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ABSTRACT OF DISSERTATION 

 

STUDYING VASCULAR MORPHOLOGIES IN THE AGED  HUMAN BRAIN 
USING LARGE AUTOPSY DATASETS 

 

Cerebrovascular disease is a major cause of dementia in elderly individuals, 
especially Black/African Americans. Within my dissertation, we focused on 
two vascular morphologies that affect small vessels: brain arteriolosclerosis 
(B-ASC) and multi-lumen vessels (MLVs). B-ASC is characterized by 
degenerative thickening of the wall of brain arterioles. The risk factors, 
cognitive sequelae, and co-pathologies of B-ASC are not fully understood. To 
address this, we used multimodal data from the National Alzheimer’s 
Coordinating Center, Alzheimer’s Disease Neuroimaging Initiative, and brain-
banked tissue samples from the University of Kentucky Alzheimer’s Disease 
Center (UK-ADC) brain repository. We analyzed two age at death groups 
separately: < 80 years and ≥ 80 years.  Hypertension was a risk factor in the 
< 80 years at death group. In addition, an ABCC9 gene variant (rs704180), 
previously associated with aging-related hippocampal sclerosis, was 
associated with B-ASC in the ≥ 80 years at death group. With respect to 
cognition as determined by test scores, severe B-ASC was associated with 
worse global cognition in both age groups. With brain-banked tissue samples, 
we described B-ASC’s relationship to hippocampal sclerosis of aging (HS-
Aging), a pathology characterized by neuronal cell loss in the hippocampal 
region not due to Alzheimer’s disease. We also studied MLVs, which are 
characterized by multiple small vessel lumens within a single vascular 
(Virchow-Robin) space. Little information exists on the frequency, risk factors, 
and co-pathologies of MLVs. Therefore, we used samples and data from the 
UK-ADC, University of Kentucky pathology department, and University of 
Pittsburgh pathology department to address this information. We only found 
MLV to be correlated with age. Lastly, given the high prevalence of 
cerebrovascular disease and dementia in Black/African Americans, we 
discussed the challenges and considerations for studying Blacks/African 
Americans in these contexts. 

 

KEYWORDS: Neuropathology, Arteriolosclerosis, VCID, Stroke, Race, 
Racism 
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Chapter 1: General Introduction 

Dementia is defined as global cognitive impairment in cognitive domains such as 

memory, learning, language, visuospatial function, executive function, and other 

aspects of cognition that is severe enough to affect daily functioning [1]. The 

World Health Organization estimates that 35.6 million people worldwide are living 

with dementia, with numbers anticipated to triple in 2050 [2]. In Western memory 

clinic- and population-based series, the dementia frequency averages between 8 

– 15.8% with higher prevalence in African Americans compared to White 

Americans [3]. Millions of new cases of dementia are diagnosed every year 

imposing a tremendous burden to families and primary caregivers along with 

financial costs to society [2]. Understanding the pathogenesis of dementia is 

imperative to treating this devastating clinical syndrome. 

Before the advent of clinical-neuropathological correlations from high-

quality clinical/autopsy datasets, it was often presumed that Alzheimer’s disease 

(AD) was a major if not the sole pathology contributing to clinical dementia with 

an increasing prevalence in old age [4].  However, results from clinical-

pathological studies have shown that brains of elderly individuals with dementia 

contain a myriad of other pathologies including cerebrovascular disease, 

hippocampal sclerosis, frontal temporal lobar degeneration (FTLD), dementia 

with Lewy bodies (DLB), primary age-related tauopathy (PART), cerebral age-

related TDP-43 with sclerosis (CARTS) among others [4-9].  Beside AD, 

cerebrovascular disease has been recognized to be the 2nd most common cause 
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of dementia in elderly individuals, responsible for at least 20% of dementia cases 

[2, 10].   

Dementia associated with cerebrovascular disease had been referred to 

as vascular dementia (VaD) [10, 11]. Vascular contributions to cognitive 

impairment and dementia (VCID) are the terms currently used to describe the 

spectrum of severity from clinical prodrome to the full-blown dementia [1, 10-12]. 

VaD is a clinical syndrome that encompasses a heterogeneous group of brain 

diseases in which cognitive impairment is attributable to cerebrovascular 

pathologies [2, 11]. Risk factors for VaD include hypertension, diabetes, and 

hypercholesterolemia [1, 2, 13-15] that can cause brain damage via 

hypoperfusion, neuroinflammation, metabolic dysfunction, blood-brain barrier 

dysfunction, and cerebrovascular hemodynamic dysfunction [1, 16, 17]. As a 

result, the brain damage can clinically present as VCID with underlying 

pathologies that can include cerebral amyloid angiopathies, inflammatory vessel 

diseases, cerebral autosomal dominant arteriopathy with subcortical infarcts 

(CADASIL), and small vessel disease (SVD) [18]. These VCID related 

pathologies can be categorized according to the size of blood vessels that they 

affect within the brain: large vessels (e.g., arteries and veins) and small vessels 

(arterioles, venules and capillaries). SVDs are the most prevalent vascular 

pathologies underlying VCID [2, 3, 10, 12, 18]. 

The brain receives its arterial blood supply from two major sources - the 

internal carotid arteries and the vertebral arteries which supply the anterior and 

posterior circulation respectively [19]. The anterior and posterior vascular inputs 
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are connected within the Circle of Willis at the base of the brain [19]. Above the 

Circle of Willis, the anterior circulation is responsible for supplying the anterior 

and medial parts of the brain including the frontal lobes, temporal cortices, 

parietal cortices, amygdala, and globus pallidus [19]. The posterior circulation is 

responsible for supplying the posterior regions of the brain including the occipital 

lobes and thalamus [19]. The Circle of Willis sends vessels called pial arteries 

that dorsally spread across the surface of the cerebrum within the subarachnoid 

space [19, 20]. Pial arteries send branches called perforating arteries that 

penetrate into the brain parenchyma perpendicular to the cerebral surface [19, 

20]. As perforating arteries travel deeper into the brain parenchyma, their 

morphology changes yielding intracerebral arterioles which feed into capillaries 

and the venous system [20]. [For a visualization, see Iacedola, 2004, Nature 

Reviews Neuroscience]. 

Normally, arteries consist of three distinct layers which include the intima 

(innermost layer), the media (middle layer), and the adventitia (outer-most layer) 

[21]. The intima is composed of a monolayer of endothelial cells on the luminal 

side and elastic fibers on the peripheral side [21]. In addition, collagen and 

proteoglycans make up the extracellular matrix within the intima [21]. The media 

is composed of smooth muscle cells and the adventia with connective tissue and 

fibroblasts [21].  [For a visualization, see Lusis, 2000, Nature]). Eventually, small 

arteries and arterioles will feed capillaries whose vessel walls only consist of a 

monolayer of endothelial cells (reference). Capillaries feed into the venous 
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vessels which also have 3 distinct layers with a smaller media layer and less rigid 

vascular walls on microscopy (reference).  

 SVDs mostly affect the small arteries and arterioles of the brain circulation 

[22]. SVDs include degenerative alterations in the vessel walls which are termed 

arteriolosclerosis (vessel wall thickening), lipohyalinosis (hyaline substance 

deposition), and fibronoid necrosis (loss of vessel wall integrity) [2, 3, 22]. SVDs 

can lead to lacunar infarcts (focal regions of gliosis and cavitation near the basal 

ganglia), microinfarcts (microscopic focal regions gliosis and cavitation), 

hemorrhages (gross brain bleeds), and microbleeds (microscopic brain bleeds) 

which can, individually or more often collectively, damage the brain parenchyma 

leading to neuronal cell loss and impaired connectivity, ultimately culminating in 

clinical disease [3, 10, 18, 23]. Therefore, it is important to fully understand the 

risk factors and cognitive sequelae of SVDs in order to treat and prevent VaD. 

One major focus of this dissertation was to understand the frequency, risk 

factors, and cognitive sequelae of brain arteriolosclerosis (B-ASC). 

 

Brain Arteriolosclerosis (B-ASC) 

B-ASC is a subtype of cerebral SVD characterized by degenerative wall 

thickening of arterioles [24-27]. The pathologic changes of B-ASC include 

hypertrophy and/or death of vascular smooth muscle cells and extracellular 

deposition of elastin and collagen [22, 28-30].  The true prevalence of B-ASC is 

unknown but has been observed in 39-80% of autopsied elderly individuals [24, 

31, 32]. The pathologic changes of B-ASC include hypertrophy and/or death of 
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vascular smooth muscle cells and extracellular deposition of elastin and collagen 

[22, 24, 28, 29]. B-ASC increases in severity with advanced age [33]. B-ASC has 

been observed in basal ganglia and frontal cortical brain regions [25, 34] with 

future investigation needed in other brain regions. Hypertension and diabetes are 

risk factors for arteriolosclerosis (ASC) in the brain and other organs [35-39]. 

However, the relationship between other conventional vascular risk factors (e.g, 

obesity, hypercholesterolemia, smoking) and B-ASC is not fully understood. In 

addition, the relationship between B-ASC and cognition is not well defined [24]. 

As a result, this dissertation sought to test the associations between B-ASC and 

conventional vascular risk factors and cognitive status, using information from the 

National Alzheimer Disease Coordinating Center (NACC) data set. The NACC 

data set contains research subject information collected from 34 past and 

present Alzheimer’s Disease Centers (ADCs) across the United States, 

comprising clinical, genetic, and neuropathological (autopsy) data. [40]. These 

findings are described in Chapter 2 and published in Ighodaro et al, 2017, 

JCBFM. This represents one of the most far-reaching studies of B-ASC to date. 

A second small vessel pathology that was a focus of this dissertation is multi-

lumen vascular profiles (MVPs). 

 

Multi-lumen Vascular Profiles (MVPs) 

Vascular loops, vascular bundles, vascular convolutes, vascular spirals, vascular 

multiplications, and vascular glomerular loop formations are terms that have 

been applied in the literature to describe small blood vessels with multiple 
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lumens enclosed in a single perivascular space [41-45]. Within this dissertation, 

the term multi-lumen vascular profile (MVP) is used to describe a single blood 

vessel consisting of ≥ 3 lumens enclosed in a perivascular space. There are 

other reports of MVPs being seen in the brains of elderly individuals [42, 44]. It 

has been suggested that MVPs arise due to hypoxic/ischemic changes in the 

brain [44, 45]. However, the frequency, vascular risk factors, vascular diseases, 

and co-pathologies have not been systematically investigated. Therefore, one of 

the goals of this dissertation was to study this surprisingly common pathologic 

entity in human brain. To investigate the frequency, risk factors, and co-

pathologies of MVPs, brains of individuals who came to autopsy at the University 

of Kentucky and the University of Pittsburgh were analyzed. The findings are 

described in Chapter 3. 

 Interestingly, both B-ASC and MVP pathologies are associated with age. 

Another pathology that is associated with age and shares a common genetic risk 

factor with B-ASC is a fairly recently described neurodegenerative pathology 

termed hippocampal sclerosis of aging (HS-Aging) [24, 25] . 

 

Intersection of SVDs and Neurodegeneration 

In the elderly population, dementia is commonly due to several pathologies 

concurrently existing with the brain [5, 7, 47]. Mixed pathologies is a term used in 

the literature to describe the overlap of different vascular and/or 

neurodegenerative pathologies within the aging brain [18, 48]. The most 

commonly discussed and observed mixed pathology involves cerebrovascular 
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disease and AD [3, 47]. It has been shown that the co-occurrence of 

cerebrovascular disease lowers the threshold for dementia caused by a single 

neurodegenerative disease process [10, 49, 50]. However, the relationship 

between cerebrovascular disease and other neurodegenerative diseases is not 

fully understood. Some scientists hypothesize that the relationship between 

cerebrovascular diseases is synergistic while others claim it to be additive [18].  

Another goal of this dissertation was to ascertain the upstream 

relationship between two pathologies often in the aging brain: B-ASC and HS-

Aging [25].  

 

Hippocampal Sclerosis of Aging (HS-Aging) 

Hippocampal sclerosis of aging (HS-Aging) is a high-morbidity 

neurodegenerative disease, usually affecting individuals who survive past age 80 

[51-57]. HS-Aging is characterized by cell loss, gliosis, and atrophy in the 

hippocampal formation that is not due to AD-type pathology. A genetic risk factor 

for HS-Aging is the ABCC9 SNP rs704180 [59, 60] which has a gene product 

that is a subunit of ATP-sensitive potassium channels found in vascular smooth 

muscle cells, including arterioles [24, 61]. As part of this dissertation, the early 

stages of HS-Aging are described in chapter 4. 

 With respect to cerebrovascular disease, individuals with HS-Aging have 

worse B-ASC pathology compared to individuals without HS-Aging pathology [24, 

25]. Using digital image methods for analysis of arteriolar morphology, HS-Aging 

cases show larger vessel areas, vessel perimeters, vascular areas, and vessel 
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wall thicknesses compared to non HS-Aging cases [24, 25].  Because of all these 

findings collectively, it was hypothesized that the ABCC9 HS-Aging risk genotype 

is associated with B-ASC in advanced old age, possibly upstream of the risk for 

HS-Aging [24, 57]. Findings and the hypothesized relationship between B-ASC 

and HS-Aging are described in Chapter 2 and Chapter 4 and have now been 

published [24, 57]. 

 To study B-ASC, MVPs, and HS-Aging, tissue samples (when available) 

were investigated along with accompanying clinical and neuropathological 

information (when available) from NACC, the University of Kentucky Alzheimer’s 

Disease Center (UK-ADC), University of Kentucky Pathology Department 

(UKPD), and the University of Pittsburgh Pathology Department (UPPD) to test 

these hypotheses.  

 

Neuropathological Datasets: Challenges to the goal of population-based studies  

The advent of large, high-quality neuropathological datasets (e.g., NACC 

dataset) with longitudinal clinical information have allowed scientists to better 

understand the pathological conditions associated with dementia [5-7, 47, 62-64]. 

A major strength of the NACC data set is that it contains research subject 

information collected from 34 past and present AD Centers (ADCs) across the 

United States, comprising clinical, genetic, and neuropathological (autopsy) data. 

[24, 40]. The NACC provides longitudinal and cross-sectional information 

enabling high-powered clinical-pathological correlation studies [24]. Some 

weaknesses of the NACC data set are that it is not population-based; is better 
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characterized as a clinical series of persons enrolled at ADCs, and in addition, 

carries known biases associated with brain autopsy cohorts [40, 65-67].  As a 

result, NACC participants are predominantly Caucasian, highly educated, and 

are drawn predominantly from dementia clinics [65, 68]. In addition, there is little 

socioeconomic information and small sample sizes of individuals from different 

ethnic/racial groups. Therefore, the generalizability of results from the NACC 

data set is limited. However, there is a need for scientists to study dementia-

causing pathologies in other racial/ethnic groups in order to decrease health 

disparities. Cerebrovascular disease has a higher prevalence in African 

Americans compared to White Americans {Laditka, 2014 #826}. In chapter 5, we 

describe the challenges and considerations for studying African Americans in 

neuropathological datasets given the current low group representation. 

 

Overall Dissertation Goals 

 The over-arching goal of this dissertation is to elucidate frequencies, risk 

factors, co-pathologies, and the cognitive sequelae of two common vascular 

pathologies (B-ASC and MVPs) using large autopsy datasets and brain 

repositories. Major dissertation hypothesis are as follows: 1) B-ASC is associated 

with global cognitive status. 2) B-ASC is associated with conventional vascular 

risk factors. 3) B-ASC is associated with a single-nucleotide polymorphism (HS-

Aging risk factor) in ABCC9. 4) MVPs are associated with conventional vascular 

risk factors. With these hypotheses in mind, it was also important to be aware of 

the strengths and limitations of using current large autopsy datasets in answering 
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these research hypotheses. The following chapters describe in detail my work on 

B-ASC, MVPs, HS-Aging, and strengths/limitations of existing neuropathological 

data sets. 
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Chapter 2: Brain Arteriolosclerosis (B-ASC) 

Introduction 

Cerebrovascular pathologies affecting small arteries and arterioles are common 

findings in the aged brain [28, 30, 69] and are often seen in patients with 

dementia [3, 70-72].  Here, this project focused on brain arteriolosclerosis (B-

ASC), a vascular pathology characterized by degenerative wall thickening of 

arterioles [25-27]. The present study sought to better delineate the risk factors 

and global cognitive status associated with B-ASC pathology among aged 

individuals. 

 Chronic hypertension is associated with ASC pathology in the brain, 

kidney, and other organs [35-37].  Hypertensive animal models have thicker 

cerebral arteriolar walls, larger vessel cross-sectional areas, and smaller inner 

arteriolar diameters compared to control animals [73, 74]. Diabetic patients have 

thicker subcutaneous gluteal arteriolar walls and larger cross sectional areas 

compared to controls [38, 39]. Diabetic animal models have thicker retinal 

capillary walls [75] and renal arteriolar glomerular basement membranes [76] 

compared to controls.  

In addition to clinical risk factors, recent studies suggest that a single 

nucleotide polymorphism (SNP) located in ABCC9, ATP-binding cassette sub-

family C member 9, may be a genetic risk factor for B-ASC pathology in older 

adults. Evidence in support of the link between an ABCC9 SNP and B-ASC 

pathology includes: 1) The rs704180 SNP located in ABCC9 is associated with 
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hippocampal sclerosis of aging (HS-Aging) [59, 60], a neurodegenerative disease 

affecting individuals > 80 years at death [25, 55]. 2) Individuals with HS-Aging 

have worse B-ASC pathology compared to individuals without HS-Aging 

pathology [25]. 3) The gene product of ABCC9 is a subunit of ATP-sensitive 

potassium channels found in vascular smooth muscle cells, including arterioles 

[61]. Thus, by extension, ABCC9 gene variants may constitute a risk factor for B-

ASC pathology in elderly individuals. However, this credible hypothesis has not 

been tested previously.  

As the clinical and genetic risk factors for B-ASC are imperfectly 

understood, so is the cognitive impairment associated with this pathology.  

Studies on the global cognitive status of patients with B-ASC have included the 

analyses of Mini Mental State Examination (MMSE) scores [6], Clinical Dementia 

Rating Scale (CDR) scores [77], and CDR Sum of Boxes (CDRSoB) scores [47].  

The MMSE is an assessment tool used in measuring global cognitive function 

[78], while the CDR is a clinical interview measure of a person’s ability to 

accomplish activities of daily living and day-to day cognition [64, 79]. The 

CDRSoB is derived by summing scores from all six CDR domains [80]. Prior 

analyses of data from 334 elderly individuals did not reveal an association 

between B-ASC pathology and MMSE scores [6]. However, in an autopsy study 

with 52 cases, widespread B-ASC pathology in cases with Alzheimer’s disease 

(AD) was associated with worse global CDR scores [77]. Similarly, in an autopsy 

study using 715 AD cases with CDRSoB information, researchers found that high 

B-ASC severity was associated with worse CDRSoB scores [47]. Conflicting 
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results from these studies may be due to a number of experimental factors 

including small sample size (statistical power), particular cognitive domains 

affected by small blood vessel pathologies, frequent presence of comorbid 

pathologies, and other parameters that vary during the human aging spectrum. 

In order to gain insight into B-ASC risk factors and global cognitive status 

while factoring in other dementia associated pathologies, we analyzed a subset 

of individuals from the NACC data set. Because there is evidence of distinct 

neurodegenerative outcomes and clinical-pathological correlation differences 

between the “younger-old” and “oldest-old” persons [4, 81-86], groups were 

analyzed separately according to ages at death: < 80 years and ≥ 80 years. The 

goals of the study were to determine if autopsy verified B-ASC is associated with 

global cognitive status, to assess the association between vascular risk factors 

and B-ASC pathology, and to determine the relationship between ABCC9 HS-

Aging risk genotype and B-ASC pathology. In order to further test the association 

between the ABCC9 HS-Aging risk genotype and B-ASC pathology, the 

relationship between the ABCC9 HS-Aging risk genotype and cerebral blood flow 

(a possible in vivo manifestation of B-ASC pathology) were examined. Genetic 

and neuroimaging data on a sub-sample of individuals from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) data set were used to test this 

association. 

Methods 

This study used data from the NACC and ADNI data sets. Patient recruitment 

and data collection in the NACC data set have been previously described 
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including details related to Institutional Review Board approvals and patient 

consent [40, 65, 68, 87]. Research using NACC data was approved by the 

University of Washington Human Subjects Division. Patient recruitment, 

neuroimaging acquisition, and data collection on individuals included in the ADNI 

data set have been previously described with approval by local ethics review 

boards at each participating site [88, 89]. 

Study subjects 

The NACC data set contains research subject information collected from 34 past 

and present Alzheimer’s Disease Centers (ADCs) across the United States, 

comprising clinical, genetic, and neuropathological (autopsy) data [40].  More 

detailed information on data collection is available online 

(https://www.alz.washington.edu/WEB/dataforms_main.html). Archival data from 

September 2005 through December 2013 were obtained for this study.  

The initial pulled archival data from the NACC data set comprised 29,483 

cases. Living cases (n = 26,686) and autopsied cases with missing information 

which would preclude making an assessment of B-ASC status (n = 407) were 

excluded from the analysis. For analysis, cases were split into two age at death 

groups: < 80 years (n = 1,008) and ≥ 80 years (n = 1,382).  

The ADNI data set is from a multicenter longitudinal study in the United 

States and Canada, in which subjects with normal cognition, MCI, and AD were 

followed with cognitive testing, neuroimaging techniques, and other biomarkers 

[88]. A convenience sample (n = 15) of rs704180 homozygous (A_A or G_G 

https://www.alz.washington.edu/WEB/dataforms_main.html
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genotype) individuals was used for cerebral blood flow (CBF) analysis. No other 

scans or SNPs were assessed from ADNI. 

 

Cognitive and functional assessment in the NACC data set 

MMSE (0-30; 30 = no global impairment) and CDRSoB (0-18; 0 = no global 

impairment) scores were used as measures of global cognitive status [64, 78, 

79]. Scores from the most recent ADC clinical visit before each individual’s death 

were used (median interval between final visit and death: 0.83 years). 

 

Clinical, neuropathologic, and genetic parameters in the NACC data set 

Clinical data were obtained from each participant’s final ADC clinical visit before 

death. During clinical research visits, medical histories were obtained from 

subjects and/or patient records. The following self-reported vascular risk factors 

and cerebrovascular diseases were used in the analyses: medical histories of 

hypertension, diabetes, hypercholesterolemia, sex, smoking, stroke, and atrial 

fibrillation. Responses were coded initially as unknown, absent, recent/active, or 

remote/inactive, and subsequently, “recent” and “remote” responses were 

combined into one category (e.g.,, history of a condition) for analytical purposes.  

Body mass index (BMI) values were derived from height and weight 

measurements. Pack years were derived from self-reported cigarette packs 

smoked per day and years of smoking.  
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 Neuropathologic details from all cases included Braak staging [90], 

CERAD neuritic plaque densities [91], and other parameters as described in 

detail previously [68]. In the NACC Neuropathology Data Set Coding Guidebook 

version 9.1 (https://www.alz.washington.edu/WEB/forms_np.html), B-ASC was 

described as “hyalinosis of the media and adventitia of small parenchymal and/or 

leptomeningeal vessels.” B-ASC pathology was diagnosed using a semi-

quantitative four-tier categorization system with responses scored to indicate 

“none”, “mild”, “moderate”, or “severe” B-ASC pathology.  In the NACC 

guidebook, neuropathologists were instructed to estimate the overall severity of 

B-ASC pathology. No specific brain region for B-ASC pathological diagnosis was 

mentioned; thus, this diagnostic methodology was left to the discretion of each 

individual neuropathologist and/or research center.  

 Genetic data were obtained and analyzed as described previously [59, 

60]. Briefly, the Alzheimer’s Disease Genetic Consortium (ADGC) accrued 

genetic data from 29 different ADCs, with multiple iterations of SNP data [92-94], 

which were analyzed together with neuropathological and clinical data gathered 

through NACC [66]. The three alleles identified were analyzed according to 

ADGC SNP nomenclature and were GRN.rs5848 (A/G), TMEM106B.rs1990622 

(A/G; note that other reports have used T/C for this allele: the ‘‘A’’ allele is 

analogous to ‘‘T’’ allele in other reports, whereas the ‘‘G’’ allele we report is 

analogous to ‘‘C’’ allele), and ABCC9.rs704180 (A/G). [59, 60]  APOE ɛ4 

genotype information from NACC was also used in the analysis because APOE 

https://www.alz.washington.edu/WEB/forms_np.html
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alleles are known to be associated with cerebral amyloid angiopathy (CAA), 

which could lead to vascular wall distortions [95-97].  

 

Neuroimaging and genetic parameters in ADNI data set 

T1-weighted brain MRI scans were acquired using a sagittal MP-RAGE sequence 

following the ADNI MRI protocol [89, 98]. ASL (arterial spin labeling) images 

were obtained from the ADNI dataset. Data from 15 Caucasian individuals were 

acquired from six different American research centers using a standardized 

pulsed arterial spin labeling (pASL) protocol: Field Strength=3.0 tesla; Flip 

Angle=90.0 degree; Manufacturer=SIEMENS; Matrix X=320.0 pixels; Matrix 

Y=320.0 pixels; Pixel Spacing X=4.0 mm; Pixel Spacing Y=4.0 mm; Pulse 

Sequence=EP; Slice Thickness=4.0 mm; TE=12.0 ms; TR=3400.0 ms. Control 

and label images were subtracted and quantitative CBF (mL/100g/min units) was 

calculated using in-house Matlab software using the following equation [99, 100] 

and then correlated with genotyping: 

CBF =  
 λ ∙  ( SIcontrol  −  SIlabel )  

2 ∙  α  ∙  𝑀𝑀0 ∙ 𝑇𝑇𝑇𝑇1  ∙ exp(− 𝑇𝑇𝑇𝑇2/𝑇𝑇1,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)
 [ml/100g/min )] 

Where λ was the brain/blood partition coefficient in mL/g, SIcontrol and SIlabel were 

the time-averaged signal intensities in the control and label images, respectively, 

T1,blood was the longitudinal relaxation time of blood in seconds, α was the 

labeling efficiency, M0 was the equilibrium brain tissue magnetization, TI1 was 
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post-labeling delay, and  TI2 was the label duration.  SNP rs704180 in ABCC9 

and APOE ε4 status information came from ADNI.  

 

Statistical analyses: 

Exploratory bivariate analyses and regression modeling were used to assess the 

association between clinical vascular risk factors and B-ASC pathology. Initially, 

a Chi-square test, a Mann-Whitney U test, or a Kruskal-Wallis test were used to 

determine possible risk factors for B-ASC severity in the two age at death 

groups. A Chi-square test was applied for categorical variables, whereas a 

Mann-Whitney U test or Kruskal-Wallis test was applied for continuous non-

normally-distributed variables. Subsequently, clinical variables that yielded a P < 

0.05 in these analyses were included as independent variables in an ordinal 

logistic regression to further elucidate the association between clinical variables 

and B-ASC pathology while controlling for confounding effects. The variables in 

this logistic regression model included age at death, sex, hypertension, diabetes, 

smoking pack years, and hypercholesterolemia.  

 Logistic regression modeling was used to determine the association 

between the ABCC9 HS-Aging risk genotype and B-ASC pathology. Age at 

death, sex, hypertension, diabetes, pack years, and hypercholesterolemia were 

used as covariates in the models. Mild, moderate and severe B-ASC pathologies 

were collapsed into one category and treated as a dependent variable in these 

models.  
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A linear regression model was used to assess the association between B-

ASC pathology with MMSE and CDRSoB scores. B-ASC pathology was treated 

as the main independent variable. MMSE or CDRSoB scores were treated as 

dependent variables while adjusting for age at death, sex, Braak neurofibrillary 

tangles (NFT) stage, presence of any microinfarcts, presence of neocortical Lewy 

bodies, and presence of HS-Aging pathology. Adjusted mean MMSE and 

CDRSoB scores derived from the linear regression analyses were reported for 

each B-ASC severity category and compared using the least squares method.   

 In order to assess the relationship between the ABCC9 HS-Aging risk 

genotype and CBF (a possible manifestation of B-ASC pathology), a Welch’s two 

sample t-test was used to compare CBF measurements between individuals with 

the ABCC9 HS-Aging homozygous non-risk and risk genotypes. All statistical 

analyses were performed using IBM SPSS Statistics 22 Properties and PC-SAS 

9.34 (SAS Institute, Inc.; Cary, NC, USA). 

Results  

The inclusion/exclusion criteria applied to individuals used in our analyses from 

the NACC data set are shown in Figure 2.1A. Individuals used in these analyses 

were predominantly (>90%) Caucasian (data not shown), and median year at 

death was 2010 (range: 2005 - 2013). In order to convey examples of blood 

vessel profiles representing the spectrum of B-ASC pathology, images were 

obtained from four human brain sections stained with hematoxylin and eosin 

(H&E) (Figure 2.2). The percentage of individuals with B-ASC pathology trended 

upward with increasing age at death. (Figure 2.1B). When stratifying by age at 
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death, the percentage of individuals with moderate or severe B-ASC pathology 

was higher in older age at death groups (P < 0.0001) (Figure 2.1C).  These 

results indicate that B-ASC is a common pathology in the NACC data set, 

becoming more severe with increasing age at death. 

 As a result of prior studies showing different outcomes and clinical-

pathological correlations in the “oldest old” [81-83], we analyzed the overall 

cohort in two separate age groups. More specifically, the cutoff of 80 years was 

chosen because it has been used before to help highlight neurodegenerative 

disease and/or neuropathologic features that differ – often quite dramatically – 

among the “oldest-old” [53, 84-86, 101, 102].  Furthermore, this cutoff was close 

to the overall cohort mean (80.0 years) and median (82.0 years) age at death.  

Comparing the two age at death groups in the NACC data set, individuals in the 

≥ 80 years age at death group were more often female, hypertensive, and less 

often impaired cognitively when compared to individuals in the < 80 years age at  
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Figure 2.1: Exclusion/inclusion criteria and frequency of brain arteriolosclerosis (B-
ASC) pathology in autopsied cases from the National Alzheimer’s Coordinating 
Center (NACC) data set. (A) Living cases and autopsied cases with missing 
information which would preclude making an assessment of B-ASC status were 
excluded from analysis. (B) shows the percentage of cases with any B-ASC 
pathology (mild, moderate or severe) in the NACC data set. Asterisk (*) indicates 
that 64 cases with age at death < 50 years or > 100 years were not plotted. (C) 
shows a stacked bar graph representing the relationship between B-ASC severity 
and age at death, Chi-square p-value < 0.0001. 
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Figure 2.2: Semi-quantitative severity grading of B-ASC pathology and its non-
association with APOE ε4 allele in the NACC data set.  (A, B, C, D) show 
photomicrographs of hematoxylin and eosin stained blood vessels. (A) shows what 
we assume to be a normal arteriole (green arrow). (B) shows B-ASC severity grade 
1 with relatively mild thickening of vessel wall. (C) shows B-ASC severity grade 2 
with increased thickening of vessel wall. (D) shows B-ASC severity grade 3 with 
prominent thickening of vessel wall and partly occluded vessel lumen. Scale bars = 
100µm. (E) shows the association between APOE ε4 genotypes and any degree of 
CAA (mild, moderate, severe) combining both age at death groups: *Chi-square p-
value < 0.0001 among 1883 individuals for whom APOE genotype data and CAA 
diagnosis were available. Those with ε2/ε3 and ε2/ε2 genotypes were combined into 
one category. There were no statistically significant associations that could be 
determined between B-ASC severity and APOE genotype.  B-ASC = brain 
arteriolosclerosis; CAA = cerebral amyloid angiopathy. 
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death group (Table 2.1).  In addition, individuals in the ≥ 80 years age at death 

group were less likely to show “high” levels of AD pathology, but more likely to 

show B-ASC and HS-Aging pathologies at autopsy, compared to individuals in 

the < 80 years age at death group. These data, in addition to the prior precedents 

in the literature, confirmed that the two age groups show differing clinical risk 

factors, cognitive profiles, and neuropathological autopsy results. 

 

Global cognitive status associated with B-ASC pathology  

To analyze the global cognitive status of individuals with B-ASC pathology, linear 

regression analyses were performed using B-ASC pathology as a predictor, other 

dementia-inducing pathologies as covariates, and MMSE or CDRSoB scores as 

outcome variables. After adjusting for age at death, cortical microinfarcts , AD 

pathology (Braak NFT stage and CERAD neuritic plaque rating), neocortical 

Lewy bodies, and HS-Aging pathologies, we found that B-ASC was a significant 

pathological predictor in the MMSE model using cases from the < 80 years age 

at death group and in the CDRSoB model using cases from both age groups 

(Table 2.2 and 2.3). In the < 80 age at death group, the adjusted MMSE and 

CDRSoB group means for cases with severe B-ASC were worse compared to 

that of cases with none, mild, or moderate B-ASC pathology (Table 2.4). In the ≥ 

80 age at death group, the adjusted MMSE group mean score for cases with 

severe B-ASC was worse compared to that of cases with none or mild B-ASC 

pathology. The adjusted CDRSoB group mean score for cases with severe B-

ASC pathology was worse compared to that of cases with none, mild,  
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In comparing the two age at death groups, P-values for age at death, pack years, 
and BMI are from Mann-Whitney U analyses. P-values for gender, hypertension, 
diabetes, hypercholesterolemia, B-ASC, ABCC9 HS-Aging risk genotype (A_A), and 
APOE ɛ4 allele are determined from Chi-square tests. Percentages were recorded 
after excluding missing cases for each variable. AD = Alzheimer’s Disease; B-ASC = 
brain arteriolosclerosis; BMI = body mass index; CDRSUM = Clinical Dementia 
Rating Sum of Boxes. HS-Aging = Hippocampal sclerosis of aging; MMSE = Mini 
Mental State Exam. 
*NIA/Reagan Institute Criteria, 1997. 
a  Self-reported vascular risk factors.  
b Derived variables from NACC variables. 
c P-value < 0.05. 
d Significant p-value after Bonferroni  correction for multiple correction. 
e Group comparisons exclude cases with missing data. 
 

 

Table 2.1: Age at Death Group Comparison on Clinical, Cognitive, Neuropathologic, and 
Genetic Variables. 
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<80 years ≥80 years <80 years ≥80 years 

Age of death (categorical) 0.002 <0.0001 0.010 <0.0001
B-ASC (categorical) 0.029 0.098 0.010 <0.0001
Gender (male vs. female) 0.99 0.13 0.23 0.37
Microinfarcts (vs. no microinfarcts) 0.23 0.041 0.057 0.82
Braak stage (categorical) <0.0001 <0.0001 <0.0001 <0.0001
Neuritic amyloid plaques CERAD (categorical) 0.19 <0.0001 0.2 <0.0001
HS-Aging (vs. no HS-Aging) 0.0002 <0.0001 <0.0001 <0.0001
Neocortical Lewy bodies (vs. no Lewy bodies) 0.13 0.0017 0.069 0.0017

                                           MMSE Predictors CDRSUM Predictors 

                For the MMSE analysis, 1,649 cases were included in the analysis; excluded 
observations were missing MMSE or predictor variables. Missing MMSE scores were 
due to either verbal refusal, physical, cognitive, or behavioral problems. For the 
CDRSUM analysis, 2,238 cases for were included due to missing predictors. No 
missing values were observed in CDRSUM scores. * indicates P < 0.05. B-ASC = 
brain arteriolosclerosis; CDRSUM = Clinical Dementia Rating Sum of Boxes; CERAD 
= Consortium to Establish a Registry for Alzheimer’s Disease; HS-Aging = 
hippocampal sclerosis of aging; MMSE = Mini Mental State Exam. 

Table 2.2 shows the p-values from a linear regression analysis used to determine B-
ASC global cognitive status using CDRSUM and MMSE scores. 
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Bold values indicates P < 0.05. B-ASC = brain arteriolosclerosis; CERAD = Consortium to Establish a 
Registry for Alzheimer’s Disease; CDRSUM = Clinical Dementia Rating Sum of Boxes; HS-Aging = 
hippocampal sclerosis of aging; MMSE = Mini Mental State Exam. 
  
  

Table 2.3 shows the beta coefficients from MMSE and CDRSUM linear regression models 
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Means are adjusted for age at death (years), sex, Braak & Braak stage, semi-
quantitative ratings of diffuse and neuritic plaques, and dummy indicators for 
microinfarcts, HS-Aging, and Lewy body pathology. CDRSUM = Clinical Dementia 
Rating Sum of Boxes. MMSE = Mini Mental State Exam.  
a p < 0.01 versus none, mild, and moderate.  
b p < 0.05 versus none and mild.  
c p < 0.05 versus mild. 

Table 2.4 Adjusted Final MMSE and CDRSUM Group Means Associated With 
Brain Arteriolosclerosis (B-ASC) Pathology 
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or moderate B-ASC pathology (Table 2.4). In addition, the adjusted CDRSoB 

group mean score for cases with moderate B-ASC pathology was worse 

compared to that of cases with none or mild B-ASC pathology. These results 

indicate that after adjusting for age and comorbid brain pathologies, individuals 

with moderate and severe B-ASC pathology had worse global cognition 

compared to those with none or mild B-ASC pathology. 

 

Clinical vascular risk factors associated with B-ASC pathology 

Bivariate analyses and regression modeling were used to assess the relationship 

between vascular risk factors and B-ASC pathology. Race and ethnicity were not 

adjusted for in the models because of the low sample size within each group 

(data not shown).  In the < 80 age at death group, hypertension, diabetes, and 

hypercholesterolemia were associated with B-ASC severity (Table 2.5). In the ≥ 

80 age at death group, sex and smoking pack years were associated with B-ASC 

severity.  With respect to clinically evident cerebrovascular disease, self-reported 

stroke history was associated with autopsied confirmed B-ASC pathology in the < 

80 years age at death group (P = 0.003) and the ≥ 80 years age at death group 

(P = 0.033) (data not shown). However, there was no association between atrial 

fibrillation and B-ASC pathology (data not shown). Five vascular risk factors, 

along with age at death, were used in an ordinal logistic regression, with B-ASC 

severity as the ordinal outcome measure, to determine risk factors associated 

with B-ASC severity. In the < 80 age at death group, age at death, female sex, 

and hypertension were associated with predicting B-ASC severity. In the ≥ 80
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P-values for pack years and body mass index (BMI) are from Kruskal-Wallis test. P-values for gender, 
hypertension, diabetes, hypercholesterolemia, APOE ε4 allele, and ABCC9 HS-Aging risk genotype are 
determined from Chi-square tests. B-ASC = brain arteriolosclerosis; BMI = body mass index; HS-Aging = 
hippocampal sclerosis of aging. 
a P-values < 0.05. 
b Significant p-values after Bonferroni correction for multiple comparisons. 

Table 2.5 shows preliminary bivariate analyses on potential risk factors for B-ASC severity in “young” and 
“old” elderly individuals. 
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age at death group, only age at death and female sex remained significant 

variables in the model, but not hypertension (Table 2.6). These findings suggest 

that age at death and sex are associated with autopsy-proven B-ASC in both 

younger and older aged individuals. However, hypertension may be a risk factor 

for B-ASC pathology in young elderly individuals, raising the possibility that other 

B-ASC risk factors are important in more advanced old age. 

 

Novel B-ASC genetic risk factor: ABCC9 

Genetic and pathological information from NACC were used to assess the 

association between the ABCC9 HS-Aging risk genotype and B-ASC pathology.  

Of the 2,390 cases included in the analysis, a total of 925 persons had available 

ABCC9 SNP information. Individuals with ABCC9 genotype information were 

slightly more likely to have AD pathology (45% vs 40%) than those lacking 

genotype data (data not shown). Among subjects with available ABCC9 SNP 

data, bivariate analysis showed that the ABCC9 HS-Aging risk genotype was 

associated with the presence of any B-ASC pathology (mild, moderate, and 

severe combined) in the ≥ 80 age at death group (P = 0.032)  (Figure 2.3). By 

contrast, APOE genotype status was strongly associated with CAA pathology as 

expected, but not with B-ASC pathology (Figure 2.2E).   

 To account for relevant covariates, a logistic regression analysis was 

used, treating the presence of B-ASC pathology as a dependent variable, the 
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Table 2.6 Brain Arteriolosclerosis and Vascular Risk Factors. An ordinal 
logistic regression model was applied in both age at death groups using 
vascular risks factors identified from exploratory analysis. In both age at 
death groups, the statistical models included cases with available data on 
all six variables.  
a P-value < 0.05. 
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Figure 2.3: Relationship between any degree of brain arteriolosclerosis (B-ASC) and 
ABCC9 HS-Aging risk genotype. This figure shows the association between ABCC9 HS-
Aging risks genotype (rs704180 A_A, as determined previously (Nelson et al., 2014, 
Nelson et al., 2015) and B-ASC pathology, stratifying by age of death. *Chi-square p-
value = 0.032. 
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ABCC9 HS-Aging risk genotype as an independent variable, and age at death, 

sex, smoking pack years, and history of hypertension, diabetes, and 

hypercholesterolemia as covariates. Results from this model showed that 

individuals in the ≥ 80 years at death group with the ABCC9 HS-Aging risk 

genotype were 1.9 times more likely to have a diagnosis of any B-ASC pathology 

(mild, moderate, or severe) compared to individuals without the ABCC9 HS-

Aging risk genotype (P = 0.04).  There was no association between the ABCC9 

HS-Aging risk genotype and B-ASC pathology in the < 80 age at death group. In 

a sensitivity analysis adjusting for research center identifications as a fixed effect, 

the association between the ABCC9 HS-Aging risk genotype and B-ASC 

pathology was still observed (P = 0.04) in the ≥ 80 years at death group.  

 

ABCC9 and cerebral blood flow 

To provide further testing of the association between the ABCC9 HS-Aging risk 

genotype and B-ASC pathology, we assessed a neuroimaging modality that we 

hypothesize detects a clinical manifestation of B-ASC pathology.  This was 

performed by measuring cerebral blood flow (CBF) in convenience sample of 

individuals (n = 15) from the ADNI data set comparing persons with A_A versus 

G_G ABCC9.rs704180 genotype.  Individuals were on average 72 years of age 

at the time of scan and both groups of rs704180 homozygotes (A_A and G_G) 

were matched for cognitive status, APOE alleles, sex, and age (see Table 2.7 for 

complete data on these parameters).  Individuals with two ABCC9 HS-Aging risk 

alleles (n = 8 with rs704180 A_A) showed lower global CBF 
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ABCC9 genotype status: 0 = G_G, 2 = A_A; APOE: 0 = no APOE ε4 allele present 
(ε3/ε3, ε2/ε3, ε2/ε2), 1 = one APOE ε4 allele present (ε2/ε4, ε3/ε4). None of the 
individuals were homozygous for the APOE ε4 allele. EMCI = early mild cognitive 
impairment, LMCI = late mild cognitive impairment, CBF = cerebral blood flow 
 

Table 2.7: Data on cases from Alzheimer's Disease Neuroimaging Initiative (ADNI) and 
Cerebral Blood Flow Data 
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compared to those with two ABCC9 HS-Aging risk alleles (n = 7 with rs704180 

G_G) (Figure 2.4). The group level relative difference in CBF was 28%, P < 

0.001 (Figure 2.4). 

 

Discussion 

In this study, we describe the global cognitive status, in addition to both clinical 

and genetic putative risk factors of B-ASC, in autopsied cases from the NACC 

data set. The presence of severe B-ASC pathology was associated with global 

cognitive impairment. In addition, a neuroimaging CBF experiment further 

supports the association between the ABCC9 HS-Aging risk genotype and B-

ASC. Potential risk factors for B-ASC included advanced age at death, 

hypertension, and sex.  In younger individuals (age at death < 80 years), 

hypertension was associated with B-ASC. However, this association was not 

observed in older individuals (age at death ≥ 80 years). In the ≥ 80 years age at 

death group, the ABCC9 HS-Aging risk genotype was associated with B-ASC 

pathology. These findings suggest that B-ASC risk factors are age-dependent.  

For example, hypertension appears to have a strong role in younger elderly 

individuals, while at least one genetic factor (ABCC9) may affect the B-ASC risk 

in the “oldest-old”. 

There are potential limitations in this study. The NACC data set is not a 

population-based dataset; it is better characterized as a clinical series of persons  
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Figure 2.4: Relationship Between ABCC9 HS-Aging Risk Genotype and Cerebral Blood Flow. 
Arterial Spin labeling (ASL) neuroimaging indicates that ABCC9 HS-Aging risk genotype is 
associated with decreased cerebral blood flow (CBF), compatible with a novel pathogenetic 
mechanism. (A) shows a representative scan of a 77 year old female with the ABCC9 HS-Aging 
non-risk genotype: rs704180 G_G. (B) shows a representative scan from a 76 year old male 
with rs704180 A_A. (C) Individuals with the rs704180 G_G genotype showed significantly 
higher global CBF compared to those with the rs704180 A_A genotype, group level relative 
difference in CBF is 28%, p < 0.001.  No other scans nor SNPs were analyzed from the ADNI 
data set.  See Table 2.7 for information about APOE alleles, sex, ages and cognitive status of 
subjects.  
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enrolled at ADCs, and in addition, carries known biases associated with autopsy 

cohorts [40, 65-67]. As a result, NACC participants are predominantly Caucasian, 

highly educated, and are drawn predominantly from dementia clinics [65, 68].  

Due to the lack of socioeconomic information and low sampling of individuals 

from different ethnic/racial groups, race and ethnicity were not included in the 

regression models. The data on clinical disease risk factors are largely self-

reported, which can lead to an underestimation of the true disease frequencies 

[103]. In addition, duration of disease (e.g., hypertension) data was not available, 

therefore, it was not adjusted for in the regression models. We found that female 

sex was associated with B-ASC; this finding is potentially confounded by the 

increased longevity of women (age being a risk factor for B-ASC), and many 

other covariates that vary with sex. Although this association survived in a 

regression model that accounted for other factors including age at death, these 

data should be interpreted with caution and future work is merited in this area.  

The NACC Neuropathology Data Set Coding Guidebook does not suggest 

optimal brain sections for B-ASC diagnosis. As a result, B-ASC diagnostic 

methods are inconsistent across ADCs. Although non-NACC guidelines exist for 

B-ASC diagnosis [104], different ADCs have reported using the basal ganglia 

[34], or a “global” [25] criteria in the diagnosis of B-ASC. In a prior, non-ADC 

autopsy study with 135 vascular dementia brains, B-ASC was seen in the frontal 

lobe (83.7% of cases), temporal lobe (80.7% of cases), and basal ganglia (89.6% 

of cases) [105].  Because the diagnosis of B-ASC is presently based on H&E 

staining, other pathologies that lead to a distortion of vascular walls (e.g.,, CAA) 
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may mistakenly be diagnosed as B-ASC, leading to a biased estimation of B-

ASC frequency. However, we saw a strong correlation between APOE status and 

CAA severity, but no correlation between APOE status and B-ASC severity in our 

sample, indicating that these pathologies are at least partly independent. In the 

future, improved methodologies and consensus for B-ASC pathologic diagnosis 

should improve the specificity of B-ASC operationalization. Until then, it can be 

argued that a multi-center approach, combining data from dozens of 

neuropathologists, each applying center-specific diagnostic rubrics, is the best 

way to achieve an outcome that is representative of what any given 

neuropathologist would define as “brain arteriolosclerosis.”  

Despite the challenges inherent to a retrospective cross-sectional study, 

the NACC and ADNI databases provide relatively high-quality contexts to study 

clinical, genetic, neuroimaging, and/or pathological correlations. Detailed 

cognitive assessments, genetic, and neuropathological data have allowed us to 

study associations of B-ASC with cognitive status and both clinical and genetic 

variables. These include both “traditional” B-ASC risk factors (hypertension and 

diabetes), as well as novel genetic aspects (ABCC9 SNP). Mixed pathologies are 

frequently seen in the aged brain [5, 47, 106] and detailed neuropathological data 

from NACC allowed us to adjust for other dementia-inducing pathologies in our 

analyses. B-ASC is a common cerebrovascular pathology that is often seen in a 

complex milieu along with other brain diseases [47] and has been associated 

with motor impairment in advanced old age [32]. In this NACC-ADC data set, the 

frequency of any B-ASC pathology (mild, moderate, and severe) was 75.3%, and 
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became more severe with increasing age at death, which is consistent with 

findings from other autopsy cohorts [31, 33, 107].  

We showed that B-ASC pathology was associated with worse MMSE and 

CDRSoB scores after adjusting for comorbid cognitive impairment-inducing 

pathologies. Prior studies reporting the cognitive profiles of B-ASC are limited, 

mostly focusing on patients diagnosed with vascular dementia (a very 

heterogeneous condition) [3, 71, 72].  Although both age at death groups had 

MMSE and CDRSoB scores indicative of cognitive impairment, individuals in < 

80 age at death group were more globally impaired compared to individuals in 

the ≥ 80 years age at death group. This finding may be attributed to the differing 

frequencies of AD and B-ASC pathologies present in the two age at death 

groups: higher number of individuals with ‘high” AD pathology in < 80 years age 

at death group, and higher number of individuals with moderate or severe B-ASC 

pathology in ≥ 80 years age at death group.  Individuals with AD pathology 

exhibit greater deficits in memory function and faster rates of information decay 

compared to individuals with cerebrovascular disease [108]. Our study provided 

quantitative evidence to support the hypothesis that B-ASC is associated with 

worse cognitive status independent of other brain changes. Furthermore, it 

underscores the importance of identifying risk factors, specific neuroimaging 

abnormalities, and potential treatments of B-ASC, in order to prevent or reverse 

its development later in life. 

 Hypertension is a major risk factor for B-ASC [36, 109]. In an autopsy 

study of 200 cases, Moritz et al observed that B-ASC pathology was more severe 



40 
 

in the hypertensive group compared to the non-hypertensive group [36]. In the < 

80 age at death group, we found hypertension to be associated with B-ASC.  

However, in the ≥ 80 age at death group, there was no association detected 

between B-ASC and hypertension and these results did not change after 

adjusting for anti-hypertensive medication use. Similarly, in an autopsy study 

consisting of 70 cases with B-ASC, 31% of cases were normotensive with 10 of 

these cases having an age at death ≥ 80 years [109]. These results suggest that 

hypertension may not be the only risk factor for B-ASC pathology in older elderly 

individuals. 

We hypothesize that the known strong impact(s) of diabetes on brain 

function may be mediated through a combination of vascular and metabolic 

etiologies [110]. We did not find support for the direct impact of diabetes on B-

ASC, but there was a trend between diabetes and B-ASC in the younger cohort.  

We note that there was not a distinction between Type 1 or Type II diabetes in 

the NACC data set, although the majority is presumed to be Type II diabetes.  

Evidently, beyond the “usual suspects”, there are additional, currently unknown 

risk factors for B-ASC in advanced old age. 

One category of risk factors that may be relevant to B-ASC pathology in 

the “oldest-old” is genetics, and we here provide support for a specific candidate 

risk allele. The ABCC9 SNP rs704180 was previously associated with risk for 

HS-Aging [59, 60], a hippocampal pathology seen in ~10-25% of autopsied 

individuals beyond 80 years at death [51, 55, 56, 111].  Recently, we found an 

association between HS-Aging and B-ASC in three separate cohorts, including 
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the NACC data set [25]. Using digital image methods for analysis of arteriolar 

morphology, we found that HS-Aging cases had larger vessel areas, vessel 

perimeters, vascular areas, and vessel wall thicknesses compared to non HS-

Aging cases [25]. Research from a different cohort, using different 

neuropathological scoring and statistical methods, reported that moderate B-ASC 

(but not severe or mild) was associated with hippocampal atrophy [112].  

Because of all these findings collectively, we hypothesized that the ABCC9 HS-

Aging risk genotype is associated with B-ASC in advanced old age, possibly 

upstream of the risk for HS-Aging (Figure 4D). The present study showed an 

association between the ABCC9 HS-Aging risk genotype and B-ASC pathology 

in cases with an age at death ≥ 80 years. There was no evidence of that 

association among individuals with age at death < 80 years.  

In order to test the association between the ABCC9 HS-Aging risk 

genotype and B-ASC, we analyzed CBF in elderly individuals. The rationale for 

this experiment includes findings that: 1) B-ASC is associated with white matter 

hyperintensities (WMHs) on MRI scans [113-117], and 2) WMHs have been 

correlated with CBF decreases [118-120] and cognitive impairment [121-125]. 

We found the ABCC9 HS-Aging risk genotype to be associated with decreased 

CBF in elderly individuals. These findings support the hypothesis that the ABCC9 

HS-Aging risk genotype promotes B-ASC in the oldest-old with decreases in CBF 

on neuroimaging.  ABCC9 encodes a regulator of ATP-sensitive potassium 

channels that is expressed in vascular smooth muscle cells [126-129]. The 

protein is important for vascular tone regulation and reactivity to metabolic factors 
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and oxidative stress [126, 130-132]. We hypothesize that gene variants in 

ABCC9 could result in chronic perturbations of the vascular wall leading to 

decreases in CBF and B-ASC pathology. Therefore, the brain changes 

associated with ABCC9 gene variants may be part of a “brain wide” disease 

characterized by HS-Aging, TDP-43 pathology, and B-ASC in elderly individuals 

[57, 133]. Further studies are warranted to test this hypothesis. 

Based on the results, it can be concluded that B-ASC is a common 

vascular pathology with a deleterious impact on global cognition in elderly 

individuals.  Risk factors for B-ASC include hypertension, which has long been 

considered to be a putative modifiable factor, as well as advanced age. 

Additional possibly targetable mechanisms involved in the B-ASC pathogenesis 

are mostly unknown, but the results of this study offer candidate pathways 

involving ABCC9 gene products. Furthermore, we provide evidence that ASL 

neuroimaging is a potential candidate biomarker to indicate ABCC9-related 

variations in CBF that could be useful in a clinical setting.  These findings may 

serve to increase awareness about B-ASC, a common cerebrovascular 

pathology associated with cognitive impairment. 

Chapter 2 Dissertation Work Citation: 
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Chapter 3: Multi-lumen Vascular Profiles (MVPs) 

Introduction 

The human cerebral vasculature is responsible for numerous functions such as 

oxygen loading, nutrient transport, and regulation of blood flow [19, 134, 135]. 

With aging and cerebrovascular diseases, the structure of blood vessels can 

exhibit dramatic remodeling [19, 134, 136, 137]. Specific small vessel pathologic 

features include arteriolosclerosis, arteriovenous malformations, and downstream 

changes such as lacunar infarcts, leukoaraiosis, micro-infarcts, and hemorrhagic 

lesions [22, 24, 136, 138, 139]. However, the histomorphologic features related 

to cerebrovascular malfunction are probably more heterogeneous than is widely 

appreciated, and here we focus on a subtype of vascular pathology about which 

there is relatively little information published. 

 In this dissertation, multi-lumen vascular profiles (MVPs) is a term used to 

describe a single blood vessel consisting of ≥ 3 lumens enclosed in a 

perivascular space on a cross-sectional view. The purpose of this study was to 

investigate the frequency, risk factors, and co-pathologies of brain MVPs incases 

from the University of Kentucky and the University of Pittsburgh brain banks. 

 

Methods 

This study used human brain samples and data from the University of Kentucky 

Alzheimer’s Disease Center (UK-ADC), the University of Kentucky Pathology 

Department (UKPD), and the University of Pittsburgh Pathology Department 

(UPPD). Patient recruitment, tissue and data collection in the UK-ADC research 
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study have been previously described including details related to institutional 

review board approval and patient consent. [106, 140]. Human tissue samples 

from UKPD resulted from autopsies that were performed after obtaining informed 

consent using forms approved by the Institutional Review Board of the University 

of Kentucky College of Medicine, Lexington, Kentucky. Human tissue samples 

from UPPD resulted from autopsies that were performed after obtaining informed 

consent using forms approved by the Institutional Review Board of the University 

of Pittsburgh, College of Medicine, Pittsburgh, Pennsylvania. 

 

Study subjects 

Among the UKPD cases, a set of 39 autopsied tissue samples were collected 

from the UKPD brain bank. Cases were selected by the investigators (JHN and 

PTN) to be free of advanced neurodegenerative pathology or any other extensive 

brain disease that contributed to the patient’s death. Hence, exclusion criteria 

included pathologically confirmed brain tumors and pathologically confirmed 

neurodegenerative diseases. 

Among the UK-ADC cases, all autopsied subjects with detailed 

quantitative neuropathological data were initially considered for inclusion 

(n=709). Cases with brain tumors or end-stage neurodegenerative diseases (AD, 

Parkinson’s disease, DLB, prion disease, Picks disease, progressive 

supranuclear palsy (PSP), multiple sclerosis (MS), HS-Aging, cerebral autosomal 

dominant arteriopathy with subcortical infarcts and leukoencephalopathy 

(CADASIL), and/or frontotemporal lobar degeneration (FTLD) were excluded 
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from the study. Cases with cerebrovascular disease and controls (free from brain 

pathology) were included (n=92). The UKPD and UK-ADC cases were combined 

in order to test the association between age at death and MVP density. Next, the 

UK-ADC cases were used to determine the association between conventional 

vascular risk factors, cardiovascular/cerebrovascular diseases, neuropathological 

conditions, and genetic variables with MVP density. 

In two preliminary studies, additional cases from the UK-ADC (n=5) and 

the UPPD (n=4) were used to observe the relationship between severe cerebral 

angiopathy and chronic traumatic encephalopathy respectively with MVP density. 

 

Clinical and neuropathologic parameters in the UK-ADC and UKPD data set 

Information on clinical and neuropathologic parameters used in this study set 

was described previously [24] with some changes related to this specific 

research question.  Clinical data were obtained from each participant’s final UK-

ADC clinical visit before death.  During clinical research visits, medical histories 

were obtained from subjects, caregivers (particularly if the subject was 

cognitively impaired), and/or patient records.  The following self-reported 

vascular risk factors, cerebrovascular and cardiovascular diseases were used in 

the analyses: medical histories of hypertension, diabetes, hypercholesterolemia, 

sex, smoking status, heart attack, congestive heart failure, atrial fibrillation, 

stroke, transient ischemic attack, angina, arrhythmia, and angioplasty.  

Responses were coded initially as unknown, absent, recent/active, or 

remote/inactive, and subsequently, “recent” and “remote” responses were 
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combined into one category (e.g.,, history of a condition) for analytical purposes.  

Body mass index (BMI) values were derived from height and weight 

measurements and dichotomized into the following categories: < 30 BMI and ≥ 

30 BMI.  The only available information from the UKPD data set was age at 

death and sex.  

 

Tissue Processing, Immunohistochemistry, and MVP Calculation 

To visualize MVPs, brain sections were stained with hematoxylin and eosin 

(H&E), alpha smooth muscle actin (α-SMA) antibody, and CD34 antibody. α-SMA 

is a marker for smooth muscle cells and CD34 is a marker for endothelial cells. 

Brain tissue processing and immunohistochemistry procedures used in the UK-

ADC have been described previously in detail [25, 106, 141]. A similar procedure 

was used in processing UKPD and UPPD tissue samples. Briefly, the brain was 

sectioned during autopsy, fixed in formalin, and processed in paraffin [106]. 

Afterwards, sections from archived paraffin-embedded frontal cortex were cut 

and placed onto glass slides for immunohistochemistry [106]. Frontal neocortex 

(specifically, Brodmann Area 9) was chosen as a convenience sample that 

correlates with a brain area where MVPs were described previously [39]. The 

primary antibodies used during immunohistochemistry were α-SMA (monoclonal 

mouse anti-human 1A4, Dako, 1:2 dilution) and CD34 (monoclonal mouse anti-

human QBEnd 10, Dako, 1:2 dilution). A biotinylated antibody (anti-mouse IgG 

made in horse, Vector Laboratories) was amplified using avidin-biotin substrate 

(ABC solution, Vector Laboratories), followed by color development in 3,3’-
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diaminobenzidine (DAB; Dako). A detailed protocol is shown in Table 3.1. The 

Aperio ScanScope XT digital slide scanner was used to image the entire stained 

slide at 40X magnification to create a single high-resolution digital image [106].  

The CD34 primary antibody was chosen for calculating MVP density since 

it appears to label a larger proportion of MVPs compared to the α-SMA primary 

antibody. Tissue sections were analyzed blind to the demographics, clinical and 

neuropathological conditions of the corresponding case. First, the entire grey 

matter was outlined and counted manually using the Aperio ScanScope XT 

accompanying image analysis software (ImageScope) from Leica Biosystems.  
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Abbreviations: DH2O = distilled water, ETOH = ethanol, H2O2 = 
hydrogen peroxide, RT = room temperature 

Table 3.1: Immunohistochemistry Staining Protocol for CD34.  
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Afterwards, the observer counted MVPs present within the region. The formula 

used to calculate MVP density is:  

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 # 𝒕𝒕𝒐𝒐 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴
𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝒎𝒎𝒕𝒕𝒕𝒕𝒕𝒕𝒈𝒈𝒈𝒈 𝒕𝒕𝒈𝒈𝒈𝒈𝒕𝒕 (µ𝒎𝒎𝟐𝟐)

∗ 𝟏𝟏𝟏𝟏𝟕𝟕 

 

Brain Tissue Clearing and Imaging 

In a preliminary study, we used a tissue clearing method called SeeDB on one 

case from the UK-ADC cohort that had the highest MVP density. SeeDB involves 

a series of increasing concentrations of fructose to match brain tissue to the 

refractive index of the surrounding medium. The SeeDB method has been 

described previously [142]. Prior to treatment with SeeDB, tissues were 

incubated with fluorescein-conjugated lectin, which fluorescently labeled the 

endothelium of all blood vessels. Next, tissues were imaged using two-photon 

microscopy to capture 3-D images of the vasculature. 

 

Statistical analyses 

Correlations and exploratory bivariate analyses were used to assess the 

association between demographics, clinical vascular risk factors, cerebrovascular 

and cardiovascular diseases with MVP density. Initially, a Spearman’s rho 

correlation was used to determine the association between age at death and 

MVP density using UK-ADC (n=92) and UKPD (n=39) cases. Next, a Mann-

Whitney U (Wilcoxon Rank Sum) test was used to determine possible risk factors 

for MVP pathology using only UK-ADC cases. UKPD cases were excluded from 

the latter analysis due to lack of data available on clinical risk factors of interest. 
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Due to multiple comparisons, a significance threshold level of 0.0002 (17 

comparisons) was used for this study (Bonferroni correction). All statistical 

analyses were performed using IBM SPSS Statistics 22 Properties and PC-SAS 

9.34 (SAS Institute, Inc.; Cary, NC, USA). 

 

Results 

Included individuals from the UK-ADC cohort were predominantly Caucasian 

(data not shown). Race/ethnicity information was not available for cases within 

the UKPD brain repository.  In order to provide representative blood vessel 

profiles representing the variation of MVP pathology, images were obtained from 

four human brain sections stained with either H&E, or antibodies against α-SMA 

or CD34 (Figure 3.1). The quantification method of MVPs in this study is shown 

in Figure 3.2. The overall median age at death for cases used in the study was 

84.0 years with an interquartile range of 34.0 years (Table 3.2). The overall 

percentages of females and males within this study was 52.7% and 47.3% 

respectively (Table 3.2).  Using all 131 cases, there was a significant linear 

correlation between age at death and MVP density, shown in Figure 3.3 

(Spearman’s rho = 0.60; p < 0.0001). In other words, age at death was 

associated with MVP density. 
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Figure 3.1: Multi-lumen vascular profile (MVP) Pathology. Within this study, MVP is 
described as a single blood vessel consisting of ≥ 3 lumens enclosed in a perivascular space 
on a cross-sectional view.  (a,b) Photomicrographs of hematoxylin-and-eosin (H&E) stained 
blood vessels within the grey matter of frontal tissues. (a) Blood vessel shown here can be 
characterized has a normal arteriole (due to rigid circular structure) from a 42 year-old 
female. (b) What we describe as a MVP from a 96 year-old female, with at least 8 lumens 
some of which contain red blood cells. (c,d) Photomicrographs of alpha smooth muscle actin 
(α-SMA) stained MVPs in cross-section. (c) shows a MVP with at least 4 lumens of similar 
size from a 91 year-old female. (d) shows a MVP with at least 13 lumens of varying size from 
a 89 year-old male. (e, f, g) Photomicrographs of CD34 stained MVPs. (e,f) show MVPs with 
at least 10 lumens in cross-section from a 89 year-old male. (g) shows a MVP cut in a 
longitudinal direction from a 91 year-old female. Scale bars: a-f = 50µm, g = 100µm 
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  Figure 3.2: Schematic of MVP quantification. The photograph is of a CD34 stained tissue from the frontal 
cortex (Broadmann area 9) of an 84 year-old female. Using Aperio ScanScope XT digital scanner 
accompanying image analysis software, the grey matter area was outlined (green-black line). Next, the grey 
matter area was manually scanned for MVPs which were marked by a counter (pink crosses). The total # of 
MVPs and the grey matter area for each case were used to calculate an MVP density. Scale bar = 5mm 
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UKPD cohort UK-ADC cohort Overall
Sample size 39 92 131
Demographic variables

Age at death, median (IQR) 38.0 (18.0) 87.0 (11.0) 84.0 (34.0)
Sex (%)
   Male 59.0 42.2 47.3
   Female 41.0 57.6 52.7

Cases from both cohorts were combined for the MVP study in order to test the association 
between age at death and MVP density. 
  
  

Table 3.2: Demographics of cases from the University of Kentucky Pathology Department 
(UKPD) and University of Kentucky Alzheimer's Disease Center (UK-ADC) cohorts 
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Figure 3.3: Relationship between age at death and MVP density. Cases 
from the UKPD and the UK-ADC cohort were combined in order to 
determine the association between age at death and MVP density. A 
scatter plot was used to show each case’s MVP density with 
corresponding age at death. Using a Spearman’s rho test, the correlation 
between age at death and MVP density was 0.60 with a p-value of < 
0.0001.  
  

Relationship Between Age At Death and MVP Density (n=131)  
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 Using UK-ADC cases (n = 92) with clinical, neuropathological, and genetic 

information, the majority of cases had hypertension (59.0%), 

hypercholesterolemia (58.4%), and the APOE ɛ3/ɛ3 genotype (64.6%)  

 (Table 3.3). In order to determine the clinical vascular risk factors for MVP 

pathology, a Wilcoxon rank-sum test was performed on 13 clinical variables. 

None of the clinical variables were significantly associated with MVP density 

within this cohort (Table 3.4). Similar non-significant findings were observed in 

demographic (sex), neuropathological (name the pathologies), and genetic 

(APOE) variables related to vascular disease (Table 3.4).  

 Further staining was performed on the UK-ADC case with the highest 

MVPs of the sample group, which was an 89 year-old male. The only condition 

that he was positive for was hypertension. The gross anatomy of his brain 

showed small holes in the basal ganglia (Figure 3.4). Microinfarcts and a 

microaneurysm were seen in the patient’s putamen (Figure 3.4). Using a 

clearing method, the 3D visualization of this patient’s MVPs shows a single large 

MVP branching into at least 4 smaller MVPs (Figure 3.5). 
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Clinical variables were self-reported and neuropathological variables were semi-
quantitatively graded. There were not individuals with the ApoE ɛ4/ɛ4 genotype in 
our study sample. These variables were used to determine the risk factors for MVP 
density. The number of cases missing information on a given variable is reported. 
Clinical, neuropathological, and genetic information on cases from the UKPD were 
not available. 
  
  
  

UK-ADC cohort Missing 
cases, n 

Sample size 92
Clinical Variables

Hypertension (%) 59.0 9
Diabetes (%) 12.5 12
Hypercholesterolemia (%) 58.4 56
Smoking (%) 47.4 14
BMI (%) 22.9 22
Heart atack (%) 26.6 13
Congestive heart failure (%) 24.1 13
Atrial Fib (%) 19.0 13
Stroke (%) 18.8 12
Transient ischemic attack (%) 16.3 12
Angina (%) 19.0 13
Arrhytima (%) 28.4 11
Angioplasty (%) 12.7 13

Atherosclerosis (%) 1
   zero 5.5
   one 22.0
   two 22.0
   three 26.4
   four 24.2
B-ASC (%) 6
   none 32.6
   mild 46.5
   moderate 18.6
   severe 2.3

APOE  genotype (%) 10
   ɛ2/ɛ2 1.2
  ɛ2/ɛ3 17.1
  ɛ3/ɛ3 64.6
  ɛ3/ɛ4 17.1

Neuropathological Variables

Genetic Variables

Table 3.3: Clinical, Neuropathological, and Genetic Information of UK-ADC cases 
used in MVP study 
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  Absent (#/µm) Present (#/µm) Significant?

Hypertension 1.24 (1.37) 1.21 (1.28) NS
Diabetes 1.49 (1.12) 1.03 (1.59) NS
Hypercholesterolemia 1.73 (1.02) 1.04 (1.08) NS
Smoking 1.76 (1.34) 1.13 (1.05) NS
BMI 1.16 (1.06) 1.77 (1.65) NS
Heart atack 1.15 (1.37) 1.51 (1.11) NS
Congestive heart failure 1.14 (1.14) 1.51 (1.31) NS
Atrial Fib 1.19 (1.33) 1.28 (0.91) NS
Stroke 1.28 (1.24) 0.91 (0.92) NS
Tranisent ischemic attack 1.16 (1.29) 1.58 (1.39) NS
Angina 1.18 (1.35) 1.52 (1.19) NS
Arrhytima 1.35 (1.19) 1.00 (1.26) NS
Angioplasty 1.13 (1.11) 1.87 (1.13) NS

 

Clinical Variables, median density 
(IQR)

In order to associate the clinical and neuropathological variables of interest 
with MVP density, a Mann-Whitney U (Wilcoxon Rank Sum) test was applied 
within the analyses. Due to multiple comparisons, an adjusted significance 
level of 0.00002 (17 comparisons) was used to determine significance. 
Absent/present references to the absence or present of the disease as self-
reported by the research participant. None of the clinical or 
neuropathological variables of interest yielded a significant result. 
Abbreviations: IQR = interquartile range; NS = non-significant; MVP = multi-
lumen vascular profiles 
 
  

Table 3.4: MVP Densities for Dichotomous Clinical Variables 
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Figure 3.4: UK-ADC Case With Highest MVP Density. (a,b) Photographs 
showing the gross anatomy of the basal ganglia from a 89 year-old male. 
(b) Higher magnification of (a) with red arrows indicating holes in the 
basal ganglia. (c,d) Photomicrographs of hematoxylin-and-eosin stained 
tissue sections from the putamen of a 89 year-old male. (c) shows 
regions of infarct tissue. (d) shows what we presume to be a cerebral 
microaneurysm (Charcot-Bouchard aneurysm). Scale bars: a = 2mm, b 
=3mm, c = 4mm, d = 500µm 
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Figure 3.5: 3-D Visualization of MVPs. (a,b) Photographs showing 
the 3D branching of MVPs within the frontal cortex of a 89 year-old 
male. Based on the high MVP density of this case (which was 
analyzed by me), I sectioned this case for tissue clearing. Tissues 
from this case was subsequently sent to Dr. Andy Shih, Associate 
Professor at the Medical University of South Carolina, who 
performed the tissue clearing image capturing.  
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Relationship Between Age At Death and MVP Density   

Figure 3.6: Relationship Between Age At Death and MVP Density. 
Cases from the UKPD and the UK-ADC cohort were combined in order 
to determine the association between age at death and MVP density. A 
scatter plot was used to show each case’s MVP density with 
corresponding age at death. Abbreviations: Comb. = combined, U. = 
university, MVP = multi-lumen vascular profiles  
 



61 
 

Discussion 

In this study, we tested for associations with an understudied small vessel 

pathology – MVPs -- in cases from the UK-ADC, UKPD, and UPPD brain 

repositories. We provided quantitative evidence that age was associated with 

MVP density.  When analyzing the association between conventional vascular 

risk factors (e.g., hypertension, diabetes), cardiovascular diseases (e.g.,, heart 

attack, arrhythmia) and cerebrovascular disease (e.g.,, stroke, transient ischemic 

attack), an association between these variables and MVP density was not found. 

The association between neuropathological (e.g., brain arteriolosclerosis) and 

genetic (e.g., APOE) variables of interests also did not show an association 

between these variables and MVP density.   

 There are potential limitations in this study [24]. The UKPD, UPPD, and 

UK-ADC brain banks do not comprise a population-based samples [140]. The 

UKPD brain bank is from individuals that came to autopsy from a tertiary-care 

hospital, which carries known biases associated with hospital affiliated autopsy 

services. With respect to UKPD cases, some clinical, neuropathological, and 

genetic information of interest were not available for this study. Therefore, we 

could not assess MVP risk factors within a younger cohort. The UK-ADC brain 

repository is a community and clinically based cohort of research subjects 

associated with an ADC, which carries other known biases [40, 65-67, 140]. As a 

result, UK-ADC participants are predominantly White Americans, highly 

educated, at risk for developing clinical AD [65, 140, 143]. Due to the lack of 

socioeconomic information and low sampling of individuals from different 
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racial/ethnic groups, race and ethnicity were not included in the analyses. The 

data on clinical disease risk factors are largely self-reported, which can lead to an 

underestimation of the true disease frequencies [103]. In addition, duration of 

disease (e.g., hypertension, diabetes) data were not available.   

Despite the challenges inherent to a retrospective cross-sectional study, the 

combined cohort we used for our study provided brain tissue samples that span a 

broad aging spectrum (20s – 100s at death). In addition, the UK-ADC provides 

detailed clinical, neuropathological, and genetic information valuable for studying 

correlations. The information allowed us to test for associations between 

conventional vascular risk factors (e.g., hypertension, diabetes), 

cardiovascular/cerebrovascular diseases (heart attack, stroke), neuropathological 

diseases, and genes of interests. 

For the purpose of this study, a MVP was defined as having ≥ 3 lumens 

within a single vascular profile. Cervos-Navarros et al characterized MVPs as 

having up to 10 lumens surrounded by a perivascular space [44]. Hassler et al 

described MVPs as having ≥ 4 vessels running parallel to each other and 

surrounded by a perivascular space at a distance 10X the mean diameter of the 

vessels [41, 42]. Three 3 lumens were chosen as a cutoff because a vessel 

consisting of 2 lumens on a 2-dimensional glass slide could be due to sectioning 

blood vessels at vascular branching points. It was previously reported that MVPs 

showed a tendency to occur in the frontal and parietal lobes [44] and grey matter 

cortical regions [41].  Our initial survey confirmed these prior reports.  Therefore, 

MVPs were assessed within the grey matter of frontal cortices.   
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In this autopsy sample, we showed that MVP density is associated with age at 

death. Prior studies have provided conflicting evidence for the association 

between age at death and the presence of MVP-type pathologic features. In a 

study of 231 cases (age of death range: 1 – 90+ years), Hassler et al reported 

that MVPs were not seen in cases with an age at death of ≤ 39 years [42]. Within 

the same study, MVPs were recorded in cases with an age of death ≥ 48 years 

[42]. In a study of 8 cases (age of death range: 26-88 years), Cervos-Navarro et 

al, showed that all the aged patients (61-88 years) had cerebral MVPs [44]. 

However, no MVPs were found in the young cases (26 – 48 years) within the 

same study [44]. In a study of 70 cases (age of death range: 36 – 91 years), 

Arsene et al observed that MVPs were only present in 2 cases with an age at 

death of 56 and 80 years respectively [45]. The varying results could be 

attributed to differences in tissue sampling, staining techniques, MVP 

characterization/quantification, and cause of death. Instead of dichotomizing the 

presence of MVPs, we provided a more sophisticated analysis of MVPs by 

calculating a density score in order to account for grey matter area variability. We 

also used robust immunohistochemistry methods which allowed for enhanced 

visualization of blood vessels.  

With our immunohistochemistry methods, it was difficult to determine 

conclusively the types of blood vessel(s) (e.g.,, small arteries, arterioles, 

capillaries, venules, and/or small veins) that were mostly affected within the aged 

brain. Moreover, there is not a consensus within the literature as to which vessels 

are affected [44]. We found MVPs that positively stained for α-SMA and CD34 
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indicating that MVP profiles usually contain both smooth muscle cells and 

endothelial cells. Using electron microscopy, Cervos-Navarro et al found that the 

lumen within each MVP had a continuous endothelial cell layer with tight 

junctions [44]. In addition, the basement membrane of the endothelial cell layer 

and smooth muscle cell layer formed a homogenous layer within the MVPs [44]. 

With these findings, the authors concluded that MVPs are an arteriolar 

phenomenon [44] which is consistent with our findings. 

The biological implications of brain MVPs are not fully understood. It could 

be part of normal aging, a pathological condition, or a compensatory mechanism, 

but does not seem to be an artifact of tissue processing. However, the 

appearance of MVPs could be affected by shrinking of surrounding parenchymal 

tissue with subsequent vessel distortion [41, 45, 46] or some other agonal or 

tissue fixation artifact [46]. Other authors have discussed that MVP development 

could be due to vessel recanalization [44], a result of increased secretion of 

angiogenic factors in response to chronic ischemia leading to vessel proliferation 

and/or elongation [44-46], or modified activity of local matrix metalloproteinases 

[45]. More experiments are needed in order to fully understand the development 

mechanism of MVPs in the brain.   

 There is little information published on the risk factors and co-pathologies 

of MVPs in the brain. In a study of 231 cases (age of death range: 1 – 90+ 

years), Hassler et al described that a greater proportion of men had MVPs 

compared to women in that sample [42]. In addition, the author reported that 

heart weights and arteriosclerosis severity were higher in cases with MVPs [42]. 
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However, statistical analyses were not reported within this article. In our study, 

we tested the association between conventional vascular risk factors, 

cardiovascular diseases, and cerebrovascular diseases/pathologies with MVP 

density. We did not find a statistically significant association between the 

variables we tested and MVP density.  However, a larger sample size or more 

focused hypothesis-testing may determine that our sample size was 

underpowered in a statistical sense to identify a true association. 

 In conclusion, MVPs are an age-related brain pathology whose risk factors 

may not include conventional vascular risks factors. In our study, we did not find 

evidence that MVPs are associated with sex, cardiovascular diseases, or 

cerebrovascular diseases/pathologies. More experiments are needed in order to 

elucidate the pathogenesis of MVP development within the aged brain.  
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Chapter 4: Hippocampal Sclerosis of Aging (HS-Aging) 

 

Introduction 

Hippocampal sclerosis of aging (HS-Aging) is a high-morbidity 

neurodegenerative disease, usually affecting individuals who survive past age 80 

[51-56]. The diagnosis of HS-Aging rests primarily on neuropathological findings 

on hematoxylin and eosin (H&E) staining using a consensus-based criteria [51, 

58]: cell loss, gliosis, and atrophy in the hippocampal formation that is out of 

proportion to Alzheimer’s disease (AD)-type pathology. HS-Aging is a common 

pathology among older individuals but its symptoms are often incorrectly 

attributed to AD in the clinical setting [52, 54, 55, 68]. Hence, a better 

understanding of the HS-Aging disease spectrum is required. 

Although not part of current consensus-based diagnostic criteria, TAR-

DNA binding protein 43 (TDP-43) pathology is strongly linked to HS-Aging [51, 

55, 144-148].  TDP-43 is a nucleotide-binding protein that is normally enriched in 

the nucleus of neurons [147, 149]. In HS-Aging, affected neurons display loss of 

nuclear TDP-43, accumulation of cytoplasmic phosphorylated TDP-43 inclusion 

bodies, and aberrant TDP-43 in neurites [51]. This aberrant TDP-43 staining is 

often seen in hippocampal dentate granule cells, CA1 hippocampal sector, 

subiculum, and amygdala [51, 145]. TDP-43 pathology is a key difference 

between HS-Aging and other diseases with hippocampal sclerosis (HS) 

pathology such as epilepsy and vascular insufficiency which lack aberrant TDP-

43 staining [51, 150]. When bilateral entorhinal cortex sections are assessed, 
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approximately 90% of HS-Aging cases show aberrant TDP-43 pathology, 

whereas only 10% of non-HS-Aging cases show TDP-43 pathology [51]. In 

individuals with “unilateral” HS-Aging (by H&E stain), aberrant TDP-43 inclusions 

are observed in both the affected and contralateral sides [51]. This asymmetric 

HS (one-sided neuronal loss) observed on H&E with bilateral TDP-43 positivity 

provides insight into potentially early stages of HS-Aging pathology: hippocampal 

TDP-43 pathology without widespread “sclerosis” [55]. 

In order to raise awareness of the clinical-pathological features of TDP-43 

immunoreactivity with only segmental “sclerotic” changes, findings from two 

research volunteers in the University of Kentucky Alzheimer’s Disease Center 

(UK-ADC) longitudinal cohort are described. Segmental HS-Aging is defined as 

focal cell loss in the CA1 and/or subicular region(s) with astrocytosis seen on 

some but not all hippocampal sections on H&E and with aberrant TPD-43 

immunostaining in the hippocampal formation.  Both segmental HS-Aging cases 

described here were followed from initial cognitively intact status to death. 

Clinical, cognitive, imaging, and neuropathological findings are presented. A 

relevant literature review emphasizes that these cases are not being reported as 

“unusual”. 

 

Methods 

Clinical and neuropathological assessments  

Details of UK-ADC recruitment, inclusion/exclusion criteria, clinical assessments, 

cognitive testing, and neuropathological protocols have been described 
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previously [140, 151].  Briefly, as part of a longitudinal study, the two individuals 

in this study consented to annual mental status testing, physical examinations, 

and post-mortem brain donation [106]. All protocols were performed with UK 

Institutional Review Board approval. Clinical data from annual cognitive 

assessments were examined using normative values from baseline assessments 

of 648 healthy aging volunteers. Cognitive assessments reported here included 

measures of category verbal fluency, immediate memory and learning, and 

delayed recall scores incorporated from word list learning and paragraph memory 

tests [140, 152]. Raw scores from each measure were transformed to T-scores 

[152-154] based on the average baseline performance of the larger sample. The 

derived T-scores (mean of 50 and standard deviation of 10) incorporated 

adjustments for age, gender, and education. This method allowed for direct 

comparisons between each case. Mini Mental State Exam (MMSE) scores [78] 

are presented as raw scores for comparative purposes. Neuroimaging studies 

were obtained at the request of the UK-ADC neurologist. Imaging modalities 

included MRI-T1 weighted imaging with or without contrast, MRI-T2 weighted 

imaging, and CT imaging without contrast.   

Neuropathological assessments were performed at UK-ADC using 

previously described methodology [51, 106, 110]. At least 28 sections were taken 

from different brain areas. From both left and right sides, at least four areas were 

sectioned from the medial temporal lobes: the amygdala, entorhinal cortex, and 

rostral and caudal hippocampi including the level of the lateral geniculate 

nucleus. After formalin fixation and paraffin embedding, sections (8 microns) 
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were stained with H&E. Antibodies to PHF-1 tau (gift from Dr. Peter Davies, 

Hofstra North Shore-LIJ School of Medicine; 1:500 dilution) and to amyloid-beta 

(Aβ) (Vector; 1:100 dilution) were used in immunohistochemistry to assess 

neuritic plaque (NP), Aβ, and neurofibrillary tangle (NFT) pathologies following 

the NIA-AA consensus recommendations [58]. Alpha-synuclein (Vector; 1:40 

dilution) immunohistochemistry was used for assessing Lewy body pathology. 

Glial fibrillary acidic protein (GFAP; Novacastra) staining was performed to 

demonstrate reactive astrocytes. The TDP-43 antibody used was anti-phospho 

TDP-43 (gift from Dr. Manuela Neumann (University of Zurich); 1:500 dilution). 

The specific tissue staining protocol is similar to the one shown in Table 3.1.  

 

Research Subjects 

Case “F” 

An 82-year-old woman was initially recruited as a cognitively intact research 

volunteer. Her father, who had been clinically diagnosed with AD, died at age 73. 

Her medical history included hypertension, coronary artery disease, 

hyperlipidemia, and hypothyroidism–all of which were treated medically. She had 

smoked (25 pack/year history) and denied excessive alcohol drinking.  
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Figure 4.1: MMSE and T-Scores from longitudinal neurocognitive 
assessments in animal fluency, immediate, and delayed memory 
tasks. For the T-scores, mean = 50, and STD = 10. Standardization of 
t-scores is based on results from age-matched non-demented 
individuals. The age at which MCI diagnosis, neuroimaging scans, and 
probable Alzheimer’s disease diagnosis were made are indicated by 
red, blue, and green asterisks respectively.  Note that memory scores 
declined more than verbal fluency.  
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At the age of 88, she received a clinical consensus diagnosis of amnestic mild 

cognitive impairment (MCI, Figure 4.1). Because of her cognitive decline, MRI 

T1 and T2 weighted images with and without contrast were obtained at age 88 

(Figure 4.2). Radiological impressions from images included moderate 

generalized cerebral atrophy with cerebellar atrophy, mild ex vacuo ventricular 

dilatation, and multiple confluent areas of supratentorial white matter 

hyperintensities. The latter finding was considered consistent with chronic 

microvascular infarcts. 

Near her 90th birthday, she was having difficulties with finances and 

became paranoid, stating that people were stealing from her. Donepezil was 

initiated at that time. By age 91, she was no longer driving although she was still 

performing simple chores in the home. Her cognition continued to decline, and 

she began to struggle increasingly with higher-order executive tasks. Her 

cognitive test results showed a steady decline in delayed memory (1 standard 

deviation below the mean) with preserved immediate memory and animal fluency 

tasks (Figure 4.1). At age 94, she was diagnosed with probable AD and was 

wheelchair dependent. By this time, she required assistance with all activities of 

daily living (ADLs) including bathing. She died at age 95.   

Neuropathological findings are shown in Figures 4.3 and 4.4.  For 

comparison, the hippocampus of a non-demented individual is shown in Figure 

4.3A-C. An unrelated HS-Aging case is shown in Figure 4.3D demonstrating 

diffuse neuronal loss, neuropil rarefaction (Figure 4.3E), and astrocytosis  
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Figure 4.2: Neuroimaging for Case F (A-D) and Case M (E,F).  A-D 
show MRI images for Case F at age 88. (A) Coronal T1 weighted 
image with contrast. Red arrows pointing to the hippocampi. (B) 
Sagittal T1 weighted non-contrast image. Red arrow pointing to 
hippocampus. (C) Transverse MRI T1 weighted image with contrast. 
Red arrows pointing to the hippocampus. (D) Transverse MRI T1 
weighted non-contrast image. Red asterisks indicate areas of white 
matter hyperintensities in the periventricular region. (D, E) CT images 
for Case M at age 98. (E) Transverse CT non-contrast image. Red 
arrows points to chronic subdural collection in the brain indicating a 
history of previous subdural hemorrhage. (F) Transverse CT non-
contrast image. Red asterisks indicate hippocampal regions. 
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Figure 4.3: Photomicrographs of hematoxylin and eosin (A, B, D, E, G, H, J, K) 
and GFAP (C, F, I, L) stained hippocampal sections. Images illustrate either a 
normal hippocampus (A, B, C), diffuse HS-Aging pathology (D, E, F), or 
segmental HS-Aging pathologies (G, H, I J, K, L). (A) Low-power image 
demonstrates normal hippocampal structure. Inset from B shows high power 
image with abundant neuronal cells. Inset from (C) shows high power image with 
little to no reactive astrocytes. (D) Low-power image demonstrates diffuse HS-
Aging pathology: the hippocampus is shrunken with neuropil rarefaction extending 
into the subiculum. Inset from E shows high power image with severe neuronal 
cell loss and spongiosis. (G, J) Low power images show segmental HS-Aging 
pathology with a shrunken hippocampus and selective cell loss in CA1. Inset from 
H and K show high power images with less neuronal cell loss and spongiosis 
compared to that seen in the inset from E. Insets from (I, L) show high power 
images with reactive astrocytes. Scale bars: 3.5mm (A, D, G, J), 200 microns (B,  
E, H, K), 150 microns (C, F, I, L).   
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Figure 4.4: Photomicrographs to show TDP-43 immunoreactive pathology. (A) Schematic 
of the bilateral hippocampal formation levels for Case F and Case M TDP-43 stained 
sections. The blue horizontal lines indicate approximate sectioning locations of the 
stained TDP-43 photomicrographs. I, V: amygdala. II, VI: entorhinal cortex. III, VII: rostral 
hippocampus. IV, VIII: caudal hippocampus. (B, C) Photomicrograph images of TDP-43 
pathology. (B) High power photomicrograph of a neuron with TDP-43 positive multiple 
discrete granular cytosolic accumulations (possible “pre-inclusions”’; green triangle), a 
potential marker of early HS-Aging pathology. (C) High power photomicrograph of TDP-
43 positive intracellular inclusion bodies (red triangles) and neurites (blue arrows). (D, E) 
Photomicrographs of TDP-43 stained serial sections from the hippocampal formation from 
Case F and Case M respectively. Location of intracellular inclusion bodies or granular 
cytosolic accumulations are represented by red or green triangles respectively. Location 
of neurites are enclosed by the blue outline. Level VIII for Case M was not available. 
Scale bars: (B, C) = 50 microns, (D, E) 5mm. 
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(Figure 4.3F). In contrast, Case F showed less generalized hippocampal 

shrinkage (Figure 4.3G) with segmental neuronal cell loss in the CA1 region 

(Figure 4.3H) and reactive astrocytosis (Figure 4.3I). Note that in Case F, HS-

Aging pathology was predominantly localized in the CA1 region whereas the 

comparison case in Figure 4.3D shows more widespread pathology extending 

into the subiculum. Case F showed abundant TDP-43 immunoreactive 

intracellular inclusions and neurites throughout the amygdala, entorhinal cortex, 

and hippocampus with bilateral TDP-43 immunoreactivity (Figure 4.4D). TDP-43 

inclusions were more widespread than neurites (blue outlined areas) in the brain 

sections (Figure 4.4D). 

Assessments using the NIA-AA consensus protocol for AD workup [58] 

revealed low levels of AD neuropathologic changes (Figure 4.5)): Braak I, 

CERAD “sparse”, and Thal stage 3. Also seen at autopsy, her brain showed 

evidence of multifocal cerebrovascular disease with acute infarcts in the right 

parietal and temporal lobes, insula, basal ganglia, and entorhinal cortices (the 

latter in focal areas). Remote microinfarcts were present in the left putamen, 

along with severe non-occlusive atherosclerosis in Circle of Willis, moderate 

cortical arteriolosclerosis, widening of Virchow Robin spaces, perivascular 

rarefaction in scattered areas, and other small blood vessel changes (not 

shown).  

 

 

 



76 
 

 

  Figure 4.5: Photomicrographs of PHF-1 (A, B, E, F, I, J) and Ab (C, D, G, H, K, L) immunostained 
human hippocampi from an Alzheimer’s disease case, Case F, and Case M. An Alzheimer’s 
disease case (Braak VI, CERAD “frequent”, and Thal 5) is shown for comparison (A, B, C, D). (E, I) 
Low-power images demonstrating neurofibrillary tangle pathology for Case F (Braak I) and Case M 
(Braak IV). Inset from F and J shows high power image with relatively sparse or discontinuous 
neurofibrillary tangle pathology for Case F and Case M respectively. (G, K) Low-power images 
demonstrating neuritic and amyloid-beta plaques for Case F (CERAD “sparse” and Thal 3) and 
Case M (CERAD “moderate” and Thal 5). Inset from H and L show high power images with few 
neuritic and amyloid-beta plaques in the hippocampal CA1 region for Case F and Case M 
respectively. Note that the parahippocampal region did show abundant Ab plaques in Case F.  
Braak stage = neurofibrillary tangle pathology, CERAD = neuritic plaque pathology, Thal stage = 
amyloid-beta plaque pathology. Scale bars: (A, C, E, G, I, K) = 5mm, (B, F, J) = 400 microns, and 
(D, H, L) = 1mm. 



77 
 

Case “M”  

A 74-year-old male was initially recruited as a cognitively intact research 

volunteer. He had reported that his mother had dementia with an unknown age of 

diagnosis. His medical history was significant for hypertension and benign 

prostatic hypertrophy. He smoked (50 pack/years) and drank alcohol (3-4 

drinks/day). His cognitive performance was relatively unremarkable until age 82, 

when he was diagnosed with MCI based on a consensus review of his symptoms 

(Figure 4.1).   

A workup at age 83 led to a diagnosis of mixed probable AD and vascular 

disease. He began treatment with donepezil at this time. At age 86, he began to 

struggle with higher order activities including driving. By age 87, he was no 

longer driving but he was still intact with respect to most other ADLs; memantine 

was added to his medications at that time. By age 88, he needed help with most 

ADLs including bathing.  

At his last UK-ADC clinic visit, his MMSE score was 19 with mild 

behavioral issues of impulsivity. Longitudinal cognitive test results showed a 

steady decline in immediate and delayed memory tasks (3 standard deviations 

below the mean by age 86) with preserved animal fluency performance (Figure  

4.1). After a fall at age 89, CT imaging without contrast was obtained. This image 

revealed a chronic left subdural hematoma, periventricular white matter 

hypodensity, and generalized brain volume loss (Figure 4.2). The patient passed 

away later that year at age 89.   
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Neuropathological hippocampal autopsy findings are shown in Figures 

4.3 and 4.4. Case M showed focal hippocampal shrinkage (Figure 4.3J), with 

segmental neuronal cell loss in the CA1 region (Figure 4.3K) and astrocytic 

gliosis (Figure 4.3L). Aberrant TDP-43 immunoreactivity was seen within the 

amygdala bilaterally, and the left rostral and caudal entorhinal cortices (Figure 

4.4E). In addition, there were intracellular TDP-43 positive cytoplasmic 

“preinclusions” (green triangles) in the hippocampus bilaterally and in the right 

entorhinal cortex (Figure 4.4E). TDP-43 intracellular inclusion bodies were more 

widespread than neurites (blue outlined areas) in the brain sections (Figure 

4.4E).  

Assessments using the NIA-AA consensus protocol for AD workup [58] 

revealed an intermediate level of AD neuropathologic changes Braak IV, CERAD 

“moderate”, and Thal phase 5 (Figure 4.5). In addition to neurodegenerative 

disease pathologies, there was evidence of multifocal chronic cerebrovascular 

disease with moderate-to-severe multifocal atherosclerotic disease in the Circle 

of Willis, arteriolosclerosis and other mild small vessel changes observable on 

histopathology. In some areas, there was widening of Virchow-Robin spaces and 

perivascular rarefaction. Incidental Lewy body pathology was found in the 

olfactory bulb (not shown). 

 

Discussion and Review of the Literature 

There is an evolving appreciation of the large impact of HS-Aging on public 

health, especially among the oldest-old: approximately 10-25% of persons over 
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age 85 demonstrate this pathology at autopsy [51-55, 68, 111, 146, 155-159]. 

Here, examination of two segmental HS-Aging cases in detail. They may 

represent either early HS-Aging pathology, or a subset of cases that develop 

TDP-43 pathology without widespread hippocampal changes meeting current 

criteria for hippocampal sclerosis. These segmental HS-aging patterns are 

frequently seen in the UK-ADC autopsy series – underscored by the observation 

that approximately 50% of these HS-Aging cases are unilateral on H&E [51] – 

although their pathogenesis is not well understood.  

There are inherent limitations to a study of this nature. The diagnosis of 

segmental HS-Aging was made primarily using H&E stain, but the “sclerotic” 

changes are difficult to delineate with precision. Zinc transporter 3 

immunostaining, choline acetyltransferase immunostaining, and Hirano silver 

staining have been used to delineate between CA3 - CA2, CA2 - CA1, and CA1 

– subiculum respectively, in HS cases [160]. These stains can be used in future 

segmental HS-Aging studies to help determine which hippocampal regions are 

initially and/or most affected. The segmental HS-Aging pathology in these cases 

may not fully explain the cognitive declines seen years before death. Case F 

showed evidence of multifocal cerebrovascular disease and Case M showed 

intermediate AD pathology with severe multifocal cerebrovascular disease, which 

may help explain the dementia. These cases indicate how frequent 

comorbidities, especially AD and cerebrovascular neuropathologic changes, 

could strongly alter the pattern of tested cognitive domains. Both cases in the 

present study showed TDP-43 pathology in the amygdala, entorhinal cortex, and 
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hippocampus. Hippocampal TDP-43 pathology, with or without reported HS, 

contributes to an additive component of cognitive impairment according to 

reports from different research centers [6, 149, 161-164]. Therefore, it is 

reasonable to infer that the TDP-43 pathology seen in these individuals may 

partly explain their cognitive deterioration. Because of the lack of a clear 

consensus in the field on HS-Aging categorization and “boundary zones” 

between other neurodegenerative diseases, we highlight HS-Aging in 

relationship to “pre-HpScl” (a term that has been used to describe early HS-

Aging pathology [165]), FTLD with TDP-43 pathology (FTLD-TDP), AD, and 

cerebrovascular pathologies.  

 

Early HS-Aging, or “Pre-Hp-Scl” 

Although information on HS-Aging is quickly accumulating, nomenclature for this 

disease is not universal. One group refers to a disease category very similar to 

HS-Aging as “HpScl” [52, 166, 167] and some may refer to this condition as 

“hippocampal sclerosis dementia” [168]. In a very recent paper, a panel of 

experts discussed HS-Aging pathologic classification terminology [169]. 

However, the average age of persons used in this consensus recommendation 

paper were younger (most <80 y.o.) than when HS-Aging prevalence appears to 

be highest [51]. Unfortunately, the term “hippocampal sclerosis” is itself 

potentially misleading. The pathologic features are not fully conveyed by the term 

“sclerosis”, which signifies “hardening”. Furthermore, the pathologic changes of 

HS-Aging generally extend beyond the hippocampus proper. We reiterate the 
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important point that the term “hippocampal sclerosis” is widely used to describe 

multiple distinct diseases including hippocampal pathology associated with 

epilepsy, hypoxia, hypoglycemia, FTLD, and others. Well over 95% of “PubMed” 

citations linked to “hippocampal sclerosis” are unrelated to HS-Aging, HpScl, or 

HS dementia. Thus to prevent confusion, whatever the eventual terminology 

ends up being, we recommend that it should include a component different from 

simply “hippocampal sclerosis”. 

Recently, the term “pre-HpScl” was used to describe hippocampal 

pathology characterized by none to minimal neuronal loss or extracellular 

neurofibrillary tangles with abundant TDP-43 pathology [165]. This condition may 

partially overlap with the “segmental” HS-Aging pathology seen in the two cases 

described here. Both articles present cases that show focal neuronal loss and 

gliosis in CA1 with more widespread TDP-43 pathology in the limbic system. 

These findings suggest that HS-Aging could be a progressive disease where the 

initial stages are characterized by the presence of TDP-43 pathology with or 

without some focal areas of cell loss (Figure 4.6). More broadly, these findings 

may also be evidence for a presently unnamed “brain-wide” disease that is 

characterized by a spectrum of hippocampal TDP-43 pathologies (Figure 4.6): 

TDP-43 pathology, TDP-43 pathology with segmental/focal sclerotic-type 

changes, and TDP-43 pathology with diffuse HS.  

FTLD-TDP 

Aberrant TDP-43 is seen in 65% to 90% of HS-Aging cases [51, 145].  Because 

of the high prevalence of TDP-43 pathology in HS-Aging cases, there is some  
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Figure 4.6: Schematic for neurodegenerative disease etiologies of TDP-43 
pathology in advanced age. A currently unnamed “brain-wide” disease 
occurring in advanced age that is associated with certain gene 
polymorphisms (ABCC9, KCNMB2, GRN, TMEM106B) and characterized by 
a pathologic spectrum that includes arteriolosclerosis, TDP-43 pathology, 
segmental HS-Aging, and widespread HS-Aging. The disease(s) may 
comprise a continuous spectrum or 3 separate variants as indicated by the 
stop signs. A subset of cases may be due to, or exacerbated by, AD 
pathology leading to misfolding and aggregation of proteins including TDP-43. 
Furthermore, FTLD may lead to the accumulation of TDP-43 in some cases, 
even in advanced age. AD = Alzheimer’s disease, FLTD = frontotemporal 
lobar degeneration, HS-Aging = hippocampal sclerosis of aging.  
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support for the hypothesis that HS-Aging is closely related to FTLD-TDP [170]. In 

one study, the prevalence of hippocampal sclerosis in FTLD-TDP was 42% [171]. 

Moreover, the slender non-tapering TDP-43 neurites observed in FTLD-TDP 

hippocampi (“type A” pattern) resemble those seen in HS-Aging [171]. In a 

different study, >70% of hippocampal sclerosis cases with TDP-43 pathology had 

neurites and inclusion bodies whose morphology resembled that found in FTLD-

TDP [145]. Similarly, in DLB cases with HS-Aging, TDP-43 

immunohistochemistry pattern was similar to FTLD-TDP type A pattern [165]. We 

also note that some human genetic polymorphisms (in GRN and TMEM106B) 

are risk factors for both FTLD-TDP and HS-Aging pathologies [59, 60, 162, 166, 

172]. The TMEM106B polymorphism (rs1990622) was also recently shown to be 

a risk factor for non-HS TDP-43 pathology [173]. These findings could be argued 

to support the possibility that HS-Aging and TDP-43 pathologies in older people 

are either pathogenetically linked, or a frank variant of, FTLD. 

Although there are areas of overlap, FTLD and HS-Aging also differ in 

clinical symptomatology, genetic risk factors (discussed in greater detail below), 

and pathological characteristics. For example, patients with FTLD pathology 

show clinical symptoms and die at much younger ages than those with HS-Aging 

pathology [68, 146]. HS-Aging cases tend to lack either the “bvFTD” or aphasia 

symptoms (e.g.,, primary progressive aphasia) [51, 68], although the current two 

cases both (late in their disease course) had features previously linked to frontal 

cortical dysfunction [174-176]: delusions (Case F) and impulsivity (Case M). HS-

Aging patients were previously shown to demonstrate a group-level 
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neurocognitive profile characterized by higher verbal fluency scores 2-5 years 

prior to death, as seen in Case F and Case M, dissimilar to non-tauopathic FTLD 

cases [68].  

Pathologically, TDP-43 proteinopathy is non-specific to FTLD-TDP (or HS-

Aging) because TDP-43 pathology can be seen in Alexander’s disease, low-

grade glial neoplasms, AD/Down’s syndrome, and brain trauma [150, 177-181].  

Thus – perhaps analogous to tau protein and NFTs -- there appears to be a 

“reactive” aspect to TDP-43 pathology although the pathology also seems 

deleterious once present.  FTLD-TDP cases with HS showed more severe 

cortical and brainstem atrophy than HS-Aging cases which localized to the 

hippocampus [146]. HS-Aging cases had lower synaptophysin immunoreactivity,  

greater astrocytic reactivity and microglial reactivity compared to FTLD-TDP with 

HS cases [146].  It has been suggested that HS-Aging in aged individuals may 

be a variant of FTLD-TDP [182]; however, this does not seem to make sense 

because if this were the case, then there should be a very large cohort of 

individuals who ultimately express the full-fledged FTLD-TDP picture among the 

aged, and this is not the case. FTLD is quite rare—there are only approximately 

20,000-30,000 cases in America, (around half with FTLD-TDP), versus HS-

Aging, which is extremely prevalent, perhaps affecting over a million Americans 

[183-185]. Furthermore, there is no evidence that in FTLD-TDP cases, the 

hippocampal pathology shows a clinical-temporal pattern of involvement.  These 

findings support the notion that HS-Aging is a distinct pathology from FTLD-TDP 

although both diseases show TDP-43 immunoreactivity and HS (Figure 4.6). 
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Alzheimer’s Disease 

Because TDP-43 pathology is seen in many cases that also have abundant AD 

pathology, there may be a subset of HS-Aging cases that are best categorized as 

a variant of AD. TDP-43 positivity can be seen in 14-57% of AD cases [149, 163, 

180, 181]. More specifically in one study, TDP-43 pathology was seen in 9% of 

familial AD cases, 10% in early-onset AD cases, and 29% in late-onset AD cases 

[180].  Another study showed that increasing TDP-43 immunoreactive pathology 

correlates with increasing Braak neurofibrillary tangle stages [145]. It has also 

been shown that some TDP-43 inclusions seen in AD brains co-localize with 

phospho-tau in the entorhinal cortex and dentate fascia [145]. Because in vivo 

and in vitro studies have shown that Aβ and/or tau can promote the 

misfolding/polymerization of polypeptides (e.g., alpha-synuclein) [186-188], it can 

be speculated that this misfolding could occur in late stages of AD brain 

pathology [145]. These pathologies could be coexistent rather than directly 

linked, since all of these pathologic changes – HS-Aging/TDP-43 pathology, AD, 

and DLB – are relatively prevalent in community-based samples evaluated to 

date (in strong contrast to FTLD) [5, 7, 168, 189, 190].   

A counterargument against a specific link between HS-Aging and AD 

pathologies is that HS-Aging has no association with APOE nor with any other 

AD-related risk allele [52, 56, 110, 191]. In addition, unlike AD where females are 

more likely to have AD than males, there also does not appear to be a gender-

based predisposition for HS-Aging [68]. Since both pathologies are prevalent in 
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older populations, it would be expected that many individuals would manifest 

both AD and HS-Aging pathologies at autopsy.   

 

Cerebrovascular Disease 

Another brain process that has been associated with HS-Aging pathology is 

cerebrovascular disease. Dickson and colleagues described cerebrovascular 

disease pathology in a cohort of 13 individuals with HS-Aging [192]. 

Arteriosclerosis, atherosclerosis, subcortical arteriosclerotic leukoencephalopathy 

and cerebral amyloid angiopathy were observed in these cases [53]. A recent 

study publication from the UK-ADC showed that arteriolosclerosis, characterized 

by thickened and/or dysmorphic arterioles in the brain, is associated with HS-

Aging pathology [25].  In the grey matter, the mean vessel wall thickness was 

significantly larger in HS-Aging cases compared to that of non HS-Aging cases 

[25].  

There is circumstantial support from genetic studies for a mechanism 

linking cerebrovascular pathology with HS-Aging.  The only two genomics studies 

that evaluated HS in aged persons as a GWAS endophenotype reported risk 

alleles at genomic loci in potassium channel regulating genes, unrelated 

previously to FTLD: ABCC9 and KCNMB2 [59, 62].  We recently replicated the 

observation that ABCC9 polymorphism is associated with HS-Aging pathology 

[60].  The ABCC9 polypeptide is physiologically active in arteriolar smooth 

muscle [126, 130]. Therefore it is credible that ABCC9 dysregulation leads to 

arteriolosclerosis, which then may contribute to HS-Aging pathogenetically.  
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ABCC9/SUR2 is an attractive candidate for therapeutic strategies because it is a 

well-established “druggable target”. Both agonists (nicorandil, diazoxide, 

iptakalim) and antagonists (sulfonylurea drugs) have been tested in clinical trials 

for other diseases [193, 194]. Their potential for repurposing for HS-Aging is an 

active research area in our laboratory.   

Coincidentally, both cases in the present study showed cerebrovascular 

disease including arteriolosclerosis which could partially account for their 

progressive cognitive decline. In sum, we infer that the association between 

arteriolosclerosis and HS-Aging provides added support for a “brain-wide” 

disease that affects both small blood vessels, hippocampal structures, and leads 

to TDP-43 pathology in the aged brain (Figure 4.6).  

 

Conclusions 

We presented two cases that show what we consider to be either early stages of 

HS-Aging pathology or possibly a variant of a brain-wide disease characterized 

by arteriolosclerosis and TDP-43 pathology affecting the limbic system (Figure 

4.6). These two cases taken together with other articles describing hippocampal 

TDP-43 pathology in DLB and AD brains [165, 195] suggest the need for a 

consensus definition regarding the spectrum of pathologies with TDP-43 and HS 

seen in the aged human brain. HS-Aging is a prevalent neurodegenerative 

disease whose specific characteristics -- genetics, neuroimaging, 

symptomatology, and pathology -- are only beginning to be understood. We 

conclude that careful clinical-neuropathological correlations may assist in the 
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overall goal of developing strategies to diagnose and treat individuals who suffer 

this debilitating illness. 
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Chapter 5: Challenges and Considerations Related to Studying Dementia in 

African Americans 

 

1.1 Introduction 

Studying dementia across racial/ethnic populations is a controversial but 

important area of research. Findings from clinical studies have indicated that 

Blacks/African Americans are more likely to develop Alzheimer’s disease (AD, a 

major cause of dementia) in comparison to Caucasians (hereafter referred to as 

Whites) [196-198]. In studies that include autopsy confirmation, the outcomes are 

less clear: Blacks/African Americans may develop more AD pathology than 

Whites [199]; however, other studies found either no AD pathological differences 

between Blacks/African Americans and Whites [200-203] or higher burden of AD 

pathology in Whites in comparison to Blacks/African Americans [204]. Reasons 

for differences in the studies’ outcomes may be attributable partly to residual 

confounding related to a failure to take into account historical, cultural, political, 

sociological, and psychological factors that contribute to health outcomes and 

health disparities.  Perhaps most importantly, clinical research participation in 

historically marginalized groups (e.g., Blacks/African Americans) has influenced 

reported research outcomes.  

This commentary, is intended to help focus attention on achieving one of 

the National Institutes of Health (NIH) and the U.S. Department of Health & 

Human Services (USDHS) objectives to “increase the availability and quality of 

data collected and reported on racial and ethnic minority populations” [205].  We 
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outline a selected historical account of the relationship between Blacks/African 

Americans, medicine, and research, focusing on challenges and relevant factors 

that affect participation of African Americans in research.  We conclude with 

considerations and topical questions for scientists with a focus on research 

related to dementia in African Americans.   

Note on terminology: hereafter we apply racial categorical terminologies 

described in the 1997 “Revisions to the Standards for the Classification of 

Federal Data on Race and Ethnicity” issued by Office of Management and 

Budget’s (OMB):“Black/African American” and “White.” For complete definitions, 

see reference [206]. 

 

1.1.2 The Contemporary Consequences of Historical Medical Mistreatment of 

African Americans 

There is a long history of horrific biomedical experimentation on Blacks/African 

Americans, and the effects linger to this day. A selection of these cases are 

discussed here for three reasons: 1) to convey that late 19th century/early 20th 

century scientists designed abusive studies which grossly violate the concept of 

primum non nocere  (“first, do no harm”); 2) to provide examples on the dangers 

of misinterpreting differences between individuals within different racial/ethnic 

groups; and 3) to demonstrate how the history of racism in the medical sciences 

and society affect current Black/African American participation in clinical 

research. Nineteenth and early 20th century scientists developed analytical 

methodologies that lay the foundation for how we conduct 21st century science. 
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Therefore, the methodological pitfalls are topical and highly relevant to the 

contemporary setting.    

Before the U.S. Civil War, African slaves were regularly used as 

involuntary test subjects in biomedical experimentations [207, 208], and these 

practices were supported by law [209]. Often, slave masters offered their slaves 

to a physician either for biomedical experimentation or because they were too 

sick, old, or in exchange for medical treatment payment [207]. In addition, some 

physicians would buy and raise slaves in order to fill their studies with human test 

subjects [207, 209]. The practice of collecting slaves as research subjects was 

not an anomaly but a standard practice due to the mainstreaming of racism in 

much of American society, including science. Some writers use the term 

‘scientific racism’ to describe this perversion of scientific and historical factors to 

maintain existing social hierarchies based on race [210, 211]. For example, it 

was believed that Blacks/African Americans could endure more painful stimuli, 

extreme heat, and were more prone to fevers, syphilis, tuberculosis, and tetanus 

than White individuals [209, 212]. These 19th and early 20th century scientists 

used this framework of racism to design flawed experiments that yielded results 

that further inappropriately justified their use of slaves in biomedical 

experimentation.  For example, lacking a rational scientific reason, Dr. Walter F. 

Jones repeatedly poured boiling water on naked slaves in four-hour intervals to 

see if it cured typhoid pneumonia [209, 213, 214]. Dr. John M. B. Haden stripped 

blood vessels from the limbs of a Black/African American male in order to study 

vascular morphology [209, 215]. Dr. James M. Sims, “the father of gynecology,” 
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performed painful experimental gynecological surgery on female slaves without 

using anesthesia in order to improve his surgical techniques [207, 216, 217]. Dr. 

T.S. Hopkins gave nitric acid solutions to slaves in order to test its effects on 

treating asthma [207, 209]. Thomas Jefferson inoculated over 200 slaves with 

the cowpox vaccine in order to test its efficacy against smallpox [209, 214]. 

These examples demonstrate how racialized science became part of the 

justification and practice of human experimentation on Blacks/ African Americans 

[210]. 

After the abolition of slavery in the United States, physicians and scientists 

continued to abuse Blacks/African Americans while conducting unethical 

biomedical experimentation. One of the most well-known unethical studies was 

the Tuskegee Syphilis Trials from 1932 – 1972 [209, 218-220]. Funded by the 

USDHHS, scientists withheld treatment from 400 Black/African American men in 

order to study the progression of syphilis. One goal was to test the long-standing 

belief that venereal diseases manifest differently in Black/African American 

individuals compared to White individuals [209, 218-220]. In an article published 

in 1937, Dr. Mark Boyd describes conducting an experiment where he infected 

470 syphilitic Black/African American individuals with a deadly falciparum strain 

in order to test new treatments for neurosyphilis [209, 221]. Although some of the 

individuals died as a direct result from his procedure, he still continued to infect 

other Black/African American individuals [209, 221]. In 1952, Chester M. 

Southam of Sloan-Kettering Institute injected at least 396 inmates at the Ohio 

State Prison (more than 45% of the subjects were Black/African American) with 
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live human cancer cells [209, 222]. From 1962 – 1966, Dr. Allen Hornblum 

conducted over 153 experiments using mostly Black/African American men from 

the Philadelphia’s Holmesburg Prison system [209, 223]. Hornblum was paid by 

pharmaceutical and cosmetic companies to test cosmetics, powders, and 

shampoos that ultimately caused baldness, scarring, and permanent skin and 

nail injury in the prisoners [209, 223]. In 1978, without parental consent, 

physicians from the Medical College of Virginia injected 1,230 children (37% 

were Black/African American children, 4 times their population representation 

during that period) with radioactive substances [209]. In summary, the physicians 

and scientists in these studies performed horrific and sometimes deadly 

experiments on many Black/African American individuals without regard for their 

informed consent or well-being. This is by no means an exhaustive list of all the 

unethical biomedical studies performed on Blacks/African Americans.  

The historic and presumed present practice of unethical research on 

Black/African American individuals constitute a primary reason for the distrust of 

physicians and scientists within the Black/African American community – a direct 

factor (among other factors) limiting their desire to participate in biomedical 

research [218, 224-227]. In a systematic review of barriers and facilitators to 

minority research participation, George et al., found that 77% (n = 34) of the 

articles included in their analyses stated that mistrust of the medical system was 

a barrier for Black/African American participation in clinical human studies [227]. 

Using a national survey completed by 527 Blacks/African Americans and 382 

Whites, Corbie-Smith et al., reported that Blacks/African Americans, compared to 
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Whites, were more likely to believe that they would be used as a guinea pigs in 

biomedical experimentation without their consent (79.2% vs. 51.9%, P < 0.01) 

[224]. 

Due to Blacks’/African Americans’ mistrust of the biomedical community 

and other factors (e.g.,, racism, religious beliefs, access to medical care), they 

are also less likely to donate their biospecimens (e.g.,, blood) or agree to an 

autopsy for research [228-233]. Using a national survey completed by 249 

Blacks/African Americans and 492 Whites from six U.S. cities, Minniefield et al., 

found that Blacks/African Americans had a lower total prevalence (63%; n ≈ 156) 

of support for organ donation compared to Whites (90%; n ≈ 442) [233]. More 

specific to brain donation for clinical research, using a survey completed by 49 

Blacks/African Americans and 184 Whites recruited from an AD registry, 

Jefferson et al., found that only 49% (n ≈ 24) of Blacks/African Americans 

compared to 75% (n ≈ 138) of Whites would agree to brain donation for research 

(P > 0.001) [231].  Therefore, in order to increase Blacks/African American 

participation, several U.S. Alzheimer’s Disease Centers (ADCs) responsible for 

conducting large-scale longitudinal human studies focused on dementia in elderly 

individuals, do not require Blacks/African Americans to agree to a brain donation 

upon enrolling into research studies, while they do require brain donation for 

White participants [234]. This recruitment strategy can potentially lead to 

increased autopsy-recruitment bias and limited generalizability of results. Such 

limitations must be adequately accounted for in analyses and discussed in 
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research articles when reporting on Blacks/African Americans in clinical research 

studies.  

 

2.1 Challenges in Studying and Comparing Clinical-Neuropathological Variables 

Between Black/African Americans and White Americans 

In studying the epidemiology of AD and related diseases while comparing 

Blacks/African Americans to Whites, some pitfalls become apparent: 1) lack of 

clarity in the operationalization and/or definition of race, 2) using race as a proxy 

for genetics, 3) failure to account for socio-environmental factors (e.g.,, 

socioeconomic status, access to healthcare), 4) lack of autopsy validation, and 5) 

lack of racial/ethnic and scientific diversity within research teams. 

Using “race” as a variable in biomedical research is deceptively 

challenging, due to its vague definition, social implications, confounding factors, 

and potential for misinterpretation of results [235-237].  The historically evolving 

definitions of race (skin color, along with other physical and “ancestral” factors) 

have been discussed by Tishkoff et al.,, 2004; Guthrie RV, 2003; and Williams et 

al.,, 1997 [238-240]. Within these definitions, it is important to note the lack of 

clarity and consensus-based implications of the term “race” across various fields 

of study [235, 239, 241-243]. It has been noted that historic viewpoints of the 

biological construct of race were not grounded in firm scientific discovery [239, 

243, 244] but based on early 19th/20th century racist scientific studies, such as 

comparing “physiognomy” of Blacks/African Americans and Whites [209, 235, 

239, 240, 245].  It has now been well-established that race is, in many senses, a 
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social construct with categories that change over time due to social policy, 

cultural beliefs, and political practices [241-243]. Therefore, scholars have 

suggested that race/ethnicity not be used as a proxy for socio-environmental 

factors, but deconstructed into specific indicators such as region, language, 

education, economic level, and access to health care [246-248].  

An important consideration is the relationship between race and genetics: 

variability in genomic phenomena between racial categories and variation of 

ancestral markers within and between racial groups. There is more genetic 

variation of individuals within the same racial category than between individuals 

from different racial categories [249, 250]. Using genetic information on 5,269 

Blacks/African Americans, 8,663 Latinos, and 148,780 Whites from 23andMe, 

Bryc et al., found Blacks/African Americans living in different parts of the United 

States showed varying frequencies of genetic “African” ancestral markers. For 

example, a self-described “Black/African-American” living in the South had more 

“African” ancestral gene markers compared to “Blacks/African-Americans” living 

in the Northeast, Midwest, the Pacific Northwest, and California [250]. Moreover, 

self-identified “Blacks/African-Americans” living in the West and Southwest had 

higher frequencies of “Native American” ancestral gene markers compared to 

“Blacks/African-Americans” living in other parts of the United States [250]. Thus 

according to this sample, self-identified “Blacks/African-Americans” across the 

U.S. have varying proportions of “African” ancestral genetic markers. Evidence 

from this paper and others support the stance that race is not a dependable 

proxy for genetics given the sample-to-sample variation of ancestral genetic 
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backgrounds among individuals within the same category operationalized by self-

identification. Further, since many confounders (see below) apply, there is a 

serious risk of errantly associating a relatively “race-specific” genetic marker with 

a trait, when it actually is attributable to a regional or social factor. Continuing to 

use race as a proxy for genetic factors has the potential for detrimental political, 

social, and medical outcomes as a result of the over-simplification of results 

based on genetics, including medical stigmatization, racialization, genetic 

determinism, eugenics, discrimination, and missed/delayed diagnoses [236, 238, 

242, 251].   

To discuss race-related differences, environmental variables should be 

collected and accounted for before attributing and discussing genetics as a 

causal factor. There are many sources of bias and confounders [252]. 

Associations with race are potentially confounded by socioeconomic status 

(SES) variables including income level, education, and access to medical care 

[252-254]. In 2012, the U.S. Census Bureau reported that the median income for 

Black/African American households was $33,321 compared to $57,009 for White 

households [255]. In the same 2012 report, the percentage of Black/African 

American individuals living in poverty was 27.2% compared to 9.7% of White 

individuals [255]. In 2015, the Centers for Disease Control and Prevention (CDC) 

conducted a health interview survey that showed that 14.5% of Black/African 

American individuals were uninsured compared to 8.8% of White individuals 

[256]. The CDC reported that Black/African American individuals received worse 

care than White individuals for about 40% of health quality measures [256]. Many 
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SES variables, socio-environmental exposures, and medical care variables 

(access, utilization, and discrimination) have been shown to contribute to adverse 

health outcomes [235, 252, 257, 258]. In our opinion, scientists should not only 

adjust for these variables, but try to specifically identify the factors that contribute 

to dementia disparities in order to provide an appropriate intervention. 

Examples are appearing in the literature that reveal interactions between 

socioeconomic status (particularly poverty) and racial-ethnic factors [259-262], 

resulting in health disparities that can, in turn, influence interpretations of clinical 

and neuropathological associations. For example, Glymour et al.,, found that 

childhood and adult social conditions nearly entirely attenuated the association 

between race and stroke risk in a study population of 3,019 Blacks/African 

Americans and 17,642 White Americans [261]. Waldstein et al.,, found significant 

interactions between race and SES composite scores when predicting 

radiographically-detected white matter lesions in a study population of 85 

Blacks/African Americans and 62 White Americans [259]. In a study of 1,019 

Blacks/African Americans and 1,438 White Americans, Yaffe et al.,, observed 

that the incident dementia hazard ratio was greatly reduced and no longer 

significant when socioeconomic status was added to the statistical model [262].  

The results of these studies strongly support the notion that genetic mechanisms 

are highly unlikely to account entirely for the higher risk of dementia observed in 

Blacks/African Americans compared to White Americans. Therefore, it is 

necessary to include SES variables in analyses when studying dementia 

outcomes among Blacks/African Americans. Failure to do so can result in 
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misinterpretation of data as to the root causes of dementia outcomes within 

racial/ethnic groups. Notably, since 1994, NIH guidelines have specifically called 

for researchers to account for socioeconomic variables such as occupation, 

education, and income among human subjects [252].  

The importance of autopsy-based (neuropathological) data in AD and 

related dementias has also become increasingly clear.  For example, we 

highlight that both dementia and type II diabetes (T2D) are prevalent in 

Blacks/African Americans [263]. It is notable that data from different research 

centers have consistently reported that T2D is a risk factor for AD-type dementia 

in the clinical (no autopsy) context. By contrast, studies with a single added study 

design element -- an autopsy -- have shown the opposite result:  T2D is not a risk 

factor for AD pathology [63].  Instead, the autopsies reveal that the clinical 

diagnosis of AD was not completely accurate, and the T2D appears to exert its 

impact through a different (potentially additive when comorbid) disorder: 

cerebrovascular disease characterized by small and medium-sized blood vessel 

pathology [63].  Thus, a more vulnerable population may be underserved due to 

a clinical over-diagnosis of AD and an under-appreciation of T2D-related 

cognitive impairment.  This is all the more topical since therapies aimed at 

diabetes, blood pressure, and cholesterol may exert an impact on 

cerebrovascular pathology, but not yet AD itself.  

 According to the 2010 U.S. Census Bureau report, Blacks/African 

Americans make up 12.6% of the U.S. population [206]. However, Blacks/African 

Americans make up only ~3.6% of biomedical research faculty, ~4.1% of 
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physicians, and ~5.9% of social scientist faculty within the United States [264-

266]. Improving the representation of Blacks/African Americans across research 

and clinical disciplines will enable improved outcomes for AD center research 

teams. Several published studies have provided evidence that diversity of 

thought and identity among scientists enhances the quality and output of 

research collaborations, which makes for “better science” [267-269]. For 

example, Campbell et al., reported that gender-heterogeneous authorship teams 

received 34% more citations than publications produced by gender-uniform 

authorship teams [268].  

 

3.1 Addressing the Problem: Considerations for the Field 

It is appropriate that all populations within the U.S. be represented in biomedical 

research studies. In formulating hypotheses and conceptualizing study designs, 

the ultimate goal should be to improve the health and well-being of the target 

population [270]. In analyzing data within and across racial/ethnic groups, we 

encourage scientists to strive for better science by shifting the paradigm away 

from interpreting clinical/neuropathological results based on the framework of 

biologic determination to understanding and incorporating both biological and 

socio-environmental factors known to affect health outcomes. Therefore, 

Blacks/African Americans should be encouraged and included in biomedical 

research for the sole purpose of improving their health outcomes, not simply to 

identify a health disparity. With this paradigm shift in mind, if one is going to 

embark on this field of investigation, it is necessary to understand and attempt to 
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account for the anthropological, psychological, sociological, political, biological, 

and cultural associations/causations attributing to health outcomes in 

Blacks/African Americans. In Table 5.1, we have provided some points of 

considerations for scientists embarking on this type of investigation. It is 

important to note that Table 5.1 contents are not exhaustive but a starting point.  

 

3.1.1 Cultural Competency When Interpreting Research Findings 

Alongside adding new variables, we suggest that scientists provide a rationale for 

their research question and provide adequate discussion of research findings 

(see Table 1). There should be justification for studying “differences” between 

racial categories [241, 271], information on categorization of study population 

(e.g.,, skin color, self-report) [236], analyses and discussions of socio-political 

factors that can contribute to research findings [218, 236], and explanation of the 

social, biological, and medical implications of misinterpretation of data within their 

manuscript [241]. We encourage neuroscientists to solicit expert advice from 

anthropologists, sociologists, psychologists, African American community 

leaders, and other individuals who can provide contextual information on 

contributing factors to health outcomes. Ideally, these individuals can serve as 

co-authors on clinical-neuropathological manuscripts as suggested by Foster et 

al., who recommends publishing in cross-discipline journals [241].  
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Table 5.1. Topical questions and recommendations for a study related to dementia in 

African Americans 
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3.1.2 Recruitment of Research Participants 

In terms of context-specific issues, there is a lack of Black/African American 

representation in clinical-neuropathological datasets. Many articles have 

published goals and strategies for recruiting Blacks/African Americans and other 

marginalized groups into clinical studies--one major goal discussed in these 

articles is to build long-term trust within the Black/African American community 

[229, 234, 272]. Some recommendations for building trust are as follows: 1) 

publicly acknowledge the historical mistreatment of Blacks/African Americans in 

biomedical research [218, 230, 271-273], 2) adequately explain the consent 

process [218, 230, 274], and protections in place today to prevent mistreatment,  

3) engage in ongoing Q&A discussions with the community [218, 224, 234, 272, 

273, 275], and 4) create relationships that include the patients, caregivers, 

healthcare providers, community leaders, researchers, and study coordinators 

[276].   

ADCs shouldbe required to actively enroll Blacks/African Americans, 

attach specific research questions, and perform power analysis so that it can be 

ensured that comparisons among individuals from different racial/ethnic groups 

will be valid. At present, research centers may enroll a percent consistent with 

the surrounding geographic area as the ADC, but that often just satisfies the 

“inclusion table” and the group is too small to perform any meaningful 

comparisons or analyses. Thus, we suggest that the ADCs enroll “enough” 

subjects to test some intended hypotheses with the expectations of being able to 

see real associations or interactions/effect modification. 
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We believe that by implementing some of these strategies, it can help to 

improve recruitment of Blacks/Africans Americans across research institutions. 

Moreover, it can help to provide scientists with an appropriate sample size in 

order to understand dementia progression in Blacks/African Americans. In turn, it 

has the potential to lead to improved medical and societal solutions decreasing 

dementia within the Black/African American population. 

 

3.1.3 Data and Brain Tissue Collection 

In addition to building trust, we suggest that scientists collect potentially 

confounding variables to include in data analyses (see Table 5.1). Some of these 

variables include income level, education, zip code, nativity, health insurance 

status, income level, primary care physician availability, and employment status 

[236]. The addition of these variables would aid scientists in improving the 

understanding and analysis of clinical-neuropathological findings in 

Blacks/African Americans.  

An additional point relates to the importance of autopsy-based 

confirmation of medical diagnoses. Autopsy-based neuropathological diagnoses 

are central to AD research in general, but may be all the more important in a 

historically underserved population where clinical and social factors may track 

differently than among the populations that have traditionally been included in 

clinical studies. In order to improve brain donation from Blacks/African 

Americans, we suggest that recruitment strategies incorporate education on the 

brain donation procedure and protection of human subjects. 
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3.1.4 Recruiting & Retaining a Diverse Biomedical Research Workforce 

It is important to have a culturally diverse group of experts included in the 

research team [230, 272, 275]. One long-term strategy for ADCs is to increase 

African American representation among clinicians, scientists, epidemiologists, 

biostaticians, and study coordinators to aid in experimental design and data 

analysis of AD and related dementias within the Black/African American 

population.  Some strategies include effective career mentoring [62, 277], 

addressing unconscious bias and stereotype threat [265], and implementing 

pipeline and career development programs [278].  

 

4.1 Conclusion 

Studying AD and related dementias within the Black/African American population 

is a complex task due to the historical, cultural, and political factors that play a 

role in Black/African American participation in clinical studies. This commentary 

is not an exhaustive list of challenges and considerations, but, instead, aims to 

help influence movement in the right direction. Moreover, this information can be 

applied to other underserved populations worldwide. Dementia is a devastating 

and multi-faceted clinical syndrome. We hope that dementia research centers 

can improve their recruitment strategies, recognizing the subpopulation-specific 

challenges and opportunities, and studies can incorporate more of the relevant 

data. Scientists can create multi-disciplinary teams focused on understanding 

dementia in Black/African Americans and other marginalized groups, cognizant 

of the fact that research has the potential to do harm as well as good. 
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Chapter 6: Conclusion 

The overall objectives of my dissertation was were focused on studying two SVD-

type pathologies in the aged human brain using large autopsy data sets/brain 

repositories and understanding the strengths and weakness of these data 

sets/brain repositories. First, I focused on elucidating the frequency, clinical risk 

factors, cognitive sequelae, and co-pathologies of B-ASC and MVPs. With 

respect to B-ASC, we found that hypertension was a risk factor in the < 80 years 

at death group [24]. In addition, an ABCC9 gene variant (rs704180), previously 

associated with aging-related hippocampal sclerosis, was associated with B-ASC 

in the ≥ 80 years at death group [24]. In terms of cognition as determined by well-

established neurocognitive test scores, severe B-ASC was associated with worse 

global cognition in both age groups [24]. With respect to MVPs, we found that 

age was associated with MVP density (Ighodaro et al, In Preparation). There is a 

high frequency of mixed pathologies (vascular disease and neurodegeneration) 

in the aged brain, and we helped to describe the association between B-ASC and 

HS-Aging which could be an indicator of a currently unnamed “brain-wide” 

disease whose upstream pathogenesis involved alterations in ABCC9 [57]. 

Lastly, given the fact that African Americans (a group frequently characterized as 

having higher frequencies of AD-type dementia) are not optimally represented in 

neuropathological datasets/brain repositories, we wrote a manuscript on the 

challenges and considerations for studying dementia in Blacks/African Americans 

using these datasets and brain-repositories.   
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 This dissertation discusses new frontiers in the field of SVD research. 

These works provide improved understanding of age-related SVDs that will lay 

the groundwork for improved clinical trial designs and improved treatment 

options. We discovered novel risk factors for B-ASC in the aged brain [24]. We 

were one of the first groups to publish quantitative data on the cognitive status of 

individuals with B-ASC [24]. We provide evidence and make the case for a 

currently unnamed “brain-wide” disease characterized by both B-ASC and HS-

Aging [57]. To the best of our knowledge, we are the first to provide quantitative 

evidence for the association between MVPs and age using a large autopsy 

cohort (Chapter 3). In addition, we are the first to describe and show MVPs in 3D 

using a clearing tissue method (Chapter 3). Lastly, I wrote an imperative and 

insightful commentary on how neuroscientists can improve their analyses when 

studying dementia in African Americans which can also be applied to other 

marginalized groups (Ighodaro et al, In Revisions).  

Many future studies can result from our current findings discussed. For 

example, future analyses can be conducted to determine the specific cognitive 

domains that are associated with B-ASC pathology. Other areas of the brain can 

be studied in order to understand pathology of MVPs throughout the brain.  

Instead of calculating MVP density, the number of lumens per MVP can be 

recorded in order to see if lumen count correlates with vascular risk factors. 

Cases with high MVP densities can be stained with vasogeneic antibodies in 

order to understand MVP pathogenesis. 
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The work presented in this dissertation has provided me with the 

knowledge and skillset to further my biomedical research career in the field of 

neuroscience and cerebrovascular disease. With respect to neuropathology, I 

have learned the fundamentals of cerebrovascular disease, vascular dementia, 

human tissue bio-banking, human tissue fixation and processing, digital 

neuropathology image analysis, and immunohistochemistry. With respect to 

experimental design and data analysis, I have learned the fundamentals of 

experimental design, strengths/limitations of human longitudinal 

clinical/neuropathological datasets and regression modeling, and research 

ethics. With respect to research communication, I have learned the fundamentals 

of manuscript writing, grant writing, and oral communications (e.g, poster and 

slideshow presentations). Dementia related to cerebrovascular disease is highly 

frequent in the elderly population [2, 10] . I hope to be able to aid in the effort to 

decrease this statistic with my previous work, current knowledge, and skillset. 
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