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Liposomal delivery of azithromycin 
enhances its immunotherapeutic 
efficacy and reduces toxicity 
in myocardial infarction
Ahmed Al‑Darraji1, Renée R. Donahue1, Himi Tripathi1, Hsuan Peng1, Bryana M. Levitan1, 
Lakshman Chelvarajan1, Dalia Haydar2, Erhe Gao3, David Henson2, John C. Gensel4, 
David J. Feola2, Vincent J. Venditto2 & Ahmed Abdel‑Latif1,5*

A growing body of evidence shows that altering the inflammatory response by alternative 
macrophage polarization is protective against complications related to acute myocardial 
infarction (MI). We have previously shown that oral azithromycin (AZM), initiated prior to MI, 
reduces inflammation and its negative sequelae on the myocardium. Here, we investigated the 
immunomodulatory role of a liposomal AZM formulation (L-AZM) in a clinically relevant model 
to enhance its therapeutic potency and avoid off-target effects. L-AZM (40 or 10 mg/kg, IV) was 
administered immediately post-MI and compared to free AZM (F-AZM). L-AZM reduced cardiac 
toxicity and associated mortality by 50% in mice. We observed a significant shift favoring reparatory/
anti-inflammatory macrophages with L-AZM formulation. L-AZM use resulted in a remarkable 
decrease in cardiac inflammatory neutrophils and the infiltration of inflammatory monocytes. 
Immune cell modulation was associated with the downregulation of pro-inflammatory genes and the 
upregulation of anti-inflammatory genes. The immunomodulatory effects of L-AZM were associated 
with a reduction in cardiac cell death and scar size as well as enhanced angiogenesis. Overall, L-AZM 
use enhanced cardiac recovery and survival after MI. Importantly, L-AZM was protective from F-AZM 
cardiac off-target effects. We demonstrate that the liposomal formulation of AZM enhances the drug’s 
efficacy and safety in an animal model of acute myocardial injury. This is the first study to establish the 
immunomodulatory properties of liposomal AZM formulations. Our findings strongly support clinical 
trials using L-AZM as a novel and clinically relevant therapeutic target to improve cardiac recovery and 
reduce heart failure post-MI in humans.

Myocardial infarction (MI) remains a primary cause of morbidity and mortality globally1. Despite the significant 
improvement in post-MI outcomes over the past two decades, millions of patients suffer adverse cardiac remod-
eling and heart failure1,2. Cardiomyocyte death and extracellular matrix (ECM) breakdown at the area of cardiac 
injury induce a potent and poorly controlled inflammatory response3, interfering with healing and scar formation 
processes4–6. Innate immune phagocytes such as neutrophils, monocytes, and macrophages are key players in this 
response7. Neutrophils are the first line of immune cells arriving in the myocardium after injury and they play an 
important role in the development of adverse remodeling as well as healing of the myocardium8,9. Neutrophils 
are then followed by two waves of monocytes, pro- and anti-inflammatory monocytes which convert to tissue 
macrophages that play a crucial role in the healing myocardium10.

Macrophages are essential in organizing the early post-MI inflammatory and subsequent reparative phases. 
They are generally classified into pro-inflammatory/classically activated/M1-like and anti-inflammatory/
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alternatively activated/reparative/M2-like macrophages based on gene profile and function11,12. Pro-inflammatory 
macrophages are dominant 1–3 days post-MI and mediate the inflammatory process11,13. Following this early 
inflammatory phase, reparative macrophages are the most prevalent and are characterized by high expression 
levels of interleukin (IL)-10, IL-1ra, and decoy type II receptors11,14,15. As a result of the production of these 
mediators, M2-like macrophages play a central role in inflammation resolution, thus promoting tissue healing 
and angiogenesis16. There is a growing body of evidence suggesting that alternative polarization of macrophages 
is protective against the early development of ischemic lesion and subsequent adverse cardiac remodeling17–21. 
Previous research from our lab suggests that azithromycin (AZM), a commonly used antibiotic with immu-
nomodulatory effects, alters post-MI inflammation through repolarization of macrophages to a reparative phe-
notype. These immunomodulatory effects were associated with protection against adverse cardiac remodeling 
and heart failure22. However, these findings have limited clinical translation given the pre-MI initiation of therapy 
and the relatively high dose (160 mg/kg/day, orally), which were dictated by our non-targeted delivery of AZM22. 
Additionally, studies show that AZM produces negative inotropic and chronotropic effects and delays ventricular 
repolarization23. These hemodynamic effects of AZM are likely mediated by a Ca2+ channel-independent pathway 
and delayed rectifier K+ current24. Additionally, the cardiac action potential is much shorter in mice compared 
to humans, indicating potentially more arrhythmogenic potential in humans compared to murine models25. The 
goal of this translational study is to determine the efficacy and safety of encapsulated AZM as immunotherapeutic 
agent for MI, using a clinically relevant experimental design.

Several therapeutic agents have been tested to alleviate cardiac remodeling post-MI through systemic admin-
istration; however, they suffer limited efficacy due to poor distribution into the heart or dose-limiting adverse 
effects26. The clinical use of anti-inflammatory agents for post-MI inflammation have been hampered by poor 
cardiac bioavailability, systemic side effects and dose limiting cardiotoxicity. The increased vascular permeability 
post-MI facilitates the accumulation of nanocarriers such as liposomes in the injured myocardium27. Liposomes 
are formed of one or more phospholipid bilayers surrounded by an aqueous core, which can hold both lipophilic 
and hydrophilic compounds. Given their biocompatibility and ease of use, they have rapidly become an attrac-
tive drug delivery system28. Liposomes reduce the ED50 of the cytotoxic drug doxorubicin while promoting 
anti-tumor efficacy29. Doxorubicin liposomes reach steady state faster and with fewer doses due to intensified 
localization to targeted organs30. Theoretically, liposomes are highly effective carriers after MI, achieving higher 
drug concentration at sites of cardiac injury due to increased vascular permeability27,31,32. Indeed, liposomal 
delivery formulations are effective drug delivery strategies for phagocyte-targeted therapy, producing lower 
immunogenic reaction, higher biocompatibility and specificity, and greater drug stability33. However, there is no 
data on the effectiveness of liposomal formulations in drug delivery after MI. Specifically, the ability to enhance 
AZM targeted drug delivery to inflammatory phagosomes has not been previously tested.

This study is designed to achieve targeted AZM delivery post-MI and improve its immunomodulatory benefits 
while minimizing dose and off-target effects. Using non-PEGylated liposomes as a delivery tool (L-AZM), we 
were able to significantly improve the safety of AZM therapy after MI by reducing cardiotoxicity. Additionally, 
liposomal encapsulation enhances the immunomodulatory effects of AZM on inflammatory phagocytes, while 
providing cardioprotection through decreased cardiomyocyte drug exposure. This data suggests a safe and clini-
cally relevant pathway for targeted drug delivery to the post-MI myocardium in patients.

Materials and method
Full details on the materials and methods are included in the supplemental data.

Study design.  C57BL/6 male mice (Jackson Laboratory, Bar Harbor, ME), age 6–8 weeks, were treated with 
liposomal or free AZM (40 mg/kg/day) or vehicle (PBS or empty liposomes) using retro-orbital (intravenous-
IV) or intraperitoneal (IP) injection daily, starting immediately after MI or sham surgery and continuing for 
7 days (Fig. 1A). We added an additional group examining the efficacy of lower dose L-AZM (10 mg/kg/day) 
to assess the effectiveness of liposomal formulation in reducing the effective dose of AZM. This administration 
strategy was chosen to mimic commonly prescribed AZM regimens in patients being treated for infection34 and 
provides effective distribution and tissue accumulation35. Treatment was continued for 7 days to encompass the 
duration of the post-MI inflammatory phase36. All surviving animals were followed for up to 35 days for sur-
vival, cardiac functional recovery and scar formation. All procedures were conducted under the approval of the 
University of Kentucky IACUC in accordance with the NIH Guide for the Care and Use of Laboratory Animals 
(DHHS publication No.[NIH] 85–23, rev. 1996).

Murine model of myocardial infarction (MI).  MI was induced using the permanent left anterior 
descending coronary artery (LAD) occlusion method as previously published22. Sham surgery consisted of the 
same procedure without LAD ligation.

Preparation of liposomes.  Liposomal formulations were prepared according to a previously established 
protocol37,38, using the thin film hydration method with equal molar ratios of distearyl phosphatidylcholine 
(DSPC), distearyl phosphatidylglycerol (DSPG) and cholesterol (Avanti polar lipids). AZM was included at 10 
and 30 mol% based on phospholipid content. Formulations containing fluorophores were prepared in the same 
manner with 0.5 mol% of the lipophilic dye, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine (DiD). 
Liposome size, polydispersity and stability over time were determined by dynamic light scatter testing.

Flow cytometry.  Peripheral blood (PB).  Cell phenotype, in addition to gene analyses, of monocytes and 
neutrophils was examined in peripheral blood as previously described22. Cells were lysed then washed twice 
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Figure 1.   Liposomal azithromycin formulation provides a safer and more specific delivery tool after myocardial 
infarction. (A) In vivo experimental design targeting myocardium with F-AZM or L-AZM after infarction. 
MI was induced by permanent ligation of the left anterior descending coronary artery. (B) Maestro images of 
hearts (ex vivo) after DiD labeled L-AZM injection, vehicle 1 and 3 days after infarction. Lower panel shows 
quantitative assessment of signal intensity in the heart using ex-vivo imaging showing an increase in signal 
intensity in MI + LAZM hearts in comparison to vehicle and empty liposomes control (1–3 animals/time point). 
(C) Flow cytometry analysis of DiD labeled L-AZM at days 1 and 3 post-MI showing liposomal accumulation 
in cardiac immune cells such as macrophages after IP or IV administration, with more significant accumulation 
effect after IV administration. (D) Hemodynamic effects of free and liposomal AZM. Pre- and immediately 
post-administration measurements of ejection fraction, cardiac output, heart rate, and QT interval after retro-
orbital administration of 40 mg/kg of liposomal or free AZM. Mice were examined 1 day after MI. Data shows 
that the liposomal formulation of AZM is protective against chronotropic and inotropic changes induced by free 
AZM (N = 2–5 animals/group). (E) Survival curves of free/liposomal AZM and vehicle-treated mice to 35 days 
post-MI. Mortality in 40 mg/kg IV AZM group occurs during the drug administration due to severe changes 
in cardiac conduction and hemodynamic parameters (C,D n = 3 animals/gr oup/time point. E Vehicle group, 
n = 34, 40 mg/kg IV AZM group, n = 33, 40 mg/kg LAZM group, n = 35, and 10 mg/kg LAZM group, n = 31, 
*P < 0.05, **P < 0.01, and ***P < 0.001, and ****P < 0.0001 compared to sham). Data presented as mean ± SEM. IV, 
intravenous; IP, intraperitoneal; F-AZM, azithromycin; L-AZM, liposomal azithromycin; Macs, macrophages; 
Control, mice did not receive liposomes.
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in staining buffer to remove any residual lysis buffer. Cells were incubated with conjugated primary antibodies 
against Ly6C/G, F4/80, CD11b, CD45, and CD115 (Biolegend) for 30 min on ice. Following incubation, cells 
were washed twice with staining buffer. Monocytes were identified as CD45hi/CD115hi/Ly6-C/Glo and subdi-
vided into Ly6-Chi (pro-inflammatory) and Ly6-Clo (anti-inflammatory). Neutrophils were identified as CD45hi/
CD115lo/Ly6-C/Ghi.

Heart.  Phenotypic macrophage and neutrophil cell and gene expression analyses were conducted in the heart 
as previously described22. Briefly, heart tissue was minced then digested using Collagenase B (Roche, Indian-
apolis, IN) and Dispase II (Roche, Indianapolis, IN) mixture at 37 °C for 30 min, with gentle agitation every 
5–10 min. Digested tissue was filtered using a 100 μm cell strainer, followed by centrifugation at 400×g for 5 min 
at 4 °C. Cells for flow cytometry were incubated immediately with conjugated primary antibodies against Ly6G, 
CD206, F4/80, CD11b, CD11c, CD45, Ly6C/G, and CD115 for 30 min on ice. CD45hi/Ly6Glo/F4-80hi cells were 
identified as macrophages and further classified as pro-inflammatory or reparative based on the expression of 
CD206 and CD11c. Neutrophils were defined as CD45hi/CD115lo/Ly6-C/Glo and CD206 was used to further 
identify N1 neutrophils (CD206lo)39.

All flow cytometry samples were acquired using an LSR II system (Becton Dickinson) in the University of 
Kentucky Flow Cytometry Core. We utilized FlowJo (version 7) software to generate dot plots and analyze the 
data (Becton Dickinson).

Histology.  Histological analysis was performed on deparaffinized and rehydrated sections as previously 
described22. Briefly, at 30  days post-MI, mice (N = 6–10/treatment group)  were sacrificed and hearts were 
isolated and perfused with PBS (VWR International) then by 10% buffered formalin (VWR International) at 
75 mmHg. Perfused hearts were imbedded in paraffin and stained with Masson’s trichrome to evaluate scar size. 
Digital images of stained sections were acquired and analyzed using NIH ImageJ (version 7) software. Scar size 
was presented as a percentage of the total LV volume.

Immunohistochemistry.  Immunostaining of heart sections was performed on deparaffinized and rehy-
drated sections as previously described22. Briefly, after deparaffinization and rehydration, sections were incu-
bated with primary antibodies against IBA1, CD206 and IL-1β (Sigma Aldrich) followed by secondary antibod-
ies conjugated to Alexa Fluor 488 or 594 (Invitrogen). In the peri-infarct area, 10–15 adjacent zones per sections 
(1–2 sections/animal) were imaged at 40× magnification utilizing Nikon Confocal Microscope A1 in the Uni-
versity of Kentucky Confocal Microscopy facility. Findings are presented as total number of positive cells per 
high power field in the area of interest. Using a similar protocol, heart sections (N = 5–7/treatment group) were 
stained with FITC-conjugated isolectin B4 (FL1201, Vector Labs, Burlingame, CA) to evaluate capillary density. 
Quantification was performed using Cell Counter plugin for Nikon NIS-Elements (version AR 3.2) in 10–15 
adjacent peri-infarct sections. Findings are presented as total capillary density per mm2 in the peri-infarct zone. 
Cell apoptosis was examined using TUNEL and caspase-3 staining in the peri-infarct region. Quantification was 
performed using Cell Counter plugin for ImageJ (version 1.51d). Findings are presented as total positive cells 
per high power field in the peri-infarct region. All histological and immunohistochemical assessments were 
performed by a blinded observer.

Reverse transcription polymerase chain reaction (RT‑PCR).  After RBC lysis, aliquots of 1 × 106 cells 
were incubated with lysis buffer (Life technologies) and used for gene expression analyses. PureLink RNA Mini 
Kit (ThermoFisher Scientific) was used to isolate total mRNA from heart and blood cell lysates according to 
manufacturer protocol. Next, cDNA was generated using SuperScript VILO cDNA synthesis kit (Invitrogen). 
Using a QuantaStudio 7 Flex real-time thermocycler (Applied Biosystems by life technology), Reverse Tran-
scription-Polymerase Chain Reaction (RT-PCR) was performed to measure the mRNA expression of markers 
identifying: inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), monocyte chemotactic 
protein-1 (MCP-1), transforming growth factor beta (TGF-β), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), 
interleukin-4 (IL-4), chitinase-like3 Chil3 (YM1), interleukin-10 (IL-10), and Peroxisome proliferator-activated 
receptor gamma (PPARγ). We used the comparative Ct method for relative estimation of mRNA expression, 
which was normalized to 18s (a housekeeping gene). Strategies to avoid bias and error inducible by contami-
nated DNA were taken.

Echocardiography.  Given the fact that the left ventricular appearance in histological sections is affected by 
multiple technical issues such as perfusion pressure and imbedding techniques in paraffin, we opted to use echo-
cardiography for all left ventricular internal diameter and volume measurements. Mice were anaesthetized using 
1–2% isoflurane during echocardiography to maintain heart rate of 450–500 BPM during imaging. A Vevo 3100 
system coupled with a 15–7-MHz linear broadband transducer was used to perform Echocardiogram analyses. 
Heart function was examined at baseline (before cardiac surgery) then at 48 h and 4 weeks post-MI. Using modi-
fied parasternal long-axis and short-axis, two-dimensional echocardiography was used to assess the LV function 
and volume in M-mode. Echocardiography imaging and analyses were carried out by a blinded investigator.

Luminex assay.  At 1- and 3-days post-MI, inflammatory biomarkers (IL-1β, IL-1α, TNF-α, MIP-1α, MIP1β, 
MIP2, IP-10, and KC) were quantified in plasma using the Milliplex mouse cytokine magnetic kit (MILLIPLEX 
MAP for Luminex xMap Technology, Millipore, USA) according to the manufacturer’s protocol.
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In vivo fluorescence imaging.  Mice were imaged using the Maestro imaging system and an orange filter 
(excitation 605 nm, emission 675 nm long pass) to capture liposomal APC signal. Images were analyzed using 
Nikon NIS-Elements AR (New York, USA).

Cell culture.  We used a murine macrophage cell line J774 (ATCC, Manassas, VA), for in vitro experiments 
examining the immunomodulatory effects of free and liposomal AZM. Cells were plated in 6 well plates at a 
concentration of 0.3 × 106 cells/well and cultured in DMEM media (supplemented with 10% FBS, 1% penicillin/
streptomycin, 1% sodium pyruvate, L-Glutamine, and Glucose). After adhesion, cells were treated with 30 μM 
free or liposomal AZM (Sigma-Aldrich, St. Louis, MO) and 20 ng/ml IFNγ (eBioscience 14-8311-63). Following 
overnight incubation at 37 °C with 5% CO2, cells were stimulated using 100 ng/ml of LPS (Invivogen). Superna-
tants were collected 48 h after stimulation to quantify pro- and anti-inflammatory cytokine (TNF-α and IL-10) 
concentrations.

ELISA assays.  Concentrations of TNF-α and IL-10 were assessed in the supernatant from in vitro cell cul-
ture experiments using standard ELISA kits (BD Biosciences, San Deigo, CA) according to the manufacturer 
protocol. Results are presented for each cytokine (picogram/ml) following different treatments.

Non‑invasive electrocardiogram (ECG) system.  Mice were anesthetized with 2% isoflurane, then 
placed on the ECG platform. Electrodes were inserted subcutaneously on the two front paws and the left rear 
paw, and the ECG was recorded for 2–3 min. Once the recording was completed, the data were analyzed using 
Chart software (PhysioTel).

Statistical analysis.  All animals were analyzed separately, and the data is presented as means ± standard 
error of means (SEM). Unpaired Student t test or analysis of variance (one-way or repeated measures) were used 
for group comparisons, as appropriate. Two-sided Dunnett or Dunn tests for post hoc multiple comparison 
procedures were used, with control samples as the control category. P value less than 0.05 was considered sta-
tistically significant during the analyses. Statistical analyses were performed using the Prism 8 software package 
(GraphPad, La Jolla, CA).

Results
L‑AZM formulation accumulates in the injured myocardium, particularly in immune cells.  To 
address the limited bioavailability and systemic side effects of immunomodulatory drugs after MI, we elected to 
use non-PEGylated liposomes which are readily engulfed by phagocytes at sites of tissue injury38. First, we were 
interested in determining whether L-AZM accumulates in the injured heart after systemic administration. We 
used the Maestro EX in vivo imaging system in combination with APC-labeled liposomes for their visualization. 
We observed significant accumulation of L-AZM in the injured heart as early as the first day after infarction 
peaking at day 3 (Fig. 1B). This peak coincided with the accumulation of phagocytes in the heart as we and oth-
ers have shown9. Importantly, no signal was observed in the heart of vehicle treated or naive mice either in vivo 
or ex vivo (Fig. 1B).

The post-infarcted myocardium contains diverse cell populations that may be targeted therapeutically to 
enhance cardiac recovery26. Flow cytometry analysis of APC-labeled L-AZM, delivered intravenously (IV), 
showed liposomal accumulation in phagocytes such as neutrophils and macrophages beginning on day 1 post-
MI. Importantly, less than 1% of non-immune cells in the heart showed liposomal accumulation, implying 
preferential liposomal accumulation in the cells of interest (Fig. 1C). Compared to IV delivery, we observed 
delayed liposomal accumulation with intraperitoneal (IP) administration when tested on a subset of animals 24 h 
after AMI (3 animals/group); hence, we conducted all in vivo studies using IV L-AZM. These findings strongly 
indicated that our designed non-PEGylated liposomes accumulate at the peri-infarct region, particularly in 
phagocytic cells, early after MI regardless of approach. Additionally, liposomal accumulation exhibited temporal 
trends consistent with infiltration of pro-inflammatory cells.

Liposomal formulation reduces the risk of AZM‑induced cardiotoxicity.  Clinical studies have 
suggested small but measurable risk of ventricular arrhythmias following AZM administration in humans23. 
Therefore, we tested the effect of free and liposomal AZM on murine hearts after MI in a subgroup of mice 
on day 1 post-MI. Baseline parameters were similar among the treatment groups but the IV administration of 
F-AZM at 40 mg/kg markedly reduced heart rate, RR interval, ejection fraction, and cardiac output compared 
with baseline (Fig. 1D). Moreover, the QT interval was prolonged after F-AZM administration. These changes 
were associated with greater than 50% mortality among mice treated with F-AZM (Fig. 1E). In contrast, admin-
istration of L-AZM at the same dose did not induce any noticeable conduction, electrical or functional changes 
in vivo (Fig. 1D). Given the increased mortality with high dose F-AZM, this group was not included in long-
term functional recovery studies. Additionally, we examined the potential renal and liver toxicity of liposomal 
formulations after MI. our analyses did not show significant changes in body weight, renal or liver function 
assays (Suppl Fig. 1).

We then examined the survival rate after MI in mice treated with L-AZM or vehicle. Survival rates indicated 
that the cardioprotective effects of L-AZM were translated into a remarkable reduction in mortality (Fig. 1E). 
These findings imply that L-AZM is indeed protective against the free drug’s adverse hemodynamic effects, 
which could be, at least in part, attributed to the low liposomal accumulation in cardiomyocytes. Taken together, 
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liposomal encapsulation of AZM is an attractive and safe delivery tool for continued investigation in clinical 
practice, especially in high risk patients after MI.

L‑AZM therapy shifted macrophage phenotype in the infarcted myocardium.  We evaluated the 
effect of L-AZM on the phenotype and function of cardiac macrophages, the primary cardiac immune cells dur-
ing steady state and after ischemic injury40. Our studies focused on a clinically relevant dose of L-AZM (40 mg/
kg/day). We also examined the ability of liposomal formulation to enhance the efficacy of a lower L-AZM dose 
(10 mg/kg/day). We then used flow cytometry to examine the dynamic changes in macrophage phenotypes in the 
injured heart. We observed a decrease in the number of pro-inflammatory macrophages (CD45+/Ly6G−/F4-80+/
CD11c+) at days 1 and 3 post-MI in L-AZM treated groups compared to control groups. Conversely, reparative 
macrophages (CD45+/Ly6G−/F4-80+/CD11c−/CD206+) were significantly increased at day 3 in L-AZM treated 
groups compared to controls (Fig. 2). Collectively, these changes translate into a significant reduction in the ratio 
of pro-/anti-inflammatory macrophages in both L-AZM groups, indicating a shift in macrophage phenotype 
towards the reparative state (Fig. 2A). Monocytes dominate the infarcted heart following MI, providing a rich 
source of macrophages41. We observed a significant reduction in pro-inflammatory Ly6Chi (CD45+/Ly6C/Ghi/
CD115hi) monocytes in the PB and heart specifically in the early time points after MI in L-AZM treated groups 
(Fig. 2B,C). Interestingly, low and high dose of L-AZM offered similar immunomodulatory effects suggesting a 
broad effective dosing range with liposomal encapsulation.

We then sought to examine the spatial distribution of polarized macrophages in relation to the peri-infarct 
region. Using immunohistochemistry (IHC), we quantified the number of cells expressing a general macrophage 
marker (IBA1), a reparative macrophage marker (CD206+), and IL-1β as a marker of pro-inflammatory mac-
rophages on day 3 post-MI. We found a significant increase in reparative macrophages (IBA1+/CD206+) in 
L-AZM treated mice compared to control groups (Fig. 2F). Conversely, we observed significantly higher numbers 
of pro-inflammatory macrophages (IBA1+/IL-1β+) in the control groups (Fig. 2G). Generally, the total number 
of macrophages (IBA1+ cells) were not different between groups, implying that L-AZM therapy does not affect 
total macrophage count, but rather influences their polarization in favor of a reparative phenotype. These effects 
may be therapeutically harnessed to resolve the detrimental inflammation post-MI.

L‑AZM treatment reduces cardiac neutrophil influx post‑MI.  Neutrophils orchestrate the clearance 
of dead cells and debris42. Additionally, apoptotic neutrophils initiate alternative macrophage polarization thus 
marking the resolution of the post-MI pro-inflammatory phase8. Neutrophil (CD45+/CD115lo/Ly6G/Clo) enu-
meration using flow cytometry revealed that L-AZM treatment significantly reduced cardiac neutrophil count 
during their peak accumulation at day 1 (Fig. 2D). To further investigate the immunomodulatory actions of 
L-AZM, we examined the distribution of the pro-inflammatory N1 neutrophils (CD11b+/Ly6G+/CD206−)39 in 
the heart. We observed a substantial decrease in the number of N1 neutrophils at day 1 in the L-AZM treated 
groups (Fig. 2D), which may explain the reduction in total neutrophil number. We did not observe noticeable 
differences in PB neutrophils among treatment groups (Fig. 2E). These findings point to a novel mechanistic 
pathway of the immunomodulatory effects of L-AZM.

L‑AZM treatment shifts inflammatory gene expression towards the anti‑inflammatory 
state.  Pro-inflammatory macrophages produce large quantities of inflammatory cytokines (IL-1β, TNF-α 
and IL-6) and toxic effector molecules (reactive oxygen species and nitric oxide)43, contributing to infarct expan-
sion. Likewise, reparative macrophages are potent generators of anti-inflammatory cytokines (TGF-β and IL-10) 
that contribute to scar maturation and tissue healing44. We assessed the mRNA expression of pro-inflammatory 
and reparatory genes in the heart and PB cells using RT-PCR. We observed a significant shift in the gene expres-
sion profile towards the anti-inflammatory state associated with L-AZM treatment. In cardiac tissue, mRNA 
levels of iNOS (pro-inflammatory macrophage marker) and pro-inflammatory cytokines (MCP-1, TNF-α, IL-6, 
and IL-1β) were substantially downregulated in mice treated with L-AZM, particularly on days 1 and 3 post-
infarct (Fig. 3A). Conversely, the expression of anti-inflammatory cytokines and reparative genes (TGF-β, IL-10, 
Fizz1, PPARγ, and YM1) were significantly upregulated in the same groups of mice with consistent effects up 
to day 7. Interestingly, we observed a similar trend in PB cells in L-AZM treated groups (Fig. 3B), suggesting 
systemic anti-inflammatory and immunomodulatory effects of L-AZM therapy. As seen with the number of 
inflammatory cells, both low and high L-AZM doses demonstrated equivalent immunomodulatory effects.

We conducted additional studies examining the protein levels of inflammatory cytokines in PB at the same 
time points after MI. We observed that the PB inflammatory cytokines and chemokines (IL-1β, IL-1α, TNF-α, 
MIP-1α, MIP1β, MIP2, IP-10, and KC) were reduced in plasma of L-AZM treated groups during the peak inflam-
matory period (Suppl Fig. 1). To identify whether the liposomal formulation enhanced the anti-inflammatory 
effects of AZM, we conducted in vitro experiments to identify the production of pro- and anti-inflammatory 
cytokines in the J774 macrophage cell line. After 48 h of LPS stimulation, we observed accentuated immunomod-
ulatory effects with L-AZM, confirmed through the significant reduction in TNF-α and increase in IL-10 produc-
tion (Suppl Fig. 2). Collectively, these results from multiple in vitro and in vivo studies suggest that L-AZM has 
strong immunomodulatory effects and that liposomal encapsulation conveys therapeutic clinical potential in MI.

L‑AZM therapy reduces cell death and scar size and increases angiogenesis in the infarcted 
heart.  To identify the pro-survival effect of L-AZM therapies on cardiac cells post-MI, we assessed apoptosis 
in the peri-infarct region 3 days post-MI using caspase-3 (early apoptosis) and TUNEL (late apoptosis) staining. 
We observed that L-AZM therapy markedly reduced early and late apoptosis in comparison to vehicle and empty 
liposome controls (Fig. 4A,B), likely related to pro-survival factors produced by reparative macrophages45. We 
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Figure 2.   L-AZM treatment reduces inflammatory cells and shifts macrophages to the reparatory phenotype. 
(A) Quantitative FACS data suggests that pro-inflammatory macrophages (F4/80+/CD11c+) markedly decrease 
in L-AZM treated groups relative to controls starting at day 1, with more profound effect on day 3 post-MI. 
In contrast, the reparatory macrophages (CD206+) increased significantly at day 3 post-MI in the same 
treatment groups. These immunomodulatory effects translate into a significant reduction in the pro-/anti-
inflammatory macrophage ratio. (B) Flow cytometry analysis of peripheral blood pro-inflammatory monocytes 
(Ly6Chi) demonstrating significant reduction in the L-AZM treated group 3 days post-MI. (C) Quantitative 
analysis of cardiac pro-inflammatory monocytes showing their significant reduction in L-AZM treated mice. 
(D) FACS analyses suggest that neutrophil counts are significantly decreased in the heart, specifically, N1 
(CD11b+Ly6G+CD206−) neutrophils, in L-AZM treated mice. (E) No significant change was observed in 
circulating pro-inflammatory neutrophils in our flow cytometry analyses (F) Representative images from 
controls and L-AZM treated mice illustrating IBA1 positive (green) and CD206 positive (red) macrophages 
in peri-infarct zone. Images show increased expression of CD206 by macrophages in AZM treated groups 
compared to controls. Quantitative assessment of IBA1 and CD206 3-days post-MI. (G) Representative images 
from controls and L-AZM treated mice illustrating IBA-1 (green) and IL-1β (red) positive macrophages in 
peri-infarct zones. Images indicate a marked reduction in the expression of IL-1β in macrophages with L-AZM 
treatment compared to controls. Quantitative assessment of IBA-1 and IL-1β 3-days post-MI (n = 4 animals/
group, ***P < 0.001 and ****P < 0.0001 compared to vehicle control). Data presented as mean ± SEM. L-AZM, 
liposomal azithromycin; PB, peripheral blood. Scale bars represent 50 pm.
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next assessed the infarct size 30 days post-MI using Masson’s trichrome-stained sections from the heart. We 
found that both doses of L-AZM treatment significantly reduced scar size in comparison to controls (Fig. 4C). 
These data indicate that L-AZM preserves the myocardium from acute ischemic injury as well as reduces sus-
ceptibility to chronic scar expansion.

Reparative macrophages promote cardiac recovery through the secretion of protective cytokines and pro-
angiogenic factors such as VEGF45. To determine blood vessel density at the infarct borders, we quantified 
isolectin-positive cells (a marker of endothelial cells) in the peri-infarct region 30 days post-MI. We observed 
a significant increase in capillary density in the L-AZM groups compared to controls (Fig. 4D). Together with 
reduced cell apoptosis, enhanced angiogenesis can explain the reduction in scar size observed with L-AZM 
therapy.

L‑AZM therapy enhances cardiac functional recovery after MI.  Adverse cardiac remodeling and 
the ensuing heart failure post-MI are likely related to an imbalance between pro-inflammatory and repara-

Figure 2.   (continued)
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tive phases resulting in ineffective tissue healing18. We performed echocardiography at 1- and 4-weeks post-MI 
and analyzed cardiac function and remodeling. We observed a significant attenuation of LV functional decline 
in L-AZM treated groups compared to controls (Fig. 4E). A similar trend was noted with cardiac remodeling 
parameters such as LV end-systolic and LV end-diastolic diameters in the same groups (Fig. 4E), which is con-
sistent with our histological examination. Collectively, the immunomodulatory effects of L-AZM therapy were 
associated with reduction in cell death and enhanced angiogenesis. These salutary effects led to effective tissue 
healing and improved cardiac functional recovery.

Figure 3.   L-AZM modulates pro- and anti-inflammatory cytokine expression in the heart. Heart homogenate 
(HT) cells were used to quantify pro-inflammatory cytokine expression via RT-PCR. (A) Pro-inflammatory 
cytokines: iNOS, TNF-α, MCP-1, IL-1 β,and IL-6 show significant reduction in expression levels at days 1 
and 3 with L-AZM treatment in HT. Anti-inflammatory cytokines: IL-10, TGF-β, Fizz1, YM1, and PPARγ 
expression were significantly increased on days 1, 3 and 7 with L-AZM treatment. (B) Similar to changes 
observed in cardiac tissue, peripheral blood cells show significant reduction in pro-inflammatory cytokine 
expression, including TNF-α, MCP-1, IL-1 βand IL-6 at days 1 and 3, and 7 with L-AZM treatment. On the 
other hand, the expression of anti-inflammatory cytokines on days 1, 3 and 7 were significantly increased 
with L-AZM treatment in peripheral blood (n = 4 animals/group/time point, *P < 0.05, **P < 0.01, ***P < 0.001, 
and ****P < 0.0001 compared to the vehicle control). Fold change relative to sham control. Data presented as 
mean ± SEM. L-AZM, liposomal azithromycin; HT, heart; IL-1β, interleukin 1 beta; IL-6, interleukin 6; iNOS, 
inducible nitric oxide synthase; Fizz1, found in inflammatory zone 1; MCP-1, monocyte chemoattractant 
protein-1; PB, peripheral blood; PPARγ, peroxisome proliferator-activated receptor gamma; TGF-1β, tissue 
growth factor 1 beta; TNF-α, tumor necrosis factor-alpha, YM1 (Chil3), chitinase-like 3; IL-10, interleukin-10.
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Discussion
Modulating inflammation after MI via alternative macrophage polarization, is associated with improved cardiac 
functional recovery and survival. However, there are no clinically approved therapies targeting this critical path-
way to date. We recently demonstrated that AZM improves cardiac remodeling and recovery post-MI through 
the shifting of macrophages to the reparatory state in a proof-of-concept experimental model22. In the current 
study, we utilized a clinically relevant experimental design using liposomal delivery to potentiate AZM bio-
availability and immunomodulatory effects post-MI. We also harnessed the phagocytic capacity of monocytes 
and macrophages to rapidly recognize the non-PEGylated liposomal formulation and improve immune cell 
selectivity and polarization. L-AZM promoted resolution of post-MI inflammation as evidenced by a shift from 
a pro-inflammatory monocyte/macrophage dominance to a response consisting predominantly of reparative 
macrophages. These cellular changes were observed primarily at the site of cardiac injury and were paralleled by 
a shift towards anti-inflammatory cytokine production and cellular preservation; leading to reduced scar size, 
enhanced angiogenesis, and improved cardiac functional recovery. This study is the first to describe the immune 
modulatory properties of L-AZM and to demonstrate that liposomal encapsulation is significantly protective 
from adverse cardiac effects. Our findings imply that low dose, post-MI treatment with L-AZM is a promising 
therapeutic intervention in patients with MI.

Several therapeutic agents have been tested to alleviate cardiac remodeling post-MI through systemic admin-
istration; however, they produced limited efficacy due to poor accumulation in the target site/cells, incompatible 
pharmacokinetic properties with MI, or dose-limiting adverse effects26. Therefore, an optimal drug delivery 
system is needed to achieve higher therapeutic concentration in the injured myocardium while maintaining low 
off-target effects26. Using in vivo imaging and flow cytometric analyses, we confirmed preferential liposomal 
accumulation in phagocytes post-MI, particularly in the first 24 h. Importantly, our data suggest that liposomes 
accumulate in less than 1% of non-immune cells. This distribution likely drives our observed increase in on-target 
effects (enhanced efficacy) and reduction in off-target effects (less potential for cardiac adverse effects). Indeed, 
our in vivo electrophysiological monitoring confirmed cardiac protection with L-AZM against conduction abnor-
malities. However, more studies may be needed to further refine drug delivery and release in the setting of MI.

We previously observed the immunomodulatory effectiveness of AZM as a potential therapy for cardioprotec-
tion after ischemic injury22. In this earlier proof-of-concept study, pre-MI treatment and a relatively high dose of 
AZM (160 mg/kg/day) were used to provide time for the drug to reach steady levels before MI46,47. To avoid these 
translational barriers and to improve the drug potency38,48, we considered an encapsulated formulation of AZM. 
Our data demonstrate enhanced pharmacological effects of liposomal formulations with both low (10 mg/kg) and 
high dose (40 mg/kg) of L-AZM. While our data suggest enhanced immunomodulatory effects achieved by the 
liposomal formulation, we could not directly confirm the concentration of AZM in immune cells. Therefore, we 
are currently working on a biotinylated form of AZM that would allow us to track and quantify this drug both 
in vivo and in vitro using different encapsulation strategies.

It is widely accepted that neutrophils are the first immune cells to infiltrate the infarcted heart and their 
extended presence is associated with exacerbation of cardiac injury after ischemia49. While neutrophils play an 
important role in removing dead cells and debris, their byproducts may exacerbate cardiac damage. Neutrophils 
can also negatively impact post-MI healing through the preferential recruitment of pro-inflammatory (Ly6Chi) 
monocytes50. A recent study reveals two activation states of neutrophils in the post-ischemic heart, namely 
an early pro-inflammatory and potentially deleterious (N1) and a late anti-inflammatory (N2) pro-reparatory 
population of neutrophils39. Here, we observed that the number of N1 neutrophils is significantly decreased with 
L-AZM therapy, which could be attributed to the apoptotic effects of the drug or reduced neutrophil recruitment 
due to suppressed production of pro-inflammatory chemokines as we observed here and in our previous work22. 
Additionally, we observed a significant reduction in cardiac Ly6Chi monocytes with L-AZM therapy, which is 
most likely related to the diminished expression of MCP-1 in the heart and its reduced levels in the PB.

Figure 4.   Liposomal AZM reduces cell death and enhances cardiac recovery post-infarction. (A) 
Representative light microscope images of caspase-3 staining for peri-infarct regions in controls and L-AZM 
treated mice 3 days post-MI. Quantitative analyses of caspase-3 positive cells in L-AZM treated groups 
compared to the vehicle control group (n = 4 animals/group, scale bars represent 100 μm). (B) Representative 
light microscope images of TUNEL staining of peri-infarct regions in controls, free AZM, and L-AZM treated 
mice 3 days post-MI. Quantitative analysis of apoptotic cell numbers among treatment groups (n = 4 animals/
group, scale bars represent 100 μm). (C) Representative Masson’s trichrome staining at 30 days post-MI in 
control and L-AZM treated groups and quantitative analysis of scar as a percentage of LV area for each group 
(n = 6–10 animals/ group, scale bars represent 200 μm). (D) Representative isolectin staining (Green), as 
surrogate for capillary density, at 30 days post-MI in the peri-infarct region in control, F-AZM, and L-AZM 
treated animals. Quantitative analysis of capillary density confirms a higher rate of angiogenesis and capillary 
density in L-AZM treated groups (n = 5–10 animals/group, scale bars represent 50 μm). (E) Representative 
images demonstrating the left ventricular cavity size between groups (endocardium border is marked using 
the yellow dashed line). Quantitative analyses demonstrate significant recovery in LV function as assessed 
by ejection fraction (LVEF), which significantly improved in L-AZM groups. Data also shows significant 
improvement in LV adverse remodeling parameters such as end-systolic diameter (LVESD) and end-diastolic 
diameter (LVEDD). (n = 6–10 animals/ group). Data presented as mean ± SEM. F-AZM, free formulation of 
azithromycin, L-AZM, liposomal azithromycin. *P < 0.05, ***P < 0.01, ***P < 0.001 and ****P < 0.0001 compared 
to the vehicle control.
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The post-MI healing phase is primarily organized by reparative macrophages11. This could explain the attenu-
ated cardiac recovery observed with macrophage depletion and the improved outcomes with the adoptive transfer 
of alternatively activated macrophages51,52. Furthermore, multiple studies have shown the therapeutic utility 
of shifting macrophages to the reparative phenotype post-MI53,54. AZM facilitates the early transition to anti-
inflammatory macrophages and inflammation resolution through its effects on NF-kb and STAT1 signaling55. 
We observed that AZM therapy accelerates neutrophil apoptosis, which could explain the shift in macrophage 
polarization state to the anti-inflammatory phenotype22; as macrophages phagocytose apoptotic cells, they initiate 
the internal machinery to switch their phenotype to anti-inflammatory cells56. We found that L-AZM treatment 
was associated with higher anti-inflammatory (IBA1+/CD206+) and lower pro-inflammatory (IBA1+I/L-1β+) 
macrophages after MI, particularly in peri-infarct regions. Additionally, we observed a significant reduction 
in apoptosis at day 3 post-MI in the same regions attributed to pro-survival factors released from reparative 
macrophages57,58. On the other hand, anti-inflammatory genes such as TGF-β, IL-4, and IL-10, as well as repara-
tive macrophage markers such as FIZZ1, YM1, PPAR-ɣ, and ARG were upregulated by L-AZM treatment. These 
mediators exert multiple beneficial functions in the myocardium following MI, orchestrating the transition from 
the inflammatory to the healing phase59. Reduction in post-MI inflammation induced by L-AZM treatment 
translated into smaller scar, enhanced angiogenesis and better cardiac functional recovery after MI.

Conclusion
This is the first report utilizing this novel and clinically relevant strategy of liposomal formulation of azithromy-
cin for immunomodulation that could potentially be extended to other systems. It is expected that liposomes 
would be beneficial as anti-inflammatory drug carriers in other sterile inflammatory diseases that share similar 
inflammatory profile with MI such as ischemic stroke and spinal cord injury47,60. Furthermore, the reduction 
in cardiac off-target effects highlight the benefit of liposomal formulation of AZM for clinical applications. Our 
findings strongly support clinical trials using L-AZM as a novel and clinically relevant therapy to improve cardiac 
recovery and reduce heart failure post-MI in humans.

Received: 28 March 2020; Accepted: 18 September 2020

References
	 1.	 Spatz, E. S., Beckman, A. L., Wang, Y., Desai, N. R. & Krumholz, H. M. Geographic variation in trends and disparities in acute myo-

cardial infarction hospitalization and mortality by income levels, 1999–2013. JAMA Cardiol. 1, 255–265. https​://doi.org/10.1001/
jamac​ardio​.2016.0382 (2016).

	 2.	 Lindsey, M. L., Saucerman, J. J. & DeLeon-Pennell, K. Y. Knowledge gaps to understanding cardiac macrophage polarization fol-
lowing myocardial infarction. Biochim. Biophys. Acta 2288–2292, 2016. https​://doi.org/10.1016/j.bbadi​s.2016.05.013 (1862).

	 3.	 Timmers, L. et al. The innate immune response in reperfused myocardium. Cardiovasc. Res. 94, 276–283. https​://doi.org/10.1093/
cvr/cvs01​8 (2012).

	 4.	 Entman, M. L. & Smith, C. W. Postreperfusion inflammation: A model for reaction to injury in cardiovascular disease. Cardiovasc. 
Res. 28, 1301–1311. https​://doi.org/10.1093/cvr/28.9.1301 (1994).

	 5.	 Frangogiannis, N. G. et al. Cytokines and the microcirculation in ischemia and reperfusion. J. Mol. Cell Cardiol. 30, 2567–2576. 
https​://doi.org/10.1006/jmcc.1998.0829 (1998).

	 6.	 Mehta, J. L. & Li, D. Y. Inflammation in ischemic heart disease: Response to tissue injury or a pathogenetic villain?. Cardiovasc. 
Res. 43, 291–299. https​://doi.org/10.1016/s0008​-6363(99)00132​-7 (1999).

	 7.	 Hulsmans, M., Sam, F. & Nahrendorf, M. Monocyte and macrophage contributions to cardiac remodeling. J. Mol. Cell. Cardiol. 
93, 149–155. https​://doi.org/10.1016/j.yjmcc​.2015.11.015 (2016).

	 8.	 Horckmans, M. et al. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative 
phenotype. Eur. Heart J. 38, 187–197. https​://doi.org/10.1093/eurhe​artj/ehw00​2 (2017).

	 9.	 Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary 
functions. J. Exp. Med. 204, 3037–3047. https​://doi.org/10.1084/jem.20070​885 (2007).

	10.	 Epelman, S., Liu, P. P. & Mann, D. L. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat. Rev. 
Immunol. 15, 117–129. https​://doi.org/10.1038/nri38​00 (2015).

	11.	 Ma, Y., Mouton, A. J. & Lindsey, M. L. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myo-
cardial infarction. Transl. Res. 191, 15–28. https​://doi.org/10.1016/j.trsl.2017.10.001 (2018).

	12.	 Nahrendorf, M. & Swirski, F. K. Abandoning M1/M2 for a network model of macrophage function. Circ. Res. 119, 414–417. https​
://doi.org/10.1161/CIRCR​ESAHA​.116.30919​4 (2016).

	13.	 Sica, A. et al. IL-1 transcriptionally activates the neutrophil chemotactic factor/IL-8 gene in endothelial cells. Immunology 69, 
548–553 (1990).

	14.	 Dinarello, C. A. Blocking IL-1 in systemic inflammation. J. Exp. Med. 201, 1355–1359. https​://doi.org/10.1084/jem.20050​640 
(2005).

	15.	 Yan, X. et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J. Mol. Cell Cardiol. 
62, 24–35. https​://doi.org/10.1016/j.yjmcc​.2013.04.023 (2013).

	16.	 Gombozhapova, A. et al. Macrophage activation and polarization in post-infarction cardiac remodeling. J. Biomed. Sci. 24, 13. 
https​://doi.org/10.1186/s1292​9-017-0322-3 (2017).

	17.	 Kain, V. et al. Resolution agonist 15-epi-lipoxin A4 programs early activation of resolving phase in post-myocardial infarction 
healing. Sci. Rep. 7, 9999. https​://doi.org/10.1038/s4159​8-017-10441​-8 (2017).

	18.	 de Couto, G. et al. Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. J. Clin. Investig. 
125, 3147–3162. https​://doi.org/10.1172/JCI81​321 (2015).

	19.	 Qin, C. X. et al. Endogenous annexin-A1 regulates haematopoietic stem cell mobilisation and inflammatory response post myo-
cardial infarction in mice in vivo. Sci. Rep. 7, 16615. https​://doi.org/10.1038/s4159​8-017-16317​-1 (2017).

	20.	 Schnoor, M. et al. Production of type VI collagen by human macrophages: A new dimension in macrophage functional heteroge-
neity. J. Immunol. 180, 5707–5719. https​://doi.org/10.4049/jimmu​nol.180.8.5707 (2008).

	21.	 Harel-Adar, T. et al. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc. 
Natl. Acad. Sci. USA 108, 1827–1832. https​://doi.org/10.1073/pnas.10156​23108​ (2011).

https://doi.org/10.1001/jamacardio.2016.0382
https://doi.org/10.1001/jamacardio.2016.0382
https://doi.org/10.1016/j.bbadis.2016.05.013
https://doi.org/10.1093/cvr/cvs018
https://doi.org/10.1093/cvr/cvs018
https://doi.org/10.1093/cvr/28.9.1301
https://doi.org/10.1006/jmcc.1998.0829
https://doi.org/10.1016/s0008-6363(99)00132-7
https://doi.org/10.1016/j.yjmcc.2015.11.015
https://doi.org/10.1093/eurheartj/ehw002
https://doi.org/10.1084/jem.20070885
https://doi.org/10.1038/nri3800
https://doi.org/10.1016/j.trsl.2017.10.001
https://doi.org/10.1161/CIRCRESAHA.116.309194
https://doi.org/10.1161/CIRCRESAHA.116.309194
https://doi.org/10.1084/jem.20050640
https://doi.org/10.1016/j.yjmcc.2013.04.023
https://doi.org/10.1186/s12929-017-0322-3
https://doi.org/10.1038/s41598-017-10441-8
https://doi.org/10.1172/JCI81321
https://doi.org/10.1038/s41598-017-16317-1
https://doi.org/10.4049/jimmunol.180.8.5707
https://doi.org/10.1073/pnas.1015623108


13

Vol.:(0123456789)

Scientific Reports |        (2020) 10:16596  | https://doi.org/10.1038/s41598-020-73593-0

www.nature.com/scientificreports/

	22.	 Al-Darraji, A. et al. Azithromycin therapy reduces cardiac inflammation and mitigates adverse cardiac remodeling after myo-
cardial infarction: Potential therapeutic targets in ischemic heart disease. PLoS ONE 13, e0200474. https​://doi.org/10.1371/journ​
al.pone.02004​74 (2018).

	23.	 Giudicessi, J. R. & Ackerman, M. J. Azithromycin and risk of sudden cardiac death: Guilty as charged or falsely accused?. Cleve 
Clin. J. Med. 80, 539–544. https​://doi.org/10.3949/ccjm.80a.13077​ (2013).

	24.	 Ohara, H. et al. Azithromycin can prolong QT interval and suppress ventricular contraction, but will not induce torsade de pointes. 
Cardiovasc. Toxicol. 15, 232–240. https​://doi.org/10.1007/s1201​2-014-9289-4 (2015).

	25.	 Perlman, R. L. Mouse models of human disease: An evolutionary perspective. Evol. Med. Public Health 170–176, 2016. https​://doi.
org/10.1093/emph/eow01​4 (2016).

	26.	 Dasa, S. S. K. et al. Development of target-specific liposomes for delivering small molecule drugs after reperfused myocardial 
infarction. J. Control Release 220, 556–567. https​://doi.org/10.1016/j.jconr​el.2015.06.017 (2015).

	27.	 Takahama, H. et al. Prolonged targeting of ischemic/reperfused myocardium by liposomal adenosine augments cardioprotection 
in rats. J. Am. Coll. Cardiol. 53, 709–717. https​://doi.org/10.1016/j.jacc.2008.11.014 (2009).

	28.	 Levchenko, T. S., Hartner, W. C. & Torchilin, V. P. Liposomes in diagnosis and treatment of cardiovascular disorders. Methodist 
Debakey Cardiovasc. J. 8, 36–41. https​://doi.org/10.14797​/mdcj-8-1-36 (2012).

	29.	 Rose, P. G. Pegylated liposomal doxorubicin: Optimizing the dosing schedule in ovarian cancer. Oncologist 10, 205–214. https​://
doi.org/10.1634/theon​colog​ist.10-3-205 (2005).

	30.	 Charrois, G. J. & Allen, T. M. Multiple injections of pegylated liposomal doxorubicin: Pharmacokinetics and therapeutic activity. 
J. Pharmacol. Exp. Ther. 306, 1058–1067. https​://doi.org/10.1124/jpet.103.05341​3 (2003).

	31.	 Mueller, T. M., Marcus, M. L., Mayer, H. E., Williams, J. K. & Hermsmeyer, K. Liposome concentration in canine ischemic myo-
cardium and depolarized myocardial cells. Circ. Res. 49, 405–415. https​://doi.org/10.1161/01.res.49.2.405 (1981).

	32.	 Caride, V. J., Twickler, J. & Zaret, B. L. Liposome kinetics in infarcted canine myocardium. J. Cardiovasc. Pharmacol. 6, 996–1005 
(1984).

	33.	 Kelly, C., Jefferies, C. & Cryan, S. A. Targeted liposomal drug delivery to monocytes and macrophages. J. Drug Deliv. 2011, 727241. 
https​://doi.org/10.1155/2011/72724​1 (2011).

	34.	 Evans, A. T. et al. Azithromycin for acute bronchitis: A randomised, double-blind, controlled trial. Lancet 359, 1648–1654. https​
://doi.org/10.1016/S0140​-6736(02)08597​-5 (2002).

	35.	 Shepard, R. M. & Falkner, F. C. Pharmacokinetics of azithromycin in rats and dogs. J. Antimicrob. Chemother. 25(Suppl A), 49–60. 
https​://doi.org/10.1093/jac/25.suppl​_a.49 (1990).

	36.	 Heidt, T. et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ. 
Res. 115, 284–295. https​://doi.org/10.1161/CIRCR​ESAHA​.115.30356​7 (2014).

	37.	 Kierstead, P. H. et al. The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer 
modified liposomes. J. Control Release 213, 1–9. https​://doi.org/10.1016/j.jconr​el.2015.06.023 (2015).

	38.	 Oh, Y. K., Nix, D. E. & Straubinger, R. M. Formulation and efficacy of liposome-encapsulated antibiotics for therapy of intracellular 
Mycobacterium avium infection. Antimicrob. Agents Chemother. 39, 2104–2111 (1995).

	39.	 Ma, Y. et al. Temporal neutrophil polarization following myocardial infarction. Cardiovasc. Res. 110, 51–61. https​://doi.org/10.1093/
cvr/cvw02​4 (2016).

	40.	 Ben-Mordechai, T. et al. Targeting macrophage subsets for infarct repair. J. Cardiovasc. Pharmacol. Ther. 20, 36–51. https​://doi.
org/10.1177/10742​48414​53491​6 (2015).

	41.	 Zlatanova, I., Pinto, C. & Silvestre, J. S. Immune modulation of cardiac repair and regeneration: The art of mending broken hearts. 
Front. Cardiovasc. Med. 3, 40. https​://doi.org/10.3389/fcvm.2016.00040​ (2016).

	42.	 Ortega-Gomez, A., Perretti, M. & Soehnlein, O. Resolution of inflammation: An integrated view. EMBO Mol. Med. 5, 661–674. 
https​://doi.org/10.1002/emmm.20120​2382 (2013).

	43.	 Martinez, F. O., Sica, A., Mantovani, A. & Locati, M. Macrophage activation and polarization. Front. Biosci. 13, 453–461 (2008).
	44.	 Song, E. et al. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell 

Immunol. 204, 19–28. https​://doi.org/10.1006/cimm.2000.1687 (2000).
	45.	 Aurora, A. B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Investig. 124, 1382–1392. https​://doi.

org/10.1172/JCI72​181 (2014).
	46.	 Feola, D. J. et al. Azithromycin alters macrophage phenotype and pulmonary compartmentalization during lung infection with 

Pseudomonas. Antimicrob. Agents Chemother. 54, 2437–2447. https​://doi.org/10.1128/AAC.01424​-09 (2010).
	47.	 Zhang, B. et al. Azithromycin drives alternative macrophage activation and improves recovery and tissue sparing in contusion 

spinal cord injury. J. Neuroinflamm. 12, 218. https​://doi.org/10.1186/s1297​4-015-0440-3 (2015).
	48.	 Cynamon, M. H., Klemens, S. P. & Swenson, C. E. TLC G-65 in combination with other agents in the therapy of Mycobacterium 

avium infection in beige mice. J. Antimicrob. Chemother. 29, 693–699. https​://doi.org/10.1093/jac/29.6.693 (1992).
	49.	 Reimer, K. A., Murry, C. E. & Richard, V. J. The role of neutrophils and free radicals in the ischemic-reperfused heart: Why the 

confusion and controversy?. J. Mol. Cell Cardiol. 21, 1225–1239. https​://doi.org/10.1016/0022-2828(89)90669​-x (1989).
	50.	 Soehnlein, O. et al. Neutrophil secretion products pave the way for inflammatory monocytes. Blood 112, 1461–1471. https​://doi.

org/10.1182/blood​-2008-02-13963​4 (2008).
	51.	 van Amerongen, M. J., Harmsen, M. C., van Rooijen, N., Petersen, A. H. & van Luyn, M. J. Macrophage depletion impairs 

wound healing and increases left ventricular remodeling after myocardial injury in mice. Am. J. Pathol. 170, 818–829. https​://doi.
org/10.2353/ajpat​h.2007.06054​7 (2007).

	52.	 Leor, J. et al. Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation 
114, I94-100. https​://doi.org/10.1161/CIRCU​LATIO​NAHA.105.00033​1 (2006).

	53.	 ter Horst, E. N. et al. Modulators of macrophage polarization influence healing of the infarcted myocardium. Int. J. Mol. Sci. 16, 
29583–29591. https​://doi.org/10.3390/ijms1​61226​187 (2015).

	54.	 Weirather, J. et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage dif-
ferentiation. Circ. Res. 115, 55–67. https​://doi.org/10.1161/CIRCR​ESAHA​.115.30389​5 (2014).

	55.	 Haydar, D. et al. Azithromycin polarizes macrophages to an M2 phenotype via inhibition of the STAT1 and NF-kappaB signaling 
pathways. J. Immunol. 203, 1021–1030. https​://doi.org/10.4049/jimmu​nol.18012​28 (2019).

	56.	 Soehnlein, O. & Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. Nat. Rev. Immunol. 10, 
427–439. https​://doi.org/10.1038/nri27​79 (2010).

	57.	 Lakshminarayanan, V., Beno, D. W., Costa, R. H. & Roebuck, K. A. Differential regulation of interleukin-8 and intercellular adhe-
sion molecule-1 by H2O2 and tumor necrosis factor-alpha in endothelial and epithelial cells. J. Biol. Chem. 272, 32910–32918. 
https​://doi.org/10.1074/jbc.272.52.32910​ (1997).

	58.	 Lenardo, M. J. & Baltimore, D. NF-kappa B: A pleiotropic mediator of inducible and tissue-specific gene control. Cell 58, 227–229. 
https​://doi.org/10.1016/0092-8674(89)90833​-7 (1989).

	59.	 Frangogiannis, N. G. Regulation of the inflammatory response in cardiac repair. Circ. Res. 110, 159–173. https​://doi.org/10.1161/
CIRCR​ESAHA​.111.24316​2 (2012).

	60.	 Amantea, D. et al. Azithromycin protects mice against ischemic stroke injury by promoting macrophage transition towards M2 
phenotype. Exp. Neurol. 275(Pt 1), 116–125. https​://doi.org/10.1016/j.expne​urol.2015.10.012 (2016).

https://doi.org/10.1371/journal.pone.0200474
https://doi.org/10.1371/journal.pone.0200474
https://doi.org/10.3949/ccjm.80a.13077
https://doi.org/10.1007/s12012-014-9289-4
https://doi.org/10.1093/emph/eow014
https://doi.org/10.1093/emph/eow014
https://doi.org/10.1016/j.jconrel.2015.06.017
https://doi.org/10.1016/j.jacc.2008.11.014
https://doi.org/10.14797/mdcj-8-1-36
https://doi.org/10.1634/theoncologist.10-3-205
https://doi.org/10.1634/theoncologist.10-3-205
https://doi.org/10.1124/jpet.103.053413
https://doi.org/10.1161/01.res.49.2.405
https://doi.org/10.1155/2011/727241
https://doi.org/10.1016/S0140-6736(02)08597-5
https://doi.org/10.1016/S0140-6736(02)08597-5
https://doi.org/10.1093/jac/25.suppl_a.49
https://doi.org/10.1161/CIRCRESAHA.115.303567
https://doi.org/10.1016/j.jconrel.2015.06.023
https://doi.org/10.1093/cvr/cvw024
https://doi.org/10.1093/cvr/cvw024
https://doi.org/10.1177/1074248414534916
https://doi.org/10.1177/1074248414534916
https://doi.org/10.3389/fcvm.2016.00040
https://doi.org/10.1002/emmm.201202382
https://doi.org/10.1006/cimm.2000.1687
https://doi.org/10.1172/JCI72181
https://doi.org/10.1172/JCI72181
https://doi.org/10.1128/AAC.01424-09
https://doi.org/10.1186/s12974-015-0440-3
https://doi.org/10.1093/jac/29.6.693
https://doi.org/10.1016/0022-2828(89)90669-x
https://doi.org/10.1182/blood-2008-02-139634
https://doi.org/10.1182/blood-2008-02-139634
https://doi.org/10.2353/ajpath.2007.060547
https://doi.org/10.2353/ajpath.2007.060547
https://doi.org/10.1161/CIRCULATIONAHA.105.000331
https://doi.org/10.3390/ijms161226187
https://doi.org/10.1161/CIRCRESAHA.115.303895
https://doi.org/10.4049/jimmunol.1801228
https://doi.org/10.1038/nri2779
https://doi.org/10.1074/jbc.272.52.32910
https://doi.org/10.1016/0092-8674(89)90833-7
https://doi.org/10.1161/CIRCRESAHA.111.243162
https://doi.org/10.1161/CIRCRESAHA.111.243162
https://doi.org/10.1016/j.expneurol.2015.10.012


14

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16596  | https://doi.org/10.1038/s41598-020-73593-0

www.nature.com/scientificreports/

Acknowledgements
The UK Flow Cytometry & Cell Sorting core facility is supported in part by the Office of the Vice President for 
Research, the Markey Cancer Center and an NCI Center Core Support Grant (P30 CA177558) to the University 
of Kentucky Markey Cancer Center.

Author contributions
A.A.: designed and performed research, analyzed data and wrote the paper. R.R.D., B.M.L.: performed research 
and analyzed data. H.T., H.P., L.C., D.Haydar, E.G., D.Henson: performed research. J.C.G., D.J.F., V.J.V., A.A.: 
designed research, analyzed data and wrote the paper.

Funding
Dr. Abdel-Latif is supported by the NIH Grant R01 HL124266.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https​://doi.org/10.1038/s4159​8-020-73593​-0.

Correspondence and requests for materials should be addressed to A.A.-L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-73593-0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Liposomal Delivery of Azithromycin Enhances Its Immunotherapeutic Efficacy and Reduces Toxicity in Myocardial Infarction
	Repository Citation

	Liposomal Delivery of Azithromycin Enhances Its Immunotherapeutic Efficacy and Reduces Toxicity in Myocardial Infarction
	Digital Object Identifier (DOI)
	Notes/Citation Information
	Authors

	Liposomal delivery of azithromycin enhances its immunotherapeutic efficacy and reduces toxicity in myocardial infarction
	Materials and method
	Study design. 
	Murine model of myocardial infarction (MI). 
	Preparation of liposomes. 
	Flow cytometry. 
	Peripheral blood (PB). 
	Heart. 

	Histology. 
	Immunohistochemistry. 
	Reverse transcription polymerase chain reaction (RT-PCR). 
	Echocardiography. 
	Luminex assay. 
	In vivo fluorescence imaging. 
	Cell culture. 
	ELISA assays. 
	Non-invasive electrocardiogram (ECG) system. 
	Statistical analysis. 

	Results
	L-AZM formulation accumulates in the injured myocardium, particularly in immune cells. 
	Liposomal formulation reduces the risk of AZM-induced cardiotoxicity. 
	L-AZM therapy shifted macrophage phenotype in the infarcted myocardium. 
	L-AZM treatment reduces cardiac neutrophil influx post-MI. 
	L-AZM treatment shifts inflammatory gene expression towards the anti-inflammatory state. 
	L-AZM therapy reduces cell death and scar size and increases angiogenesis in the infarcted heart. 
	L-AZM therapy enhances cardiac functional recovery after MI. 

	Discussion
	Conclusion
	References
	Acknowledgements


