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Bisphenol A Increases Atherosclerosis in Pregnane X
Receptor-Humanized ApoE Deficient Mice
Yipeng Sui, PhD; Se-Hyung Park, PhD; Robert N. Helsley, BS; Manjula Sunkara, MS; Frank J. Gonzalez, PhD; Andrew J. Morris, PhD;
Changcheng Zhou, PhD

Background-—Bisphenol A (BPA) is a base chemical used extensively in many consumer products. BPA has recently been
associated with increased risk of cardiovascular disease (CVD) in multiple large-scale human population studies, but the underlying
mechanisms remain elusive. We previously reported that BPA activates the pregnane X receptor (PXR), which acts as a xenobiotic
sensor to regulate xenobiotic metabolism and has pro-atherogenic effects in animal models upon activation. Interestingly, BPA is a
potent agonist of human PXR but does not activate mouse or rat PXR signaling, which confounds the use of rodent models to
evaluate mechanisms of BPA-mediated CVD risk. This study aimed to investigate the atherogenic mechanism of BPA using a PXR-
humanized mouse model.

Methods and Results-—A PXR-humanized ApoE deficient (huPXR•ApoE�/�) mouse line was generated that respond to human PXR
ligands and feeding studies were performed to determine the effects of BPA exposure on atherosclerosis development. Exposure to
BPA significantly increased atherosclerotic lesion area in the aortic root and brachiocephalic artery of huPXR•ApoE�/� mice by
104% (P<0.001) and 120% (P<0.05), respectively. By contrast, BPA did not affect atherosclerosis development in the control
littermates without human PXR. BPA exposure did not affect plasma lipid levels but increased CD36 expression and lipid
accumulation in macrophages of huPXR•ApoE�/� mice.

Conclusion-—These findings identify a molecular mechanism that could link BPA exposure to increased risk of CVD in exposed
individuals. PXR is therefore a relevant target for future risk assessment of BPA and related environmental chemicals in humans.
( J Am Heart Assoc. 2014;3:e000492 doi: 10.1161/JAHA.113.000492)

Key Words: atherosclerosis • cells • receptors • risk factors

B isphenol A (BPA), a base chemical used extensively in
polycarbonate plastics in many consumer products, is

among the world’s highest production-volume chemicals, with
more than 8 billion pounds produced each year.1 More than
80 biomonitoring studies indicate that human exposure to
BPA is ubiquitous, and over 95% of the U.S. population is
exposed to BPA.1,2 BPA has been detected in human blood,

urine, tissues and other fluids,1 and numerous animal studies
show that exposure to BPA causes diverse adverse effects.3,4

Despite strong evidence for BPA’s adverse effects in animals
and, by extrapolation, in humans, recent evaluations of BPA
safety by multiple panels have arrived at disparate conclu-
sions and thus controversy remains about the specificity and
mechanisms of the potential adverse effects of BPA.5,6

Recent large and well-conducted cross-sectional and
longitudinal studies have found that higher BPA exposure is
consistently associated with increased risk of cardiovascular
disease (CVD).7–9 Lang et al7 first reported positive associ-
ations between urinary BPA concentrations and the CVD, type
2 diabetes, and liver enzyme abnormalities using data from
the National Health and Nutrition Examination Survey
(NHANES) 2003-2004. Higher urinary BPA levels were signif-
icantly associated with increased diagnosis of CVD including
coronary heart disease, myocardial infarction, and angina.7

Melzer et al8 replicated the early association between urinary
BPA concentrations and coronary heart disease using a
separate NHANES 2005-2006 database. A separate large-
scale longitudinal study has confirmed associations between
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higher BPA exposure levels and incident coronary artery
disease during >10 years of follow-up of a group of healthy
people who took part in the European Prospective Investigation
of Cancer-Norfolk UK in the 1990s.9 Interestingly, exclusion of
subjects with obesity and adjustment for blood lipid
concentrations or levels of physical activity had little effect on
the associations,7,9 suggesting that the associations are
independent of traditional CVD risk factors. More recently,
independent studies have associated BPA exposure with
coronary atherosclerosis,10 carotid atherosclerosis,11 and
peripheral arterial disease,12 indicating potential effects of
BPA exposure on atherosclerosis, the most common cause
of CVD. However, the underlying mechanisms responsible for
these associations remain unclear, which continues to hamper
rational assessment of the health risks of BPA exposure.

BPA, regarded as a xenoestrogen, is a weak agonist of the
estrogen receptor (ER), and most health studies of BPA have
focused on its estrogenic effects.4,13 However, the estro-
genic effects of BPA probably do not explain the link
between BPA exposure and CVD, as animal and human
studies identify protective effects of estrogen against
atherosclerosis or CVD.14–18 To date, BPA has not been
reported to have atherogenic effects in any animal models.
Further, despite compelling evidence about BPA’s estrogenic
activity, doubts remain whether BPA exerts adverse estro-
genic effects in animals and humans.19–21 Thus, the
endocrine-disrupting effects of BPA cannot be entirely
attributed to its estrogenic activity and more mechanistic
studies are urgently needed to explore the effect of BPA on
other signaling pathways.

We previously reported that BPA and its analogs activate
another nuclear receptor, the pregnane X receptor (PXR; also
known as steroid and xenobiotic receptor, or SXR).22 PXR
functions as a xenobiotic sensor that regulates genes involved
in drug and xenobiotic transport and metabolism, including
cytochromes P450 (CYP), conjugating enzymes (eg, glutathione
transferase (GST)), and ABC family transporters (eg, multidrug
resistance 1 (MDR1)).23,24 PXR is activated by endogenous
hormones, dietary steroids, pharmaceutical agents, and other
xenobiotic chemicals.24–26 In mammals, PXR also exhibits
considerable differences in its pharmacology and its ligand-
binding domain (LBD) is remarkably divergent across spe-
cies.24,25 Interestingly, we found that BPA is a potent agonist for
human PXR (hPXR) but not for mouse or rat PXR (mPXR and
rPXR, respectively),22 underscoring the importance of species
choice in predicting the human risk assessment of BPA.

We recently revealed the pro-atherogenic effects of PXR in
animal models and found that chronic activation of PXR
increases atherosclerosis in ApoE-deficient (ApoE�/�) mice.27

These observations suggest that BPA-mediated PXR activation
could potentially accelerate atherosclerosis development and
increase CVD risk in humans. Because BPA is a potent agonist

of human but not mouse or rat PXR,22 the choice of animal
model is a paramount issue in conducting preclinical studies
to evaluate the contribution of BPA exposure to CVD risk. To
investigate the effects of BPA exposure on atherosclerosis
development, a PXR-humanized ApoE-deficient (huPXR•
ApoE�/�) mouse line was generated. Here we report that
BPA increases atherosclerosis in ApoE�/� mice in a human
PXR-dependent manner. BPA exposure does not affect plasma
lipid levels but increases lipid accumulation and foam cell
formation in macrophages of huPXR•ApoE�/� mice.

Methods

Animals and Diets
ApoE�/� mice on the C57BL/6 background were purchased
from The Jackson Laboratory. PXR-humanized mice (huPXR,
mouse PXR knockout/human PXR transgenic) were generated
by transgenesis on a Pxr-null mice using a BAC clone containing
the complete human PXR gene and including 50- and 30-flanking
sequences as previously described.28 huPXR mice have similar
tissue distribution of PXR expression in liver and intestine as
native PXR in humans and mice.28 huPXR mice were back-
crossed with C57BL/6 wild-type (WT) mice for at least 4
generations at NCI,28 and backcrossed for 4 additional gener-
ations onto the C57BL/6 background and then bred with
ApoE�/� mice to generate huPXR•ApoE�/� (hPXRtg-PXR�/

�ApoE�/�) and PXR�/�ApoE�/�mice. All themice used in this
study have the same background (PXR and ApoE null alleles)
except for one allele of huPXR•ApoE�/� mice carrying the
human PXR gene. All the animals were housed in a specific
pathogen-free room with a 12-hour light-dark cycle in the
University of Kentucky Division of Laboratory Animal Resources
under a protocol approved by the Institutional Animal Care and
Use Committee. BPA, rifampicin (RIF), and pregnenolone 16a-
carbonitrile (PCN)were purchased fromSigma-Aldrich. BPAwas
incorporated into amodified semisynthetic diet containing 4.2%
fat and0.02%cholesterol29,30 at a dose of 50 mg/kgbyHarland
Laboratories, Inc.31–33 Four-week-old experimental male hu-
PXR•ApoE�/� and PXR�/�ApoE�/� littermates were weaned
and fed with a control diet or a diet supplemented with BPA for
12 weeks until euthanization at 16 weeks of age (15 to 20mice
per group). Five to 10 mice were used for primary cell isolation
and tissue analysis, and the rest were used for atherosclerosis
analysis. Thenumberofmiceused ineachstudy is listed infigure
legends or shown by scatter points.

Blood Analysis and Atherosclerotic Lesion
Quantification
Plasma total cholesterol and triglyceride concentrations were
determined enzymatically by a colorimetric method.29 Plasma
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from multiple mice (n=6) was pooled and plasma lipoprotein
cholesterol distribution was determined by fast-performance
liquid chromatography (FPLC).34 OCT-embedded hearts or
brachiocephalic arteries were sectioned and stained with Oil-
red-O, and atherosclerotic lesions were quantified as previ-
ously described.29,34 Immunohistochemistry were performed
on sections of aortic roots with specific antibodies against
PXR, monocyte/macrophage marker MOMA-2, or CD36 as
previously described.29,34

Analysis of Urinary BPA by LC-ESI-MS/MS
Analysis of urinary BPA was performed using a modified
chemical derivatization liquid chromatography-electrospray
ionization-tandem mass spectrometry (LC-ESI-MS/MS)
method.35 Labeled BPA-d16 internal standard (Sigma-Aldrich)
was added to each urine sample (50 lL) prior to extraction.
An amount of 500 lL of cold acetonitrile was added to the
samples and protein precipitation was collected by centrifu-
gations. Supernatants were dried in 4 mL vials under N2. An
amount of 100 lL of sodium bicarbonate buffer (0.1 mol/L,
pH 10) was added to the vials, followed by 100 lL of 1 mg/
mL solution of pyridine-3-sulfonly chloride (PSC) in acetone.
Vials were vortexed and placed in a heater block at 70°C for 5
to 10 minutes for preparation of PSC derivatives. Reaction
mixtures were then cooled on ice for 10 minutes and dried
under N2. The samples were then reconstituted with 100 lL
of methanol and transferred to autosampler vials for LC-ESI-
MS/MS analysis. PSC derivatives of BPA and BPA-glucuronide
samples were detected and quantitated by reverse phase
HPLC using a Waters XTerra MS C8 column. The mobile phase
consisted of 20% methanol with 1 mmol/L ammonium
formate as solvent A and 100% methanol as solvent B.
Analysis of BPA was achieved from 0% to 70% solvent B for
1 minute, which was gradually increased to 80% over
3 minutes and then to 90% over the next 4 minutes and
maintained at 90% for the last 2 minutes. The column was
equilibrated to initial conditions in 3 minutes. The flow rate
was 0.5 mL/min with a column temperature of 30°C. The
sample injection volume was 10 lL. The mass spectrometer
was operated in positive electrospray ionization mode with a
declustering potential of 51 V, entrance potential of 10 V,
collision energy of 37 V, collision cell exit potential of 12 V,
curtain gas of 10 psi, ion spray voltage of 5500 V, ion source
gas1/gas2 of 40 psi and temperature of 550°C. The instru-
ment was operated in selected ion monitoring mode with
the following precursor product ion pairs monitored for the
indicated analytes: m/z 511.1/354, m/z 511.1/212, m/z
511.1/79 for PSC-BPA and m/z 527.2/223.2, m/z 527.2/
367.1, m/z 527.2/79 for PSC-BPA-d16 and m/z 546.2/
213.2, m/z 546.2/276.1, m/z 546.2/79.2 for PSC-BPA-
glucuronide.

Peritoneal Macrophage Isolation and Staining
Mice were injected intraperitoneally with 1 mL of 3% thiogly-
collate. Peritoneal macrophages were collected 4 days later
and Oil red O/hematoxylin staining was performed as
described before.27,34 Cells containing lipid droplets (>10)
were counted as foam cells and at least 10 fields per
condition were counted.36

RNA Isolation and Quantitative Real-Time PCR
Analysis
Total RNA was isolated from mouse tissues or cells using
TRIzol Reagent (Life Technologies) and quantitative real-time
PCR (QPCR) was performed using gene-specific primers and
the SYBR green PCR kit (Life Technologies) as described
previously.22 The primer sets used in this study are listed in
Table 1.

Statistical Analysis
Statistical analysis was performed using a 2-sample, 2-tailed
Student’s t test for comparisons between 2 groups, in which
P<0.05 was regarded as significant. One-way ANOVA analysis
of variance was used when multiple comparisons were made
followed by post hoc Bonferroni t test. All data were
presented by mean�SD.

Results

Generation and Characterization of
PXR-Humanized ApoE�/� Mice for BPA Risk
Assessment
Since BPA is a human PXR-selective ligand, one of the key
challenges to study the effects of BPA-mediated PXR activa-
tion on atherosclerosis is development of a mouse model
that recapitulates the human response to PXR ligands. To
address this issue, PXR-humanized ApoE knockout mice
(huPXR•ApoE�/�) were generated. The huPXR mice, express-
ing the human PXR gene in place of mouse Pxr gene,28,37 were
crossed with atherosclerosis-prone ApoE�/� mice to gener-
ate huPXR•ApoE�/� mice and PXR�/�ApoE�/� mice
(Figure 1A). The huPXR•ApoE�/� and PXR�/�ApoE�/� mice
generated by this strategy have the same genetic background
(mPXR and ApoE null alleles) except for one allele of
huPXR•ApoE�/� mice carrying the human PXR transgene
(Figure 1A). The huPXR•ApoE�/� mice were then treated with
the hPXR-specific ligand rifampicin (RIF) or the mPXR-specific
ligand pregnenolone 16a-carbonitrile (PCN).22 As expected,
huPXR•ApoE�/�mice can respond to the human-specific PXR
agonist RIF but not to the mouse-specific activator PCN
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(Figure 1B). RIF-mediated PXR target gene Cyp3a11 upregu-
lation in the liver was abolished in PXR�/�ApoE�/� mice
(Figure 1B). These results confirm the presence of the
functional hPXR in huPXR•ApoE�/� mice. Thus,
huPXR•ApoE�/� mice provides an in vivo system to assess
atherogenic responses to relevant environment chemicals
such as BPA, while allowing the use of a murine model to
evaluate mechanisms of deleterious effects of BPA arising
from human exposure.

BPA Activates hPXR and Stimulates PXR Target
Gene Expression in huPXR•ApoE�/� Mice
The main route of human exposure to BPA is oral and
pharmacokinetic studies have demonstrated that exposure via
diet is a more natural continuous exposure route than other
methods commonly used in chronically exposed animals.38

To determine the impact of chronic exposure to BPA on
atherosclerosisdevelopment,4-week-oldmalehuPXR•ApoE�/�

and PXR�/�ApoE�/� littermates were fed a control diet or a
diet supplemented with BPA at a dose of 50 mg/kg. The
choice of 50 mg BPA/kg feed weight was based on previous
studies demonstrating that 50 mg BPA/kg feed weight
represents a moderate or low dose exposure to BPA in
experimental animal models.31–33,38

To determine whether 50 mg/kg feed weight provides
urinary BPA concentrations similar to that observed in
humans, a chemical derivatization LC-ESI-MS/MS method
was developed to measure urinary BPA concentrations (Fig-
ure 2). Consistent with previous reports that BPA undergoes
metabolism (conjugation) and clearance from the body, we
were able to detect both conjugated BPA-glucuronide and

Table 1. Primer Sequences for Genomic PCR and QPCR

Gene Primer Sequence Gene Primer Sequence

ApoE 50-GCCTAGCCGAGGGAGAGCCG-30 CD36 50-CAGTCGGAGACATGCT-30

50-TGTGACTTGGGAGCTCTGCAGC-30 50-CTCGGGGTCCTGAGTT-30

50-GCCGCCCCGACTGCATCT-30 SR-A 50-GGAGTGTAGGCGGATC-30

mPXR 50-CTGGTCATCACTGTTGCTGTACCA-30 50-GTCAATGGAGGCCCCA-30

50-GCAGCATAGGACAAGTTATTCTAGAG-30 SR-BI 50-CTCATCAAGCAGCAGGTGCTCA-30

50-CTAAAGCGCATGCTCCAGACTGC-30 50-GAGGATTCGGGTGTCATGAA-30

hPXR 50-GCACCTGCTGCTAGGGAATA-30 ABCA1 50-CCGAGGAAGACGTGGACACCTTC-30

50-CTCCATTGCCCCTCCTAAGT-30 50-CCTCAGCCATGACCTGCCTTGTAG-30

CYP3A11 50-CAGCTTGGTGCTCCTCTACC-30 ABCG1 50-AGGTCTCAGCCTTCTAAAGTTCCTC-30

50-TCAAACAACCCCCATGTTTT-30 50-TCTCTCGAATGAAATTTATCG-30

MDR1a 50-CCCCCGAGATTGACAGCTAC-30 GAPDH 50-AACTTTGGCATTGTGGAAGG-30

50-ACTCCACTAAATTGCACATTTCCTTC-30 50-GGATGCAGGGATGATGTTCT-30

PCR indicates polymerase chain reaction; QPCR, quantitative real-time polymerase chain reaction.

A

B

Figure 1. Generation of huPXR•ApoE�/� mice. A, Genotype
analysis of huPXR•ApoE�/� and PXR�/�ApoE�/� mice by 3
different PCR assays. The presence of the human (h) PXR
transgene was determined by hPXR primers (576 bp). Mouse (m)
PXR primers were used to identify WT allele (348 bp) and PXR null
allele (265 bp). Mouse ApoE primers were used to identify WT
allele (155 bp) and ApoE null allele (245 bp). Mouse no. 1 is
huPXR•ApoE�/�, no. 2 is PXR�/�ApoE�/�, and no. 3 is WT
control. B, Six-week-old male huPXR•ApoE�/� and PXR�/�

ApoE�/� mice were treated with DMSO vehicle control,
mPXR-specific ligand pregnenolone 16a-carbonitrile (PCN), or
hPXR-specific ligand rifampicin (RIF) by intraperitoneal injection
at the dose of 10 mg/kg per day for 3 days. Total RNA was
extracted from the liver, and the mRNA levels of prototypic PXR
activated gene CYP3A11 were measured by QPCR (n=5 per
group, **P<0.01). PCR indicates polymerase chain reaction; PXR,
pregnane X receptor; QPCR, quantitative real-time polymerase
chain reaction; WT, wild-type.
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unconjugated BPA in the urine of BPA-exposed mice. While the
concentrations of BPA-glucuronide were higher than unconju-
gated BPA, the urinary concentrations of unconjugated BPA
were 1.19 and 2.33 ng/mL in PXR�/�ApoE�/� and hu-
PXR•ApoE�/� mice, respectively (Table 2). These values are
similar to those detected in human urine samples with the
unconjugated BPA concentrations that ranged from undetectable

to 2.5 ng/mL.1,39,40 BPA feeding stimulated expression of the
prototypic PXR target genes, Cyp3a11,Mdr1a, and Cd36 in the
liver of huPXR•ApoE�/� mice, but not in PXR�/�ApoE�/�

mice (Figure 3), indicating that feeding huPXR•ApoE�/� mice
50 mg BPA/kg feed weight can efficiently activate human PXR
in vivo.

Exposure to BPA Does Not Affect Plasma Lipid
Levels but Increases Atherosclerosis in
huPXR•ApoE�/� Mice
Exposure to BPA for 12 weeks did not affect the body weight
of huPXR•ApoE�/� and PXR�/�ApoE�/� mice (Figure 4). The
effect of BPA exposure on plasma lipid and lipoprotein levels
revealed no changes in plasma triglyceride and cholesterol
levels (Figure 5). In addition, FPLC analysis showed that
huPXR•ApoE�/� and PXR�/�ApoE�/� mice had similar
plasma cholesterol distribution patterns, which were not
affected by BPA treatment (Figures 5C and 5F).

Atherosclerotic lesion areas were determined in the aortic
root and brachiocephalic artery (BCA) as shown in Figure 6.
Feeding huPXR•ApoE�/� mice BPA for 12 weeks significantly
increased lesion areas in the aortic root by 104% (P<0.001;
Student’s t test) (Figure 6A). BPA feeding also accelerated
atherosclerosis development in the BCA, an artery prone to
developing advanced lesions (Figure 6B). Compared to mice
fed control diet, BCA cross-section lesion areas were
increased by 120% (P<0.05; Student’s t test) in BPA-fed
huPXR•ApoE�/� mice (Figure 6B). By contrast, exposure to
BPA did not affect atherosclerotic lesion development in
either the aortic root or BCA of PXR�/�ApoE�/� mice
(Figures 6C and 6D). Thus, BPA increases atherosclerosis in
these models in a human PXR-dependent manner.

BPA Increases Lipid Accumulation and Foam Cell
Formation in Macrophages of huPXR•ApoE�/�

Mice
Macrophages play a critical role in atherogenesis and
accumulation of lipid-loaded macrophages is a hallmark of
atherosclerosis.41,42 We previously reported that activation of

Table 2. Urinary BPA and BPA-Glucuronide Concentrations in Mice Fed the Control or BPA Diet for 12 Weeks

Genotype Diet BPA (ng/mL) BPA-Glucuronide (ng/mL)

PXR�/�ApoE�/� Control N.D. N.D.

huPXR•ApoE�/� Control N.D. N.D.

PXR�/�ApoE�/� BPA 1.19�0.98 19.97�15.62

huPXR•ApoE�/� BPA 2.33�1.93 11.60�6.48

All values shown are mean�SD (n=9). BPA indicates bisphenol A; PXR, pregnane X receptor; N.D., not detectable.

A

C

B

Figure 2. A novel LC-ESI-MS/MS method to quantitate BPA. A,
BPA was derivatized by reaction with pyridine-3-sulfonly chloride
(PSC) in acetone and 1 pmol of the derivatized material was
analyzed by reverse phase HPLC using a Waters XTerra MS C8
column. PSC-BPA was detected by positive mode electrospray
ionization (ESI) selective reaction monitoring mode tandem MS
using an ABSciex 4000 Q-Trap instrument as described in the
methods monitoring the precursor product ion pairs shown in the
calibration (B). The structure of the PSC derivative of BPA is
shown (C) with a fragmentation scheme generating the product
ions monitored in (A) and (B). BPA indicates bisphenol A; LC-ESI-
MS/MS liquid chromatography-electrospray ionization-tandem
mass spectrometry.
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PXR increases lipid accumulation in macrophages of ApoE�/�

mice, which contributes to PXR’s pro-atherogenic effects.27

To elucidate possible molecular mechanisms through which
BPA increases atherosclerosis, exposure to BPA-affected
macrophage functions was investigated. Peritoneal macro-
phages were isolated from huPXR•ApoE�/� and PXR�/

�ApoE�/� mice fed control diet or supplemented with BPA
for 12 weeks and neutral lipid levels and foam cell formation
in peritoneal macrophages were determined by oil-red-O
staining. BPA feeding promoted lipid accumulation and foam
cell formation in peritoneal macrophages of huPXR•ApoE�/�

mice but not in that of PXR�/�ApoE�/� mice (Figures 7A and
7B). Gene expression analysis showed that BPA exposure
stimulated mRNA levels of the prototypic PXR activated

genes, Mdr1a (P<0.05; Student’s t test) and Cd36 (P<0.01;
Student’s t test), in the macrophages of huPXR•ApoE�/� but
not PXR�/�ApoE�/� mice (Figure 7C). CD36 is a member of
the scavenger receptor class B family and plays an important
role in mediating macrophage lipid uptake and foam cell
formation.43 In contrast, the expression levels of mRNA
encoding scavenger receptors, SR-A and SR-BI, and ABC
transporters, ABCA1, and ABCG1, were not affected by BPA
exposure in the macrophages derived from either hu-
PXR•ApoE�/� or PXR�/�ApoE�/� mice (Figure 7C).

The significantly increased Cd36 mRNA levels and elevated
lipid accumulation in the macrophages of BPA-treated
huPXR•ApoE�/� mice promoted us to investigate the protein
content of CD36 in the atherosclerotic lesions. Immunofluo-
rescence staining showed that PXR is present in the lesions of
huPXR•ApoE�/� mice and expressed by lesional macrophag-
es (Figure 7D). Consistent with macrophage gene expression
analysis, BPA exposure substantially increased CD36 protein
levels in atherosclerotic lesions of huPXR•ApoE�/� mice
(Figure 7D). Analysis of atherosclerotic lesions further con-
firmed that BPA significantly increased macrophage (P<0.05;
Student’s t test) and CD36 content (P<0.05; Student’s t test)
in plaques of huPXR•ApoE�/� mice but not PXR�/�ApoE�/�

littermates (Figure 7E). Thus, the increase in atherosclerotic
lesions in BPA-fed huPXR•ApoE�/� mice is associated with
increased CD36 expression and foam cell formation in
macrophages.

Discussion
Risk assessment of BPA is still hampered by large scientific
uncertainties and the impact of BPA exposure on human
health is not clearly understood. While >95% of the US
population is exposed to BPA, there is an urgent need to
understand the molecular mechanisms underlying the asso-
ciations between BPA exposure and CVD. We recently

Figure 3. BPA increases PXR target gene expression in hu-
PXR•ApoE�/� mice. Four-week-old male PXR�/�ApoE�/� and
huPXR•ApoE�/� littermates were fed a control diet or supple-
mented with 50 mg/kg BPA (BPA) for 12 weeks. The expression
of hepatic PXR target gene mRNAs was measured by QPCR (n=4
per group, *P<0.05). BPA indicates bisphenol A; PXR, pregnane X
receptor.

A B

Figure 4. BPA exposure does not affect body weight. Growth curves of 4-week-old male PXR�/�ApoE�/�

(A) and huPXR•ApoE�/� (B) littermates fed a control diet or supplemented with 50 mg/kg BPA (BPA) for
12 weeks (n=11 to 17 per group). BPA indicates bisphenol A; PXR, pregnane X receptor.
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reported that BPA is a potent agonist of PXR that has pro-
atherogenic effects in animal models upon activation.22,24,27

BPA is an hPXR-selective agonist but does not affect rodent
PXR activity; consequently, the choice of an appropriate
animal model is paramount in predicting the human risk
assessment of BPA. Since the ligand-binding specificity of PXR
differs between humans and rodents, PXR-humanized mouse
models have been generated to more faithfully predict
xenobiotic effects and responses in humans.24,28,44 Com-
pared with other humanized mice, one of the advantages of
the huPXR mouse model is expression in a similar tissue
distribution pattern as native PXR gene in humans and mice,28

which enables the study of hPXR function in multiple tissues/
cell types. This model has been successfully used in many
studies to investigate human PXR ligand-mediated xenobiotic
response in mice, and has been established as a useful tool
for the prediction of human drug metabolism and toxicological
risk assessment.37,45–47 Therefore, the huPXR mice were used
to generate the huPXR•ApoE�/� mice for studying the effects
of BPA on atherogenic effects in vivo.

Since the main source of BPA exposure in humans is
through the diet, mice were exposed to 50 mg BPA/kg feed
weight in the current study. It was previously assumed that
BPA undergoes rapid metabolism and clearance from the

body. However, unconjugated BPA has been detected in
human urine and tissues, and recent human biomonitoring
data demonstrated that the unconjugated BPA concentrations
is higher than previously predicted given assumptions about
the amount of BPA ingested by humans and its expected rate
of clearance.1,48,49 Using our newly developed LC-ESI-MS/MS
method, urinary unconjugated BPA in mice exposed to BPA
were readily detected. While most human studies only report
the total BPA concentration, several studies have detected
unconjugated BPA in human urine with the concentrations
ranging from undetectable to 2.5 ng/mL.1,39,40 Our results
confirmed that the dose of 50 mg BPA/kg feed weight is
appropriated for long-term exposure studies in mice, which
can result in urinary BPA concentrations similar to that
observed in human samples. Further, the previously described
standard LC-MS/MS methods, although reportedly sensitive,
were unable to detect unconjugated BPA in many human
samples.50–52 Therefore, our LC-ESI-MS/MS method, which
has significantly improved sensitivity compared to previously
described methods may be applied to future biomonitoring
studies for the evaluation of BPA exposure levels and safety in
humans.

Interestingly, we found that chronic exposure to BPA
increased atherosclerosis in huPXR•ApoE�/� mice but not

A B C

D E F

Figure 5. BPA exposure does not affect plasma lipid levels and cholesterol distribution. Four-week-old
male huPXR•ApoE�/� and PXR�/�ApoE�/� littermates were fed a control diet or supplemented with 50
mg/kg BPA (BPA) for 12 weeks. The plasma levels of triglyceride (A and D) and cholesterol (B and E) were
measured by standard methods (n=11 to 12 per group) and plasma cholesterol distribution (C and F) was
analyzed by FPLC. BPA indicates bisphenol A; FPLC, fast-performance liquid chromatography; HDL, high-
density lipoprotein; LDL, low-density lipoprotein; PXR, pregnane X receptor.
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their PXR�/�ApoE�/� littermates without altering plasma
lipid levels and cholesterol distribution patterns. Therefore,
the increased atherosclerosis in huPXR•ApoE�/� mice
exposed to BPA could not be explained by the unchanged
plasma lipid levels. PXR can directly regulate fatty acid
transporter CD36 transcription, and activation of PXR pro-
motes CD36-mediated hepatic lipid accumulation.53 CD36
plays an important role in atherosclerosis-related processes
such as macrophage lipid uptake and foam cell formation.43,54

We previously demonstrated that activation of PXR increases
CD36 levels and lipid accumulation in peritoneal macrophages
of ApoE�/� mice.27 In the current study, the expression levels
of CD36 and lipid accumulation were significantly increased in
the peritoneal macrophages of huPXR•ApoE�/� mice exposed
to BPA. We also observed that PXR is expressed by
atherosclerotic lesional macrophages and that BPA exposure
increased CD36 and macrophage content in plaques of

huPXR•ApoE�/� mice but not that of PXR�/�ApoE�/� mice.
In addition, the expression levels of several other key
receptors and transporters (eg, SR-A, ABCA1, ABCG1)
involved in macrophage lipid uptake or efflux were not
affected by BPA treatment in macrophages of either hu-
PXR•ApoE�/� or PXR�/�ApoE�/� mice. Therefore, a plausi-
ble explanation for the increased atherosclerosis observed in
huPXR•ApoE�/� mice is the increased CD36 expression and
CD36-mediated macrophage lipid uptake and foam cell
formation.

BPA is a well-characterized xenoestrogen and the estro-
genic effects of BPA have been extensively studied in animals.
Many effects of BPA have been found to be similar to effects
seen in response to estrogen in laboratory rodent models.4

Recent studies have also found some adverse effects of
exposure to estrogen or BPA on rodent cardiac functions.55,56

It was reported that both estrogen and BPA can increase

A B

C D

Figure 6. BPA increases atherosclerosis in a human PXR-dependent manner. Four-week-old male
huPXR•ApoE�/� and PXR�/�ApoE�/� littermates were fed a control diet or a diet supplemented with
50 mg/kg BPA for 12 weeks. Quantitative analysis of atherosclerotic lesion size in the aortic root and
brachiocephalic artery (BCA) of huPXR•ApoE�/� (A and B) and PXR�/�ApoE�/� (C and D) mice (n=10 to 11
per group, *P<0.05 and ***P<0.001). Representative Oil red O-stained sections are shown as indicated.
BPA indicates bisphenol A; PXR, pregnane X receptor.
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A

D

E

B C

Figure 7. BPA increases foam cell formation and CD36 expression in macrophages and atherosclerotic lesions of huPXR•ApoE�/� mice.
A, Freshly isolated peritoneal macrophages from huPXR•ApoE�/� and PXR�/�ApoE�/� mice fed a control diet or BPA diet were stained with
Oil-red-O and haematoxylin. B, Foam cell quantification from peritoneal macrophages in studies described in panel A (n=4 per group,
*P<0.05). C, The expression levels of macrophage genes were measured by QPCR (n=3 per group, *P<0.05 and **P<0.01). D, Sections of
atherosclerotic lesion area in the aortic root of huPXR•ApoE�/� mice were stained with anti-monocytes/macrophages (MOMA-2), anti-PXR
or anti-CD36 primary antibodies, followed by fluorescein-labeled secondary antibodies. Nuclei were stained with DAPI. E, Quantification of
macrophage (MOMA-2) and CD36 staining area in the aortic root of huPXR•ApoE�/� or PXR�/�ApoE�/� mice (n=5 to 6 per group,
*P<0.05). BPA indicates bisphenol A; PXR, pregnane X receptor; QPCR, quantitative real-time polymerase chain reaction.
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cardiac arrhythmias in isolated hearts from female but not
male rodents56 and alter cardiac calcium homeostasis via ER
stimulation in isolated female rodent hearts.55 However, BPA
exposure has been associated with atherosclerosis in
humans10–12 and numerous studies have confirmed that
estrogen has atheroprotective effects in animals and
humans.14–17 Therefore, it is unlikely that estrogenic activity
of BPA can alone increase atherosclerosis and incidence of
CVD in humans. It is still plausible that activation of both PXR
and ER by BPA coordinately contribute to increased CVD risk
in humans. It would be interesting to study the effects of BPA
exposure on atherosclerosis development or cardiac functions
in ERa- or ERb-deficient mice in the presence or absence of
hPXR in the future.

In addition to BPA, we have previously identified several
environmentally significant BPA analogs including BPB and
BPAF as human PXR ligands.22 Further, we demonstrated
that BPA and analogs can synergistically activate human
PXR.22 The synergism between BPA and other environmental
chemicals support the need to include mixtures for future in
vivo studies, which may have important implications for
environmental chemical risk assessment. Combinations of
BPA and other environmental chemicals may produce
significant effects on PXR activity and atherosclerosis
development in humans, even when each chemical is
present at low doses that individually do not induce
observable effects. In addition, BPA has been implicated to
have carcinogenetic potential.18,57 Activation of PXR has
been shown to induce tumor aggressiveness in humans and
mice.58 Future studies are needed to investigate whether
BPA-mediated hPXR activation can induce tumorigenesis in
PXR-humanized animal models.

In summary, we found that BPA increased atherosclerosis
in ApoE�/� mice in a human PXR-dependent manner. BPA
exposure did not affect plasma lipid levels but increased
CD36 expression and lipid accumulation in macrophages of
huPXR•ApoE�/� mice. These findings demonstrate, for the
first time, that BPA exposure increases atherosclerosis
development in a laboratory animal model, and provide a
potential molecular mechanism by which exposure to BPA
increases atherosclerosis and CVD risk in humans. Activation
of human PXR should be taken into consideration for future
risk assessment of BPA and related environmental chemicals.
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