (v) DNA nick-
sealing step. DNA repair enzymes that process these steps,
respectively are: (i) DNA glycosylases, (ii) AP-endonucleases, (iii)
AP lyases commonly associated to many DNA glycosylases and
DNA polymerases, (iv) DNA polymerases, and (v) DNA ligases.

An important consideration is that each reaction conse-
quently leaves a new intermediate lesion in DNA, which is
harmful if the entire repair reaction is not completed through
nick sealing by the DNA ligases. Critically, the generation of
single-strand break (SSBs) by DNA glycosylases or AP en-
donucleases (see below) is even more toxic than the oxidized
bases before the reactions. Thus, the concept of BER coordi-
nation (‘‘hand-off’’) mechanism was proposed in the early
2000s (95, 142). Accordingly, a coordinated BER prevents the
intermediate lesions from causing more harmful conditions,
such as inducing apoptosis. This model was later supported
by many studies thereafter (46, 60, 149).

Detailed mechanism of BER

The basic five steps described above have been through
many major and minor revisions as BER researchers ad-
vanced the field. Notable additions and modifications include
the following.

(i) There are multiple DNA glycosylases identified in
mammals. DNA glycosylases that remove oxidized
bases are 8-oxoguanine DNA glycosylase (OGG1),
endonuclease III-like 1 (NTH1), endonuclease VIII-
like (NEIL)1, NEIL2, NEIL3, and mutY homolog
(MYH). This list excludes uracil DNA glycosylases
(UNGs) and thymine DNA glycosylase (TDG) (31, 78,
102), which are necessary to remove U and T opposite

FIG. 4. Basic steps of BER. (a) Abnormal base damage,
including oxidative and alkylated bases (e.g., 8-oxoG, N3-
methylG, and so on) are recognized and removed by DNA
glycosylases. (b) Consequently, either AP sites or DNA SSBs
are generated at the damaged sites. (c) APE1 generates 3¢-OH
termini for subsequent DNA repair synthesis step processed
by DNA polymerases. (d) pol b is the primary BER DNA
polymerase, which also removes 5¢-ribose moieties to gen-
erate 5¢-P termini at the gap. (e) The DNA nicks with 3¢-OH
and 5¢-P ends (without gaps) will be ligated by DNA ligase I
or III to complete the BER process. 8-oxoG, 7,8-dihydro-8-
oxoguanine; SSB, single-strand break; pol b, polymerase
beta.

INFLUENCE OF OXIDATIVE STRESS ON CARCINOGENESIS 711



G that arise from deamination of C and 5mC, re-
spectively. Additional DNA glycosylases are de-
scribed by Hegde et al. in detail (58, 59).

(ii) DNA glycosylases belong to either of two classes:
those with their associated AP lyase activity and the
others without the AP lyase activity. When damaged
bases are removed by DNA glycosylases with an AP
lyase activity, AP sites will be further processed
through b-elimination (10) or sequential b- and
d-elimination reaction to become SSBs with 3¢-
phosphor-a, b-unsaturated aldehyde (3¢-PUA), and 3¢-
phosphate, respectively (122, 153). Association of AP
lyase reaction after the base removal has significant
physiological consequences, as many of the base
damage processed by DNA glycosylases become SSBs
with ‘‘dirty ends.’’ Unlike 3¢-OH termini generated by
AP endonuclease, these SSBs should be regarded as
intermediate DNA lesions more harmful than initial
oxidative base damage, such as 8-oxoG. Besides the
fact that DNA glycosylases produce 3¢-PUA and 3¢-
phosphate, all these unusual end structures may be
produced directly by DNA damaging reagents that
directly cause SSBs.

(iii) The AP-endonuclease reaction, simply stated, is to
produce the 3¢-OH termini, an absolutely necessary
priming structure for the subsequent DNA repair
synthesis step carried out by DNA polymerases.
apurinic/apyrimidinic endonuclease 1 (APE1), the
mammalian AP endonuclease, has activities to gen-
erate the 3¢-OH termini from AP sites, 3¢-PUA, 3¢-
phosphoglycolate, and 3¢-phosphate (66). This 3¢-end
cleaning process (3¢-OH generation) can be replaced
with sequential reactions of DNA glycosylases and
polynucleotide kinase (PNK) (36, 141). The combined
reaction on 3¢-phosphate is more efficient than the
reaction catalyzed by APE1 alone (141). However, it
should be noted that this reaction only occurs when the
DNA glycosylases carry out not only b-elimination
but also subsequently d-elimination to generate 3¢-
phosphate end, namely NEIL1, NEIL2. Also NEIL3 was
recently shown to carry out b-d-elimination reaction
(83), although NEIL3-PNK repair has not been demon-
strated in reconstituted biochemical assays. Topoi-
somerase Tyrosyl-DNA phosphodiesterase 1 (TDP1)
solves a unique problem generated by stalled topoi-
somerase I reaction (25, 40). TopoI-DNA covalent link-
age is accumulated in nonreplicative cells and causes
SSBs accumulation and eventually to DSBs. TDP1 dis-
solves this particular DNA-topoI intermediate. In this
repair event, gap-filling reaction by DNA polymerase is
not necessary as there is no excision of damaged base or
nuleotide (25, 40).

(iv) In E. coli, the 5¢-end cleaning step that removes 5¢-
phosphor-ribose moiety as a result of incision by
AP-endonuclease, was not an issue because the
powerful nick translation activity of E. coli PolI had
been already known. For the mammalian BER path-
way, Matsumoto et al. (87) was the first to report that
DNA polymerase beta (pol b) had an AP lyase activ-
ity. In this classic BER pathway also known as ‘‘one
base filling repair’’ or ‘‘short patch (SP) repair,’’ pol b
fills the one base-gap and DNA ligase I seals the nick.

The 5¢-end cleaning has to be processed by FEN1
when the 5¢-moiety is resistant to AP lyase activity,
such as oxidized AP site product (75). In this BER
subpathway, the FEN1 reaction leaves a multiple ba-
ses-long gap in the DNA and thus, is called ‘‘long
patch’’ (LP) repair. Thus, the importance of distin-
guishing the two modes of BER is that in the cells SP
and LP BER may be separately necessary depending
on the condition of intermediate lesions. Another sit-
uation where 5¢-end cleaning is necessary is immature
reaction of DNA ligase III at DNA nicks produced by
APE1 reaction, which leaves 5¢-adenylated lesion.
Resolution of this particular lesion is carried out by
Aprataxin (25, 105).

(v) Many mammalian DNA glycosylases and APE1, that
is, BER enzymes that function before DNA repair
synthesis step, possess polypeptide sequences that are
not directly related to their corresponding DNA pro-
cessing activities. Usually found at their N-termini,
these polypeptides are about 60–150 amino acids-long,
and not found in their prokaryotic orthologs. A num-
ber of studies have found that these unconserved re-
gions provide interacting platforms among BER
proteins for facilitating the reactions. Details of these
domains in DNA glycosylases were reviewed previ-
ously (58, 59, 66).

(vi) Mammalian BER proteins undergo posttranslational
modifications (PTMs), which modulates their activi-
ties. Most biochemical studies with reconstituted BER
reactions in the 90s were based on recombinant BER
proteins that were expressed and purified from E. coli.
Based on these experiments, it was apparent that
DNA glycosylases were relatively inefficient enzymes.
Therefore, the possibility existed, that in cells BER
proteins were post-translationally modified to in-
crease repair efficiency. Although in vivo BER is far
from understood, studies in the past decade or so
identified multiple kinds of PTMs, including phos-
phorylation (61, 94), acetylation (14), ubiquitination,
and SUMOylation (TDG) (6, 7, 22–24).

(vii) A new subpathway termed nucleotide incision repair
(NIR) where APE1 can directly incise oxidized bases,
and then the lesions are passed to DNA pol b has
been reported (64, 65). In this situation, DNA glyco-
sylases are not involved. The complete mechanism
and impact on the cellular defense of NIR remain to
be elucidated.

In addition to the aforementioned intricacies, poly (ADP-
ribose) polymerase (PARP) and X-ray repair complementing
defective repair in Chinese hamster cells 1 (XRCC1) deserve
separate sections as these two molecules provide layers of
complexities and opportunities for clinical applications with
modulation of the mammalian BER pathway (109). PARP and
XRCC1 do not participate in the direct DNA processing
events, but form a scaffold that exists through almost the
entire BER reaction.

In the early 1990s, PARP1, the major PARP protein, was
found to act as an initial sensor molecule that recognizes SSBs
in the genome. After binding to SSBs, PARP1 becomes active
in catalyzing poly ADP-ribosylation reactions onto its target
proteins (116). A number of proteins to be ADP-ribosylated
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have been identified, including DNA damage responding
proteins DNA ligases, DNA polymerases, and histones (35,
98, 152). However, the main target of the ADP-ribosylation is
PARP itself, and upon the polyADP-ribosylation PARP then
decreases its affinity for the SSBs and thus, is released from the
site, while the automodification results in interacting with
DNA damage response proteins, including XRCC1, ATM,
Ku70/86, and DNA-PKcs. It is believed that the initial binding
by PARP1 has two functional roles for BER. One is to protect
the toxic SSB from triggering cell death signal, and the other is
to recruit BER proteins necessary in the later stages. An im-
portant interaction of PARP1 is established with XRCC1 at an
early point of SSB repair. PARP1 homozygous knockout mice
are viable, but PARP1 - / - mouse embryonic fibroblasts
showed hypersensitivity against many DNA damaging re-
agents, including ionizing radiation and ROS producing
chemicals (37, 138), and double knockout (ko) of PARP1 and
PARP2, a backup of PARP1, turned out to be lethal (91). These
animal studies thus, confirmed PARP’s critical activity in
BER. Other ADP-ribosylase proteins of the PARP family that
are clinically relevant, but less studied, with BER coordination
function are reviewed by Poirier’s group (109). Lethality of
cancer cells, deficient in specific DNA repair, can be synthet-
ically increased by inhibiting PARP. Two groups in 2005 in-
dependently observed efficient lethality of BRCA deficient
cells with PARP inhibitors (20, 45), and use of PARP inhibitors
in clinical trials are underway (85). More recently, PARP1 was
shown to act at replication fork arrest caused by topoisome-
rase inhibitors to facilitate reversal of replication forks (106),
and application of PARP inhibitors combined with topoi-
somerase I inhibitor has been discussed (13). Enzymatic ac-
tivity of PARP has many biological consequences. In addition
to BER enhancement, many pathophysiological conditions
that overactivate PARP have been reported. In these condi-
tions, NAD + , and thus, cellular ATP, is depleted due to
PARP’s ADP-ribosylation reaction, and the energy depletion
induced necrosis. In the original study, where middle cerebral
artery occlusion was induced in mice, PARP dependent in-
crease of infarct volume in the brain was observed. Notably,
the inflammation was significantly suppressed by pretreating
the mice with PARP inhibitors. Together, PARP and XRCC1
interact with many BER proteins. Known interacting partners
include DNA Lig III, APE1, and PNK. Among the XRCC1–
BER protein interactions, Lig III and PNK interactions turned
out to be critical for BER efficiency.

Oxidative Base Damage and Cancer

8-hydroxyguanine or 8-oxoG

Among many kinds of base damage that occur due to ROS
and that increase cancer risks (59), the most studied base
damage without a question is 8-oxoG. Although discovered
as 8-hydroxyguanine (8-OH-G), the alternative term 8-oxoG is
more frequently used because of its familiarity and tendency
of this tautomer to mispair with adenine base (8-oxoG:A
mispair). A detailed description of the terminology appears in
a recent review (97) by Nishimura who led the pioneering
studies to characterize this highly mutagenic base damage.
8-OxoG is not only the most studied oxidative base damage,
but its effect on carcinogenesis is shown by many layers of
evidence involving sophisticated chemistry, biochemistry,
structural biology, genetics, and human subject studies.

8-OxoG are generated by singlet oxygen that is readily pro-
duced by UVA and methylene blue treatment of the cells. Its
high rate of mispairing with A during DNA replication makes
this base damage a potently mutagenic oxidative base. In
mammals, the primary enzyme to remove 8-oxoG from the
genome is OGG1. To remove 8-oxoG from the genome, OGG1
cleaves N-glycosylic bonds of the oxidized bases and leaves
SSBs at the site (see below), which will then be processed by
the later BER enzymes. Single nucleotide polymorphisms
(SNP) in the human OGG1 have been reported. A recent meta
analysis conducted by Wei et al. (140) found a significant as-
sociation of the OGG1 S326C SNP and a high risk of lung
cancer. However, OGG1 - / - mice showed no or only mar-
ginal increase in pathogenesis and cancer frequency (4, 76,
112), although an accumulation of damage and increase of
mutations were observed.

Two additional DNA repair enzymes important in the
cellular defense against 8-oxoG are mutT homolog 1 (MTH1)
and MYH. Cellular dGTP pool also contain significant
amounts of 8-oxo-dGTP, which can be incorporated opposite
to A in DNA, and in the next round of DNA replication the
incorporated 8-oxoG would be fixed as a mutation (A:T to C:G
transversion). MTH1 is a dGTPase, which specifically targets
8-oxo-dGTP, and it keeps the incorporation of 8-oxoG in the
nascent strand to a minimum (86). MTH1 deficiency is known
to accumulate 8-oxoG in the genomic DNA and increases
cancer frequency in mice studies. MYH (E. coli MutY ortholog)
is also critical in 8-oxoG repair. MutY was initially identified
in E. coli as a mutator gene (96) and later shown to have a
DNA glycosylase activity removing A from A:G mispair (5).
Shortly after the mutagenic property of 8-oxoG became
known, it was shown that MutY could also remove A from
A:8-oxoG mispair (92). In a separate study, Tchou et al. (129)
found that the relative activity of MutM (the OGG1 ortholog
in E. coli) on 8-oxoG:C base pair was much higher than on a
8-oxoG:A pair. Thus, these studies revealed the well evolved
defense against mutagenic 8-oxoG, whereby MutM repairs
8-oxoG in DNA generated de novo, but leaves misincorporated
8-oxoG opposite to A until MutY removes A (and C is filled in)
to avoid mutation fixation in the next round of replication.

The mammalian MutY ortholog MYH is also a key repair
enzyme to complete the 8-oxoG repair mechanism. The C:8-
oxoG mispair generated de novo by ROS is not practically a
mutation due to the ability of 8-oxoG to pair with C, despite its
high 8-oxoG:A mispairing property. Therefore, mutation be-
comes more probable when A is incorporated in the nascent
strand opposite 8-oxoG during DNA replication. Thus, ac-
cumulation of 8-oxoG may be tolerated at a surprisingly high
capacity in the genome in the OGG1 ko background, until A is
incorporated opposite to 8-oxoG. MYH needs to remove A
that would fix the mutation. Hence, MYH would later be
shown to be a bona fide mutator of which deficiency has been
shown to increase colon cancer risk, and therefore, 8-oxoG
generation definitely increases cancer risk (3). Moreover,
MYH - / - mice were susceptible to small intestinal tumors
when they were exposed to KBrO3 (111); double or triple
deficiencies of OGG1, MYH, and MTH1 were predicted, and
later shown to be more mutagenic (147).

Misincorporation of bases opposite 8-oxoG by bypassing
DNA polymerase was also studied. In a cell biological study,
NIH3T3 cells transfected with 8-oxoG carrying the c-Ha-ras
gene increased its transforming activity significantly (71, 72);
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thus, underscoring the importance of 8-oxoG repair before
mutation fixation. Interestingly, the detailed analysis revealed
that not only G to T mutation, which is predicted by the
misincorporation of A opposite to 8-oxoG, but also G to C
mutation were frequent in the ras gene from transformed
cells. This was most likely due to translesion DNA synthesis
by pol g (eta) (68).

Still the question remains as to why OGG1 deficiency alone
in mice did not show an apparent increase in tumorigenesis (4,
76), despite ample in vitro and cell biological studies showing
accumulation of 8-oxoG, and genomic DNA mutations in the
OGG1 deficient mice. Additionally, it is unclear why an SNP
in OGG1 raises the risk of lung cancer even though ko mice
did not show such an increase in cancer. It is likely that
multiple factors, which vary tissue to tissue, influence the
cancer risk in the situation where 8-oxoG repair is compro-
mised (79). These include the activity of MMR proteins, extent
of apoptosis (which may be enhanced when the amount of
8-oxoG is increased due to OGG1 deficiency), growth factor
expression, inflammation, and immune responses. Although
it will be a difficult task to delineate the development of cel-
lular transformation and malignancy originated from 8-oxoG
for each organ, as described above, 8-oxoG is clearly an ini-
tiator of carcinogenesis, and thus, improving its detection will
be a key factor for cancer prevention.

Finally, a novel effect of 8-oxoG on cellular inflammation is
worth noting. Boldogh et al. (18) reported that 8-oxoG, the free
base generated by OGG1’s DNA glycosylase activity from 8-
oxoG containing DNA, triggered inflammatory response in
human fibroblasts, HeLa cells, and BALB/c mice. Removed
from DNA, the free 8-oxoG base is bound to OGG1, which
then acts as a guanine exchange factor to facilitate the
exchange of GDP to GTP of Ras family GTPases, which
then activates proliferating signal transduction, including
MEK1,2/ERK1,2 kinases (18). Moreover, the same group later
implicated this signaling pathway to allergic lung inflamma-
tion (8). These studies highlight a role of 8-oxoG in ROS me-
diated inflammation and show a new development clearly
different from the notion that 8-oxoG in DNA, not the free
base, is the cause of cancer due to its mutagenicity.

Base damage repaired by NEIL2 and lung cancer

NEIL2 (E. coli endoVIII-like 2) is a DNA glycosylase first
reported by Hazra et al. (57) in 2002 that showed DNA gly-
cosylase activity at oxidative bases, including 5-hydroxyuracil
(5-OHU) and at lesser extent of activity at 5,6-dihydrouracil
and 5-hydroxycytosine. 5-OHU is produced by a sequential
attacks of OH� and O2

- at the 5,6 position of C (39). Recently,
Dey et al. (39) reported a particular set of NEIL2 SNPs asso-
ciated with lung carcinoma. From lung cancer patients’ ge-
nomic DNA, R103Q and R257L mutations in NEIL2 were
frequently observed. In a reconstituted BER assay, including
PNKP, pol b, Lig IIIa, XRCC1, and the wild-type or above two
mutant NEIL2, they observed significant decrease in the
whole BER activity. Because in a lung cell line with NEIL2
down-regulation, they observed a six to sevenfold increase of
HPRT mutation frequency. Taken together, NEIL2 may be
critical in suppressing mutations arising from spontaneous
oxidative DNA damage. While the relatively broad substrate
specificity of NEIL2 makes it difficult to assess a particular
kind of oxidative base damage to link to cancer risk, it is also

independently reported that 5-OHU is highly mutagenic and
thus, it is possible that cells carrying NEIL2 with the particular
SNP accumulate 5-OHU, which increases cancer risk. Muta-
tion spectrum of the mutant NEIL2-carrying cells may be in-
formative in this regard.

Cancer Biology and APE1

Several unique characteristics make APE1 a primary sub-
ject of etiological studies relating BER to pathophysiology,
including cancer and age-related diseases.

(i) To date there is no backup enzyme for its AP endo-
nuclease activity identified in cell biological studies,
although APE2 was reported to increase its 3¢–5¢
exonuclease activity in the presence of proliferating
cell nuclear antigen in vitro (21). This is a surprising
difference from other organisms, which possess
multiple APE1 enzymes. It is expected that cellular
level of APE1 should significantly influence the cel-
lular sensitivity. Ways to downregulate or inhibit
APE1 has been a focus for researchers who hope to
improve therapeutic strategy of cancer by utilizing
the vast knowledge of BER.

(ii) APE1’s major gene regulatory function through redox
activation of activator protein 1 (AP-1) factor may
modulate cell growth signaling pathways signifi-
cantly, as activation of cJun/cFos is a signature of
cancer transformation.

(iii) Both of the above are consistent with multiple obser-
vations that APE1 is up-regulated during cancer
progression. Chemo and radiation therapy resistance
of malignant cancer cells have been associated with
increased expression of APE1 in these tissues.

(iv) A particular SNP of APE1 at the 148th amino acid
residue has been implicated to increase cancer risk
when combined with an XRCC1 SNP (R194W) (62,
69). About 70% of human population carries Asp
residue at the 148th amino acid residue, while the rest
30% carry Glu (23). The D to E amino acid substitution
is a conservative change, and the site of SNP is on the
surface of the protein almost opposite to its AP-en-
donuclease catalytic core in the tertiary structure.
Therefore, the effect of D148E substitution is likely on
APE1 interaction with XRCC1 or other partners.

APE1 is the sole mammalian AP endonuclease of which
endonucleolytic activity has been extensively studied and its
catalytic mechanism is understood very well. Still the current
cancer etiology does not sufficiently explain the mechanism
by which APE1 influences tumor development and adapta-
tion to confer resistance to therapeutic treatments. In other
words, although the mechanism of endonucleolytic DNA
cleaving activity is thoroughly understood, the other APE1
functions are still not understood well. In addition, studies
that link APE1 to disease pathology, including cancer are
many but circumstantial and do not address how known
APE1 activities can lead to cancer development. In addition to
its multiple functions and interacting proteins, expression of
APE1, its subcellular localization, and the status of PTMs
change dynamically in a cellular response to stressful condi-
tions, such as ROS increase. Reviewing studies concerning
APE1 reactions associated with different cellular conditions
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should thus, help us establish a clearer model where APE1
influences pathological conditions. Of note, APE1’s localiza-
tion in nucleoli and interaction with nucleophosmin 1
(NPM1), as well as RNA processing capability are reviewed in
the other articles in this Forum. PTM of APE1 was reviewed in
a recent article (23). It will be briefly mentioned how multiple
kinds of PTM affect APE1’s localization and function. In ad-
dition, factors that interact with APE1 are listed in Tables 1
and 2 (adapted from the thebiogrid.org).

Multiple activities of APE1

In addition to the AP endonuclease function, which is the
best characterized activity, reports have shown other cellular
roles of APE1. As detailed reviews for the other functions are
available in this Forum and elsewhere, they are briefly listed
below with APE1’s interacting partners.

Redox factor 1. In 1992 searching for a cellular factor that
reduces specific Cys residues and thus, enhances the DNA
binding activity of the c-Jun/c-Fos (AP-1), Curran’s research

group cloned the human redox factor 1 (Ref-1) cDNA, which
was identical to the APE1 gene (145). APE1/Ref-1 physically
interacts with AP-1 for their redox exchanging reaction. Later
many groups reported similar roles of APE1 for enhancing
other transcription factors, including p53, NFkB, HIF-1a,
Pax8. The mechanism of the reduction is still not clear. It was
reported that Cys65 in APE1 was the redox sensitive site and
transfer the reduced state to AP-1 (44, 137), but there are some
arguments against this scenario, including a mouse knock-in
study and the fact that C65 is buried inside of the globular
structure of APE1. However, Georgiadis et al. (49) proposed a
conformational specific ‘‘gain of Ref-1 function’’ in which C65
plays the essential role.

nCaREi-dependent gene corepressor. In 1994 Okazaki
et al. (99a) identified APE1 as a corepressor of human para-
thyroid receptor (PTH1) gene, which had been shown to be
down-regulated in response to increase of intracellular Ca2 +

concentration ([Ca2 + ]i). The promoter of PTH1 contained cis-
elements named negative Ca2 + responsive elements (nCaRE),
which was later shown to present upstream of other

Table 1. Proteins That APE1 Identified as Interacting Partners

Interactor Function Experiment Author

TCP1 Chaparone a Vascotto (135)
PRPF19 DNA repair, RNA splicing, ubiquitination
KRT8 Cytoskeletal
RPSA Ribosomal protein
WDR77 RNA processing
TCEB1 Transcription a Kristensen (78a)
TWF2 Cytoskeletal associated
TXNRD1 REDOX homeostasis
ANP32A RNA processing, transcription b Fan (44)
SET Nucleosome, RNA processing
MDM2 Cell cycle, ubiquitination b Busso (22)
RNF4 Transcription, ubiquitination b Hu (62a)
TP53 Cell cycle, transcription, DNA damage response b Seemann (116a)
NPM1 Nucleosome, DNA repair b Vascotto (135)
PRPF19 DNA repair, RNA splicing, ubiquitination
WDR77 RNA processing
PRDX6 REDOX homeostasis
TRAF2 NF-kappaB signaling b Merluzzi (91a)
STAT3 JAK/STAT signaling b Gray (51c)
EP300 Transcription b Sengupta (117a)
ASCL2 Transcription
YBX1 Transcription
SFPQ DNA repair, RNA splicing, transcription c Havugimana (56a)
SNRPD1 RNA processing
HIF1A Hypoxia signaling d Carrero (25a)
XRCC5 DNA repair d Chung (29b)
APP Platelett and neuronal d Olah (100a)
EP300 Transcription d Sengupta (117a)
XRCC1 DNA repair e Vidal (136a)
POLR3D Transcription e Ravasi (105a)
HOXC13 Transcription
TCF21 Transcription
UBE2I Ubiquitination e Yan (148a)

aAffinity capture-MS.
bAffinity capture-Western.
cCofractionation.
dReconstituted complex.
eTwo-hybrid (adapted from http://thebiogrid.org).
APE1, apurinic/apyrimidinic endonuclease 1.
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promoters, including the renin, APE1, and many other
[Ca2 + ]i-responsive genes (89). Through investigating the
nCaRE dependent regulation, it was discovered that
APE1 interacts with AP-1, Ku70/86, hnRNP-L, YB-1, and
HDAC1.

RNA processing by APE1. In 1995, APE1 was shown to
possess RNaseH activity like its E. coli ortholog exonuclease
III (12), while its significance in vivo was not clear. Much later
in 2009, Barnes et al. (11) reported that purified APE1 showed
endoribonuclease activity on c-myc mRNA. Whether APE1

specifically targets c-myc mRNA through its endoribo-
nuclease activity or other RNA molecules are also processed
by APE1 has not been clear. However, APE1 has activity to
cleave AP-sites in RNA (135), and the N-terminal 33 amino
acid residues in APE1 were necessary to bind to RNA (135). In
the same report, NPM1 was shown to interact with this
N-terminal APE1 segment, and NPM1 prevented APE1 from
binding to RNA. Again, the latter report did not examine the
inhibitory effect of NPM1 on the c-myc mRNA cleavage ac-
tivity by APE1; thus, it is not clear whether NPM1 can mod-
ulate APE1‘s RNA processing in general.

Table 2. Proteins That Identified APE1 as an Interacting Partner

Interactor Function Experiments Author

ARIH2 Ubiquitination a Kristensen (78a)
CAPNS1 Calpain proteolysis
CCDC124
ESR1 Estrogen signaling a Cheng (29a)
hnRNPK Transcription, RNA processing a Kristensen (78a)
hnRNPUL1 RNA processing
LGALS1 Signal transduction
NAE1 Neddylation
PABPC1 RNA processing
PAPSS2 Small molecule metabolism
PSMG1 Proteosome
Rev Virus replication a Naji (95a)
RIC8A GTPase activity a Kristensen (78a)
SUMO1 Sumolation a Grant (51b)
SUMO2 Sumolation a Golebiowski (51a)
TFAP4 DNA damage response, transcription a Ku (78b)
TXN REDOX homeostasis, signal transduction a Kristensen (78a)
UBC Ubiquitination a Meierhofer (89a)
UBC Ubiquitination a Danielsen (35a)
UBC Ubiquitination a Kim (74a)
XPOT RNA transport a Kristensen (78a)
EP300 Transcription b Sengupta (117a)
FEN1 DNA repair b Dianova (39a)
MUTYH DNA repair b Parker (101a)
RNF4 Transcription, ubiquitination b Hu (62a)
TFAP4 DNA damage response, transcription b Ku (78b)
TRAF2 NF-kappaB signaling b Merluzzi (91a)
TXNRD1 REDOX homeostasis b Seemann (116a)
UBC Ubiquitination b Busso (22)
MDM2 Cell cycle, ubiquitination c
TP53 Cell cycle, transcription, DNA damage response d Jayaraman (68a)
HHV8GK18_gp81 e Shamay (117b)
XRCC1 DNA repair e Vidal (136a)
EP300 Transcription f Sengupta (117a)
FEN1 DNA repair f Dianova (39a)
hnRNPL Transcription f Kuninger (78c)
MUTYH DNA repair f Parker (101a)
PCNA Cell cycle, DNA repair f Dianova (39a)
NUDT3 Signal transduction g Vinayagam (136b)
TERF1 Telomere g Lee (78d)
TERF2 Telomere
TERF2IP Telomere

aAffinity capture-MS.
bAffinity capture-Western.
cBiochemical activity.
dCopurification.
eFar-Western.
fReconstituted complex.
gTwo-hybrid (adapted from http://thebiogrid.org).
PCNA, proliferating cell nuclear antigen.
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Subcellular localization of APE1

Non-nuclear APE1 and clinical implication. APE1 obvi-
ously needs to be imported into the nucleus for BER. The
nCaRE-dependent gene regulation requires APE1 to bind to
the consensus sequences and the redox-mediated activation
(Ref-1) of AP-1 transcription factor assumes APE1 to be in the
nuclei as well. A large number of studies indicate that con-
siderable amount of APE1 is localized outside of the nucleus.
These sites include cytoplasm, endoplasmic reticulum (ER),
and mitochondria. Except for the mitochondrial APE1, bio-
logical significance of this localization is not clear. Soon the
importance of APE1 in the above subcellular location will
likely be revealed as details emerge. In particular, an advance
in technology to identify more precise subcellular locations of
APE1 and identifying interacting partners at each organelle
will be important to understand clinical implication of these
phenomena. Although it is far from a complete understand-
ing, some studies that focused on the non-nuclear APE1 are
worth mentioning (also illustrated in Fig. 5).

APE1 in mitochondria. AP endonuclease in mitochondria
was first discovered in a biochemical study (131) before APE1,
the major AP endonuclease in mammals, was cloned. A pu-
rified protein fraction from mouse mitochondria contained an
AP endonuclease activity, which cross-reacted with an APE1
antibody, and its molecular weight appeared to be 65 kDa
(APE1 is 36 kDa). Unlike APE1, the purified mitochondrial
APE was not inhibited by adenine or NAD + , and not stim-
ulated by Triton X-100, indicating the mitochondrial APE1
was distinguishable from APE1 and the observation was not
due to a simple contamination of APE1 into the mitochondrial
fraction. Although the identity of the 65 kDa APE is still
unclear, it should be noted that APE1 may undergo a post-
translational modification for translocation into mitochon-
dria. Another possibility is that APE2 cross reacted with an
APE1 antibody. APE2 has a calculated molecular mass of
57 kDa and was shown to be localized in mitochondria (133),
and to cross react with APE1 antibody. The latter possibility
should be tested, although AP-endonuclease activity in pu-
rified APE2 has been hardly detectable and therefore, it will be
difficult to elucidate its resistance to adenine and NAD + .

Focusing on the localization of APE1, it was reported that
APE1 was indeed translocalized into mitochondria (28).
Purified from bovine liver, the mitochondrial APE1 activity
showed about a three times higher kcat value than APE1 pu-
rified from nuclei. The mtAPE1 was truncated to be 33 kDa
protein due to the cleavage process during mitochondrial
translocalization. Interestingly, the optimum pH for the AP-
endonuclease activity is at 9.2, which is significantly higher
ompared with the nuclear APE1 (pH 7.5). The study also
observed mitochondrial APE1 in immunocytochemistry al-
though the amount was much smaller than the nuclear APE1.

As described in the previous section, mitochondrial respi-
ration reaction OXPHOS is the main source of ROS generation
in the cells. In addition, mitochondrial DNA is only loosely
coated to form a nucleoid structure (50), unlike the chromatin
structure in the genome. In 2008, two independent research
groups reported rather detailed mtBER mechanisms and al-
though there was a major difference at one BER reaction step,
they were at most points in agreement and have been
regarded as the framework model of mtBER. The mtBER
detailed by Szczesny et al. (125, 127) consisted of mtAPE1 for
3¢-OH generation, DNA pol c with its associated AP lyase
activity to generate 5¢-phosphate and to carry out single nu-
cleotide gap filling followed by the DNA ligation step by
DNA Lig III. Oxidized AP sites (66, 75) are handled by APE1
too, but generate 5¢-moiety, which is resistant to the AP lyase
activity. The study found that in these cases 5¢-exo/endonu-
clease (ExoG) carries out the 5¢-end cleaning step. Liu et al. (84)
in the same year proposed almost the same mtBER model
independently, except for the difference of 5¢-end processing,
which in their study was carried out by FEN1. Both studies
showed the presence of FEN1 in mitochondria, but other
studies did not detect FEN1 in mitochondria, and its biolog-
ical roles are not clear (2, 110). In any event, it is generally
agreed that mtBER exists and is carried out in an almost
identical manner as in the nuclear BER, using DNA glycosy-
lases (UNG1, OGG1), APE1, ExoG or FEN1, pol c, and DNA
ligase III (2, 84, 125).

Many studies have identified mutations in mitochondrial
DNA (www.mitomap.org/MITOMAP). However, studies of
cancer associated mutations in mitochondrial DNA have not
reached a consensus whether a particular type of mutations

FIG. 5. Subcellular distribution of APE1 and its influence on cell physiology. Details in the main text.
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are represented in cancer cells. Moreover, two frequently
discovered cancer associated mitochondrial DNA changes are
of deletions (D310 and 4977), and thus, it is unlikely that
mtBER affected the mutation frequency. Point mutations in
mitochondrial DNA of cancer cells and other disease carrying
cells, such as cardiomyopathy are also known and these
mutations may arise from oxidative DNA damage and failure
to repair with mtBER. Now that the mechanism of mtBER is
known, the link between mtBER and diseases due to mito-
chondrial deficiency will hopefully become clearer.

APE1 in ER. During purification of mitochondrial pro-
tein, a considerable amount of APE1 was found in the ER
(124). Also in an early study specifically in T-cells, it was re-
ported that APE1 was in the ER as a component of the SET
complex, and during apoptosis APE1 is translocated into
nuclei with N-terminal 35 amino acid truncation, the site
different from the one during mitochondrial translocalization.
The truncated APE1 once in nuclei facilitates the apoptotic
process by acting as a nonspecific exonuclease (44, 151). It
should be noted that mitochondrial APE1, which is processed
through a similar truncation (N-terminal 33 amino acid) did
not show an increase in exonuclease activity, and therefore,
APE1 must be associated with some other factors to facilitate

exonuclease reaction. However, such a mechanism is still
unknown. In any case, while multiple reports confirmed
APE1‘s presence in ER, its biological or clinical implication of
ER associated APE1 has not been elucidated yet. Since ER’s
main function is to facilitate proper folding and sorting of
proteins to Golgi apparatus toward protein transportation, it
may be reasonable to assume that APE1 in ER is a prerequisite
for translocalization to known targets, such as nuclei and
mitochondria. However, our unpublished results show al-
most equal amount of endogenous APE1 can exist in ER
compared to nuclei, and so it is surprising that such a high
ratio of APE1 is present in ER for the simple purpose of being
sorted out. More dedicated study to identify its interacting
partners and the fate of APE1 in ER should enlighten the
rather curious observation.

APE1 in cytoplasm. The presence of APE1 in the cyto-
plasm was first reported by Kakolyris et al. (70). The study
discovered that significant amounts of APE1 were found
outside of the nuclei in various human tissues. Remarkably,
many of the tissues, including superficial cells of gastroin-
testinal tract and prostate glands, showed APE1 predomi-
nantly in the cytoplasm and not in the nucleus. The
observation was unexpected and raised the possibility that in

FIG. 6. Immunohistochemi-
cal analysis of APE1 localiza-
tion in the head and neck
cancer tissues. Two different
patterns of subcellular locali-
zation of APE1 (green) are
apparent between two head
and neck cancer tissues (left,
predominantly in the nuclei;
middle, in the cytoplasm)
along with a normal tongue
staining pattern. Nuclei are
stained with DAPI. To see this
illustration in color, the reader
is referred to the web version
of this article at www.liebert
pub.com/ars
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some circumstances APE1 needs to be sequestered from nu-
clei. As mentioned above, APE1 is also present in the ER (124),
and thus, it is not clear how much of APE1 outside of the
nucleus was in the ER or mitochondrial, or simply outside of
any organelle. Nonetheless, the study by Kakolyris et al. raised
the possibility that the cellular distribution of endogenous
APE1 in vivo differs significantly from those observed in the
cultured cell lines. Unsurprisingly, APE1 distribution was
also examined in the past using cultured cell lines and tran-
siently expressed APE1, which was tagged with artificial
epitope, such as FLAG tag and EGFP (67, 126). These meth-
odologies can increase the specificity for APE1 probes and
thus, have advantages to reduce artificial signals due to cross-
reactivities of antibodies to unrelated proteins. These studies
unanimously observed that APE1 is almost exclusively in the
nuclei. There are highly specific APE1 antibodies that show
little cross-reactivity to unrelated proteins. Figure 6 shows
two representative patterns of APE1 localization in head and
neck cancer tissues examined by immunohistochemistry. The
results point out the large variability of subcellular distribu-
tions of APE1 among individual tissues, corroborating the
earlier observation by Kakolyris et al. and emphasize the im-
portance of the studies linking unusual distribution to cancer
malignancy (77, 143).

These staining profiles of histochemistry show a stark
contrast from those observed in cultured cell lines, and raise
interesting questions. One is why experimentally used cell
lines show the nuclear APE1 almost exclusively, and another
question is that if APE1 in the cytoplasm is common with
tissue specimens, what role APE1 has in the cytoplasm. To
answer these questions in cell biological studies, it is imper-
ative to carefully define conditions where cultured cells in-
duce cytoplasmic localization of APE1. Indeed, there are a few
studies that identified such situations. Vascotto et al. (134)
reported in 2011 that APE1 in glioblastoma cell line SF767
increased cytoplasmic APE1 in response to E3330, a redox-
active compound that had been reported to inhibit APE1’s
Ref-1 activities. The mechanism is not completely clear yet,
but it is likely that that E3330 changes the APE1 redox status
and enhances relocalization of APE1 (134). To elucidate a re-
lation between APE1 expression in the cells and malignancy
of lung squamous cell carcinomas, Wu et al. reported that
primary lung cancer cells are found to contain significant
amount of cytoplasmic APE1 (143, 150). Certain lung cancer
cell lines, including H441 were also identified as the cells rich
in cytoplasmic APE1 (143). These findings are important not
only in that the lung cancer malignancy was linked to cyto-
plasmic localization of APE1, but also in that cultured cell
lines could be used to study the mechanism of and the
physiological influence of cytoplasmic localization of APE1.
The group also reported that E6 protein from human papil-
loma virus type 16 increased cytoplasmic APE1 (144). Al-
though expression of E6 protein in nonsmall cell lung
carcinoma may not be common, it would be interesting to test
if E6 expression in other cell types, such as in squamous
cell carcinoma of head and neck causes APE1 cytoplasmic
localization.

How is APE1 enriched in the cytosol? In an independent
study, Qu et al. (103) reported that a post-translational modi-
fication of APE1, S-nitrosation, occurred to APE1’s two Cys
residues, that is, C93 and C310. The group showed evidence
that the S-nitrosation triggers nuclear export in a manner de-

pendent on CRM1. Such nuclear export was abrogated by
introducing point mutations at the two Cys residues. There-
fore, these independent studies as a whole have proven that
signal(s) to enhance cytoplasmic localization of APE1 exist in
cells, and it may be relevant to malignancy of cancer cells. The
mediating signals are not fully identified yet, but it is reason-
ably assumed to be triggered by reactive oxygen/nitrogen
species as two studies indicated they are redox related medi-
ators. There still needs investigation to identify a specific lo-
cation where the S-nitrosation modification on APE1 may
occur. If APE1 is modified by S-nitrosation before entering the
nucleus, the modification may also inhibit nuclear localization.

It is not clear why increased cytoplasmic APE1 has a cor-
relation with cancer malignancy. To answer this question, it is
necessary to know the activity of APE1 in the cytoplasm. Also,
as described above, most cultured cell lines do not show sig-
nificant amount of cytoplasmic APE1. This is perplexing as
almost all cell lines were established from cancer cells. One
possibility is that APE1 in cytoplasm is very efficiently de-
graded, an idea consistent with the S-nitrosation study. It has
been reported that APE1 is ubiquitinated by MDM2, the major
negative regulator of p53, and later by UBR3 (90), a little
characterized E3 ubiquitin ligases. Although in most cases
ubiquitination induces highly efficient degradation pathway
using 26S proteasome in the cells, monoubiquitinated APE1
was detected in both studies, suggesting that the distinct form
of ubiquitinated APE1 is stable enough to exist in the cells.
Although it is unclear whether the monoubiquitinated APE1
is an intermediate product for polyubiquitination toward the
degradation, or reversed to the unmodified APE1 by deubi-
quitinase reactions, the post-translational modification can
influence APE1’s subcellular distribution significantly. While
ubiquitin-APE1 fusion protein was found exclusively in the
cytoplasm (22), APE1 ubiquitinated de novo was detected in
the nuclei and in a chromatin bound complex (24). These re-
sults suggest that APE1 does not cross the nuclear membrane
in its monoubiquitinated form. Therefore, it is likely that
ubiquitination of cytosolic APE1 blocks its reentrance into the
nucleus, and facilitates later polyubiquitination and degra-
dation. The authors have recently found that Parkin, a ubi-
quitin E3 ligase, which cooperate with PTEN-induced kinase 1
(PINK1) for mitochondrial autophagy (mitophagy), degrades
APE1 (manuscript in preparation). The efficiency of poly-
ubiquitination and degradation of APE1 appears to be much
more efficient than MDM2 and possibly UBR3. Considering
that PARKIN and PINK1 function in the cytoplasm, it is
possible that APE1 ubiquitination in the cytoplasm is carried
out by PARKIN. Interestingly, PARKIN was recently re-
ported to be a bona-fide tumor suppressor gene of which
frequent LOH was found in at least glioblastoma, lung, and
ovarian cancer. Therefore, cytoplasmic localization of APE1
may be a consequence of accumulation of APE1 and cellular
inability to degrade APE1. Indeed, the amount of cytoplasmic
APE1 was increased by treating cells with MG132, a potent
26S proteasome inhibitor.

Closing Remarks

ROS have influence on almost all kinds of cellular activities.
Accidents happen: O2

- generation during OXPHOS is un-
avoidable. Organisms have evolved to deal with it, and put
the ROS generation into intra- and inter-cellular regulatory
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system that needs to coordinate the balanced cell growth that
needs to involve autophagy and cell death. Since energy
generation is inseparable from any kind of cellular activity, it
is natural to use ROS as an essential signaling mediator in the
cell. Genes are also continuously attacked by ROS resulting in
mutations and contributing to variations of lives. However,
DNA damage due to ROS formation causes diseases, in-
cluding cancer. Understanding the role of ROS in unregulated
cell growth, resistance to apoptosis, induction of nonautono-
mous cell outgrowth should be the work combining studies of
cancer genetics and tumorigenesis involving stroma devel-
opment. In the past decade reports established that abnor-
mality of BER proteins in cancer cells. SNP and mutations in
cancer cells are clear indications that 8-oxoG formation is in-
volved in the cellular transformation.

APE1 is enigmatic not because of its DNA repair mecha-
nism; the catalytic mechanism and biological significance of
the AP-endonuclease activity is very well understood. It is the
other functions of APE1 that still little is known, particularly
in relation to cancer biology. However, recent studies de-
scribed above are beginning to link the DNA repair and the
other activities of APE1 toward understanding of APE1’s in-
fluence on cancer malignancies. These studies form a front
line to develop preventive measures, biomarkers, and thera-
peutic strategies based on BER proteins.
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Abbreviations Used

5-OHU¼ 5-hydroxyuracil
8-OH-G¼ 8-hydroxyguanine
8-oxoG¼ 7,8-dihydro-8-oxoguanine

AP-1¼ activator protein 1
APE1¼ apurinic/apyrimidinic endonuclease 1

BER¼ base excision repair
DSB¼DNA double-strand break

DSBR¼DNA double-strand break repair
ER¼ endoplasmic reticulum

GSTp¼ glutathione S-transferase pi
HDAC¼histone deacetylase
hnRNP¼heterogenous nuclear ribonucleoprotein

HR¼homologous recombination
JNK¼ c-Jun N-terminal kinase

ko¼ knockout
LP¼ long patch

MGMT¼O6-methylguanine DNA methyltransferase
MMR¼mismatch repair
MTH¼mutT homolog
MYH¼mutY homolog

nCaRE¼negative Ca2+ responsive element
NEIL¼ endonuclease VIII-like
NER¼nucleotide excision repair

NHEJ¼nonhomologous end joining
NIR¼nucleotide incision repair

NPM1¼nucleophosmin 1
NTH1¼ endonuclease III-like 1
OGG1¼ 8-oxoguanine DNA glycosylase

OXPHOS¼ oxidative phosphorylation
PARP¼poly (ADP-ribose) polymerase

PINK1¼PTEN-induced kinase 1
pol b¼polymerase beta
PTM¼posttranslational modification
Ref-1¼ redox factor 1
ROS¼ reactive oxygen species
SNP¼ single nucleotide polymorphism
SOD¼ superoxide dismutase

SP¼ short patch
SSB¼ single-strand break

TDG¼ thymine DNA glycosylase
TDP1¼ tyrosyl-DNA phosphodiesterase 1
UNG¼uracil DNA glycosylase

XRCC1¼X-ray repair complementing defective
repair in Chinese hamster cells 1

YB-1¼Y box binding protein 1
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