
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Chemistry Faculty Publications Chemistry 

2007 

Oxidative DNA Damage in Mild Cognitive Impairment and Late-Oxidative DNA Damage in Mild Cognitive Impairment and Late-

Stage Alzheimer's Disease Stage Alzheimer's Disease 

Mark A. Lovell 
University of Kentucky, malove2@pop.uky.edu 

William R. Markesbery 
University of Kentucky, wmark0@email.uky.edu 

Follow this and additional works at: https://uknowledge.uky.edu/chemistry_facpub 

 Part of the Chemistry Commons 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Repository Citation Repository Citation 
Lovell, Mark A. and Markesbery, William R., "Oxidative DNA Damage in Mild Cognitive Impairment and 
Late-Stage Alzheimer's Disease" (2007). Chemistry Faculty Publications. 21. 
https://uknowledge.uky.edu/chemistry_facpub/21 

This Article is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for 
inclusion in Chemistry Faculty Publications by an authorized administrator of UKnowledge. For more information, 
please contact UKnowledge@lsv.uky.edu. 

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/chemistry_facpub
https://uknowledge.uky.edu/chemistry
https://uknowledge.uky.edu/chemistry_facpub?utm_source=uknowledge.uky.edu%2Fchemistry_facpub%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/131?utm_source=uknowledge.uky.edu%2Fchemistry_facpub%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
https://uknowledge.uky.edu/chemistry_facpub/21?utm_source=uknowledge.uky.edu%2Fchemistry_facpub%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Oxidative DNA Damage in Mild Cognitive Impairment and Late-Stage Alzheimer's Oxidative DNA Damage in Mild Cognitive Impairment and Late-Stage Alzheimer's 
Disease Disease 

Digital Object Identifier (DOI) 
http://dx.doi.org/10.1093/nar/gkm821 

Notes/Citation Information Notes/Citation Information 
Published in Nucleic Acids Research, v. 35, no. 22, p. 7497-7504. 

© 2007 The Author(s) 

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-
Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted 
non-commercial use, distribution, and reproduction in any medium, provided the original work is properly 
cited. 

This article is available at UKnowledge: https://uknowledge.uky.edu/chemistry_facpub/21 

http://creativecommons.org/licenses/by-nc/2.0/uk/
https://uknowledge.uky.edu/chemistry_facpub/21


Published online 18 October 2007 Nucleic Acids Research, 2007, Vol. 35, No. 22 7497–7504
doi:10.1093/nar/gkm821

SURVEY AND SUMMARY

Oxidative DNA damage in mild cognitive impairment
and late-stage Alzheimer’s disease
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1Department of Chemistry, 2Sanders-Brown Center on Aging and 3Department of Pathology and Department
of Neurology, University of Kentucky, Lexington, KY 40536, USA

Received July 29, 2007; Revised and Accepted September 18, 2007

ABSTRACT

Increasing evidence supports a role for oxidative
DNA damage in aging and several neurodegenera-
tive diseases including Alzheimer’s disease (AD).
Attack of DNA by reactive oxygen species (ROS),
particularly hydroxyl radicals, can lead to strand
breaks, DNA–DNA and DNA–protein cross-linking,
and formation of at least 20 modified bases adducts.
In addition, a,b-unsaturated aldehydic by-products
of lipid peroxidation including 4-hydroxynonenal
and acrolein can interact with DNA bases leading
to the formation of bulky exocyclic adducts.
Modification of DNA bases by direct interaction
with ROS or aldehydes can lead to mutations and
altered protein synthesis. Several studies of DNA
base adducts in late-stage AD (LAD) brain show
elevations of 8-hydroxyguanine (8-OHG), 8-hydro-
xyadenine (8-OHA), 5-hydroxycytosine (5-OHC), and
5-hydroxyuracil, a chemical degradation product
of cytosine, in both nuclear and mitochondrial DNA
(mtDNA) isolated from vulnerable regions of LAD
brain compared to age-matched normal control
subjects. Previous studies also show elevations of
acrolein/guanine adducts in the hippocampus of
LAD subjects compared to age-matched controls.
In addition, studies of base excision repair show
a decline in repair of 8-OHG in vulnerable regions of
LAD brain. Our recent studies show elevated 8-OHG,
8-OHA, and 5,6-diamino-5-formamidopyrimidine in
both nuclear and mtDNA isolated from vulnerable
brain regions in amnestic mild cognitive impairment,
the earliest clinical manifestation of AD, suggesting
that oxidative DNA damage is an early event in AD
and is not merely a secondary phenomenon.

ALZHEIMER’S DISEASE—CLINICAL FEATURES

Alzheimer’s disease (AD), the most common form of
dementia in adults over age 65, is the fourth leading cause

of death in the United States and currently affects
4.5 million Americans (1). Estimates indicate that �3%
of Americans between ages 65 and 74, 19% between ages
75 and 84, and �47% over age 85 are victims of the
disease (2) and that �60% of nursing home patients over
age 65 suffer from AD. As the baby boom generation ages
and without preventive strategies, it is estimated that there
may be 14 million Americans with AD by 2040 (1).
Clinically, AD is characterized by a gradual decline of
cognitive function from a previous higher level that is
manifest as impairment of social and occupational
functions. Clinical features of AD include impairment of
recent memory, language disturbances, and alterations of
abstract reasoning, concentration and thought sequencing
(executive function) (3). Based on criteria from the
National Institute of Neurological and Communicative
Diseases and Stroke/Alzheimer’s Disease and Related
Disorders Association (NINCDS-ADRDA), the diagnosis
of probable AD is made when patients demonstrate
(i) dementia established by clinical examination and
documented by mental status tests, (ii) deficits in two or
more areas of cognition, (iii) progressive worsening, (iv)
no disturbance in consciousness, (v) onset between age 40
and 90, and (vi) no systemic or other brain diseases that
could account for the progressive deficits (4). The mean
length of life following diagnosis is 8.5 years with a range
of 1–25 years (5).
Initially, AD subjects often present clinically with

amnestic mild cognitive impairment (MCI), which is
thought to be a transition between normal aging and
early dementia and at present likely represents the best
opportunity for pharmacologic interventions. The clinical
criteria for the diagnosis of amnestic MCI are those
described by Petersen et al. (6) and include: (i) memory
complaints, (ii) objective memory impairment for age and
education, (iii) intact general cognitive function, (iv) intact
activities of daily living (ADLs), and (v) the subject is not
demented. Several other forms of MCI have been
described including non-amnestic single domain and
multiple domain forms (7). Current data suggest that
conversion from MCI to dementia occurs at a rate of
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10–15% per year (7) with �80% conversion by the sixth
year of follow-up; although �5% of MCI subjects remain
stable or convert back to normal (8,9). Progression from
MCI leads to early AD (EAD) that is clinically
characterized by (i) a decline in cognitive function from
a previous higher level, (ii) decline in one or more areas of
cognition in addition to memory, (iii) a clinical dementia
rating scale score of 0.5–1, (iv) impaired ADLs, and (v) a
clinical evaluation that excludes other causes of dementia.
Further progression of the disease leads to late-stage AD
(LAD) characterized by severe dementia with profound
global cognitive deficits and immobility.

NEUROPATHOLOGIC MANIFESTATIONS OF AD

Pathologically, LAD is characterized by an abundance
of neurofibrillary tangles (NFT), senile plaques (SP)
or beta amyloid (Ab) plaques, neuropil thread
formation, neuron and synapse loss, and proliferation
of reactive astrocytes in the entorhinal cortex, hippo-
campus, amygdala and association areas of frontal,
temporal, parietal and occipital cortex. NFT consist of
intracellular deposits of paired helical filaments composed
of hyperphosphorylated tau.
SP are present in two forms: (i) diffuse plaques

composed of amorphous extracellular deposits of Ab
that lack neurites and (ii) neuritic plaques (NP) composed
of extracellular deposits of insoluble Ab surrounded by
dystrophic neurites, reactive astrocytes, and activated
microglia. In addition to Ab present in SP, recent studies
suggest soluble Ab oligomers are present in the AD brain
that may represent the main toxic form of Ab, thus
implicating them in the disease process (10–12).
These hallmark pathological lesions are employed for

the neuropathological diagnosis of AD using the National
Institute on Aging-Reagan Institute (NIA-RI) criteria.
The NIA-RI criteria use the Consortium to Establish a
Registry for Alzheimer’s Disease (CERAD) NP scores in
conjunction with Braak staging to provide low, inter-
mediate and high likelihood classifications for the
diagnosis of AD. The CERAD criteria use NP densities
in three neocortical regions (frontal, temporal, and
parietal) to provide an age-related NP score that is used
in conjunction with the clinical history to reach a
diagnosis of possible, probable, or definite AD. Braak
and Braak (13) demonstrated that the pathological
process in AD progresses in a topographically predictable
manner from the transentorhinal (stages I and II) to
entorhinal, hippocampus, amygdala and adjacent tem-
poral cortex (limbic stages III and IV) and then to the
isocortex (stages V and VI).
Pathologically, subjects with MCI show a significant

increase in NP in neocortical regions and a significant
increase in NFT in entorhinal cortex, hippocampus and
amygdale compared to normal control subjects (14).
Braak staging scores of MCI subjects are typically in the
range of III–IV. EAD subjects generally meet NIA-RI
high likelihood criteria for the histopathologic diagnosis
of AD with Braak staging scores of V but have less severe
overall NFT and NP formation than LAD.

OXIDATIVE DAMAGE IN MCI AND AD

Although multiple free species, atoms or molecules with
an unpaired electron in the outer shell are present in the
body, the most common radicals are derived from the
reduction of molecular oxygen to water during oxidative
phosphorylation and as a group are termed reactive
oxygen species (ROS). In normally functioning tissues, a
balance is maintained between ROS generation and
antioxidant protection mediated through antioxidant
enzymes including copper/zinc superoxide dismutase,
manganese superoxide dismutase, glutathione peroxidase
and catalase among others and small antioxidant mole-
cules such as glutathione, vitamin E, and vitamin C. When
the balance between free radical generation and antiox-
idant capacities shifts toward free radical generation,
oxidative stress occurs leading to oxidative damage to
lipids, proteins, RNA, and DNA. Oxidative damage to
these biomolecules can contribute to loss of function
leading to exacerbation of damage. The brain is particu-
larly susceptible to oxidative damage due to its high
oxygen consumption rate (�1/5th consumed oxygen), its
high-energy demands, rich abundance of polyunsaturated
fatty acids and lipids, and the relatively limited antioxi-
dant capacity relative to other organs (15). In general,
�2% of oxygen consumed by cells during oxidative
phosphorylation is converted to ROS (16), although this
may well be higher in subjects with impaired oxidative
phosphorylation such as AD. Superoxide generated
through free radical leakage is quickly converted to
hydrogen peroxide that can diffuse to the cytoplasm and
interact with redox active metals including iron or copper
to further generate hydroxyl radical through Fenton or
Haber–Weiss reactions. Hydroxyl radicals generated
through these pathways can further propagate damage
to surrounding biomolecules. Several previous studies
(17,18) show significant elevation of copper and iron in
vulnerable regions of LAD brain suggesting high potential
for redox-metal-mediated ROS generation.

The concept of ROS attack of biomolecules leading
to cellular damage and death was hypothesized to be the
basis of cellular aging by Harman in 1956 (19) and was
termed the free radical theory of aging. Subsequently,
numerous studies have provided evidence that free radical-
mediated damage to cellular function contributes to aging,
cancer and multiple age-related neurological diseases
including AD (20). Studies of oxidative damage in LAD
show significantly increased lipid peroxidation, protein
oxidation, and RNA oxidation in multiple neocortical
brain regions (15). More recently, studies from our
laboratories and others show RNA and protein oxidation
and lipid peroxidation are also significantly elevated in
vulnerable regions of the MCI brain (15), suggesting
oxidative damage may be an early event in the pathogen-
esis of AD. Unfortunately, studies of the temporal profile
of biomolecule oxidative modification have not been
carried out and it is currently not clear whether DNA
oxidation precedes modification of other cellular
molecules.

Although ROS can attack a variety of biomolecules,
DNA, particularly mitochondrial DNA (mtDNA), may
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be the primary target of the free radical damage that
contributes to cellular degeneration and aging (21).
Indeed, multiple studies show oxidative damage to DNA
may be important in cancer (22,23) and, because of its
high oxygen consumption rate, may also be important
in neuronal damage associated with aging and neurode-
generative diseases.

DNA OXIDATION

Oxidative attack of DNA by ROS, particularly hydroxyl
radicals, can lead to strand breaks, DNA–DNA and
DNA–protein cross-linking, and in nuclear DNA (nDNA)
of replicating cells sister chromatid exchange and translo-
cation (24,25). As reviewed by Dizdaroglu et al. (26), ROS
attack of DNA can lead to the generation of more than
20 oxidized base adducts, the most prominent being
8-hydroxyguanine (8-OHG). Because of its low oxidation

potential related to the other three DNA bases, guanine is
the most readily oxidized. Attack of C8 of guanine leads
to the formation of a guanine C8-OH adduct radical
that can undergo three separate pathways (Figure 1):
(i) ring opening and subsequent reduction leading to for-
mation of 2,6-diamino-4-hydroxy-5-formamidopyrimidine
(FapyGua); (ii) initial reduction of the guanine C8-OH
radical adduct to form 7-hydro-8-hydroxyguanine
that, following ring opening, leads to FapyGua, and
(iii) oxidation of the guanine C8-OH radical adduct to
form 8-OHG [adapted from (26,27)]. Recent studies
suggest that the end products of ROS attack of guanine
may depend on oxygen tension with increased 8-OHG
formation occurring under elevated oxygen tension,
whereas FapyGua formation is more likely under reduced
oxygen tension (28). Because of the ease of oxidation of
guanine, 8-OHG has been shown to be the predominant
marker of DNA oxidation using a variety of analytical

Figure 1. Reaction pathway for hydroxyl radical attack of guanine to form 8-hydroxyguanine and 2,6-diamino-4-hydroxy-5-formamidopyrimidine
[adapted from Ref. (26)].
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techniques including immunohistochemistry, 32P or fluo-
rescent post-labeling of nucleosides enzymatically digested
from DNA, comet assays, capillary electrophoresis with
electrochemical detection (ECD), UV-Visible or laser
induced fluorescence detection, high pressure liquid
chromatography (HPLC) coupled with ECD or mass
spectrometry (MS) or gas chromatography (GC) coupled
with MS (26). Of these analytical approaches, immunoas-
says have primarily been used in the analysis of urine
samples or other dilute biological specimens (29), whereas
comet assays have been used in the analysis of DNA
damage following exposure of cell cultures (lymphocytes)
to toxic agents to evaluate repair of strand breaks (29,30).
For the analysis of oxidation of DNA isolated from tissue
specimens, most studies have used HPLC/ECD, HPLC/
MS or GC/MS. Although HPLC/ECD provides detection
limits of �20 fmol, it suffers from the potential for
interference from co-eluting compounds, a problem
shared with capillary electrophoresis with ECD or optical
methods of detection. Additionally, the small sample
volumes used for capillary electrophoresis lead to poorer
sensitivities and detection limits for 8-OHG compared to
other techniques (29). Because of the difficulties associated
with these techniques, most recent studies of DNA
oxidation have used HPLC or GC coupled with MS for
unequivocal identification of the oxidized base adducts.
Additionally, MS allows identification of multiple-base
adducts in a single run providing a more complete
picture of DNA oxidation. For analysis by HPLC/MS,
DNA samples are enzymatically digested to nucleosides
[8-hydroxyguanosine (8OhdG)] followed by HPLC,
whereas samples for GC are hydrolyzed in formic acid
to individual bases (8-OHG) before derivatization to
increase volatility. For consistency, 8-OHG will be used in
this review to represent oxidized guanine regardless of the
method of DNA digestion. Both HPLC/MS and GC/MS
use stable-labeled internal standards for identification and
quantification of DNA base adducts.
Although sample processing of DNA for GC/MS

is more extensive, recent comparisons of LC/MS and
GC/MS in the analysis of 8-OHG from calf thymus
DNA showed similar results for the two techniques with
comparable detection limits for HPLC (35 fmol/ mg DNA)
and GC (30 fmol/ mg DNA) (31), suggesting additional
processing necessary for GC/MS does not lead to
artifactual elevation of 8-OHG levels.

DNA oxidation inMCI and LAD

The study of DNA damage and its possible contribution
to neurodegeneration in AD began in 1990 when Mullaart
et al. (32) showed a 2-fold increase in DNA strand breaks
in the brain in AD. The increase in strand breaks was
hypothesized to activate poly (ADP-ribose) polymerase
(PARP), a zinc finger DNA-binding protein (33) that
could cause depletion of intracellular NAD+ and
depletion of energy stores resulting in cell death (34).
Additionally, Su et al. (35), using terminal deoxynucleo-
tidyl transferase labeling, showed increased strand breaks
in non-NFT bearing neurons in AD that was associated
with nitrotyrosine labeling, suggesting DNA in neurons

in AD may be subject to oxidative damage mediated
by peroxynitrite prior to NFT formation.

The study of specific oxidized DNA bases in the brain in
aging and AD was initiated in 1993 by Mecocci et al. (36),
who used HPLC/ECD to show an age-dependent increase
in levels of 8-OHG in nDNA and mDNA specimens
from cerebral cortex of 10 normal control subjects aged
42–97. In a follow-up study, the same group analyzed
nDNA and mtDNA from frontal, temporal, and parietal
lobes and cerebellum of 13 AD and 15 age-matched
normal control subjects and showed a significant 3-fold
increase in 8-OHG in mtDNA isolated from parietal
lobe of AD (37). This study did not show significant
differences in levels of 8-OHG in nDNA from AD
subjects. In subsequent studies, Lyras et al. (38) used
GC/MS and showed increased 8-OHG, 8-hydroxyadenine
(8-OHA) and 5-hydroxycytosine (5-OHC) in total DNA
from AD parietal lobe compared to age and gender
matched control subjects. This study also showed
increased thymine glycol, 4,6-diamino-5-formamido-
pyrimidine (FapyAde), FapyGua, and 5-hydroxyuracil
(5-OHU), a degradation product of cytosine in various
brain regions in AD.

Our studies used GC/MS with selective ion monitoring
(GC/MS-SIM) and specific-stable labeled internal stan-
dards to quantify 8-OHG, FapyGua, 8-OHA, FapyAde
and 5-OHC in nDNA isolated from frontal, temporal and
parietal lobes and cerebellum of LAD and age-matched
normal control subjects. All specimens used in our studies
were from short postmortem interval (PMI) autopsies
(2–4 h) of subjects followed longitudinally in the
University of Kentucky Alzheimer’s Disease Center.
Results of the analyses showed statistically significant
elevations of 8-OHG, 8-OHA, and 5-OHU in temporal
and parietal lobes in AD compared to age-matched
control subjects (39). We did not observe significant
differences in FapyGua or FapyAde in this initial study.
More recently, in a study comparing levels of nDNA
oxidation to mtDNA oxidation in specimens isolated from
LAD subjects and age-matched normal control subjects,
we found statistically significant elevations of 8-OHG, 8-
OHA, 5-OHC and FapyAde in mtDNA from parietal and
temporal lobes of LAD patients (40). We also observed
significantly increased 5-OHC in mtDNA from LAD
frontal lobe. Analysis of nDNA showed significantly
increased 8-OHG in DNA from temporal and parietal
lobes, 8-OHA in all three neocortical areas, 5-OHC in
frontal and temporal lobes, 5-OHU in temporal lobe and
FapyAde in temporal lobe and cerebellum in LAD.
Comparison of levels of oxidation in mtDNA relative to
levels of oxidation in nDNA showed a 10-fold increase
in mtDNA oxidation, particularly 8-OHG, compared
to nDNA consistent with mtDNAs proximity to ROS
generation in the mitochondria and the relatively limited
DNA repair capacity in mitochondria (39,40). Although
there have been multiple studies that show DNA damage
is increased in isolated DNA, there have been relatively
few studies of cellular distribution of DNA damage.
Previous studies using antibodies against 8-OHG in RNA
and 8-OhdG in DNA showed immunostaining for both
adducts was more pronounced in LAD subjects
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compared to age-matched normal control subjects (41).
Characterization of immunostaining showed the presence
of oxidized nucleotides was not restricted to NFT-bearing
neurons or to cells closely localized to SP.

In studies of peripheral DNA damage in AD, Mecocci
et al. (42,43) showed significant elevations of 8-OHG in
lymphocytes isolated from 40 AD subjects compared with
samples isolated from 39 age-matched control subjects
that negatively correlated with plasma antioxidant levels.
In additional studies of DNA damage in AD lymphocytes,
Kadioglu et al. (30) used comet assays and lesion specific
DNA repair endonucleases (endonuclease III for oxidized
pyrimidines and formamido pyrimidine glycosylase for
oxidized purines) to show significantly increased levels of
oxidized purines and pyrimidines in lymphocytes isolated
from 24 AD subjects compared to 21 age-matched normal
controls.

Although there have been several studies of DNA
oxidation in LAD, there have been few studies of DNA
oxidation in MCI. In our most recent studies, we analyzed
DNA base adducts in nDNA and mtDNA from temporal,
parietal and frontal lobes (neocortex) and cerebellum of
eight longitudinally followed amnestic MCI patients
compared to six longitudinally followed normal control
subjects, all with short PMI autopsies (44). These analyses
showed statistically significant elevations of 8-OHG in
nDNA from MCI frontal, and temporal lobes and
mtDNA from temporal lobes of MCI patients compared
to normal control subjects. We also observed significantly
elevated 8-OHA and FapyAde in nDNA and FapyAde in
mtDNA from all three neocortical lobes of MCI patients
compared to normal controls. It is interesting that levels of
base adducts in MCI were not significantly different from
those observed in LAD subjects, suggesting oxidative
damage to DNA in addition to other biomolecules is an
early event in the pathogenesis of neuron degeneration
in AD and may play a meaningful role in progression of
the disease.

In addition to direct oxidation by ROS, DNA can also
be modified by aldehydic by-products of lipid peroxida-
tion. Attack of polyunsaturated fatty acids by ROS leads
to the production of several aldehydic by-products
including straight chain (C3–C10) aldehydes and a,b-
unsaturated aldehydes including trans-4-hydroxy-2-none-
nal (HNE) and acrolein. Previous studies from our
laboratory and others (15) showed significant elevations
of HNE and acrolein in LAD brain and CSF and in
vulnerable regions of MCI and EAD brain. Because of the
reactivity of a,b-unsaturated aldehydes, they can react
with deoxyguanosine through an initial Michael addition
of the exocyclic amino group followed by ring closure
of N�1 onto the aldehydic group to generate a bulky
exocyclic 1�N2-propanodeoxyguanosine adduct (45).
These adducts are biologically relevant in that they may
promote DNA–DNA and DNA–protein cross-linking
(46). In addition, the presence of these bulky exocyclic
adducts may alter transcription factor binding and limit
transcription of essential proteins. Although several
studies show elevated levels of lipid peroxidation products
in LAD brain, there have been few studies of aldehydic
DNA adducts. In a recent study using isotope dilution

capillary LC/MS/MS, we showed a statistically significant
2-fold increase in levels of acrolein/guanosine adducts in
nDNA isolated from the hippocampus of eight LAD
subjects compared to age-matched control subjects (47).
In contrast, levels of the HNE/guanosine adduct in nDNA
from parietal lobe and hippocampus of LAD subjects
were not significantly altered compared to normal control
subjects (45). These findings were consistent with earlier
studies of Gotz et al. (48), who showed no significant
differences in HNE/guanosine adducts using 32P post-
labeling of deoxyguanosine adducts from DNA isolated
from hippocampus, parietal cortex and cerebellum of
LAD subjects compared to controls.
Although multiple studies show an accumulation of

oxidatively modified DNA adducts in the progression
of AD, the potential consequences of accumulated DNA
oxidative modifications in post-mitotic cells such as
neurons are unclear. The most likely impact is on binding
of transcription factors. A number of redox-sensitive
genes contain multiple guanines in critical transcription
factor binding sites that are particularly vulnerable to
oxidative modification. Previous studies of the role of
oxidized guanine in the p50-binding subunits of nuclear
factor kappa beta (NF-kb), which contains four guanines
in a row, showed the substitution of 8-OHdG for guanine
1 led to enhanced p50-binding affinity, whereas oxidative
modification of guanine 3 reduced p50 binding (49).
The presence of oxidized guanine at guanines 3 and 4 had
no effect on p50 binding. Additionally, the presence of
a single 8-OHdG led to inhibition of transcription factor
binding to AP-1 and Sp1 (50) that could lead to
diminished transcription of critical antioxidant enzymes.

DNA REPAIR IN MCI AND LAD BRAIN

Although considerable evidence suggests oxidative
damage to DNA is associated with AD, beginning in
MCI, there have been relatively few studies of DNA repair
in the progression of the disease. Initial studies of DNA
repair in AD showed increased levels of excision repair-
cross-complementing gene products 80 and 89 (51),
leading the authors to hypothesize that the AD brain is
subject to increased oxidative damage and the elevation
of repair gene products is an attempt to increase repair
capacities. Studies of repair of alkylation damage of
lymphoblasts from AD and control subjects exposed to
alkylating agents showed familial AD patients repaired
significantly less alkylation damage than cells from normal
control subjects (52). Additional studies of subjects with
sporadic AD showed some subjects demonstrated similar
patterns as observed for familial AD subjects, although
further studies are needed to confirm the initial findings
(52). Using alkaline filter elution techniques, Boerrigter
et al. (53) showed diminished repair of single-strand
breaks in lymphocytes from 15 AD patients with two first
degree relatives with AD compared to control subjects.
Comparison of repair capacity of lymphocytes from
28 AD subjects with no or one first degree relative with
AD showed no significant differences compared to
controls (53). Studies of repair of DNA double-strand
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breaks by a non-homologous end joining mechanism that
uses the DNA-dependent protein kinase (DNA-PK)
complex show DNA-PK protein levels and end joining
activities are significantly lower in AD midfrontal cortex
compared to normal controls (54). Together, these data
suggest repair of strand breaks induced by oxidative
damage or other agents may be deficient in AD and may
contribute to neurodegeneration.
Studies of repair systems responsible for recognition

and repair of specific DNA lesions in the progression of
AD have been relatively limited. Using immunohisto-
chemistry, Furuta et al. (55) showed levels of MTH-1, an
oxidized purine nucleoside triphosphatase that efficiently
hydrolyzes oxidized DNA bases including 8-OHG, were
significantly reduced in CA3 of the hippocampus in AD,
although they were significantly elevated in entorhinal
cortex. The authors suggested that regional differences in
MTH-1 expression may have relevance to the regional
neuron vulnerability observed in AD (55). More recently
Jacobsen et al. (56) showed significantly decreased levels
of proteins in the Mre 11 DNA repair complex in neurons
of AD neocortex compared to age-matched normal
control subjects. The Mre 11 complex consisting of
Rad50, Mre11 and Nbs1 participates in DNA damage
recognition and repair (57–59) and impairment may
contribute to neurodegeneration in AD.
Based on the observation of increased 8-OHG in the

progression of AD, it has been postulated that in addition
to increased oxidative stress there may be diminished
capacity for repair of 8-OHG in AD. To repair 8-OHG,
the brain employs 8-oxoguanine glycosylase-1 (OGG1),
which functions in the base excision repair pathway by
releasing the modified base and creating an abasic site
(60). Following removal of 8-OHG, the gap is filled by
DNA polymerase and ligated by DNA ligase (61).
Mammalian cells code for OGG1, a functional homolog
of E. Coli Mut M that recognizes and excises 8-OHG
residues paired with C in DNA (62), and is present in
mitochondria and nuclei. Nuclear OGG1 (OGG1-a) and
the mitochondrial isoform (OGG1-b) are both coded by
the same gene and have an identical sequence of 315
amino acids from the N-terminus (63). Differences in the
two proteins are in their C-termini where OGG1-a has a
nuclear localization sequence coded by exon 7, whereas
OGG1-b has a mitochondrial targeting sequence coded
by exon 8 (63). Following translocation to mitochondria,
the targeting sequence is cleaved by the mitochondrial
processing peptidase in the matrix (64,65).
Our initial study of OGG1 excision activity in AD brain

showed significantly decreased nuclear OGG1 activity in
vulnerable regions (hippocampus and superior and middle
temporal gyri) but not cerebellum of LAD subjects
compared with cognitively normal control subjects (66).
Unfortunately, we did not have sufficient material to
measure 8-OHG levels in the same samples to correlate
levels of OGG1 activity and levels of 8-OHG. In more
recent studies, analysis of DNA from 14 AD patients and
10 normal control subjects identified mutations in the gene
that codes for OGG1 in four AD subjects (67). Two of the
mutations identified for a common single base (C796)
dilution, whereas the other two mutations were nucleotide

alterations that lead to single amino acid substitutions.
Analysis of OGG1 activity in subjects with mutations
showed a significant decrease in activity.

Additionally, recent studies of Iida et al. (68) using
immunohistochemistry showed levels of the mitochondrial
form of OGG1 (OGG1-b) were significantly decreased in
orbitofrontal cortex in LAD compared to normal control
subjects, although most staining was associated with
NFT-bearing neurons and dystrophic neurites. In studies
of OGG1 in aging, incision activity was decreased in
peripheral blood lymphocytes (69) and fibroblasts (70,71)
as a function of age. In studies of aging mice, OGG1
activity was significantly lower in aged mice in multiple
brain regions (61). In contrast, studies of OGG1 in
mitochondrial fractions prepared from aged human
fibroblasts and liver of aged mice showed significantly
higher levels of OGG1-b activity (63). Although these data
appear contradictory in light of elevated levels of 8-OHG
in aging, Szczesny et al. (63) showed a large fraction of
mitochondrial OGG1-b in aged animals is stuck to the
mitochondrial membrane in the precursor form and is not
translocated to and processed in the matrix that is
essential for functional activity. In more recent unpub-
lished studies, we found significantly decreased levels of
nuclear OGG1 protein and activity in neocortical lobes of
MCI subjects compared to normal controls. We also
observe a significant negative correlation between OGG1
activities and levels of 8-OHG. Together, these data
suggest that excision of 8-OHG by OGG1 is limited in the
progression of AD and may contribute to the accumula-
tion of DNA damage and neurodegeneration in AD.

CONCLUSIONS

Multiple studies show increased oxidation of mtDNA
and nDNA in MCI and LAD. The levels of 8-OHG, the
predominant marker of DNA oxidation, in MCI are
comparable to those observed in LAD, suggesting DNA
oxidation occurs early in the progression of AD. In
addition, considerable evidence suggests there is dimin-
ished capacity for repair of a variety of DNA lesions in the
progression of AD. The observation of increased mtDNA
and nDNA oxidation in MCI, the earliest detectable phase
of AD suggests that DNA damage is not a secondary
event in the pathogenesis of AD but may contribute in a
meaningful way to neurodegeneration observed in AD.
Although the studies reviewed here suggest DNA oxida-
tion and diminished repair capacities may play a role in
the progression of AD, considerably more work is needed
to clarify the mechanisms of DNA oxidation in the disease
process.
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