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ABSTRACT OF DISSERTATION

Improved Methods and Selecting Classification Types for Time-Dependent
Covariates in the Marginal Analysis of Longitudinal Data

Generalized estimating equations (GEE) are popularly utilized for the marginal anal-
ysis of longitudinal data. In order to obtain consistent regression parameter esti-
mates, these estimating equations must be unbiased. However, when certain types
of time-dependent covariates are presented, these equations can be biased unless an
independence working correlation structure is employed. Moreover, in this case re-
gression parameter estimation can be very inefficient because not all valid moment
conditions are incorporated within the corresponding estimating equations. There-
fore, approaches using the generalized method of moments or quadratic inference
functions have been proposed for utilizing all valid moment conditions. However, we
have found that such methods will not always provide valid inference and can also be
improved upon in terms of finite-sample regression parameter estimation. Therefore,
we propose a modified GEE approach and a selection method that will both ensure
the validity of inference and improve regression parameter estimation.

In addition, these modified approaches assume the data analyst knows the type
of time-dependent covariate, although this likely is not the case in practice. Whereas
hypothesis testing has been used to determine covariate type, we propose a novel
strategy to select a working covariate type in order to avoid potentially high type II
error rates with these hypothesis testing procedures. Parameter estimates resulting
from our proposed method are consistent and have overall improved mean squared
error relative to hypothesis testing approaches.

Finally, for some real-world examples the use of mean regression models may be
sensitive to skewness and outliers in the data. Therefore, we extend our approaches
from their use with marginal quantile regression to modeling the conditional quantiles
of the response variable. Existing and proposed methods are compared in simulation
studies and application examples.

KEYWORDS: Generalized Estimating Equations, Time-Dependent Covariate, Em-
pirical Covariance Matrix, Working Correlation Structure, Mean Squared Error,
Marginal Quantile Regression
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Chapter 1 Introduction

1.1 Background and Significance

Longitudinal studies in which independent participants contribute repeated measure-

ments over time are common in practice. Generalized estimating equations (GEEs)

[3] are popularly used for the marginal analysis of longitudinal data. The main fea-

ture of the GEE approach is that when the mean structure is assumed to be correctly

specified, consistent regression parameter estimates can be obtained regardless of if

the working correlation structure is correctly given. However, when certain types

of time-dependent covariates are presented, the estimating equations, as well as the

regression parameter estimates, can be biased due to the use of invalid moment con-

ditions, which are functions of the parameters in statistical models and the data.

Although invalid moment conditions do not occur when an independence working

correlation structure is incorporated [4], resulting regression parameter estimation

can be very inefficient because all valid moment conditions may not be used when

employing this structure [5, 6].

In this dissertation, we therefore focus on utilizing all valid moment conditions,

with the goal of improving estimation efficiency over GEE with an independence work-

ing structure, and comparing our proposed approach with the existing approaches in

the presence of time-dependent covariates, as presented in Chapter 2. Chapter 3 dis-

cusses a strategy to select a working type of time-dependency because in practice it

may not be the case that the data analyst knows the type of time-dependent covari-

ate. In Chapter 4, we note that the application example regularly used in existing

literature with respect to marginal mean regression for longitudinal data analysis

may not be ideal due to highly skewed response distribution. Therefore, we extend

our approaches presented in Chapters 2 and 3 to marginal quantile regression for
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modeling the conditional quantiles of the response variable. Chapter 5 summarizes

the findings of this dissertation, discusses their importance and future work.

Specifically, Chapter 2 concentrates on improving estimation efficiency relative to

the generalized method of moments (GMM) [7] approach proposed by Lai and Small

[1] and the modified version of the quadratic inference functions (QIF) method [8]

proposed by Zhou et al. [9]. Furthermore, since limited attention has been given

to both approaches’ validity of inference in finite-sample settings, we first propose a

modified GEE approach to improve the validity of inference and regression parame-

ter estimation of the two existing approaches. The resulting approach will be more

efficient than GEE with an independence working structure, yet practically it still

takes advantage of GEE’s accessibility to analysts. Moreover, it has the potential to

perform better than the GMM approach of Lai and Small [1] and the modified QIF

of Zhou et al. [9] in small-sample settings due to potential variance inflations. How-

ever, which combination of method and working structure will result in the smallest

variances of regression parameter estimates will be unknown to the data analyst, and

therefore we extended the applicability of the correlation information criterion (CIC)

[10] in order to select a combination to use for inference.

The current estimation methods require the researcher to specify the classifica-

tion type of the time-dependent covariate, but this will often be unknown in prac-

tice. Therefore, multiple approaches have been proposed to choose a type of time-

dependency. In short, Lai and Small [1] proposed hypothesis testing based on GMM,

and Lalonde et al. [2] proposed an alternative approach using correlations that con-

ducts the testing of each individual moment condition. However, these approaches

can lead to too many moments being deemed valid, thus preferring biased regression

parameter estimation. As a result, Chapter 3 introduces a criterion that accounts

for the impacts moment conditions have on both the efficiency and bias of regression

parameter estimation corresponding to time-dependent covariates, with the goal of

2



minimizing mean squared error (MSE). Additionally, the proposed approach provides

consistent estimation. We note that Leung et al. [11] considered an empirical like-

lihood (EL) approach [12] in which moment conditions that are not guaranteed to

provide consistent estimation are weighted, relying upon their estimated likelihoods

of being valid, and linearly combined. Although this approach avoids having to select

a covariate type, and is no less efficient than GEE with an independence working

structure, we later demonstrate that this approach can be inefficient relative to our

proposed approach.

Existing methods for the marginal analysis of longitudinal data in the presence of

time-dependent covariates have only been developed for the modeling of the mean.

Nonetheless, for some real-world datasets the use of mean regression models may

be sensitive to skewed response distribution and outliers in the data. Therefore,

Chapter 4 first focuses on the use of marginal quantile regression and combines the

estimating equations approach of Fu and Wang [13], which has been shown to improve

estimation performance in marginal quantile regression and is robust to different

error distributions, with our estimation method from Chapter 2. In consequence,

the proposed approach can achieve notable gains in efficiency when compared with

estimating equations under an independence correlation structure. Second, we extend

the use of our selection approach from Chapter 3 to choose a working classification

type such that consistent regression parameter estimation is a result.

Copyright c© I-Chen Chen, 2018.
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Chapter 2 Improved Methods for the Marginal Analysis of Longitudinal

Data in the Presence of Time-Dependent Covariates

2.1 Introduction

Longitudinal studies in which subjects contribute repeated measurements over time

are popular in practice. Generalized estimating equations (GEEs) [3] are routinely

used for the marginal analysis of correlated data arising from such studies. When the

mean structure is assumed to be correctly specified, consistent regression parameter

estimates can often be obtained regardless of whether or not the working correlation

structure is correctly given. However, accurately modeling the correlation structure

can be very important with respect to estimation efficiency [6]. In addition, when

utilizing the empirical sandwich estimator of the covariance matrix of the regression

parameter estimates, valid large-sample inference can be attained.

Only a limited number of studies have addressed the validity of GEE when co-

variates are time-dependent. Although GEE requires unbiased estimating equations

in order to produce consistent regression parameter estimates, certain types of time-

dependent covariates can violate this requirement and result in invalid moment con-

ditions when GEE incorporates arbitrary working correlation structures, particularly

when the non-diagonal elements of the correlation matrix are non-zero [4]. Therefore,

Pepe and Anderson [4] suggested that the use of GEE with an independence working

correlation structure, which will yield unbiased estimating equations, may be a safe

approach in the presence of time-dependent covariates. However, when a marginal

analysis contains time-varying covariates, using an independence working structure

can lead to a considerable loss of parameter estimation efficiency because not all valid

moment conditions are utilized by the corresponding estimating equations [5, 6].

To improve estimation efficiency in the presence of time-dependent covariates by

4



making use of all valid moment conditions, Lai and Small [1] proposed the use of

generalized method of moments (GMM) [7]. They showed that their GMM approach

maintains or improves upon the efficiency of GEE with an independence working

structure. An alternative approach that has been proposed to improve efficiency

is a modified version of the quadratic inference functions (QIF) method [8]. This

method has the potential to improve efficiency relative to GEE, and therefore Zhou

et al. [9] modified the QIF approach such that it includes all valid moment conditions,

thus theoretically resulting in greater efficiency relative to GEE with an independence

working structure. They showed via simulation that their modified QIF and the GMM

approach of Lai and Small [1] performed similarly in terms of regression parameter

estimation when subjects contributed 5 repeated measurements, whereas their QIF

approach performed better when subjects contributed 15 repeated measurements.

Although the advantages of the GMM of Lai and Small [1] and the modified QIF

approach of Zhou et al. [9] have been demonstrated, limited attention has been given

to their validity and utility in finite-sample settings. In previous empirical work, it

has been shown that general methods based on GMM and QIF can result in liberal

inference, i.e., inflated test size and sub-nominal confidence interval (CI) coverage

probability (CP), due to the need for finite-sample corrections to standard error

estimators [14, 15, 16, 17]. The reason for this is because these approaches utilize an

empirical estimator for the optimal weighting matrix, and the use of this estimator can

increase the variances of regression parameter estimates relative to their theoretical

variances. The degree of variance inflation increases with the number of moment

conditions [17] and as the number of subjects decreases. The variance inflation can,

at least partially, offset any efficiency gains due to the use of the modified QIF and

GMM approaches. Additionally, in results to be presented later, we found the GMM

approach of Lai and Small [1] can also result in biased standard error estimates, and

thus invalid inference, due to the singularity of the approach’s weighting matrix. We

5



note that Lai and Small [1] pointed out certain instances from their simulation study

in which the empirical CPs resulting from the use of 95% CIs were low, even as small

as 65.5%.

To improve upon the validity of inference and regression parameter estimation of

the modified QIF and GMM approaches in the presence of time-dependent covari-

ates, we first propose a modified GEE approach. With this approach, we modify the

inverse of any working correlation structure such that any components that create in-

valid moment conditions are removed. Therefore, the resulting approach will be more

efficient than utilizing GEE with an independence working structure. Furthermore,

it also has the potential to perform better than the GMM approach of Lai and Small

[1] and the modified QIF in small-sample settings due to potential variance inflations.

Second, we propose an approach to select a method to use for inference. In the GEE

literature, criteria such as the correlation information criterion (CIC) [10] can be used

to select a working correlation structure, and Westgate [18] proposed simultaneously

selecting a working correlation structure and either GEE or the QIF approach by

utilizing the trace of the empirical covariance matrix (TECM). In this chapter, we

extend the use of the popular CIC to choose a method, either our modified GEE, the

GMM of Lai and Small [1], or the modified QIF approach, and a working structure

within the modified GEE or QIF. We note that the bias induced by the singularity

of the weighting matrix employed by the GMM of Lai and Small [1] can have a detri-

mental impact if allowed to be selected by our extended CIC approach. Therefore,

we propose for consideration a modified GMM approach that removes the singularity.

Section 2.2 introduces notation and issues with time-dependent covariates, and

discusses GEE with an independence working structure, the GMM of Lai and Small

[1], and the modified QIF approach. We also consider bias corrections for the em-

pirical estimators of the covariance matrix of regression parameter estimates. In

Section 2.3, we propose the modified GMM and GEE approaches in the presence of

6



time-dependent covariates. Furthermore, we introduce the extended CIC selection

criterion used for selecting the best combinations of approach and structure. In Sec-

tion 2.4, we carry out a simulation study to compare the estimation performances of

the proposed methods and to assess the CIC’s utility. In Section 2.5, we make com-

parisons in application to anthropometric screening data to evaluate the association

between body mass index (BMI) and morbidity among children in the Philippines.

We give concluding remarks in Section 2.6. Finally, supplementary material is pre-

sented in Section 2.7.

2.2 Time-Dependent Covariates and Current Methods

2.2.1 Notation and Time-Dependent Covariates

Assume we conduct a longitudinal study in which there are N independent subjects,

and these subjects are measured at each of T distinct time points. However, par-

ticipants need not have the same number of time points. The observed outcome

vector for the ith subject is denoted by Y i = [Yi1, . . . , YiT ]T , which has a marginal

mean given by E(Y i|X i) = µi that is linked to covariates via a function, f , such

that f(µij) = xTijβ for xij = [1, x1ij, . . . , x(p−1)ij]
T and β = [β0, β1, . . . , βp−1]

T . The

corresponding working covariance matrix for Y i is given by V i = A
1/2
i Ri (α)A

1/2
i ,

i = 1, . . . , N . Here, Ai = diag[φν(µi1), . . . , φν(µiT )] is a diagonal matrix representing

the working marginal variances, φ is a scale parameter assuming common dispersion,

ν is a known function, and Ri (α) is a symmetric positive definite working correlation

matrix with 1 along the diagonal and one or more unknown parameters given by α.

With the GEE approach [3] to marginal modeling, let Di = ∂µi/∂β
T . To obtain

the estimate of the regression parameters, β̂, we iteratively solve

N∑
i=1

DT
i A

−1/2
i R−1

i (α)A
−1/2
i (Y i − µi) = 0. (2.1)
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In Equation (2.1), the (k + 1)th row corresponds to the estimating equation for βk

and is given by
N∑
i=1

T∑
s=1

T∑
j=1

∂µis
∂βk

υsji (Yij − µij) = 0,

where υsji , i = 1, ..., N and s, j = 1, ..., T , is the (s, t)th element of V −1
i . If βk

corresponds to certain types of time-dependent covariates, as specified in the following

paragraph, then we may not have E

[
∂µis
∂βk

(Yij − µij)

]
= 0 for all s, j, 1 6 s, j 6

T . We note that if GEE incorporates a working independence structure, then the

only moment conditions that are used are the ones such that j = s, and hence all

corresponding expected values of these moment conditions are 0 regardless of covariate

type. Therefore, Pepe and Anderson [4] advocated the use of GEE with a working

independence structure.

Lai and Small [1] presented three types of time-dependent covariates. The kth

covariate is classified as a Type I time-dependent covariate if it satisfies

E

[
∂µis
∂βk

(Yij − µij)
]

= 0 for all s, j, s = 1, ..., T, j = 1, ..., T. (2.2)

A common example of a Type I covariate is time itself; i.e., age, grade levels, or

educational stages. We note that time-independent covariates also satisfy Equation

(2.2). A Type II time-dependent covariate satisfies

E

[
∂µis
∂βk

(Yij − µij)
]

= 0 for all s > j, j = 1, ..., T.

Specifically, Yij given xij does not influence the future time-dependent covariate pro-

cess, xi,j+1,...,xiT . In words, there is no feed-back cycle from the outcomes to the

covariate process. A time-dependent covariate is defined to be of Type III if it is not

of Type II or IV and it satisfies

E

[
∂µis
∂βk

(Yij − µij)
]
6= 0 for some s > j, j = 1, ..., T,

such that there does exist a feed-back cycle in which the covariate value affects the

outcome, and that outcome influences future covariate values. Lalonde et al. [2]
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defined a Type IV time-dependent covariate, which is the opposite of a Type II

covariate in that it satisfies

E

[
∂µis
∂βk

(Yij − µij)
]

= 0 for all s 6 j, s = 1, ..., T.

Specifically, Yij given xij does affect the future time-dependent covariate process,

xi,j+1,...,xiT , but the previous covariates have no impact on future outcomes, and

therefore the feed-back cycle is ruled out.

2.2.2 Existing Methods

Generalized Estimating Equations with Independence

Unbiased estimating equations can be obtained by using GEE with an independence

working correlation structure regardless of the types of time-dependent covariates

that are utilized within the marginal model. Therefore, this approach was advocated

by Pepe and Anderson [4]. However, this safe approach may have a great loss in

efficiency since the non-diagonal elements of V −1
i , i = 1, . . . , N , are not used [5].

Specifically, information from the estimation equations ∂µis/∂βk(Yij−µij), s 6= j, i =

1, . . . , N , in the GEE approach is eliminated, and therefore ignoring these additional

moment conditions, when valid, can result in a relative loss in efficiency with respect

to estimation of parameters corresponding to Type I and II time-dependent covariates

[1].

Generalized Method of Moments

Lai and Small [1] utilized GMM [7] in order to take advantage of all valid estimating

equations. Specifically, they created a vector, gi(β), comprised of all valid moment

conditions from subject i, i = 1, . . . , N , corresponding to the estimation of the p

parameters such that E[gi(β)] = 0. With respect to the kth covariate, or (k + 1)th

parameter, the T 2 available moment conditions are ∂µis/∂βk(Yij−µij), j, s = 1, . . . , T ,
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and only a subset are utilized for Type II-IV time-dependent covariates. There are T 2

valid moment conditions for a Type I time-dependent covariate or a time-independent

covariate, T (T + 1)/2 valid moment conditions for a Type II or IV time-dependent

covariate, and T valid moment conditions for a Type III time-dependent covariate.

To create gi(β), all valid moments corresponding to each parameter are stacked such

that the maximum length of gi(β) is T 2 × p.

Define

ḡN(β) =
1

N

N∑
i=1

gi(β).

This is used to create a quadratic form given by

QN(β) = N ḡTN(β)C−1
N (β)ḡN(β) (2.3)

in which CN(β) = (1/N)
∑N

i=1 gi(β)gTi (β) is an empirical covariance matrix that is

consistent for the optimal weighting matrix, E[CN(β)] = ΣN = (1/N)
∑N

i=1Cov[gi(β)].

The GMM estimator, β̂GMM , obtained by minimizing the quadratic form in Equation

(2.3) asymptotically solves the estimating equations given by

N ġTN(β)C−1
N (β)ḡN(β) = 0, (2.4)

in which ġN(β) = E[∂ḡN(β)/∂βT ]. We note that the estimating equations in Equa-

tion (2.4) are asymptotically equivalent to the optimal estimating equations given by

N ġTN(β)Σ−1
N ḡN(β) = 0 because CN(β)−ΣN

p→ 0 [8, 19]. Optimality is with respect

to minimizing the asymptotic variances of the regression parameter estimates out of

all possible estimating equations which take linear combinations of ḡN(β) [20].

Using CN in place of ΣN in the estimating equations increases estimation vari-

ability, thus inflating Cov(β̂) relative to its theoretical value [14, 15]. As a result,

the estimation performance of the GMM approach may not be as ideal as expected.

Furthermore, if the number of parameters is large in a model, the total number

of valid moment conditions might become large as well, particularly for a Type I
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time-dependent covariate that can utilize all valid moment conditions. This leads

to some potential questions with respect to high dimensional and non-invertible is-

sues [7, 19, 21], and increases estimation variability even further. As a result, the

finite-sample validity and utility of inference with this approach can be questionable.

Modified Quadratic Inference Functions

The QIF method proposed by Qu et al. [8] is based on the GMM and GEE ap-

proaches. Rewrite R−1
i =

∑m
r=1 αriM ri in Equation (2.1), where M ri, r = 1, . . . ,m,

i = 1, . . . , N , are known basis matrices and αri, r = 1, . . . ,m, i = 1, . . . , N , are func-

tions of correlation parameters [8]. This rewrites GEE as a linear combination of m

sets of unbiased estimating equations. For example, two basis matrices are typically

used for exchangeable and AR-1 working structures. For both structures, M 1i is an

identity matrix, whereas M 2i is a matrix with 0 on the diagonal and 1 elsewhere for

exchangeable and M 2i is a matrix with 1 on the sub-diagonal and 0 elsewhere for

AR-1.

Utilizing GMM, define

ḡN(β) =
1

N

N∑
i=1

gi(β) =
1

N


∑N

i=1 g1i(β)

...∑N
i=1 gmi(β)

 , (2.5)

where gri(β) = DT
i A

−1/2
i M riA

−1/2
i (Y i − µi), r = 1, . . . ,m, i = 1, . . . , N , and the

estimation of correlation parameters, αri, is not necessary. We note that ḡN(β)

here is defined differently than in the GMM approach of Lai and Small [1], and

therefore optimality is not with respect to the same linear combination as in the

GMM approach of Lai and Small [1]. Therefore, theoretical efficiencies can differ

for these two approaches. However, regression parameter estimates are obtained by

utilizing the same form for the estimating equations.
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In order to utilize the QIF approach in the presence of time-dependent covari-

ates, we have to ensure that ḡN(β), as given in Equation (2.5), only incorporates

valid moment conditions, depending on the type of time-dependent covariate. There-

fore, Zhou et al. [9], and similarly Cho and Dashnyam [22], modified the QIF and

constrained M 2i, denoted as M ∗
2i, to be a lower triangular matrix for a Type II

time-dependent covariate, and therefore there are T (T + 1)/2 estimating equations

for s > j to be used in g2i(β). Take three time points, for example, such that M ∗
2i =

0 0 0

1 0 0

1 1 0

 and


0 0 0

1 0 0

0 1 0

 for exchangeable and AR-1 working structures, respec-

tively. For a Type IV time-dependent covariate, M ∗
2i =


0 1 1

0 0 1

0 0 0

 and


0 1 0

0 0 1

0 0 0


for exchangeable and AR-1, respectively. Only the identity matrix, M 1i, is used for

a Type III time-dependent covariate such that T valid estimating equations are uti-

lized, and therefore M ∗
2i is a 3 by 3 matrix of 0’s for both structures. Additionally,

no modifications to M 2i are needed for a Type I time-dependent covariate because

all T 2 moment conditions are valid. These valid estimating equations then can be

optimally combined using the GMM approach of Hansen [7].

As with the GMM approach of Lai and Small [1], finite sample covariance inflation

occurs due to the use of CN(β̃) in place of ΣN within the estimating equations

[16, 17, 23]. As a result, the small-sample estimation performance of the modified

QIF approach may not be as ideal as expected. However, it typically will not have

singularity issues as with the GMM approach of Lai and Small [1], although there

are a few exceptions [19].

The asymptotic estimator for Cov(β̂) based on either the GMM or modified QIF

approach is given by (1/N)(ġTNC
−1
N ġN)−1 = (1/N)J−1

N , in which the components of
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these formulas depend on which method is utilized. However, this formula does not

account for the covariance inflation due to the use of CN(β̃) in place of ΣN in the

estimating equations. After accounting for this covariance inflation, we have

Ĉov(β̂) =
1

N
(Ip +G)J−1

N (Ip +G)T , (2.6)

in which G = − ∂

∂β∗T

[
J−1
N ġ

T
NC

−1
N (β∗)ḡN(β)

]
|β∗

=β [17]. However, the estimated

empirical covariances, (Y i−µ̂i)(Y i−µ̂i)T or êiê
T
i , i = 1, . . . , N , can still be negatively

biased for small sample size because the estimated residuals, êi = Y i − µ̂i, i =

1, . . . , N , are too small on average [24]. After utilizing a correction for this bias, such

as the correction of Mancl and DeRouen [24], for the GMM approach of Lai and

Small [1] and the modified QIF approach we propose estimating Cov(β̂) with

Σ̂BC,QIF = (1/N)(Ip +G)J−1
N ġ

T
NC

−1
N (β̃)C̃N(β̂)C−1

N (β̃)ġNJ
−1
N (Ip +G)T , (2.7)

as proposed by Westgate [17] for use with the typical QIF approach.

2.3 Proposed Methods

2.3.1 Modified GMM

The GMM approach of Lai and Small [1] was proposed because it theoretically is

equally or more efficient than GEE incorporating an independence working struc-

ture. However, as we will demonstrate in Supplemental Material, resulting standard

error (SE) estimates can be biased, thus resulting in invalid inference, due to the fact

that the empirical estimator, CN(β), of the optimal weighting matrix in Equation

(2.3) is singular because of the large number of moment conditions. The objective

quadratic form (3) and its corresponding inference then becomes unobtainable. Ad-

ditionally, we found the unique Moore-Penrose generalized inverse [25, 26] fails to

solve the weighting matrix. Therefore, we propose to incorporate a linear shrinkage

approach, originally proposed by Han and Song [19] to resolve potential singularity
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problems with QIF in special cases, with the GMM approach of Lai and Small [1].

This shrinkage approach theoretically leads to a consistent estimator and has the

same efficiency, but avoids singularity, thus allowing appropriate SE estimates to be

obtained and valid inference to be attained.

In short, we replace the original CN(β) of the GMM approach with SN(β) =

ρNµNI + (1− ρN)CN(β), in which µN is the mean of the diagonal elements of ΣN ,

I is the identity matrix, and ρN can be obtained by minimizing E[||SN(β)−ΣN ||2].

Formulas for estimates of ρN and µN can be obtained from [19]. Furthermore, a bias-

corrected estimate for Cov(β̂) can be obtained by modifying Equation (2.7), using

S−1
N in place of C−1

N .

2.3.2 Modified GEE

Due to the popularity of GEE and the limitations of the previously discussed methods,

we propose a modified GEE approach in which elements in the inverse of the working

correlation matrix are replaced with 0 whenever their use will yield biased equations.

Replacement is done for each individual estimating equation, depending on the type

of covariate. Specifically, our proposed estimating equation for βk, k = 0, 1, . . . , p−1,

is given by
N∑
i=1

Dk+1
i A

−1/2
i R∗−1

ik (α)A
−1/2
i (Y i − µi) = 0, (2.8)

where Dk+1
i is the (k + 1)th row of DT , and the elements of R∗−1

ik depend on the

covariate type. The modified GEE approach then stacks these individual estimating

equations, and regression parameter, correlation parameter, and SE estimation are

done in the same manner as with GEE. We note that small-sample SE corrections

[27, 28], such as the ones discussed for the modified QIF and GMM approaches, can

be applied with GEE and thus our modified GEE approach as well.

We propose to construct R∗−1
ik , k = 0, 1, . . . , p − 1, given in Equation (2.8) by

modifying R−1
i , the inverse of any given working correlation structure used in Equa-
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tion (2.1), according to the specific type of time-dependent covariate. Specifically, if

parameter k corresponds to a Type I time-dependent or time-independent covariate,

then all T 2 moment conditions are valid and therefore R∗−1
ik = R−1

i , implying that

the estimating equation is the same for GEE and our modified GEE. With respect to

the estimating equation for the parameter corresponding to a Type II time-dependent

covariate, R∗−1
ik is restricted to be a lower triangular matrix such that the informa-

tion from the T (T + 1)/2 valid moment conditions for s > j is included. Specifically,

R∗−1
ik is obtained by taking R−1

i and making all upper non-diagonal elements equal

to 0. The opposite is done with respect to a Type IV time-dependent covariate, such

that R∗−1
ik is obtained by taking R−1

i and making all lower non-diagonal elements

equal to 0. Finally, R∗−1
ik is an identity matrix in the estimating equation when the

parameter corresponds to a Type III time-dependent covariate. We note that with

our modified GEE, the working structure is technically no longer a true working cor-

relation structure because some non-zero elements of R−1
i are replaced with 0 such

that invalid moment conditions are not utilized, and therefore R∗−1
ik will not be the

inverse of a true working correlation matrix when βk corresponds to a Type II or IV

time-dependent covariate.

2.3.3 Analysis Method Selection

We have discussed multiple analysis methods to use in the presence of time-dependent

covariates: GEE with independence, the GMM approach of Lai and Small [1] or our

modified GMM approach to ensure valid inference, a modified QIF approach, and

our modified GEE. Unfortunately, none of these methods are guaranteed to always

perform best; i.e., produce the least variable regression parameter estimates. The

modified GMM and QIF approaches are both efficient but are with respect to differ-

ent optimalities, and therefore one is not guaranteed to outperform the other. Fur-

thermore, finite-sample inflations of the variances of regression parameter estimates,
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relative to the theoretical asymptotic variances, occurs with both of these methods.

As a result, use of our modified GEE may result in smaller realized variances of re-

gression parameter estimates. Therefore, an approach to select a single method, with

corresponding working correlation structure if applicable, is needed.

Our goal is to choose an analysis method and corresponding structure that results

in the least variable regression parameter estimates. To do so, we take a similar ap-

proach to Westgate [18] who proposed the use of the TECM [29] to choose between

the typical QIF and GEE approaches. Although the TECM is simple to obtain by

summing up the estimates of the variances of the parameter estimates, a potential

disadvantage in practice is that the variance(s) of any given parameter(s) might dom-

inate the overall criterion value. Therefore, we will extend the CIC [10] for use in our

setting, as it has found popularity in the GEE correlation structure selection litera-

ture. Specifically, let Σ̂BC denote our finite-sample corrected estimate of Cov(β̂) for

any given method under consideration for selection. The CIC value for that particu-

lar method is given by tr(Σ̂
−1

I Σ̂BC), in which Σ̂I = (
∑N

i=1D
T
i A

−1
i Di)

−1. The single

method, with corresponding working correlation structure if applicable, that yields

the smallest CIC value is then selected for conducting inference.

2.4 Simulation Study

2.4.1 Study Description

We now compare the finite-sample regression parameter estimation performances of

GEE incorporating the independence working correlation structure, the modified QIF,

and our modified GEE when time-dependent covariates are presented, in addition to

assessing how well the CIC works in terms of selecting a single method and corre-

sponding structure. Five modeling options regarding the combinations of analysis

approaches and working structures are GEE with an independence working correla-

tion structure, and combinations of either modified GEE or QIF approach with an
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exchangeable or AR-1 working structure. We note that our modified GMM approach

performed poorly in terms of regression parameter estimation due to weight being

assigned to an identity matrix, which can be inefficient for parameter estimation, and

therefore we initially do not consider it for selection for results presented within this

chapter. However, in Supplementary Material, we do consider it for selection and

we include results from the use of this approach and the original GMM approach of

Lai and Small [1] to show their relatively poor finite-sample performances in terms

of estimation and validity of inference.

Each setting of our simulation study consists of either 25, 50, 100, or 500 subjects

representing small (25/50), moderate (50/100), and large (100/500) sample sizes.

Each subject contributes 5 or 15 repeated measurements at the same time points.

Each setting is conducted through 1000 simulations using R version 3.1.2 [30]. Fur-

thermore, we utilize two scenarios motivated by the time-dependent covariate litera-

ture.

Scenario 1 comes from Diggle et al. [31], which is also used by previous studies

[1, 9, 11], and uses one Type II time-dependent covariate such that Yij = β0+β1x1ij+

β2x1i,j−1+γi+εij, and x1ij = κx1i,j−1+eij, j = 1, . . . , 5 or 15, where β = [0, 1, 1]T and

random effects, γi, εij, and eij, are mutually independent and normally distributed

with mean 0 and variance 1. We note that V ar(eij) = σ2
e . Additionally, because

the time process, x1ij, is stationary, x1i0 follows a normal distribution with mean

0 and variance σ2
e/(1 − κ2). Here we let κ = 0.5. The marginal mean is given by

E[Yij|x1ij] = β0 + (β1 + κβ2)x1ij, which gives true values of β0 = 0 for the marginal

intercept and β1 + κβ2 = 1.5 for the marginal parameter corresponding to the time-

dependent covariate. The covariance structures in Tables 2.1 and 2.3 are constructed

via the random effects in the above data generating model, and thus the working

correlation structures utilized in this study are all misspecified, whereas the structures

in Tables 2.2 and 2.4 are constructed by eliminating the random effects and generating
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data using a true AR-1 correlation structure. We note that the derivation of this

marginal mean can be found in Web-based Supplementary Materials of Leung et al.

[11].

Scenario 2 extends scenario 1 by adding two additional types of covariates. Specif-

ically, the marginal model now includes a time-independent binary indicator covari-

ate, which utilizes the same moment conditions as a Type I time-dependent covari-

ate, and a Type I time-dependent covariate corresponding to time itself. Therefore,

data are generated from Yij = β0 + β1x1ij + β2x1i,j−1 + β3x2i + β4x3ij + γi + εij,

where β = [0, 1, 1, 1.5, 0.5]T , x2i, i = 1, . . . , N , are independently sampled from

Bernoulli(0.6), and x3ij = j, i = 1, . . . , N , j = 1, . . . , 5 or 15. The marginal mean

becomes E[Yij|x1ij] = β0 + (β1 + κβ2)x1ij + β3x2i + β4x3ij, and therefore the true

marginal regression parameter values are β0 = 0, β1 + κβ2 = 1.5, β3 = 1.5, and

β4 = 0.5. The true covariance structures are the same as in scenario 1.

In order to assess the differences in estimation performances of the five modeling

options, we present ratios of empirical mean squared error (MSE) from non-intercept

parameters, which we refer to as relative efficiencies (REs), in Tables 2.1-2.4. For

any given RE, the numerator is the MSE from the use of GEE with an independence

working structure and the denominator is the MSE for the given method. The mod-

eling option that performs best therefore has the largest ratio. In order to assess the

utility of the CIC, the number of times each method with corresponding structure

is selected out of 1,000 simulations are given in the tables, and REs as previously

defined are also shown.

2.4.2 Results

When incorporating only one Type II time-dependent covariate in the settings of

scenario 1 and the true structure was constructed by random effects (see Table 2.1),

the REs indicated that our proposed modified GEE approach performed best overall
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in terms of regression parameter estimation for N ≤ 50. However, in some settings

when N ≥ 100, the modified QIF approach did demonstrate an efficiency advantage.

The reason for these findings is that the smaller N is, the greater the finite-sample

variance inflation that occurs with the modified QIF approach, thus allowing our

modified GEE approach to often work just as well or better. However, when the

working and true structures were AR-1 (see Table 2.2), the modified QIF was able

to outperform the modified GEE for N ≥ 50. The reason for this efficiency gain

is because the modified GEE and QIF technically do not utilize working correlation

matrices after setting elements equal to 0 in order to ensure only valid moment

conditions are utilized, and therefore QIF is theoretically more efficient than GEE

when the working structure is not the true correlation structure. We note that neither

the GMM approach of Lai and Small [1] nor our modified GMM approach performed

well in these settings, as presented in Supplemental Material.

In scenario 2 (see Tables 2.3 and 2.4), RE results corresponding to the Type II

time-dependent covariate were similar to results observed in scenario 1. Furthermore,

results with respect to time (Type I) and the time-independent covariate were simi-

lar. Under the true structure constructed by random effects (Table 2.3), GEE with

independence, the modified GEE and the modified QIF with either working structure

all produced similar REs regarding the both covariate types. However, the modified

QIF did not work as well when N ≤ 50. Alternatively, when the true structure was

AR-1 (Table 2.4), our modified GEE with AR-1 working structure worked best over-

all, with the exception of the setting of N = 500. Specifically, the modified GEE with

AR-1 working structure resulted in the largest REs corresponding to time and the

time-independent covariate. Furthermore, results in Supplementary Material showed

that both the GMM and modified GMM approaches had relatively poor performances

in all settings. We note that when the true structure was formed via random effects

(Table 2.3) and the number of repeated measurements, T , was increased to 15, the
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REs became larger even when the sample size was small. Similarly, as the number

of repeat measurements was increased to 15, the REs increased when the true and

working structures were AR-1 (Table 2.4).

As desired, the CIC tended to select most often the approach that resulted in

the greatest REs for parameter estimates, and therefore the CIC performed well in

terms of its resulting RE. When the true covariance structure was defined by random

effects, the modified GEE and QIF approaches incorporating the exchangeable work-

ing structure were chosen most often in either scenario. Although the CIC seemed

to have overselected the modified QIF approach when N 6 100 in some settings

when the true structure was constructed by random effects in either scenario, the

differences were not notable overall and might be due to random error (Tables 2.1

and 2.3). When the true correlation structure was AR-1, the CIC was most likely to

select the modified GEE or QIF approach incorporating the AR-1 working structure

(Tables 2.2 and 2.4). We note that when N 6 50 in scenario 1 (Table 2.2) and when

N = 50 or 100 and T = 15 in scenario 2 (Table 2.4), the modified GEE with AR-1

structure was chosen more frequently than the modified QIF with AR-1 structure,

although the latter method resulted in slightly larger REs corresponding to the Type

II time-dependent covariate. The reason for this is because the REs corresponding

to the intercept (results not shown), time, and the time-independent covariate were

notably greater for the modified GEE with AR-1 and thus had greater influence on

the CIC. However, the CIC still worked well in such situations in terms of its RE

with regard to the Type II time-dependent covariate.

In summary, the modified GEE approach worked well for N ≤ 50, while the

modified QIF tended to work best when N ≥ 100. However, realistically the data

analyst will not know for sure which of these two methods will perform best for the

analysis of any given dataset. Therefore, we proposed the use of the CIC to help to

determine which method, and working structure, should be utilized. The CIC was
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found to perform quite well in terms of REs. Specifically, with respect to time and

the time-independent covariate, REs resulting from the use of the CIC were close to

1 when the true structure was constructed by random effects, whereas the REs were

often greater than 1 when the true structure was AR-1, especially with regard to

time when T = 15. Furthermore, REs corresponding to the Type II time-dependent

covariate showed that the CIC worked very well in each scenario. Specifically, the

use of the CIC was notably better than sole use of GEE with independence, and for

any given setting the CIC typically performed similarly to the sole use of the best

method and working structure combination(s).

2.5 Application

We now compare our proposed approaches with the existing methods using data

from the study of anthropometric screenings among children [32, 33]. In this study,

the target is to explore the association between anthropometric covariates at a given

survey time point and morbidity outcomes in the future. The data were originally

collected from 1984 to 1985, obtaining survey information from 448 households [32].

Lai and Small [1] used a subset of data containing 370 children (6 14 years) from

Bhargava [33]. This data consists of repeated measurements from each child at three

time points with four months between each subsequent measurement. Children with

incomplete data were excluded, and only one child per household was chosen, which

eliminates the need to account for statistical correlation due to household clustering

[33].

We utilize the marginal model used by Lai and Small [1], Lueng et al. [11], and

Zhou et al. [9] that is given by

µij = β0 + β1BMIij + β2Ageij + β3Femalei + β4SR2ij + β5SR3ij, j = 1, 2, 3,

where µij is the ith child’s marginal mean morbidity index during the jth four-month
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interval. We note that the morbidity index is given by

yij = log

(
days child was sick in last 2 weeks prior to time j + 0.5

14.5− days child was sick in last 2 weeks prior to time j

)
,

adopting the same logistic transformation made by Bhargava [33] and Lai and Small

[1]. Age and the indicators for survey rounds 2 and 3, which are used to account for

seasonality in morbidity, are Type I time-dependent covariates. Female indicator is

a time-independent covariate. Furthermore, we treat body mass index (BMI) as a

Type II time-dependent covariate based on the hypothesis testing done by Lai and

Small [1].

As in the simulation study, we analyze this dataset using GEE with a working in-

dependence structure, our proposed modified GEE, and the modified QIF approach.

The original and modified GMM approaches are excluded because of their low pre-

cision in estimation. Table 2.5 gives regression parameter estimates, bias-corrected

empirical SE estimates, and CIC values. We note that the empirical SE estimates

resulting from the use of GEE with independence are notably different from SE esti-

mates presented in Lai and Small [1] and Zhou et al. [9], as these manuscripts utilized

model-based SE estimates which are not valid unless independence truly is the correct

structure.

The CIC values indicate that our proposed modified GEE approach is preferable

for the analysis of this particular dataset (see Table 2.5). Furthermore, the CIC

value is smallest for the modified GEE with AR-1 working structure, and hence this

particular method and working structure is preferable. We note, however, that all

the approaches actually produce similar results in terms of regression parameter and

SE estimates, with some slight exceptions with the modified QIF approach. The

reason for this is because the correlation among repeated measurements of morbidity

outcomes is small, as explained by Lai and Small [1]. The estimated correlation

parameters, α̂, from the modified GEE approach, as indicated at the bottom of Table

2.5, are presented to express the small correlation.
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2.6 Concluding Remarks

When certain types of time-dependent covariates are included in a marginal model,

the estimating equations used by GEE may be biased, thus resulting in biased re-

gression parameter estimates unless the independence working correlation structure

is used. However, GEE incorporating independence can be inefficient because not

all valid moment conditions are utilized for the estimation of regression parameters

corresponding to Type I and II time-dependent covariates. Therefore, GMM and

modified QIF approaches that utilize all valid moment conditions have been pro-

posed to improve efficiency. However, we found that these approaches may result in

invalid inference (results in Supplementary Material). To improve upon the validity of

inference with the GMM approach, we developed a modified, non-singular weighting

matrix. Unfortunately, this modified GMM approach did not perform well in terms of

regression parameter estimation (results in Supplementary Material), and therefore

we do not advocate its use in practice. Furthermore, we applied previously developed

small-sample corrections to estimators of the covariance matrix of regression param-

eter estimates. More notably, in order to improve regression parameter estimation

while still attaining valid inference, we proposed a modified GEE approach which is

meant to potentially improve upon the performance of the modified QIF when the

number of subjects is not large. Which combination of method and working struc-

ture will result in the smallest variances of regression parameter estimates will be

unknown to the data analyst, and therefore we extended the applicability of the CIC

in order to select a combination under consideration. In short, the proposed modified

GEE often outperformed all other methods that have been proposed for the marginal

analysis of longitudinal data in the presence of time-dependent covariates. However,

the modified QIF did perform best, in terms of estimating the regression parameter

corresponding to a Type II time-dependent covariate, in some large-sample settings

in our simulation study due to its theoretical efficiency advantage. Furthermore, the
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CIC performed well in terms of selecting the best method and structure combinations

and thus regression parameter estimation.

Although we only used working independence, exchangeable, and AR-1 correla-

tion structures in our studies, other working structures are available as well, including

less parsimonious Toeplitz forms and unstructured working matrices. We note that

the modified conjugate gradient QIF approach of Zhou et al. [9] essentially assumes

an unstructured working structure, and finite-sample bias corrections for the empir-

ical covariance matrix of regression parameter estimates have been proposed for the

original approach which can easily be incorporated with this modified approach [34].

Although the unstructured form can be included with the modified QIF [9, 17, 21, 34],

other working structures cannot be used due to the need for R−1
i ≈

∑m
r=1 αriM ri.

Therefore, our modified GEE approach has an additional advantage in terms of its

flexibility with respect to the working structures it can implement. We note with

both the modified QIF and GEE, estimating equations corresponding to Type II and

IV time-dependent covariates only utilize valid moment conditions. As a result, the

working structure is technically no longer an actual correlation structure because

some non-zero elements are replaced with 0 such that invalid moment conditions are

not utilized.

The GMM approach of Lai and Small [1] was previously shown to have unreliable

inference if a large number of moment conditions are used [35]. Lai and Small [1]

empirically demonstrated that the coverage probability of a confidence interval for a

parameter corresponding to a Type II time-dependent covariate, for instance, has a

notable decline from the nominal 0.95 level when the number of moment conditions

increases, which can occur, for instance, as the number of time points increases.

To correct for this type of invalid inference, we utilized small-sample corrections.

However, the novel finding in our chapter is that we found coverage probabilities can

be non-nominal due to singularity of the empirical weighting covariance matrix, thus
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motivating us to propose the modified GMM approach.

In this chapter, we assumed the analyst knows the type of time-dependent co-

variate(s). However, in practice this may not be the case. In such situations, a

conservative, but safe, approach would be to treat unknown types of time-dependent

covariates as Type III in order to ensure that only valid moment conditions are uti-

lized. An alternative option would be to conduct a test. To assess a specific type

of time-dependent covariate, Lai and Small [1] proposed a hypothesis test to exam-

ine the validity of moment conditions using the GMM approach. However, due to

the inadequacies we found with this approach, we feel further study is warranted.

Additionally, Lalonde et al. [2] proposed an alternative testing approach for assess-

ing the validity of moment conditions based on tests of correlation between moment

conditions at different time points.

Our simulation study and application example utilized marginal models for contin-

uous responses. However, the methodology addressed in this chapter is also applicable

to marginal generalized linear models with different link functions, and unbalanced

repeated measurements are permittable. Due to the added complexity of data gen-

eration with respect to time-dependent covariates, future research is needed on the

simulation of such data for any type of outcome.

2.7 Supplementary Material

We now present simulation results that supplement the results presented in the chap-

ter. We also study the GMM approach of Lai and Small [1] and our modified version

of their GMM approach. In Table 2.6 we show that all studied methods, with the

exception of the GMM approach, result in near-nominal inference. In Table 2.7 we

further assess the invalidity of inference corresponding to the GMM approach. Fi-

nally, in Table 2.8 we demonstrate the loss in efficiency when using our modified

version of the GMM approach relative to the other valid approaches. For conciseness
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of presentation and to avoid convergence issues resulting from the GMM approach

when the number of repeated measurements is 15, we only present results for T = 5

corresponding to the settings of Scenario 1, as described in the chapter, for which the

marginal model incorporates a Type II time-dependent covariate.

In Table 2.6, empirical coverage probabilities (CPs) of 95% confidence intervals

are given for the five modeling options studied in the chapter, as well as the GMM

approach and our modified GMM approach. Regardless of the given true covariance

structure, the empirical CPs for the original GMM approach are low, and once the

CP was even as small as 0.265. We note that CPs with this approach reduced with

the number of subjects. On the other hand, CPs corresponding to all other methods

are close to 0.95 regardless of the working structure and number of subjects.

Table 2.7 demonstrates that the invalidity of the GMM approach is due to biased

standard error (SE) estimation, and to our knowledge this is the first study to actually

assess the validity of SE estimation with this approach. Specifically, Table 2.7 presents

empirical standard deviations (ESDs) of β̂1 and empirical means of corresponding

SE estimates. Ideally the empirical means of SE estimates should be similar to the

corresponding ESDs. However, as the number of subjects decreased, the amount of

bias in the SE estimates increases, as can be seen via the difference in ESDs and

empirical mean SEs. As a result, empirical CPs were notably influenced. We again

note that the reason for this bias in the SE estimates is due to the singularity of the

empirical weighting covariance matrix, CN , because of the use of numerous moment

conditions.

In Table 2.8, we present the relative efficiencies (REs) and correlation information

criterion (CIC) selection frequencies of our modified GMM approach along with the

five modeling options used within the chapter’s simulation study. The REs show that

our proposed modified GMM approach using linear shrinkage does not perform well

with respect to regression parameter estimation. The reason for this result is that
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the empirical covariance matrix of this approach, although asymptotically optimal,

is no longer necessarily optimal in finite-sample settings due to the need to assign

weight to an identity matrix. Therefore, although we proposed this method such that

valid inference can be attained, we do not advocate its use in practice. However, we

do note that the CIC very rarely chose the modified GMM approach due to its poor

performance, and therefore considering it for selection typically was not detrimental.

Copyright c© I-Chen Chen, 2018.
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Table 2.1: Results from scenario 1 for settings in which one Type II time-dependent
covariate is utilized. True structure is constructed by random effects.

CIC GEE Modified GEE Modified QIF

T N Ind Exch AR-1 Exch AR-1

25 RE 1.10 1.00 1.18 1.11 1.08 1.05
CIC Selection Frequencies 48 288 129 326 209

5
50 RE 1.13 1.00 1.16 1.10 1.13 1.06

CIC Selection Frequencies 26 323 73 391 187
100 RE 1.18 1.00 1.21 1.12 1.19 1.10

CIC Selection Frequencies 5 351 37 438 169
500 RE 1.17 1.00 1.18 1.10 1.18 1.11

CIC Selection Frequencies 0 327 0 625 48

25 RE 1.30 1.00 1.42 1.15 1.42 1.11
CIC Selection Frequencies 19 377 39 367 198

15
50 RE 1.37 1.00 1.42 1.15 1.40 1.17

CIC Selection Frequencies 3 411 25 385 176
100 RE 1.34 1.00 1.39 1.17 1.42 1.20

CIC Selection Frequencies 0 394 1 509 96
500 RE 1.51 1.00 1.48 1.17 1.56 1.24

CIC Selection Frequencies 0 270 0 728 2

T - number of repeated measurements; N - number of independent subjects;
Ind - independence; Exch - exchangeable; CIC - correlation information criterion;
GEE - generalized estimating equations; QIF - quadratic inference function;
RE - relative efficiency. For each setting, they compare the empirical
mean squared error (MSE) from the use of the GEE with independence structure
to the MSEs from the use of different modeling options or CIC;
CIC Selection - Number of times out of 1,000 simulations that CIC selected the given
method and corresponding structure.
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Table 2.2: Results from scenario 1 for settings in which one Type II time-dependent
covariate is utilized. True structure is AR-1.

CIC GEE Modified GEE Modified QIF

T N Ind Exch AR-1 Exch AR-1

25 RE 1.32 1.00 1.25 1.36 1.20 1.32
CIC Selection Frequencies 17 92 471 124 296

5
50 RE 1.30 1.00 1.27 1.36 1.24 1.38

CIC Selection Frequencies 4 73 439 90 394
100 RE 1.35 1.00 1.26 1.36 1.23 1.45

CIC Selection Frequencies 1 23 458 29 489
500 RE 1.41 1.00 1.27 1.34 1.28 1.43

CIC Selection Frequencies 0 0 96 0 904

25 RE 1.38 1.00 1.10 1.43 1.07 1.46
CIC Selection Frequencies 9 36 496 98 361

15
50 RE 1.40 1.00 1.08 1.42 1.05 1.48

CIC Selection Frequencies 0 6 512 30 452
100 RE 1.55 1.00 1.11 1.49 1.10 1.67

CIC Selection Frequencies 0 0 414 2 584
500 RE 1.65 1.00 1.12 1.49 1.13 1.66

CIC Selection Frequencies 0 0 71 0 929

T - number of repeated measurements; N - number of independent subjects;
Ind - independence; Exch - exchangeable; CIC - correlation information criterion;
GEE - generalized estimating equations; QIF - quadratic inference function;
RE - relative efficiency. For each setting, they compare the empirical
mean squared error (MSE) from the use of the GEE with independence structure
to the MSEs from the use of different modeling options or CIC;
CIC Selection - Number of times out of 1,000 simulations that CIC selected the given
method and corresponding structure.
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Table 2.3: Results from scenario 2 for settings in which one time-independent, one
Type I, and one Type II time-dependent covariate are utilized. True structure is
constructed by random effects.

CIC GEE Modified GEE Modified QIF
T N Ind Exch AR-1 Exch AR-1

RE of Time-Independent 0.97 1.00 1.00 1.00 0.93 0.86

25
RE of Type I Covariate 0.97 1.00 1.00 0.96 0.95 0.87
RE of Type II Covariate 1.11 1.00 1.15 1.09 1.07 0.98

CIC Selection Frequencies 49 257 169 322 203
RE of Time-Independent 0.98 1.00 1.00 0.98 0.97 0.93

5

50
RE of Type I Covariate 0.98 1.00 1.00 0.97 0.97 0.92
RE of Type II Covariate 1.16 1.00 1.20 1.13 1.15 1.05

CIC Selection Frequencies 37 320 88 371 184
RE of Time-Independent 0.99 1.00 1.00 0.98 0.99 0.96

100
RE of Type I Covariate 1.00 1.00 1.00 0.97 0.99 0.98
RE of Type II Covariate 1.18 1.00 1.21 1.13 1.18 1.08

CIC Selection Frequencies 16 366 45 419 154
RE of Time-Independent 1.00 1.00 1.00 0.98 0.99 0.99

500
RE of Type I Covariate 1.00 1.00 1.00 0.95 1.00 1.00
RE of Type II Covariate 1.17 1.00 1.17 1.11 1.17 1.13

CIC Selection Frequencies 0 363 1 576 60
RE of Time-Independent 0.97 1.00 1.00 1.00 0.96 0.87

25
RE of Type I Covariate 0.98 1.00 1.01 0.96 0.97 0.88
RE of Type II Covariate 1.28 1.00 1.45 1.15 1.38 1.07

CIC Selection Frequencies 19 366 69 346 200
RE of Time-Independent 1.00 1.00 1.00 1.00 0.97 0.94

15

50
RE of Type I Covariate 1.00 1.00 1.00 0.93 0.96 0.94
RE of Type II Covariate 1.37 1.00 1.47 1.16 1.46 1.10

CIC Selection Frequencies 2 413 37 367 181
RE of Time-Independent 1.00 1.00 1.00 1.00 0.98 0.97

100
RE of Type I Covariate 1.00 1.00 1.00 0.94 0.98 0.96
RE of Type II Covariate 1.37 1.00 1.39 1.15 1.43 1.13

CIC Selection Frequencies 1 420 12 449 118
RE of Time-Independent 0.99 1.00 1.00 0.99 0.99 0.99

500
RE of Type I Covariate 1.00 1.00 1.00 0.95 1.00 0.99
RE of Type II Covariate 1.51 1.00 1.48 1.17 1.54 1.21

CIC Selection Frequencies 0 342 0 642 16
T - number of repeated measurements; N - number of independent subjects;
Ind - independence; Exch - exchangeable; CIC - correlation information criterion;
GEE - generalized estimating equations; QIF - quadratic inference function;
RE - relative efficiency. For each setting, they compare the empirical
mean squared error (MSE) from the use of the GEE with independence structure
to the MSEs from the use of different modeling options or CIC;
CIC Selection - Number of times out of 1,000 simulations that CIC selected the given
method and corresponding structure.
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Table 2.4: Results from scenario 2 for settings in which one time-independent, one
Type I, and one Type II time-dependent covariate are utilized. True structure is
AR-1.

CIC GEE Modified GEE Modified QIF
T N Ind Exch AR-1 Exch AR-1

RE of Time-Independent 1.00 1.00 1.00 1.04 0.97 0.96

25
RE of Type I Covariate 1.03 1.00 1.00 1.05 0.97 0.91
RE of Type II Covariate 1.32 1.00 1.27 1.35 1.23 1.25

CIC Selection Frequencies 13 79 551 141 216
RE of Time-Independent 1.02 1.00 1.00 1.03 0.97 0.95

5

50
RE of Type I Covariate 1.03 1.00 1.00 1.05 0.99 0.97
RE of Type II Covariate 1.34 1.00 1.33 1.38 1.30 1.35

CIC Selection Frequencies 2 61 596 96 245
RE of Time-Independent 1.05 1.00 1.00 1.08 0.98 1.02

100
RE of Type I Covariate 1.03 1.00 1.00 1.05 0.99 1.00
RE of Type II Covariate 1.29 1.00 1.26 1.32 1.23 1.32

CIC Selection Frequencies 0 25 598 54 323
RE of Time-Independent 1.06 1.00 1.00 1.06 0.99 1.06

500
RE of Type I Covariate 1.05 1.00 1.00 1.05 1.00 1.04
RE of Type II Covariate 1.40 1.00 1.27 1.34 1.27 1.45

CIC Selection Frequencies 0 0 369 0 631
RE of Time-Independent 1.03 1.00 1.00 1.06 0.96 0.92

25
RE of Type I Covariate 1.08 1.00 1.00 1.13 0.95 0.98
RE of Type II Covariate 1.35 1.00 1.12 1.45 1.06 1.35

CIC Selection Frequencies 12 31 620 89 248
RE of Time-Independent 1.06 1.00 1.00 1.07 0.97 1.03

15

50
RE of Type I Covariate 1.15 1.00 1.00 1.16 0.99 1.10
RE of Type II Covariate 1.38 1.00 1.09 1.42 1.06 1.46

CIC Selection Frequencies 2 12 673 32 281
RE of Time-Independent 1.05 1.00 1.00 1.07 0.99 1.04

100
RE of Type I Covariate 1.14 1.00 1.00 1.17 0.99 1.09
RE of Type II Covariate 1.50 1.00 1.16 1.48 1.13 1.54

CIC Selection Frequencies 0 0 661 2 337
RE of Time-Independent 1.05 1.00 1.00 1.05 1.00 1.05

500
RE of Type I Covariate 1.12 1.00 1.00 1.13 1.00 1.12
RE of Type II Covariate 1.53 1.00 1.14 1.50 1.13 1.67

CIC Selection Frequencies 0 0 359 0 641
T - number of repeated measurements; N - number of independent subjects;
Ind - independence; Exch - exchangeable; CIC - correlation information criterion;
GEE - generalized estimating equations; QIF - quadratic inference function;
RE - relative efficiency. For each setting, they compare the empirical
mean squared error (MSE) from the use of the GEE with independence structure
to the MSEs from the use of different modeling options or CIC;
CIC Selection - Number of times out of 1,000 simulations that CIC selected the given
method and corresponding structure.
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Table 2.5: Parameter estimates, bias-corrected standard error estimates (in parenthe-
ses), and CIC values resulting from analyses of the anthropometric screening dataset.

GEE Modified GEE Modified QIF

Covariate Independence Exch AR-1 Exch AR-1

BMI -0.06 (0.05) -0.05 (0.06) -0.05 (0.05) -0.08 (0.05) -0.07 (0.05)

Age -0.01 (0.003) -0.01 (0.004) -0.01 (0.003) -0.01 (0.004) -0.01 (0.003)

Gender 0.15 (0.11) 0.15 (0.11) 0.14 (0.11) 0.13 (0.11) 0.15 (0.11)

SR 2 -0.28 (0.11) -0.28 (0.11) -0.28 (0.11) -0.26 (0.11) -0.31 (0.11)

SR 3 0.02 (0.13) 0.02 (0.13) 0.03 (0.13) 0.05 (0.13) 0.01 (0.13)

CIC 7.05 5.87 5.60 7.06 7.00

α̂ 0.12 0.15

GEE - generalized estimating equations; QIF - quadratic inference function;
Exch - exchangeable; SR - survey round; CIC - correlation information criterion;
α̂ - estimated correlation parameter.
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Table 2.6: Empirical coverage probabilities of 95% confidence intervals covering β1
from the settings of scenario 1 and T = 5.

GEE Modified GEE Modified QIF GMM

Structure N Independence Exch AR-1 Exch AR-1 Lai & Small Modified

25 0.959 0.954 0.953 0.954 0.958 0.336 0.954

1
50 0.959 0.962 0.960 0.960 0.954 0.778 0.952

100 0.949 0.951 0.947 0.946 0.942 0.829 0.945

500 0.953 0.954 0.956 0.952 0.952 0.925 0.961

25 0.952 0.953 0.953 0.946 0.956 0.265 0.946

2
50 0.947 0.955 0.953 0.953 0.951 0.793 0.945

100 0.949 0.954 0.948 0.954 0.957 0.822 0.953

500 0.958 0.957 0.954 0.956 0.955 0.922 0.955

Structure 1 - true structure is constructed by random effects,
Structure 2 - true structure is AR-1;
N - number of independent subjects;
GEE - generalized estimating equations; QIF - quadratic inference function;
GMM - generalized method of moments; Exch - exchangeable;
Lai & Small - the GMM approach of of Lai and Small [1];
Modified - the proposed modified GMM approach.
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Table 2.7: Empirical standard deviations (ESDs) of β̂1 and empirical mean standard
error (SE) estimates, along with empirical coverage probabilities (CPs) of 95% confi-
dence intervals covering β1, from the settings of scenario 1 and T = 5 for the GMM
approach of Lai and Small [1].

Structure N ESD Empirical Mean SE CP

25 0.292 0.057 0.336

1
50 0.119 0.075 0.778

100 0.085 0.062 0.829

500 0.033 0.031 0.925

25 0.185 0.029 0.265

2
50 0.069 0.044 0.793

100 0.048 0.033 0.822

500 0.019 0.017 0.922

Structure 1 - true structure is constructed by random effects, and
Structure 2 - true structure is AR-1;
N - number of independent subjects.
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Table 2.8: Relative efficiencies and CIC selection frequencies. Proposed modified
GMM approach is added to the settings of scenario 1 and T = 5.

CIC GEE Modified GEE Modified QIF Modified
GMM

Structure N Ind Exch AR-1 Exch AR-1

25 RE 1.02 1.00 1.18 1.11 1.08 1.05 0.75
CIC Selection 20 244 103 305 193 135

1

50 RE 1.09 1.00 1.16 1.10 1.13 1.06 0.71
CIC Selection 22 314 71 385 183 25

100 RE 1.18 1.00 1.21 1.12 1.19 1.10 0.70
CIC Selection 4 351 36 438 169 2

500 RE 1.17 1.00 1.18 1.10 1.18 1.11 0.68
CIC Selection 0 327 0 625 48 0

25 RE 1.25 1.00 1.25 1.36 1.20 1.32 0.70
CIC Selection 9 85 449 118 292 47

2

50 RE 1.30 1.00 1.27 1.36 1.24 1.38 0.68
CIC Selection 3 72 436 90 393 6

100 RE 1.35 1.00 1.26 1.36 1.23 1.45 0.66
CIC Selection 1 23 458 29 489 0

500 RE 1.41 1.00 1.27 1.34 1.28 1.43 0.63
CIC Selection 0 0 96 0 904 0

Structure 1 - true structure is constructed by random effects,
Structure 2 - true structure is AR-1;
N - number of independent subjects; Ind - independence; Exch - exchangeable;
CIC - correlation information criterion; GEE - generalized estimating equations;
QIF - quadratic inference function; GMM - generalized method of moments;
RE - relative efficiency. For each setting, they compare the empirical
mean squared error (MSE) from the use of the GEE with independence structure
to the MSEs from the use of different modeling options or CIC;
CIC Selection - Number of times out of 1,000 simulations that CIC selected the given
method and corresponding structure.
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Chapter 3 A Novel Approach to Selecting Classification Types for

Time-Dependent Covariates for the Marginal Analysis of Longitudinal

Data

3.1 Introduction

Generalized estimating equations (GEE) [3] are popular for the marginal analysis

of longitudinal data in which subjects contribute repeated measurements over time.

Consistent regression parameter estimates, under a correctly given mean structure,

can often be obtained even if the working correlation structure is incorrectly specified.

However, in the presence of certain types of time-dependent covariates, the estimating

equations, and therefore the regression parameter estimates, can be biased due to the

use of invalid moment conditions. Although invalid moment conditions do not exist

when using an independence working correlation structure [4], resulting regression

parameter estimation can be very inefficient because all valid moment conditions

may not be used when employing this structure [5, 6].

In order to use all valid moment conditions, with the goal of improving estimation

efficiency relative to GEE with a working independence structure, multiple methods

have been proposed. In short, Lai and Small [1] took a generalized method of mo-

ments (GMM) approach [7], and Zhou et al. [9] modified the quadratic inference

function (QIF) method [8]. Furthermore, Chen and Westgate [36] proposed a modi-

fied GEE approach that potentially improves upon the performance of the modified

QIF method, particularly when the number of independent subjects is not large. Fur-

thermore, the modified GEE and QIF approaches have been shown to perform better

than the GMM approach [9, 36].

Although these methods require the data analyst to specify the type of time-

dependent covariate, this will often be unknown in practice. Therefore, Leung et al.
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[11] considered an empirical likelihood (EL) approach [12] in which moment conditions

that are not guaranteed to provide consistent estimation are weighted, depending

upon their estimated likelihoods of being valid, and linearly combined. Although

this approach avoids the need to choose a covariate type, and is no less efficient than

GEE with a working independence structure, we later demonstrate that this approach

can be inefficient relative to our proposed approach. Alternatively, a covariate type

could be determined via hypothesis testing. Specifically, Lai and Small [1] proposed

hypothesis testing based on GMM, and Lalonde et al. [2] proposed an alternative

approach utilizing correlations that requires the testing of each individual moment

condition. However, in results to be presented later, we show that these approaches

can result in too many moments being deemed valid; i.e., high type II error rates,

thus favoring biased regression parameter estimation.

Therefore, in this chapter we propose a novel approach to select a working co-

variate type. In short, we propose a criterion that accounts for the impacts moment

conditions have on both the efficiency and bias of regression parameter estimation cor-

responding to time-dependent covariates, with the goal of minimizing mean squared

error (MSE). Furthermore, the proposed approach provides consistent estimation.

This chapter is organized as follows. Section 3.2 reviews existing approaches in

the presence of time-dependent covariates. In Section 3.3, we propose our approach

to selecting a working classification type for time-dependent covariates. In Section

3.4, we carry out a simulation study to assess the utility of the proposed method

relative to existing methods, and in Section 3.5 we demonstrate these methods in

application to anthropometric screening data [33]. Finally, concluding remarks are

given in Section 3.6.
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3.2 Time-Dependent Covariates and Current Methods

3.2.1 Notation and Generalized Estimating Equations

For ease of illustration, assume a longitudinal study setting in which there are N

independent subjects measured at each of T distinct time points. We denote the

observed outcome vector for the ith subject as Y i = [Yi1, . . . , YiT ]T , which has a

marginal mean given by E(Y i) = µi linked to covariates through a function, f , such

that f(µij) = xTijβ for xij = [1, x1ij, . . . , xpij]
T and β = [β0, β1, . . . , βp]

T . The working

covariance matrix for Y i is given by V i = A
1/2
i RiA

1/2
i , i = 1, . . . , N , where Ai =

diag[φν(µi1), . . . , φν(µiT )] is a diagonal matrix representing the marginal variances,

φ is a scale parameter assuming common dispersion, ν is a known function, and Ri

is a symmetric positive definite working correlation matrix.

Using the GEE approach [3] to marginal modeling and letting Di = ∂µi/∂β
T ,

regression parameter estimates, β̂, can be obtained by iteratively solving

N∑
i=1

DT
i A

−1/2
i R−1

i A
−1/2
i (Y i − µi) = 0. (3.1)

The (k + 1)th row in Equation (3.1) corresponds to the estimating equation for βk

and is given by
N∑
i=1

T∑
s=1

T∑
j=1

∂µis
∂βk

υsji (Yij − µij) = 0,

where υsji , i = 1, ..., N ; s, j = 1, ..., T , is the (s, j)th element of V −1
i .

3.2.2 Types of Time-Dependent Covariates

Four types of time-dependent covariates are known to exist [1, 2]. Types I-III are well-

known [1], whereas Type IV is a newer addition to the literature [2]. The kth covariate

is classified as a Type I time-dependent covariate if E(∂µis/∂βk{Yij−µij}) = 0 ∀ s, j,

a Type II if E(∂µis/∂βk{Yij − µij}) = 0 for s > j, a Type III if E(∂µis/∂βk{Yij −
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µij}) 6= 0 for some s > j, and a Type IV, which is the opposite of a Type II, if

E(∂µis/∂βk{Yij − µij}) = 0 for s 6 j.

If βk corresponds to a time-dependent covariates classified as Type II, III, or IV,

then E(∂µis/∂βk{Yij−µij}) 6= 0 for some s, j combinations, and hence these moments

are invalid. If GEE incorporates a working independence correlation structure, then

the only moment conditions used are the ones such that s = j which are always

valid, and therefore an unbiased estimating equation is used regardless of the type of

time-dependency [4]. However, this safe approach can result in notable efficiency loss

if the covariate is not of Type III because additional valid moment conditions exist

but are not utilized [1, 5]. Therefore, methods have been proposed that allow the use

of all valid moment conditions, thus yielding more efficient parameter estimation, yet

requiring the type of time-dependency to be known.

3.2.3 Existing Estimation Methods

Generalized Method of Moments

Lai and Small [1] utilized GMM [7] to combine all valid moment conditions. In short,

they created a vector, gi(β), consisting of all valid moment conditions from subject

i, i = 1, . . . , N , corresponding to the estimation of the p + 1 parameters such that

E(gi(β)) = 0. With respect to the kth covariate, or (k+1)th parameter, there are T 2

valid moment conditions corresponding to a covariate that is of Type I, T (T + 1)/2

valid moment conditions for Type II or IV, and T valid moment conditions for Type

III. To create gi(β), all valid moments corresponding to each parameter are stacked

such that the maximum length of gi(β) is T 2× (p+ 1), and estimating equations are

formed by optimally weighting the linear combinations of (1/N)
∑N

i=1 gi(β) through

GMM [20].
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Modified Quadratic Inference Functions

The QIF method proposed by Qu et al. [8] is based on the GMM and GEE approaches.

In short, using correlation structures such that R−1
i ≈

∑m
r=1 αriM ri, Equation (3.1)

can be viewed as a linear combination of m sets of unbiased estimating equations

that can be stacked and optimally, linearly combined via GMM. We note that this

method utilizes GMM, as does the method of Lai and Small [1], although different

estimating equations are used. With this method, M ri, r = 1, . . . ,m; i = 1, . . . , N ,

are known basis matrices and αri, r = 1, . . . ,m; i = 1, . . . , N , are functions of

correlation parameters that can be ignored [8]. Two basis matrices are typically

utilized for exchangeable and AR-1 working structures. For both structures, M 1i is

an identity matrix, while M 2i is a matrix with 0 on the diagonal and 1 elsewhere

for exchangeable, and 1 on the sub-diagonal and 0 elsewhere for AR-1. Zhou et al.

[9], and similarly Cho and Dashnyam [22], modified M 2i, denoted as M ∗
2i, to be a

lower triangular matrix for a Type II time-dependent covariate, and thus T (T + 1)/2

estimating equations for s > j are used in g2i(β). Alternatively, M ∗
2i is an upper

triangular matrix for a Type IV covariate and also yields the use of all T (T + 1)/2

valid estimating equations. Only the identity matrix, M 1i, is used when the covariate

is of Type III, such that only the T valid estimating equations are used. In addition,

no constrains to M 2i are needed for Type I because all T 2 moment conditions are

valid.

Modified Generalized Estimating Equations

Chen and Westgate [36] proposed a modified GEE method in which elements in the

inverse of the working correlation matrix are replaced with 0 whenever their use yields

biased equations. Specifically, they created R∗−1
ik , k = 0, 1, . . . , p, by modifying R−1

i ,

the inverse of any given working correlation structure in Equation (3.1), according to

the specific type of time-dependent covariate. If parameter k corresponds to a Type

40



I time-dependent or time-independent covariate, then all T 2 moment conditions are

valid, and therefore R∗−1
ik = R−1

i , indicating that the estimating equation is the same

as the typical GEE equation. In regards to a Type II covariate,R∗−1
ik is restricted to be

a lower triangular matrix such that the information from the T (T+1)/2 valid moment

conditions for s > j is included. The opposite is done regarding a Type IV covariate,

such that R∗−1
ik is obtained by making all lower non-diagonal elements of R−1

i equal

to 0. Finally, R∗−1
ik is an identity matrix in the estimating equation corresponding to

a Type III covariate. This modified GEE approach works particularly well for small

sample size settings, and the modified QIF has the potential to perform better with

larger sample sizes [36].

3.2.4 Empirical Likelihood Approach and Hypothesis Testing

Empirical Likelihood with Shrinkage Parameters

The previously described methods require correct specification of the covariate type,

whereas in practice the true type will likely be unknown. Therefore, Leung et al. [11]

utilized an EL approach [12] in which moment conditions that are not guaranteed

to provide consistent estimation are empirically weighted based on their estimated

likelihoods of being valid. The authors proposed dividing the T 2 available moment

conditions into two vectors, SM(β) and SA(β). SM(β) is comprised of the T mo-

ments that are always valid, and SA(β) consists of the remaining T 2 − T moments

whose validity depends on the covariate type. A vector, γ, of shrinkage parameters

with dimension T 2 − T is multiplied by SA(β) to form SA,γ(β) = γTSA(β). Here

the elements for γ can be viewed as non-negative weights in [0,1] that are supposed to

shrink the contributions from moment conditions based on the degree of bias they are

estimated to create. The EL method is then used to combine the estimating func-

tions SM(β) and SA,γ(β) and to obtain the regression parameter estimates, β̂
γ

.

Although β̂
γ

is consistent, reducing the T 2 − T moment conditions under question
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to one dimension via SA,γ(β) can still be inefficient, as will be demonstrated later

via simulation.

GMM Hypothesis Testing

An alternative approach that has been used in the literature is to conduct hypothesis

testing to determine the covariate type [1, 2]. The hypothesis testing approach of

Lai and Small [1] examines the validity of moment conditions and is based on their

GMM approach. In short, assume there are u moment conditions that are considered,

v moments are known to be valid, and thus u − v conditions are to be tested. The

resulting test statistic has an asymptotic χ2
u−v-distribution under the null hypothesis

that the u − v moment conditions under question are valid [1, 37, 38]. Therefore,

this approach can test the null hypothesis that a covariate is of Type I versus the

alternative that it is of Type II, and if Type I is rejected, then a test for Type II

against Type III can be conducted. Alternatively, the procedure can be reversed.

Hypothesis Testing Using Correlations

As opposed to GMM-based hypothesis testing in terms of determining grouped mo-

ment conditions, Lalonde et al. [2] proposed another hypothesis testing approach

to simultaneously examine the ungrouped moment conditions for s 6= j. They

propose a separate test for each moment condition, having a null hypothesis of

E(∂µis/∂βk{Yij − µij}) = 0, which is based on the correlation between standard-

ized residuals and values of the kth covariate. Furthermore, they utilized a multiple

testing adjustment to stabilize the family type I error rate [39]. As with the GMM

hypothesis testing approach, tests having non-significant results correspond to valid

moment conditions.
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3.3 Proposed Method

The previously described methods have notable limitations, as will be apparent later

in the simulation study results. The EL shrinkage approach of Leung et al. [11]

can be inefficient when the covariate is not of Type III, and the hypothesis testing

approaches can result in biased estimation due to their potential to favor the null

hypothesis of valid moment conditions. Another limitation of the hypothesis testing

approaches is that a significance level must be specified.

To remove these limitations, we propose an approach to select a working classifica-

tion type. We note that although types for more than one time-dependent covariate

can be chosen, for simplicity of notation we assume there is only one covariate of

unknown type. To choose a working type for this covariate, consider an estimated

MSE given by

M̂SE(β̂z) = Ĉov(β̂z) + {β̂z − β̂III}{β̂z − β̂III}T . (3.2)

Here, Ĉov(β̂z) denotes an empirically estimated covariance matrix of β̂z, the vector of

regression parameter estimates obtained when assuming the time-dependent covariate

is of Type z, z = I, II, III, or IV . We note that Ĉov(β̂z) can be obtained when using

the modified GEE or QIF approaches, but such an empirical covariance estimate

may not be valid when using the GMM approach [36]. Due to β being unknown,

in Equation (3.2) we replace it with β̂III because β̂III − β
p−→ 0, thus providing

a consistent estimate for bias, given by {βz − β}. Here, βz is defined such that

β̂z − βz
p−→ 0. Furthermore, Ĉov(β̂z) → 0 as N → ∞, and therefore M̂SE(β̂z) →

{βz − β}{βz − β}T .

Utilizing the estimated MSE allows for the consideration of both the efficiency

that results from the use of the moment conditions corresponding to Type z as well

as the bias that may arise. In order to utilize this estimated MSE to choose a

working covariate type, we propose selecting the type that results in the smallest

43



value for tr
(
M̂SE(β̂z)

)
. We note that we utilize the trace because the trace of the

empirical covariance matrix has been shown to work well for the selection of a working

correlation structure [18, 29].

As N → ∞, M̂SE(β̂z) → {βz − β}{βz − β}T . Therefore, if a given working

covariate type causes bias, then asymptotically this type will not be selected when

using our proposed approach. In short, the proposed method results in consistent

regression parameter estimation, although the true type is not guaranteed to be

chosen. Specifically, if the true type is I, then any working type yields consistent

estimation and can be asymptotically selected through our approach. If the truth

is Type II (IV), then our method will select either Type II (IV) or III. Finally, our

approach will asymptotically select Type III if this is the true type.

When using the proposed approach, Ĉov(β̂z) can yield biased estimates of vari-

ances of the estimated parameters corresponding to any time-dependent covariates

for which the type was selected. Specifically, this formula assumes only the given type

can be selected. However, the true variance of a corresponding regression parame-

ter estimate depends on the complex probabilities of each type being selected. As

a result, cluster bootstrapped standard errors (SEs) should be utilized for statistical

inference in practice [40, 41]. Although results are not presented in our simulation

study in the following section, we do note that the empirical coverage probabilities of

95% confidence intervals using bootstrapped SEs resulted in near-nominal coverage.

3.4 Simulation Study

3.4.1 Study Description

We compare the finite-sample performances of our proposed covariate type selection

approach to the use of hypothesis testing and the EL approach of Leung et al. [11].

The proposed approach is demonstrated with both the modified GEE and modified

QIF methods, as is the hypothesis testing approach of Lalonde et al. [2]. The hy-
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pothesis testing approach of Lai and Small [1] is used with their GMM method. For

simplicity, results are presented with respect to an exchangeable working correlation

structure for the modified GEE and modified QIF, although similar results were found

with respect to an AR-1 working structure. Furthermore, a nominal 0.05 significance

level was utilized for hypothesis testing approaches.

Three scenarios are used in the simulation study, corresponding to true Type

I, II, and III time-dependent covariates, with results presented in Tables 3.1-3.3,

respectively. Each scenario has the same marginal model given by Yij = β0 + β1xij,

j = 1, . . . , 5; i = 1, . . . , N , N = 100 and 500, although data generation depends

on the covariate type as described below. Each setting is conducted through 1,000

simulations using R version 3.1.2 [30]. Furthermore, models are based on previous

literature for time-dependent covariates [1, 31]. Although extensions of these scenarios

were also studied in which marginal models included multiple differing types of time-

dependent covariates, results were similar and therefore are not presented.

When the time-dependent covariate is either Type I or II, data are generated

from Yij = β̃0 + β̃1xij + β̃2xi,j−1 + γi + εij and xij = κxi,j−1 + eij, j = 1, . . . , 5, where

β̃ = [0, 1, 1]T , and random effects, γi, εij, and eij, are mutually independent and

normally distributed with mean 0 and variance 4 [1, 31]. Note that V ar(eij) = σ2
e .

Furthermore, when the covariate is Type I, β̃2 = 0. In addition, xi0 follows a normal

distribution with mean 0 and variance σ2
e/(1 − κ2) because the time process for

xij is stationary. Here let κ = 0.5. The marginal mean is given by E[Yij|xij] =

β̃0 + (β̃1 + κβ̃2)xij, which gives true values of β̃0 = 0 for the marginal intercept, and

β̃1 = 1 and β̃1 + κβ̃2 = 1.5 for the marginal parameters corresponding to the Type I

and Type II covariates, respectively.

When the time-dependent covariate is Type III, the process of data generation is

from Yij = αxij + γyi,j−1 + uij and xij = ρyi,j−1 + vij, j = 1, . . . , 5, where α = 0.5,

γ = 0.2, ρ = 0.4, and random effects, uij and vij, are mutually independent and
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normally distributed with mean 0 and variance 1 [1]. Note that V ar(uij) = σ2
u and

V ar(vij) = σ2
v . Moreover, yi0 follows a normal distribution with mean 0 and variance

{σ2
u/[1− (αρ + γ)2]}+ {α2σ2

v/[1− (αρ + γ)2]} due to the stationary time process of

(xij, Yij). The marginal mean is given by E[Yij|xij] = [α + γρ(σ2
u + α2σ2

v)/(ρ
2σ2

u +

σ2
v − 2σ2

vαγρ − γ2σ2
v)]xij, which provides true values of 0 and 0.03 for the marginal

intercept and slope.

In order to examine differences in estimation performances, in Tables 3.1-3.3 we

present empirical biases and ratios of empirical MSEs of estimates for β1, which

we refer to as relative efficiencies (REs). For any given RE, the numerator is the

MSE resulting from the use of GEE with an independence working structure, and

the denominator is the MSE resulting from use of the given approach. Furthermore,

we present the number of times a working covariate type is chosen out of the 1,000

simulations. We note that we do not consider Type IV for selection, as it may not

be realistic in practice because it assumes that current outcomes have an impact on

future covariate values but the covariate values cannot affect future outcomes. Table

3.4 presents, for each scenario, the empirical mean proportions of moment conditions

deemed valid by the hypothesis testing approach of Lalonde et al. [2], corresponding

to lower and upper non-diagonal triangular matrices for s > j and s < j, respectively.

3.4.2 Results

The RE results corresponding to a true Type I time-dependent covariate (Table 3.1)

demonstrate that the methods of comparison are all notably more efficient than GEE

with a working independence correlation structure. This was most evident with the

hypothesis testing approaches, as they favor a working Type I specification. Although

less efficient in this scenario, the proposed selection approach selected Type I in

the majority of simulations and resulted in greater regression parameter estimation

efficiency than the use of the EL approach.
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Results corresponding to a true Type II or III time-dependent covariate (Tables

3.2 and 3.3, respectively) demonstrate the utility of the proposed selection approach

and the potentially dangerous cost of taking a hypothesis testing approach. The

proposed approach, in general, resulted in the greatest efficiency relative to all other

methods when the covariate was Type II, and, as desired, was as efficient as GEE

with independence when the truth was Type III. Alternatively, use of the correlation

test on each moment condition or use of the GMM-based test resulted in REs ranging

from 0.04 to 0.95 over these scenarios, with the majority being 0.67 or below. This

is a result from the tendency for these methods to favor Type I specification, thus

resulting in biased regression parameter estimates. In Scenarios 2 and 3 with the

consideration of a multiple testing adjustment, the high mean proportions of moment

conditions incorrectly deemed valid explains the preference for Type I (Table 3.4)

and thus small REs (Tables 3.2 and 3.3). We note that the REs were not notably

improved when not using a multiple testing adjustment (result not shown), although

the proportions of valid moments decreased (Table 3.4) and therefore lowered the

type II error rates.

Based on theoretical expectations, the proposed approach favors consistent re-

gression parameter estimation. Specifically, when the truth was Type II, the number

of times the approach selected Type II or III increased with N . Similarly, when the

truth was Type III, the number of times the approach selected Type III increased with

N . Furthermore, Tables 3.2 and 3.3 also explicitly demonstrate that the proposed

approach results in reducing bias as N increases.

3.5 Application

We now use data from the study of anthropometric screenings among children in the

Philippines [32, 33] to examine the association between anthropometric covariates

and future morbidity outcome. The data obtained from surveying 448 households
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were originally collected from 1984 to 1985 [32]. Lai and Small [1] used a subset

of data containing 370 children (6 14 years) from Bhargava [33], and each child

had repeated measurements at three time points with four months between each

subsequent measurement. Children with incomplete information were excluded, and

only one child per household was chosen in order to eliminate statistical correlation

due to household clustering [33].

We adopt the marginal model used by Lai and Small [1], Leung et al. [11], and

Zhou et al. [9], given by

µij = β0 + β1BMIij + β2Ageij + β3Femalei + β4SR2ij + β5SR3ij, j = 1, 2, 3,

where µij is the ith child’s marginal mean morbidity index during the jth four-month

interval. The morbidity index utilizing the same logistic transformation made by

Bhargava [33] and Lai and Small [1] is given by

yij = log

(
days child was sick in last 2 weeks prior to time j + 0.5

14.5− days child was sick in last 2 weeks prior to time j

)
,

The known Type I time-dependent covariates collected from the anthropometric data

are age in months and two indicator variables for survey rounds 2 and 3 to present

seasonality in morbidity, whereas the type for BMI is unknown and is therefore our

focus.

As in the simulation study, we analyze this dataset using the modified GEE and

QIF methods with an exchangeable structure, and select a classification type for

BMI through the use of our proposed approach. We also conduct the hypothesis

testing methods as well as the EL approach of Leung et al. [11]. Table 3.5 gives the

estimates of regression parameters and corresponding bootstrapped SEs using 1,000

cluster bootstrap samples, as well as the working covariate type for BMI by method.

The hypothesis testing approach using correlations for s 6= j determines that,

given non-significant p-values for all moment conditions, BMI is of Type I. Similarly,

the GMM-based hypothesis testing approach gives a non-significant p-value of 0.80 for
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testing the null hypothesis of BMI being a Type I. Although both hypothesis testing

approaches tend to be biased toward Type I, our proposed approach selects BMI to be

of Type I when using either the modified GEE or QIF, thus giving stronger support

for the use of a working Type I specification. Specifically, the criterion values resulting

from the use of working Type I, II, and III within the modified GEE were 0.00164,

0.00347, and 0.00402, respectively, and with the modified QIF they were 0.00165,

0.00171, and 0.00172, respectively. With both methods, the smallest criterion value

corresponds to Type I. Furthermore, the proposed approach, as well as the hypothesis

testing methods, produce notably smaller SE estimates than the EL approach, thus

revealing its potential for inefficiency. We note that the working type chosen for BMI

is different from previous work. Specifically, Lalonde et al. [2] misclassified one valid

moment at a nominal 0.05 significance level and treated this covariate as Type II,

and Lai and Small [1] did not test the null hypothesis of BMI being of Type I.

3.6 Concluding Remarks

The marginal analysis of data in the presence of time-dependent covariates can be

challenging when the type of time-dependency is unknown. Existing methods are

limited, as they have the potential to be inefficient or result in biased regression

parameter estimation. Therefore, we proposed an approach to select a working time-

dependency type, and via a simulation study we showed that our proposed method

is preferable to existing methods. Although the proposed approach is conservative

relative to the use of hypothesis testing when the true covariate is of Type I, it is

superior under settings of true Type II or III as the hypothesis testing approaches can

work poorly as they favor a Type I specification, thus resulting in biased regression

parameter estimation.

We note that in small-sample settings, adjustments to covariance estimators may

be needed to correct for negative bias. In short, use of the empirical covariance
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weighting matrix with GMM or estimation of correlation parameters with GEE may

increase variability in finite-sample sizes, resulting in covariance inflation of regression

parameter estimates [14, 15, 16, 17, 27, 28]. Furthermore, the estimated empirical

covariances utilized in practice are too small on average due to the use of residuals as

opposed to unknown errors [24]. Such corrections are available for the modified GEE

and QIF approaches, as well as the GMM approach [36].

Our simulation study and application example analyzed marginal models with

continuous outcomes. However, the selection approach proposed in this chapter is

applicable to marginal generalized linear models in general, regardless of the outcome

type, and subjects with unbalanced repeated measurements are allowable. Further-

more, because of the increased complexity of the data generating process regarding

time-dependent covariates, future work accounting for other outcome types is needed.

Copyright c© I-Chen Chen, 2018.
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Table 3.1: Results for settings in which one Type I time-dependent covariate is used.

GEE - Ind Modified GEE Modified QIF GMM EL

N Proposed Corr Test Proposed Corr Test LS Test

100 Bias 0.0034 0.0036 -0.0002 0.0045 0.0001 0.0004 -0.0015
RE 1.00 1.43 5.71 1.28 5.57 3.07 1.22

Type I 588 601 1000
Type II 305 211 0
Type III 107 188 0

500 Bias 0.0011 0.0009 -0.0002 0.0012 -0.0003 -0.0003 -0.0014
RE 1.00 1.38 6.29 1.28 6.26 5.54 1.26

Type I 524 534 1000
Type II 342 246 0
Type III 134 220 0

GEE - generalized estimating equations; Ind - independence;
QIF - quadratic inference function; GMM - generalized method of moments;
EL - empirical likelihood approach of Leung et al. [11]; N - number of independent subjects;
Corr Test - hypothesis testing approach of Lalonde et al. [2] using correlations;
LS Test - GMM-based hypothesis testing approach of Lai and Small [1];
Bias - empirical bias of each approach in estimating the regression parameter;
RE - relative efficiency or ratio of the empirical mean squared error (MSE) from the GEE
with independence structure to the MSE from the given method;
Types I-III - The number of times out of 1,000 simulations that the given covariate type
was chosen.
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Table 3.2: Results for settings in which one Type II time-dependent covariate is used.

GEE - Ind Modified GEE Modified QIF GMM EL

N Proposed Corr Test Proposed Corr Test LS Test

100 Bias 0.0004 -0.0111 -0.2840 -0.0096 -0.2561 -0.0507 -0.0092
RE 1.00 1.13 0.19 1.02 0.22 0.95 1.03

Type I 35 39 1000
Type II 828 682 0
Type III 137 279 0

500 Bias 0.0006 0.0006 -0.2839 0.0008 -0.2632 -0.0668 -0.0042
RE 1.00 1.18 0.04 1.09 0.05 0.47 1.04

Type I 0 0 1000
Type II 848 706 0
Type III 152 294 0

GEE - generalized estimating equations; Ind - independence;
QIF - quadratic inference function; GMM - generalized method of moments;
EL - empirical likelihood approach of Leung et al. [11]; N - number of independent subjects;
Corr Test - hypothesis testing approach of Lalonde et al. [2] using correlations;
LS Test - GMM-based hypothesis testing approach of Lai and Small [1];
Bias- empirical bias of each approach in estimating the regression parameter;
RE - relative efficiency or ratio of the empirical mean squared error (MSE) from the GEE
with independence structure to the MSE from the given method;
Types I-III - The number of times out of 1,000 simulations that the given covariate type
was chosen.
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Table 3.3: Results for settings in which one Type III time-dependent covariate is
used.

GEE - Ind Modified GEE Modified QIF GMM EL

N Proposed Corr Test Proposed Corr Test LS Test

100 Bias -0.0026 -0.0026 -0.0313 -0.0026 -0.0299 -0.0256 -0.0042
RE 1.00 1.00 0.64 1.00 0.60 0.63 0.91

Type I 4 0 1000
Type II 2 0 0
Type III 994 1000 0

500 Bias -0.0006 -0.0006 -0.0136 -0.0006 -0.0148 -0.0328 -0.0009
RE 1.00 1.00 0.67 1.00 0.61 0.24 0.99

Type I 0 0 1000
Type II 0 0 0
Type III 1000 1000 0

GEE - generalized estimating equations; Ind - independence;
QIF - quadratic inference function; GMM - generalized method of moments;
EL - empirical likelihood approach of Leung et al. [11]; N - number of independent subjects;
Corr Test - hypothesis testing approach of Lalonde et al. [2] using correlations;
LS Test - GMM-based hypothesis testing approach of Lai and Small [1];
Bias - empirical bias of each approach in estimating the regression parameter;
RE - relative efficiency or ratio of the empirical mean squared error (MSE) from the GEE
with independence structure to the MSE from the given method;
Types I-III - The number of times out of 1,000 simulations that the given covariate type
was chosen.
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Table 3.4: Mean proportions of moment conditions deemed to be valid by the hy-
pothesis testing approach of Lalonde et al. [2].

Scenario 1 Scenario 2 Scenario 3

N Lower Upper Lower Upper Lower Upper

Ideal Proportion 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

Adjusted Method

100 Mean Proportion 1.0000 1.0000 1.0000 1.0000 0.8325 0.9984

500 Mean Proportion 1.0000 1.0000 1.0000 0.9980 0.4714 0.9455

Unadjusted Method∗

100 Mean Proportion 1.0000 1.0000 1.0000 0.9995 0.5564 0.9378

500 Mean Proportion 1.0000 1.0000 0.9592 0.1803 0.3003 0.7361

Lower - moment conditions for s > j in a lower, non-diagonal triangular matrix;
Upper - moment conditions for s < j in a upper, non-diagonal triangular matrix;
N - number of independent subjects;
Ideal Proportion - the ideal proportion of valid moment conditions corresponding to
the specific type of time-dependent covariate;
Adjusted and Unadjusted Methods - whether a multiple testing adjustment was used;
Mean Proportion - the empirical mean proportion of moment conditions deemed to
be valid by the hypothesis testing approach of Lalonde et al. [2].
∗Note that Lalonde et al. [2] proposed using an adjustment, but for illustrative
purposes we also present results from not using an adjustment.
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Table 3.5: Parameter estimates, bootstrapped standard error estimates (in parenthe-
ses), and working covariate types for BMI resulting from analyses of the anthropo-
metric dataset.

Modified GEE Modified QIF GMM EL

Variable Proposed Corr Test Proposed Corr Test LS Test

BMI -0.052 -0.052 -0.049 -0.049 -0.033 -0.024
(0.045) (0.045) (0.045) (0.044) (0.042) (0.070)

Age -0.012 -0.012 -0.011 -0.011 -0.010 -0.014
(0.004) (0.004) (0.004) (0.004) (0.003) (0.013)

Gender 0.146 0.146 0.125 0.125 0.110 0.191
(0.110) (0.110) (0.110) (0.109) (0.106) (0.326)

SR 2 -0.279 -0.279 -0.270 -0.270 -0.303 -0.218
(0.112) (0.112) (0.112) (0.112) (0.109) (0.198)

SR 3 0.024 0.024 0.045 0.045 -0.013 -0.034
(0.129) (0.129) (0.128) (0.128) (0.125) (0.287)

Type I I I I I

GEE - generalized estimating equations; QIF - quadratic inference function;
GMM - generalized method of moments;
EL - empirical likelihood approach of Leung et al. [11];
Corr Test - hypothesis testing approach of Lalonde et al. [2] using correlations;
LS Test - GMM-based hypothesis testing approach of Lai and Small [1];
Type - working covariate type for BMI.
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Chapter 4 Marginal Quantile Regression for Longitudinal Data Analysis

in the Presence of Time-Dependent Covariates

4.1 Introduction

Generalized estimating equations (GEE) [3] are well-known for their use in the marginal

analysis of data from longitudinal studies in which measurements contributed from

the same subject are correlated over time. As long as a correct mean structure is

given, the regression parameters are consistently estimated even when the working

correlation structure is misspecified. However, when certain types of time-dependent

covariates are presented, the estimating equations, and thus estimates, can be biased

unless an independence working correlation structure is employed [4]. Unfortunately,

the resulting regression parameter estimation can be inefficient because not all valid

moment conditions are utilized [5, 6]. Therefore, multiple approaches have been pro-

posed to use all valid moments [1, 9, 36]. Most recently, the modified GEE approach

proposed by Chen and Westgate [36] has been shown to perform best in terms of

improving estimation efficiency.

Methods for the marginal analysis of longitudinal data in the presence of time-

dependent covariates have only been developed for the modeling of the mean. An

example carried out in this literature focuses on anthropometric screening data from

Bouis and Haddad [32], in which the outcome of interest is morbidity index and

time-dependent covariates include BMI, among others. Unfortunately, modeling the

conditional mean of morbidity index may not be ideal because the response distribu-

tion is severely right skewed (Figure 4.1). Therefore, we desire the use of marginal

quantile regression and are highly interested in how the distribution of the longitu-

dinally measured morbidity index is associated with the time-dependent covariates.

Quantile regression for independent outcomes, introduced by Koenker and Bas-
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sett [42], has advantages relative to mean regression in that it is robust to outliers

and it does not require any specified error distribution. In addition, quantile re-

gression can provide a thorough description on the entire conditional distribution of

a response variable. However, when correlated outcomes are present, modeling the

within-subject correlation structure can be difficult. A safe approach, which ensures

unbiased regression parameter estimates, proposed in the literature is to simply use

an independence working correlation structure [43, 44, 45], although this may re-

sult in less efficient regression parameter estimation when data are highly correlated

[46, 47, 48, 49].

Therefore, multiple approaches have recently been proposed for improving re-

gression parameter estimation in marginal quantile regression for longitudinal data

[46, 50]. However, the specification of a correlation structure is required for the

quasi-score method of Jung [50], and regression parameter estimation from the use of

quadratic inference function (QIF) approach of Tang and Leng [46] is not guaranteed

to work well even if the correlation structure is correctly specified [13, 18]. Therefore,

Fu and Wang [47] suggested a combination of the between- and within- weighted

estimating equations under the working exchangeable structure, which was firstly in-

troduced by Stoner and Leroux [51]. Additionally, Fu and Wang [47] extended their

approach to allow any type of working correlation structure [13]. As a result, not

only does this approach improve estimation performance, but it is robust to different

error distributions. Nevertheless, in a longitudinal study some of the covariates may

change over time and cause feed-back effects from the response variable, yet this issue

has not been explored in the marginal quantile literature.

In this chapter, we therefore first propose an approach for marginal quantile regres-

sion in the presence of time-dependent covariates. This proposed method combines

the estimating equations approach of Fu et al. [13] with the modified GEE approach of

Chen and Westgate [36]. In consequence, the proposed approach can achieve notable
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gains in efficiency when compared with estimating equations under an independence

correlation structure. Second, we propose a strategy to select a working type of time-

dependency because in practice it may not be the case that the researcher knows

the type of time-dependent covariate. In the marginal analysis literature with time-

dependency, criteria such as the mean squared error (MSE), taking into account the

influences moment conditions have on both the efficiency and bias of regression pa-

rameter estimation, can be used to select a working correlation structure [18, 29] or

a classification type of time-dependent covariate [52]. In this chapter, we extend the

use of the MSE to choose a working classification type such that consistent regression

parameter estimation is a result.

This chapter is organized as follows. Section 4.2 introduces a marginal quantile re-

gression and types of time-dependent covariates for longitudinal data. In Section 4.3,

we propose the modified estimating equations for quantile regression in the presence

of time-dependent covariates. Furthermore, we introduce the approach to selecting a

working classification type for time-dependent covariates. In Section 4.4, we carry out

a simulation study to compare the estimation performance and assess the utility of

the proposed selection criterion relative to estimating equations with an independence

working structure, and Section 4.5 demonstrates the proposed method in application

to the motivating anthropometric screening data [32, 33]. Finally, we give concluding

remarks in Section 4.6.

4.2 Quantile Regression and Time-Dependent Covariates

4.2.1 Notation and Quantile Regression

For ease of illustration, suppose a longitudinal study in which N independent sub-

jects are repeatedly measured over T distinct time points. However, in general, the

number of repeated measurements is allowed to vary across subjects. Let Y i =

[Yi1, . . . , YiT ]T denote the observed outcome vector for the ith subject, and assume
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that the 100τth quantile of Yij, j = 1, . . . , T ; i = 1, . . . , N for τ ∈ (0, 1) is denoted by

Q(Yij|xij, τ) =xTijβ
τ , where xij = [1, x1ij, . . . , xpij]

T is a vector observed at time point

j for subject i, and βτ = [βτ0 , β
τ
1 , . . . , β

τ
p ]T is an unknown vector corresponding to the

regression coefficients at the 100τth quantile. Let Sτij = τ − I[Yij ≤ xTijβ
τ ] and Sτi =

[Sτi1, . . . , S
τ
iT ]T , where I(.) is an indicator function. The corresponding covariance ma-

trix for Sτi is given by V τ
i = A

1/2
i Rτ

i (α)A
1/2
i , where Ai = diag[τ(1−τ), . . . , τ(1−τ)]

is a diagonal matrix representing the marginal variances, and Rτ
i (α) is a symmet-

ric positive definite correlation matrix with 1 along the diagonal and one or more

unknown correlation parameters given by α.

To find the estimate of the regression parameters, β̂
τ
, we consider the following

optimal estimating equations [47, 48, 49, 50]

N∑
i=1

XT
i ΛiA

−1/2
i Rτ−1

i (α)A
−1/2
i Sτi = 0, (4.1)

in which Λi = diag[fi1(0), . . . , fiT (0)] with fij(0) assumed to be a constant can be

further eliminated [47]. The score function for the mth component corresponding

to α, as well as the first partial derivative of the working Gaussian log-likelihood

function for (Sτ1, . . . ,S
τ
N) with respect to the mth component of α, can be expressed

as [13]
N∑
i=1

tr

[
∂Rτ−1

i (α)

∂αm
(A

−1/2
i SτiS

τT

i A
−1/2
i −Rτ

i )

]
.

The correlation parameter αm and its corresponding working correlation structure

then can be estimated and constructed by optimizing this score function. We note

that the asymptotic estimator for Cov(β̂
τ
) is hardly obtained due to the involvement

of unknown density functions of the errors. As a result, an induced smoothing tech-

nique [53, 54] has been commonly used to the marginal quantile regression models

[47, 48, 49, 55]

In Equation (4.1), the (k + 1)th row corresponds to the estimating equation for
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βτk and is given by

N∑
i=1

T∑
s=1

T∑
j=1

xkisυ
sj
i (τ − I[Yij ≤ xkijβ

τ
k ]) = 0,

where υsji , i = 1, ..., N and s, j = 1, ..., T , is the (s, t)th element of V τ−1

i . If βτk

corresponds to certain types of time-dependent covariates, as will be specified in the

following subsection, then we may not have E
[
xkis(τ − I[Yij ≤ xkijβ

τ
k ])
]

= 0 ∀ s, j.

4.2.2 Types of Time-Dependent Covariates

Four existing types of time-dependent covariates have been introduced in the marginal

analysis literature for longitudinal data [1, 2]. In the manner of quantile regres-

sion modeling, the kth covariate is classified as a Type I time-dependent covari-

ate if E
[
xkis(τ − I[Yij ≤ xkijβ

τ
k ])
]

= 0 ∀ s, j; s, j = 1, . . . , T , at a given quantile

level τ , a Type II if E
[
xkis(τ − I[Yij ≤ xkijβ

τ
k ])
]

= 0 for s > j, a Type III if

E
[
xkis(τ − I[Yij ≤ xkijβ

τ
k ])
]
6= 0 for some s > j, and a Type IV, which is the opposite

of a Type II, if E
[
xkis(τ − I[Yij ≤ xkijβ

τ
k ])
]

= 0 for s 6 j.

If βτk corresponds to a time-dependent covariates which is classified as Type II,

III, or IV, then E
[
xkis(τ − I[Yij ≤ xkijβ

τ
k ])
]
6= 0 for some s, j, will result in invalid

moments. Pepe and Anderson [4] supported the use of GEE with an independence

working correlation structure for marginal mean regression, then the only moment

conditions utilized are the ones such that s = j which are always valid regardless of

the covariate type. Unfortunately, this safe approach can cause a great efficiency loss

if the covariate is not of Type III because additional valid moment conditions are not

used [1, 5]. Therefore, approaches allowing the use of all valid moment conditions

have been proposed to achieve more efficient parameter estimation [1, 9, 36]. However,

these methods only focus on mean regression and have not been extended to quantile

regression when time-dependent covariates exist. We therefore propose approaches
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to improve estimation efficiency and select a working type of time-dependency which

is often unknown in practice.

4.3 Proposed Methods

4.3.1 Improving Efficiency: Modified Estimating Equations for Quantile

Regression

We first propose a modified estimating equations approach for improved efficiency by

combining the estimating equations approach of Fu et al. [13] with the modified GEE

approach of Chen and Westgate [36], which practically takes advantage of GEE’s

popularity. We replace elements with 0 in the inverse of the correlation matrix and

the replacement is executed for each individual biased estimating equation, depending

on the covariate type. Specifically, our proposed estimating equations for βτk , k =

0, 1, . . . , p, are given by

N∑
i=1

Xk+1
i A

−1/2
i Rτ∗−1

i (α)A
−1/2
i Sτi = 0, (4.2)

where Xk+1
i is the (k+1)th row of XT , and the elements of Rτ∗−1

ik (α), k = 0, 1, . . . , p,

are restricted to a certain type of covariate at a given quantile level τ . The modified

approach then puts together these estimating equations and estimates regression pa-

rameter, correlation parameter, and standard error (SE) in the same nature as with

the approach used in marginal quantile regression [13].

We propose to create Rτ∗−1

ik given in Equation (4.2) by modifying the inverse of a

working correlation structure in general, Rτ−1

i , employed in Equation (4.1) based on

the specific type of time-dependent covariate. If parameter k is classified as a Type I

time-dependent or time-independent covariate, then the information from all T 2 valid

moment conditions is incorporated, and therefore Rτ∗−1

ik is equal to Rτ−1

i , indicating

that the estimating equations from Equations (4.1) and (4.2) are identical. When

the estimating equation of a parameter corresponds to a Type II time-dependent
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covariate, Rτ∗−1

ik is constrained to be a lower triangular matrix such that the T (T +

1)/2 moment conditions for s > j, s, j = 1, . . . , T , are valid. In other wards, Rτ∗−1

ik

is obtained by making all upper non-diagonal elements equal to 0. With respect to a

Type IV time-dependent covariate, a contrast of a Type II, Rτ∗−1

ik can be obtained by

takingRτ−1

i and making all lower non-diagonal elements equal to 0. Finally, when the

parameter corresponds to a Type III time-dependent covariate, Rτ∗−1

ik is considered

to be diagonal matrices in the estimating equation.

4.3.2 Selection of Working Classification Type for Time-Dependency

Use of the approach just proposed requires data analysts know the covariate’s type

of time-dependency, although this is likely unknown in practice. Therefore, we now

propose an approach to select a working type of time-dependency with the goal of

producing the least variable regression parameter estimate possible. We note that

although more than one type of time-dependent covariate can be chosen at any given

quantile level τ , for simplicity of notation we assume there is only one time-dependent

covariate of unknown type.

To choose a working type for this covariate, we first consider an estimated MSE

given by

M̂SE(β̂
τ

c ) = Ĉov(β̂
τ

c ) +
(
β̂
τ

c − β̂
τ

III

)(
β̂
τ

c − β̂
τ

III

)T
, (4.3)

where β̂
τ

c is the vector of regression parameter estimates in which the time-dependent

covariate is assumed to be Type c, c = I, II, III, or IV , and Ĉov(β̂
τ

c ) denotes an

empirically estimated covariance matrix of β̂
τ

c . We note that Ĉov(β̂z) can be obtained

by using the induced smoothing method [53]. In Equation (4.3), we replace the

unknown βτ with β̂
τ

III because β̂
τ

III

p−→ βτ , thus providing a consistent bias estimate,

which is (βτc − βτ ). Here, the estimate of bias is followed by the defined βτc such

that β̂
τ

c

p−→ βτc . As N → ∞, Ĉov(β̂
τ

c ) → 0 and M̂SE(β̂
τ

c ) → (βτc − βτ )(βτc −

βτ )T . Therefore, if a given working covariate type yields bias, then asymptotically
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this type will not be chosen when using the selection approach. Specifically, if the

truth is of Type I, then any working type produces consistent regression parameter

estimation and can be chosen through this approach. If the true type is II (IV), then

this approach method will choose either II (IV) or III. Moreover, asymptotically our

method will choose Type III if this is the true type.

In order to utilize this estimated MSE to select a working classification type, we

propose choosing the type that occurs with the smallest value for the trace of an

empirical covariance matrix, tr
[
M̂SE(β̂

τ

c )
]
. We note that this criterion has been

proven to perform well for the selection of a working covariate type [52]. In addition,

the true variance of a corresponding regression parameter estimate relies upon the

complex probabilities of each type being chosen, and therefore Ĉov(β̂
τ

c ) can result in

a biased estimate of the variance. In consequence, cluster bootstrapped SEs should

be adopted for statistical inference [40, 41, 52]. Note that the empirical coverage

probabilities of 95% confidence intervals using bootstrapped SEs resulted in near-

nominal coverage, although the results are not shown in the simulation study.

4.4 Simulation Study

4.4.1 Study Description

We now compare the performances of our proposed selection approach for covariate

type of time-dependency to the use of an independence working correlation structure,

which treats unknown types of time-dependency as Type III, in the marginal quantile

analysis. The selection approach is demonstrated with the modified estimating equa-

tions method using a first-order autoregressive (AR-1) working correlation structure,

as AR-1 may be preferred over other structures such as exchangeable in a longitudinal

study [31].

Three scenarios are carried out in the simulation study, corresponding to true

Type I, II, and III time-dependent covariates, with results presented in Tables 4.1-4.3,
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respectively. Each scenario has the same marginal model given by Yij = β0+β1xij+εij,

i = 1, . . . , N ; j = 1, . . . , T . The data generation depending on the covariate type

are described in the following paragraph. The setting with N = 500 and T = 5

is conducted through 1,000 simulations using R version 3.1.2 [30]. Furthermore,

models are based on previous marginal mean regression literature for time-dependent

covariates [1, 11, 31] and marginal quantile regression literature [13, 47, 49]. Although

marginal quantile models including multiple types of time-dependent covariates were

also studied, results were similar and therefore are not presented.

When the time-dependent covariate is either Type I, II, or III, data are generated

from Yij = β̃0 + β̃1xij + β̃2xi,j−1 + γi + εij and xij = κxi,j−1 + θγi + δij, i = 1, . . . , 500;

j = 1, . . . , 5, where β̃ = [0, 1, 1]T , and random effects, γi and δij, are mutually

independent and normally distributed with mean 0 and variance 1 [1, 31]. Note that

V ar(γij) = σ2
γ and V ar(δij) = σ2

δ . The covariate is of Type I if β̃2 = θ = 0, while the

covariate is of Type II if θ = 0. Additionally, xi0 follows a normal distribution with

mean 0 and variance (θ2σ2
γ+σ2

δ )/(1−κ2) because the time process for xij is stationary.

Here let κ = 0.5 and θ = 1.5. The marginal mean given by E[Yij|xij] = β̃0+{β̃1+κβ̃2+

[(θ2σ2
γ)(1+κ)/θ(θ2σ2

γ +σ2
δ )]}xij gives true values of β̃0 = 0 for the marginal intercept,

and β̃1 = 1, β̃1 +κβ̃2 = 1.5, and β̃1 +κβ̃2 + [(θ2σ2
γ)(1 +κ)/θ(θ2σ2

γ +σ2
δ )] = 2.19 for the

marginal parameters corresponding to the Type I, II, and III covariates, respectively.

Furthermore, let εij = q + eij and the use of q is to guarantee p(εij 6 0) = τ , the

quantile level. Four cases are accounted for ei = [ei1, . . . , ei5]
T : cases (1)-(3) assume

that ei follows multivariate normal distribution, multivariate Student’s t-distribution

with three degrees of freedom, and multivariate log-normal distribution, respectively,

incorporating combinations of either an exchangeable or AR-1 working structure with

a correlation parameter 0.3 or 0.7; in order to create correlated heteroscedastic errors,

cases (4) assumes eij = 0.25(1+|xij|)ζij, where ζi = [ζi1, . . . , ζi5]
T follows multivariate

normal distribution with the same combinations as cases (1)-(3).
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In order to examine differences in estimation performances, in Tables 4.1-4.3 we

present empirical biases corresponding to either the reference approach with an inde-

pendence working structure or our proposed approach, and ratios of empirical MSEs

of estimates for β1, which we refer to as relative efficiencies (REs). For any given

RE, the numerator is the MSE resulting from the use of reference approach, and the

denominator is the MSE resulting from the use of our approach. Furthermore, we

present the number of times a working covariate type is selected out of the 1,000

simulations. Note that we do not use Type IV for selection, as in practice this type

may be rare because it assumes that outcomes have an impact on covariate values in

the future but these covariate values cannot influence future outcomes.

4.4.2 Results

Results corresponding to either a true Type I, II, or III time-dependent covariate

(Tables 4.1, 4.2, and 4.3, respectively) show that the proposed selection approach used

with the modified estimating equations method is more efficient than the approach

incorporating an independence working correlation structure, i.e., use of working Type

III, in the presence of within-subject correlation (cases 1-4). The REs ranged from

1.09 to 1.30, 1.04 to 1.10, and 1.00 to 1.06, respectively, over scenarios 1-3. When

correlated heteroscedastic errors were accounted for (case 4), the results, in terms of

REs and selection frequencies, were similar to those with errors following correlated

parametric distributions (cases 1-3). The reason for these efficiency gains is because

the modified approach technically employs working correlation matrices with zero

elements in order to ensure only valid moment conditions are implemented.

Additionally, the proposed approach worked well in terms of REs and selection fre-

quencies for any given quantile level relative to the independence estimating equations

approach. The RE results corresponding to cases 1-4 and three quantile levels under

the three scenario settings also demonstrate that, given a higher within-subject cor-
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relation, the proposed selection method, in general, resulted in the greater efficiency

and chose most often the desired type of covariate. The results with respect to REs

and selection frequencies were comparable regardless of the given correlation struc-

ture. The selection approach had efficiency gains when the true Type I or II was

under consideration and, as desired, can ensure the chosen Type III covariate was

the actual type of time-dependent covariate. Specifically, because of none selection

contributed to Type I, which can cause bias, under the true Type II, based on theo-

retical expectations, negligible biases of regression parameter estimation were found

when the truth were Type I and II, and therefore the REs were dominated by the

efficiency of regression parameter estimation (Tables 4.1 and 4.2).

4.5 Application

We adopt the anthropometric screening data from the children study in the Philip-

pines [32, 33] to examine the association between anthropometric factors and mor-

bidity index over time. The data were originally obtained from 448 households from

1984 to 1985 [32]. Then, a subset of data containing 370 children (6 14 years) was

used as the final data [1, 33], in which each child had measurements at three time

points with four months between each subsequent measurement. Children with in-

complete measurements were excluded, and only one child per household was selected

for eliminating statistical correlation resulted from household clustering [33].

We use the marginal model suggested in the existing literature [1, 9, 11, 36], but

employ marginal quantile regression at three quantile levels, τ = 0.25, 0.50, and 0.75,

given by

Yij = β0 + β1BMIij + β2Ageij + β3Femalei + β4SR2ij + β5SR3ij + εij; j = 1, 2, 3,

where Yij, as presented below, is the ith child’s morbidity index during the jth four-

month interval, and the morbidity index was conducted through the logistic trans-
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formation [1, 33].

Yij = log

(
days child was sick in last 2 weeks prior to time j + 0.5

14.5− days child was sick in last 2 weeks prior to time j

)
.

Three covariates, including age in months and two indicators for survey rounds 2 and

3, are categorized as the known Type I time-dependent covariates, whereas BMI’s

classification type of time-dependency is unknown and is the main focus of this anal-

ysis.

As in the simulation study, we analyze this data using the independence estimat-

ing equations method and our modified method with an AR-1 correlation structure,

and select a working type for BMI through the use of our selection approach under

three given quantiles. Table 4.4 gives the estimates of regression parameters and cor-

responding cluster bootstrapped SEs using 2,000 cluster bootstrap samples, as well

as the working type for BMI selected by our method.

The proposed approach assigns a working Type III classification for BMI at the

first quartile (25th quantile) and median (50th quantile), whereas a working Type

I classification is chosen at the third quartile (75th quantile) based on the smallest

criterion value. In addition, at the 25th and 50th quantile levels both approaches pro-

duce similar results in terms of regression parameter and SE estimates for BMI due to

the choice of Type III. Furthermore, our proposed approach produces smaller SE es-

timates than the reference approach at the 75th quantile, thus revealing our proposed

method’s potential for efficiency improvement. For the other time-dependent covari-

ates of known type, smaller SE estimates are obtained using the proposed method.

The use of a marginal quantile analysis provides a complete description of the mor-

bidity index distribution to model the BMI, rather than the marginal mean analysis

which gives support for the use of a working Type I specification [52].
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4.6 Concluding Remarks

Covariates or predictors in a longitudinal study may change over time. Marginal

mean regression analyses for longitudinal data have been widely introduced when

time-dependent covariates are presented. However, for some real-world data the use

of mean regression models may be sensitive to skewness and outliers in the data. In

such cases, the use of marginal quantile analysis for modeling the conditional quantiles

of the response variable is recommended. Therefore, we first proposed a modified ap-

proach for marginal quantile regression to utilize all valid moment conditions in order

to improve regression parameter estimation, compared to the approach incorporating

an independence working structure, while still attaining valid inference. Furthermore,

as a data analyst, to decide which type of time-dependent covariate being used for

the analysis of any given dataset can be challenging. As a result, we proposed an

approach to determine the working type of covariate, and through a simulation study

we presented that our method is preferable to the approach with an independence

structure. The proposed selection approach is superior under scenarios of true Types

I and II, and is as efficient as the reference approach when the true covariate is of

Type III.

Although we only considered independence and AR-1 working correlation struc-

tures in the chapter, other structures are available as well, including exchangeable

and Toeplitz correlation matrices. We note that with our modified approach, the

working structure is technically not an actual correlation structure because some

non-zero elements of Rτ−1

i corresponding to invalid moment conditions are replaced

with zeros, and therefore Rτ∗−1

ik will not be the inverse of a true correlation matrix

when βτk corresponds to a Type II or IV.

Our simulation study and application example were analyzed via marginal quantile

regression models with balanced repeated measurements. Nonetheless, the proposed

estimation approach and selection approach in this chapter are applicable to subjects

68



with varying repeated measurements. Future study can be extended to improve

efficiency of estimation performance of composite marginal quantile regression [55],

which has been proposed when multiple quantiles share common characteristics, in

the presence of time-varying covariates. Furthermore, approaches using a general

stationary autocorrelation structure [49] and a selection technique, via the use of a

Gaussian pseudolikelihood in substitution for a parametric likelihood [13], to decide

the most adequate working correlation structure have been suggested to prevent the

specification of any specific working correlation structures. Simultaneously selecting

a working correlation structure and deciding a covariate type of time-dependency

can be further developed. Additionally, because of the increasingly complex data

generation in regards to time-dependent covariates, future work accounting for other

marginal quantile models is needed on the simulation.

Copyright c© I-Chen Chen, 2018.
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Figure 4.1: Histogram of morbidity index for all 370 children.
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Table 4.1: Results for all Cases 1-4 in which one Type I time-dependent covariate is incorporated.

τ=0.25 τ=0.50 τ=0.75

Exch AR-1 Exch AR-1 Exch AR-1
ρ 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7

BiasI -.0003 -.0002 .0009 .0032 -.0001 -.0001 .0002 .0036 .0005 .0007 .0016 .0018
BiasP -.0001 -.0006 .0004 .0028 .0000 -.0000 .0000 .0034 .0007 .0008 .0015 .0020

Case RE 1.137 1.256 1.126 1.229 1.146 1.230 1.095 1.221 1.164 1.222 1.131 1.221
(1) Type I 598 563 635 587 562 545 579 547 615 562 640 567

Type II 285 340 259 309 300 366 283 339 273 339 237 324
Type III 117 97 106 104 138 89 138 114 112 99 123 109

Exch AR-1 Exch AR-1 Exch AR-1
ρ 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7

BiasI -.0016 .0004 -.0018 .0005 -.0012 -.0001 -.0021 .0004 -.0016 -.0005 -.0021 -.0009
BiasP -.0014 .0003 -.0020 .0007 -.0013 .0005 -.0015 .0007 -.0015 -.0007 -.0017 -.0008

Case RE 1.139 1.217 1.120 1.197 1.096 1.202 1.115 1.183 1.128 1.232 1.148 1.236
(2) Type I 617 566 623 584 555 528 565 541 644 569 590 607

Type II 276 339 278 295 316 360 303 339 253 339 292 289
Type III 107 95 99 121 129 112 132 120 103 92 118 104
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Table 4.1: Continued.

τ=0.25 τ=0.50 τ=0.75

Exch AR-1 Exch AR-1 Exch AR-1
ρ 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7

BiasI -.0002 -.0006 -.0009 .0022 -.0008 -.0006 -.0008 .0032 -.0007 .0002 -.0005 .0023
BiasP -.0003 -.0005 -.0006 .0020 -.0009 -.0003 -.0007 .0032 -.0005 -.0007 -.0007 .0023

Case RE 1.181 1.287 1.161 1.276 1.139 1.240 1.123 1.228 1.108 1.242 1.106 1.204
(3) Type I 565 538 595 591 552 488 584 563 662 560 650 591

Type II 313 363 287 309 327 394 286 334 236 325 251 290
Type III 122 99 118 100 121 118 130 103 102 115 99 119

Exch AR-1 Exch AR-1 Exch AR-1
ρ 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7

BiasI -.0008 .0011 -.0002 -.0020 -.0004 .0014 .0012 -.0019 -.0017 .0006 .0024 -.0021
BiasP -.0009 .0007 .0000 -.0015 -.0005 .0015 .0006 -.0025 -.0019 .0007 .0022 -.0018

Case RE 1.229 1.217 1.175 1.280 1.195 1.238 1.146 1.202 1.213 1.298 1.196 1.252
(4) Type I 486 482 501 462 463 486 471 459 509 523 506 474

Type II 389 403 382 431 419 411 399 422 390 388 361 415
Type III 125 115 117 107 118 103 130 119 101 89 133 111

τ - quantile level; ρ - correlation parameter; Exch - exchangeable; AR-1 - first-order autoregressive;
BiasI - empirical bias of the approach with an independence structure in estimating the regression parameter;
BiasP - empirical bias of the proposed approach in estimating the regression parameter;
RE - relative efficiency or ratio of the empirical mean squared error (MSE) from the estimation method
with an independence structure to the MSE from the proposed method;
Types I-III - the number of times out of 1,000 simulations that the given covariate type was selected.
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Table 4.2: Results for all Cases 1-4 in which one Type II time-dependent covariate is incorporated.

τ=0.25 τ=0.50 τ=0.75

Exch AR-1 Exch AR-1 Exch AR-1
ρ 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7

BiasI -.0011 .0016 .0009 .0035 -.0000 .0003 .0017 .0037 .0009 -.0009 .0014 .0005
BiasP -.0010 .0013 .0008 .0033 -.0002 .0008 .0011 .0036 .0007 -.0010 .0012 .0006

Case RE 1.054 1.088 1.059 1.058 1.053 1.066 1.052 1.063 1.064 1.080 1.060 1.075
(1) Type I 0 0 0 0 0 0 0 0 0 0 0 0

Type II 820 846 795 827 760 810 735 795 833 850 787 844
Type III 180 154 205 173 240 190 265 205 167 150 213 156

Exch AR-1 Exch AR-1 Exch AR-1
ρ 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7

BiasI -.0008 .0000 -.0006 .0003 -.0014 -.0010 -.0026 -.0005 -.0011 -.0002 -.0036 -.0006
BiasP -.0008 -.0002 -.0006 .0002 -.0012 -.0008 -.0028 -.0007 -.0014 .0002 -.0036 .0002

Case RE 1.081 1.070 1.047 1.086 1.059 1.072 1.052 1.043 1.053 1.081 1.059 1.086
(2) Type I 0 0 0 0 0 0 0 0 0 0 0 0

Type II 806 845 762 821 771 832 727 783 826 857 791 835
Type III 194 155 238 179 229 168 273 217 174 143 209 165
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Table 4.2: Continued.

τ=0.25 τ=0.50 τ=0.75

Exch AR-1 Exch AR-1 Exch AR-1
ρ 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7

BiasI -.0017 -.0021 .0017 .0007 -.0015 -.0007 .0006 .0009 -.0010 .0009 -.0002 .0010
BiasP -.0015 -.0020 .0016 .0006 -.0008 -.0004 .0006 .0004 -.0010 .0012 -.0003 .0008

Case RE 1.058 1.097 1.054 1.048 1.036 1.088 1.046 1.072 1.084 1.078 1.060 1.092
(3) Type I 0 0 0 0 0 0 0 0 0 0 0 0

Type II 788 829 774 797 753 787 763 804 815 841 789 815
Type III 212 171 226 203 247 213 237 196 185 159 211 185

Exch AR-1 Exch AR-1 Exch AR-1
ρ 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7

BiasI -.0025 -.0024 -.0001 -.0041 -.0018 -.0017 .0011 -.0023 -.0025 .0008 .0024 -.0030
BiasP -.0024 -.0023 .0002 -.0034 -.0020 -.0016 .0017 -.0021 -.0021 .0006 .0023 -.0031

Case RE 1.088 1.100 1.060 1.073 1.071 1.077 1.048 1.058 1.087 1.091 1.085 1.090
(4) Type I 0 0 0 0 0 0 0 0 0 0 0 0

Type II 841 857 811 859 795 789 752 764 851 859 825 841
Type III 159 143 189 141 205 211 248 236 149 141 175 159

τ - quantile level; ρ - correlation parameter; Exch - exchangeable; AR-1 - first-order autoregressive;
BiasI - empirical bias of the approach with an independence structure in estimating the regression parameter;
BiasP - empirical bias of the proposed approach in estimating the regression parameter;
RE - relative efficiency or ratio of the empirical mean squared error (MSE) from the estimation method
with an independence structure to the MSE from the proposed method;
Types I-III - the number of times out of 1,000 simulations that the given covariate type was selected.
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Table 4.3: Results for all Cases 1-4 in which one Type III time-dependent covariate is incorporated.

τ=0.25 τ=0.50 τ=0.75

Exch AR-1 Exch AR-1 Exch AR-1
ρ 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7

BiasI .0163 .0161 .0166 .0158 .0172 .0175 .0176 .0169 .0154 .0156 .0167 .0151
BiasP .0159 .0155 .0161 .0151 .0170 .0171 .0174 .0164 .0150 .0151 .0161 .0144

Case RE 1.036 1.052 1.048 1.053 1.022 1.036 1.020 1.047 1.025 1.040 1.050 1.060
(1) Type I 46 10 62 14 126 7 135 7 44 10 44 16

Type II 227 64 172 63 214 41 210 51 214 52 215 59
Type III 727 926 766 923 660 952 655 942 742 938 741 925

Exch AR-1 Exch AR-1 Exch AR-1
ρ 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7

BiasI .0149 .0156 .0155 .0154 .0176 .0184 .0179 .0169 .0155 .0166 .0156 .0147
BiasP .0142 .0151 .0150 .0151 .0171 .0179 .0174 .0164 .0150 .0161 .0150 .0142

Case RE 1.047 1.040 1.037 1.025 1.041 1.029 1.035 1.041 1.039 1.022 1.052 1.032
(2) Type I 23 3 19 3 59 2 52 5 13 1 20 2

Type II 200 35 174 23 190 24 191 17 180 40 189 31
Type III 777 962 807 974 751 974 757 978 807 959 791 967
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Table 4.3: Continued.

τ=0.25 τ=0.50 τ=0.75

Exch AR-1 Exch AR-1 Exch AR-1
ρ 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7

BiasI .0223 .0222 .0225 .0221 .0196 .0195 .0199 .0194 .0115 .0110 .0111 .0116
BiasP .0222 .0217 .0223 .0215 .0193 .0189 .0195 .0187 .0109 .0104 .0104 .0109

Case RE 1.017 1.043 1.022 1.053 1.031 1.059 1.034 1.059 1.048 1.025 1.061 1.032
(3) Type I 213 18 187 21 95 15 64 13 11 0 21 2

Type II 191 72 175 84 195 31 198 36 199 49 192 42
Type III 596 910 638 895 710 954 738 951 790 951 787 956

Exch AR-1 Exch AR-1 Exch AR-1
ρ 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7

BiasI .0158 .0157 .0152 .0173 .0171 .0159 .0165 .0159 .0154 .0154 .0157 .0148
BiasP .0152 .0152 .0146 .0169 .0172 .0153 .0166 .0154 .0149 .0150 .0152 .0142

Case RE 1.032 1.032 1.054 1.030 1.006 1.039 1.001 1.029 1.042 1.028 1.049 1.043
(4) Type I 54 1 52 3 169 4 175 7 52 0 51 6

Type II 218 73 222 82 245 114 230 117 215 96 207 82
Type III 728 926 726 915 586 882 595 876 733 904 742 912

τ - quantile level; ρ - correlation parameter; Exch - exchangeable; AR-1 - first-order autoregressive;
BiasI - empirical bias of the approach with an independence structure in estimating the regression parameter;
BiasP - empirical bias of the proposed approach in estimating the regression parameter;
RE - relative efficiency or ratio of the empirical mean squared error (MSE) from the estimation method
with an independence structure to the MSE from the proposed method;
Types I-III - the number of times out of 1,000 simulations that the given covariate type was selected.
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Table 4.4: Parameter estimates, empirical and cluster bootstrapped standard error
estimates (in parentheses), and working types of covariate for BMI resulting from
analyses of the anthropometric dataset.

Independence Proposed∗

Variable τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

BMI -0.20 (0.002) -0.18 (0.003) -0.05 (0.024) -0.20 (0.002) -0.18 (0.003) -0.05 (0.019)

Age -0.01 (0.001) -0.01 (0.001) -0.03 (0.005) -0.01 (0.001) -0.01 (0.001) -0.03 (0.005)

Gender -0.02 (0.021) -0.02 (0.030) 0.41 (0.267) -0.02 (0.026) -0.01 (0.036) 0.42 (0.221)

SR 2 -0.08 (0.025) -0.08 (0.036) -0.69 (0.328) -0.07 (0.021) -0.06 (0.033) -0.66 (0.248)

SR 3 0.002 (0.027) 0.05 (0.035) 0.42 (0.374) 0.01 (0.024) 0.06 (0.034) 0.47 (0.281)

Type III III I

τ - quantile level; SR - survey round; Type - working covariate type for BMI.
∗Note that the standard error estimates are obtained using the cluster bootstrapped method.
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Chapter 5 Summary

5.1 Findings and Future Work

This dissertation researched the existing approaches that use all valid moment con-

ditions in order to improve efficiency relative to GEE with an independence working

correlation structure when certain types of time-dependent covariates are included in

a marginal model, and proposed a modified GEE to improve their performances. The

other topic of interest was to select a combination of estimation approach and working

structure, resulting in the smallest variances of regression parameter estimates, that

is generally unknown to the analyst. Additionally, previous literature assumed the

researcher knows the type of time-dependent covariate, which realistically may not

be the case. Therefore, another concern was given to choose a unknown type of time-

dependent covariate. Finally, for some real-world datasets the use of marginal mean

regression models may be sensitive to skewness and outliers in the data, and thus we

studied marginal quantile analysis for longitudinal data so as to model conditional

quantiles of the response variable.

GMM and modified QIF approaches that utilize all valid moment conditions have

been proposed to improve efficiency for the marginal analysis of longitudinal data in

the presence of time-dependent covariates. However, we found that these approaches

may result in invalid inference. To improve upon the validity of inference with the

GMM approach, we developed a modified, non-singular weighting matrix to ensure

nominal coverage probabilities. Unfortunately, this modified GMM did not work well

in terms of regression parameter estimation, and therefore we do not support its

use in practice. The proposed modified GEE often outperformed all other methods

that have been proposed. Nonetheless, the modified QIF did perform best, in terms

of estimating the regression parameter corresponding to a Type II time-dependent
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covariate, in some large-sample settings in our simulation study due to its theoretical

efficiency advantage. Furthermore, the CIC worked well in terms of selecting the best

method and structure combination and thus regression parameter estimation.

To select a working covariate type of time-dependency, we proposed a selection

method to utilize an estimated MSE and allow for the concurrence of both the effi-

ciency that results from the use of the moment conditions corresponding to Type z,

z = I, II, III, or IV as well as the bias that may arise, and via a simulation study

we showed that our proposed method is preferable to existing methods, including the

use of hypothesis testing and the EL approach. Although the proposed approach is

conservative relative to the hypothesis testing methods when the true covariate is of

Type I, it is superior under settings of true Type II or III as the hypothesis testing

techniques can perform poorly as they favor a Type I specification, thus resulting in

biased regression parameter estimation. In Chapters 2 and 3, the simulation stud-

ies and application example analyzed marginal models with continuous outcomes.

However, the estimation approach and selection criterion are applicable to marginal

generalized linear models in general, regardless of the outcome type, and subjects

with varying repeated measurements are allowable. Future work is need to simul-

taneously select a working correlation structure, incorporated in the modified GEE,

and time-dependent covariate type in order to improve regression parameter estima-

tion. In small-sample settings, adjustments to covariance estimators from the GMM,

modified QIF, and modified GEE approaches may further be considered to correct

for negative bias.

To improve regression parameter estimation in marginal quantile regression for

longitudinal data, we first proposed a modified approach to account for all valid mo-

ment conditions. Compared to the approach incorporating an independence working

correlation structure, the proposed approach was more efficient. We then extended

the selection method from Chapter 3 to determine the working type of covariate,
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which likely is unknown to the data analyst, and through a simulation study we

presented that our method was preferable to the approach with an independence

structure. In the application example, the use of a marginal quantile analysis, along

with our proposed approach, provided a complete description of the morbidity index

distribution to model the response variable, rather than the marginal mean analy-

sis which advocated for the use of a working Type I specification. Future work can

be done by simultaneously selecting a working correlation structure, incorporated in

the modified estimating equations approach, and deciding a covariate type of time-

dependency.

Although we only considered specific working correlation structures in the simu-

lation studies and application example, other structures with less parsimonious forms

are available as well. In addition, our simulation studies and application example were

analyzed via marginal analysis with balanced repeated measurements. Nonetheless,

all the proposed approaches in this dissertation are applicable to subjects with varying

repeated measurements.

Copyright c© I-Chen Chen, 2018.
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