
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Statistics Faculty Publications Statistics

11-1-2013

Approximate Techniques in Solving Optimal Camera Placement Approximate Techniques in Solving Optimal Camera Placement

Problems Problems

Jian Zhao
Microsoft Corp

Ruriko Yoshida
University of Kentucky, ruriko.yoshida@uky.edu

Sen-Ching Samson Cheung
University of Kentucky, sen-ching.cheung@uky.edu

David Haws
Thomas J. Watson Research Center

Follow this and additional works at: https://uknowledge.uky.edu/statistics_facpub

 Part of the Digital Communications and Networking Commons, and the Statistics and Probability

Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation Repository Citation
Zhao, Jian; Yoshida, Ruriko; Cheung, Sen-Ching Samson; and Haws, David, "Approximate Techniques in
Solving Optimal Camera Placement Problems" (2013). Statistics Faculty Publications. 20.
https://uknowledge.uky.edu/statistics_facpub/20

This Article is brought to you for free and open access by the Statistics at UKnowledge. It has been accepted for
inclusion in Statistics Faculty Publications by an authorized administrator of UKnowledge. For more information,
please contact UKnowledge@lsv.uky.edu.

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/statistics_facpub
https://uknowledge.uky.edu/statistics
https://uknowledge.uky.edu/statistics_facpub?utm_source=uknowledge.uky.edu%2Fstatistics_facpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=uknowledge.uky.edu%2Fstatistics_facpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=uknowledge.uky.edu%2Fstatistics_facpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=uknowledge.uky.edu%2Fstatistics_facpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
https://uknowledge.uky.edu/statistics_facpub/20?utm_source=uknowledge.uky.edu%2Fstatistics_facpub%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu

Approximate Techniques in Solving Optimal Camera Placement Problems Approximate Techniques in Solving Optimal Camera Placement Problems

Digital Object Identifier (DOI)
https://doi.org/10.1155/2013/241913

Notes/Citation Information Notes/Citation Information
Published in International Journal of Distributed Sensor Networks, v. 2013, article ID 241913, p. 1-15.

Copyright © 2013 Jian Zhao et al.

This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This article is available at UKnowledge: https://uknowledge.uky.edu/statistics_facpub/20

https://creativecommons.org/licenses/by/3.0/legalcode
https://uknowledge.uky.edu/statistics_facpub/20

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2013, Article ID 241913, 15 pages
http://dx.doi.org/10.1155/2013/241913

Research Article
Approximate Techniques in Solving Optimal Camera
Placement Problems

Jian Zhao,1 Ruriko Yoshida,2 Sen-ching Samson Cheung,3 and David Haws4

1 Microsoft Corp, One Microsoft Way, Redmond, WA 98052, USA
2Department of Statistics, University of Kentucky, Lexington, KY 40536, USA
3 Center for Visualization and Virtual Environments, University of Kentucky, 329 Rose Street, Lexington, KY 40506, USA
4Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

Correspondence should be addressed to Jian Zhao; shiningsword@gmail.com

Received 7 June 2013; Accepted 23 September 2013

Academic Editor: Ivan Lee

Copyright © 2013 Jian Zhao et al.This is an open access article distributed under theCreative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

While the theoretical foundation of the optimal camera placement problem has been studied for decades, its practical
implementation has recently attracted significant research interest due to the increasing popularity of visual sensor networks. The
most flexible formulation of finding the optimal camera placement is based on a binary integer programming (BIP) problem.
Despite the flexibility, most of the resulting BIP problems are NP-hard and any such formulations of reasonable size are not
amenable to exact solutions. There exists a myriad of approximate algorithms for BIP problems, but their applications, efficiency,
and scalability in solving camera placement are poorly understood. Thus, we develop a comprehensive framework in comparing
the merits of a wide variety of approximate algorithms in solving the optimal camera placement problems. We first present a
general approach of adapting these problems into BIP formulations. Then, we demonstrate how they can be solved using different
approximate algorithms including greedy heuristics, Markov-chain Monte Carlo, simulated annealing, and linear and semidefinite
programming relaxations.The accuracy, efficiency, and scalability of each technique are analyzed and compared in depth. Extensive
experimental results are provided to illustrate the strength and weakness of each method.

1. Introduction

Due to the significant progress in visual sensor technology,
wireless communication, and pattern recognition algorithms,
the deployment of wide-area visual sensor networks has
become practical and cost-effective. These networks have a
wide range of commercial and military applications from
video surveillance to smart home and from trafficmonitoring
to antiterrorism. A proper placement of different visual
sensors in the target environment is an important design
problem as it has a direct impact on both the cost and
performance of the network. The number of sensors, the
dedicated communication networks, and the proper routing
of power supply can contribute a significant portion of the
overall construction cost. The placement of the sensors also
determines the size and shape of the coverage area as well
as the visual appearance of all surveillance subjects, which
affect the performance of all subsequent computer vision and
pattern recognition tasks.

However, evenwith decades of study in camera placement
design, the most ambitious goal of designing a universal
camera network configuration tool has not yet been achieved.
The difficulties come from a variety of factors. First, cameras
are vulnerable to occlusions by both static and dynamic
objects. A typical wide-area indoor or outdoor environment
is often characterized by complicated topologies, stringent
placement constraints, and a constant flux of occupant or
vehicular traffic. A decent configuration tool must take into
account all these factors so as to minimize the amount of
occlusion. Second, different applications impose very dif-
ferent performance objectives and requirements on camera
networks. Simply maximizing the coverage is no longer
adequate for modern applications. For example, object iden-
tification or biometric applications may require minimum
object size and specific pose to ensure proper detection.
Traffic measurement applications may require observation
of full trajectories or proper segmentation of pedestrians.

http://dx.doi.org/10.1155/2013/241913
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2013%2F241913&domain=pdf&date_stamp=2013-11-28

2 International Journal of Distributed Sensor Networks

3D reconstruction or distributed camera hand-off algorithms
require multiple camera views on the same object. Resource
constraints such as number of cameras, types of cameras,
connectivity between neighboring cameras, power consump-
tion, and camera movement controls are routinely used
to reflect limitations in realistic deployment. A universal
camera placement framework must be able to accommodate
all these sometimes contradictory requirements in a single
optimization framework.

Classical approaches formulate the camera placement
problem as a geometry problem over the continuous space of
the physical environment and camera network configuration.
With the tremendous complexity in modeling camera visi-
bility, environment topology, and the disparate application
requirementsmentioned above, it is difficult if not impossible
to capture all aspects of the problem via any continuous-
domain approach. As such, most of the camera placement
researches resort to discrete approaches, where the physical
environment and the camera network configuration search
space are first discretized.A binary variable is defined for each
point in the search place to indicate the possible presence of a
camera at that location and pose.The totality of these camera
variables defines the configuration of a camera network
which in turn determines the visibility binary variable at
each point of the physical environment. Application-specific
constraints and objective functions can then be defined based
on these variables to formulate a binary integer programming
(BIP) optimization problem.

While the BIP formulation provides great flexibility in
modeling the camera placement problem, BIP optimization
problems are notorious to solve in practice. Many BIP
formulations of camera placement are NP-complete, where
exact solutions are too complex to obtain even for a small-
size problem. As a result, a myriad of approximate algorithms
have been applied in solving BIP-based camera placement
problem. However, many of the proposed approaches [1–8]
are customized for specific applications and a fair evaluation
of different approximate algorithms on solving the general
camera placement problem remains elusive.

In this paper, we present the BIP formulation for a
wide variety of camera placement problems and provide a
comprehensive framework to study various approximation
algorithms in solving them. Specifically, we consider two
general camera placement problems: the MIN formulation
in which the camera resource is minimized for a target
performance, and the FIX formulation in which the target
performance ismaximized under a resource constraint.Many
other commonly used constraints in camera network design
are also discussed. To solve the BIP-based camera place-
ment problems, we have applied a spectrum of approximate
algorithms from greedy, heuristics, Markov-chain Monte
Carlo, simulated annealing, linear programming relaxation,
and semidefinite programming relaxation. The accuracy,
efficiency, and scalability of each technique are analyzed and
compared in depth. Extensive experimental results are also
provided to illustrate the strengths and weaknesses of each
method. To the best of our knowledge, this is the first com-
prehensive comparison of various approximate algorithms in
solving the camera placement problems. Compared with an

earlier version of this work [9], we have further expanded the
BIP framework to handle a richer set of objective functions
and constraints and included more experimental results to
compare various approximate algorithms.

The paper is organized as follows. First, we give a brief
literature review in Section 2. Section 3 defines the two
camera placement problems and formulates them via a BIP
framework to incorporate some of the most commonly used
objective functions and constraints. In Section 4, we intro-
duce different approximate algorithms and present details
on the adaptation of each algorithm in solving the BIP
camera placement problems. Extensive experimental results
are presented in Section 5 to compare their performances.We
conclude our paper in Section 6.

2. Related Work

The problem of optimal camera placement has been studied
for decades. The earliest investigation can be traced back to
the “art gallery problem” in computational geometry. This
problem is the theoretical study on how to place cameras
in an arbitrary-shaped polygon so as to cover the entire
area [10–12]. It covers a set of important topics in computa-
tional geometry including Delaunay triangulation and vertex
covering. While Chvátal has shown in [13] that the upper
bound of the number of cameras is ⌊𝑛/3⌋, determining the
minimum number of cameras turns out to be a NP-complete
problem [14]. While the theoretical difficulties of the camera
placement problem are well understood, few solutions can
be directly applied to realistic computer vision problems—
the original formulation of the “art gallery” problem lacked
realistic models for either the cameras or the environment
under surveillance and provided few efficient computational
approaches to calculate optimal placements under different
scenarios. Camera placement has also been studied in the
field of photogrammetry in order to obtain the most accurate
3D reconstruction of the scene. Variousmetrics such as visual
hull [15] and viewpoint entropy [16] have been developed and
optimization is realized by various types of ad-hoc searching
and heuristics [17]. These techniques assume very dense
placement of cameras and are not applicable to wide-area
wide-baseline camera networks.

Recent widespread deployments of video camera net-
works, however, turned camera placement from a prob-
lem of theoretical interest into an important tool that can
significantly improve the performance, coverage, and cost-
effectiveness of the network. While the original “art gallery”
problem was formulated in the continuous 2D or 3D spaces,
the complexity of modeling visibility in continuous space
increases dramatically when practical considerations such as
orientation and multiple views are incorporated. Sophisti-
cated continuous-space modeling pertinent to visual sensor
networks is recently proposed in [18, 19].The sophistication in
their visibilitymodels has greatly limited their practical usage
in wide-area surveillance environments.

As such, the majority of the recent approaches consider
the problem entirely in discrete domain—instead of opti-
mizing continuous functionals using calculus of variation,
discrete-domain approaches quantize the search space into

International Journal of Distributed Sensor Networks 3

Table 1: Various approaches for camera placement.

BIP/LP Greedy Heuristic MC SDP
[1] X
[2] X
[3] X X
[4] X X
[5] X X
[6] X
[7] X X
[8] X X X

finitely many candidate positions and search for the best
configurations that optimize a target objective function.
This strategy naturally leads to combinatorial problems with
the camera, environment, and traffic models encoded in
different integral constraints and objective functions. Horster
and Lienhart [1] made an early effort to use generic BIP
to formulate the discrete camera placement problem. Our
earlier work in [20] followed a similar optimization strategy
but with more sophisticated probabilistic model approach
to capture the uncertainty of object orientation and mutual
occlusion. Similar works can be found in [6, 8]. In Ercan’s for-
mulation the objective contains quadratic term so quadratic
programming was used instead of BIP which requires all
terms to be linear [8].

While most of the formulations result in NP-hard prob-
lems, a myriad of practical solutions including binary integer
programming solvers (BIP), greedy approach, greedy heuris-
tics, Markov-Chain Monte Carlo (MCMC), and semidefinite
programming relaxations (SDP) have been proposed [1–
8]. Each method has its own merits in terms of ease of
formulation, computational complexity, worst or average case
performances, scalability, and so forth. To further complicate
matters, different researchers often tackle slightly different
objective functions and design specific approximation tech-
niques accordingly. To the rest of the vision community, it
is difficult to discern the merits of different approaches and
to identify the appropriate solution for a specific placement
problem at hand. It is our goal to provide the pros and cons of
using different approximate algorithms in solving the camera
placement problem. Table 1 lists the approximate algorithms
tested in this paper and their usage in existing works.

3. Camera Placement in General

In this section, we define the two camera placement problems
and formulate them via a BIP framework to incorporate
some of the most commonly used objective functions and
constraints.

3.1. BIP Formulation. Although there is a myriad of cam-
era placement problems in the literature, the fundamental
objectives of these problems almost always fall into two broad
categories which we refer to as the MIN and FIX problems.

(1) The goal of the MIN problems is to minimize the
number of cameras such that the target coverage𝑝 can
be achieved subject to other constraints.

(2) The goal of the FIX problems is to maximize the
coverage subject to a fixed number of cameras𝑚 and
other application specific constraints.

Both problems can be tackled in the following fashion.
First, the space of possible camera configurations, including
locations, yaw, pitch angles, and camera types, can be con-
verted into discrete points by either random [1] or uniform
sampling [6, 20]. The target space of the camera network can
also be discretized into a finite space, which can be the 2D [7]
or 3D [18], object positions, object orientations [21], motion
paths [18] or even a combination of all the above spaces.

We denote the discretized camera space as {Υ
𝑖

: 𝑖 =

1, . . . , 𝑁
𝑐
} and the target space as {Λ

𝑗
: 𝑗 = 1, 2, . . . , 𝑁

𝑝
}.

We then define two sets of binary variables {𝑏
𝑖

: 𝑖 =

1, . . . , 𝑁
𝑐
} and {𝑥

𝑗
: 𝑗 = 1, . . . , 𝑁

𝑝
} on the two spaces,

respectively. Each 𝑏
𝑖
= 1 for 𝑖 = 1, . . . , 𝑁

𝑐
indicates that a

camera is placed or selected at Υ
𝑖
. A camera placement plan

is represented by a particular selection of these 𝑏
𝑖
variables

and the goal of the placement problem is to find a placement
plan that optimizes the objective functions and satisfies all
given constraints. 𝑥

𝑗
for 𝑗 = 1, . . . , 𝑁

𝑝
becomes 1 if an object

placed atΛ
𝑗
can be observed under the selected camera plan.

Obviously, each 𝑥
𝑗
is determined by the 𝑏

𝑖
variables, and

their relationships are usingmanifested constraints as we will
illustrate in Section 3.2. Using these variables, the MIN and
FIX formulations can be formulated as follows:

MIN: minimize
𝑁
𝑐

∑
𝑖=1

𝑏
𝑖

given 𝑓(𝑥
1
, . . . 𝑥
𝑁
𝑝

) ≥ 𝑝, 𝑥
𝑗
, 𝑏
𝑖
are binary,

(1)

FIX: maximize 𝑓(𝑥
1
, . . . 𝑥
𝑁
𝑝

)

given
𝑁
𝑐

∑
𝑖=1

𝑏
𝑖
≤ 𝑚, 𝑥

𝑗
, 𝑏
𝑖
are binary,

(2)

where 𝑓(𝑥
1
, . . . , 𝑥

𝑁
𝑝

) is an application-specific real-valued
function that measures the coverage of the network. A
simple but powerful example of 𝑓(𝑥

1
, . . . , 𝑥

𝑁
𝑝

) would

be (1/𝑁
𝑝
) ∑
𝑁
𝑝

𝑗=1
𝜌
𝑗
𝑥
𝑗
, where 𝜌

𝑗
∈ [0, 1] are known weights

derived from the particular application to represent the
importance of the area around the discretized location. For
instance, in [22], a random walker model is used to calculate
the weights to embody the likelihood of moving object to
occur in a particular region. In order to provide a baseline for
comparison without losing generality, we adopt this model
in this paper and set 𝜌

𝑗
= 1 for simplicity, but a more

sophisticated metric that considers other factors can also be
used. Application-specific constraints should also be added
to represent the internal relationship between the two sets of
variables.

We assume that the coverage function and all constraints
are linear in 𝑥

𝑗
’s and 𝑏

𝑖
’s. This assumption is not overly

restrictive as there are general strategies to convert nonlinear
constraints into linear ones [23]. Here we provide a few

4 International Journal of Distributed Sensor Networks

examples which include common techniques to linearize the
nonlinear requirements that arise in camera planning.

3.2. Common Constraints Used in Camera Planning

3.2.1. Visibility Constraint. To determine if a particular target
grid point Λ

𝑗
by a camera at 𝑏

𝑖
is determined by the target

application and can be complicated affairs, it can depend
on, but certainly not limited to, all optical properties of
camera, environmental occlusion, mutual occlusion from
other objects, and self-occlusion. However, as shown in [5],
such complexity can be hidden via a precomputed visibility
matrix 𝑉 where V

𝑖𝑗
= 1 implies that the target position Λ

𝑗
is

visible at the camera at Υ
𝑖
. With the visibility matrix, we can

define a set of visibility binary variables 𝑥
𝑗
’s which indicate

whether an object at particular target grid point Λ
𝑗
is visible

to at least one selected camera. The relationship between 𝑉,
𝑏
𝑖
’s, and 𝑥

𝑗
’s can be expressed via a set of pairs of visibility

constraints as follows. For each target grid point Λ
𝑗
for 𝑗 =

1, 2, . . . , 𝑁
𝑝
, we have

𝑁
𝑐

∑
𝑖=1

V
𝑖𝑗
𝑏
𝑖
− 𝑁
𝑐
𝑥
𝑗
≤ 0, (3)

𝑁
𝑐

∑
𝑖=1

V
𝑖𝑗
𝑏
𝑖
− 𝑥
𝑗
≥ 0. (4)

These two constraints define the binary variable𝑥
𝑗
: for𝑥

𝑗
= 1,

Inequality (3) is obviously true while Inequality (4) ensures
that at least one camera that can see Λ

𝑗
is selected in the

placement plan. For 𝑥
𝑗
, the situation is reverse and Inequality

(3) forces that none of the cameras that can capture Λ
𝑗
is

selected.
In this example, we only select the first camera, so 𝑏

1
=

1, 𝑏
2
= 𝑏
3
= 0, and

𝑉 = (

1 0 0

0 1 0

0 0 1

) . (5)

For Λ
1
, we have ∑𝑁𝑐

𝑖=1
V
𝑖𝑗
𝑏
𝑖
= V
11
𝑏
1
+ V
21
𝑏
2
+ V
31
𝑏
3
= 1, so (3)

becomes

1 − 3𝑥
1
≤ 0 (6)

and (4) becomes

1 − 𝑥
1
≥ 0. (7)

Solving the equations above, we have 1/3 ≤ 𝑥
1
≤ 1, and since

𝑥
𝑖
is binary so we have 𝑥

1
= 1.

For Λ
2
, we have ∑𝑁𝑐

𝑖=1
V
𝑖𝑗
𝑏
𝑖
= V
12
𝑏
1
+ V
22
𝑏
2
+ V
32
𝑏
3
= 0, so

(3) becomes

0 − 3𝑥
2
≤ 0 (8)

and (4) becomes

0 − 𝑥
2
≥ 0. (9)

Solving the equations above, we have 0 ≤ 𝑥
2
≤ 0 so we have

𝑥
2
= 0.
Similarly, for Λ

3
, we have 𝑥

3
= 0, which conforms to our

application scenario that if we only select camera 1, then only
target 1 is visible.

It is a straightforward matter to extend the basic case of
visibility tomultiple coverage requirement in which an object
is considered visible when it is seen by at least 𝑘 > 1 cameras.
Multiple camera coverage constraint is important to com-
puter vision applicationswhere reconstruction algorithms are
applied to recover missing information due to occlusion and
projective distortion. This requirement can be imposed by a
small modification on the thresholds as follows:

𝑁
𝑐

∑
𝑖=1

V
𝑖𝑗
𝑏
𝑖
− (𝑁
𝑐
− 𝑘 + 1) 𝑥

𝑗
≤ 𝑘 − 1,

𝑁
𝑐

∑
𝑖=1

V
𝑖𝑗
𝑏
𝑖
− 𝑘𝑥
𝑗
≥ 0.

(10)

3.2.2. Connectivity. Connectivity requirements impose cer-
tain communication limitations on how the camera nodes
can communicate with each other. It is typical requirement
in wireless camera network where only nearby camera nodes
can communicate between each other due to the power
constraints. To model such a neighborhood relationship, we
introduce an adjacency matrix 𝐴 with each entry 𝑎

𝑖𝑗
=

1 if cameras at 𝑖 and 𝑗 are connected. We also define
a binary variable 𝑦

𝑖𝑗
= 1 if there is a communication

flow between camera Υ
𝑖
to Υ
𝑗
whenever both cameras are

selection. Mathematically, it is defined as follows:

𝑦
𝑖𝑗
≤

𝑎
𝑖𝑗

2
(𝑏
𝑖
+ 𝑏
𝑗
) . (11)

The connectivity is ensured by requiring that every selected
camera has at least one flow so that the observed information
can be routed out:

𝑏
𝑖
≤ ∑
𝑗

𝑦
𝑖𝑗
. (12)

A more complicated example considering communication
capacity and different type of sensors can be found in
[24].

3.2.3. Localization Error. Localization error indicates the
possible error in estimating the location of an object. This
function is not isotropic due to the nature of perspective
projection. In [8], the authorsmodel the 2D localization error
of tracking a single nonoccluded object, given its first and
second order statistics, as the minimum mean-square error
of the linear estimate based on the perspectively distorted
images at the camera. In the 2D case, this location error is

International Journal of Distributed Sensor Networks 5

a function of the yaw angle 𝜃
𝑖
of each camera 𝑖. As such, they

formulate the camera placement problem as follows:

maximize (
𝛼 + 1

𝜎2
𝑥

+

𝑁
𝑐

∑
𝑖=1

𝑏
𝑖

𝜎V𝑖
)

2

− (
𝛼 − 1

𝜎2
𝑥

+

𝑁
𝑐

∑
𝑖=1

𝑏
𝑖
cos 2𝜃

𝑖

𝜎V𝑖
)

2

− (

𝑁
𝑐

∑
𝑖=1

𝑏
𝑖
sin 2𝜃

𝑖

𝜎V𝑖
)

2

given
𝑁
𝑐

∑
𝑖=1

𝑏
𝑖
≤ 𝑚, 𝑏

𝑖
’s are binary,

(13)

where 𝜎V is the measurement noise variance, 𝜎
𝑥
is the

localization noise prior, and 𝛼 is a parameter to indicate
the asymmetry of prior noise in the two principal axes.
Note that 𝜃

𝑖
is not a variable here but rather the specific

yaw angle specified by the specific camera pose assigned
to the variable 𝑏

𝑖
. The authors argued that as this objective

function is quadratic, it is not amenable to linear techniques
and they used SDP to solve the optimization problem.
Nevertheless, using additional variables, it can be shown that
this formulation can be easily linearized into a linear BIP and
can thus be absorbed into our proposed framework.

The linearization is shown as below. First, the objective
function can be expanded into the following form:

4𝛼

𝜎4
𝑥

+
2 (𝛼 + 1)

𝜎2
𝑥

∑
𝑖

𝑏
𝑖

𝜎2V
𝑖

+
2 (𝛼 − 1)

𝜎2
𝑥

∑
𝑖

cos 2𝜃
𝑖
𝑏
𝑖

𝜎2V
𝑖

+ 2∑
𝑖

∑
𝑗

1 − cos 2𝜃
𝑖
cos 2𝜃

𝑗
− sin 2𝜃

𝑖
sin 2𝜃

𝑗

𝜎2V
𝑖

𝜎2V
𝑗

𝑏
𝑖
𝑏
𝑗
,

(14)

where the only variables are 𝑏
𝑖
’s. Though the expression is

not linear due to the presence of the cross term 𝑏
𝑖
𝑏
𝑗
, we can

linearize it by replacing 𝑏
𝑖
𝑏
𝑗
with new binary variables 𝑦

𝑖𝑗
and

adding three sets of linear constraints as follows:

−𝑏
𝑖
+ 𝑦
𝑖𝑗
≤ 0,

−𝑏
𝑗
+ 𝑦
𝑖𝑗
≤ 0,

𝑏
𝑖
+ 𝑏
𝑗
− 𝑦
𝑖𝑗
≤ 1.

(15)

3.2.4. Tracking Performance. Tracking is the process of locat-
ing moving objects through a camera network in a contin-
uous fashion. The crucial element for tracking is occlusion
handling. In the sense of camera placement or selection,
it means the continuous time interval when the object is
not observed should be minimized. To incorporate such a
constraint, we need to introduce additional path variable Ψ

𝑗

for each sample path of interest. Continuous tracking of the
path Ψ

𝑗
can be represented by a linear constraints as follows:

∑
𝑖∈Ψ
𝑗

𝑥
𝑖
≥ 𝜂

󵄨󵄨󵄨󵄨󵄨
Ψ
𝑗

󵄨󵄨󵄨󵄨󵄨
, (16)

where |Ψ| is the length of the path in terms of the environment
sample points and 𝜂 is the minimum percentage of the entire
path that must be visible.

3.2.5. Partial Coverage. In some computer vision applica-
tions, a simple binary visibility metric is inadequate. For
instance, in facial recognition systems, face image with a
lower resolution has a higher probability to produce erro-
neous matching than a high resolution image. As such, it
requires an objective function that can gracefully degrade
froma fully visible state to a completemiss. A fuzzymodel has
been introduced in [25] for this purpose, and it can be easily
incorporated into our BIP model. Let 𝑓(Υ

𝑖
, Λ
𝑗
) be a real-

valued function that measures the continuous image quality
of an objectΛ

𝑗
from a camera atΥ

𝑖
. All we need is to redefine

V
𝑖𝑗
in (3) as follows:

V
𝑖𝑗
=

{{{

{{{

{

0, 𝑓 (Υ
𝑖
, Λ
𝑗
) < 𝑡
1
,

1, 𝑓 (Υ
𝑖
, Λ
𝑗
) ≥ 𝑡
2
,

1

𝑡
2
− 𝑡
1

𝑓 (Υ
𝑖
, Λ
𝑗
) − 𝑡
1
, 𝑡
1
≤ 𝑓 (Υ

𝑖
, Λ
𝑗
) < 𝑡
2
,

(17)

where 𝑡
1
, 𝑡
2
are upper and lower threshold for a computer

vision task.

3.2.6. Group Constraint. Group constraint is used to impose
different requirements on a subset of the parameter space. For
instance, the control of a PTZ camera can be formulated as a
group constraint over binary camera variables with known
position but unknown pose. Suppose the spatial positions
of the cameras have already been determined and the goal
is to determine the optimal pose for the visible task. At a
specific camera location (𝑐

𝑥
, 𝑐
𝑦
, 𝑐
𝑧
) in the 3D space, there

is a set of camera variables 𝑏
𝑖
that are associated with the

different allowable pose. As a PTZ camera cannot be at
two different poses simultaneously, we can use the following
equality constraint to ensure this condition:

∑

all Υ
𝑖
at (𝑐
𝑥
,𝑐
𝑦
,𝑐
𝑧
)

𝑏
𝑖
= 1. (18)

Similar constraints can be found in [26] where a set of
inequalities are used to prevent multiple cameras to be placed
at the same physical position.

3.2.7. Placement of Stereo Sensors. BIP can be also used
to model planning of stereo sensors, in which we try to
minimize the number of cameras while ensuring every target
has been covered by a stereo pair. We provide an alternative
BIP formulation to the ones proposed in [4]. The visibility
variable 𝑥

𝑘
at Λ
𝑘
is defined based on its visibility by stereo

pairs of cameras as follows:

𝑁
𝑐

∑
𝑖=1

𝑁
𝑐

∑
𝑗=𝑖+1

V𝑘
𝑖𝑗
𝑏
𝑖
𝑏
𝑗
−

𝑁
𝑐
(𝑁
𝑐
+ 1)

2
𝑥
𝑘
≤ 0,

𝑁
𝑐

∑
𝑖=1

𝑁
𝑐

∑
𝑗=𝑖+1

V𝑘
𝑖𝑗
𝑏
𝑖
𝑏
𝑗
− 𝑥
𝑗
≥ 0,

(19)

where V𝑘
𝑖,𝑗
is the stereo visibility metric defined as follows: in

[4], a target at Λ
𝑘
is visible by a pair of cameras at Υ

𝑖
and Υ

𝑗

6 International Journal of Distributed Sensor Networks

if (1) it is within a distance range between 𝑑
1
and 𝑑

2
from

both cameras, (2) the angle suspended at the object between
the stereo pair ∠Υ

𝑖
Λ
𝑘
Υ
𝑗
must be narrow enough to satisfy the

baseline requirement. These criteria lead to the following:

V𝑘
𝑖𝑗
=

{{{

{{{

{

1, if 𝑑
1
≤ 𝑑 (Υ

𝑖
, Λ
𝑘
) , 𝑑 (Υ

𝑗
, Λ
𝑘
) ≤ 𝑑
2
,

∠Υ
𝑖
Λ
𝑘
Υ
𝑗
≤ 𝜃,

0, otherwise,

(20)

where 𝑑(⋅, ⋅) is the Euclidean distance function and 𝑑
1
, 𝑑
2
, 𝜃

are predetermined constants. The same method described in
Section 3.2.3 can be used to make the constraint linear.

4. Approximate Solutions to
BIP Camera Placement Problems

The number of variables in camera placement problems is
directly proportional to the volume of the search space and is
typically very large even for simple environments. Although
there is optimization software capable of solving BIP prob-
lems exactly, it is in general impractical or even impossible
to obtain an exact solution for any reasonable-size camera
placement problem. In this section, we investigate several
approximate algorithms for camera placement problems and
we will show how close approximated solutions are to the
exact solutions by simulations in Section 5.

4.1. Greedy Method. The greedy method is probably the most
intuitive method in solving camera placement problems.The
basic idea is that instead of seeking a global optimum by
checking all possible configurations, we choose one camera
that optimizes the objective value at each step.The advantages
of the greedy algorithm include a simple implementation and
tremendous efficiency—most greedy algorithms have 𝑂(𝑛)

complexity instead of 𝑂(𝑛
𝑘
) by using an exhaustive search,

where 𝑛 is the size of the camera space. A generalized greedy
algorithm for both the MIN and FIX problems is shown in
Algorithm 1.

In fact, the greedy algorithm has deeper theoretical
motivations than intuition. In combinatorial optimization,
there is a well-studied class of problems known as the “set
cover” problem [27] defined as follows: given a finite set 𝑋
and a familyF of subsets of𝑋, a cover is a subset ofFwhose
union is 𝑋. The set covering optimization problem is to find
the cover that uses the fewest elements inF.

Feige has shown in [28] that the greedy algorithm is
the best polynomial-time approximation for the set covering
problem under the worst-case analysis if 𝑃 ̸=𝑁𝑃. The worst-
case performance is ln |𝑋| + 1. In the Appendix, we will show
thatMINunder the general visibility constraint introduced in
Section 3.2.1 is a set covering problem if the target coverage 𝑝
is one.The idea is that we can treat the observation spaceΛ as
the finite set 𝑋 and each camera point Υ

𝑖
as an element inF

that consists of all of the points in𝑋 observable by the camera.
The case when 𝑘 = 1 is straightforward and when 𝑘 > 1, we
can simply split each target into 𝑘 instances, and eventually,
with sufficient number of cameras, there will be 𝑝 ⋅ 𝑘 ⋅ |Λ|

instances covered.There have also been other research efforts

in demonstrating the optimality of the greedy algorithm in
other types ofMIN problems, such as partial coverage in [29–
31] and coverage with limited VC dimensions [32].

The case for using greedy algorithms in solving the FIX
camera placement problems is more complicated. For the
simple case of single camera coverage, that is, 𝑘 = 1,
the greedy algorithm once again provides the best possible
approximation to this so-called the “max cover” problem [28].
The case when 𝑘 > 1 is more complicated: when selecting
the first 𝑘 − 1 cameras, no local optimum can be calculated.
One might incline to use a weaker constraint, say 𝑘 = 1

to jumpstart the process. However, as there is a cap on the
maximum camera used, the algorithm may terminate when
no target is covered 𝑘 times, thus leading to an objective value
equal to 0. Similar constraints that require multiple coverage
or even the entire camera network to be selected together
often arise in practice: for instance, the problem in [4] has
the “sensor matching constraints” in addition to the covering
constraints to ensure that enough cameras are assigned to
the targets. In [6, 20], the camera pose is also discretized
so that another constraint is needed to ensure that no two
cameras in the same position can be selected. Since the greedy
approach already provides a good approximation for MIN,
the rest of this paper will focus on FIX. Note that even for the
MIN problems which do not admit a greedy solution, we can
always iteratively apply a solver for FIX for different number
of cameras and search for the minimum one that satisfies the
target coverage rate. This further justifies our exclusive focus
on the FIX problem.

4.2. Greedy Heuristics. As mentioned in the previous sec-
tion, the objective functions of some camera placement
problems cannot be computed by adding one camera at a
time. Nevertheless, we can still follow the idea of finding
local maximum/minimum at each iteration by maintaining
a constant number of cameras at every iteration. Algorithm 2
shows such a greedy heuristic for the FIX problem.

In this greedy heuristic, we have a well-defined objec-
tive function in each iteration as the maximum number
of cameras is always used. However, there is no sensible
way to choose one set of initial 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒 over another.
We therefore choose a random initialization. The use of
randomness inspires us to look into another set of powerful
tools—random sampling.

4.3. Naı̈ve Sampling Methods. Although the deterministic
greedy algorithm is very efficient, we cannot improve the
result once a local optimum is achieved due to its determin-
istic nature. Sampling methods allow a definitive advantage
over deterministic approaches—one can always improve the
results by sampling more points from the distribution.

The simplest version of a random sampler is to uniformly
sample points from the camera space. One can terminate the
algorithm when a good enough solution is obtained or the
maximumnumber of iterations is reached.However, the large
search space makes it difficult to sample even a near-optimal
solution in a reasonable running time. As such, this naive
version of random sampling is rarely useful.

International Journal of Distributed Sensor Networks 7

Input: Initial grid points for cameras Υ and targets Λ, feasible sets defined
by other constraints 𝑆, the target mean visibility 𝑝, maximum
number of cameras𝑚, minimum camera coverage 𝑘 ≥ 1

Output: Camera placement 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒

Set 𝑈 = Υ, 𝑉 = 0,𝑊 = Λ, 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒 = 0;
while |𝑉| < 𝑝 ⋅ |Λ| for MIN or |𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒| < 𝑚 for FIX do

𝑐 = the camera grid point in 𝑈 that maximizes the number of visible
target grid points in𝑊;
If 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒 ∪ {𝑐} ∈ 𝑆 then

𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒 = 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒 ∪ {𝑐};
𝑇 = subset of grid variables visible by 𝑘 cameras in 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒;
𝑉 = 𝑉 ∪ 𝑇;
𝑊 = 𝑊 \ 𝑇;

𝑈 = 𝑈 \ 𝑐;
end
Output 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒

Algorithm 1: A greedy search camera placement algorithm.

Input: Initial grid points for cameras Υ and targets Λ, feasible sets defined
by other constraints 𝑆, objective function 𝑓(⋅), max iterations𝑁 and
the maximum number of cameras𝑚

Output: 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒

Set 𝑈 = Υ, 𝑐𝑎𝑚𝑝𝑙𝑎𝑐𝑒 = 𝑚 random cameras;
𝑊 = 𝑈 \ 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒;
for 𝑖 = 0; 𝑖 < 𝑁; 𝑖 = 𝑖 + 1 do

select a pair (𝑏, 𝑐), 𝑏 ∈ 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒, 𝑐 ∈ 𝑊maximize 𝑓(⋅) if exchange
with each other;
if 𝑓(𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒) ≥ 𝑓(𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒 ∩ {𝑐} \ {𝑏}) then

Break;
if (𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒 ∩ {𝑐} \ {𝑏}) ∈ 𝑆 then

𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒 = 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒 ∩ {𝑐} \ {𝑏};
𝑊 = 𝑈 \ 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒;

𝑊 = 𝑊 \ 𝑐;
end
Output 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒

Algorithm 2: Greedy heuristic search for camera placement algorithm.

A better scheme should relate the objective value of the
sampled point to the probability of it being sampled. By
assigning a higher probability to sampled points with better
objective values, we have a higher chance to sample points
from the distribution that are close to the global optimum.

We denote 𝑆 as the set of all possible combinations of
cameras subject to all constraints and 𝐵

𝑖
= [𝑏
0

𝑏
1
⋅ ⋅ ⋅ 𝑏
𝑁
𝑐

] ∈ 𝑆

as one specific combination, that is, a point in the search
space (the camera space).We also denote𝑓(⋅) as the objective
function. The ideal probability for sampling should be as
follows:

𝑃 (𝐵
𝑖
) =

𝑓 (𝐵
𝑖
)

∑
𝑗∈𝑆

𝑓 (𝐵
𝑗
)
. (21)

In order to calculate 𝑃(𝐵
𝑖
) in (21), we need to evaluate every

𝐵
𝑖
which is as complex as performing an exhaustive search.

In the next few sections, we will discuss various assumptions
that can be made to simplify this process.

We start with the most straightforward one which
assumes that different camera positions are independent
from each other and the sampling probability at each camera
position is directly proportional to the number of target
positions it can observe. The first assumption provides an
effective mean to focus on one camera at a time, and
the second assumption naively relates the overall objective
value to the coverage of a single camera. While these two
assumptions provide a crude approximation to (21), they
provide far better samples than uniform distribution and
admit a very efficient implementation. The details of the
algorithm are provided in Algorithm 3.

We will show in Section 5 that Algorithm 3 provides
decent results with complexity comparable to the greedy
approach. On the other hand, the assumptions used in
Algorithm3 are very strong and are certainly not applicable in
many situations. To copewith arbitrary probability functions,
a more general approach is to use MCMC sampling and its
many variants. In the next section, we adopt the Metropolis

8 International Journal of Distributed Sensor Networks

Input: Same as in Algorithm 2
Output: 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒

Set 𝑈 = Υ, 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒 = 0;
for 𝑖 = 1, . . . , 𝑁

𝑐
do

Calculate 𝑃(𝑏
𝑖
= 1) by aggregating the number of

targets it can observe
end
𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒 = 0, 𝑏𝑒𝑠𝑡 = 0,𝑊 = 𝑈 \ 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒;
for 𝑖 = 0; 𝑖 < 𝑁; 𝑖 = 𝑖 + 1 do

for 𝑖 = 1, . . . , 𝑚 do
Sample one 𝑐 from𝑊 according to 𝑃;
𝑐𝑎𝑚 = 𝑐𝑎𝑚 ∩ 𝑐,𝑊 = 𝑊 \ 𝑐;

end
If 𝑐𝑎𝑚 ∈ 𝑆 and 𝑓(𝑐𝑎𝑚) > 𝑏𝑒𝑠𝑡 then

𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒 = 𝑐𝑎𝑚, 𝑏𝑒𝑠𝑡 = 𝑓(𝑐𝑎𝑚)

end
Output 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒

Algorithm 3: Random sampler based on independence assumptions.

algorithm [33, ch.5] to improve tracking of the probability
of each point in the search space without calculating the
normalization factor.

4.4. MCMC Sampling. The classical Metropolis algorithm
follows three simple steps in determining the next sample
point to explore: (1) makes a small perturbation around
the current sample point, (2) calculates the gain of this
perturbation, and (3) decides whether to accept the pertur-
bation by sampling a random number and comparing with
the gain. Algorithm 4 describes this process in solving the
FIX problem. In order to conform to the notations typically
used in optimization literature, we redefine the probability
function in (21) as follows:

𝑃 (𝐵
𝑖
) =

exp log𝑓 (𝐵
𝑖
)

∑
𝑗∈𝑆

𝑓 (𝐵
𝑗
)

. (22)

Thus, the gain of a perturbation becomes log𝑓(𝐵󸀠
𝑖
) −

log𝑓(𝐵
𝑖
) = log𝑓(𝐵󸀠

𝑖
)/𝑓(𝐵

𝑖
).

Algorithm 4 is very similar to Algorithm 2 except for
a simple change in sampling strategy; instead of always
exchanging with the camera that maximizes the objective
function, it chooses a random candidate to proceed. The
probability of selecting this candidate is proportional to the
amount bywhich the objective value of the random candidate
exceeds that of the current choice. Such a sampling strategy
prevents the algorithm from being trapped at local optima
and admits random candidates that can explore the rest of
the search space. Also, the algorithm can be adapted by
changing the perturbation range—one can simply exchange
many cameras at a time or only allow switching with cameras
nearby.

4.4.1. Gibbs Sampling. An alternative for Metropolis sam-
pling is Gibbs sampling. Similar to Metropolis sampling, the
Gibbs sampler draws new sample based on an existing sam-
ple. However, instead of applying a random perturbation, the

Gibbs sampler draws a partial sample from the conditional
probability defined as

𝑃 (𝑏
𝑖
= 1 | 𝑏

0
, 𝑏
1
, 𝑏
𝑖−1

, 𝑏
𝑖+1

, . . . , 𝑏
𝑚
) ,

=
exp log𝑓 ([𝑏

0
, 𝑏
1
, 𝑏
𝑖−1

, 𝑏
𝑖
, 𝑏
𝑖+1

, . . . , 𝑏
𝑚
])

∑
𝑗∈𝑆

𝑓 ([𝑏
0
, 𝑏
1
, 𝑏
𝑖−1

, 𝑏
𝑗
, 𝑏
𝑖+1

, . . . , 𝑏
𝑚
])

.
(23)

Compared with Algorithm 4, the Gibbs sampler case usually
admit a larger number of new samples under a fixed number
of steps. The efficiency of the Gibbs sampler depends on
the complexity of calculating the conditional probability.The
detailed algorithm is in Algorithm 5.

4.4.2. Simulated Annealing. The key step in every efficient
Monte Carlo method is how it relates the possibility of a
point sampled from the distribution with its objective value.
Obviously, such a relationship does not need to be linear.
Furthermore, we can see that this relationship does not need
to be static. There is an extensive literature of a class of
techniques known as simulated annealing that focus on how
to change this relationship to get a faster rate of converging
on an optimum point.

In order to use simulated annealing to solve the FIX
program, we need to add another variable called temperature
𝑇 to our probability function in (22):

𝑃 (𝐵
𝑖
) =

exp log𝑓 (𝐵
𝑖
) ⋅ 𝑇

𝑍
, (24)

where 𝑍 is a normalization factor. When we change 𝑇, we
can control the probability of jumping to a point with smaller
performance. When 𝑇 is big, the exchange is very frequent,
allowing the algorithm to explore more in the search space;
when 𝑇 is small, we focus on searching for the optimal point.
As such, a simulate-annealing scheme usually starts with a
high 𝑇 to run a Metropolis sampling scheme and decreases
𝑇 until the objective value does not change over time. The
algorithm is summarized in Algorithm 6.

International Journal of Distributed Sensor Networks 9

Input: Same as in Algorithm 2
Output: camera placement 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒

Set 𝑈 = Υ, 𝑐𝑎𝑚 = 𝑚 random cameras;
𝑊 = 𝑈 \ 𝑐𝑎𝑚, 𝑏𝑒𝑠𝑡 = 0, 𝑖 = 0;
for 𝑖 = 1, . . . , 𝑁

𝑐

𝑏 = randomly select one camera in 𝑐𝑎𝑚;
𝑐 = randomly select one camera in𝑊;
𝑐𝑎𝑚
󸀠
= 𝑐𝑎𝑚 \ 𝑏 ∩ 𝑐;

if 𝑐𝑎𝑚
󸀠
∈ 𝑆 then

Δℎ = 𝑓(𝑐𝑎𝑚
󸀠
)/𝑓(𝑐𝑎𝑚);

Draw random number 𝑢 from uniform (0, 1) distribution;
if log 𝑢 ≤ min(Δℎ, 1) then

𝑐𝑎𝑚 = 𝑐𝑎𝑚
󸀠;

if 𝑓(𝑐𝑎𝑚) > 𝑏𝑒𝑠𝑡 then
𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒 = 𝑐𝑎𝑚

󸀠
, 𝑏𝑒𝑠𝑡 = 𝑓(𝑐𝑎𝑚);

𝑊 = 𝑊 \ 𝑐;
end
Output 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒

Algorithm 4: Metropolis sampling for FIX.

Input: Same as in Algorithm 2
Output: camera placement 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒

Set 𝑈 = Υ, 𝑐𝑎𝑚 = 𝑚 random cameras;
𝑊 = 𝑈 \ 𝑐𝑎𝑚, 𝑏𝑒𝑠𝑡 = 0, 𝑖 = 0;
for 𝑖 = 1, . . . , 𝑁

𝑐

for 𝑗 = 1, . . . , 𝑚

𝑏 = = 𝑐𝑎𝑚[𝑗];
𝑐 = Randomly select one camera in
(𝑊 ∩ 𝑐) according to (23);
𝑐𝑎𝑚
󸀠
= 𝑐𝑎𝑚 \ 𝑏 ∩ 𝑐;

𝑊 = 𝑊 \ 𝑐;
end

end
Output 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒

Algorithm 5: Gibbs sampling for FIX.

The cooling function 𝑓
𝑐
(𝑡) is a function that dictates how

fast the temperature is decreased. Usually it is chosen as
a linear or logarithmic decreasing function. The function
𝑀𝑒𝑡𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 is essentially Algorithm 4 based on the cus-
tomized probability function defined in (24).

4.5. LP and SDP Relaxation. A significant drawback of
sampling techniques is that itmay takemany iterations for the
algorithm to converge. Even after convergence, the algorithm
provides little clue on how close the resulting approximation
is to the true optimal solution.

One possible remedy is to relax the original formulation
by replacing the binary constraints with real values 0 ≤

𝑥
𝑖
≤ 1 and 0 ≤ 𝑏

𝑖
≤ 1. As a result, we will get a linear

programming (LP) formulation which is polynomial-time
solvable and admits very efficient solvers even for large-scale
problems. The objective from the LP relaxation provides an
upper bound of the original problem [34, ch.3]. The LP
solver may return a fractional solution, and it is feasible
to obtain an approximated solution by using a rounding

scheme to round the continuous solution to the binary
solution.

However, the gap between the LP relaxation and original
BIP—called the integrality gap—is still unknown. Various
methods can be used to reduce the integrality gap by adding
more constraints [35–37]. In particular, the SDP introduced
in [35] offers an attractive solution in closing the integrality
gap.

Note for any binary variable 𝑥, an equivalent constraint
can be given as 𝑥(𝑥 − 1) = 0. SDP has been shown to better
approximate this constraint than LP relaxation (see [38] and
references within). SDP is a convex optimization such that
it optimizes a linear objective function over the intersection
of the cone of positive semidefinite matrices with an affine
space called a spectrahedron.The primal problem of the SDP
problem is defined as follows: letS

𝑞
be the space of 𝑞 × 𝑞 real

symmetric matrices, and we have
min trace (𝐶,𝑋) such that trace (𝐴 𝑖, 𝑋) = 𝑏

𝑖
,

𝑖 = 1, . . . , 𝑚, 𝑋 ≥ 0,
(25)

10 International Journal of Distributed Sensor Networks

Input: Inputs in Algorithm 2, an initial temperature 𝑡
𝑠
, an ending

temperature 𝑡
𝑒
and cooling function 𝑓

𝑐
(𝑡)

Output:Camera placement 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒

Set 𝑐𝑎𝑚 = randomly chose𝑚 cameras;
𝑡 = 𝑡
𝑠
;

while 𝑡 > 𝑡
𝑒
do

[𝑐𝑎𝑚, 𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑐𝑒] = 𝑀𝑒𝑡𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑐𝑎𝑚,𝑁, 𝑡);
if 𝑓(𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑐𝑒) > 𝑓(𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒) then

𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒 = 𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑐𝑒;
𝑡 = 𝑓
𝑐
(𝑡);

end
Output 𝑐𝑎𝑚𝑃𝑙𝑎𝑐𝑒

Algorithm 6: Simulated annealing algorithm for FIX.

where 𝐶,𝐴
𝑖
, 𝑋 ∈ S

𝑞
for 𝑖 = 1, . . . , 𝑚, and 𝑋 > 0 means 𝑋 is

inside of the cone of positive semidefinite matrices.
In this paper, we adopt the “Lift and Project” method

proposed by Lovász and Schrijver [35] in solving the SDP
formulation of the camera placement problem. We first
generalize MIN and FIX into the following standard form:

Minimize − c𝑇x

given 𝐴x ≤ b, 𝑥
𝑖
(𝑥
𝑖
− 1) = 0,

(26)

where x, b, c are column vectors and 𝐴 is a matrix. The
inequality constraint in (26) applies to each dimension. The
“Lift and Project” process works as follows.

(1) Define a variable matrix 𝑌 = {𝑦
𝑖,𝑗

| 𝑖, 𝑗 = 0, 1, 2, . . . ,

𝑛}, where 𝑛 is the length of vector x.
(2) Replace each constraint 𝐴

𝑖
x ≤ 𝑏

𝑖
with a set of

constraints 𝐴
𝑗
x ⋅ 𝑥
𝑗
≤ 𝑏 ⋅ 𝑥

𝑗
and 𝐴

𝑗
x ⋅ (1 − 𝑥

𝑗
) ≤

𝑏 ⋅ (1 − 𝑥
𝑗
), 𝑗 = 1, 2, . . . 𝑛.

(3) Replace each instance of 𝑥 variable with 𝑦 such that
𝑥
𝑖
𝑥
𝑗
= 𝑦
𝑖,𝑗
, 𝑥
𝑖
𝑥
𝑖
= 𝑥
𝑖
= 𝑦
𝑖,𝑖

= 𝑦
0,𝑖
for all 𝑖, 𝑗.

(4) Replace binary constraints 𝑥
𝑖
(𝑥
𝑖
− 1) = 1 with a

constraint forcing 𝑌 to be positive semidefinite or
𝑌 ≻ 0.

(5) Solve the SDP problem of 𝑌 and recover 𝑥
𝑖
= 𝑦
0,𝑖
.

It is shown in Section 5 that the “Lift and Project” process
provides a much tighter bound than LP relaxation. In fact,
we can get an even tighter relaxation by continuing to raise
the dimension of variables. In [38], Laurent analyzed and
compared three different hierarchical methods to obtain a
series SDP relaxations of the 0-1 problem. However, in prac-
tical camera placement problems, the number of variables
becomes large. Conducting more than one round of SDP
relaxation will inevitably run into memory issues.

5. Experimental Results

In our previous paper [5], simulation using a walking
humanoid and real-life experiments using a camera network
with 7 cameras over a surveillance area of 7.6m × 3.7m

Table 2: Comparison of two Monte Carlo sampling methods with
other algorithms.

Environment 1 Environment 2
Objective Time (s) Objective Time (s)

IP 353 1552.4 2336 101320.6
Greedy 339 0.002014 2164 0.1362
Heuristic 344 0.0297 2029 0.440203
Metropolis 352 0.6784 2290 1.109044
Gibbs 344 17.14 2225 203.7
SA 350 1.957046 2336 7.739528

were conducted to validate the model. We reused this model
in this paper so that we could focus on how to solve
the model efficiently. We propose three sets of simulation
experiments to illustrate the strength and weakness of each
proposedmethod. Firstly, we compare various fast and simple
algorithms on a problem with a simple topology. Then,
we compare them with more sophisticated algorithms on
complex environments. Last but not least, we apply the LP
and SDP relaxations on a small example to see how the SDP
relaxation dramatically reduces the integrality gap.

For comparison, we only use the constraints in (10) and
(18) with 𝑘 = 2. All experiments were conducted on a Duo
core 2.8GHzCPU with 3.2GBRAM, with most code written
in C linked to Matlab. The IP solver we used was in [39], and
SDP solver we used was SDPA [40].

5.1. Environment with Simple Topology. In this section, we
test our algorithms on a simple 2D square environment
as in Figure 1(a). The blue hollow circles are discretized
camera grid positions, and yellow solid stars are target grid
positions. The blue arrows are the placed cameras. Here we
have 28 camera positions and 49 tag positions. Each position
is further divided into 8 grid points to represent different
orientations. The total numbers of variables are𝑁

𝑐
= 192 for

cameras and𝑁
𝑝
= 392 for targets.

We first compare the running time for different algo-
rithms and different sample sizes in Figure 1(b). In Figures
1(c)–1(f), we compare the results for different algorithms

International Journal of Distributed Sensor Networks 11

(a) Problem topology and optimal placement for 8
cameras

0.001

0.01

0.1

1

10

100

Ru
nn

in
g

tim
e

Sample size

Random sample
PDF
Heuristics

Greedy
IP

1E + 00 1E + 01 1E + 02 1E + 03 1E + 04 1E + 05 1E + 06

(b) Time comparison for 6 cameras

200
220
240
260
280
300
320
340
360
380
400

O
bj

ec
tiv

e

Sample size

Random sample
PDF
Heuristics

Greedy
IP

1E + 00 1E + 01 1E + 02 1E + 03 1E + 04 1E + 05 1E + 06

(c) Objective comparison for 8 cameras

150

200

250

300

350

400

O
bj

ec
tiv

e

Sample size

Random sample
PDF
Heuristics

Greedy
IP

1E + 00 1E + 01 1E + 02 1E + 03 1E + 04 1E + 05 1E + 06

(d) Objective comparison for 6 cameras

100

150

200

250

300

350

O
bj

ec
tiv

e

Sample size

Random sample
PDF
Heuristics

Greedy
IP

1E + 00 1E + 01 1E + 02 1E + 03 1E + 04 1E + 05 1E + 06

(e) Objective comparison for 4 cameras

40
60
80

100
120
140
160
180

O
bj

ec
tiv

e

Sample size

Random sample
PDF
Heuristics

Greedy
IP

1E + 00 1E + 01 1E + 02 1E + 03 1E + 04 1E + 05 1E + 06

(f) Objective comparison for 2 cameras

Figure 1: Performance comparison of four approximation algorithms.

when the number of cameras varies. From those compar-
isons, we can make the following observations: (1) when the
number of cameras is sufficiently large, the greedy algorithm
has good approximation of IP solution with a fraction of
the running time. However, when the number of cameras is
small, the greedy algorithm provides much worse results due
to its complete overlook of the combinatorial characteristics

of the problem; (2) the sampling techniques can trade off
performance with computational time; (3) using elements
sampled from densities derived from the objective function
significantly outperforms those from uniform random sam-
pling; (4) the greedy heuristics generally outperforms other
approximation methods. However, it can still be trapped
in a local optimum regardless of the sample size. We will

12 International Journal of Distributed Sensor Networks

(a) Environment 1 (b) Environment 2

Figure 2: Two complex topologies. Black objects are obstacles and blue areas are secured areas with grid density 4 times higher than
surroundings.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

(a) 𝑇 = 100

0 100 200 300 400 500 600 700 800 900 1000
50

100

150

200

250

300

350

400

(b) 𝑇 = 10

0 100 200 300 400 500 600 700 800 900 1000
150

200

250

300

350

400

(c) 𝑇 = 1

Figure 3: Three separate Metropolis Markov chain with different temperature.

Table 3: Comparison of the objective values of SDP and LP
relaxation.

56 grids, 2 cameras 268 grids, 8 cameras
LP 11.5 32.25
SDP 11 31.34
Optimal 11 31

see that this disadvantage will incur big penalty when the
environment becomes more complex.

5.2. Metropolis Sampling and Simulated Annealing on Com-
plex Problems. As we can see above, for small and simple
problems we can choose from the greedy algorithm (Algo-
rithm 1), greedy heuristics (Algorithm 2), or sampling based
on marginal distribution (Algorithm 3). Furthermore, these
problems can also be solved by a standard IP solver in a
reasonable running time. Now, we begin to look at much
more complex environments.

In Figure 2, we show two complex environments gen-
erated by our camera placement GUI. We present the

International Journal of Distributed Sensor Networks 13

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) LP objective = 11.5

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) SDP objective = 11

Figure 4: Comparison of IP and SDP relaxation.

performances of IP solver, the greedy algorithm, Metropolis
sampling, and simulated annealing (SA) approach in Table 2.

In order to demonstrate the merit of Simulated Anneal-
ing, Figure 3 shows three independent Markov chains using
Metropolis sampling method with different single parameter
𝑇 as a in (24). with higher temperature, we get more
uniform samples which is useful for exploring the space. as
temperature cool downwe get less accepted samples but focus
more on region with higher objective value.

We can conclude that both sampling algorithms are
highly efficient when compared with the IP solver. We can
further see the change of temperatures plays an important
role in escaping the local optimums and exploring the entire
search spaces.

5.3. LP Relaxation and SDP Relaxation. At last, we show the
effectiveness of using SDP on relaxation on a simple and a
moderate complex environment. The results are shown in
Table 3. We can see that the SDP relaxation always gives a
tighter bound comparingwith LP relaxation.We visualize the
camera grid variables for the simple topology in Figures 4(a)
and 4(b), with the variable indexes in the 𝑥-axis and values
in the 𝑦-axis. We can see that the SDP relaxation gives results
closer to the binary with smaller objective value. In fact, in
this particular example, the SDP relaxation solution coincides
with the IP solution.

6. Discussion

In this paper, we have presented and compared strengths and
weaknesses of various well-known optimization frameworks
to solve the generic camera placement problem including
a greedy approach, MCMC methods, and LP and SDP
relaxations.

In addition to our simulation study presented in this
paper, it might be interesting to study how those algorithms
can be combined together for solving the generic camera
placement problem even more effectively. For example, the

output of a greedy approach can be used as an initialization
for the samplingmethods.While SDP relaxations outperform
the LP relaxation in terms of getting tighter bounds, it
suffers from the dimension increase due to the “Lift and
Project” process. Some dimension reduction approaches may
be useful to reduce the problem size and apply more layers of
SDP relaxations.

Additionally, itmight be interesting to use other emerging
optimization tools on our formulation. One example is least
absolute shrinkage and selection operator (LASSO), which
approximates the sparse approximation problem by a convex
problem. For example, recall our MIN problem as follows:

min
𝑁
𝑐

∑
𝑖=1

𝑥
𝑖

such that Ax ≤ b, 𝑥
𝑖
is binary. (27)

One can formulate MIN problem in terms of the LASSO
problem as follows:

min ‖Ax = b‖2 +
𝑁
𝑐

∑
𝑖=1

(𝑥
2

𝑖
− 𝑥
𝑖
)

subject to ‖x‖1 ≤ 𝜆.

(28)

This is a convex optimization problem and we might be able
to solve the problem, by a convex optimization solver such as
cvx [41].

Appendix

Lower Bound of Greedy Algorithm for
Multiple Coverage Problem

Thegreedy algorithm is a nature extension of the greedy algo-
rithm for set cover problem to fulfill our multiple coverage
requirement. In the sequel, we will derive its lower bound in
a fashion similar to that in [42].

14 International Journal of Distributed Sensor Networks

Let us reform our problem formulation: a binary matrix
with dimension𝑚×𝑛with 𝑛 the number of camera grid points
and 𝑚 the number of tag grid points. Corresponding to the
set cover problem, 𝑛 is the number of sets and 𝑚 is the size
of the universe. The column of 𝐴 is the collection of subsets,
denoted as𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑛
.The problem is to find a𝑚×1 binary

vector 𝑋 indicating the selection of 𝑃
𝑗
which will maximize

the weighted cost function

𝐶𝑋 =

𝑛

∑
𝑗=1

𝑐
𝑗
𝑥
𝑗
. (A.1)

We first consider the situation that we require a coverage
of the entire universe with at least𝐾 observation for each tag
grid. It can be described as

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
≥ 𝐾. (A.2)

Let us denote by 𝑃
𝑗
: 𝑗 = 1 ⋅ ⋅ ⋅ 𝑛 the original collection of

subsets. Construct a set ofmultisets𝑄
𝑗
: 𝑗 = 1 ⋅ ⋅ ⋅ 𝑛 bymaking

𝐾 copy of each element in 𝑃
𝑗
. In our greedy algorithm, each

time we choose a 𝑃
𝑟
which will maximize the cost function

and subtract each𝑄
𝑗
, 𝑗 ̸= 𝑟with element in𝑃

𝑟
. We denote the

multisets𝑄
𝑗
after subtracting the selected 𝑃

𝑟
as𝑄𝑟
𝑗
, the sets of

𝑃
𝑗
after the 𝑟 iteration as 𝑃𝑟

𝑗
, and the size of 𝑃𝑟

𝑗
and 𝑄

𝑟

𝑗
as 𝑤𝑟
𝑗

and V𝑟
𝑗
, respectively.

From our greedy algorithm, each time we select the set
with largest coverage normalized by the weight, so for any set
chosen at iteration 𝑟,

𝑤
𝑟

𝑟

𝑐
𝑟

≥
𝑤
𝑟

𝑗

𝑐
𝑗

. (A.3)

Let us define a set of variables 𝑦
𝑖,𝑘

correspondent to the
price of covering each point the 𝑘th time: define

𝑦
𝑖,𝑘

=
𝑐
𝑟

𝑤𝑟
𝑟

. (A.4)

So we have
𝐾

∑
𝑘=1

𝑚

∑
𝑖=1

𝑦
𝑖,𝑘

= 𝐾

𝑡

∑
𝑟=1

∑(𝑦
𝑖,𝑘

∈ 𝑃
𝑟

𝑟
)

= 𝐾

𝑡

∑
𝑟=1

𝑤
𝑟

𝑟
(

𝑐
𝑟

𝑤𝑟
𝑟

) = 𝐾

𝑡

∑
𝑟=1

𝑐
𝑟
,

(A.5)

𝐾

∑
𝑘=1

𝑚

∑
𝑖=1

𝑎
𝑖𝑗
𝑦
𝑖𝑘
=

𝐾

∑
𝑘=1

𝑡

∑
𝑟=1

∑(𝑦
𝑖,𝑘

∈ 𝑃
𝑟

𝑗
∩ 𝑃
𝑟

𝑟
)

= 𝐾 (V𝑟
𝑗
− V𝑟+1
𝑗

) ⋅ (
𝑐
𝑟

𝑤𝑟
𝑟

) .

(A.6)

From (A.3) we have

𝑤
𝑟

𝑟

𝑐
𝑟

≥
𝑤
𝑟

𝑗

𝑐𝑟
𝑗

≥
V𝑟
𝑗

𝐾𝑐
𝑗

. (A.7)

Plug it in (A.6), we have
𝐾

∑
𝑘=1

𝑚

∑
𝑖=1

𝑎
𝑖𝑗
𝑦
𝑖𝑘
≤

𝑡

∑
𝑟=1

(V𝑟
𝑗
− V𝑟+1
𝑗

)𝐾 ⋅
𝐾𝑐
𝑗

V𝑟
𝑗

≤

𝑡

∑
𝑟=1

(𝐻 (V𝑟
𝑗
) − 𝐻(V𝑟+1

𝑗
))

= 𝐻(V1
𝑗
) = 𝐻(𝐾 ⋅

𝑚

∑
𝑖=1

𝑎
𝑖𝑗
) .

(A.8)

Here we denote𝐻(𝑚) = ∑
𝑚

𝑖=1
(1/𝑖) and use the fact

V𝑟
𝑗
− V𝑟+1
𝑗

V𝑟
𝑗

≤
1

V𝑟
𝑗
− 1

+
1

V𝑟
𝑗
− 2

+ ⋅ ⋅ ⋅ +
1

V𝑟
𝑗
− (V𝑟
𝑗
− V𝑟+1
𝑗

)

= 𝐻(V𝑟
𝑗
) − 𝐻(V𝑟+1

𝑗
) .

(A.9)

From (A.8) we can conclude
𝑛

∑
𝑗=1

𝐻(𝐾

𝑚

∑
𝑖=1

𝑎
𝑖𝑗
)𝑐
𝑗
𝑥
𝑗
≥

1

𝐾2

𝑛

∑
𝑗=1

𝐾

∑
𝑘=1

𝑚

∑
𝑖=1

𝑎
𝑖𝑗
𝑦
𝑖𝑘
𝑥
𝑗

=
1

𝐾2

𝐾

∑
𝑘=1

𝑚

∑
𝑖=1

(

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
)𝑦
𝑖𝑘

≥
1

𝐾2

𝐾

∑
𝑘=1

𝑚

∑
𝑖=1

𝐾 ⋅ 𝑦
𝑖,𝑘

=

𝑡

∑
𝑟=1

𝑐
𝑟
.

(A.10)

Inequality (A.2) and Equation (A.5) are used during the
derivation.The right hand side is the cost of greedy algorithm,
and left side can be the optimal result if we replace 𝑥

𝑗
with the

optimal solution.

References

[1] E. Horster and R. Lienhart, “On the optimal placement of mul-
tiple visual sensors,” in Proceedings of the 4th ACM International
Workshop on Video Surveillance and Sensor Networks (VSSN
’06), pp. 111–120, ACM Press, Santa Barbara, Calif, USA, 2006.

[2] K. Chakrabarty, S. S. Iyengar, H. Qi, and E. Cho, “Grid
coverage for surveillance and target location in distributed
sensor networks,” IEEE Transactions on Computers, vol. 51, no.
12, pp. 1448–1453, 2002.

[3] U. M. Erdem and S. Sclaroff, “Automated camera layout to
satisfy task-specific and floor plan-specific coverage require-
ments,” Computer Vision and Image Understanding, vol. 103, no.
3, pp. 156–169, 2006.

[4] M. Al Hasan, K. K. Ramachandran, and J. E. Mitchell, “Optimal
placement of stereo sensors,” Optimization Letters, vol. 2, no. 1,
pp. 99–111, 2008.

[5] J. Zhao, S.-C. Cheung, and T. Nguyen, “Optimal visual sensor
network configuration,” in Multi-Camera Networks, chapter 6,
pp. 139–141, 2009.

[6] J.-J. Gonzalez-Barbosa, T. Garćıa-Ramı́rez, J. Salas, J.-B.
Hurtado-Ramos, and J.-D. Rico-Jimenez, “Optimal camera
placement for total coverage,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA
’09), pp. 844–848, May 2009.

International Journal of Distributed Sensor Networks 15

[7] Y. Yao, C.-H. Chen, B. Abidi, D. Page, A. Koschan, andM.Abidi,
“Can you see me now? Sensor positioning for automated and
persistent surveillance,” IEEE Transactions on Systems, Man,
and Cybernetics B, vol. 40, no. 1, pp. 101–115, 2010.

[8] A. O. Ercan, D. B. Yang, A. El Gamal, and L. J. Guibas,
“Optimal placement and selection of camera network nodes for
target localization,” Distributed Computing in Sensor Systems,
Springer, Berlin, Germany, vol. 4026, pp. 389–404, 2006.

[9] J. Zhao,D.Haws, R. Yoshida, and S.-C. S. Cheung, “Approximate
techniques in solving optimal camera placement problems,” in
Proceedings of the IEEE International Conference on Computer
VisionWorkshops (ICCVWorkshops ’11), pp. 1705–1712, Novem-
ber 2011.

[10] J. O’Rourke, Art Gallery Theorems and Algorithms, Oxford
University Press, 1987.

[11] J. Urrutia, Art Gallery and Illumination Problems, Elsevier
Science, Amsterdam, The Netherlands, 1997.

[12] T. C. Shermer, “Recent results in art galleries,” Proceedings of the
IEEE, vol. 80, no. 9, pp. 1384–1399, 1992.

[13] V. Chvátal, “A combinatorial theorem in plane geometry,”
Journal of Combinatorial Theory, Series B, vol. 18, no. 1, pp. 39–
41, 1975.

[14] D. T. Lee and A. K. Lin, “Computational complexity of art
gallery problems,” IEEE Transactions on Information Theory,
vol. 32, no. 2, pp. 276–282, 1986.

[15] D. Yang, J. Shin, A. Ercan, and L. Guibas, “Sensor tasking
for occupancy reasoning in a camera network,” in Proceedings
of the 1st Workshop on Broadband Advanced Sensor Networks
(BASENETS ’04), IEEE/ICST, 2004.

[16] P. Vazquez, M. Feixas, M. Sbert, and W. Heidrich, “Viewpoint
selection using viewpoint entropy,” in Proceedings of the Vision
Modeling and Visualization Conference (VMV ’01), pp. 273–280,
IOS Press, Stuttgart, Germany, 2001.

[17] J. Williams and W.-S. Lee, “Interactive virtual simulation for
multiple camera placement,” in Proceedings of the IEEE Interna-
tionalWorkshop onHaptic Audio Visual Environments andTheir
Applications (HAVE ’06), pp. 124–129, November 2006.

[18] R. Bodor, A. Drenner, P. Schrater, and N. Papanikolopoulos,
“Optimal camera placement for automated surveillance tasks,”
Journal of Intelligent and Robotic Systems, vol. 50, no. 3, pp. 257–
295, 2007.

[19] A. Mittal and L. S. Davis, “A general method for Sensor plan-
ning in multi-sensor systems: extension to random occlusion,”
International Journal of Computer Vision, vol. 76, no. 1, pp. 31–
52, 2008.

[20] J. Zhao and S.-C. S. Cheung, “Optimal visual sensor planning,”
in Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS ’09), pp. 165–168, May 2009.

[21] J. Zhao, S.-C. Cheung, and T. Nguyen, “Optimal camera
network configurations for visual tagging,” IEEE Journal on
Selected Topics in Signal Processing, vol. 2, no. 4, pp. 464–479,
2008.

[22] J. Zhao and S.-C. S. Cheung, “Human segmentation by fusing
visible-light and thermal imaginary,” in Proceedings of the 12th
IEEE International Conference on Computer Vision Workshops
(ICCVWorkshops ’09), pp. 1185–1192, October 2009.

[23] H. P. Williams, Model Building in Mathematical Programming,
John Wiley & Sons, New York, NY, USA, 1999.

[24] Y. Osais, M. St-Hilaire, and F. R. Yu, “Directional sensor place-
ment with optimal sensing range, field of view and orientation,”
in Proceedings of the 4th IEEE International Conference on

Wireless and Mobile Computing, Networking and Communica-
tion (WiMob ’08), pp. 19–24, IEEE Computer Society, Avignon,
France, October 2008.

[25] A. Mavrinac, J. L. A. Herrera, and X. Chen, “A fuzzy model for
coverage evaluation of cameras and multi-camera networks,”
in Proceedings of the 4th ACM/IEEE International Conference
on Distributed Smart Cameras (ICDSC ’10), pp. 95–102, ACM,
Atlanta, Ga, USA, September 2010.

[26] J. Zhao and S.-C. S. Cheung, “Multi-camera surveillance with
visual tagging and generic camera placement,” in Proceedings
of the 1st ACM/IEEE International Conference on Distributed
Smart Cameras (ICDSC ’07), pp. 259–266, September 2007.

[27] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson,
Introduction to Algorithms, McGraw-Hill Higher Education,
2nd edition, 2001.

[28] U. Feige, “A threshold of ln n for approximating set-cover,”
Journal of the ACM, vol. 45, no. 4, pp. 634–652, 1998.

[29] R. Gandhi, S. Khuller, and A. Srinivasan, “Approximation
algorithms for partial covering problems,” Journal of Algorithms,
vol. 53, no. 1, pp. 55–84, 2004.

[30] Q.Wu, P. Boulanger, andW. F. Bischof, “Bi-layer video segmen-
tation with foreground and background infrared illumination,”
inProceedings of the 16th ACM International Conference onMul-
timedia (MM ’08), pp. 1025–1026, ACM, Vancouver, Canada,
October 2008.

[31] P. Slavı́k, “Improved performance of the greedy algorithm for
partial cover,” Information Processing Letters, vol. 64, no. 5, pp.
251–254, 1997.

[32] C. Chekuri, K. L. Clarkson, and H.-P. Sariel, “On the set multi-
cover problem in geometric settings,” in Proceedings of the 25th
ACM Annual Symposium on Computational Geometry (SCG
’09), pp. 341–350, Aarhus, Denmark, June 2009.

[33] J. S. Liu,MonteCarlo Strategies in ScientificComputing, Springer,
2008.

[34] B. Gärtner, Understanding and Using Linear Programming,
Springer, 2007.

[35] L. Lovász andA. Schrijver, “Cones ofmatrices and set-functions
and 0-1 optimization,” SIAM Journal on Optimization, vol. 1, pp.
166–190, 1991.

[36] H. D. Sherali and W. P. Adams, “A hierarchy of relaxation
between the continuous and convex hull representations,” The
SIAM Journal on DiscreteMathematics, vol. 3, pp. 411–430, 1990.

[37] J. B. Lasserre, “An explicit exact SDP relaxation for nonlinear
0-1 programs,” in Integer Programming and Combinatorial
Optimization, K. Aardal and A. M. H. Gerards, Eds., vol. 2081
of Lecture Notes in Computer Science, pp. 293–303, Springer,
Berlin, Germany, 2001.

[38] M. Laurent, “A comparison of the Sherali-Adams, Lovász-
Schrijver, and Lasserre relaxations for 0-1 programming,”Math-
ematics of Operations Research, vol. 28, no. 3, pp. 470–496, 2003.

[39] T. Achterberg, “Scip: solving constraint integer programs,”
Mathematical Programming Computation, vol. 1, no. 1, pp. 1–41,
2009.

[40] K. Fujisawa, M. Fukuda, M. Kojima et al., “Sdpa (semidefinite
programming algorithm)—user’s manual,” Tech. Rep., Tokyo
Institute of Technology, Tokyo, Japan, 1995.

[41] M. Grant and S. Boyd, CVX: Matlab Software for Disciplined
Convex Programming, Version 1.21, CVX Research, Inc., Austin,
Tex, USA, 2011.

[42] V. Chvatal, “A greedy heuristic for the set-covering problem,”
Mathematics of Operations Research, vol. 4, no. 3, pp. 233–235,
1979.

	Approximate Techniques in Solving Optimal Camera Placement Problems
	Repository Citation

	Approximate Techniques in Solving Optimal Camera Placement Problems
	Digital Object Identifier (DOI)
	Notes/Citation Information

	Approximate Techniques in Solving Optimal Camera Placement Problems

