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ABSTRACT OF DISSERTATION 

 
 
 

NOVEL ROLE OF PROSTATE APOPTOSIS RESPONSE-4 TUMOR SUPPRESSOR  
IN B-CELL CHRONIC LYMPHOCYTIC LEUKEMIA 

 

Chronic Lymphocytic Leukemia (CLL) is defined by the accumulation of clonally 
expanded CD5+ and CD19+ B lymphocytes in blood and secondary lymphoid organs with 
impaired apoptotic mechanisms. CLL represents one third of all leukemia cases with an average 
age of 72 years at diagnosis making it the most common adult leukemia. The Eµ-Tcl1 mouse 
serves as an excellent model to study the development of CLL as they progress to a CLL like 
disease by 9-14 months of age, due to overexpression of an oncogene, T cell Leukemia 1(Tcl1), 
specifically in B cells through the Ig VH promoter and Eµ enhancer (Bichi et al. PNAS. 2002). In an 
adoptive transfer model, intravenous or intraperitoneal injection of primary CD5+CD19+ CLL 
cells from the Eµ-Tcl1 CLL mouse into recipient syngeneic mice leads to the development of a 
CLL like disease within 3-8 weeks of transfer. We have characterized the growth of CLL cells in 
these mice by periodic submandibular bleeding, spleen ultrasonography and flow cytometry. 
We find that Eµ-Tcl1 CLL cells express more Prostate apoptosis response-4 protein (Par-4), a 
known pro-apoptotic tumor suppressor protein, than normal B-1 or B-2 cells in mice. Par-4 is 
silenced by promoter methylation in more than 30% of all cancers and has been shown to be 
secreted and to induce apoptosis selectively in various types of cancer cells but not in normal 
cells. We found that CLL cells have constitutively active B-cell receptor signaling (BCR) and that 
inhibition of BCR signaling with FDA approved drugs causes a decrease in Par-4 protein, mRNA 
levels, and an increase in apoptosis. In particular, activities of Src family kinases, spleen tyrosine 
kinase and Bruton’s tyrosine kinase are required for Par-4 expression in CLL cells, suggesting a 
novel regulation of Par-4 through BCR signaling in both Eµ-Tcl1 CLL cells and primary human 
CLLsamples. Consistent with this, lenti-viral shRNA mediated knockdown of Lyn kinase leads to a 
decrease in Par-4 expression in MEC-1 cells, a human CLL derived cell line. Igα (CD79a) silencing 
in primary human CLL cells also results in down regulation of Par-4 expression. Additionally, we 
knocked down expression of Par-4 in MEC-1 cells which resulted in a decrease in cell growth 
that could be attributed to an increase in p21 expression and a reduction in the G1/S cell cycle 
transition.  We have also observed this phenomenon by crossing mice deficient in Par-4 with the 
Eµ-Tcl1 mouse where lack of Par-4 delays CLL growth in the mouse significantly (time to 
euthanization due to poor body condition - Eµ-Tcl1: 8.9mo vs Par4-/-EµTcl1: 11.97 mo, p = 
0.0472) and splenic B-CLL cells from these mice also have increased expression of p21. Since 

 
 



 
 

mice in this cohort are whole body knockout for Par-4, the difference in survival times 
between the Par-4 +ve and Par-4 –ve EµTcl1 mice could be due to the influence of Par-4 on CLL 
cells as well as the effect of Par-4 secreted by the CLL cells on the microenvironment.  There 
could be other potential roles for Par-4 in the context of CLL which are under further 
investigation. We have also investigated the site of CLL growth in mouse models to determine 
that the spleen is the primary organ to accumulate the CLL tumor burden. We have found that 
splenectomy significantly delays the development of CLL in the primary Eμ-Tcl1 mouse model 
and prevents growth and development in the adoptive transfer model. Interestingly, 
splenectomy did not delay CLL development as significantly in animals deficient for Par-4 
compared to C57BL/6 wild type mice. Par-4 appears to regulate a specific microenvironment 
required for CLL growth. Current studies are investigating the role of Par-4 in the 
microenvironment and the cell types that are critical for CLL growth within the splenic niche.  

 

KEYWORDS:  Chronic Lymphocytic Leukemia, BCR Signaling, Par-4, 
Growth Regulation, Splenic microenvironment 
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CHAPTER 1 

Introduction 

Cancer is defined as the abnormal growth of cells that have the ability to spread into 

surrounding tissues of the body[1]. It is a very heterogeneous disease with over 100 different 

types of cancers currently defined; some forming solid tumors and others derived from the 

blood, known as leukemias. Cancer is one of the leading causes of death worldwide and it is 

projected that from 2012 to 2030 cancer incidence will increase 50% with 22 million new cancer 

cases diagnosed [2]. This increase will lead to approximately 40% of the population being 

diagnosed with cancer during their lifetime and attribute to nearly 1 in 6 deaths [3]. In the 

United States, the overall cancer rate has declined in last several years but it is estimated that in 

2017 there will still be 1,688,780 new cancer cases diagnosed [4]. While dramatic progress has 

been made over the last few decades in cancer research, these numbers are still astronomical 

and continue to support the need for innovative new research in cancer biology.  

Since 1960, the number of cancer related articles that are available on the NCBI PubMed 

data base has grown significantly each decade indicating the increased research efforts to 

further understand this disease. More peer reviewed articles have focused on cancer research 

which in turn is helping to decrease cancer related deaths in the United States as reported by 

the NCI SEER database (Figure 1.1)[2].  While cancer mortality has decreased, the American 

Cancer Society predicts that about 1,650 people will die per day in 2017 due to cancer, making it 

an incurable disease [5].  

Extensive research has allowed us to understand the mechanisms that underlie the 

development of cancer which led to definition of the now famous “six hallmarks of cancer” by 

Hanahan and Weinberg. These include 1)sustaining proliferative signaling 2)evading growth 

suppressors 3) activating invasion and metastasis 4) enabling replicative immortality 5) inducing 
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angiogenesis and 6) resisting cell death [6]. With the addition of two emerging hallmarks that 

include the reprogramming of energy metabolism and immune evasion, these acquired 

biological functions allow for the persistence of malignant cells and metastasis[7]. Furthermore, 

the tumor microenvironment has been found to play a role in sustaining the growth of both 

solid tumors and hematological malignancies which introduces other supportive factors that 

provide survival signals for cancer cells [8, 9]. All cancers have the hallmarks of self-replication 

and avoidance of cell death mechanisms, or apoptosis, which leads to an increased tumor 

burden. Specifically, Chronic Lymphocytic Leukemia (CLL) is characterized to have a defect in 

apoptosis that facilitates the accumulation of malignant cells in the secondary lymphoid organs 

and peripheral blood. This dissertation will focus on understanding the survival pathways 

supporting CLL and specific regulatory proteins, such as Prostate Apoptosis Response-4 (Par-4) 

that we have found to promote the growth of this malignancy. 

 

Figure 1.1: Number of cancer related articles published and cancer mortality in the 

United States. Article values generated through PubMed search via “cancer” for each 

decade (Left Y-axis). Number of cancer related deaths per 100,000 reported in SEER 

database per year (Right Y-axis).  
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1.1 B cells and B cell Malignancies 

 1.1a Normal B cells 

 A B cell is a type of lymphocyte that is derived from a hematopoietic precursor in the 

bone marrow [10]. B cells function primarily within the adaptive immune system, specifically 

humoral immunity, to secrete antibodies and present antigen to other effector cells such as T 

cells in order to provide protection against infectious agents. B cells develop from stem cells 

within the adult bone marrow, but are also derived from fetal liver precursors within the 

embryo [11]. B cells can be subdivided into two populations known as B1 and B2 cells. B1 cells 

are unique and thought to mainly play a role in the innate immune system by producing 

immunoglobulins (primarily IgM)  that recognize self-antigen and are therefore self-reactive, 

although they also recognize evolutionarily conserved epitopes on pathogens [12]. B1 cells can 

be classified into two subgroups based on surface marker expression: B1-a are defined as IgM+ 

CD11b+ CD5+ and B1-b are defined as IgM+CD11b+CD5- [13]. B1 cells were first described in 

mice around 1983 by the Herzenberg group and originally called Ly-1 B cells based on the 

expression of CD5, a pan T cell marker [14]. B1 cells are abundantly located in the peritoneal 

cavity of mice making up nearly 70% of the B cell population [15, 16]. In humans, B1 cells are 

more prominently found in the tonsils, mucosal sites, and pleural cavity [17]. B1 cells are 

thought to derive from the fetal liver providing evidence for the “layered immune system” or 

“lineage hypothesis” suggested by Herzenberg et al. This hypothesis suggests that B1 and B2 

cells are from separate lineages derived from different time points in development [18]. The 

more conventional B2 cells originate from the bone marrow and then migrate to secondary 

lymphoid organs such as the lymph node and spleen, where they complete maturation. Within 

the bone marrow, B cell development is tightly regulated with the functional rearrangement of 

the immunoglobulin gene segments [19]. During this stage of development, B cells begin to 
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express a κ or λ light chain associated with the μ heavy chain to make up the B cell receptor 

(BCR) and express surface IgM; they then begin to egress from the bone marrow as immature B 

cells. If these cells come in contact with antigen during the immature state, the B cell undergoes 

anergy and apoptosis (clonal deletion) rather than clonal expansion. It is important for B cells to 

express an additional immunoglobulin, IgD, on the surface of their membrane to become 

mature as they progress through a transitional state in the spleen.  Depending on the strength 

of BCR derived signals, B cells become either marginal zone (MZ) or follicular (FO) B cells. Once 

MZ B cells come in contact with antigen, these cells develop into short lived plasma cells that 

secrete antibody in order to neutralize the pathogen. Follicular B cells form germinal centers 

with T helper cells that result in B cells becoming memory B cells or plasma cells as they undergo 

somatic hypermutation and class switching, but may also participate in an extrafollicular 

response that does not involve somatic hypermutation [20]. B cells are reliant on tonic signals 

through the BCR for their survival in the periphery [21]. These steps are strictly controlled in 

order for B cell activation to occur correctly and to generate a primary or secondary immune 

responses. If B cell development is dysregulated during VDJ rearrangement or if B cells escape 

self-antigen recognition and clonal deletion, autoimmunity may develop resulting in 

overproduction of auto-antibody secretion. Additionally, if dysregulation occurs during gene 

arrangement resulting in chromosomal translocations, oncogenic transformations may occur 

and therefore lead to the development of B cell malignancies [22]. 

 1.1b B Cell Malignancies 

 B cell malignancies encompass both lymphomas and leukemia. Lymphoma is a cancer of 

white blood cells that develops in the lymphatic system and is the 7th most common cancer in 

the US [23].  There are two primary types of lymphoma classified as Hodgkin’s (HL) and non-

Hodgkin’s lymphoma (NHL). Hodgkin’s lymphoma is characterized by large abnormal Reed-
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Sternberg cells that accumulate in the lymph nodes and is one of the most curable forms of 

cancer with more than 75% of cases entering remission after chemotherapy and radiation[24]. 

There are over 30 different subtypes of NHL that originate from B, T, and NK cells but 85% of 

NHL is B cell in origin [25]. NHL is considered a very aggressive disease or slow growing, 

depending on the subtype. Diffuse large B cell lymphomas (DLBCL) account for about 60% of 

NHL and are aggressive in nature while follicular lymphomas are more indolent and slow 

progressing. Some of these subtypes can be classified according to chromosomal translocations 

that potentially result in enhanced expression of proliferative and survival genes under the 

control of the Ig loci regulatory regions. For example, mantle cell lymphoma (MCL) results from 

a translocation between chromosomes 11 and 14 allowing for overexpression of cyclin D1, a cell 

cycle regulator, by being brought under the control of the IgH promoter [22].  

 According to the SEER database, leukemia is the 9th most common cancer in the US and 

contributed to 4.1% of all reported cancer deaths [23]. The word leukemia originated in the mid-

19th century from the Greek words “leukos” (≈white) and “haima” (≈blood), further designating 

an accumulation of white blood cells [26]. As a cancer of the blood, abnormal leukemic cells 

accumulate and do not die, suppress the function of normal immune cells, and eventually out 

populate other hematopoietic cell types resulting in anemia. Leukemia may be classified as 

chronic (slow progression of mature cells) or acute (rapid growth of primarily immature cells) 

and can affect both the myeloid or lymphoid white blood cells.  Patients that are diagnosed with 

acute leukemia will normally start treatment as soon as possible while patients with chronic 

leukemia may be placed under a “watch and wait” status until symptoms progress. Subtypes of 

leukemia include: Acute Lymphoblastic Leukemia (ALL), Chronic Lymphocytic Leukemia (CLL), 

Acute Myelogenous Leukemia (AML), and Chronic Myelogenous Leukemia (CML).  Both AML and 

CML are more common in adults than children and have distinct cytogenetic abnormalities, 
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especially the aberration noted in CML known as the Philadelphia Chromosome. Many CML 

patients respond well to imatinib, a small molecule targeting the kinase resulting from fusion of 

the BCR/ABL genes located on the Philadelphia chromosome [27]. Patients with AML have 

almost a 70% chance to attain a complete response after chemotherapy treatment with a 

traditional regimen of cytarabine and anthracycline [28]. ALL is more commonly seen in children 

and young adults. Recent advances in treatment have led to nearly a 98% remission rate and an 

overall 5-year survival of 90% in ALL patients [29, 30]. CLL is the most common adult leukemia in 

the Western world and like all leukemia, patients are grouped into fast or slow progressing 

disease based on prognostic indicators. Many patients with CLL may live a relatively normal life 

without symptoms, while others may only survive months to years after diagnosis or treatment 

initiation. Patients with CLL do have an 82% 5-year survival rate but experts in the field classify 

CLL as incurable [31]. 

1.2 Chronic Lymphocytic Leukemia 

Chronic Lymphocytic Leukemia (CLL) is defined by the accumulation of clonally 

expanded CD5+ CD19+ B lymphocytes with impaired apoptotic mechanisms in the blood, bone 

marrow, and secondary lymphoid organs [32]. In 2017, it is estimated that there will be 20,110 

newly diagnosed cases of CLL leading to 4,660 deaths in the United States [31]. According the 

national SEER database, CLL contributes to 1.2% of all new cancer cases but of the over 3.5 

million cancer articles available on PubMed, only 0.6% are related to CLL (Figure 1.2A) further 

substantiating the need to better understand the mechanisms of this disease to serve the 

population of patients. Additionally, it is predicted that 4.7people per 100,000 will be diagnosed 

with CLL per year (Figure 1.2B) with an estimated 1.3 deaths per 100,000[23].  
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Figure 1.2: Comparing the number of new CLL cases in the US to the number of total 

articles published on PubMed covering CLL. A) Left: CLL represents 1.2% of all new 

cancer cases diagnosed in the US as reported to the NIH SEER registry. Right: CLL 

publications only comprise 0.63% of the total 3.5 million cancer articles available on 

PubMed. Values obtained by “Leukemia” and “Chronic Lymphocytic Leukemia” searches 

on PubMed. B) Number of new cases of CLL reported per 100,000 people is 4.7 per year. 

Adapted from SEER Cancer Stat Facts: Chronic Lymphocytic Leukemia. National Cancer 

Institute. Bethesda, MD, http://seer.cancer.gov/statfacts/html/clyl.html 

 

The median age of diagnosis for CLL is 72, primarily affecting the older population and very 

rarely seen in patients under the age of 40 [31]. The incidence in men is almost twice that as 

observed in women[33].  CLL is classified within the Non-Hodgkin’s Lymphoma family of 

diseases. Leukemia is primarily characterized by an increase in the absolute lymphocyte count in 

the peripheral blood with ≥ 5000 lymphocytes per microliter of blood, and in many cases CLL is 

diagnosed through incidental blood counts [32]. Immunophenotyping is required to successfully 
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diagnose CLL to distinguish it from other unknown lymphocytosis or different types of 

lymphomas. Specifically, CLL cells are a distinct population of B cells which express CD19, CD20lo, 

CD5, CD23 and low levels of surface IgM/IgD molecules, as well as a clonal light chain restriction 

(kappa or lambda) [34]. These cell number requirements and surface markers help distinguish 

CLL cells from related diseases such as small lymphocytic lymphoma (SLL), B-cell prolymphocytic 

leukemia (PLL), monoclonal B cell lymphocytosis (MBL),  and various B cell lymphomas such as 

Marginal Zone Lymphoma that also express CD5 (MZL).  

CLL is a highly heterogeneous disease in terms of clinical course as some patients may 

live decades past initial diagnosis and likely die from other complications such as infections, 

while others may progress more rapidly. This heterogeneity can be attributed to mutations 

found within the variable gene segments of the BCR [35]. CLL can be classified into mutated (M-

CLL) and un-mutated (U-CLL) forms, the latter resulting in increased BCR signaling, more 

aggressive disease, and worse prognosis. This BCR signaling pathway is a desirable target as it is 

required for the survival of malignant B cells and is constitutively activated in many CLL cases 

[36, 37]. Additionally, the microenvironment has been found to play a key role in promoting the 

growth of B cell malignancies, including CLL, by providing proliferative signals and promoting 

drug resistance [9, 38]. BCR signaling and microenvironment make CLL a very complex disease to 

study and treat but also allows for new targets to be explored for therapeutic potential. 

 1.2a History, Staging, and Etiology 

Leukemia was first described by Rudolph Virchow in 1845 after a 50-year old cook 

presented with an enlarged spleen and “pigmented to colourless corpuscles” found in her blood 

[39].  Chronic lymphocytic leukemia was not characterized until 1903 by Turk who differentiated 

CLL from lymphosarcoma [40] and in 1924, Minot and Issacs characterized the clinical features 

of CLL predicting a median survival time of 40 months post diagnosis [41]. In the mid-1970s 
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Galton and Dameshek defined CLL as a disease of progressive accumulation of lymphocytes that 

are not rapidly proliferating and are functionally inert [42]. This definition has been refined since 

then as Hamblin et al. discovered the mutational status of the Ig variable region genes to play a 

prognostic role in classifying aggressive and indolent CLL cases [43]. Some patients may remain 

symptom free for the majority of their disease while others may experience fatigue, weight loss, 

night sweats, abdominal fullness, increased frequency of infections, anemia, or 

thrombocytopenia [44]. Additionally, aggressive disease may result in enlarged lymph nodes, 

splenomegaly, and hepatomegaly. Two types of disease staging are accepted in the medical field 

including the Rai System and Binet System. A summary of the staging is provided in Table 1 [45-

47]. 

Table 1: Staging of CLL. 

  

Two classifications used include Rai (typically used in US) and Binet (Europe). 

Information adapted from Rai et. al. 1975, Binet et. al. 1981, and Hallek et. al. 2008. (Hb 

indicates hemoglobin, normal levels are 13.8-17.2g/dL) 
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The etiology of CLL is not precisely known, but genetic factors are thought to contribute 

to the development of disease as 9% of patients with CLL also have a diagnosed relative [48]. It 

is important to note that multiple genome wide association studies (GWAS) have identified 

various single nucleotide polymorphisms (SNPs) within loci that are associated with heritable 

CLL risk [49]. Many of the biological pathways associated with the SNPs involve apoptosis and 

enhance the resistance to cell death [50]. SNPs and chromosomal deletions are common among 

CLL cases even though the genome is considered relatively stable in CLL compared to other 

cancers [51]. Some identified mutations have been excellent prognostic indicators; for example, 

deletion of 13q14 is a frequent genetic aberration that is associated with a more favorable 

outcome in patients but it is also the site of microRNAs 15a and 16-1 that work to suppress ZAP-

70 and Bcl-2 [48, 52]. Some of the more frequent chromosome abnormalities include Trisomy 

12, 13q deletion, 13q14 translocation, 17p deletion, and 11q22/23 band deletions [34]. In a 

study examining 325 cases of CLL, 82% of patients had detectable chromosomal aberrations, 

some of which led to worse prognosis and decreased median survival times (Figure 1.3) [53]. On 

average, patients with the 17p deletion only live 32 months past their point of diagnosis making 

it a very aggressive disease with splenomegaly and extensive lymphoadenopathy. The 17p 

deletion is associated with loss of the tumor suppressor p53 in CLL and other lymphoid 

malignancies [54]. p53  is well-known for its role as guardian of the genome by its ability to 

regulate cell cycle, and its loss in CLL cases leads to rapid disease progression [55]. Patients with 

loss of 11q are associated with defects in the ATM (ataxia telangiectasia mutated) gene which is 

a key kinase that is recruited to recognize DNA double strand breaks in order to repair damage 

[56]. The addition of chromosome 12 is the third most common genetic aberration in CLL and 

has been linked to a variety of genetic irregularities [51]. A recent GWAS study also identified 

multiple loci aberrations in CLL compared to other B cell malignancies, including multiple 
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myeloma and Hodgkin’s Lymphoma, and found pleiotropic associations at 3q22.2. This region is 

associated with T cell activation and the PI3K/Akt pathway. Additional polymorphisms were 

identified in HLA regions that are critical for antigen presentation and T cell receptor binding 

[57]. There are currently 33 common loci genetic variations that influence the risk of CLL 

development but with the recent GWAS studies, more are being identified that include SNPs 

involved in B cell immune response and signaling[58].  

 

Figure 1.3 Adapted from Dohner et. al. 2008, NEJM 344(26): 1910-1916, Figure 1 with 

permission: Survival of patients with various cytogenetic abnormalities. 17p deletion is 

the most aggressive aberration resulting in a decreased life expectancy comparted to 

other mutations.  Reproduced with permission from New England Journal of Medicine, 

Copyright Massachusetts Medical Society. 

 Next generation sequencing has revealed alterations in the NOTCH1, SF3B1, and BIRC3 

genes along with the previously known alteration in the ATM gene associated with the 11q22 

deletion [59]. NOTCH signaling is constitutively activated in CLL cells compared to normal B cells, 

leading to apoptosis resistance [60]. NOTCH is a cell surface receptor that responds to Delta-like 
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and Jagged ligands leading to nuclear translocation of an intracellular subunit that regulates 

DNA binding proteins and transcriptional complexes [61]. This pathway is known to regulate cell 

proliferation, differentiation and some mechanisms of cell death. In CLL, NOTCH has been found 

to promote the expression of Mcl-1, an anti-apoptotic protein, leading to increased CLL survival 

[62]. NOTCH overexpression is associated an intermediate survival risk and is also found to be 

expressed in unmutated IGHV patients with trisomy 12 [63, 64]. SF3B1, which encodes a 

component of the spliceosome that plays a key role in pre-mRNA splicing [65], has been found 

to be associated with intermediate risk patients and 11q deletions [63]. Loss of BIRC3, located 

within the 11q deleted region, is linked to high risk patients [66]. BIRC3 negatively regulates NF-

κB and loss of BIRC3 is very common in patients that are refractory to chemotherapy treatments 

[63, 67]. Many of these mutations are associated with a shorter time to treatment and used as 

prognostic indicators [68].  

Interestingly, other than age and gender, no other lifestyle or dietary factors have been 

associated with the increased incidence of CLL. Of note, a few studies found that exposure to 

Agent Orange and insecticides increased the risk of developing CLL [48, 69, 70].  

1.2b Cell of Origin 

Even with the incredible discoveries made in the field of Chronic Lymphocytic Leukemia 

over the last few decades, the cellular origin of the disease is still debated today. CLL cells 

distinctively express CD19, CD5, CD23, as well as surface Ig molecules [71]. CD19 is a surface 

antigen that is expressed on both normal and neoplastic B cells and is critical for intrinsic B cell 

signaling through BCR interactions as well as BCR independent signaling [72]. CD5 is also a cell 

surface molecule that is expressed on thymocytes, mature T cells, and differentiates B1 cells 

from the conventional B2 population [73]. Previous studies have also indicated that CD5 is found 

on some activated human B cells that are autoreactive [74]. CD5 is thought to be a negative 
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regulator to mitigate signaling in order to prevent over activation of signaling downstream of 

the TCR or BCR [75]. CD23 is a reliable marker for CLL cells to differentiate between other 

lymphomas that also express CD5 (mantle cell lymphomas). CD23 is an IgE receptor that is 

normally expressed on mature resting B cells and some activated B cells [76].  

The co-expression of low IgM and IgD levels on the surface of CLL cells originally 

suggested that these cells arise from naïve antigen-inexperienced B cells [77]. After Hamblin and 

colleagues classified CLL into two subgroups, M-CLL and U-CLL defined by mutations in the 

variable gene segments of the BCR indicating that 50-60% of CLL cells had undergone somatic 

hypermutation (M-CLL), hypotheses arose that CLL cells are derived from two cellular origins 

[43, 78]. Seifert and colleagues suggest that U-CLL cells are derived from unmutated mature 

CD5+ B cells as their IgV sequence is less than 2% different from germline, whereas M-CLL cells 

are derived from a distinct CD5+CD27+ post germinal center B cell [79]. An additional study 

investigating phenotypic markers found that CLL cells express more of an activated state 

(CD69+CD25+CD71+) independent of their Ig mutational status when compared to normal CD5+ 

B cells in humans, suggesting that CLL cells are mature antigen experienced cells [77]. Antigen 

experienced cells can be derived from cells that undergo somatic hypermutation within a 

germinal center but may also develop in a T cell-independent manner which may account for 

CLL cells that have unmutated Ig variable regions [78, 80]. Further support for antigen 

experienced B cells to be CLL precursors comes from studies that have examined the BCR 

repertoire in multiple CLL samples. It is well accepted that CLL cells have constitutive BCR 

signaling, but CLL cells also respond to antigen [81, 82]. Recent studies have found that 30% of 

BCR immunoglobulins within the CLL patient population are quasi-identical resulting in a 

stereotypy of BCRs [81, 83, 84].  This indicates that these malignant B cells from unrelated 

patients recognize similar antigens suggesting that are a few common epitopes  which activate 
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CLL cells. Not many antigens have been identified to stimulate CLL cells, but one potential 

candidate is non-muscle myosin heavy chain IIA which is an intracellular protein that interacts 

with actin to provide cellular movement and therefore is considered a self-antigen [85]. This is 

interesting as B1 cells are thought to be self-reactive and respond to autoantigens supporting 

the idea that CLL cells are derived from B1 cells[78].  

B1 cells are primarily found within the peritoneal cavity of mice but are also present in 

the spleen, albeit at a lower level [16]. As mentioned before, B1 cells express self-reactive BCRs 

but respond poorly to BCR cross-linking to prevent against self-activation that is suggested to be 

mediated through CD5 [75, 86]. B1 B cells also express restricted BCRs with a predominance of 

VH12 promoting B1 phenotype [87] and are known to produce antibody quickly in response to 

infection, primarily IgM, independent of T cell help (similar to U-CLL) [88]. Additionally, B1 cells 

are divided into B1a (CD5+) and B1b (CD5-)subsets where B1a cells are the primary source of 

natural IgM production and B1b cells respond to antigen in mice [16, 89, 90]. It has been 

suggested that B1a cells serve as the normal counterpart for CLL cells. Adoptive transfer studies 

of young/early B1a populations into immunocompromised recipient mice led to development of 

CLL like disease [91]. CLL development in this study was independent of oncogene expression 

but a follow-up study was able to confirm that early B1a cells expressing the oncogene, Tcl1, 

also led to the development of CLL in recipient mice [92]. These authors did note that not all B1a 

cells result in CLL development, but were restricted to specific BCRs that were later identified in 

promoting CLL growth [91, 92]. Additional studies favoring the B1a population serving as CLL 

normal counterpart provide evidence that both B1a cells and CLL cells secrete significant 

amounts of the cytokine Interleukin-10 that works to suppress the immune response [86]. 

Controversy regarding the normal counterpart of CLL has been focused on the inability 

to identify a human B1 population that is similar to mouse B1 cells [93]. Recently, reverse 
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engineering has allowed researchers to identify a human B1 cell population within the umbilical 

cord blood and adult peripheral blood [94]. Rothstein et al summarized evidence showing that 

mouse and human B1 cells share similar phenotypes and also express autoreactive antibodies 

that protect against infections. Seifert and colleagues compared normal CD5+ B cells from 

healthy human donors with both populations of CLL cells, M-CLL and U-CLL, and confirmed that 

CD5+ B cells are the normal B cell subset that are most similar to CLL [79].  

Besides B1 cells, other hypotheses for the CLL precursor include marginal zone B cells as 

well as immature pre-B cells and transitional B cells [35, 93]. While the data indicating CD5+ B 

cells is strong in supporting the normal counterpart of CLL, it is important to keep these other 

origins in mind as CLL cells may arise from different cell populations based on their BCR 

repertoire.  

Recently, a case report involving a 65y male with stage IV CLL identified a “Side 

Population” of CLL cells identified through flow cytometry that were proposed to be precursors 

to leukemic development [95]. Ablation of these cells through vaccination after CD40L 

stimulation diminished the bulk of the disease 12months after treatment. The “side population” 

of cells were CD5 and CD19 positive and thought to be similar to the cancer stem cell population 

characterized in other types of tumor models [96]. True identification of this “side population” 

would be of great benefit to determine if the likely B1 cells give rise to the malignant 

counterpart.  

1.2c B cell receptor and signaling 

For normal B cells to be functionally active in an immune response, their BCR must 

recognize a specific antigen for BCR cross-linking to occur and differentiation to antibody 

secreting plasma cells or memory B cells [20]. With the millions of potential antigens that 

initiate an immune response, the B cell must have a large repertoire of BCR sequences to 
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recognize most of the possible different epitopes. Each B cell clone that is generated has a 

unique B cell receptor but the diversity between clones is spectacular. Diversity is generated 

through somatic recombination of the variable gene segments, random recombination of VDJ 

joining, and combination of light and heavy chains for maturation of the BCR followed by 

somatic hypermutation during the course of the immune response [10]. The two different CLL 

subsets, M-CLL and U-CLL, are defined by mutations found within the variable gene segments 

that compose the Ig molecules that comprise up the B cell receptor. 

 The entire BCR complex is made of the surface Ig molecule and the signaling Igα 

(CD79A) and Igβ (CD79B) heterodimer that conduct cytoplasmic downstream signaling and 

other co-receptors like CD19 [97].  The BCR is critical for the survival of both normal and 

malignant B cells despite their oncogenic transformation [21, 36, 98]. B cells can receive both 

tonic (no external signal) and antigen dependent signaling that initiates phosphorylation of 

ITAM motifs located on Igα/β heterodimer by the Src Family Kinase (SFK) Lyn. This creates a 

scaffold for other kinases such as Syk (spleen tyrosine kinase) to become activated and promote 

downstream signaling [99]. Syk then triggers activation of multiple kinases such as BTK (Bruton 

tyrosine kinase), AKT (Protein Kinase B), PI3K (Phosphoinositide 3-kinase), other protein kinases 

shown in Figure 1.4 as well as PLCγ2 (Phospholipase C 2), BLNK (B cell linker protein) that 

promote NF-κB and MAPK signaling for survival and proliferation [100, 101]. 
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Figure 1.4: BCR signaling in CLL. Simplified model of the BCR signaling pathway in CLL 

cells and key kinases involved in downstream pathways that promote survival and 

proliferation. Adapted from Hallek, M. Blood. 2013 88(9): 803-816.  

The two subsets of IGHV mutational status in CLL are also associated with varying levels 

of BCR signaling, with U-CLL cells having higher levels of BCR activation compared to M-CLL 

[102]. Mutational status has also been associated with ZAP-70 expression. ZAP-70, a protein 

tyrosine kinase that is involved in signaling downstream of the T cell receptor, is more highly 

expressed and is associated with enhanced signaling in U-CLL [35, 103]. The BCR pathway 

provides the survival signals necessary for CLL but also provides multiple potential therapeutic 

targets for disease treatment. 
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Lyn:  
The Src Family Kinases (SFK) play an important role in BCR signaling. These proteins 

contain specific domains characterizing them as SFKs, including SH1, SH2, SH3, and SH4 motifs 

[104]. Most important are the SH2 and the catalytic SH3 domains that regulate activation 

through binding and phosphorylation of the ITAMs (immunoreceptor tyrosine based activation 

motifs) on Igα/β of the BCR complex. Multiple members of the SFKs include Lyn, Fgr, Lck, Blk, 

Fyn, Hck, Yes, and Src but Lyn is known to be the primary SFK in B cells [104]. There are two 

alternately spliced forms of Lyn resulting in 53kDa and 56kDa protein isoforms [105]. Lyn is a 

complex kinase known to have paradoxical roles as both a positive and negative regulator of 

signaling [106]. In addition to recruitment and activation of Syk in BCR signaling, Lyn mediates 

phosphorylation of the co-receptor, CD19, promotes activation of PI3K dependent signaling such 

as AKT activation. Conversely, Lyn is also known to phosphorylate the co-receptor CD22 that 

recruits SHP-1, a phosphatase that attenuates BCR signaling [104]. B cells from Lyn-/- mice are 

found to be hyper-responsive and autoreactive suggesting the important role of Lyn in negative 

regulation of B cells [101]. Lyn is also known to phosphorylate FCγR [107], CD5 [108], and other 

negative regulators of BCR signaling [106].  

In CLL, Lyn is found to be highly overexpressed at the protein level with increased basal 

activity compared to normal B cells [109]. Contri and colleagues found that Lyn activition is not 

increased with BCR cross-linking which is thought to be due to the increased basal activity of Lyn 

present in the CLL cells. However, inhibition of Lyn decreased survival of leukemic cells.  In 2013, 

Wang et al investigated 92 patients with CLL to determine if expression levels of kinases 

involved in the BCR signaling cascade correlated with patient prognosis, treatment response and 

survival. Results suggested that mRNA levels of all the kinases involved in proximal BCR signaling 

were elevated but Lyn expression was further increased in patients that were being treated and 

resulted in decreased treatment free survival [110, 111]. The increased Lyn activity in CLL cases 

18 
 



 
 

could be a contributing factor to the tonic BCR signaling in CLL cells as Lyn is the first kinase 

immediately downstream of the BCR and also responsible for the prolonged survival of leukemic 

cells as it inhibits apoptosis [37, 109]. Additionally, Lyn has been shown to provide survival 

signals within the CLL microenvironment [112]. One study transferred CLL cells into mice that 

are null for Lyn expression and found that disease developed at a slower rate compared to WT 

animals. The lack of Lyn provided by macrophages in the microenvironment impaired CLL cell 

expansion suggesting that this kinase has multiple functions in CLL [113] 

Data indicating Lyn as a key proponent in CLL pathogenesis has led to the development 

of targeted inhibitors. Drugs such as PP2 and SU6656 that target the activity of SFKs result in 

down regulation of phospho-src and inhibition of Lyn expression in B cell lymphomas and CLL 

[109, 114, 115]. Dasatinib, an approved FDA drug targeting the activity of all SFKs, has also 

shown potential as a therapeutic option for CLL patients [116, 117].  

Syk:  
Spleen Tyrosine Kinase (Syk) is essential in BCR signaling, leading to intracellular calcium 

flux and activation of downstream signaling cascades [118]. Animals that lack Syk exhibit 

embryonic hemorrhage and perinatal lethality but also have impaired B cell development at the 

pre- B cell level [101]. Syk is a 72kDa protein that can bind to phosphorylated ITAMs to provide a 

scaffold for other kinases involved in the pathway and is also activated by the upstream kinase, 

Lyn. Syk couples BCR activation to downstream signaling by activating BTK and PLCγ2. Activation 

of these kinases enhances the survival of B-cells by promoting DAG, AKT and Mcl1 [118, 119].  

Syk is also involved in pathways independent of the BCR in normal and malignant cells such as 

cellular adhesion and vascular development [120, 121].  

In CLL, Syk is found to have elevated constitutive activity that promotes cell survival  

through the BCR pathway and is associated slightly more with unmutated status of the IGHV 
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region [119]. Elevated Syk activation is also associated with CD38 positivity in CLL cells [122]. 

CD38 is a transmembrane glycoprotein that promotes intracellular calcium signaling and cell-cell 

adhesion. Expression of CD38 on CLL cells is also a prognostic indicator of aggressive disease in 

patients [35, 71]. Benkisser-Petersen et al. found that CD38 expressing cells had elevated Syk 

activity and treatment with R406, a Syk inhibitor and active metabolite of Fostamatinib, 

decreased CD38 mediated migration and CLL cell survival. Studies examining the regulation of 

Syk activity in CLL cells after CD40L stimulation discovered that Syk inhibition prevented the 

anti-apoptotic signals mediated through T helper cells via CD40L [123]. Syk inhibition has also 

been found to block the cross-talk between CLL cells and stromal cells independent of BCR 

signaling inhibition, making this kinase a promising therapeutic target [124]. Currently, 

Fostamatinib is the only FDA approved drug targeting Syk in CLL and other B cell malignancies 

and its objective response rate is a promising 55% [37]. 

BTK:  
Bruton’s tyrosine kinase (BTK), a 77kDa protein that is a member of the Tec family of 

kinases, is primarily expressed in B cells [125]. Patients with X-linked agammaglobulinemia lack 

peripheral blood B cells due to a defect in BTK function, confirming the importance of this kinase 

in B cell development and survival [37]. BTK is important in B cell development at the transition 

between pre-B cell to immature B cell suggesting it may have a role in the signaling required for 

Ig light chain arrangement [126]. BTK is also important in mature B cells as BCR activation 

promotes PLCγ2 phosphorylation leading to calcium mobilization, NF-κB and MAPK signaling. 

Additionally, BTK has also been found to amplify the PI3K/AKT pathway in B cells [127]. BTK 

signaling has also been shown to promote B cell migration through chemokine receptors and 

adhesion molecules playing an important role in tissue homing. 
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In CLL, BTK is found to be over-expressed and shown to be a promising target for 

therapy as it is involved in tonic BCR signaling [128]. Ibrutinib is the most notable inhibitor in 

that it irreversibly binds to the active site of BTK and results in decreased NF-κB activity [101]. In 

vivo, Ibrutinib treatment has been very successful with a 54% overall response rate. Ibrutinib 

has been known to cause lymphocytosis of CLL cells or egress of cells from nodal compartments 

suggesting that treatment also blocks the homing capacity of CLL cells [129]. Ibrutinib treatment 

is the most promising FDA approved therapy for patients with aggressive disease, such as cases 

with the 17p deletion that otherwise have no other treatment options [130]. However, Ibrutinib 

also blocks TEC kinases family member, IEK, involved in T-cell activation. Currently small 

molecules that target BTK, but not IEK, are being developed.  

Other Kinases:  

The PI3K/AKT pathway is known to contribute to BCR-induced survival [131]. As 

described above,  upstream activation of Lyn, Syk, and BTK leads to increased PI3K activity. 

Idelalisib, which specifically inhibits the PI3Kδ isoform, is approved for treatment of patients 

with CLL. Idelalisib inhibits both PI3K and ERK activation in malignant B cells and induces 

apoptosis [101]. ERK signaling has been well defined and is critical for B cell development and 

proliferation downstream of BCR activation and has also been well studied as a therapeutic 

target in many cancers [132-134]. The RAF/MEK/ERK1/2 pathway is activated in CLL cells and 

drugs such as Sorafenib that target Raf kinases lead to decreased CLL survival in vitro[135]. 

The mammalian target of rapamycin (mTOR) is another kinase that is known to be a key 

regulator of downstream BCR signaling targets such as cell cycle proteins [136]. Treatment with 

rapamycin has led to the prevention of CLL cells entering the cell cycle ex vivo and also induces 

apoptosis in p53 mutated CLL cells.  

21 
 



 
 

Recent studies further investigating antigen-independent proliferation of CLL cells 

through BCR independent pathways have found that CLL cells respond well to TLR-9 and CD40 

stimulation. TLR-9 stimulation via CpG induces proliferation of CLL cells, but treatment with BCR 

inhibitors such as Ibrutinib and entospletonib (α-Syk) led to reduced viability [137, 138]. 

Additionally, CD40L with IL-21 stimulation generates CLL proliferation through the MAPK axis 

that leads to increased cyclin D2 expression via JAK/STAT signaling [138, 139]. Inhibition of BTK, 

PI3K, and JAK kinases after CD40L stimulation led to reduced survival of CLL cells further 

confirming that these kinases are critical for CLL survival independent of BCR.  

1.2d CLL microenvironment 

The original hallmarks of cancer proposed by Hannahan and Weinberg have been 

expanded to include the tumor microenvironment that promotes growth of cancer cells by 

avoiding apoptosis and evading immune suppression [7]. Both solid and hematologic tumors are 

very heterogeneous and comprise of multiple different cell types such as stromal cells, 

endothelial cells, tumor infiltrating macrophages and lymphocytes. These cells produce vascular 

growth factors and  various cytokines and chemokines that support cancer cells [140]. 

Compelling evidence exists that recognizes the importance of the BCR signaling pathway in the 

survival of CLL, but microenvironment has emerged as another key factor in CLL survival. The 

microenvironment is of interest in CLL as primary CLL cells do not proliferate or survive in long-

term in vitro cultures alone, suggesting that other factors and/or cell types provide support. The 

actual site of proliferation and the CLL microenvironment is still debated in the field. This could 

be because CLL cells are found within the peripheral blood, bone marrow and other secondary 

lymphoid organs in which the malignant cell comes into contact with a variety of accessory cells 

depending on their location. Several studies have identified proliferation centers in the bone 

marrow and lymph nodes. A study from the University of Nebraska performed extensive gene 
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expression profiling of CLL cells derived from the peripheral blood (PB), bone marrow (BM) and 

lymph nodes (LN) of patients. Results suggested that cells derived from the lymph node 

expressed genes enriched for BCR signaling, BAFF/APRIL proliferation, NF-κB signaling and 

immune suppression signatures compared to the PB and BM compartments [141]. These results 

confirmed an earlier study that examined Ki67 staining in PB, LN, and BM samples from 24 

patients which found that the LN contained CLL cells with a greater proliferative capacity [142]. 

Although studies in human samples find that the lymph node is the site of CLL proliferation; 

questions are still raised based on the dramatic splenomegaly observed in mouse models [143, 

144].  

The CLL tumor microenvironment provides a physical location supporting the cross-talk 

between malignant cells and accessory cells that inhibit apoptosis and also provide resistance to 

drug treatment [145]. CLL is a slow progressing disease and was originally thought to simply be 

an accumulation of cells with defective apoptosis, but recent studies using deuterium labeling 

have determined that CLL cells proliferate at a rate of 0.1-1% per day suggesting that CLL is a 

dynamic disease of proliferation [146]. Pseudofollicular proliferation centers that are found 

throughout infiltrated tissues are the source of newly generated CLL cells [147]. Within this area, 

CLL cells depend on stimulation through a functioning BCR receptor as discussed above. It is well 

appreciated that CLL cells are activated through antigen independent and dependent manners 

but the microenvironment may be the source of antigen/stimulus [148]. Theses antigens are not 

specifically defined, but may include microbial antigens, natural antibodies, and auto antigens 

expressed by dying cells.  

The CLL microenvironment promotes cell to cell interactions with a variety of different 

cell types. Direct interaction between B-CLL cells and T cells via CD40 on B-cells and CD40L on T 

cells provides a proliferative stimulus.  [149]. CD40 signaling in B cells induces expression of anti-
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apoptotic molecules and proliferative signaling through AKT, ERK, TRAF, and NF-κB. T cells also 

secrete cytokines such as IL-4, TNFα, and IL-2 that support CLL proliferation. Alternatively, the 

CLL microenvironment also supports immune evasion allowing CLL cells to dampen the immune 

function of cytotoxic T cells by secreting immunosuppressive cytokines like TGFβ and IL-10 [149].  

Stromal cells derived from bone marrow or other secondary lymphoid tissues support 

the survival and proliferation of CLL cells [150]. This interaction provides a bi-directional cross 

talk that promotes the growth of both CLL and stromal cells. In cell culture, CLL cells actually 

migrate beneath bone marrow mesenchymal cells, a process known as pseudoemperiopolesis, 

suggesting that this interaction is dependent on cell contact in order for CLL cells to survive. 

Cells known as Nurse-like cells can be found in the peripheral blood of patients that are derived 

from monocytes and become adherent in culture systems [151]. These cells express stromal cell 

derived factor – 1 (SDF-1) that binds to CXCR4 on CLL cells to prevent spontaneous apoptosis 

and promotes resistance of CLL cells to chemotherapies. CXCL12 is also secreted by nurse-like 

cells (NLCs) as well as mesenchymal derived stromal cells that attract CLL cells via CXCR4 

towards proliferation centers within the secondary lymphoid compartments [48]. 

Tumor associated macrophages (TAMs) also play a key role in supporting the growth 

and survival of CLL cells. Depletion of TAMs in CLL models by targeting CSF1 or by clodronate 

treatment was found to decrease the engraftment of CLL resulting in leukemic cell death [152]. 

Reinart and colleagues found that plasma of CLL patients had increased levels of circulating MIF 

(macrophage inhibitory factor). By crossing a mouse lacking MIF to the well-known CLL mouse 

model, Eμ-Tcl1, this group discovered that decreased expression of MIF significantly delayed 

disease development [153]. Absence of MIF decreased BCR signaling in CLL and rendered cells 

more susceptible to apoptosis, further confirming the necessity of BCR signaling stimulation of 

CLL cells in the microenvironment. In another mouse study examining the role of CXCR5 in the 
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homing of CLL cells, Heinig et al discovered that access to follicular dendritic cells was critical for 

disease proliferation [154]. 

Many additional cell types, chemokines and cytokines have been identified in the CLL 

microenvironment that support CLL growth and survival (briefly summarized in Figure 1.5, 

adapted from Kipps, 2017 Nature Primers [48]). The cross-talk between neoplastic CLL cells and 

the surrounding tissue provides more options for therapeutic targets. 

  

Figure 1.5: Interactions of the CLL cells with the surrounding microenvironment. CLL 

cells require the support of multiple cell types and survival factors for persistence. 

Neoplastic B cells interact with stromal cells, nurse-like cells, macrophages, 

lymphocytes, endothelial cells, and many others through direct cell to cell contact via 

receptor-ligand mediated interactions and through soluble mediators. Signals within the 

microenvironment stimulate the CLL cell though the BCR signaling pathway to promote 

survival and proliferation. Figure used with permission from Kipps, T. 2017 Nature 

Disease Primers: Chronic Lymphocytic Leukemia 3(16096).  
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 1.2e Current Treatment for Chronic Lymphocytic Leukemia 

 Vast improvements have been made over the past few decades in discovering new 

treatment modalities for patients with CLL as we learn more about the requirement of the BCR 

signaling pathway and microenvironment. Small molecule inhibitors targeting kinases such as 

SFKs, BTK, SYK, and PI3K as discussed earlier have proven successful in a number of cases in 

addition to the standard regimen of chemotherapeutics + anti-CD20 antibodies [48].  

Next generation sequencing (NGS) has revealed many complexities among CLL patients 

and has enabled grouping of patients into prognostic categories. In addition to the IGHV 

mutational status, mutations such as TP53, SF3B1, and NOTCH1 indicates more aggressive 

disease triggering the need for more efficient treatment strategies [130]. FISH (fluorescence in 

situ hybridization) analysis has also improved the detection of genomic aberrations leading to 

worse prognosis of patients with 17p and 11q abnormalities [53]. These prognostic factors in 

addition to patient age and fitness determine the dose of treatment. As mentioned before, 

some patients do not require treatment and are only placed in the “watch and wait” category.  

There is no evidence suggesting that early treatment of asymptomatic cases can improve the 

overall survival of patients, therefore, preference is for monitoring of disease symptoms until 

progression is evident for treatment to start. Treatment is required immediately for patients 

classified as Stage III or IV, if they show signs of progressive bone marrow failure or have 

autoimmune cytopenias [155]. 

Standard treatment for patients includes chemotherapy combinations of fludarabine 

and cyclophosphamide with rituximab (FCR), but due to comorbidities or other exclusion 

criteria, not all patients are able to tolerate chemotherapy [156]. Current chemotherapies used 

for CLL treatment include purine analogues such as pentostatin and cladarbine in addition to 

fludarabine. Other alkylating agents besides cyclophosphamide are chlorambucil or 
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bendamustine [48].  Immunotherapy options are primarily monoclonal antibodies that target 

CD20 surface receptors on the neoplastic B cells (rituximab, obintuzumab, and ofatumumab) as 

well as Campath-1 antibodies (alemtuzumab) that target CD52 and otlertuzumab, which targets 

CD37 [156]. Patients that are fit, have mutated IGHV status and no p53 mutation normally 

respond well to FCR, but if a patient is older and more prone to infections, bendamustine and 

rituximab are normally prescribed as they are more tolerable. Patients with unmutated IGHV 

status do not respond as well to FCR with only a 32% overall survival rate compared to 65% for 

M-CLL patients [42]. Patients that have p53 mutation have a worse response to standard 

chemotherapy treatment and are often treated initially with ibrutinib, a BTK inhibitor. If these 

17p deletion/p53 mutated patients do not respond to ibrutinib, they will receive a combination 

of idealisib (PI3K inhibitor) and rituximab [130]. This combination is normally the last line of 

defense as it is very harsh and exponentially increases the patient’s risk of infection. Patients 

may also be considered for allogeneic hematopoietic cell transplantation if they are in good 

physiological condition. Drugs targeting molecules involved in the apoptotic pathway have 

proven very successful in the treatment of CLL. Venetoclax, or ABT-199, targets the function of 

BCL-2 and prevents sequestration of Bim in order for the apoptotic cascade to proceed. This 

drug treatment has been helpful in refractory or relapsed patients [48]. Other refractory 

patients may receive a combination of chemoimmunotherapy options pending their last 

treatment regimen. Salvage treatment options include combinations of standard 

chemotherapies, immunotherapy, BCR inhibitors, and immunomodulatory drugs such as 

lenalidomide as well as steroids.  

Impressive results have been obtained with genetically modified T cells known as CAR-T 

(chimeric antigen receptor) cell therapy that target hematological B-cell malignancies. These T 

cell have been engineered to target known tumor antigens or in the case of B cells, CD19, and 
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are expanded in vitro before intravenous injection back to the patient. CD19-CAR-T cells have 

led to long term disease free remission in multiple clinical trials [157].  

Patients with CLL have about a 5-10% chance of developing Richter’s syndrome which 

usually leads to a very poor prognosis with a median survival time of about 10 months [158]. 

Richter’s transformation is due to the development of lymphoma after being diagnosed with 

CLL. Most patients present with hepatosplenomegaly and are primarily diagnosed with diffuse 

large B cell lymphoma that is aggressive and difficult to treat as it varies from the de novo DLBCL 

with known genetic abnormalities [48]. Retrospective studies have examined the incidence of 

secondary cancers in CLL patients. There is a slight increase in melanoma, sarcoma, lung, renal, 

and prostate cancer in patients with CLL [34, 159].  

Therapy for Chronic Lymphocytic Leukemia has improved extensively over the past few 

decades leading to better outcomes, but CLL still remains incurable.  Further studies about the 

role of BCR signaling and microenvironment in CLL are warranted to improve the current success 

of these drugs and to design even more effective therapies that can lead to cures. 

1.3 Prostate Apoptosis Response -4  

One of the original hallmarks of cancer is to evade apoptosis and many cancers master 

this skill by down regulating tumor suppressors and pro-apoptotic factors [6]. Prostate 

Apoptosis Response-4 (Par-4) is a well-defined tumor suppressor that is found to be repressed 

by promoter methylation in about 30% of all cancers including Acute Lymphoblastic Leukemia 

(ALL) [160]. Par-4 was originally identified by Sells and colleagues by its upregulation during 

ionomycin induced apoptosis of androgen independent and dependent prostate cancer cells in 

1994 [161]. Shortly after, using a yeast two-hybrid assay and HEK-293 mammalian cells, 

Johnstone et. al. discovered that Par-4 interacts with the Wilm’s Tumor-1 protein, a 

transcriptional suppressor [162]. Additional early studies found that Par-4 also interacts 
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physically with atypical protein kinase c (aPKC) and over expression of Par-4 in NIH 3T3 

fibroblasts led to an apoptotic morphological change [163]. These initial studies defined Par-4 as 

a pro-apoptotic factor and tumor suppressor. 

The human Par-4 gene is located on chromosome 12q21 and contains 7 exons, encoding 

a 340 amino acid, 43-47kDa protein [164, 165]. Par-4 is ubiquitously expressed in tissues of 

different species and Johnstone et al. found that mouse Par-4 shows 83% and 91% identity to 

human and rat Par-4 respectively [164]. Interestingly, the leucine zipper domains, carboxy 

terminal region, and nuclear localization sequences (NLS) exhibit 100% conservation across 

species [166]. The leucine zipper domain allows Par-4 to interact with other proteins as either a 

homo- or heterodimer. The nuclear localization sequences suggest that Par-4’s function is 

dependent on nuclear. However, in normal tissues, Par-4 is localized mostly to the cytoplasm 

[167]. The NLS2 sequence is very interesting in Par-4 as it is sufficient to allow nuclear 

translocation alone but it is also part of a domain that is necessary for the apoptosis-inducing 

properties of Par-4, termed selective for apoptosis of cancer cell (SAC) domain [168]. SAC is a 

core domain of 59 amino acids in length and includes a threonine residue that is the site of 

phosphorylation via Protein Kinase A [169]. Activation of Par-4 through phosphorylation 

indicates that its function is tightly regulated by post-translational modification. PKA, a broad 

spectrum serine/threonine kinase regulated by cAMP signaling, is associated with cell 

proliferation, and is frequently overexpressed in cancer cells.  Par-4 is able to utilize the PKA 

upregulation in cancer cells to specifically induce apoptosis of cancer but not normal cells [169]. 

This selective ability of Par-4 makes it an attractive therapeutic target. Additionally, Par-4 is 

negatively regulated by AKT activity through phosphorylation at  serine 249, which is located 

between the SAC domain and leucine zipper region [165]. A simplified diagram of the Par-4 

domains is found in Figure 1.6 (Adapted from Hebbar et al. 2012). 
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Figure 1.6: Diagram of Par-4 domains. Par-4 contains two nuclear localization sequences 

with NLS2 contained within the SAC domain. PKA phosphorylates Par-4 at threonine 155 

for activation and is inhibited at serine 249 by Akt phosphorylation. A nuclear export 

sequence is also found within the N-terminal region. Amino acid residue numbers 

represent Rat Par-4, but domains are conserved across species.  

 

 Phosphorylation of Par-4 via AKT is required for cancer cell survival, as phosphorylation 

of Par-4 by Akt leads to binding of the chaperone 14-3-3, retaining Par-4 in the cytoplasm [170]. 

Many studies have linked the pro-apoptotic activity of Par-4 to its ability to inhibit NF-κB 

transcriptional activity. Activated Par-4 prevents ζPKC from phosphorylating IκB, which is 

necessary for RelA translocation to the nucleus [163, 171, 172]. Another mechanism of NF-κB 

inhibition is due to a direct repressive effect of Par-4 in the nucleus but the exact mechanism 

still needs to be elucidated. A summary of Par-4 activation is shown in Figure 1.7 [169]. 

 

NH2- -COOH 
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 Figure 1.7: Endogenous role of Par-4 in normal and cancer cells. As described by 

Gurumurthy et al., Par-4 remains in the cytoplasm of normal cells. In cancer cells with 

elevated PKA activation, Par-4 is phosphorylated at Thr155 and translocates to the 

nucelus to inhibit NF-κB transcriptional activity. Figure modified from Gurumurthy, 

Sushma, "MECHANISM OF CANCER SELECTIVE APOPTOSIS BY PAR-4" (2005).University 

of Kentucky Doctoral Dissertations. 471. 

1.3a Par-4 Tumor Suppressor 

Par-4 has a dynamic relationship with Akt, a key survival kinase that is activated by the 

second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3)[173]. Akt is also 

phosphorylated by PDK1, which is activated by PIP3 at Thr308 and by TORC2 at Ser473,  two 

residues critical for Akt enzymatic activity [174, 175]. Akt phosphorylates a number of effector 

proteins such as mTOR, IKK, and Mdm2 for activation and is found to inhibit other molecules 

such as Bad, p27, p21, GSK3β, and transcription factors including Foxo3a [173, 176]. Akt is 

inhibited by the tumor suppressor PTEN (phosphatase and tensin homolog) that converts PIP3 

back to PIP2 to prevent Akt activation. Akt inhibits Par-4 activation through phosphorylation in 
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many studies as mentioned earlier [170, 177]. Conversely, Par-4 has also been found to inhibit 

Akt. In a mouse model of lung cancer, Joshi and colleagues show that lack of Par-4 led to 

increased Akt as well as NF-κB activity leaving cells more sensitive to Ras induced oncogenesis 

[178]. In Ras expressing lungs, the lack of Par-4 led to an increase in 75% of tumor tissue 

compared to 12% in WT mice. Increased tumor burden was also correlated with increased NF-κB 

signaling and thought to be regulated by the increased PKCζ activity that is normally suppressed 

by Par-4 [163, 178]. Increased levels of Akt activity were confirmed by increased Ser473 and 

Thr308 phosphorylation in the Par-4 KO lungs. Increase in Akt activation was not due to an 

increase in PI3K activity and studies suggest that lack of Par-4 results in phosphorylation of Akt 

at Ser124 via PKCζ which modulates Akt activation [178]. In another study, Gurumurthy et al., 

confirmed that Akt directly binds to Par-4 through immunoprecipitation assay and 

phosphorylates Par-4 at Ser249 (rat) to inhibit its translocation to the nucleus [170]. 

Additionally, they found that Par-4 expression is necessary for PTEN inhibition of Akt and 

apoptosis. Other studies have also noted that PTEN haploinsufficiency also led to a loss of Par-4 

expression [179, 180]. 

 In addition to the study by Joshi et al., other groups have noted the connection between 

Par-4 and Ras. Ras has been shown to regulate Par-4 expression through the Raf-MEK-ERK 

pathway [181]. In studies with immortalized fibroblast lines containing inducible Ras expression, 

Qiu and colleagues discovered Ras expression downregulated Par-4 expression whereas 

inhibition of the Raf-MEK-ERK pathway with the inhibitor PD98059 restored Par-4 levels. Par-4 

was also found to inhibit expression and activation of ERK1/2 proteins which prevented the 

oncogenic Ras-transformation, showing a full negative regulatory loop between Par-4 and Ras 

[181].  
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 Par-4 has also been found to interact with topoisomerase 1 (TOP1) by binding directly 

through its leucine zipper domain [182]. Topoisomerases relax DNA by making single strand 

nicks in order for DNA replication, transcription, and recombination to occur [183]. TOP1 protein 

levels are elevated in proliferating cells and also increased in several types of cancers. Goswami 

and colleagues found that Par-4 binds to TOP1 to attenuate its DNA relaxation activity to 

prevents cellular transformation [182].  

Par-4 tumor suppressor function is also observed in vivo as Par-4 null animals are found 

to have increased spontaneous tumors with 80% of females developing endometrial hyperplasia 

and males developing prostatic lesions [172]. The par-4 gene was disrupted via homologous 

recombination by inserting a neo cassette that eliminated exons 1 and 2 of the par-4 gene 

completely abolishing Par-4 expression [184]. The absence of Par-4 in mouse embryonic 

fibroblasts (MEFs) decreased sensitivity to TNFα and cyclohexamide mediated apoptosis, further 

confirming that Par-4 is needed for the apoptotic response to these treatments. This result 

mirrored in vitro studies showing that downregulation of endogenous Par-4 elevated TNFα 

induced NF-κB activity [171]. Par-4 knockout MEFs also had reduced JNK and p38 activity after 

TNFα stimulation [184]. Par-4 null mice also exhibited increased levels of apoptosis inhibitor 

XIAP (X-chromosome linked inhibitor of apoptosis). XIAP is an E3 ubiquitin ligase and a known 

inhibitor of caspase activation [185]. XIAP is also downstream of NF-κB and thought to be 

increased in Par-4 null animals due to lack of Par-4 inhibition on the PKCζ-NFκB-XIAP pathway 

[172, 184].  

The average lifespan of Par-4 null mice is 18mo compared to 25mo for Par-4 WT animals 

with an 87% propensity to develop tumors [172]. These mice also exhibited normal B and T cell 

development but do have slight increase in total number of lymphocytes leading to an increased 

spleen size [186]. The proportions of B and T cells were not changed in young mice lacking Par-4, 
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but the proliferative response to BCR and TCR stimulants were increased compared to WT 

animals. Additionally, the lack of Par-4 in these mice led to hyperactivation of atypical protein 

kinases, blocking JNK signaling. Lack of JNK signaling in CD4+T cells resulted in increased IL-4 

production and skewed the animal towards a Th2 response [186]. 

1.3b Par-4 and Apoptosis 

Apoptosis is a process of programmed cell death that is vital for many processes and is 

highly controlled [187]. There are two main pathways of apoptosis: the extrinsic or death 

receptor pathway and the intrinsic or mitochondrial pathway. Inappropriate apoptotic signaling 

can lead to different diseases, including cancer. Cancer avoids apoptosis by inhibiting apoptotic 

signals and promoting cell survival proteins. Par-4 is found to be silenced in multiple cancers 

including renal, neuroblastoma, endometrial, lung, prostate, and pancreatic mostly through 

promoter hypermethylation [188].  Par-4 has been shown to inhibit NF-κB activity as discussed 

earlier which results in an activation of the intrinsic apoptosis pathway and also plays a role in 

activating the extrinsic pathway through Fas/FasL. Over expression of Par-4 has been found to 

induce apoptosis in some sensitive cancer cell lines, but over expression of Par-4 in normal cells 

only sensitizes them to additional apoptotic signals, making Par-4 a cancer selective target [189]. 

Par-4 has been found to interact with Bcl-2, an anti-apoptotic molecule. An initial study 

investigating the levels of Par-4 in patients with ALL found that Par-4 expression was inversely 

correlated with Bcl-2 expression; similar results were found in leukemic cell lines [190]. 

Additionally, overexpressing Par-4 in PC-3 and NIH 3T3 cells reduced Bcl-2 protein levels [191]. 

These observations led to other studies defining the mechanism specifically in lymphoid 

malignancies as Bcl-2 overexpression is associated with DLBCL and follicular lymphoma 

pathogenesis [192]. Overexpression studies of Par-4 in Jurkat T lymphocytes led to a disruption 

in the mitochondrial membrane potential, downregulation of Bcl-2 and activation of caspase 
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mediated apoptosis [193]. Bcl-2 expression has been shown to increase after radiation induced 

insults via increased NF-κB activity in PC-3 cells, but enforced Par-4 expression prevented Bcl-2 

induction [194]. 

Par-4 induces apoptosis by promoting the translocation of Fas and Fas Ligand (FasL) to 

the plasma membrane to recruit FADD, which activates downstream caspase-8 pathway [195]. 

PC-3 cells that were transfected with Par-4 exhibited an increase in Fas/FasL at the cell 

membrane and immunoprecipitation assay showed that Par-4 was bound to Fas and FADD, 

further confirming its important role in initiating the death pathway [195]. Activation of this 

pathway through Par-4 at normal levels is not sufficient to induce apoptosis alone, but Par-4’s 

additional role in inhibiting NF-κB was also required for cell death. PKA phosphorylation of Par-4 

at Thr155 is also essential for Par-4 induced trafficking of Fas/FasL to the membrane [169]. 

Activation of the Fas-FADD complex by Par-4 promotes caspase-8 dependent activation 

that leads to downstream activation of executioner caspases including 3, 6, and 7. Par-4 has also 

been found to be a substrate of caspase dependent cleavage by both caspase 8 and 3 [196, 197]. 

Studies utilizing cisplatin treatment resulted in decrease total Par-4 protein levels but a 

reciprocal increase in a 25kDa fragment suggesting Par-4 is cleaved [196]. Caspase-3, in 

particular, was found to cleave Par-4 at an unconventional site, leaving the fragment to 

accumulate in the nucleus and inhibit NF-κB activity. Caspase-3 inhibitors prevented Par-4 

cleavage and cells lacking caspase-3 such as MCF-7 cells did not express cleaved Par-4. Another 

study found that UV-induced damage of HeLa cells resulted in a 17kDa and 28kDa fragments of 

Par-4 [197]. Treatment with cyclohexamide and TNFα also induced Par-4 cleavage through 

caspase-8 leading to nuclear accumulation of the c-terminal end of Par-4.  

In addition to interacting with WT-1 (Wilm’s tumor-1), and PKCζ, Par-4 has also been 

found to interact with other anti-apoptotic proteins such as Dlk (DAP-like kinase)[162, 163, 198]. 
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DAP Kinases are known to phosphorylate the regulatory myosin light chain II (MLC) that results 

in membrane blebbing during cell death [198]. Par-4 and DlK interactions are thought to result 

in cytoplasmic accumulation of the complex resulting in enhanced MLC phosphorylation and 

reorganization of the actin filament cytoskeleton.  

1.3c Secretion of Par-4 

Seminal studies investigating Par-4 function led to the discovery that Par-4 is secreted 

from all cell types and can induce apoptosis of neighboring cells [199]. PC-3 cells were 

transfected with GFP labeled Par-4 as well as SAC domain-GFP to find that transfected cells 

underwent apoptosis but also cells that were not expressing GFP were dying as measured 

through caspase-3 activation. The Par-4 detected in the conditioned media was not due to dying 

cells as experiments performed in Par-4 transfected BPH-1 cells that are not sensitive to Par-4 

apoptosis also resulted in secreted Par-4. This indicated that Par-4 secretion is independent of 

apoptosis. Par-4 secretion occurs through the classical ER-Golgi pathway as inhibition of the 

network with brefeldin A (BFA) blocked secretion [165, 199]. Par-4 secretion is associated with 

the ER stress response and was also found to associate with GRP78, a member of the heat shock 

protein family 70 (HSP70) that works to facilitate proper protein folding, prevent intermediate 

aggregates, target misfolded proteins for degradation, bind calcium, and serve as an ER stress 

signal regulator [200]. Burikhanov et al. showed that Par-4 and the SAC domain bind and 

associate with GRP78 at the plasma membrane in response to TRAIL (tumor necrosis factor 

related apoptosis inducing ligand). TRAIL is a known ER stress inducing factor and treatment of 

PC-3 cells with TRAIL led to increased GRP78/Par-4 at the cell surface and induced apoptosis 

[201]. Intrinsic Par-4 expression is also required for GRP78 expression on the surface of the cell 

but the lack of Par-4 does not alter total GRP78 protein levels [199]. BPH-1 cells that normally do 

not respond to extracellular Par-4, transfected with GRP78 were sensitive to apoptosis induced 
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by extracellular Par-4. Extracellular Par-4 is found to activate caspase-8 and caspase-3 through 

FADD[199]. Initiation of extracellular Par-4 mediated apoptosis results in a feedback loop that 

promotes more translocation of Par-4 and GRP78 to the surface of the cell. A simplified diagram 

of Par-4 mediated apoptosis is shown in Figure 1.8.  

 

Figure 1.8: Par-4 mediated apoptosis. Par-4 binds and inhibits PKCζ that prevents prosurvival 

signaling of NF-κB and leads to apoptosis. Under cellular stress, Par-4 and its chaperone, GRP78 

are translocated from the ER to the plasma membrane were Par-4 is secreted. Extracellular Par-

4 can bind to cell surface GRP78 that recruits FADD and initiates caspase-8 and caspase-3 

activation. Cellular stress can then lead to increase in Par-4 secretion creating a robust feedback 

loop. Diagram adapted from Shrestha-Bhattarai, T. Cancer-selective apoptotic effects of 

extracellular and intracellular Par-4 Oncogene (2010) 29, 3873–3880. 

1.3d Par-4 and Chronic Lymphocytic Leukemia 

Several studies have examined Par-4 levels in CLL leading to prognostic predictions. 

Chow et. al. found that CLL patients that express high Par-4 levels respond better to imatinib 

treatment [202]. However, a 2011 study examining Par-4 levels in different CLL patient 
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populations found that Par-4 expression was elevated in the CD38+ CLL subgroup and advanced 

stage patients [203]. Boehrer et. al. found 30/30 human CLL patient samples expressed 

detectable Par-4 protein levels but only 70% of acute lymphocytic leukemia samples expressed 

detectable Par-4 protein suggesting that Par-4 is not as frequently expressed in less mature 

lymphocytes [190]. Although Par-4 is expressed in CLL cells the mechanism of Par-4 regulation in 

CLL is yet to be studied.  

1.4 Study of Chronic Lymphocytic Leukemia 

CLL is a difficult disease to study as the culturing of primary CLL cells results in apoptosis. 

There is clear indication that the microenvironment is required for the survival and proliferation 

of these malignant B cells. Cell culture conditions have yet to be optimized to mimic the tumor 

microenvironment leaving in vivo models of CLL as the best way to study this cancer. Many 

mouse models are available to study the disease that represent findings in the clinic such as 

genomic aberrations (13q14 deletions) or overexpression of oncogenes such as Tcl1 [204]. Aged 

New Zealand Black (NZB) mouse shows development of a CLL-like disease with an expansion of 

IgM+CD5+ B cells, but serial passage of these cells results in lymphoma development in 

recipients [205]. The NZB model did suggest that lack of miR15a/16-1 leads to the development 

of CLL [206]. These two microRNAs are found at chromosome 13q14 which is commonly deleted 

in CLL patients, and loss of miR15a/16-1 is found in 68% of CLL patients and leads to CLL 

development in a mouse model [207]. Animals overexpressing APRIL, ROR1, and BCL2 also 

develop a CLL like disease [208-210]. There are additional mouse models of CLL but none as 

reliable as the Eμ-Tcl1 mouse that overexpresses the human Tcl1 oncogene [204, 211]. 
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1.4a T cell leukemia 1 

The first transgenic mouse model to exhibit a CLL-like disease is the Eμ-Tcl1 mouse 

developed in the early 2000’s and is still widely used today [144]. This mouse expresses the 

human Tcl1 gene, T-cell leukemia 1, specifically in B cells through the Ig VH promoter and Eµ 

enhancer. T cell leukemia 1 was first identified in a patient with ataxia telangiectasia that 

developed a T-cell chronic lymphocytic leukemia with a chromosomal translocation at 14q32 

[212]. Normally, Tcl1 is expressed during embryogenesis and in fetal tissues, and in lymphocytes 

during the pro-B cell (CD34+CD19+) stage with peak expression found in the CD19hiIgM- naïve B 

cell population [213]. Tcl1 is also detected in CD4-CD8-CD3- immature thymocytes but not in 

mature T cells [213]. Narducci et al. found that Tcl1 was expressed in 75% of B-cell 

lymphoblastic lymphomas and 60% of diffuse large B cell lymphomas. This oncoprotein is also 

overexpressed in the majority of follicular and mantle cell lymphomas (Mino, Jeko cell lines), 

and Burkitt’s lymphoma (Ramos, Daudi) which are all derived from germinal centers(GC) or post-

GC B cells that normally express low levels of Tcl1[213-216]. Tcl1 is found to augment Akt1 

kinase activity by physically interacting with the pleckstrin homology domain of the prosurvival 

protein [217]. It has been suggested that Tcl1 binding results in Akt1 oligimerization near the 

plasma membrane to promote transphosphorylation or phosphorylation via other kinases such 

as PDK1 at Thr308 residue and/or the mTOR complex at Ser473 [218]. Tcl1 also mediates the 

nuclear translocation of Akt1 [217]. Tcl1 promotes the activation of NF-κB in a 4-fold greater 

manner after treatment with wortmannin, a PI3K inhibitor, suggesting that it may interact with 

NF-κB co-activators such as CREB [219]. Pekarsky et al. also indicated that Tcl1 inhibited 

Activator Protein-1 complex (AP-1) dependent transcription by binding to cFos, cJun, and JunB 

[219]. 
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A study at MD Anderson investigating the role of Tcl1 in human CLL cases found that 

nearly 90% were Tcl1 positive [220, 221]. While Tcl1 expression was variable among tumors, it 

was found to be closely associated with Zap-70 positivity and unmutated IGHV genes. Additional 

studies also found that Tcl1 expression led to increased BCR signaling capacity in patients due to 

elevated Lyn, Syk, Zap70, and PKC activity [222]. Herling and colleagues suggested that Tcl1 may 

be a biomarker indicating CLL patients with elevated BCR signaling that may respond better to 

kinase inhibitors. Because the Eμ-Tcl1 mouse expresses high levels of the human Tcl1 gene, it is 

thought to be a representative model of U-CLL.  

1.4b Eμ-Tcl1 Mouse 

According to many different reviews, the Eμ-Tcl1 mouse model is the most 

representative animal model of human CLL as these mice develop disease at late stages and 

exhibit similar genomic characteristics [204, 211, 221, 223, 224]. The Tcl1 oncogene was initially 

expressed in animals under the control of the lck promoter that led to T cell leukemia by the 

Croce group [225]. Bichi et. al. then utilized the Tcl1 oncogene to be expressed under the VH 

promoter and Eμ enhancer to be expressed specifically in B cells and develop a CLL-like disease 

around the ages of 10-15 months (Figure 1.9)[144]. 

 

 

Figure 1.9: Tcl1 expression construct. The human Tcl1 350bp fragment was cloned and 

inserted into a plasmid with the mouse VH promoter and Ig μ enhancer along with the 

poly A site of the human β-globulin gene. Figure adapted from Bichi et. al. 2002 PNAS 

99(10): 6955-6960. Human chronic lymphocytic leukemia modeled in mouse by targeted 

TCL1 expression. 
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Penetrance of B cell malignancies is 100% in some but not all mouse studies [204]. It is 

important to note that at the same time the Eμ-Tcl1 mouse was developed, another mouse 

expressing Tcl1 under the B29 promoter and μ enhancer was developed by the Teitell group 

[226]. The B29-Tcl1 mouse developed malignancies in both the B and T cell compartments 

including DLBCL, follicular lymphoma, T cell lymphoma, and some cases of B cell leukemia. The 

Eμ-Tcl1 mouse begins to exhibit a clonal expansion of CD5+IgM+ B lymphocytes in the peritoneal 

cavity at 2mo and the spleen and peripheral blood at the age of 3-4mo [144]. These mice 

continue to develop and exhibit splenomegaly with distorted histology and continued increased 

in the CD5+CD19+ population.  

The Eμ-Tcl1 mouse is an excellent model to study human disease as they express a 

similar BCR repertoire associated with aggressive disease [227], show similar response to 

treatment [228], and show dysregulated T cell function [229, 230]. Recently, with the 

development of the NSG (NOD/SCID gamma null) mouse, some groups have worked with 

xenograft models of CLL by taking human peripheral blood B-CLL cells and injecting them into 

immunodeficient animals for study but these cells exhibit minimal proliferation [231, 232].  

While the Eμ-Tcl1 mouse represents a similar course of disease as in humans, it does 

require time to develop. Due to this characteristic, we established an adoptive transfer model of 

primary Eμ-Tcl1 splenic cells into syngeneic C56Bl/6 recipients without prior conditioning. We 

are able to monitor the progress of these animals by submandibular bleeding, flow cytometry 

and spleen palpation. We have compared the adoptive transfer cells to the primary Eμ-Tcl1 cells 

by fluorescence-activated cell sorting (FACs) and found that they express similar cell surface 

molecules. Similarity is also observed in functional tests of primary and adoptive transfer CLL 

cells as well as spleen histology.  
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 1.4c Cell lines of CLL 

While the in vivo models of CLL replicate disease, ex vivo culturing of primary Eμ-Tcl1 

and adoptive transfer cells leads to apoptosis. Studies with ex vivo CLL cells are productive, but 

long term culture is challenging. Therefore, cells lines have been developed in order to study the 

biochemistry of this disease and define the mechanisms that promote CLL survival. The MEC-1 

and MEC-2 cell lines were characterized in 1999 and were derived from the peripheral blood of 

an EBV-seropositive CLL patient [233]. These cells are highly utilized in the field as they express 

mature B cell markers and express VH4 Ig family that have not gone through somatic 

hypermutation. These cells are negative for CD5 expression but have the capacity to grow in 

vivo mouse models and MEC-1 cells also show other characteristics similar to ex vivo CLL cells 

such as high expression of Ig molecules [234]. Another cell line that has been used to study CLL 

is the OSU-CLL that was generated by EBV transformation of patient cells that expressed CD5 

[235]. These cells were found to migrate similar to primary CLL cells and were also able to grow 

in immunodeficient NOG mice. A new cell line known as MDA-BM5 was recently generated from 

bone marrow of a CLL patient with the 17p and p53 deletion [236]. These cells are CD5+CD19+ 

and have undergone somatic hypermutation.  

Cell lines have also been generated from mouse models, specifically the IgH.TEμ mouse 

that expressed the SV40 T oncogene[237]. Cell lines EMC2, 4, and 6 express 

CD5+CD43+IgM+CD19+ on their surface and are able to grow in Rag-/- mice [238]. Additionally, 

these mouse cell lines express constitutively active BTK and AKT. 

1.5 Premise of this study 

Although CLL has been very well characterized and new therapies have been developed 

to treat the disease, the cases of patient relapse are tremendous, warranting new pathways to 

be discovered. Par-4 has been documented to be expressed in CLL and related for a few 
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prognostic factors, but the actual role that Par-4 plays in CLL as well as it’s regulation has not 

been defined. We investigated the levels of Par-4 expression in primary mouse CLL cells, cell 

lines, and primary patient samples and found that these cells have elevated Par-4 expression 

when compared to normal B cell counter parts. Previous studies from our lab have shown the 

importance of BCR signaling in the survival of these cells and it is well known that CLL cells have 

elevated BCR signaling that promotes their survival [36, 114, 239]. This led us to hypothesize 

that constitutive BCR signaling could regulate Par-4 expression in CLL cells. Elevated levels of 

Par-4 protein expression also raised the question of why CLL cells were not sensitive to Par-4 

induced apoptosis. Our studies show novel regulation of Par-4 through BCR signaling, and Par-4 

plays a pro-growth rather than pro-apoptotic role in CLL, further confirming that this apoptotic 

pathway is dysregulated in CLL.   

We made an additional observation about the importance of the spleen in the growth 

and development of CLL through our adoptive transfer model. Studies in the laboratory of 

injecting CLL cell through different routes (IV, IP, SQ) all led to severe splenomegaly. We were 

able to track the growth of CLL cells through a human ROR1 marker that allowed us to suggest 

that CLL cells home and grow primarily in the spleen. We hypothesized if removal of the spleen 

would alter the growth and development of CLL. Splenectomy of adoptive transfer recipients 

indeed prevented the growth of CLL after transfer in WT C57BL/6 mice. Splenectomy in the Eμ-

Tcl1 mouse at early and late stages also improved the overall survival time and delayed CLL 

development. But our surprising discovery was that splenectomy in the Par-4-/- mice enabled 

growth of CLL 50% of the time. This indicates that Par-4 does play a role in preventing the 

growth of CLL in secondary proliferation sites. Our studies show that intrinsic Par-4 works to 

promote the growth of CLL while extracellular Par-4 may act to suppress CLL in different 

microenvironments.  
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CHAPTER 2 

Materials and Methods 

2a) Mice 

Eμ-Tcl1 Mice and Par-4-/- mice were described previously and were bred in house [144, 184]. Eμ-

Tcl1 mice were provided by Dr. John Byrd (Ohio State University) and Par-4-/- mice were 

provided by Dr. Vivek Rangnekar (University of Kentucky). C57BL/6 and NOD-scid IL2Rgnull-IL-

3/GM-CSF (NSGS) and NOD-scid IL2Rgnull (NSG) mice were purchased from the Jackson 

Laboratory (Bar Harbor, ME) and bred in house. Eμ-Tcl1 and Par-4-/- mice were crossed for the 

F1 generation and the F1 mice were intercrossed to generate Par4-/-Tcl1+ offspring. Mice were 

confirmed for genotyping using primers listed in Table 2. The Tcl1 amplified fragment is 320bp, 

Par-4 WT fragment is 213bp and Par-4 knockout fragment is 248bp in size.  

Table 2: List of forward and reverse primers for PCR of genomic DNA of Par-4 and Tcl1. Primer 

sequences were provided by collaborators at OSU (Tcl1) and the Rangnekar lab (Par-4). 

Target Gene  Sequence (5’3’) 

Tcl1 
Forward GCC GAG TGC CCG ACA CTC 

Reverse CAT CTG GCA GCA GCT CGA 

Par-4 WT 
Forward GTG ATG ACG TCT TCT GAT TTC C 

Reverse GAG ACT CCA GAA CTT AGT TGC 

Par-4 KO 
Forward CGT CTC GGA ATG GAG G 

Reverse GAG ACT CCA GAA CTT AGT TGC 

 

Adoptive transfer models were carried out by injecting 4-10x106 Ficoll-paque purified 

splenic Eμ-Tcl1 CLL cells in 150μl volume with sterile PBS intravenously via retro-orbital route 
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while animals were under isoflurane anesthesia[240]. Animals were housed and maintained by 

the Department of Laboratory Animal Resources at the University of Kentucky (Lexington, KY) in 

specific pathogen free conditions in micro-isolator containers. All animal studies were approved 

by the Institutional Animal Care and Use Committee (under protocol number 2011-0904) and 

were carried out in accordance with the Animal Welfare Act. CLL development in Eμ-Tcl1, Par-4-

/-EμTcl1 and adoptive transfer recipients was monitored through submandibular cheek bleeding 

using sterile 5mm Goldenrod Animal lancets (Medipoint, Inc. Mineola, NY) collected in BD 

microtainer tubes with K2EDTA (Becton-Dickinson and Company, Franklin Lakes, NJ) [241]. When 

the percentage of CD5+CD19+ cells in the peripheral blood was >70%, EμTcl1 mice were 

carefully monitored for moribund body conditions and euthanized according to the IACUC 

standards. Body condition scores were generated by monitoring the weight of the mice and 

level of activity as previously described in [242]. Cells were isolated from the spleen of Eμ-Tcl1 

mice and confirmed for the CLL phenotype CD5+CD19+ by flow cytometry. Other characteristics 

to confirm CLL in the mice were through analysis of spleen histology by showing lack of follicular 

structures and expansion of proliferation centers with increased white pulp. Additionally, the 

ability to transfer the primary mouse spleen CLL cells into recipient mice confirmed the 

malignant qualities of the disease.  

2b) Cells and Tissues 

Primary Eμ-Tcl1 CLL single cell suspension was prepared by processing Eμ-Tcl1 spleens 

through a 40μM cell strainer with the blunt end of a 5cc syringe in Hanks Buffered Salt Solution 

(HBSS). Other tissues were collected and processed in a similar manner including lymph nodes, 

liver, omental tissue, thymus, and any solid tumors. Tibiae and Femora were collected from 

mice and marrow was isolated by flushing with a 26G syringe with HBSS. Peritoneal cells for 

lysates and B cell subset sorting were obtained through peritoneal lavage with HBSS [15]. 
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Peripheral blood mononuclear cells were isolated from 200-300μl collection and treated with 

RBC lysis buffer and HBSS washes. Cells were cultured in complete RPMI 1640 media (Corning 

#10-040-CV, New York, NY) supplemented with 10% Fetal Bovine Serum (FBS), 50µM beta-

mercaptoethanol (2-ME), 1mM Sodium Pyruvate, and 50,000 Units Penicillin/Streptomycin.  

Mec-1 cells were cultured in IMDM (Iscove's Modified Dulbecco's Medium) 

(ThermoFisher Scientific #12440061 Waltham, MA) supplemented with 10% FBS, 50μM 2-ME, 

1mM Sodium Pyruvate, and 50,000 Units Gentamicin. OSU-CLL cells were cultured in completed 

RPMI 1640. NCI-H460, PC-3, SudHL-6, RAMOS, and NIH-3T3 cell lines were cultured in complete 

RPMI 1640 (H4-60, PC-3), IF-12 (SudHL-6, RAMOS), or DMEM (NIH-3T3) media.  

2c) Patients 

Human Patients with CLL were recruited from the University of Kentucky, Markey 

Cancer Center Hematology and Oncology Clinic. Each patient gave informed consent approved 

through the University of Kentucky Institutional Review Board, IRB #15-0697. Peripheral blood 

CLL cells were purified through Ficoll-Paque density gradients (GE HealthCare #17-144-02, 

Pittsburgh, PA) and confirmed for CLL phenotype by CD45+CD5+CD19+ staining via flow 

cytometry. Healthy control donors were obtained from leukopack units purchased from the 

Kentucky Blood Bank (Lexington, KY) after quality testing and white blood cells were isolated 

through Ficoll-Paque density gradients. Human cells were cultured in completed RPMI 1640 

described above.  

2d) Reagents 

Dasatinib (0003-0528-11) was manufactured by Bristol-Myers Squibb Company (Seattle, 

WA). Syk inhibitor IV (Bay 61-3606) (57-471-42MG) was obtained from EMD Millipore 

Calbiochem (Billerica, MA). Ibrutinib (A3001) and ERK1/2 inhibitor, SCH772984 (A3805), were 
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obtained from ApexBio (Houston, TX). Dimethyl sulfoxide (DMSO) was obtained from Sigma 

Aldrich (D2438) (St. Louis, MO).   

2e) Flow Cytometry and Cell Sorting 

 Single cell suspensions of CLL cells and tissues from C57BL/6, EμTcl1 and Par4-/-EμTcl1 

mice were analyzed for multicolor flow cytometry using the FACSCaliber and Becton Dickinson 

LSRII Flow Cytometer (BD San Jose, CA) in the University of Kentucky Flow Cytometry and Cell 

Sorting Facility. 1x106 cells were incubated to block Fcγ receptors using normal Rat Ig 

(10μg/1x106 cells) for 15 minutes at room temperature and then stained for 30 minutes on ice 

with fluorchrome-conjugated antibodies (all from BioLegend, San Diego, CA) towards CD5 (Cat # 

100606 or 100608), CD19(Cat # 115520 or 115508 or 115512), CD45 (Cat# 103114 or 103110). 

Peritoneal B cell subsets and spleen B cells were stained for CD19, CD5, and CD11b (Cat # 

10121,) to distinguish B1a: CD5+CD19+CD11b+, B1b: CD5-CD19+CD11b+, and B2: CD5-CD19+ 

CD11b- populations and sorted on the iCyt Synergy sorter system from Sony Biotechnology (San 

Jose, CA). Human CLL and normal peripheral blood samples were stained with antibodies 

specific to human CD5 (Cat # 364022), CD19 (Cat # 302208) and CD45 (Cat # 368512) for 1 hour 

on ice.  

2f) Cell Survival and Proliferation Assays 

Cell survival and proliferation was determined by the 3-(4,5-dimethylthiazole-2-yl)-2,5-

biphenyl tetrazolium bromide (MTT) assay[243]. Primary mouse and human CLL cells were 

cultured at 2x105cells/well in 96 well flat-bottom microtiter plates in 200µl. Mec-1 and OSU-CLL 

cells were cultured at 2x104 cells/well. The cells were treated with 0-40µM Dasatinib, 

Fostamatinib, and Ibrutinib dissolved in DMSO for 48hr and then media was changed and 

incubated with MTT (0.5mg/ml; Sigma Aldrich, M5655) for 4hr. The formazin crystals were 
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solubilized in acidic isopropanol and optical density was measured at 560nm and 690nm. The 

OD values (560-690nm) of cultures without the drugs were set to 100%. DMSO concentration 

did not exceed 0.02% of culture medium and had no measurable effect on cell viability.  

2g) Immunoblot Analysis 

Cells were lysed in Cell Signaling lysis buffer (Cat # 9803, Danvers, MA) supplemented with 1X 

protease inhibitor (Roche Cat # 5892953001, Indianapolis, IN), 1mM PMSF (Sigma#P7626), 2mM 

NaF (Sigma #S-1504), 2mM freshly made Na3VO4 (Sigma #S-6508). Mec-1 shRNA cells were also 

lysed with RIPA buffer made by 10 mM Tris-Cl (pH 8.0), 1 mM EDTA,  1% Triton X-100  and 1X 

protease inhibitor. Nuclear and Cytoplasmic fractions were isolated using NE-PER Extraction Kit 

from ThermoScientific (#78833). Pierce BCA Assay was performed to detect the amount of 

protein in each sample and the diluted in 4x sodium dodecyl sulfate (SDS) sample buffer 

(100mM Tris-HCl, pH 6.8, 30% glycerol, 4% SDS, 5% 2-ME, and 0.01% weigh/volume 

bromophenol blue) resulting in 1X concentration and then boiled for 10 minutes followed by 

cooling on ice for 10 min. 30μg of protein was separated on an SDS polyacrylamide gel using the 

BIO-RAD Mini Protean Tetra System (Bio-Rad Cat #1658001EDU). 7μl of Precision Plus Protein 

dual color ladder (Bio-Rad Cat #1610394) ranging from 10-250kDa in size was used for each gel. 

Gel separation was run in running buffer (25mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3) at 

90V/3A for 10minutes followed by 150V/3A for approximately 45 minutes or until the loading 

dye reached the end of the gel.  Gels were then transferred to polyvinylidene difluoride 

membranes (EMD Millipore Cat #IPVH00010) in transfer buffer (25mM Tris, 192mM glycine, 

20% methanol, pH 8.3) at 90V/3A for 1.5hr at 4°C. Each membrane was blocked at room 

temperature for 1hr in 5% milk or 3% Bovine Serum Albumin (BSA) in 1X TBST (10X: 0.5M Tris, 

1.5M NaCl, and 1% Tween-20). Membranes were then probed with respective primary 

antibodies at 4°C overnight, washed and then probed with horseradish peroxidase-conjugated 
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secondary antibodies for minimum 1hr at room temperature. Membranes were exposed to 

HyGLO chemiluminescence reagent (Denville Scientific Cat #E2400) and developed on HyBlot CL 

autoradiography film (Denville Scientific #E3012). Some difficult to detect proteins utilized 

BioRad Clarity Western ECL Substrate (Bio-Rad Laboratories Cat # 170-5060). Intensities of 

bands were quantified using the Gel Analysis method of the NIH Image J program. All band 

intensities were normalized to Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression 

or β-actin or corresponding non-phosphorylated proteins. Phospho specific antibodies against 

Src (Y416) (#2101S), Akt (S473) (#9271L), Syk (Y525/526) (#2711), Btk (Y223) (#5082P), P-ERK 

(#9101) were obtained from Cell Signaling Technologies (Danvers, MA). Antibodies against total 

Akt (#9272S), Syk (#2712), Btk (#3533S), GAPDH (#2118S) were also obtained from Cell Signaling 

Technologies. Antibodies against total Lyn (#SC-15), Par-4 (#SC-1807), Col1A (#SC-28657), Tcl1 

(#SC-33550), p21 (F-5) (#SC-6246), ERK1/2 (#SC-94), Bcl2 (#SC-7382) and HDAC (Histone 

Deacetylase, #sc-7872) were obtained from Santa Cruz Biotechnologies (Santa Cruz, CA). 

Peroxidase coupled secondary antibodies were also obtained from Santa Cruz Biotechnologies 

(#SC-2004, SC-2005). Antibody against β-actin was obtained from Sigma Aldrich (Cat# A5441). 

2h) Measurement of apoptosis induced by secreted Par-4 

Primary Eμ-Tcl1 mouse CLL cells were cultured for 12-24hr in RPMI-1640 media and 

then media was collected and applied (400μl) to H4-60 lung cancer cell line. Apoptotic nuclei 

were defined by 6-diamidino-2-phenylindole (DAPI) staining (Cat #H-1200 Vector Laboratories, 

Inc., Burlingame, CA) [170]. 100nM Recombinant thioredoxin (TXR) and TXR-Par-4 fusion 

proteins were provided by Dr. Vivek Rangnekar (University of Kentucky) as a positive control and 

antibody towards Par-4 was used to block Par-4 mediated apoptosis. This assay was performed 

with the help of Dr. Nikhil Hebbar, University of Kentucky.   
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Primary Eμ-Tcl1 mouse CLL cells and purified mouse splenic B cells were isolated via 

complement dependent T cell depletion: 25x106 total spleen cells in 10ml total volume were 

plated on 10cm petri dishes and incubated for 1hr at 37°C for macrophage depletion. Cells are 

then collected and RBCs are lysed at 100x106 cells per 1ml of RBC Lysis Buffer (Sigma 

Cat#R7757). Cells are then washed and re-suspended in antibody mix containing Thy1.2, Lyt2, 

and L3T4 at a cell density of 25x106/ml and incubated for 40min on ice. 10ml of HBSS is then 

added to the antibody mixture with cells and centrifuged to wash. Rabbit IgG complement is 

then added at 1ml per 25x106 cells and incubated in 37°C water bath for 30 min. Cells were then 

washed in HBSS. Isolated B cells were then stimulated with 5μg/ml LPS (Millipore Sigma-Aldrich, 

St. Louis, MO) for 12 hrs in low serum (0.05%FBS) RPMI. Media was collected and concentrated 

using Amicon Ultra-4 centrifugal filter concentrators (Cat #UFC801024, EMD Millipore, Billerica, 

MA). The conditioned medium was probed for Par-4 and collagen (Col) 1A. Albumin was 

detected by Coomasie blue stain. The cells were also collected and the lysates were used to 

measure total cellular Par-4 levels. 

2i) shRNA Lentiviral Infection 

 Mec-1 CLL cells were transduced with lentiviruses expressing Lyn shRNA and Par-4 

shRNA. Lyn shRNA gene set prepared by the RNAi Consortium was purchased through 

ThermoFisher Scientific (now with Dharmacon or open Biosystems) (Cat #RHS4533). We 

observed the highest knockdowns with Lyn shRNA clones # TRCN0000010101 and 

#TRCN0000010107, and hence were used in these studies. Par-4 shRNA constructs were cloned 

into the pLKO.1 lentiviral vector. Lentiviruses were packaged in HEK-293-T cells by 

cotransfection with pMD2.G (VSV G) envelope plasmid (Addgene Cat # 12259) and the Gag, Pol 

expressing psPAX2 packaging plasmid (Addgene #12260). Lentiviral particles were collected 

from the supernatants after 48hrs of transfection and then transduced in Mec-1 cells. 1.5x106 
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Mec-1 cells were infected with the target shRNA lentivirus and 10μg/ml Polybrene (Cat # 

SC134220, Santa Cruz), in 4ml of complete IMDM media by centrifugation for 90 min at 

2800rpm at 10°C (spinoculation technique). Viruses and cells were incubated for 24hrs at 37°C 

and then fresh media was replenished. Puromycin dose antibiotic selection began at day 3 and 

remained in culture for the entire period of experimentation after proper titration. Limiting 

dilution was performed earlier to determine that Mec-1 cells seeded at 0.5cells/well in 96 well 

plate were capable to of growing. shRNA infected cells were then added to 96 wells and clones 

were generated. Less than 15% of the wells generated knockdown clones that expanded. Gene 

silencing efficiency was analyzed by immunoblot for respective proteins. Control shRNA and Par-

4 shRNA Mec-1 cell growth rate was monitored through counting and trypan blue exclusion 

using a hemacytometer. Total cell numbers were recorded with each passage and extrapolated 

total cell counts were calculated. 

2j) Knocking out selected SFKs using CRISPR- Cas 9 techniques 

 R6-22 Lenti CRISPR V2 plasmid construct (Plasmid # 52961) included the Cas9 

nickase and guide RNA and was obtained from Addgene (Cambridge, MA) along with R6-21 

pCMV-VSV-G (Plasmid #8454) and R6-20 pLJM1-EGFP (Plasmid number 19319) for viral 

constructs in bacterial stabs. Cultures were grown up and plasmids were isolated using Omega 

EZNA Plasmid DNA Midi Kit (Omega Biotek Norcross, GA, Cat #D6915-03). Lenti CRISPR V2 

plasmid was cut with Bsmb1 restriction enzyme (NEB Biolabs Ipswich, MA, Cat #R0580S) to 

generate overhangs. Guide RNAs were designed using GeCKO (Genome scale CRISPR Knock-Out) 

program in the Lentiviral CRISPR toolbox provided by Zhang Lab at Massachusetts Institute of 

Technology (Cambridge, MA). NCBI RefSeq was used to confirm guide RNAs: Lyn NP_002341, Fgr 

NP_001036212, and Lck NP_001036236. Oligonucleotide primer sequences of targets with 

BsmB1 sites were designed and obtained from IDT (Integrated DNA Technologies Coralville, IA) 
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(Table 3). Oligonucleotides were annealed and ends dephosphorylated before ligating oligo 

duplexes into BsmB1 cut Lenti-CRISPR V2 plasmid. Complete plasmid with target guide RNA was 

when ligated into NEB 10-beta Competent E. Coli (NEB Biolabs Cat # C3019H) and amplified in 

culture. Plasmids were cut to confirm that the target sequence was inserted correctly with 

SnaB1 restriction enzyme (NEB Biolabs Cat #R0130S) and also sequenced by ACGT Sequencing 

Services. Plasmids with Lyn, Fgr, and Lck target sequences were confirmed and then sent to the 

Genetic Technologies Core (GTC) at the University of Kentucky. Lentivirus titer was performed in 

the GTC and 1.5x106 Mec-1 cells were infected with 1x106 infection units in 4ml of complete 

IMDM media by centrifugation for 90 min at 2800rpm at 10°C. Cells were incubated with viruses 

for 24hrs at 37°C and then fresh media was replenished. Puromycin antibiotic selection began at 

day 3 and remained in culture for the entire period of experimentation after proper titration 

(1.5μg/ml). Gene silencing efficiency was analyzed by immunoblot for respective proteins. 

Table 3: Designed Guide RNA oligonucleotide sequences for CRISPR-Cas9 knockout studies.  
 

Guide RNA   5' → 3'  

Lyn1a 
Forward CACC GTT CTT TCA GTA TTA CGT AC 

Reverse AAAC GTA CGT AAT ACT GAA AGA AC 

Lyn4a 
Forward CACCG TAA CCG CTC TGA CTC CCG TC 

Reverse AAAC GAC GGG AGT CAG AGC GGT TA 

Fgr1 Forward CACC GGC GTG TCA GAG GCT ACC GC 
Reverse AAAC GCG GTA GCC TCT GAC ACG CC 

Fgr2 Forward CACC GAA AAG CTA TAT AGA CGG TTA 
Reverse AAAC TAA CCG TCT ATA TAG CTT TTC 

Lck1 Forward CACC GTG GTG GCT ACG ACG GCG AA 
Reverse AC TTC GCC GTC CTA CGG ACC AC 

Lck2 Forward CACC GGT GGT GGC TAC GAC GGC GA 
Reverse AAC TCG CCG TCG TAG CCA CCA CC 
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2k) CD79 siRNA Knockdown Study 

 CD79 siRNA (Cat # SC-35025) and control siRNA (Cat # SC-37007) were obtained from 

Santa Cruz Biotechnologies. Human CLL samples obtained from peripheral blood collection were 

purified by Ficoll-paque density gradient. 20x106 CLL cells were then transferred in 200μl PBS to 

a 0.4cm electrode gene pulser cuvette (Cat # 165-2008, BioRad, Richmond, CA) with 10μg of 

control or targeted siRNA.  The cells were then pulsed at 220mV or 250mV, 960μF, 0Ω and then 

quickly transferred to 4ml RPMI (5x106 cells/ml) for 24hr incubation and then collected for 

immunoblot analysis. Control siRNA was only pulsed at 250mV, 960μF, 0Ω. 

2l) In vivo tumor study 

Mec-1 CLL cells were transduced with lentiviruses expressing Par-4 shRNA or Control 

(scrambled) shRNA. Cells expressing shRNA constructs were selected with puromycin treatment 

for 26 days and knockdown was confirmed through immunoblot analysis. 2x106 shRNA 

expressing cells were injected subcutaneously into flanks of NSGS mice with 1:1 ratio of matrigel 

(#354234, BD Biosciences) in 100μl volume. Par-4 shRNA cells were injected on the right flank 

and control shRNA cells were injected on the left flank with 6 mice for each group. Tumor 

volumes were measured using electronic caliper and tumor volumes were calculated by length 

(mm) x width2(mm). Significance was determined by student t-test for each day of 

measurement.  

2m) Cell Cycle Analysis 

After selection and confirmed knockdown of Par-4, shRNA infected Mec-1 cells (5 x 105) were 

cultured in 48 well plates in triplicate for 48hrs and then analyzed for cell cycle stage after fixing 

with cold 70% ethanol for 1hr at 4°C and incubation with a mixture of 1µg/ml propidium iodide 

(PI) (Sigma Aldrich, P1470) and 25µg/ml RNase A (Sigma Aldrich, R6513) at 37°C for 30 min. The 
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level of PI fluorescence was measured with a FACSCaliber flow cytometer. Cell populations in G1, 

S, G2/M phase were calculated using ModFit Software. 

2n) Quantitative Real-time PCR (qRT-PCR) 

 Total RNA was isolated from different cell populations using TRI reagent (Sigma Aldrich 

Cat #T9424) and quantified with ThermoScientific Nanodrop 1000 Spectrophotometer. A total of 

0.5μg of RNA was then used to make cDNA with qScript cDNA SuperMix (Quanta Bioscience Cat 

#95048-100, Gaithersburg, MD). iTaq Universal SYBR Green Supermix (BIO-RAD Cat #172-5121, 

Hercules, CA) was used to carry out the RT-PCR reaction with indicated primers. Sequences are 

provided in Table 4 and primers were obtained from IDT technologies (Coralville, IA). RT-PCR 

was performed using BioRAD CFX96 Touch Real-time PCR Detection System.  

Table 4: List of qRT-PCR primers 
 

Target Gene   5' → 3' 

mPar-4 Forward GACTTGTGAGGCTGATGCAA 
Reverse GCCCAACAACCTTCAAAAGA 

m18S Forward CGCCGCTAGAGGTGAAATTCT 
Reverse CGAACCTCCGACTTTCGTTCT 

hPar-4 Forward GAAGATGCAATTACACAACAGAACAC 
Reverse TAGCAGATAGGAACTGCCTGGAT 

hp21 Forward CAGACCAGCATGACAGATTTC 
Reverse TTAGGGCTTCCTCTTGGAGA 

h18s Forward TTCGAACGTCTGCCCTATCAA 
Reverse ATGGTAGGCACGGCGACTA 

 

2o) Tissue Histology 

 Whole spleen tissues were collected from mice at the time of euthanasia and a 

fragment was cut for tissue analysis. Pieced spleen was placed in a tissue cassette and fixed in 

Buffered Formalde-Fresh 10% Formalin (Fisher Scientific Fair Lawn, NJ Cat #SF93-4). Tissues 
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were then processed and embedded in paraffin blocks by the Markey Cancer Center 

Biospecimen Procurement and Translational Pathology Shared Resource Facility (MCC BPTP 

SRF). Tissue blocks were cut and spleens were stained with Hematoxylin and Eosin staining. 

Gross morphological changes were noted by expanded white pulp  and loss of follicular 

architecture within the tissue.  

2p) Ultrasound Imaging 

 Mice were sedated with isoflurane using an anesthetic vaporizer with a dial setting of 2-

3% in the induction chamber followed by maintenance at 1.5% oxygen carrier gas at 4 liters/min 

at induction and at 1.5 to 2 liters/min as maintenance for a mouse weighing 300 grams. Mice 

were placed on a heated platform (capable of monitoring Heart rate) and the areas to be 

examined were shaved using a Wahl series 8900 cordless rechargeable animal trimmer and hair 

is further removed using a depilatory (Nair, Church & Dwight Company), approximately 0.1-0.5 

ounces is applied using Q tips on the region of abdomen or thorax that was to be imaged. The 

depilatory was allowed to stay for 2-3 minutes and then wiped off with unscented baby wipes 

(PDI nice or M233XT Quick medical), and the skin was allowed to dry. Pre-warmed ultrasonic gel 

of about 0.5-2 ounces was applied. Mice were scanned using a solid-state transducer for the 

measurement of enlargement of spleen and any irregularities in the spleen and other abdominal 

organs if any. After scanning, the ultrasonic gel was removed/ wiped off and mice were placed 

back in the cage on padding to recover while being observed. The ultrasound machine, probe, 

nose cone, platform and surrounding areas were cleaned using a disinfectant (T-Spray II ® by 

Pharmaceutical Innovations, Inc.) supplied by the manufacturer. The ultrasound machine (Vevo 

2100), probes and equipment are manufactured by Visualsonics (FUJIFILM, Toronto, ON). 
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2q) Splenectomy 

 Prior to surgery, the animal is assessed for normal activity and then the abdomen is 

shaved using a Wahl series 8900 cordless rechargeable animal trimmer and hair is further 

removed using a depilatory (Nair). Isoflurane (1-5% in O2) is inhaled through a nose cone at 1.5 

to 2 liters/min. Artificial tear replacement ointment (Lacrilube) is placed on the eye of the 

mouse to prevent dehydration. Behavioral cues and respiratory rate are monitored closely 

during anesthesia. The animal is placed on a sterilized surgical pad on top of a heating pad to 

maintain body temperature. The animal is placed on its right side and scissors are used to make 

approximately a 2.0cm cut of the skin on the left side. Connective tissue is then gently moved 

away from the abdominal wall to where you can visual the spleen through the peritoneum. A 

1.5cm incision is then made in the peritoneal wall and the spleen is gently pulled to the exterior. 

A 4-0 absorbable suture is used to look and tie off the splenic artery and the efferent venule. 

After vessel ligation, the spleen is removed. The peritoneal wall is closed with one or two 

absorbable sutures in a simple interrupted stitch. The skin is then closed with 9mm stainless 

steel wound clips (AUTOCLIP, Clay Adams Brand, Cat# 427631). The animal is then given 

sustained release bubrenorphine (Animalgesics Labs) at 3.25mg/kg, subcutaneously once at the 

completion of surgery. Mice are then monitored daily for 3 days and checked twice weekly 

following. The wound clips are removed after 10-14 days, with triple antibiotic cream applied.  

2r) Statistical Analysis 

 Statistical analyses was performed using GraphPad Prism 7 (GraphPad Software, Inc., La 

Jolla,CA). Statistical significance of differences between groups was evaluated by Student’s t-

test, growth rates of cells were analyzed by linear regression analysis calculated through the 

slope, and Kaplan-Meier curves were analyzed by Log-Rank test and Gehan-Breslow-Wilcoxin 
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Test. Correlation statistics were tested by linear regression analysis. Experiments testing the 

means overtime were analyzed by two-way ANOVA. P values < 0.05 were considered significant. 
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CHAPTER 3 

Eμ-Tcl1 CLL cells have elevated expression of Par-4 

Prostate Apoptosis Response-4 (Par-4) is a known tumor suppressor that is down 

regulated by promoter methylation in about 30% of cancers including renal cell carcinoma and  

Acute Lymphoblastic Leukemia (ALL) [244, 245]. Par-4 was originally identified by its 

upregulation during apoptosis of prostate cancer cells and later was shown to have a cancer 

selective mechanism of inducing cell death through its specific SAC domain [168]. Par-4 has 

been shown to be activated by Protein Kinase A (PKA) phosphorylation at 

Thr155(rat)/Thr163(human) residue. This site is located in the SAC domain and allows Par-4 to 

translocate to the nucleus and inhibit NF-κB activity in cancer cells but not normal cells [169]. 

This specificity for cancer cell death makes Par-4 an attractive therapeutic target in many 

cancers that has resulted in clinical trials to enhance Par-4 mediated cell death in solid tumors 

[246]. To date, only three studies have examined Par-4 expression in CLL and these have led to 

some suggested prognostic indicators [190, 202, 203]. Initially, Boehrer et al. examined the 

levels of Par-4 in normal and neoplastic lymphocytes and found that all patients with CLL (n=30) 

expressed Par-4 protein levels, but only 63% were positive for Par-4 mRNA expression 

suggesting that there may be a difference in Par-4 regulation in different types of leukemia 

[190]. Previous studies had indicated that Par-4 and Bcl-2 are inversely correlated [191], but 

there was no relationship found between the expression of Par-4 and Bcl-2 protein expression in 

CLL patients. Next, Chow and colleagues found that CLL patients that lacked the Imatinib targets 

BCR-ABL, C-Kit, PDGFR were still sensitive to Imatinib treatment and that the response 

correlated with Par-4expression [202]. Additionally, this study confirmed Boehrer et al. finding 

that there was no relationship between Par-4 expression and Bcl-2 in patients that did or did not 

respond to Imatinib treatment. Par-4 was also downregulated in the course of the treatment 
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with Imatinib when cells underwent apoptosis after caspase-8 and -3 activation [202]. Lastly, 

Borjarska-Junak and colleagues assessed the expression of Par-4 in CLL B-cells and found a 

positive correlation of Par-4 with Bcl-2, which is opposite of what is observed in non-

hematopoietic cells. Par-4 was also positively correlated with DAXX (death associated protein), 

and ZIPK (zipper interacting protein kinase) expression [203]. Additionally, Par-4 was found to 

associate with LDH (lactate dehydrogenase) serum concentrations and was more highly 

expressed in CD38+ CLL patients who have a more aggressive form of CLL disease [35, 71]. These 

initial studies suggest that Par-4 in CLL may be regulated differently in this hematologic disease 

and have other regulatory mechanisms. Therefore studies presented in this chapter investigated 

the level of Par-4 expression in CLL cells from the Eμ-Tcl1 mouse model compared to normal B 

cell subsets, specifically B1a cells, one of the suggested normal counterparts of CLL. We made 

the surprising finding that Eμ-Tcl1 CLL cells express elevated levels of Par-4 that has been proven 

to be functional by inducing apoptosis of solid tumors, but CLL cells themselves were not 

sensitive to Par-4 mediated apoptosis. This observation also translated to human CLL samples 

that over expressed Par-4 compared to normal donor peripheral blood cells. Studies presented 

in this chapter also examined the expression of Par-4 in the primary CLL models as well as the 

adoptive transfer model of murine CLL.  
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Results 

3a) Eμ-Tcl1 B-CLL spleen cells have elevated levels of Par-4 expression 

Although increased constitutive Par-4 expression has been described in CLL cells, most 

previous studies compared CLL cells to peripheral blood total B cells which are mostly made of 

B-2 cells. Hence we isolated CLL cells from the spleens of Eμ-Tcl1 mice which were CD5+CD19+ 

(Figure 3.1A). B cell subsets were isolated from the peritoneum and spleens of C57BL/6 WT mice 

and FACS sorted into specific populations of B1a: CD19+CD5+CD11b+, B1b: CD19+CD5-CD11b+, 

and B2: CD19+CD5-CD11b- cells (Figure 3.1B) [15]. Immunoblot analysis indicated that Eμ-Tcl1 

CLL cells expressed high levels of Par-4 protein compared to all the normal B cell subsets (Figure 

3.1C). B1a cells expressed more Par-4 compared to the other B cell populations but only ~33% of 

the observed levels in CLL. Par-4 mRNA expression was also elevated in CLL cells compared to B 

cell subsets, mirroring the levels of Par-4 protein expression (Figure 3.1D). Because Eμ-Tcl1 CLL 

cells overexpress the Tcl1oncogene, we questioned if the observed increase in Par-4 expression 

was associated with Tcl1. We isolated different B cell subsets from 2mo old Eμ-Tcl1 mice that 

had no detectable levels of CLL in the peripheral blood and measured Par-4 levels compared to 

WT B cell subsets (Figure 3.1E). B1a Eμ-Tcl1 cells expressed higher Par-4 protein levels compared 

to B1b and conventional B2 Eμ-Tcl1 cells. This finding was similar to what was observed in WT B 

cell subsets. All the Eμ-Tcl1 B cell subsets express Tcl1 as indicated in Fig. 3.1E and shown in 

reference [144], but Par-4 protein levels were not as highly expressed as compared to spleen 

cells from Eμ-Tcl1 mice with  >90% CD5+CD19+ CLL cells. This result led us to investigate if 

increased Par-4 expression resulted from leukemic progression in Eμ-Tcl1 mice. As previously 

observed, CD5+CD19+ B cell percentage increased with the age of the mice in the peripheral 

blood and spleen (Figure 3.1F and[209]) and immunoblot analysis of whole spleen cells from the 

different aged Eμ-Tcl1 mice indicated that Par-4 protein expression increased with CLL burden 
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(Figure 3.1G). We confirmed this correlation by examining the relationship between the 

percentage of CD5+CD19+ cells and Par-4 expression in the spleens of Eμ-Tcl1 mice. This 

indicated a positive association between leukemic burden and Par-4 (r2=0.7495, p<0.0055) 

(Figure 3.1H). On the other hand, Par-4 expression did not correlate with Tcl1 levels when both 

proteins were normalized to β-actin (r2=0.003958, p =.8824) (Figure 3.1I). When comparing 

multiple different CLL samples that arose in individual mice, we also saw some variation in levels 

of Par-4 that also did not correlate with changes in Tcl1 expression (Figure 3.1J).  

3b) Primary human CLL cells express elevated Par-4 levels 

We wanted to see if this elevated Par-4 expression was just a mouse phenomenon or if 

Par-4 was also highly expressed in human CLL. Primary human CLL peripheral blood samples 

were obtained through consent and IRB approval and compared to normal human donors 

summarized in Table 5. Such comparison to normal controls was not performed in previous 

studies. CLL was confirmed through CD5+CD19+ staining by flow cytometry (Figure 3.2A) and 

total protein was isolated and probed for Par-4 expression (Figure 3.2B). CLL samples expressed 

significantly higher levels of Par-4 protein when compared to normal donors. The Par-4 gene has 

been mapped to the middle portion of chromosome 12 that has also been implicated in CLL 

pathology as it is associated with about 16% of diagnosed CLL cases [164, 247, 248]. According 

to patient data indicated in Table 3.1, there does not appear to be a gene dosage effect of Par-4 

expression in patients that express trisomy 12 (Figure 3.2C). For example, patients 11 and 14 are 

indicated to have trisomy 12, but appear to have less Par-4 than others that are not indicated to 

have cytogenetic abnormalities. With the help from our collaborators at Ohio State University, 

we were able to test the levels of Par-4 in patients with U-CLL and M-CLL (Figure 3.2D) 

(p=0.231). It appears that Par-4 expression is slightly higher in the more aggressive U-CLL form 

61 
 



 
 

of CLL but it is not significantly different, p=0.231.  However, more samples would be needed to 

further confirm this result.  

3c) Expression of Par-4 in adoptive transfer mouse model of CLL 

 We observed that Par-4 is highly expressed in the splenic B-CLL cells of the Eμ-Tcl1 

primary mouse model compared to the normal counter part of B1a cells [79, 93]. We have 

confirmed that the splenic CLL cells from the de novo primary Eμ-Tcl1 mouse and the adoptive 

transfer CLL cells express almost identical cell surface molecules (Table 6), but we wanted to 

confirm that these cells retain similar Par-4 expression after transfer. Initially, we showed that 

the primary Eμ-Tcl1 spleen and adoptive transfer spleen yielded similar total WBC counts and 

percent of CD5+CD19+ cells as shown in Figure 3.3A. Transfer of different primary Eμ-Tcl1 CLL 

cells that arose de novo in individual mice may exhibit delayed or progressive variable growth 

patterns, but on average, these mice tend to develop CLL like disease in about 3-8 weeks. A 

representative growth curve of CLL in the peripheral blood is depicted in Figure 3.3B compared 

to normal peripheral blood CD5+CD19+ cells in WT mice. We are able to monitor CLL growth in 

recipient mice through submandibular cheek bleeding and FACs analysis over time. We isolated 

tissues from the recipient mice after CLL development and found that CD5+CD19+ CLL cells were 

present in the spleen, peripheral blood, lymph node, bone marrow, peritoneal cavity, liver, and 

omental tissues (Figure 3.3C, left). This is a dramatic increase compared to normal spleen, lymph 

node, and bone marrow tissues of a non-injected animal (Figure 3.3C, right). Additionally, we 

probed for Par-4 and Tcl1 expression in these tissues of CLL injected mice compared to the 

primary Eμ-Tcl1 CLL cells that arose de novo (Figure 3.3D). All tissues expressed Tcl1, confirming 

the presence of CLL cells and there was high Par-4 expression as well.  
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3d) Par-4 is secreted by CLL cells and is functional in inducing apoptosis 

Par-4 is a known tumor suppressor in solid tumors and is able to induce apoptosis in an 

intrinsic as well as an extracellular manner [165, 244]. Because we observed that CLL cells 

expressed high levels of Par-4 but their survival is maintained, we questioned if Par-4 is able to 

translocate to the nucleus where it is known to interact with NF-κB. Nuclear and cytoplasmic 

compartments were isolated from multiple primary Eμ-Tcl1 CLL samples and Par-4 was detected 

in both cellular locations (Figure 3.4A). Tcl1 expression was also located in both locations except 

for CLL #1. Presently we do not know why Tcl1 was absent in the nucleus of this one CLL sample. 

Additionally, the Mec-1 CLL cell line and primary human CLL samples were examined for Par-4 

localization and the protein was also found within both compartments in these cells (Figure 

3.4B).  

Par-4 is also found to be secreted by many cells to induce apoptosis in an extracellular 

manner [199]. We found that CLL cells do secrete high amounts of Par-4 compared to normal 

and stimulated spleen B cells (Figure 3.4C). Because CLL cells undergo apoptosis quickly in 

culture, we questioned if the secreted Par-4 that we detected was just due to apoptosis of the 

cells. We cultured primary mouse Eμ-Tcl1 CLL cells with or without LPS or αIgM stimulation and 

measured Par-4 secretion. Additionally, we probed for GAPDH in the conditioned medium as an 

indicator of cell apoptosis and lysis because GAPDH is not supposed to be secreted (Figure 

3.4D). GAPDH levels were very low in the concentrated medium in comparison to the cell 

lysates, whereas Par-4 levels in conditioned medium were almost as high as observed in total 

cell lysate. 

Additionally, we adoptively transferred Eμ-Tcl1 CLL cells into syngeneic C57BL/6 WT 

hosts and mice null for Par-4 [184] and detected similar levels of Par-4 in the plasma of WT and 

Par4-/- mice 4 weeks after transfer via western blot (Figure 3.4E). This confirmed that Eμ-Tcl1 CLL 
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cells secreted Par-4 in vivo. We also examined the spleens of these recipient mice after 

termination to confirm that Par-4 and Tcl1 were expressed in the Par4-/- recipients to indicate 

CLL engraftment. 

We next tested if Par-4 secreted from CLL cells was functional in inducing apoptosis of 

the Par-4 sensitive H460 lung cancer cell line. Conditioned medium from CLL cell culture applied 

to the H460 cell line induced apoptosis which was reduced by inclusion of anti-Par-4 antibody 

but not control IgG (Figure 3.4F). We also confirmed that human CLL samples secrete Par-4 with 

or without stimulation (Figure 3.4G). 

Extracellular Par-4 requires the receptor GRP78 to bind and induce extrinsic apoptosis  

[199]. CLL cells have slightly lower levels of basal GRP78 protein compared to other cell lines and 

may be one reason why CLL cells are not sensitive to the known pro-apoptotic effects of Par-4 

(Figure 3.2H) but further studies examining the location of GRP78 are required.  
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Figure 3.1A 
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Figure 3.1B 
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Figure 3.1C 

Figure 3.1D 
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Figure 3.1E 

Figure 3.1F 
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Figure 3.1G 
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Figure 3.1H 

Figure 3.1I 
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Figure 3.1: Eμ-Tcl1 B-CLL spleen cells have elevated levels of Par-4 expression  

A) Spleens were collected from Eμ-Tcl1 and C57BL/6 mice at similar ages. Tissue was 

processed and stained with H&E for histology analysis. Single cell suspensions from spleens 

were stained for CD45, CD5, and CD19. A representative FACs profile for a diseased mouse 

(10.1mo) is shown with 84.95% CD5+CD19+ cells compared to a normal 12.6mo WT mouse with 

8.56% CD5+CD19+ cells. B) Peritoneal cavity cells were isolated from 20 WT 16 week mice and 

pooled together. Cells were stained for CD19, CD11b and CD5 and gated into B cell subsets as 

indicated and isolated by FACs sorting. C) Immunoblot analysis of peritoneal cavity B cell 

subsets, Eμ-Tcl1 CLL spleen cells, and WT isolated B2 spleen cells probed for Par-4 and Tcl1. 

Densitometry values are normalized to β-actin. D) Relative Par-4 mRNA expression measured in 

Eμ-Tcl1 CLL cells and WT B cell subsets. Par-4 mRNA levels were normalized to mouse 18S mRNA 

expression. These values were normalized to B1a Par-4 mRNA expression. Results show mean ± 

SE of triplicate samples. E) Peritoneal Cavity cells were collected from both WT (n=20) and Eµ-

Tcl1 mice (n=4) ranging in age of 2-3mo and sorted in to B cell subsets according to Fig 3.1b. 

Total protein was isolated. Immunoblot analysis was performed to determine the expression of 

Par-4 and Tcl1 proteins. F) Total percentage of CD5+CD19+ cells in the spleens of Eμ-Tcl1 mice 

Figure 3.1J 
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increase with age and CLL disease development. P value = <0.001 determined by One way 

ANOVA. G) Spleens were collected from mice at three different ages. Nine spleens collected 

from 4/5mo and 8mo each and 2 spleens from 11mo Eμ-Tcl1 mice. Three spleens were pooled 

together and total protein was isolated and probed for Par-4 and Tcl1. Par-4 protein expression 

is normalized to β-actin. ** indicates p value = 0.0012 determine by student t test between 

4/5mo and 11mo EµTcl1 mice.  H) Correlation of Par-4 protein expression and percentage of 

CD5+CD19+ cells EµTcl1 mice. I) Correlation of Par-4 protein expression and Tcl1expression in 

the spleens of EµTcl1 mice at different ages. Each point represents an average of three mice. r2 

value was determined by Pearson Coefficient test. p = 0.0055 (H) p =0.8824 (I) determined by 

linear regression analysis. J) Immunoblot analysis of Par-4 and Tcl1 expression in multiple Eμ-

Tcl1 CLL spleen samples compared to normal spleen. Lane 2 indicates gel loading ladder.  
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Table 5: Human CLL Patient information. 

Patient Number Age Treated CD38+ Zap70+ Cytogenetics WBC (k/μl) %CD5+CD19+
hCLL Patient #1 76 No Positive Trisomy 12 19.8 87.66
hCLL Patient #2 82 No Negative Negative 20.7 90.54
hCLL Patient #3 56 No 82.35
hCLL Patient #4 36 No Negative 13q deletion 38.3 88.08
hCLL Patient #6 46 No Negative Negative 13q deletion 41 44.01
hCLL Patient #7 52 Yes 15.2 81.37
hCLL Patient #8 69 No Positive Normal 29 83.88
hCLL Patient #9 57 Yes 40 50.33

hCLL Patient #10 62 Yes 11.7% 17p deleted cells 83.7 10.55
hCLL Partient #11 69 No Trisomy 12, 13q deletion 30.2 95.71
hCLL Patient #13 70 No 17.4 80.45
hCLL Patient #14 63 No Trisomy 12 34.8 96.97
hCLL Patient #15 53 Yes Positive 13 q deletion 12.1 84.73
hCLL Patient #16 55 Yes 6 13.64
hCLL Patient #17 76 Yes 36.6 37.23
hCLL Patient #18 80 Yes 142 97.73

   

Patient peripheral blood samples were obtained from the Markey Cancer Center 

Hematology/Oncology Clinic through IRB consent. Total peripheral white blood cell (WBC) 

counts at time of collection are indicated and the percent CD5+CD19+ cells were measured 

through flow cytometry after collection. Cytogenetics, CD38+, Zap70+ are indicated if known 

through previous diagnosis.   
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Figure 3.2A 

Figure 3.2B 
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Figure 3.2 Human CLL samples express elevated Par-4 protein levels 

A) Representative FACS profiles of primary human peripheral blood samples diagnosed with B-

CLL stained with antibodies to CD5 and CD19 compared to two normal donors (ND#1 and ND#2) 

B) Immunoblot analysis of Par-4 protein expression levels in primary hCLL samples compared to 

a pooled whole peripheral blood lymphocyte lysate of two normal donors. Protein values were 

normalized to β-actin. C) Primary patient samples were collected and total protein was isolated 

from PBMC and analyzed by western blot to determine Par-4 expression. Densitometry was 

determined by ImageJ analysis. Trisomy 12 levels were indicated from the patient’s medical 

chart to subgroup patients. n=23 for non-trisomy 12 and n=7 for trisomy 12. p=0.879 

determined by student t-test. D) Par-4 protein expression was determined by immunoblot 

analysis in C) and IGHV status was measured by PCR. Patients were grouped into U-CLL if the 

variable region was less than 2% different from the germline sequence.  n= 16 for M-CLL and 

n=14 for U-CLL. p=0.231 determined by student t-test.  

 

 

 

 

 

 

 

76 
 



 
 

 

 

 

 

0 10 20 30
0

20

40

60

80

100

Days Post  Injection

Pe
rc

en
t  

C
D

5+
C

D
19

+C
D

45
+

C
el

ls
 in

  P
.  

B
lo

od

CLL Injected
PBS Injected

Figure 3.3A 

Figure 3.3B 

77 
 



 
 

 

 

 

 

 

 

Splee
n

Lym
ph N

ode

Bone M
arr

ow
0

2

4

6

Tissues
%

  C
D

45
+C

D
5+

C
D

19
+ 

 C
el

ls

Figure 3.3C 

Figure 3.3D 

Splee
n

Peri
phera

l B
lood

Lym
ph N

ode

Bone M
arr

ow

Peri
tonea

l C
av

ity
Live

r

Omen
tum

0

50

100

Tissues

%
  C

D
45

+C
D

5+
C

D
19

+ 
 C

el
ls

78 
 



 
 

Figure 3.3 Expression of Par-4 in Adoptive Transfer Mouse Model of CLL 

10 x106 EµTcl1 CLL cells were injected into C57BL/6 recipient mice which were monitored by 

regular submandibular bleeding.  A) Representative spleen sizes of C57BL/6, Eμ-Tcl1, and 

adoptive transfer recipient after development of CLL. Total viable cell numbers were calculated 

by hemacytomter using trypan blue exclusion and cells were stained for CD5, CD19 or IgM and 

gated on CD45 positivity. B) Representative growth of CLL in adoptive transfer recipients (n=4) 

measured through peripheral blood staining of CD5+CD19+ cells gated on CD45 compared to 

PBS-injected C57BL/6 mice (n=2). Points represent mean + SEM. C) Percent CD45+CD5+CD19+ 

cells in the tissues of adoptive transfer recipient mice 48 days post injection (Right) compared to 

normal C57Bl/6 mouse tissues (Left). D) Immunoblot analysis of Par-4 expression in tissues of 

adoptive transfer recipient mice 48 days post injection compared to the primary Eμ-Tcl1 CLL 

cells. 
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Table 6: Comparison of WT, Eμ-Tcl1, and Adoptive Transfer recipient spleens.  

 

Whole spleens were crushed and stained for immune cell markers and analyzed by flow 

cytometry. Values represent percentage of cells in each population of total viable spleen cells.  
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Figure 3.4A 

Figure 3.4B 
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Figure 3.4C 

Figure 3.4D 
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Figure 3.4E 

Figure 3.4F 
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Figure 3.4G 

Figure 3.4H 
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Figure 3.4 Par-4 translocates to the nucleus, is secreted from CLL cells and is functional in 

inducing apoptosis 

A) Nuclear and cytoplasmic compartments were isolated from multiple primary Eμ-Tcl1 CLL 

spleens, separated by SDS page, transferred to PVDF membrane and probed for Par-4, Tcl1, 

HDAC, and GAPDH. Lane 5 is the protein ladder control marker. B) Nuclear and cytoplasmic 

compartments were isolated from Mec-1, LY-10, and PC-3 CLL cell lines and Par-4 expression 

was analyzed by immunoblot (top). None of these cell lines express Tcl1. Lane 4 is the protein 

ladder marker. Primary human CLL nuclear and cytoplasmic fractions were probed for Par-4 

(bottom). Lane 5 is the protein ladder marker. C) Conditioned medium (CM) was collected and 

concentrated from WT splenic B cells alone or stimulated with 5μg/ml LPS and Eμ-Tcl1 CLL cells. 

CM and total protein lysate from the cells were analyzed by immunoblot analysis for Par-4, 

albumin, collagen 1A1, and GAPDH. D) Eμ-Tcl1 CLL cells were cultured with or without 25μg/ml 

αIgM or 5μg/ml LPS for 12hrs and CM was collected, concentrated, and separated by SDS-Page, 

and analyzed by immunoblot. CM Par-4 is normalized to Collagen 1A1 (Col1A1), a known 

secreted protein, and Par-4 in the total cell lysate was normalized to GAPDH. E) Top: Plasma was 

collected each week after adoptive transfer of Eμ-Tcl1 CLL cells into C56BL/6 WT mice and Par4-/- 

animals. Plasma was diluted in 4X sample buffer and analyzed by immunoblot analysis for Par-4. 

Mouse Embryonic Fibroblasts (MEFs) were used as positive control of Par-4. Week 4 sample for 

Par4-/- plasma proteins are before week 3 due to loading error. Bottom: After 4 weeks of growth, 

spleens were collected from WT and Par4-/- animals injected with CLL cells and lysates were 

analyzed by immunoblot for Par-4 and Tcl1. Each lane represents one mouse. Par4+/+ recipient 

#3 did not develop CLL. Densitometry values are normalized to β-actin.  F) 400μl of conditioned 

medium from Eμ-Tcl1 CLL cells was applied to H460 lung cancer cell line. H460 cells were treated 

with control recombinant protein 100nM thioredoxin (Trx), 100nM recombinant TRX Par-4 
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fusion protein, CLL CM, CLL CM with anti-Par-4 antibody, and isotype antibody for controls. 

Apoptosis was measured by immunocytochemisty and DAPI morphology. Results are presented 

as mean + SEM of triplicate determinations. G) Conditioned medium (CM) was collected and 

concentrated from human peripheral blood CLL cells alone or stimulated with 25μg/ml αIgM. 

CM and total protein lysate from the cells were analyzed by immunoblots which were probed 

for Par-4. Lanes 1 and 2 represent duplicate samples. H) GRP78 expression in lysates from 

indicated cell lines, de novo and adoptive transfer Eμ-Tcl1 CLL cells was determined by 

immunoblot analysis. The blots were probed for β-actin as loading control.  
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Summary  

 Originally we initiated this study to define the tumor suppressive role of Par-4 in CLL, 

but made a surprising and exciting discovery that Par-4 is upregulated in both mouse and human 

CLL cells. CLL is classified by CD5 and CD19 positivity so it is important to compare these cells to 

the correct controls. Mouse B1a cells express both CD5 and CD19 making this subset of B cells a 

likely comparison as suggested by many other groups [93, 249]. CLL cells overexpress Par-4 

compared to normal B cells and the increased expression is not related to the increased 

expression of the Tcl1 oncogene or the type of B cell subset. CLL cells and B1 cells express CD5 

on the surface of their cells. In normal B1 cells, CD5 is thought to mitigate signaling through the 

BCR to prevent activation from weak signals. We did not investigate if increased Par-4 

expression is related to CD5 expression in B cells but is unlikely as the human Mec-1 CLL cells 

also shows high levels of Par-4 but lack CD5 expression.  

Our findings are consistent with studies presented by Boehrer and colleagues in that 

most CLL samples have detectable Par-4 protein levels [190]. We also find detectable levels of 

Par-4 mRNA in both mouse and human CLL samples. Our studies also showed that Par-4 in CLL is 

able to translocate to the nucleus of CLL cells and is secreted. Further examination of the Par-4 

protein must be done to determine if it is phosphorylated at the Thr155/163 residue which is 

required for the known pro-apoptotic functions of Par-4 [169].  

The ability of CLL cells to secrete Par-4 in vitro and in vivo is an interesting finding and 

begs the question of what cells in the microenvironment are sensitive to Par-4 mediated 

apoptosis. We show that CLL cells secrete Par-4 in vivo as detected in the plasma of Par-4 

deficient mice injected with Eμ-Tcl1 CLL cells containing Par-4. We surmise that CLL secreted 

Par-4 is not inducing an autocrine or paracrine apoptotic effect to other CLL cells as the tumor 

burden continues to grow similarly in wild type and Par4-/- recipients injected with CLL cells. 
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GRP78 expression is found to be slightly lower in CLL cells compared to other tumor cell lines 

and could be the reason CLL cells are not sensitive to Par-4 mediated apoptosis. Additional 

studies examining the location of GRP78 on CLL cells must be done to confirm this hypothesis.  
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CHAPTER 4 

Novel Regulation of Par-4 through BCR signaling in CLL 

Although Par-4 is synthesized in many tumor cells, mechanisms that regulate its 

expression have not been described thus far. Additionally, the function of Par-4 in normal cell 

homeostasis has not been investigated as the majority of its effector functions have been 

defined in cancer cells. Par-4 has been found to interact and bind to multiple proteins such as 

PKCζ [163], WT1 [162],  Akt [170], topoisomerase (TOP1) [182] and is downstream of ZIPK [198, 

203]and Caspase-3 activation [196]. As shown in Chapter 3, CLL cells express high Par-4 levels 

compared to normal B cells, leading us to investigate its regulation. Since CLL cells have been 

shown to have elevated tonic BCR signaling [136, 227], we tested the hypothesis that Par-4 

expression may be regulated by BCR signaling. The BCR pathway is required for the survival of 

both normal and malignant B cells despite their oncogenic activation, making it a therapeutic 

target in B cell malignancies [36, 99, 136]. Kinase inhibitors targeting SFK [250], Syk[124], 

BTK[127], and PI3K [130] have all been proven effective in the treatment of CLL as each inhibits 

required downstream survival signals. Anti-CD20 monoclonal antibodies such as rituximab have 

also been proven efficient with combination of other chemotherapies [251]. We utilized FDA 

approved therapies to target BCR signaling and examined the effects on Par-4 expression. 

Studies in this chapter resulted in a surprising finding that inhibition of the BCR survival pathway 

in CLL cells led to reduced Par-4expression.  
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Results 

4a) Constitutive BCR signaling in CLL cells 

We first verified that EµTcl1 CLL cells have increased tonic BCR signaling by comparing p-

SFK levels in CLL to those in various normal B-cell subsets. Surprisingly such a comparison, 

especially to normal B-1 cell subset has not been performed thus far either in human or mouse. 

As shown in Figure 4.1A, EµTcl1 cells indeed have increased p-SFK compared to both B-2 as well 

as B-1 cell subset in the WT and young Eμ-Tcl1 mice. Additionally, mouse CLL cells express 

greater than two fold more total Lyn protein compared to other B cell subsets. We also 

observed high levels of activated SFK in human CLL samples but could not detect a significant 

difference compared to normal whole blood cells (Figure 4.1B). This could be because peripheral 

blood cells from healthy adults have very few B cells (5-10%) but a large majority of T cells (70-

80%). T cells do have activated SFKs, which contributes to the SFK band seen in the normal 

whole peripheral blood cells [252]. There are very few T cells in the blood of CLL patients with 

the activated SFK coming primarily from neoplastic B cells.  

4b) BCR inhibition leads to decreased Par-4 expression in mouse and human CLL cells 

CLL cells have increased BCR signaling and elevated Par-4 expression; therefore we 

hypothesized that kinases involved in the BCR signaling pathway may regulate Par-4 expression 

(Figure 4.2A). Treatment with dasatinib (SFK inhibitor), fostamatinib (SYK inhibitor), and 

ibrutinib (BTK inhibitor) all led to a decrease in EμTcl1 CLL survival measured through the MTT 

assay (Figure 4.2B). We additionally confirmed that these inhibitors were effective in reducing 

the survival of human CLL cells (Figure 4.2C).  Immunoblot analysis shows that Eμ-Tcl1 CLL cells 

treated with each kinase inhibitor led to reduced activation of its respective target (Figure 4.2D-

F). In agreement with our hypothesis, this inhibition was accompanied by a decrease in Par-4 
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protein expression. We also observed decreased Par-4 mRNA levels after SFK and BTK inhibition, 

suggesting regulation at the transcript level (Figure 4.2G). Par-4 protein down regulation was 

replicated in primary human CLL samples after treatment with Dasatinib and Fostamatinib 

indicating that this is not just a mouse phenomenon (Figure 4.2H). Although the kinase 

inhibitors decrease CLL viability in 48 hour MTT assays, at 12-24 hours, when decrease in Par-4 

levels could clearly be seen with the BCR signing inhibitors, the cell viability was still 70-80%. 

Hence the decrease in Par-4 protein levels is unlikely due to nonspecific cell death. 

4c) Lyn knockdown in CLL cells results in decreased Par-4 expression 

We have observed that inhibition of BCR signaling in both mouse and human CLL cells 

results in a novel downregulation of Par-4 expression at the protein and mRNA levels. As 

mentioned before, primary CLL cells spontaneously undergo apoptosis in culture, making it 

difficult to study mechanisms of regulation. Therefore, we utilized the human CLL cell lines, 

Mec-1 and OSU-CLL for our studies. We first confirmed that these human cell lines were 

sensitive to BCR signaling inhibition by treating cells with Dasatinib. Both Mec-1 and OSU-CLL 

cells responded similarly to both primary mouse as well as human CLL cells (Figure 4.3A). The 

cell lines were slightly less sensitive to drug treatment compared to primary cells, which could 

be due to the background apoptosis occurring in primary CLL samples. Treatment of Mec-1 CLL 

cell line with Dasatinib also reduced the activity of SFKs compared to total Lyn expression and 

furthermore reduced Par-4 protein and mRNA expression (Figure 4.3B). Due to potential off 

target effects with kinase inhibitors, we also used lentiviral mediated shRNA to target Lyn, as it 

has been found to be important in the survival of B-CLL cells and required for BCR signaling [104, 

106, 109]. Our first experiment led to a 60% knockdown of Lyn  in the Mec-1 cell line and 50% 

knockdown of Par-4 (Figure 4.3C, Left). We repeated our experiment and attained a 50% 

knockdown of Lyn expression and a further reduction in Par-4 protein and mRNA expression 
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(Figure 4.3C, Right). We also observed similar results in the diffuse large B cell lymphoma cell 

line, LY-3, confirming that Lyn inhibition led to decreased Par-4 expression (Figure 4.3D). 

We designed CRISPR-Cas9 constructs with guide RNAs targeting different SFKs 

expressed in the Mec-1 cell line, cloned them into lentivirus, and infected the cells with these 

viruses to knockout Lyn, Fgr, and Lck. Initial screening appeared to result in promising 

knockdowns of these particular Src family kinases, but complete knockout was not achieved. 

Attempts to single cell clone the knockouts were also made, but unfortunately, selection with 

puromycin did not yield productive results. The initial knockdown of Lyn in the Mec-1 cells with 

the CRISPR construct did reproduce the results with shRNA mediated knockdown that led to a 

decrease in Par-4 expression (Figure 4.3E). Interestingly, at day 8 of puromycin selection, Fgr 

levels were reduced by 72% which was maintained by day 13. Par-4 levels were down at day 8 

but started to return by day 13. It is conceivable Fgr knockdown cells upregulate other SFKs such 

as Lyn that may rescue Par-4 expression. The trend was similar for Lck but less obvious (Figure 

4.3F). This may suggest that Lyn, the primary SFK in B cells, is able to compensate for loss of the 

other SFKs or that other SFK members are not involved in Par-4 regulation.  

For more specific targeting of BCR signaling, we used siRNA targeting CD79a (Igα), the 

molecule required for BCR expression on the cell surface and downstream signaling in B cells 

[36]. Inhibiting Igα expression prevents activation of non-receptor tyrosine kinases required for 

BCR signaling and eliminates any pleiotropic effects of kinase inhibition with small molecules. 

We observed a dramatic decrease in Par-4 expression with Igα silencing further confirming a 

novel regulation of Par-4 through BCR signaling in one patient sample (Figure 4.3G, left). In 

another patient sample, CD79a was difficult to detect, but we observed a slight down regulation 

of Par-4 after silencing (Figure 4.3G, right). 
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 ERK signaling has been well defined to be critical for B cell development and 

proliferation downstream of the BCR activation and has also been well studied to be a 

therapeutic target in many cancers [132-134]. Because of its significance in B cell survival, we 

inhibited ERK1/2 with SCH772984, a well characterized ERK2 inhibitor. There was a decrease in 

Par-4 protein expression upon inhibition of ERK1/2 (Figure 4.3H)[253]. Interestingly, we did not 

see a decrease in Par-4 expression in PC-3 cells after ERK inhibition suggesting that Par-4 is 

downstream of a survival and proliferation pathway important in malignant B cells but not in 

epithelial cancers such as prostate cancer.  
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Figure 4.1A 

Figure 4.1B 
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Figure 4.1 Constitutive BCR signaling in CLL cells 

A) Immunoblot analysis of peritoneal cavity B cell subsets, Eμ-Tcl1 CLL spleen cells, and WT 

isolated B2 spleen cells probed for pSFK and total Lyn. pSFK levels are normalized to total Lyn 

expression. Lyn, Par-4, and Tcl1 densitometry values are normalized to β-actin. B) Immunoblot 

analysis of activated SFK and total Lyn protein levels in primary hCLL samples compared to Ficoll 

purified peripheral blood lymphocyte lysate of four different normal donors (#1/2 pooled 

together, #3, #4). Results from one of two experiments with similar results are shown.  
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Figure 4.2E 

Figure 4.2F 
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Figure 4.2 BCR inhibition leads to decreased Par-4 expression 

A) Simplified diagram of BCR signaling indicating the kinases targeted with inhibitors: Lyn 

(Dasatinib), Syk (Fostamatinib), and BTK (Ibrutinib). B) Eμ-Tcl1 CLL cells were treated with 

different concentrations of Dasatinib, Fostamatinib, or Ibrutinib for 48 hrs. Cell viability was 

measured through MTT Assay. Results represent an average of three experiments. C) Survival 

curves of human CLL cells treated with BCR signaling inhibitors. Data shown represents one of 

three experiments. D) Western blots of lysates of Eμ-Tcl1 CLL cells treated with 1μM Dasatinib, 

E) 5μM Fostamatinib, and F) 5μM Ibrutinib. Phosphorylated SFK, P-Syk, and P-BTK were 

normalized to respective total proteins which were normalized to β-actin. G) Treatment of Eμ-

Tcl1 CLL cells with Dasatinib and Ibrutinib decreases Par-4 mRNA as measured by qRT-PCR. Par-4 

mRNA is normalized to mouse 18S mRNA expression. H)Primary human peripheral blood B-CLL 

cells (97.7% CD5+CD19+) cells were treated with 1μM Dasatinib (left) and 2μM Fostamatinib 

(right). Phosphorylated SFK and Syk bands were normalized to total proteins respectively. Total 

Lyn, Syk and Par-4 were normalized to β-actin. Results are representative of at least two 

experiments.  
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Figure 4.3C 

Figure 4.3D 
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Figure 4.3E 

Figure 4.3F 
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Figure 4.3G 

Figure 4.3H 
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Figure 4.3 Specific knockdown of Lyn leads to reduced expression of Par-4 in CLL cell lines 

A) Eμ-Tcl1 CLL cells, two human CLL cell lines (Mec-1, OSU-CLL), and primary human B-CLL cells 

were treated with different concentrations of Dasatinib for 48hrs and viability was measured by 

MTT assay. Values represent mean ±SE of triplicate cultures. Results represent a minimum of 

three experiments.   B) Mec-1 CLL cell line was treated with Dasatinib (10μM) and for different 

time points. Total protein and mRNA were isolated. Levels of phosphorylated SFK and total Par-4 

protein expression were analyzed by immunoblot analysis (left) and mRNA measured through 

qRT-PCR (right). mRNA values represent mean ±SE in triplicates normalized to human 18s.  C) 

Mec-1 CLL cell line was infected with control or Lyn specific shRNA lentivirus and selected for 

puromycin resistance. Viable cells were collected at Day 13 (Left, Experiment 1) and Day 17 

(Middle, Experiment 2) and total protein and RNA was isolated. Left panel represents 

immunoblot analysis of Lyn protein. Right panel shows levels of Par-4 mRNA expression 

measured by qRT-PCR. D) Lentiviral mediated shRNA knockdown of Lyn on Par-4 expression in 

LY-3 lymphoma cell line. Western blot of lysates of control and Lyn shRNA treated cells probed 

for Lyn, Par-4 and β-actin is shown. (Provided by Dr. Sunil Noothi)  E) Lyn targeting guide RNA 

was cloned into lentiviral plasmid (Lenti-CRISPR V2) containing CRISPR/Cas9 and puromycin 

resistance gene. Lentivirus was grown in HEK 293T cells. Mec-1 cells were infected with the 

lentivirus expressing Lyn specific guide RNAs and selected with puromycin.  Lysates of 

puromycin resistant cells collected at day 8 or 13 after infection were analyzed by western blot 

to determine the degree of Lyn knockdown and Par-4 levels. F) Lentiviruses expressing 

CRISPR/Cas9 and guide RNAs targeting Fgr and Lck were used to infect Mec-1 cells. Lysates of 

puromycin resistant cells were analyzed by Western blots which were probed for target SFK and 

Par-4. Densitometry values were normalized to GAPDH. G) Human CLL cells were electroporated 

with CD79a siRNA and incubated for 24hrs. Different voltages were used for electroporation, 
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middle lane: 220mV, right lane: 250mV. Ctl siRNA voltage was 220mV. (Left: hCLL p#10, Right: 

hCLL p#15). Total protein was analyzed by SDS-PAGE and Western blots, which were probed for 

CD79a and Par-4.  H) Par-4 expression is regulated through ERK signaling in Eμ-Tcl1CLL cells but 

not PC-3 cancer cells. Western blots of lysates of Eµ-Tcl1 CLL cells and PC-3 prostate cancer cells 

treated with ERK1/2 inhibitor, SCH772984, were probed for p-Erk, ERK1/2 and Par-4. pERK levels 

are normalized to total ERK1/2 and Actin. Par-4 protein expression is normalized to Actin. Blots 

represent one of three experiments. 
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Summary 

 Our initial finding that CLL cells overexpress Par-4 compared to normal B cells led us to 

investigate how Par-4 might be regulated in this cancer. Due to the well-known activity of BCR 

signaling in CLL, we first focused on this pathway. Treatment of mouse and human primary CLL 

cells with inhibitors to SFKs, Syk, and BTK, led to reduced cell survival and a decrease in Par-4 

expression.  It is interesting to note that Par-4 down regulation is not seen until after 6hrs of 

treatment with BCR inhibitors with the greatest decrease in Par-4 expression at 12+hrs.  Because 

Par-4 has been shown to interact with many different proteins such as Akt, PKCζ, WT-1 and 

others, these proteins could be providing stability after cytotoxic agents until a threshold is met 

leading to Par-4 degradation. We and others saw reduced Akt activity and total protein after 

dasatinib treatment in CLL [254] suggesting that a decrease in Akt may not be responsible for 

immediate down regulation of Par-4 after BCR inhibition since Akt phosphorylation destabilizes 

Par-4.  We have not investigated if PKCζ or WT-1 are affected after BCR inhibition in CLL. Since 

much of the currently known regulation of Par-4 is through post-translational interactions, there 

could be other proteins that are bound to Par-4. Structural studies focusing on the regulatory 

interaction of Par-4 indicate that heterodimer interactions through the leucine zipper domain of 

Par-4 mediate more stable interactions [255]. Ternary structures and heterodimers of Par-4 

could be responsible for the increased stability of Par-4 in B-CLL cells. One study proposed that 

Par-4 is involved in a ternary complex with PKCζ and p62 to regulate NF-κB activation [256]. p62 

is also known as the sequestosome (SQSTM1) which is important in autophagy and regulates 

transport of proteins between the nucleus and cytoplasm for proteasomal degradation [257]. 

Par-4 is known to inhibit NF-κB by blocking the activity of PKCζ, but p62 has been found to 

antagonize this effect and prevent Par-4 mediated inhibition [256]. Dasatinib treatment has 

been found to result in autophagy-mediated cell death in ovarian cancer [258] and acute 
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myeloid leukemia [259], and therefore, could increase activation of autophagy initially that leads 

to increased p62 expression and further stability of Par-4 in CLL.  Studies to confirm increase in 

LC3 lipidation after dasatinib treatment and measuring p62 levels must be done to validate this 

complex hypothesis but could explain why we do not see decreased Par-4 levels until later time 

points after BCR inhibition.  

 Par-4 is also known to be a target of caspase-3 activation and since BCR inhibitor 

treatment results in cell death, we questioned if down regulation of Par-4 is only through 

caspase-3 cleavage [196].  Our studies with Par-4 down regulation after specific Lyn shRNA 

knockdown in stably growing cells make this an unlikely possibility. We also observe Par-4 down 

regulation after Igα silencing which leads us to suggest that BCR signaling inhibition through 

kinase inhibitors must activate other pathways that could result in Par-4 stabilization as 

discussed above. 

This novel finding of Par-4 regulation by BCR signaling needs to be studied further to 

define the mechanisms of this control. Par-4 protein and mRNA levels are reduced after BCR 

signaling inhibition suggesting that Par-4 may be regulated at the transcriptional level in CLL. 

Assays to transfect Mec-1 CLL cell line with Par-4-Luc promoter were attempted to see if BCR 

inhibition led to reduced luciferase activity. Unfortunately, CLL cells were difficult to transfect 

and we were not successful in definitively answering the question. Preliminary findings showed 

that luciferase activity was slightly reduced after BCR inhibition treatment with dasatinib, but 

were not statistically significant. There was success in infecting Mec-1 cells with lentivirus 

carrying shRNA that targeted Lyn kinase. Down regulation of Lyn resulted in decreased Par-4 

expression at both the protein and mRNA levels. Results targeting Igα confirmed that Par-4 is 

downstream of BCR activation and regulated through this signaling pathway.  Additional studies 

investigating the levels of Par-4 after ERK inhibition in CLL cells showed that Par-4 is further 
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downstream of the BCR signaling cascade. This result provides evidence that a well-defined 

survival signaling pathway is regulating the expression of Par-4 specifically in B cells since we did 

not see down regulation of Par-4 after ERK inhibition in PC-3 cells. Studies in Ras-transformed 

fibroblasts that expressed constitutively active ERK2 showed a decrease in Par-4 expression 

which is the opposite of what we observe in CLL cells [181].  While ERK1/2 are activated in PC-3 

cells, we may not see an effect on Par-4 due to increased signaling upstream of ERK1/2 in PC-3 

cells. Protein kinase c-alpha (PKCα) and EGFR (epidermal growth factor receptor) signaling have 

both been found responsible for ERK1/2 signaling in PC-3 cells and could be masking the effect 

of ERK inhibition on Par-4 [260]. PKC-α is found to be variably expressed in CLL cells and 

potentially could not compensate for the inhibition of ERK1/2 signaling on Par-4 expression 

[261].  
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CHAPTER 5 

Novel Role of Par-4 in regulating the Growth of CLL 

 We have shown that Par-4 expression is abnormal in CLL cells compared to its 

expression in other cancer types. Novel regulation of Par-4 expression in malignant B cells 

appears to be through the BCR signaling pathway. These observations have led us to question 

the role Par-4 in CLL. Previous studies have suggested that Par-4 regulation may be different in 

CLL cells as its mRNA levels did not match protein levels in patients [190]. Also, treatment of CLL 

cells with Imatinib led to reduced Par-4 expression and cell death [202]. Along with our findings, 

these two studies suggest that intrinsic Par-4 may not be playing its well-defined role as a tumor 

suppressor in CLL.  

 The original paper that identified Par-4 to be upregulated in response to calcium 

mobilization in prostate cancer cells also identified the entire family of prostate apoptosis 

response genes (Par-1, Par-3, Par-4, and Par-5) [161]. They discovered the genes involved in cell 

death mechanisms were divided into two components: specific apoptosis response genes (par-

4) and genes induced by growth regulatory factors (par-1, par-3, and par-5). AT-3 cells (prostate 

carcinoma) starved from serum and then stimulated with serum resulted in an induction of par-

1, par-3, and par-5 but not par-4.  Sells and colleagues found that Par-4 was specific to apoptosis 

response, but also indicated that other family members are involved in growth regulation [161]. 

 We investigated how Par-4 may contribute to CLL pathogenesis and growth by knocking 

down the expression of Par-4 in the Mec-1 CLL cell line. Additionally, we crossed the Eμ-Tcl1 

mice to a Par4-/- animal to examine the role of Par-4 in the development of CLL.  Our results lead 

us to hypothesize that intrinsic Par-4 is not a pro-apoptotic factor in the context of CLL but 

rather may be a growth factor that is a potential therapeutic target. 
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Results 

5a) Knockdown of Par-4 leads to reduced CLL growth 

We sought to determine the role of Par-4 in CLL growth by knocking down Par-4 

expression in the human Mec-1 CLL line. There was a decrease in Par-4 protein and mRNA levels 

after lentiviral shRNA mediated knockdown in Mec-1 cells (Figure 5.1A). Cell Signaling lysis 

buffer and RIPA buffer were used to lyse Mec-1 cells treated with control and Par-4 shRNA to 

confirm knockdown. Par-4 is known to inhibit Akt phosphorylation and reduce Bcl2 levels, which 

were increased in Par-4 knockdown Mec-1 cells, confirming specific Par-4 knockdown (Figure 

5.1A) [178, 190]. We repeated the knockdown experiment and generated several clones from a 

single infection with two different Par-4 shRNA constructs (Figure 5.1B). After we confirmed Par-

4 knockdown, we tested the importance of Par-4 for CLL growth by culturing cells with 

continuous puromycin selection for 14 days and counting total cell numbers to generate a 

growth curve with four clones of control shRNA and five clones of hPar-4 shRNA (Figure 5.1C). 

Surprisingly, Par-4 knockdown resulted in an overall reduction in the growth of Mec-1 cells in 

vitro (Figure 5.1D, p = 0.0024). 

Subcutaneous injection of control shRNA and Par-4 shRNA knockdown cells into left and right 

flanks of NSGS mice induced tumors which were followed for a period of 3 weeks, at which time 

they had to be euthanized as per IACUC protocol (Figure 5.1E). Par-4 knockdown Mec-1 cells 

grew more slowly in vivo, mimicking the in vitro results (Figure 5.1F). Injected tumors retained 

their knockdown of Par-4 expression in vivo as shown through immunoblot analysis (Figure 

5.1G).  

5b) Par-4 knockdown leads to increased p21 expression 

 The unexpected result of Par-4 knockdown reducing the growth rate of Mec-1 CLL cells 

(Figure 5.1) and an increase in known pro-survival and anti-apoptotic proteins of phospho-Akt 
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and Bcl2, led us to investigate if Par-4 knockdown affected the cell cycle in CLL cells. 

Interestingly, Par-4 knockdown Mec-1 cells had fewer cells entering S phase but more cells in G1 

phase suggesting a halt in the G1 to S transition (Figure 5.2A). We initially probed a panel of cell 

cycle regulators and kinases in the Par-4 knockdown cells and made an interesting discovery 

that p21 expression is increased in cells with reduced Par-4 (Figure 5.2B). We did not observe 

significant changes in CDK1 expression, but did find a slight increase in CDK4 expression. CDK4 is 

found to be prominent in the G1 phase while CDK2 is active in the G1 to S phase transition 

followed by CDK1 which is active in G2/M phase [262]. Cell cycle analysis indicates that a greater 

number of Par-4 knockdown cells are present in the G1 phase supporting the increase in CDK4 

expression. Slightly less CDK2 expression is consistent with the proposal that the Mec-1 cells are 

remaining in G1 and not able to proceed through the cell cycle. There was no significant change 

in p27 levels between control and Par-4 knockdown. We additionally probed for Hsp90 as many 

cell cycle regulators are clients of Hsp90 chaperone activity to confirm that changes are not due 

to cell stress. Hsp70 is an excellent indicator of loss of Hsp90 function and we did not see 

changes in that expression of either protein. p21 is involved in different phases of the cell cycle, 

but primarily works to control the transition from G1 to S [263]. Increase in p21 levels is likely to 

responsible for the G1/S halt observed in Par-4 knockdown cells. Clones generated from a 

second shRNA infection reproduced the results of increased p21 expression. An average of three 

control shRNA clones and 7 Par-4 shRNA clones are represented in the histogram. Elevated 

levels of Par-4 expression in the control shRNA levels result in decreased p21 levels with 

reciprocal results shown in the Par-4 shRNA knockdown cells (Figure 5.2C). We then examined 

Par-4 and p21 mRNA levels in cells knocked down with the human Par-4 shRNA construct. mRNA 

levels mirrored results observed at the protein level with increased p21 expression in cells with 

reduced Par-4 (Figure 5.2D,E).  
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5c) Loss of Par-4 delays development of CLL in vivo 

 To determine the effect of Par-4 in the development of CLL, we crossed Eμ-Tcl1 mice 

with mice deficient for Par-4 (Figure 5.3A). We tested several tissues including, spleen, 

peripheral blood, peritoneal cavity, lymph nodes, bone marrow cells, and liver in the Par-4-/-

EμTcl1 mice and confirmed that they were deficient for Par-4, but positive for Tcl1 expression 

(Figure 5.3B). We monitored CLL progression in the Par-4+/+EμTcl1 and Par-4-/-EμTcl1 by periodic 

submandibular bleeding and measuring the percentage of CD5+CD19+ CLL cells in the blood by 

flow cytometry. Mice were considered to be CLL if there was a distinct population of 

CD5+CD19+ (>15-20%) cells defined on the FACS profile. Figure 5.3C shows that CLL 

development is significantly delayed in Par-4-/- mice compared to wild type mice (p<0.0003). 

Figure 5.3D represents the survival analysis for Par-4+/+EμTcl1 and Par-4-/-EμTcl1 mice. The 

average age of death of Par-4+/+EμTcl1 was 8.9mo versus the 11.97mo for Par-4-/-EμTcl1 mice 

(p<0.05). Par-4-/-EμTcl1 mice still developed CLL like disease as indicated by CD5+CD19+ staining 

and gross pathology of the disease indicated by splenomegaly (Figure 5.3E). The total spleen cell 

number was similar in Par-4-/-EμTcl1, Par-4+/+EμTcl1, and the adoptive transfer recipient spleen 

of Par-4+/+EμTcl1 cells. Adoptive transfer of 7.6x106 Par-4-/-EμTcl1 CLL cells into WT and Par4 null 

recipients resulted in similar rates of growth measured through submandibular bleeding (Figure 

5.3F). This indicated that Par-4 was not required in the microenvironment for the growth of CLL, 

but loss of Par-4 in the de novo mouse model delays disease development supporting a cell 

intrinsic role for Par-4. 

We discovered that Par-4-/-EμTcl1 spleen cells expressed higher p21 protein levels 

compared to Par-4+/+EμTcl1 spleen cells providing in vivo confirmation of p21 upregulation 

observed in vitro using Par-4 knockdown cell lines (Figure 5.4A).  Additional comparison showed 
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that p21 is present in spleens of Par-4+/+EμTcl1mice but the majority of Par-4-/-EμTcl1spleens 

express 2-23 fold more p21 (Figure 5.4B). In order for p21 to execute its function to block the 

cell cycle from G1 to S phase, p21 must be found in the nucleus of the cell [264]. Therefore we 

looked at nuclear and cytoplasmic fractions of Par-4+/+EμTcl1 and Par-4-/-EμTcl1 spleen cells and 

found that Par-4-/-EμTcl1 cells had greater nuclear p21 levels compared to Par-4+/+EμTcl1 cells, 

further confirming that Par-4 knockout led to increased levels of functional p21 (Figure 5.4C). 
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Figure 5.1B 
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Figure 5.1 Knockdown of Par-4 in vitro leads to reduced CLL growth 

A) Left panel: Western blot of proteins in the lysates of Mec-1 cells expressing human Par-4 

specific shRNA or control shRNA, which was probed for Par-4, pAkt , Akt, Bcl-2, and ß-actin Par-4 

protein band intensities were normalized to Actin.  Lanes 1 &2 are cells lysed with Cell signaling 

lysis buffer and lanes 3 &4 are cells lysed with RIPA buffer. Right panel: Quantification of Par-4 

mRNA in Mec-1 cells expressing Par-4 shRNA compared to those expressing a control shRNA by 

qRT-PCR. Par-4 mRNA expression was normalized to human 18S RNA. B) Multiple clones of Par-4 

knockdown Mec-1 cells were obtained by limiting dilution cloning in the presence of puromycin. 

Lysates of these clones were analyzed for Par-4 expression by Western blot. Par-4 protein band 

intensities were normalized to ß-Actin. C) Growth curves of several clones of Mec-1 cells 

(indicated by letter and number) expressing control or human Par-4 specific shRNA in the 

presence of puromycin (1.5µg/ml). Cell counts were determined by trypan blue exclusion. D) 

Growth curve of Mec-1 cells expressing control or Par-4 specific shRNA, with each representing 

mean and SE for four clones for control shRNA and five clones for Par-4shRNA expressing clones. 

Slopes of the curves are different (P= 0.0024) as calculated by linear regression analysis. E) Mec-

1 cells (2x106) expressing control or Par-4 specific shRNA were engrafted into NSGS mice 

subcutaneously with matrigel. Pictures show tumors on flanks after 35 days of growth. F) Tumor 

volumes were calculated by measuring the length and the width with a caliper. Tumor volumes 

are plotted as a function of time. Difference between the slopes of the two lines is found to be 

statistically significant (P ≤ 0.001) by linear regression analysis. G) After 35 days of growth the 

tumors were excised and Western blot analysis was performed on tumor cell lysates to confirm 

tumors retained Par-4 knockdown in each mouse throughout the experiment. Lane 2 in each 

blot is the protein ladder control marker. 
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Figure 5.2 Par-4 knockdown leads to G1 cell cycle arrest and increased p21 expression 

A) Mec-1 cells infected with control or Par-4 specific shRNA lentivirus were collected and stained 

with propidium iodide. Cell cycle analysis was performed by flow cytometry. Histograms 

represent mean + SE of four control shRNA clones and 5 Par-4 shRNA clones. B) Cell lysates from 

control and Par-4 shRNA expressing Mec-1 cell clones were analyzed by immunoblot for 

proteins involved in cell cycle. Lanes 1 &2 are cells lysed with Cell signaling lysis buffer and lanes 

3 &4 are cells lysed with RIPA buffer.  Protein values are expression normalized to β-actin. C) 

Mean + SE of band intensities of Par-4 and p21 expression normalized to β-actin in 3 control 

shRNA and 7Par-4 shRNA clones. Densitometry values determine by Image J analysis. P  value = 

0.00003 for Par-4 expression and p= 0.05 for p21 expression determined by student t-test. D) 

Control and Par-4 shRNA expressing Mec-1 clones were collected and RNA was isolated. Par-4 

mRNA (left) and p21 mRNA (right) were quantified by qRT-PCR and were normalized to human 

18S RNA expression. E) Immunoblots of proteins from Par-4 and control shRNA infected Mec-1 

clones (indicated by letter followed by a number) used for QRT-PCR assays in panel D.  
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Figure 5.3A 
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Figure 5.3 Loss of Par-4 delays development of CLL in vivo 

A) Breeding scheme of the Eμ-Tcl1 CLL mice crossed with animals deficient for Par-4, both on 

C57BL/6 background. F1 generation was then intercrossed to get complete Par-4 knockout with 

the expression of the human Tcl1 gene in B cells. B) Tissues from Par4-/-Tcl1 mice (Mouse 2057, 

Age 13mo, 18days) were harvested and expression of Par-4 and Tcl1 was determined by 

Western blot analysis. C) Percent of Par-4+/+ Eµ-Tcl1 and Par-4-/-EµTcl1 cohorts that developed 

CLL over time. P value = 0.0002 determined by Log-Rank test. (n=16 Eμ-Tcl1, n=10 Par4-/-Tcl1). 

Mice were defined as CLL positive if they have > 15-20% of CD5+CD19+ cells in their peripheral 

blood. D) Effect of Par-4 loss on the survival of EµTcl1 mice. Survival curve represents a total of 

17 Eμ-Tcl1 Par-4+/+ mice and 9 EµTcl1Par4-/- mice. P value = 0.0472 determined by Log-Rank test. 

Mice were euthanized according to their body condition score. E) Comparison of spleens sizes 

and total cell number in C57BL/6 WT (13.1mo), Par-4-/-EµTcl1 (11.9mo), and adoptive transfer 

recipient injected with EµTcl1 cells. F) Kinetics of CLL development in WT and Par4 null mice 

injected with Par-4-/-EµTcl1 CLL cells obtained from the cohort described in previous panels. n = 

6/group. There was no statistically significant difference in the % of CLL cells in the two groups 

of recipients at all time points tested. 
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Figure 5.4A 

Figure 5.4B 
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Figure 5.4 Par-4-/- Eµ-Tcl1spleen CLL cells have increased levels of p21 expression 

A) Spleens from multiple Par-4+/+ Eμ-Tcl1 and Par4-/-Tcl1 mice (individual mice numbered 1 

through 6) were harvested, total protein was isolated and analyzed by SDS PAGE followed by 

Western blots. . Immunoblots were probed for Par-4 and p21. Protein expression was 

normalized to β-Actin. B) Spleen cell lysates from Eμ-Tcl1 mice and Par4-/-Tcl1 mice were 

analyzed by immunoblots, which were probed for Par-4, p21, and Tcl1. C) Proteins from nuclear 

and cytoplasmic fractions of cell lysates from Par-4+/+ EμTcl1 and Par-4-/- EμTcl1 CLL cells were 

analyzed by Western blots, which were probed for p21 expression. Nuclear (N) loading control is 

HDAC and cytoplasmic (C) control is GAPDH. p21 densitometry values were normalized to 

respective controls.  

 

Figure 5.4C 

128 
 



 
 

Summary 

 A valuable way to verify the importance of a gene product in molecular biology is to 

knock out the gene and determine if there is an effect on the phenomenon of interest. Hence, 

we knocked down Par-4 in the Mec-1 cell line. We found that Par-4 is not critical for the survival 

of CLL cells, as Mec-1 cells persisted with a dramatic down regulation of Par-4 protein and mRNA 

expression. Additionally, Par-4 is not required for the development and growth of CLL cells as 

animals lacking Par-4 with the Tcl1 oncogene continued to develop a CLL like disease.  

Loss of Par-4 did result in a decrease in growth suggesting that it is involved in CLL cell 

proliferation. Decreased Par-4 levels resulted in a reduction in the G1 to S phase transition of 

the cell cycle with a reciprocal induction of p21 expression. This is a novel finding as CLL cells in 

the periphery of patients are in a quiescent state. The knockdown studies are done in a 

transformed cell line that proliferates, which could be responsible for the retardation in cell 

cycle, as infection with a scrambled shRNA construct did not change the growth pattern of the 

Mec-1 CLL cells. While a proliferative cell line may not be the best model of quiescent CLL cells, 

it does allow us to establish mechanisms in which these cells avoid apoptosis. It would be 

interesting to investigate the cell cycle status of cells in spleens of Par4-/-Eμ-Tcl1 and Par4+/+Eμ-

Tcl1 mice at similar stages of disease to see if Par4-/-Eμ-Tcl1 CLL exhibit a reduced G1 to S 

transition to confirm our cell line data. Results were comparable in the Mec-1 Par-4 shRNA 

knockdown cells and the spleens of Par4-/-Eμ-Tcl1 mice that showed delayed CLL development 

and increased p21 expression.  This is a clinically relevant finding as a study investigating the 

expression of p21 in CLL cases and patients with Richter’s syndrome found that 80% of CLL cases 

did not express detectable levels of p21 [265]. 43% of patients with Richter’s syndrome did 

express detectable levels of p21. Cobo et al. analyzed the sequence of p21 in three CLL cases 

and 6 Richter’s syndrome to find a germline configuration in all of them indicating that it was 
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not mutated. We did not sequence the p21 gene in our Par-4 knockdown and knockout cells to 

confirm that it was not mutated, but our observed increase in nuclear p21 levels in Par4-/-Eμ-

Tcl1 CLL cells suggests that it is still able to translocate to the nucleus and  function in the 

regulation of the cell cycle that occurs in the nucleus.  
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CHAPTER 6 

Splenic microenvironment and Par-4 expression is important for the 

development of CLL in the mouse 

B cell receptor signaling has been proven to be critical for the survival of CLL. The 

microenvironment was found to support CLL B cell activation and provide a proliferative niche 

for malignant cells to expand [9, 154, 266]. CLL cells that circulate within the peripheral blood 

are characterized to be quiescent and resistant to apoptosis. A small population of CLL cells 

exists that is actively proliferating, but the site of new growth is currently being debated [148]. A 

recent study in CLL patients has provided direct in vivo evidence that the lymph node 

microenvironment is the site of new cells with higher Ki67 staining expression compared to the 

peripheral blood and bone marrow [143]. Other studies examining gene expression profiles 

have suggested that the lymph node shows elevated BCR signaling gene signatures [142] and 

may have enhanced immune suppressive markers [141]. In human patients, the spleen has not 

been examined carefully as a site of CLL growth during early stages of CLL disease nor in most of 

the molecular analyses, due to the difficulty of accessing spleen tissue. This limitation can be 

overcome in an animal model. In the Eμ-Tcl1 transgenic mouse model, some studies utilized 

intravital imaging to visualize sites to which CLL cells home for their clonal expansion [154]. 

Heinig et al. suggest that CLL cells travel to splenic B cell follicles to interact with follicular 

dendritic cells (FDCs) to accelerate disease progression. Other studies have indicated that Eμ-

Tcl1 CLL cells require interaction with macrophages in order to survive and proliferate, but the 

site of interaction was not well defined [152, 153]. Further characterization of the CLL 

microenvironment is essential to understand how CLL cells avoid apoptosis, become resistant to 

cytotoxic therapies, and progress towards a more aggressive disease. Our initial studies to 

establish an adoptive transfer model with Eμ-Tcl1 cells led us to question where the CLL cells 
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home for their in vivo growth. Severe splenomegaly is a well-defined marker of CLL progression 

in the Eμ-Tcl1 de novo and adoptive transfer models, suggesting that this splenic 

microenvironment needs to be investigated further.  

We have shown that CLL cells overexpress Par-4 compared to levels in normal B cell 

subsets. Additionally, CLL cells secrete Par-4 that can induce apoptosis of other cancer cell lines. 

Hence we investigated if Par-4 secreted from CLL cells is able to manipulate the 

microenvironment’s ability to promote or delay CLL growth. Studies in this chapter investigate 

the role of spleen and Par-4 in the splenic microenvironment using primary and adoptive 

transfer models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

132 
 



 
 

Results 

6a) Spleen is the primary site of CLL growth in mouse models 

The Eμ-Tcl1 mouse is an excellent model to study CLL as these mice progressively 

develop an accumulation of CD5+CD19+ cells within the peripheral blood, spleen, lymph nodes, 

and bone marrow [144]. The Eμ-Tcl1 mouse exhibits splenomegaly, hepatomegaly, enlarged 

lymph nodes, and anemia as disease progresses. We monitored the growth of the spleen in the 

Eμ-Tcl1 mouse over time through ultrasonographic analysis and found that the spleen size 

increases with age and disease progression (Figure 6.1A). Representative ultrasound images are 

shown in Figure 6.1B. Staining of the peripheral blood and spleen cells from EµTcl1 mice 

euthanized at different ages indicates that the spleen has a slightly higher percentage of 

CD5+CD19+ cells compared to the blood (Figure 6.1C). In terms of absolute numbers spleen has 

more CLL cells than any other tissue (data not shown). 

We also utilized the adoptive transfer model to monitor the growth of CLL cells in the 

peripheral blood and spleen (Figure 6.2A). Ultrasound imaging of the recipient mouse after CLL 

injection shows an increase in spleen size. Total volume of the spleen is calculated by 3-D 

imaging and tracing with the Vevo 2100 software (Figure 6.2B). We compared the change in 

spleen size to the peripheral blood CD5+CD19+ staining and detected a notable increase in 

spleen size at day 7 while we were able to detect CD5+CD19+ population in the blood only at 

day 21 (Figure 6.2C). This result indicates that the CLL cells grow first in spleen before they 

egress to the periphery.  We also noted that recipient mice developed CLL with tumor burden 

primarily in the spleen irrespective of the route of injection (IV, IP, or SQ) (Figure 6.2D). 

To determine if the spleen is a preferred site of CLL growth we measured the 

localization and the growth of CLL cells in various lymphoid organs after adoptive transfer. In 

order to monitor the homing and growth of injected CLL cells, we utilized EµTcl1 CLL cells that 
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expressed the human ROR1 cell surface molecule (C57BL/6 background) to differentiate injected 

cells from resident CD5+CD19+ cells. Spleen, peritoneal cavity, bone marrow, and lymph node 

tissues were collected after adoptive transfer of 10x106 hROR1+CD5+CD19+ cells into WT 

recipients (Figure 6.3A). Total hROR1+CD5+CD19+ numbers were calculated by hemocytometer 

trypan blue counts and percentage of hROR1 positive cells through flow cytometry (Figure 6.3B). 

After 24hrs, CLL cells were found within the spleen but were not detected in the peritoneal 

cavity until day 6 and bone marrow, liver, and lymph nodes until day 30 or longer (Figure 6.3C). 

Spleen histology at each time point indicates an expansion of the white pulp and loss of 

follicular structure as time progresses post- adoptive transfer (Figure 6.3D). 

We also performed xenograft studies with primary human peripheral blood samples 

injected into NSG mice. After 5 days of growth, we were able to detect human CLL cells in the 

peripheral blood and spleen of NSG mice (Figure 6.4A). The spleen contained the greatest 

number of human CLL cells (p#11: 3.1x105; p#14: 3.3x105) further confirming that the adoptively 

transferred cells home to the spleen for proliferation and survival (Figure 6.4B).   

 

6b) Splenectomy delays CLL development  

Results indicate that the spleen is the primary site of CLL growth in the Eμ-Tcl1 de novo 

and adoptive transfer models. To further confirm that this site is important in the growth and 

development of CLL we surgically removed the spleens of Eμ-Tcl1 mice to measure its 

importance for CLL (Figure 6.5A). Splenectomy of Eμ-Tcl1 mice at both 4mo and 8mo of age 

delayed the development and/or progression of CLL as indicated by peripheral blood 

CD5+CD19+ staining (Figure 6.5B). The overall survival of Eμ-Tcl1 mice splenectomized at both 

ages was significantly increased with a median survival age increasing to 12.06mo compared to 

9.68mo of animals with a spleen (Figure 6.5C, p value = 0.024 determined by Log-Rank test). 
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Breakdown of animal survival that were splenectomized at each age is depicted in Figure 6.5D. 

Mice splenectomized at 4mo had an average median survival age of 12.33mo (p value = 0.068 

Log-Rank test, p=0.0103 Gehan-Breslow-Wilcoxon test) and mice splenecotmized at 8mo 

resulted in a median survival age of 11.81mo (p value = 0.043 Log-Rank test, p = 0.0192 Gehan-

Breslow-Wilcoxon test). We detected CD5+CD19+ cells within different compartments of the 

body including the peripheral blood, peritoneal cavity, bone marrow, lymph nodes, liver, 

thymus, and omental tissue (Figure 6.5E). The majority of the tumor burden in splenectomized 

Eμ-Tcl1 mice was located in the peritoneal cavity and liver (Figure 6.5F). 

Animals were euthanized when their body condition score diminished or showed 

elevated CD5+CD19+ peripheral blood staining. A majority of the splenectomized mice still 

showed signs of CLL with positive staining in the blood and other tissues at the time of sacrifice. 

However, there were some specific cases (6/18) where the splenectomized mice did not develop 

CLL (absence of detectable numbers of CD5+CD19+ cells) suggesting that splenectomy 

potentially cured the disease (Table 6.1). These mice developed poor body condition, 

presumably due to secondary effects of splenectomy (bowel obstruction etc.). Because some 

mice still developed CLL, splenectomy does not cure, but does delay the progression. We also 

tested the effect of removing the spleen in the adoptive transfer model. We splenectomized six 

recipient mice and after recovery, injected CLL cells intravenously. We monitored CLL 

development through peripheral blood staining over time and found that removal of the spleen 

resulted in a highly significant delay in CLL growth, such that none of the splenectomized mice 

developed disease even at day 200, whereas the eusplenic mice in the cohort developed disease 

by day 25 (Figure 6.6A). Mice were euthanized at day 200 to determine if there was CLL in 

internal organs even though no CLL cells were detected in the blood. An additional experiment 

replicated the results of delayed CLL growth in splenectomized recipients and we were only able 
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to detect a clean CD5+CD19+ stain in 2/10 mice as compared to ≈90% of eusplenic recipients 

that developed disease (Figure 6.6B). We performed additional splenectomy experiments on WT 

mice to determine if spleen removal altered the population of B1 cells without CLL injection. We 

did not observe a change in the total population resident CD5+CD19+ B cells in any tissues.  

 

6c) CLL cells do not require B, T, and NK cells present in the microenvironment 

Splenectomy of both the de novo Eμ-Tcl1 and adoptive transfer models of CLL led to a 

dramatic delay in CLL growth and development. We next tried to determine what cell types 

present in the spleen are supporting the growth of CLL. We utilized the NSG (NOD-scid 

IL2RΥnull) mouse strain that is lacking B, T and NK cells as the adoptive transfer recipients. The 

NSG mice adoptively transferred with Eμ-Tcl1 CLL cells all developed CLL like disease at a slightly 

quicker rate than WT C57BL/6 recipients (Figure 6.7A; p value = 0.026 determined by linear 

regression analysis). This indicates that B, T, and NK cells are not required to support the growth 

of CLL cells, but may suggest the occurrence of an immune response that slows the growth of 

CLL cells in WT mice (Alhakeem, S. 2017 Dissertation). Additionally, we adoptively transferred 

CLL cells into splenectomized NSG mice to determine if the requirement for spleen for CLL 

growth will hold true in the absence of the adaptive immune system. (Figure 6.7B). As in BL/6 

mice splenectomy considerably delayed CLL growth in Spx NSG mice. However, CLL cells grew 

faster in  the splenectomized NSG background compared to the splenectomized WT 

background. CLL cells were isolated consistently from the peritoneal cavity, liver, and peripheral 

blood of splenectomized NSG mice (Figure 6.7C). Two of three mice showed positive staining of 

CLL cells within the bone marrow compartment and lymph node, but were absent from the 

third, though all the mice had CLL cells in the blood, peritoneal cavity and liver. This suggests 
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that the lack of B, T, and NK cells in other organs allowed the growth of CLL cells, suggesting a 

role for adaptive immunity in controlling the spread of disease to other lymphoid organs. 

 

6d) Splenectomy of Par-4-/- mice results in delayed CLL growth 

We have shown that Par-4 is secreted by CLL cells and that the secreted Par-4 is 

effective in inducing apoptosis of other cancer cell lines (Figure 3.4C, 3.4F). We were therefore 

curious to test if Par-4 in the microenvironment played a role in the growth of CLL cells. Par4-/-

Eμ-Tcl1 mice lack Par-4 in CLL cells themselves as well as Par-4 that is sourced from other cell 

types in the microenvironment. As shown in chapter 5, Par4-/-Eμ-Tcl mice still developed CLL but 

at a delayed rate compared to Par4+/+Eμ-Tcl1 mice (Figure 5.3C). Par4-/-Eμ-Tcl1 mice also had an 

improved lifespan compared to Par4+/+Eμ-Tcl1 suggesting that the lack of Par-4 intrinsically 

and/or extracellularly reduced the aggressiveness of the disease.  

We first wanted to determine if Par4+/+Eμ-Tcl1 CLL cells grow at similar rates within the 

Par4-/- background versus C57BL/6 background. Initial experiments were promising showing that 

the lack of Par-4 in recipient mice led to more rapid growth of CLL, but results could not be 

repeated. An average of all three adoptive transfer experiments in Par4 null and WT recipients is 

shown in Figure 6.8A. There was no significant difference in the growth rate of CLL cells between 

the two recipient backgrounds (p value = 0.3441). Next we transferred the Par4-/-Eμ-Tcl1 cells 

into WT and Par4-/- animals and measured their expansion overtime, allowing us to see if Par-4 

in the microenvironment affected the growth rate of CLL cells lacking endogenous Par-4. We did 

not observe a change in the rate of CLL growth between the Par-4 null and WT recipients (Figure 

6.8B). There is variability in the growth rate of CLL samples derived from de novo mouse models 

that may be contributing to this result, further experiments using different Par4-/-Eμ-Tcl1 CLL 
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samples are required to confirm these results as these particular primary CLL cells could have 

been more aggressive than others.   

Due to the significant difference in CLL development between the Par4-/-Eμ-Tcl1 and 

Par4+/+Eμ-Tcl1 mice, we further investigated the effect of Par-4 on CLL growth. Since elimination 

of the primary site of CLL growth with splenectomy results in delayed CLL development, we 

splenectomized Par4-/- mice to see if the lack of spleen and Par-4 may contribute to changes in 

CLL growth. Interestingly, we find that absence of the spleen in the Par-4 null background allows 

for faster growth of CLL cells in the Spx environment (Figure 6.9A). Repeated experiments found 

that the lack of Par-4 in splenectomized animals results in CLL growth in 50% of recipients, 

whereas only 20% of Par-4+/+ Spx mice develop CLL (Figure 6.9B). This result suggests that Par-4 

present in the WT splenectomized animals is preventing the growth of CLL in other tissue 

microenvironments. Further studies must be completed to determine how Par-4 is preventing 

growth, but appears that it may be acting as a tumor suppressor in the secondary CLL 

microenvironments.  
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Figure 6.1: Spleen is the primary site of CLL growth in CLL in the EµTcl1 mouse model 

A) Spleen volumes were measured through ultrasound imaging of Eμ-Tcl1 mice at different ages. 

Each point represents an average of three spleens. Wildtype 3mo C57BL/6 mice have a spleen 

size of 96.6mm3. B) Representative ultrasound images of Eμ-Tcl1 mouse spleens at each age.  C) 

Percentage of peripheral blood and spleen CD5+CD19+ cells in Eμ-Tcl1 mice at the indicated 

ages. Values represent mean + SD of three mice, p = 0.567 determined by 2 way ANOVA 

comparing the spleen and peripheral blood at different ages.  
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Figure 6.2 Growth of CLL in spleen in the adoptive transfer model 

A) Scheme of adoptive transfer for CLL development. 10x106 Emu-Tcl1 CLL cells were 

injected into eusplenic or splenctomized C57BL/6 mice. B) Ultrasound imaging of spleen in an 

adoptive transfer recipient after CLL injection at different times after CLL injection. Splenic 

volumes are calculated after 3-D imaging and trace modeling using the Vevo 2100 ultrasound 

system and software (Right). C) Comparison of peripheral blood CD5+CD19+ staining and spleen 

volume in the adoptive transfer model. Average values of two mice are shown for each group 

except the splenic volume of the PBS injection represents one mouse. D) 10x106 CLL cells were 

injected intravenously (IV, n=1), intraperitoneal (IP, n=2), and subcutaneously (SQ, n=3). CLL 

growth was monitored by submandibular cheek bleeding and flow cytometry analysis of 

CD45+CD5+CD19+ staining. Mean + SD  values are graphed 
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Figure 6.3 Injection of hROR1+CLL cells to monitor localization of CLL in the adoptive transfer 

model 

A) Scheme of the experiment. C57BL/6.hROR1+ve CLL cells (10x106) were injected intravenously 

into C57BL/6 recipients. Three mice per group with an additional noninjected WT mouse were 

euthanized at each time point to detect CLL in different lymphoid organs. B) Total number of 

hROR1+CD5+CD19+ cells detected by FACs analysis in each tissue at different times after CLL 

transfer are shown. C) Total number of CLL cells in each tissue at day 30 post injection. D) H&E 

staining of spleen tissues at each time point of euthanasia. All image magnifications were at 10x.  
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6.4 Human xenograft in NSG mice  

A) 20x106 human peripheral blood CLL cells (p#11 and p#14) were injected into two recipient 

NSG mice. After 5 days of growth, tissues were collected and stained for human CD45+ cells. The 

numbers refer to individual patients. Numbers 226 to 230 refer to individual NSG mouse 

recipients. B) Total numbers of viable cells were calculated by hemocytometer counts and the 

percentage of human CD45+ cells were used to calculate the total number of cells present in the 

spleen (top) and bone marrow (bottom).  
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Figure 6.5 Splenectomy delays the development and growth of CLL 

A) Schematic diagram of the effect of splenectomy on CLL development in the Eμ-Tcl1 mouse 

model. B) Percentage of CD45+CD5+CD19+ cells in the peripheral blood of Eμ-Tcl1 CLL cells over 

time with and without splenectomy. Left: animals splenectomized at 4mo, Right: animals 

splenectomized at 8mo. Values represent mean + SE . SpX n=9, Eusplenic n=13C) Overall survival 

of Eμ-Tcl1 mice with (n=13) and without spleen (n=18). P value = 0.02 determined by Log-Rank 

test. D) Breakdown of overall survival of animals splenectomized at 4mo (left) and 8mo (right) to 

Eμ-Tcl1 mice with spleens. Nine animals in each age group are included compared to 13 animals 

with spleen. 4mo p value = 0.06, 8mo p value = 0.043 determined by Log-Rank test. E) 

CD45+CD5+CD19+ cells within the tissues of a representative splenectomized Eμ-Tcl1 mouse. F) 

Tumor burden of CLL cells within different tissues of a representative splenectomized mouse.  
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Table 7: Summary of splenectomized Eμ-Tcl1 mice. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

153 
 



 
 

 

 

 

 

Figure 6.6 Splenectomy in the adoptive transfer model results in delayed CLL growth 

A) Peripheral blood was monitored for CD5+CD19+ cells at various times after injection of 

10x106 CLL cells in 6 recipient splenectomized mice and two eusplenic mice. B) Combination of 

two experiments showing endpoint CLL cells in the peripheral blood of splenectomized adoptive 

transfer recipient mice and WT with spleens.  All recipients were euthanized at day 125 or 

earlier when CLL developed.  
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Figure 6.7 CLL cells do not require B, T, or NK cells in the microenvironment niche 

A) 5.0x106 Eμ-Tcl1 CLL cells were adoptively transferred into BL/6 or NSGS mice (n=4 

each) and the recipients were monitored for CD5+CD19+ cells in the blood at various times after 

CLL cell injection. The differences in the slopes of two lines of CLL kinetics in the two groups of 

recipients are statistically significant (p value= 0.026 as determined by linear regression 

analysis). B) Experiment described in panel A is repeated with Spx BL/6 and NSGS (figure legend 

says NSGS) mice. C) Tissues from three Spx NSG mice were collected once CLL was detected in 

the blood. Values represent the % of CD5+CD19+ cells gated on CD45+ in the peripheral blood, 

peritoneal cavity, bone marrow, lymph node, and liver. Each bar represents one mouse.   
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Figure 6.8 Adoptive transfer of CLL cells into Par4-/- vs Par4+/+ recipient mice 

A) 10x106 Par4+/+EμTcl1 CLL cells were injected (i.v.) into WT BL/6 and BL/6.Par4-/- 

recipients. Values represent mean + SEM of results from three experiments with a total of n=12 

recipients per group. P value = 0.3441 determined by linear regression analysis. B) Par4-/-EμTcl1 

CLL cells (10x106) were adoptively transferred (i.v. route) into WT and Par4-/- recipients.  n= 

5/group. P value = 0.79 determined by linear regression analysis. Graphs show the change in % 

CD45+CD5+CD19+ cells in blood as a function of time. 

 

 

 

 

 

 

 

 

 

 

 

158 
 



 
 

 

 

 

 

 

 

 

0 50 100 150
0

20

40

60

80

Days Post Injection

%
  C

D
45

+C
D

5+
C

D
19

+ 
 C

el
ls

Par4-/- Spx
WT Spx

Par4-/- SpX WT SpX
0

20

40

60

80

Death or 125 days

%
  C

D
45

+C
D

5+
C

D
19

+ 
 C

el
ls Par4-/- SpX

WT SpX

Figure 6.9A 

Figure 6.9B 

159 
 



 
 

 

Figure 6.9 CLL develops faster in splenectomized Par-4-/- recipients  

Par4+/+EμTcl1 CLL cells (7.8x106) were transferred into splenectomized Par4-/- and WT recipients 

via the i.v. route. 3/6 of Par-4-/- splenectomized animals, but only 1/6 WT SpX mice developed 

CLL 70 days after transfer. B) Endpoint percent CD5+CD19+ cells in peripheral blood of all 

adoptive transfer studies to Par-4-/- and WT splenectomized recipients. 50% of splenectomized 

Par-4-/- recipients developed CLL compared to 20% of WT splenectomized recipients.  
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Summary 

 Defining the CLL microenvironment is critical in order to understand how leukemic cells 

evade apoptosis and continue to proliferate. The spontaneous apoptosis of primary CLL cells 

observed in tissue culture provides evidence for the necessity of supportive stromal cells and 

other factors required to promote survival. Due to the difficulty in culturing CLL cells, mouse 

models have proven to be an excellent tool to study the growth regulatory mechanisms of CLL. 

We and others have shown that the Eμ-Tcl1 mouse model develops CLL-like disease 

characterized by an accumulation of CD5+CD19+ lymphocytes in secondary lymphoid organs, 

including the spleen as it progresses with age [144, 211]. The expansion of leukemic cells is 

consistently reproduced in the adoptive transfer model which we have now characterized by 

ultrasound imaging. CLL cells are first detected within the spleen and not in other lymphoid 

tissues or liver until later time points after adoptive transfer. Utilizing the human ROR1-

expressing CLL cells, we confirmed that the spleen is the initial site for CLL homing after transfer. 

This phenomenon is also not dependent on the route of injection as studies in the laboratory 

have found that CLL cells are prominent in the spleen of recipient mice after intravenous, 

intraperitoneal, and subcutaneous injections of mouse CLL cells. This observation is also made 

when transferring primary human peripheral blood cells into NSG mice. Five days after transfer, 

human cells are detected primarily within the spleen. 

 Splenectomy of both the de novo Eμ-Tcl1 and adoptive transfer recipients dramatically 

delayed the development of CLL. In healthy hosts, the spleen stores more than a quarter of the 

entire lymphocyte population and can expand to hold more red blood cells or WBCs when 

needed during an immune response. The spleen’s ability to expand contributes to the gross 

pathology that is observed in mouse models. Therefore, removal of the spleen initially relieves 

the animal of the bulk of the tumor load. The surprising finding in the de novo Eμ-Tcl1 model 
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after splenectomy is that some mice never developed CLL and were essentially cured of 

leukemia. This was not true for all cases, but further studies to determine why CLL progression 

occurs in some, but not all mice after splenectomy would be of interest.  

 Initial removal of the spleen before adoptive transfer of CLL cells dramatically prevents 

CLL growth in C57Bl/6 WT mice. This is thought to be due to the loss of the primary site of 

growth and CLL cells cannot establish another site for proliferation. To further support our 

observations, it would be of interest to adoptively transfer CLL cells to recipient mice and to 

perform splenectomy after CLL cells are established in the spleen for 2-3 days. This would more 

closely represent what is seen in many patients that are likely to have CLL in  the spleen before 

disease is detected in peripheral blood.  

 CLL growth was detected in 50% of splenectomized Par-4 deficient animals as compared 

to 20% of CLL growth observed in splenectomized C57Bl/6 animals. This is a surprising finding as 

our preceding studies have indicated that intrinsic Par-4 does not act as a tumor suppressor in 

the context of CLL. The lack of Par-4 in secondary sites of proliferation allows for the growth of 

CLL which suggests that intrinsic and extracellular Par-4 may play different roles in CLL. The 

studies presented here investigating the role of Par-4 in the microenvironment are preliminary 

and primarily observational. Studies to define the mechanism by which Par-4 prevents CLL 

growth in sites other than the spleen are underway.  
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CHAPTER 7 

Discussion 

Par-4 is a well-known tumor suppressor that is down regulated in several cancers and 

can selectively induce and sensitize cancer cells to apoptosis[267]. This quality has made Par-4 

an attractive therapeutic target in a variety of cancers, yet there are very few studies 

investigating its regulation. However, there are several studies that have investigated Par-4 

expression in CLL. Human peripheral blood CLL samples express Par-4 but these studies did not 

confirm if it is functional. Chow et al. suggested that Par-4 could be responsible for a patient’s 

ability to respond to imatinib treatment but did not confirm if Par-4 was functionally inducing 

apoptosis of neoplastic cells after treatment [202]. Other studies indicate that Par-4’s 

interactions with other proteins such as Bcl-2 is not consistent in CLL as it is in solid tumors [190, 

203]. These results suggest that Par-4 is regulated differently in CLL than what is currently 

known from other tumor studies. This proposed difference could potentially contribute to one 

of the many defects in the apoptotic pathway that is found to characterize CLL. In this study, I 

originally aimed to define the tumor suppressive role of Par-4 in CLL, but made an unexpected 

and exciting discovery that intrinsic Par-4 rather promotes CLL growth. My studies found that 

BCR signaling pathway plays a surprising role in regulating Par-4 expression in CLL cells. I have 

shown that Par-4 secreted from CLL cells is functional in inducing apoptosis of other cancer cells 

leading to question why a pro-survival pathway is regulating the expression of a pro-apoptotic 

factor. My studies knocking down intrinsic Par-4 expression in CLL cells suggest Par-4 has a novel 

role in regulating cell growth mechanisms that include induction of p21 expression. Additionally, 

I found that Par-4 in the secondary CLL microenvironments may act to prevent the growth of 

CLL. These findings imply that Par-4 has pleiotropic roles within the context of CLL making it an 

interesting protein to investigate. 
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 In this thesis I characterized the expression of Par-4 in CLL. This is the first investigation 

of the role of Par-4 in CLL using the Eμ-Tcl1 mouse model to compare levels of expression in 

malignant CLL cells against normal B1a cells. I have identified a novel regulation of Par-4 through 

the BCR signaling pathway that was previously unknown. I have also confirmed much of our 

findings in the mouse model with primary human CLL samples allowing my results to be 

translated to patients.  

7.1 Increased expression of Par-4 in CLL and novel regulation through BCR signaling 

Both mouse Eμ-Tcl1 CLL cells and primary human CLL cells express high levels of Par-4 

compared to normal B cell subsets and whole peripheral blood samples. Increased expression 

levels led to concerns if Par-4 expressed in CLL cells was mutated, but I confirmed that Par-4 was 

found in both the cytoplasm and the nucleus of CLL cells and that secreted Par-4 functionally 

induced apoptosis of other cancer cell lines.  Additionally, knockdown studies of Par-4 in the 

Mec-1 CLL cell line confirmed that Par-4 was functionally interacting with well-defined targets 

such as activated AKT and regulated Bcl2 expression [178, 193]. This was an interesting finding 

since Par-4 knockdown cells were growing more slowly in culture than the control shRNA 

infected cells leading me to hypothesize about how Par-4 may support growth in CLL. Previous 

studies in CLL could not replicate the inverse relationship between Par-4 and Bcl2 that have 

initially been proposed in transformed fibroblasts and PC-3 cells [190, 191]. More specifically, 

one study found a positive correlation between expression of Par-4 and Bcl-2 in CLL patient 

samples (R=0.7) [203]. Cheema and colleagues discovered that Par-4, along with WT-1 (Wilm’s 

tumor suppressor-1) binds to the Bcl-2 promoter to prevent its expression and pro-survival 

activity [268]. Ectopic expression of Par-4 in androgen-independent prostate cell lines resulted 

in decreased Bcl-2 protein and transcript levels along with an increase in WT-1 expression. Par-4 

has previously been shown to interact with the WT-1 promoter [162]. WT-1 is an interesting 

164 
 



 
 

protein as it has been classified as both a tumor suppressor and oncogene [269]. WT-1 is found 

to be required for normal development but when mutated, is associated with development of 

kidney tumors and urogenital disease. Conversely, high WT-1 expression has been found in 

nearly 74% of AML and 66% of ALL patients and is associated with a worse prognosis and poor 

response to therapy. Cosialls and colleagues concluded that the WT-1 promoter region is 

silenced by hypermethylation in 78.4% of CLL cases [270]. Consistent with this, another study 

screening for tumor associated antigens in CLL did not detect WT-1 mRNA in 43 human CLL 

cases [271]. The lack of WT-1 expression detected in CLL cases could be responsible for the 

discrepancy of the Par-4-Bcl-2 relationship in human CLL cases. Without the co-interaction of 

WT-1 in CLL, Par-4 may not be able to downregulate Bcl-2 expression as shown in studies by 

Boehrer and Borjarska-Junak [190, 203]. With those points in mind, I still observed an increase in 

Bcl-2 expression in Par-4 shRNA mediated knockdown in Mec-1 cells (Figure 5.1B). It would be of 

interest to determine the status of WT-1 in the Mec-1 cell line to determine if the requirement 

of WT-1 is essential for Bcl-2 regulation by Par-4 in CLL cells. We are currently investigating if 

Bcl-2 expression is changed in the Par4-/-Eμ-Tcl1 versus Par4+/+Eμ-Tcl1 cells to be certain that the 

inverse expression is not specific to Mec-1 cells.  

We are currently sequencing Par-4 to confirm that it is not mutated in CLL. As noted 

previously, our studies indicate that Par-4 is functional by its ability to localize within the 

cytoplasm and nucleus. Detection of phosphorylation at Thr155 (rat) or Thr163 (human) would 

confirm that the PKA phosphorylation site is intact which is required for Par-4 mediated 

apoptosis [169].  The Par-4 nuclear location sequence 2 (NLS2) enables Par-4 to translocate to 

the nucleus, but NF-κB inhibition is only observed after Thr163 phosphorylation. PKA is known 

to be active in CLL cells and it would be ideal to determine that the threonine site is still intact in 

CLL Par-4 [272].  
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Additionally, I have utilized the online database CBioPortal for cancer genomics to 

investigate if there are known mutations of the Par-4 gene in banked CLL patient samples. 

CBioPortal provides exploration of multi-dimensional cancer genomic data sets to determine 

mutation status of particular genes within individual patients [273, 274]. This program classifies 

a gene alteration in a patient if it is mutated, deleted, amplified, or if its expression deviates 

from the user-defined normal threshold [273].  I analyzed the status of the PAWR gene within 

two available data sets: Chronic Lymphocytic Leukemia, Broad Cell 2013 that consisted of 160 

samples and IUOPA Nature 2015 consisting of 506 samples [275, 276]. No PAWR gene 

alterations were detected in these two studies. I confirmed that the program could indeed 

identify PAWR gene alterations in known tumor models by investigating its status in the Pan-

Lung Cancer TCGA Nature Genetics 2016 study comprised of 1144 samples which indicated a 

combination of mutations, deletions, and amplifications of PAWR [277]. This brief analysis 

suggests that the PAWR gene is currently not found to be mutated in human CLL patients but 

our current studies are will further confirm this conclusion.  

It is well accepted that CLL cells contain activated Akt which is pivotal in maintaining cell 

survival [278]. Akt is also known to phosphorylate Par-4 at Ser249 (rat)/ Ser230 (human) that 

prevents nuclear translocation and Par-4 mediated apoptosis [170]. We do observe activated 

levels of Akt in primary mouse Eμ-Tcl1 CLL cells consistent with what has been published 

previously [228]. Tcl1 is a known co-activator of Akt and is a contributing factor in Akt activity in 

the Eμ-Tcl1 mouse model [217]. Tcl1 has been found to interact with Akt through the pleckstrin 

homology domain of Akt which alters the cellular localization of the kinase. Tcl1 helps facilitate 

Akt phosphorylation at both Thr308 and Ser473 sites by translocating it to the cell membrane 

for PI3K signaling [279]. Transfection of cells with Akt and Tcl1 also results in Akt translocation to 

the nucleus [217]. Akt nuclear localization has recently been described to inhibit chromatin 
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condensation, regulate cell cycle progression, cell survival and double stranded DNA break 

repair [280]. We observed elevated levels of Tcl1 expression in the mouse Eμ-Tcl1 CLL cells and 

activated levels of Akt suggesting that this may be another level of regulation of Par-4. As 

mentioned earlier, Akt and Par-4 act on each other to regulate their functions in many different 

solid tumor models. We have not investigated the interaction of Akt and Par-4 in the Eμ-Tcl1 

mouse, but because of the interactions described with Tcl1-Akt and Akt-Par-4, it is possible that 

Par-4 could be regulated by this pathway as well. We do see Par-4 is within the nucleus of CLL 

cells, but we do not know the mechanism of action. According to Pekarsky and colleagues, Tcl1 

complexes with Akt to translocate to the nucleus and one possibility is that Par-4 could be found 

within this complex as well. Immunoprecipitation studies could determine if all three of these 

proteins are interacting. CLL survival does not appear to depend on Par-4 nuclear location, 

suggesting that Par-4 may not be inhibiting NF-κB. A tripartite complex of Tcl1-Akt-Par-4 may 

prevent Par-4 mediated NF-κB inhibition. However, this hypothesis is not supported by the 

observation that Mec-1 cells do not express high levels of Tcl1 and neither does every human 

CLL clone, despite increased expression of Par-4.  

The Tcl1 oncogene has been found to interact directly with de novo DNA 

methyltransferases DNMT3a and DNMT3b in CLL [281]. DNA methyltransferases are enzymes 

that methylate CpG islands that result in silencing of a target gene. Some hematological cancers 

have mutations that inactivate DNA methyltransferases leading to over expression of driver 

genes that promote disease [282]. Studies utilizing the Eμ-Tcl1 mouse found a two to four fold 

increase in hypomethylated CpG islands and promoter regions  in B cells expressing Tcl1 

compared to WT mouse B cells [281]. These results suggest that overexpression of Tcl1 blocks 

DNMT3a enzyme activity and therefore promotes expression of other genes. Interestingly, Par-4 

promoter methylation and silencing has been detected in 30% of endometrial cancers [283]. 
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Other studies have found Par-4 promoter hypermethylation in Ras-tranformed cells which is 

attributed to an upregulation in DNMT3a expression and activity [284]. It is possible that the 

Par-4 upregulation that I observed in Eμ-Tcl1 cells is due to the lack of DNMT3a activity. I do not 

have consistent results suggesting the Tcl1 is regulated through BCR signaling so it is not likely 

that the promoter hypomethylation observed in Eμ-Tcl1 CLL cells is due to BCR signaling 

regulation. It would be interesting to first confirm if Par-4 promoter is regulated by DNMT3a 

mehthylation in CLL and then to measure protein levels in Tcl1+ and Tcl1- CLL cells to see if there 

is a change in Par-4.  

Immunoblot analysis indicated that Eμ-Tcl1 CLL cells expressed high levels of Par-4 

compared to normal B cell subsets. Normal B1a cells that express CD5+CD19+ markers 

expressed the highest level of Par-4 and had slightly higher basal levels of phosphorylated SFK 

and Lyn compared to B1b and B2 cells, but less than CLL cells. We are the first group to compare 

CLL BCR signaling and Par-4 expression with the correct B cell subset controls. I conclude that 

increased Par-4 levels are not caused by Tcl1 expression as discussed earlier. B1a cells have 

increased Par-4 expression compared to other B cell subsets and also differ in expression of CD5 

uniquely. Is CD5 expression related to Par-4? I did not study this closely but could examine the 

effect of anti-CD5 antibody treatment to CLL cells or siRNA targeting CD5 to determine the 

effect on Par-4 expression. CD5 has been shown to negatively regulate BCR signaling by 

recruiting SHP-1(Src homology 2 containing phosphatase 1) to the BCR signaling complex [75]. 

Similarly in CLL, studies have found that Lyn is able to phosphorylate CD5 leading to the 

recruitment of SHP-1 to inhibit BCR signaling [108]. Lyn is known to be involved in both 

activation and inhibition of B cells. My studies link Lyn expression and Par-4 in CLL and 

regulation of Par-4 expression through CD5 could be a potential mechanism that requires 

further study.  
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Based on my findings and the importance of BCR signaling in the survival of CLL, this was 

a likely pathway to be involved in Par-4 regulation [48, 127, 250]. Inhibitors of kinases involved 

in BCR signaling and shRNA mediated knockdown of Lyn kinase in the Mec-1 cell line as well as 

in the B cell lymphoma line, LY-3 (Figure 4.3D) clearly demonstrate regulation of Par-4 

expression through the BCR signaling pathway. Studies utilizing siRNA targeting CD79a (Igα) 

further confirm that Par-4 expression is regulated by the BCR signaling pathway avoiding the off 

target effects of kinase inhibitors (Figure 4.3G).  

We also investigated if BCR signaling inhibition led to a decrease in Tcl1 oncogene 

expression to determine if it’s down regulation was a contributing factor to CLL cell death. We 

did not observe consistent down regulation of Tcl1 after BCR inhibition until very late time 

points when most of the cells were dead (≥ 48hrs).  Hence it is unlikely that Par-4 down 

regulation involves the effect of BCR signaling on Tcl1 expression. However, as discussed briefly 

in Chapter 4, the delayed downregulation of Par-4 observed after BCR kinase inhibition may 

result from Par-4 being bound in a tripartite complex of proteins. The potential interactions of 

Par-4 and Akt as well as Akt-Tcl1 in primary CLL could create a ternary complex that provides 

stability of protein expression after cytotoxic treatment with BCR inhibitors. 

Immunoprecipitation assays of Par-4 would be required to see if Akt and Tcl1 are both bound to 

further develop this hypothesis. 

When BCR signaling is engaged, Src family and Syk protein kinases are activated which 

triggers activation of complex downstream signaling networks that include phospholipase Cγ to 

PI3-K pathway and Ras-MAPK (ERK) pathway [132]. My finding that targeting ERK1/2 in Eμ-Tcl1 

CLL cells results in a decrease in Par-4 expression further confirms that Par-4 is regulated by 

survival signaling in malignant CLL cells. This is an interesting finding compared to studies 

investigating Par-4 regulation via Ras in fibroblasts where it was shown that Par-4 works to block 
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ERK2 expression in order to prevent oncogenic transformation [181]. In my studies it is 

conceivable that Par-4 is regulated directly by SFKs and/or Akt. Thus, the difference in Par-4/ERK 

regulation in CLL B cells and fibroblasts could be due to tissue specific effects.   

Kline et al. previously reported that c-Src and Par-4 interact independently of Akt1 [285]. 

Treatment of HT29 colon cancer cells with PP2, an SFK inhibitor, and 5-FU (5-fluoruracil) a 

chemotherapeutic agent, led to increased Par-4 activation by preventing the negative regulation 

of Par-4 by Akt1 and 14-3-3σ. Direct inhibition of c-Src reduced interactions of Par-4 with Src 

which was predicted to be through three tyrosine residues on Par-4. This suggests a novel 

regulation of Par-4 in colon cancer cells. Oncogenic SFKs as well as activated Akt are well 

established in CLL, suggesting that these interactions could be responsible for Par-4 regulation 

[109, 278, 286]. Studies to observe the effect of AKT inhibition in CLL on Par-4 expression would 

be of interest to confirm the novel regulation of Par-4 through survival pathways in CLL.  

A recent study investigating the mechanism of Par-4 regulation in pancreatic cancer 

suggests that Par-4 is negatively regulated by TRIM21(Ro52) [287]. TRIM21 is an E3 ubiquitin 

ligase that functions to ubiquitinate protein substrates, targeting them to proteosomal 

degradation. In response to cisplatin treatment, TRIM21 downregulated Par-4 expression in a 

pancreatic cancer cell line. TRIM21has also been identified as a target of autoantibodies in 

Srogren’s Syndrome and Systemic Lupus Erythematous (SLE) where increased levels of TRIM21 

resulted in increased apoptosis of B cells [288]. Of the tripartite motif (TRIM) family members, 

currently TRIM13 (also known as Leu5) has been associated with CLL, as it is contained in the 

chromosome 13q14 region deleted in many CLL cases. Hence it will be interesting to investigate 

TRIM21 expression and the effect of BCR signaling on TRIM21 in CLL [289].  

Another potential mechanism of Par-4 regulation in CLL is through Casein Kinase 2 

(CK2). CK2 is a serine/threonine kinase that has been found to phosphorylate Par-4 at Ser231, 
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which inhibits its pro-apoptotic activity in prostate cancer cells [290]. CK2 has also been found to 

be hyper-activated and overexpressed in CLL cells [291]. Investigating Par-4 phosphorylation at 

Ser231 could also explain why we do not observe the pro-apoptotic actions of intrinsic Par-4.  

7.2 Role of p21 in pro-growth function of Par-4 in CLL 

Knockdown studies targeting Par-4 in CLL generated a novel phenotype of delayed CLL 

growth in vitro and in vivo, which led us to investigate roles of Par-4 other than its tumor 

suppressor function. Because I observed an increase in pro-survival (pAkt) and anti-apoptotic 

factors (Bcl-2), my first hypothesis was cell cycle regulation. I initially looked at cell cycle 

inhibitors and indeed found an increase in p21 expression (Figure 5.2B). I also probed for p27 

expression, and while there may be a slight increase in expression, it is not as significant as for 

p21. Studies in human CLL patient samples have looked for expression of p21 and p27. 80% of 

CLL cases were negative for basal levels of p21 expression while the majority of CLL cases 

expressed high p27 levels [265]. The low levels of p21 in CLL could potentially be due to 

increased levels of Par-4 in CLL. Along with in vitro studies using Par-4 knockdown Mec-1 cells 

we crossed Par-4-/- animals with the de novo Eμ-Tcl1 mouse model of CLL to determine the role 

of Par-4 in the development of CLL in vivo. The Par-4 deficiency delayed CLL development in the 

EµTcl1 mice and also prolonged their survival compared to Par-4+/+ EµTcl1 mice. The Par-4-/- CLL 

cells also exhibited an increase in p21 expression.  

Recently, cyclin dependent kinase inhibitors are being investigated for the treatment of 

leukemia due to their success in solid tumors [292]. Dinaciclib, a CDK1, CDK2, CDK4 and CDK5 

inhibitor, reduced survival of CLL cells by inhibiting key oncogenic pathways vital for CLL survival 

[293]. Our studies identify Par-4 as a factor involved in the cell cycle through connection with 

p21 in CLL cells as reduced expression of Par-4 led to a halt in the G1/S transition of the cell 

cycle and a reciprocal induction of p21 expression. Interestingly, Igawa et al. observed that CLL 

171 
 



 
 

cells in the proliferation centers located in the lymph node highly expressed cyclin D2 which is 

involved in the transition between G0/G1, a stage at which p21 activity is down regulated in 

cycling cells [294, 295]. Studies investigating the interaction of Par-4 and Cyclin D2 are 

warranted to elucidate the potential role that Par-4 is playing in promoting growth of CLL cells. 

P21 expression is regulated by p53 in most cases, although p53 independent p21 expression has 

been observed [296, 297]. Since p53 is mutated in Mec-1 cells, p21 expression in Par-4 

knockdown and knockout cells may be using alternate pathways [298]. 

Another recent study investigated the relationship between Par-4 and p21 after 

inducing ER stress with the treatment of a natural compound derivative 3-AWA (3-Azido 

withaferin A) [299]. Depending on the dose of 3-AWA administered, induction of ER stress in 

prostate and colon cancer cells led to an increase in Par-4 expression and down regulation of 

p21. The authors suggested that the loss of activated Akt allowed for increased Par-4 expression 

which then promoted apoptosis. The reduced expression of p21 after treatment was found to 

be mediated by pro-apoptotic JNK (Jun N-terminal kinase) activation.  JNK has been found to be 

a key player in stress induced cell death in both normal cells and solid tumor cancers [300]. 

Conversely our lab has discovered that JNK is required for survival and proliferation of malignant 

B lymphoma cells suggesting a dual role for the kinase in solid versus hematological cancers 

[301]. The pro-survival role of JNK in B cell lymphoma was further confirmed in two recent 

studies that examined CARD11 and DUSP4 deficiencies in B cell lymphoma [302, 303]. The 

diverse roles that JNK potentially has in CLL versus endothelial based tumors may be 

contributing to the pro-growth function of Par-4 in CLL via p21 suppression. The AKT/Par-

4/JNK/p21 axis defined by Rasool et. al. provides direction to investigate this pathway further in 

CLL due to the pro-growth roles we have found for JNK and Par-4 in B cell malignancies. 
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7.3 Par-4 in the tumor microenvironment 

Introducing the Par-4 knockout allele into Eμ-Tcl1 mice delayed progression of CLL and 

prolonged mouse survival compared to Par-4+/+EµTcl1 mice. Par-4-/-EµTcl1 mice are deficient for 

Par-4 in all tissues, not specifically in B cells (Figure 5.3B). My finding that CLL cells are able to 

secrete functional Par-4 introduces a level of complexity within the in vivo tumor 

microenvironment. I do not know if Par-4 secreted from the CLL cells is manipulating the 

microenvironment to further enhance the growth in Par-4+/+ EµTcl1. In order to test, one could 

treat the Par-4+/+ EµTcl1 mouse with an anti-Par-4 antibody to see if extracellular Par-4 in the 

mouse model is promoting or preventing the growth of CLL. In my splenectomy studies, the lack 

of Par-4 in the secondary tumor microenvironments appears to allow the growth of CLL 

suggesting that the presence of Par-4 is acting to prevent CLL growth in the sites which fits with 

its known tumor suppressor function. But this is only observed in splenectomized mice. This is 

important since I have shown spleen to be the primary niche where the CLL cells grow (Figure 

6.1). While CLL cells do not appear to be sensitive to Par-4 sourced from an autocrine fashion, I 

do not know if Par-4 sourced from other cells results in CLL apoptosis. Studies investigating Eμ-

Tcl1 CLL cells treated with secreted Par-4 from other cancer cell lines or recombinant Par-4 have 

been performed by our collaborators. Results show that human CLL cells are not sensitive to 

recombinant Par-4 mediated apoptosis. Additionally, I observed slightly lower levels of total 

GRP78 expressed in CLL cells compared to other cancer cells. Experiments with antibody 

towards cell surface GRP78 must be performed to confirm that extracellular Par-4 is able to 

functionally bind its receptor and induce apoptosis in the proposed FADD dependent manner.  

Injection of CLL cells into splenectomized C57BL/6 and Par-4 null mice resulted in a 

surprising finding that the lack of Par-4 enhanced the growth of CLL. This is a dramatic difference 

compared to WT mice where very few splenectomized recipients developed disease as opposed 
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to 50% of the Par-4 null mice that develop CLL. It is important to note that of the 

splenectomized Par-4-/- mice that did develop CLL, all recipients were females. This is an 

interesting finding as both female and male mice lacking Par-4 leads to the development of 

endometrial or prostate hyperplasia respectively [172]. 56% of males develop prostate 

hyperplasia while 36% of females develop endometrial tumors, suggesting that Par-4-/- males 

actually have a greater likelihood to develop tumors. Because of the gender difference in 

splenectomized mice, we question if hormone levels play a role in regulating the development 

of CLL. Could elevated testosterone levels in male mice prevent CLL growth in the Par-4-/- 

background? This can be tested by castrating male Par-4-/- mice, followed by splenectomy and 

injection of CLL to see if changes in hormone level result in differential CLL growth rate. Or could 

ovariectomy in female mice lead to reduced development of CLL in splenectomized recipients? 

Interestingly, a 2005 study found the oestradiol injection into mice resulted in decreased Par-4 

levels suggesting that estradiol regulates Par-4 [172]. Additionally estradiol has been found to 

promote NOTCH signaling which can promote VEGF and tumor development [304-306]. The 

elevated levels of estradiol in female mice could be promoting the growth of CLL cells when 

lacking Par-4. CLL is more prevalent in men than women, suggesting a gender bias and it would 

be curious to see if Par-4 is regulating this effect [307]. 

My findings suggest that the spleen is the primary site of growth in the CLL mouse 

model. In the clinic, physicians currently rely primarily on peripheral blood, lymph node and 

bone marrow involvement to evaluate patient status. Because I find that the majority of CLL 

cells are located within the spleen of mice in early stages of disease, physicians could be 

overlooking an initial proliferative setting with important prognostic implications. More 

importantly, if we are able to identify the cell types found within the mouse splenic 

microenvironment that are required for the growth of CLL we could also identify them in the 
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human for potential therapeutic targets. I have established a splenic stromal cell line derived 

from the Eμ-Tcl1 mouse spleen. Preliminary studies suggest that co-culture of splenic stromal 

cells with CLL improves in vitro proliferation of CLL. This new stromal cell line could be of great 

use to help mimic the in vivo tumor microenvironment. These stromal cells are more effective 

than bone marrow stromal cell line or fibroblast cell line. Currently we are making efforts to 

establish a Par4-/- splenic stromal cell line.  

7.4 Summary 

My study of BCR signaling in CLL has provided important insights in CLL growth and led to 

development of new promising therapeutics [37]. Findings from our laboratory suggest that B 

cell lymphomas and other B cell malignancies are reliant on the BCR signaling pathway and 

therefore provides multiple targets for therapy [36]. I have used approved inhibitors to target 

kinases within the BCR pathway to find that BCR signaling regulates Par-4 expression, a well-

defined tumor suppressor. Unlike the down regulation that is observed in many solid tumors 

including prostate, lung, breast, and pancreatic, Par-4 is highly expressed in CLL. This finding 

markedly suggested that Par-4 regulation is altered in CLL and indeed, we find its expression is 

reliant on the BCR survival pathway in CLL. My studies showed that endogenous Par-4 is 

regulating the growth of CLL cells and loss of expression delays CLL development. Upregulated 

p21 expression is likely responsible for reduced growth in Par-4 knockdown cells.  Additionally, I 

find that Par-4 plays a role in secondary microenvironments of CLL by preventing CLL growth in 

splenectomy models (summarized in Figure 7.1). This initial study is the first to closely examine 

Par-4 and its regulation in CLL and its contribution to the complexity of the disease.  
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 Figure 7.1 Summary of the Role of Par-4 in B-cell Chronic Lymphocytic Leukemia 

 

Par-4 has pleotropic roles within CLL. BCR signaling regulates Par-4 expression in CLL. Inhibition 

of BCR signaling results in CLL cell death and therefore prevents growth. Par-4 inhibits the 

expression of p21 which is known to block cell cycle progression. The inhibition of p21 by Par-4 

leads to enhanced cell cycle progression and cell growth. Additionally, Par-4 has been found to 

be secreted from cells. The absence of spleen, the primary microenvironment of CLL, leads to 

reduced CLL growth and development.  

Par-4 has been defined as a tumor suppressor and pro-apoptotic factor in many solid 

tumors but we propose a different role for intrinsic Par-4 in this hematologic disease. This is 

unconventional, but not the first case in which a molecule has variable roles in different 

diseases, especially between solid and hematological-based tumors. As mentioned earlier, JNK 

was defined as a pro-apoptotic factor that is activated in response to UV damage and stress 

leading to apoptosis in fibroblasts, prostate cancer, and neuronal cells [301]. Other studies then 

found that JNK is involved in survival signaling of BCR/ABL transformed leukemic cells leading to 

increased B cell transformation [308]. The dual role in apoptotic and survival signaling makes the 

function of JNK complex and dependent on the cellular context [301]. The additional role of Par-
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4 in CLL also makes it a complex protein and potentially provides another target for CLL-specific 

therapy.  

 Additionally, this study is important as I have identified intrinsic Par-4 as a pro growth 

factor in CLL which could have implications since Par-4 is currently a target of a clinical trial 

[246]. Studies have found that the treatment of normal mouse and human cells with the anti-

malarial drug, chloroquine, induces Par-4 secretion [309]. Induced paracrine secreted Par-4 

triggered apoptosis of cancer cells in a mouse lung tumor model. These results led to a clinical 

trial where patients will receive hydroxychloroquine orally every day after tumor resection for 

90 days. This clinical trial is still in the phase of recruiting patients and we are eager to see the 

promising outcomes of Par-4 secretion for the treatment of solid tumors. I find that loss of Par-4 

in the secondary microenvironments allows for CLL growth which would further support the 

need for the clinical trial to prevent cancer growth. Also, the SAC transgenic animals that over 

express the cancer specific pro-apoptotic domain of Par-4 do not show any signs of developing 

leukemia [310]. Although this study did not quantify levels of the SAC domain in the plasma of 

the animals, it is known that the SAC domain is secreted from normal cells [199]. Because my 

studies prove only intrinsic Par-4 is responsible for promoting cell growth and I do not have 

evidence to suggest that extracellular Par-4 is taken up by CLL cells to further promote 

transformation or growth, I do not think inducing Par-4 secretion in the clinical trial would 

increase that patient’s chance to develop CLL. 

 I find that Par-4 promotes the growth of CLL in the EμTcl1 mouse model and human 

Mec-1 cell line. It would be interesting to identify an inhibitor of Par-4 directly to see if a 

chemical modulator specific to this protein would result in decreased CLL progression in vivo as 

well. BCR inhibition has been proven effective in the treatment of CLL, but combination 

treatment towards other molecules that promote CLL growth could result in an improved 
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response. If inhibitors towards Par-4 could enhance the effectiveness of BCR inhibition, lower 

doses would be necessary and therefore minimize any adverse side effects. Continued work to 

identify other potential targets is critical to help patients fight CLL.  
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