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ABSTRACT OF DISSERTATION 
 
 
 
 
 

TARGETED KNOCKOUT OF BECLIN-1 REVEALS AN ESSENTIAL FUNCTION IN 
OVARY AND TESTIS 

An estimated 12% of couples worldwide are infertile.  The contributing factor is 
approximately equal between men and women with nearly 25% diagnosed as idiopathic.  
Despite the increasing numbers of couples seeking assistance from infertility clinics, few 
molecular mechanisms have been identified for treatment.  Autophagy is an 
evolutionarily conserved cellular process for bulk degradation and recycling of cytosolic 
components through the lysosome to maintain homeostasis.  Several studies have 
observed increased levels of autophagy during ovarian folliculogenesis and gonadal 
steroidogenesis; however, no genetic studies to determine the significance of autophagy 
exist. 
 
To investigate the function of autophagy in the ovary and testis, a directed genetic 
knockout approach was used to independently knockout two key autophagy genes, 
Becn1 and Atg7.  Chapter 2 reports that deficiency of Becn1 results in 56% fewer 
primordial follicles at postnatal day 1.  In addition, Atg7 knockout mice do not have 
identifiable primordial follicles, suggesting that autophagy is necessary for survival of 
female germ cells during embryogenesis.  Chapter 3 presents that Becn1 is necessary 
to sustain pregnancy and the deficiency of Becn1 in granulosa cells is a novel genetic 
model to study preterm labor due to impaired corpora lutea function.  The results 
indicate that Becn1 is necessary for lipid droplet formation and subsequent progesterone 
production in luteal cells.  In contrast, Atg7 is not necessary and deficiency results in 
overproduction of progesterone throughout pregnancy, suggesting that the defect in 
Becn1 conditional knockout mice is additional to autophagy.  Chapter 4 presents that 
Sertoli cell expression of Becn1 is required for spermatogenesis after 8 weeks of age.  
Beyond 9-weeks-old, Becn1 conditional knockout mice are unable to sire a litter due to a 
failure of spermatogenesis and a Sertoli-cell-only phenotype in a majority of the 
seminiferous tubules.  Atg7 was also identified as a necessary factor for 
spermatogenesis beyond 26-weeks-old.  Together the data presented in Chapter 4 
suggests that autophagy is necessary for adult Sertoli cell function.  Primarily, this 
dissertation presents data from the first functional studies on autophagy in the 
reproductive tract.  The results demonstrate an understanding of the functional 
significance for Becn1 and Atg7 in both the ovary and testis. 
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CHAPTER 1:  SELF-EATING, FROM EGGS TO NUTS:  A BASIS TO STUDY 
AUTOPHAGY IN THE MAMMALIAN REPRODUCTIVE SYSTEM 

 
 
Keywords:  autophagy, fertility, maternal-to-zygote transition, mitochondrial inheritance, 
gonadogenesis, folliculogenesis, atresia, steroidogenesis, Leydig cell, Sertoli cell, corpus 
luteum 
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Atg, autophagy-related; ACD, autophagic cell death; ER, endoplasmic reticulum; mTOR, 
mammalian target of rapamycin; LH, luteinizing hormone; FSH, follicle stimulating 
hormone; CL, corpus luteum; PtdIns3p, phosphatidylinositol 3-phosphate; 3-MA, 3-
methyl-adenine; mtDNA, mitochondrial DNA; TUNEL, terminal deoxynucleotidyl 
transferase dUTP nick end labeling; PGC, primordial germ cell; GnRH, gonadotropin 
releasing hormone; E, embryonic day; P, post-natal day; EsR, estrogen receptor; PgR, 
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1.1 Introduction 
The ability to reproduce and survive are the two most important factors with respect to 

evolutionary fitness.  Thus, it makes sense that there is evolutionary conservation for 

many of the mechanisms controlling the functions of reproductive biology.  

Encompassing sex-specific endocrinology and development, gamete development and 

fertilization, reproductive behavior, mammary-gland development and function in 

mammals and placenta-mediated development for eutherian mammals, reproductive 

biology is essential for the persistence of a species.   

Human interest in reproduction has existed for at least 24,000 years as evidenced in 

sculptures; for example “The Venus of Willendorf”, honoring fertility gods (Colman 1998).  

Teachings from the Greek physician Herophilus on human reproductive biology 

demonstrate one of mankind’s’ earliest scientific interest with reproduction beginning 

around 300 BC (Pierson and Stephanson 2010).  In the last 200 years, through 

comparative, molecular and genetic approaches, reproductive biologists have realized 

the conserved development of reproductive systems, by the sequence identity and 

function of necessary transcription factors, proteins and endocrine/paracrine 

interactions.  However, there remain a considerable number of questions regarding the 

reproductive system.  By exploring the significance of a universal process such as 

autophagy in reproductive tissues, I believe that otherwise overlooked protein pathways 

can be uncovered.  The role of autophagy in reproductive biology is a relatively new 

concept with a limited number of publications, yet nevertheless, deserves consideration. 

Christen de Duve, winner of the 1974 Nobel Prize in Physiology for the discovery of 

lysosomes and peroxisomes, coined the term “autophagy” in 1963 at the Ciba 

Foundation Symposium on Lysosomes (Klionsky 2008).  Literally meaning, “to eat 
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oneself” (Greek roots: auto “self”, phagein “to eat”), de Duve was describing a cellular 

process where organelles are delivered to lysosomes via double-membrane vesicles 

that he and his colleagues observed from analyzing electron microscopic images.  

Autophagy was first reported by Keith Porter and Thomas Ashford who observed an 

increase in lysosome biogenesis and mitochondria destruction in hepatocytes after 

treatment with glucagon (Ashford and Porter 1962).  However, Porter and Ashford 

misinterpreted their results, describing the formation lysosomes containing mitochondria, 

rather than delivering mitochondria to lysosomes by the autophagy-dependent vesicle, 

the autophagosome.  Christen de Duve’s lab published the first autophagy papers in 

1967 to describe the potent induction of autophagy in rat hepatocytes following glucagon 

injection and the subsequent trafficking and fusion of the autophagosome with 

lysosomes (Deter et al. 1967; Deter and De Duve 1967).  Autophagy research has 

grown popular, with just over 10,000 “autophagy” papers resulting from a PubMed query 

over the past five years due to autophagy’s indispensable involvement in eukaryotic 

development and disease, particularly in tumor development (see Hale et al. 2013; Choi 

et al. 2013; Jiang and Mizushima 2013 for reviews).  The intimacy between autophagy 

and lysosomes remains today where, as of 2014, the autophagy community recognizes 

three primary flavors of autophagy:  macroautophagy, microautophagy and chaperone-

mediated autophagy, which all conclude with degrading cytosolic components in a 

lysosome (see Parzych and Klionsky 2013 for review).  De Duve and colleagues 

originally observed macroautophagy, and not-coincidentally, macroautophagy is the 

most studied, and will be solely discussed and referred to as autophagy for the 

remainder of this review.  This review will primarily focus on data collected from 

mammals, specifically the mouse where possible, but occasionally will draw on data 

from other animals to formulate broad conclusions. 
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It is the goal of this review is to give an overview of the research to date that links 

autophagy to reproductive biology and to discuss the implications and possible 

directions of future research. 

1.2 An Overview of the Functions and Process of Autophagy 

1.2.1 Primer on the Functions of Autophagy 

Autophagy is an evolutionarily conserved eukaryotic process that occurs at low 

constitutive levels in all cell types to sequester cytosolic material in a double membrane 

structure, termed the autophagosome, and to deliver the material to a lysosome for its 

breakdown and recycling into basic components (Figure 1.1).  Using genetic screens in 

yeast, over 34 autophagy-related (Atg) genes have been identified with most having 

clear homologs in higher eukaryotes through protein-sequence identity (Nakatogawa et 

al. 2009; Tsukada and Ohsumi 1993; Thumm et al. 1994).  Autophagy can be either 

‘selective’ or ‘non-selective’, and is the only other process that degrades cytosolic 

components besides the ubiquitin-proteasome system.  The specific delivery of cytosolic 

components and subsequent inclusion into an autophagosome through cytosolic 

receptors is selective autophagy.  In contrast, non-selective autophagy is the arbitrary 

inclusion of cytosolic components found in close proximity to where the autophagosome 

forms. 

Autophagy is a highly orchestrated requisite for eukaryotes to adapt to nutrient 

conditions and regulate cellular energy homeostasis; thus, autophagy is widely 

considered a pro-survival process.  As the obvious cellular response to nutrient 

starvation, this was the major function of autophagy studied throughout the 1990s.  

However, over the last twenty years many labs have identified other survival-specific 

functions for autophagy, including (with recent reviews):  mitochondria maintenance 

(Youle and Narendra 2011), lipid droplet metabolism (Liu and Czaja 2013; Christian et 
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al. 2013), pathogen elimination (Levine et al. 2011), maintenance of unfolded proteins 

(Cebollero et al. 2012), endosome turnover (Lamb et al. 2013), protein secretion (Brooks 

et al. 2012) and trafficking proteins to the plasma membrane (Deretic et al. 2012).   

Alongside the pro-survival functions, there are limited in vivo studies where autophagy 

has been established as a cause of cell death (Zhu et al. 2007; Denton et al. 2009; Berry 

and Baehrecke 2007; Koike et al. 2008; Nezis et al. 2010; Piras et al. 2011; Schwarze 

and Seglen 1985).  In these studies there is an observed accumulation of 

autophagosomes prior to or concurrent with cell death, a morphology originally termed 

autophagic cell death (ACD) (Maiuri et al. 2007).  However, how autophagy causes cell 

death is controversial.  There are independent data concluding that autophagy can 

induce and mediate apoptosis, as well as be the sole cause of cell death (Kroemer and 

Levine 2008).  The definition of ACD has been recently challenged to include a 

functional component beyond simple morphology, declaring that ACD should be 

ameliorated through chemical or genetic inhibition of autophagy and be independent 

from apoptosis or necrosis (Galluzzi et al. 2012; Klionsky et al. 2012).  This more 

stringent definition makes ACD a very rare event (Shen and Codogno 2011) and argues 

against its occurrence in cancer cell lines screened for mutations in Atg genes (Shen et 

al. 2012).  In this fashion, it is my stance to require both the results from functional 

experiments and distinction from apoptosis or necrosis to affirm ACD. 
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Figure 1.1 Molecular mechanism of autophagy in mammals.   
(A) When mTOR is inhibited, the ULK complex dissociates from mTOR and ULK1 
phosphorylates itself, ATG13 and RB1CC1, to induce the nucleation phase. (B) The 
nucleation complex is assembled at the site of isolation membrane and activated by the 
ULK complex. UVRAG and ATG14L bind to BECN1 in a mutually exclusive manner and 
the complex with ATG14L is necessary for nucleation. BECN1 is inhibited when bound 
by anti-apoptotic BCL2, which inhibits nucleation. (C) The two ubiquitin-like conjugation 
systems essential for membrane elongation that conjugate ATG8-like proteins to PE on 
the expanding membrane. (D) The progression of an autophagosome membrane 
(orange crescent) is dependent on ATG8-like proteins (stylized in black).  Once 
completed the autophagosome is trafficked to and fuses with a lysosome.  ATG8-like 
proteins bound to the outer membrane are cleaved by ATG4 while ATG8-like proteins on 
the inner-membrane are degraded by lysosomal enzymes along with the cargo of the 
autophagosome. Figure adapted from (Hale et al. 2013). 
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1.2.2 Primer on the Process of Autophagy 

Several excellent reviews discuss the molecular machinery (Feng et al. 2014), 

transcriptional (He and Klionsky 2009), posttranscriptional (McEwan and Dikic 2011) and 

extracellular regulation (Lock and Debnath 2008; Boya et al. 2013) of autophagy 

elsewhere, and are beyond the scope of this review.   

Briefly, autophagy is comprised of five sequential stages:  1) induction, 2) membrane 

nucleation, 3) membrane elongation, 4) trafficking and fusion of the autophagosome with 

a lysosome, and 5) degradation followed by transport of molecules back into the cytosol 

(Figure 1.1).  This is distinct from other vesicle-producing processes (e.g. secretory 

pathway) because autophagosome membranes are produced de novo and not budding 

from pre-existing membranes (Noda et al. 2002; Kovács et al. 2007).   

Numerous studies have begun to understand the hierarchical nature of proteins needed 

for autophagosome formation.  In mammals, autophagy is induced as an outcome of 

several signaling pathways, of which mechanistic target of rapamycin (MTOR) and 

adenosine monophosphate (AMP) activated protein kinase (AMPK) are the best studied.  

MTOR and AMPK regulate the unc-51-like kinase family (either ULK1 or ULK2) 

complexes by direct phosphorylation (Kim et al. 2011; Lee et al. 2010; Mizushima et al. 

2010).  Activated ULK1/2 complex recruits the class III phosphatidylinositol 3-kinase 

(PtdIns3K) ‘nucleation’ complex, containing PtdIns3k, catalytic subunit type 3 (PIK3C3, 

also known as VPS34), PtdIns3k, regulatory subunit 4 (PIK3R4, also known as VPS15), 

Beclin-1 (BECN1), ultraviolet radiation associated (UVRAG) and ATG14L to an induction 

site (Itakura and Mizushima 2010), which occurs at endoplasmic reticulum (ER)-

associated structures called omegasomes (Hayashi-Nishino et al. 2009).  The 

production of the signaling lipid, phosphatidylinositol 3-phosphate (PtdIns3P), by the 
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nucleation complex is required for the nucleation of the membrane, called the 

phagophore, and the progression of autophagy (Burman and Ktistakis 2010; Noda et al. 

2010).  PtdIns3P is a signaling molecule that recruits two ubiquitin-like conjugation 

systems (e.g. ATG5-ATG12 and ATG7) that work together to covalently conjugate 

ATG8-like proteins (e.g. microtubule associated 1A/1B-light chain 3 (LC3) and GABA 

receptor-associated protein (GABARAP) families) to phosphatidylethanolamine (PE) in 

the expanding phagophore (Geng and Klionsky 2008).  While the exact function of the 

ATG8-like conjugates is unclear, they are indispensable for prolonged phagophore 

elongation (Xie et al. 2008) and trafficking of the finished autophagosome (Weidberg et 

al. 2010).  The lipid sources for membrane expansion seem to be non-specific as the ER 

(Hayashi-Nishino et al. 2009), Golgi complex (Yen et al. 2010; Takahashi et al. 2011), 

mitochondria membrane (Hailey et al. 2010) and plasma membrane (Ravikumar et al. 

2010) have all been observed to contribute. 

Once completed, the autophagosome goes through a maturation process where the 

induction and elongation complexes are removed and interactions with both 

microtubules and actin filaments facilitate the delivery of the autophagosome to the 

lysosome (Monastyrska et al. 2009).  Autophagosome-to-lysosome fusion proceeds in 

an ATG9-dependent manner that is regulated by soluble N-ethylmaleimide-sensitive 

fusion attachment protein receptors (SNAREs) (Nair et al. 2011).  It is suggested that 

autophagosomes obtain SNAREs by first fusing with late endosomes before fusing with 

a lysosome; however, the mechanism of how autophagosomes fuse to endosomes 

remains to be elucidated (reviewed in Moreau et al. 2013).  Once fusion has taken place, 

lysosome hydrolases and proteases catabolize the autophagosome contents into basic 

building blocks (e.g. amino acids, fatty acids and carbohydrates) and these are 

transported back into the cytoplasm for anabolic reactions. 
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1.3 Autophagy in pre-implantation embryo development 
Fertilization of an egg by sperm marks the beginning of a myriad of developmental 

changes in the embryo.  These changes include both cytoplasmic and genomic 

reprogramming that are necessary for development beyond the blastocyst.  Upon 

fertilization, sequential waves of Ca2+ released into the cytoplasm signal the re-initiation 

of meiosis in the maternal pronucleus, protamine-histone exchange in the paternal 

pronucleus, followed by fusion of the maternal and paternal pronuclei and progression 

into mitosis (reviewed in Whitaker 2008).  Fertilization also initiates the translation of 

several proteins essential for the progression into meiosis and mitosis along with the 

ubiquitination and destruction of several maternally inherited proteins (e.g. Cyclin B1) 

(Vasudevan et al. 2006; Huo et al. 2004).  In order to drive this progression without the 

need for transcription from the condensed chromosomes, several translationally-delayed 

maternally-derived transcripts become activated (Conti 2011; Chen et al. 2011; 

Medvedev et al. 2011).  The ubiquitin-proteasome system degrades many oocyte-

derived proteins, which serves to cull the 3,699 different proteins found in metaphase II 

oocytes down to approximately 2,000 different proteins after fertilization (Pfeiffer et al. 

2011; Wang et al. 2010).  Protein degradation is essential for meiosis resumption, 

spindle assembly, polar body emission and pronucleus formation (Huo et al. 2004, 2005, 

2006).  Also during this time, both the maternal and paternal genomes undergo 

epigenetic reprogramming, which effectively removes nearly all methylation marks 

inherited from the parents and resets epigenetic marks, such as imprinting  (Li 2002; 

Cantone and Fisher 2013).  At the 2-cell stage in mice, embryos undergo a maternal-to-

zygote transition where nearly all maternally inherited proteins and mRNA are destroyed, 

and transcription and translation begins from the zygotic genome (Pikó and Clegg 1982; 

Merz et al. 1981; De Leon et al. 1983).  A combination of RNA-binding proteins and 

endo-siRNAs attach to the 3’ UTRs of maternally inherited RNAs resulting in their 
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destabilization and degradation (Alizadeh et al. 2005; Suh et al. 2010).  Maternal 

proteins are poly-ubiquitinated during the maternal-to-zygote transition followed by their 

elimination by the 4-cell stage.  This process  is stunted by treatment with MG-132, a 

potent and reversible proteasome inhibitor, and regulated by a proteasome assembly 

chaperone ZPAC, suggesting that the proteasome is involved (Shin et al. 2010, 2013).  

However, it seems unlikely that the proteasome system would be sufficient for the rapid 

turnover observed.  An additional hypothesis is that early embryo induces autophagy to 

assist with the protein turnover. 

Tsukamoto et al. found that within 4 hours after egg activation, by fertilization or 

parthenogenesis, the mouse zygote shows a massive induction of autophagy as shown 

by an increase in GFP-LC3 puncta (Tsukamoto et al. 2008b, 2008a).  GFP-LC3 is a 

fusion protein used to monitor autophagosome flux due to the incorporation of GFP-LC3 

into autophagosome membranes (Mizushima 2009).  This induction is postulated to 

occur since mTOR, an upstream inhibitor of autophagy, is inhibited after Ca2+ wave 

initiation (Tsukamoto et al. 2008a).  Autophagy is transiently suppressed from the late 

one-cell to late two-cell stage in mice that coincides with the maternal-to-zygote 

transition which is hypothesized to occur to protect the released nuclear factors during 

metaphase (Tsukamoto et al. 2008a).  Additionally, zygotes generated from egg and 

sperm both devoid of ATG5, an essential protein of the autophagosome membrane 

conjugation system, do not develop beyond the 8-cell stage; furthermore, they have 

reduced protein synthesis after the 2-cell stage (Tsukamoto et al. 2008b).  This suggests 

that ATG5 positively regulates protein synthesis necessary for embryogenesis.  Data 

presented by Xu et al. using porcine parthanotes treated with autophagy modulators has 

demonstrated that degradation of the maternal transcripts Gdf9, Bmp15, c-mos and 

cyclin B are autophagy-dependent as pharmacological autophagy inhibition resulted in 
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transcript accumulation and reduced development to blastocyst (Xu et al. 2012).  These 

results suggest that autophagy is required for the maternal-to-zygote transition;  

however, we must take into consideration that the pharmacological modulators, 3-

methyladenine (3-MA) and rapamycin exhibit off-target effects, beyond inhibiting 

autophagy (Yang et al. 2013).  Data from C. elegans corroborates the observation that 

autophagic flux is increased after fertilization and additionally, several maternal proteins 

have been identified whose degradation is dependent on autophagy (reviewed in Sato 

and Sato 2013).  These experiments establish that the activation of autophagy after 

fertilization is not specific to mammals, suggesting a deep evolutionarily conserved 

function for this pathway during embryogenesis.  Furthermore, several  in vivo and in 

vitro experiments have demonstrated the autophagy-dependent degradation of poly-

ubiquitinated proteins in several somatic cell types through selective receptors such as 

SQSTM1 (reviewed by Shaid et al. 2013).  A future direction will be to test whether poly-

ubiquitinated proteins are delivered to autophagosomes after fertilization and during the 

maternal-to-zygote transition.  There are two possibilities for the function of autophagy in 

the early embryo.  One, autophagy degrades proteins and RNA that otherwise would 

halt development.  Two, autophagy provides the basic components that the early 

embryo needs (e.g. nucleosides and amino acids).  The latter is a possibility as zygotes 

cannot transport or synthesize amino acids or nucleosides at an appreciable rate until 

after the maternal-to-zygote transition (Rudraraju and Baltz 2009; Li et al. 2006b).  While 

the exact function of autophagy after fertilization remains unclear, it will be necessary to 

use genetic and pharmacological approaches to distinguish between the contributions of 

autophagy and the ubiquitin-proteasome system.   
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1.4 Autophagy in paternal mitochondrial elimination  
It is widely accepted that offspring inherit their mitochondrial genomes (mtDNA) from one 

parent, which in most animals studied is from the mother (Hutchison et al. 1974; Birky 

1995).  The timing of when the paternal mtDNA elimination occurs is controversial, as 

data exists for both pre- and post-fertilization, depending on the species studied.  As a 

result, hypotheses for both active and passive mechanisms of paternal mtDNA 

elimination exist.  One passive hypothesis states that only the head of the sperm enters 

the egg, leaving the tail containing paternal mitochondria outside of the embryo (Ankel-

Simons and Cummins 1996).  However, this cannot be true in humans, as the zygotic 

centrosome is paternally inherited and the sperm midpiece, which contains 

mitochondria, is evident inside the zygote hours after fertilization (Sathananthan et al. 

1986, 1996).  Another hypothesis for passive removal is that cell division dilutes the 

paternal mtDNA beyond the range of detection.  An egg is several thousand times larger 

than a sperm and can contain at least one-thousand fold more mitochondria.  

Corroborating this viewpoint, mtDNA heterogeneity (i.e. heteroplasmy) is present in 

human tissues; however, it remains to be determined if these are truly paternally-

generated mitochondrial DNAs or tissue-specific polymorphisms (He et al. 2010).   

Two hypotheses for active elimination exist.  The first contends that the sperm can 

digest and eliminate mtDNA prior to fertilization (DeLuca and O’Farrell 2012; Nishimura 

et al. 2006).  Alternatively, another hypothesis argues that the embryo eliminates 

paternal mitochondria and mtDNA through a mechanism such as autophagy (Sutovsky 

et al. 1999; Al Rawi et al. 2011; Sato and Sato 2011).  While passive elimination is still a 

possibility, the evidence for active elimination is accumulating.   

12 
 



 

Recently, Drosophila was identified as an organism that eliminates paternal mtDNA prior 

to the completion of spermatogenesis (DeLuca and O’Farrell 2012).  Sperm mtDNA is 

enzymatically digested by endonuclease G and any remaining mtDNAs are targeted for 

transport into waste bags and removed from the maturing sperm (DeLuca and O’Farrell 

2012).  Similarly, mtDNA, as detected by PCR, declines in sperm throughout 

spermatogenesis in human, rat, and mouse (Rantanen et al. 2001; Larsson et al. 1997).  

Along these lines, May-Panloup et al. quantified 1.4 copies of mtDNA per sperm from 

purified samples of normal human sperm (May-Panloup et al. 2003).  Together these 

data suggests that mammals do participate in pre-fertilization elimination of paternal 

mtDNA.  Whether enzymatic digestion is involved in mammals is yet to be determined.  

However, the low amounts of mtDNA present in sperm prior to fertilization suggests that 

there must be post-fertilization elimination.   

Early mouse studies demonstrated the loss of microinjected, labeled mitochondria and 

sperm-derived mtDNA into zygotes before the 8-cell stage (Cummins et al. 1997).  

Analogous results have been observed in bovine (Sutovsky et al. 1996) and the medaka 

fish, O. latipes (Nishimura et al. 2006) suggesting that post-fertilization destruction of 

mitochondria is evolutionarily conserved.  Furthermore, hepatocyte-mitochondria 

microinjected into zygotes, can be detected in newborn mice; however, injected sperm-

mitochondria are eliminated, suggesting that sperm mtDNA are labeled with specific 

degradation factors (Shitara et al. 2000).  Observations from primate and bovine studies 

have indicated that paternal mitochondria are quickly poly-ubiquitinated after fertilization 

and that their degradation is dependent on lysosomes (Sutovsky et al. 2000).  In a follow 

up study, Thompson et al. identified Prohibitin, an inner mitochondrial protein, as one of 

the more prominent paternal mitochondria substrates to be poly-ubiquitinated in bull and 

rhesus sperm (Thompson et al. 2003).  To our knowledge, no study exists directly 
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testing if Prohibitin poly-ubiquitination leads to mitochondrial destruction; however, 

knockdown of Prohibitin-1 (human protein homologous to Prohibitin) in human cells 

induces autophagy of mitochondria (i.e. mitophagy) (Kathiria et al. 2012).  The 

hypothesis that poly-ubiquitination of Prohibitin inhibits its function similar to the 

knockdown approach needs to be tested.   

Three studies in Caenorhabditis elegans have suggested that autophagy is the 

mechanism for the elimination of paternal mitochondria by the 64-cell stage (Zhou et al. 

2011a; Al Rawi et al. 2011; Sato and Sato 2011).   Surprisingly, Luo et al. recently 

reported that despite the induction of autophagy after fertilization, paternal mitochondria 

are not eliminated from mouse embryos by autophagy (Luo et al. 2013).  Sperm 

mitochondria congregated with the autophagy proteins SQSTM1 and LC3 immediately 

after fertilization and this co-localization persisted to the morula stage, yet never co-

localized with lysosome markers (Luo et al. 2013).  As a possible explanation, the 

authors detected an average of 1.29 copies of mtDNA in motile sperm and only 11% of 

sperm in the oviduct had detectable mtDNA providing evidence that mouse sperm 

actively destroy mtDNA prior to fertilization.  Furthermore, embryos formed from sperm 

with multiple copies of mtDNA had detectable paternal mtDNA after birth.  The authors 

concluded that pre-fertilization elimination of paternal mtDNA drives maternal inheritance 

in the mouse.  It will be important to determine if other mammals, like humans, depend 

on pre-fertilization elimination, especially when mitochondria quality appear to contribute 

to the success of in vitro fertilization (Reynier et al. 2001; Yi et al. 2007).  The increase in 

autophagic flux at fertilization and evidence that mitochondria are solely degraded 

through autophagy, a process termed ‘mitophagy’ (reviewed by Youle and Narendra 

2011), provide a motive for studying the function of autophagy during this time.  Live cell 

imaging of zygotes injected with mitochondrial and autophagosome markers generated 
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by in vitro fertilization (IVF) across several species will be necessary experiments to 

determine the extent that autophagy-dependent paternal mitochondria elimination 

occurs. 

1.5 Autophagy in prenatal gonad/gamete development 
Embryonic reproductive tissues are dynamic in structure, physiology and gene 

expression.  Relatively few studies have explored the significance of autophagy during 

reproductive development, and here I provide a background of reproductive 

development and speculate on potential functions for autophagy.   

1.5.1 Migration of Primordial Germ Cells and Formation of the Bipotential Gonad 

The development of gonads is well conserved, as many of the same signaling pathways 

and structures participate in Drosophila, zebrafish and mouse (Richardson and Lehmann 

2010).  Murine gonad development begins around embryonic day (E) 6.25 with the 

differentiation of a small group of approximately 6 cells found in the proximal epiblast, or 

outermost layer of the embryo proper that will differentiate to ectoderm and mesoderm, 

into primordial germ cell (PGC) precursors (Ohinata et al. 2005).  PGC precursors will 

eventually give rise to the gametes in the adult.  Differentiation occurs in response to 

bone morphogenetic protein (BMP) signaling and the PGC precursors begin expressing 

the necessary and functionally independent transcriptional repressors PRDM1 (PR 

domain zinc finger protein 1; also known as, B lymphocyte-induced maturation protein 1; 

Blimp1) and PRDM14 (Ohinata et al. 2005; Yamaji et al. 2008).  Over the next 48 hours, 

the PGCs precursors proliferate to a population of roughly 100 cells as they begin to 

migrate through the primitive streak into the extra-embryonic endoderm and allantois 

(Anderson et al. 2000; Ginsburg et al. 1990).  The PGC migration is in response to the 

chemoattractants expressed and released by somatic cells; mainly, kit ligand (KITL also 

known as stem cell factor (SCF) or Steel) and C-X-C motif ligand 12 (CXCL12, also 
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known as Sdf1), which bind to the PGC membrane receptors kit receptor (KIT) and 

chemokine (C-X-C motif) receptor 4 (CXCR4) (Ara et al. 2003; Doitsidou et al. 2002; 

Molyneaux et al. 2003).  These somatic and germ cell paracrine interactions remain 

essential for the remainder of PGC development into gametes. 

Chromatin and epigenetic remodeling globally erases methylation marks and transitions 

the PCGs precursors into PGCs, manifesting in the expression of the stem cell markers 

Oct4, Stella and Nanos3 (Saitou et al. 2002; Tsuda et al. 2003; Sato et al. 2002; Schöler 

et al. 1990).  At some point during the migration between E7.0 and E9.0, the PCGs 

become transcriptionally silent and enter a transient G2 phase cell cycle arrest (Seki et 

al. 2007).  PGCs migrate into the embryo along the hindgut through the dorsal 

mesentery until they arrive in the dorsal mesoderm where they sort bilaterally and 

colonize the urogenital ridges at approximately E10.5.  A single gonad forms on the 

surface of each mesonephros, or embryonic kidney, within the urogenital ridge.  When 

PGCs arrive at the urogenital ridge, no mRNA expression or histological difference 

between male and female has taken place and the PGCs are bi-potential, meaning they 

can develop into ovaries or testes.  PGCs lose motility as they associate with somatic 

cells expressing the highest amounts of HMG-CoA reductase (HMGCR) and SDF1A in 

Drosophila and zebrafish, respectively, but it is unknown if the same occurs in mammals 

(Van Doren et al. 1998; Reichman-Fried et al. 2004).  Between E9.0 and E11.0, PGCs 

re-enter the cell cycle and upon arrival at the genital ridge actively proliferate, 

maintaining intercellular bridges, forming cell clusters, or cysts, of about 25,000 cells 

between the two gonads by E12.5 (Tam and Snow 1981; Lei and Spradling 2013; 

Pepling and Spradling 1998).  After colonization of the gonads, male PGCs are called 

gonocytes and female PGCs are called oogonia. 
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Although it is currently unknown if migrating primordial germs cells actively undergo 

autophagy, multiple studies have shown that autophagy facilitates migration in tumor 

cells (Galavotti et al. 2013; Tuloup-Minguez et al. 2013; Macintosh et al. 2012).  KIT 

signaling in migrating PGCs activates AKT which is necessary for PGC survival (De 

Miguel et al. 2002).  Activated AKT both directly and indirectly inhibits autophagy in 

tumor cells (Wang et al. 2012b; Degtyarev et al. 2008), suggesting that autophagy is 

inhibited during PCG migration.  However, a recent study in chicken shows that 

expression of a constitutively-active AKT retards PGC migration and prevents gonad 

colonization (Glover et al. 2013).  This suggests that a specific amount of AKT activity 

exists for regulation PCG migration.  The hypothesis that the levels of autophagic flux 

regulated by AKT is necessary for PGC migration remains untested. Several knockout 

mice for key autophagy genes are embryonic lethal before and during migration, making 

it difficult to study the significance of autophagy.  Additionally, there is not a reliable 

conditional knockout paradigm to target PGCs during migration, further complicating the 

experiment.  The use of a ligand inducible Cre-recombinase or pharmacological 

autophagy inhibitors would be possible but the results would be difficult to interpret from 

possible non-PGC effects in the mother’s uterus or somatic cells in the embryo.  

1.5.2 Testes Differentiation 

While no histological differences occur until E12.5 in either XX or XY bipotential gonad, 

several genetic changes occur in the somatic tissue surrounding PGCs as early as 

E10.5.  In mammals, the Y chromosome determines if the bipotential gonads will 

differentiate into a testis (XY individual) or ovary (XX individual), in an otherwise normal 

genetic background (Jost et al. 1973).  The Y chromosome gene sex-determining gene, 

Y (Sry) is transiently expressed between E10.5 and E12.5 with a peak at E11.5, in the 

somatic cells, which later develop into Sertoli cells (Hacker et al. 1995; Bullejos and 
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Koopman 2001).  The differentiation of these somatic cells into Sertoli cells drives the 

formation and function of the testis.  SRY activity causes the increased expression of 

SRY-Related HMG-box, gene 9 (Sox9) in the somatic cells (Sekido et al. 2004; Bullejos 

and Koopman 2005).  It is important to note that Sox9 is present in both XX and XY 

gonads, but that Sox9 is upregulated several-fold in the XY gonad.  Subsequent 

expression of extracellular signaling peptides, such as fibroblast growth factor 9 (Fgf9), 

maintain Sox9 expression and orchestrate the differentiation of these cells into Sertoli 

cells, organization of the testis cords, and formation of the coelomic vessel by E12.5 

(DiNapoli et al. 2006; Kim et al. 2006).  The latter two events are obvious morphologies 

of the early stage testes that persist to form the seminiferous tubules and the blood 

supply in the adult testes, respectively (Schmahl et al. 2004).  While SRY is mammal-

specific, the amino acid sequence and function of SOX9 is conserved across all 

tetrapods studied (Bagheri-Fam et al. 2010).  Beginning at E12.5, gonocytes exit the cell 

cycle and enter a prolonged G1/G0 mitotic arrest until shortly after birth enforced by 

growth factors and paracrine signaling from Sertoli cells (reviewed by Payne 2013).  

Endocrine molecules produced by the somatic cells of the embryonic testes act as 

signals for the rest of the body to shift development to male secondary characteristics. 

From E13.5 through E17.5 male gonocytes initiate apoptosis mediated by a BCL-XL / 

BAX rheostat (Rucker et al. 2000; Coucouvanis et al. 1993).  In particular, Bax-deficient 

males exhibit an excess of gonocyte clusters and disordered seminiferous tubules 

suggesting that cell death is necessary during embryogenesis for both gonocyte cyst 

breakdown and testicular development (Knudson et al. 1995).  While the exact function 

for apoptosis is unknown, the dominant hypothesis is that there exists a fundamental 

gamete-to-somatic cell ratio for proper signaling in the adult testis.  However, another 

hypothesis comes from observations during tissue regeneration, which demonstrate the 
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release of paracrine factors from apoptotic cells at injury sites that leads to 

immunosuppression in the wounded area, which is necessary for matrix remodeling 

(Boland et al. 2013).  Additionally, recent studies using C. elegans have indicated that 

autophagy regulates the clearance of apoptotic corpses and matrix remodeling during 

organogenesis (Li et al. 2012; Huang et al. 2013b).  It is possible that autophagy 

participates in testis development by regulating cellular remodeling of gonocyte cysts 

and clearance of dying cells, implicating that misregulation of autophagy could result in 

male infertility. 

1.5.3 Ovary Differentiation 

In the absence of the expression of SRY the bipotential gonad develops into an ovary.  

The discovery of SRY led to several mammalian sex determination models.  The correct 

model in Eutherian mammals states that a SRY-like factor, the “Z” locus, must exist for 

ovarian development that also suppresses the function of SRY, negatively regulates 

testes development and SRY must suppress the function of “Z” (McElreavey et al. 

1993b).  This model developed from familial studies on XX individuals that displayed 

sex-reversal with and without SRY (McElreavey et al. 1993a).  Identification of the 

mutated genes in these individuals led to the discovery of r-spondin homolog 1 (Rspo1) 

as the first female-specific gene upregulated in XX gonads (Parma et al. 2006).  

Knockout mouse models for Rspo1 duplicated the sex-reversal seen in humans and 

identified RSPO1 as an extracellular co-activator for wingless-type MMTV integration 

site family, member 4 (WNT4) that induces the activity of β-catenin to drive a positive 

feedback loop for Wnt4 expression and subsequent ovary differentiation (Binnerts et al. 

2007; Wei et al. 2007; Chassot et al. 2008; Tomizuka et al. 2008).  The WNT pathway is 

a well understood and conserved pathway that starts with the binding of the extracellular 

WNT ligand to a Frizzled family of plasma membrane receptors.  In canonical WNT 
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signaling, the activated Frizzled receptor recruits a soluble Disheveled family protein that 

releases the transcriptional co-regulator β-catenin from the plasma membrane.  It stands 

to reason that β-catenin would be factor “Z”, as SRY directly inhibits β-catenin-mediated 

transcription (Bernard et al. 2008) and SOX9 interacts with β-catenin to cause their 

mutual degradation by the proteasome (Akiyama et al. 2004).   

The expression of Rspo1 begins around E11 with an increased synthesis and secretion 

of WNT4 observed shortly afterwards by the somatic cells surrounding the oogonia.  The 

activation of the WNT-β-catenin pathway in oogonia, allows for the expression of 

stimulated by retinoic acid gene 8 (Stra8) in response to retinoic acid secreted by the 

mesonephros beginning on E12.5 (Chassot et al. 2011).  STRA8 is a transcription factor 

that promotes the entry into meiosis and as such, oogonia enter meiosis, or begin 

oogenesis, on E13.5 in a rostral to caudal wave that takes up to 4 days to complete in 

the mouse (Menke et al. 2003).  Nearly half of the oogonia are lost during this time 

through apoptotic cell death controlled by the interplay between BCL-X, an anti-apoptotic 

factor, and BAX, a pro-apoptotic factor (Rucker et al. 2000).  The onset of oogenesis 

varies among mammals with cats, rabbits and golden hamsters occurring after birth 

(Lemon and Morton 1968; Peters et al. 1965; Winiwarter 1920).  However, human 

oogenesis begins in the second month of pregnancy and which validates the mouse as a 

model for embryonic ovary differentiation (Kurilo 1981).  At E16.5, only a few mitotic 

oogonia remain and the now primary oocytes have all entered a prolonged arrest in the 

diplotene stage of prophase I, or dictyotene, where they will remain until stimulated by 

pituitary luteinizing hormone (LH) after puberty (Vagner-Capodano et al. 1987; Singh et 

al. 1993).   
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Autophagy and the WNT-β-catenin pathway are antagonistic of each other.  In mouse 

intestinal epithelium, β-catenin directly downregulates P62/SQSTM1 expression and 

reduces autophagosome formation through an unknown mechanism (Petherick et al. 

2013).  Conversely, both β-catenin and Disheveled are selectively degraded by 

autophagy through binding to LC3 and GABARAP proteins (Petherick et al. 2013; Gao et 

al. 2010; Zhang et al. 2011).  The interplay between WNT and autophagy could be 

important in timing the proliferative window of both the somatic tissue and oogonia.  

Before oogonia enter meiosis, proliferation must cease, which could be dependent upon 

β-catenin degradation.  Interestingly, a minimal amount of β-catenin is required for 

centrosome separation during mitosis, but it is unknown if the same is true during 

meiosis (Kaplan et al. 2004).  Thus, the regulation of β-catenin by autophagy during 

oogenesis is important to determine.  Little is currently known about autophagy prior to 

dictyotene; however, autophagy mediates the degradation of MutS homolog 4 (MSH4) in 

some human cell lines (Xu and Her 2013).  The complex of MSH4 and MSH5 are 

necessary to stabilize Holiday junctions and the single stranded invasion intermediates 

to promote homologous recombination during meiosis (Snowden et al. 2004).  

Homologous recombination is orchestrated through the presence and degradation of 

several protein complexes, and it would make sense that the degradation of MSH4 is 

necessary to continue meiosis after homologous recombination, but this remains to be 

tested.   

1.6 Autophagy in ovarian folliculogenesis 
The ovarian follicle is the basic structure found within an adult ovary.  Containing the 

oocyte and somatic cells, the follicle synthesizes endocrine hormones and is essential 

for producing the mature female gamete.  The somatic cells include:  1) the granulosa 

that function as “nurse” cells providing proteins, mitochondria and substrates to the 
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oocytes, and 2) theca cells that function to supply the granulosa with androstenedione 

so that they may produce estrogens.  The autocrine, paracrine and endocrine signaling 

that occurs within the follicle determines oocyte development, physiology and survival.  

Folliculogenesis refers to the sequential developmental process that begins with 

oogonia-nest breakdown through ovulation and formation of a corpus luteum (Figure 

1.2).  A comprehensive review of the molecular pathways regulating follicle progression 

can be found elsewhere (Edson et al. 2009).  In the following sections, I briefly describe 

the progression through folliculogenesis and discuss a potential role for autophagy. 

 
Figure 1.2  Ovarian folliculogenesis 
Diagram depicting the developmental process of folliculogenesis.  First, somatic pre-
granulosa cells invade germ cell cysts and surround oocytes forming primordial follicles.  
Activation of primordial follicles occurs throughout life and they will progress to 
secondary follicles regulated by inter-follicle signaling between granulosa and the 
oocyte.  During follicle progression, granulosa cells proliferate forming several cell layers 
that beginning producing estrogens and recruit an outer layer of androgen producing 
theca cells.  Secondary follicles that become FSH-responsive develop into antral follicles 
after which progression is dependent on gonadotropins.  Two populations of granulosa 
cells develop due to differential gradients from the oocyte and the blood.  The mural 
granulosa are found next to the follicle wall and the cumulus are the population that 
surround the oocyte.  After the LH surge, ovulation occurs and drives terminal 
differentiation of the remaining cells into luteal cells.  After extensive tissue remodeling 
the corpus luteum is formed.  At any time following activation, inadequate signals will 
induce apoptosis, depicted as blackened pyknotic nuclei, and the follicle dies through the 
process of atresia.  Figure modified from (Edson et al. 2009). 
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1.6.1 Oocyte Attrition and Germ Cell Nest Breakdown 

Prior to follicle formation, oocytes exist as clusters connected by cytoplasmic bridges or 

germ cell nests.  Beginning hours after birth in mice, and during the 2nd trimester in 

humans, the nests begin breaking down and pre-granulosa cells begin surrounding 

individual oocytes to form primordial follicles (Pepling and Spradling 2001; Konishi et al. 

1986).  Between 40 and 70% of meiotic oocytes are lost during germ cell nest 

breakdown, which is known as ‘oocyte attrition’ (Baker 1966; Coucouvanis et al. 1993; 

Ratts et al. 1995; McClellan et al. 2003; Rodrigues et al. 2009; Pepling and Spradling 

2001; Bristol-Gould et al. 2006a).  Oocyte attrition may result from mechanisms devoted 

to reducing the amount of defective chromosome crossovers, and hence the propagation 

of mutations, while maximizing the limited number of pre-granulosa cells in the ovary.  

Thus, this restricts the number of primordial follicles that can form, while the remaining 

oocytes are removed.  Indeed, mice with targeted mutations in genes resulting in 

crossover defects reduce the primordial follicle pool (Barlow et al. 1998; de Vries et al. 

1999; Edelmann et al. 1999; Kneitz et al. 2000; Yoshida et al. 1998).  Furthermore, 

mouse and human females with a single X chromosome (XO) (i.e. Turner syndrome), 

which leads to failed chromosome pairing are accompanied with increased oocyte 

attrition from massive apoptosis in the fetal ovary (Burgoyne and Baker 1985; Modi et al. 

2003).  Supporting that there is a limited numbers of pre-granulosa cells, adequate 

signaling from growth factors (e.g. KitL, LIF, IGF-I, interleukin-1-α and β) which are 

secreted by the pre-granulosa cells are necessary to exert anti-apoptotic control on 

oocytes in culture conditions to prevent oocyte attrition (see De Felici et al. 2005 for 

review).  There is evidence for increased apoptosis and autophagy in ovaries during 

germ cell nest breakdown suggesting roles for both during oocyte attrition (Gawriluk et al 

2011; Perez et al 1999). 
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Initiation of apoptosis occurs through either an extrinsic or an intrinsic pathway.  Extrinsic 

activation is initiated by death receptors, such as TRAIL and FAS, which belong to the 

Tumor Necrosis Factor (TNF) and Nerve Growth Factor (NGF) superfamilies (Guicciardi 

and Gores 2009).  These receptors are characterized by containing a death domain that, 

upon ligand binding, recruits the death-inducing signaling complex which cleaves pro-

Caspase 8 to generate active-Caspase 8 (Medema et al. 1997).  Active-Caspase 8 

activates effector caspases (e.g. Caspase 3, Caspase 7) that trigger downstream 

apoptotic endpoints such as DNA fragmentation, nuclear degeneration, exposure of 

phosphatidylserine (PS), and plasma membrane blebbing (reviewed by Guicciardi and 

Gores 2009).  Active-Caspase 8 can also initiate the intrinsic pathway by cleavage of 

BID (Li et al. 1998).  Alternatively, the intrinsic pathway can be activated in response to 

toxins, growth factor withdrawal or DNA damage (reviewed by Elmore 2007). The 

intrinsic pathway is characterized as the functional depletion of the anti-apoptotic factors 

that inhibit pore-forming complexes (e.g. BAX, BAK), which allow the release of 

Cytochrome C from the inner mitochondria into the cytoplasm.  Cytosolic Cytochrome C, 

APAF-1 and pro-Caspase 9 form the apoptosome, which initiates a Caspase 9 cascade 

leading to apoptosis.  Ultimately, the balance between the pro-apoptotic factors (e.g. 

BAX, BAK, BAD, BIK) and the anti-apoptotic factors (e.g. BCL2, BCL2L1, MCL1) 

determine if a cell will survive or undergo apoptosis (reviewed by Czabotar et al. 2014).    

It has been long thought that apoptosis is responsible for oocyte cell death during germ 

cell nest breakdown because prior to attrition oocytes exhibit multiple characteristics of 

apoptosis including nuclear condensation, cell blebbing,  DNA laddering with TUNEL 

positive staining, and PARP1 immunoreactivity (Ghafari et al. 2007; Pepling and 

Spradling 2001; Pesce and De Felici 1994; Lobascio et al. 2007a, 2007b).  However, the 

role of apoptosis during oocyte attrition is unclear.  The extrinsic pathway is likely not 
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important as the death receptors and their ligands are not expressed by oocytes during 

the perinatal period (Sakamaki et al. 1997).  Examination of the contribution of the 

intrinsic pathway has given ambiguous results.  First, the germ cell specific deletion of 

BCL2L1 (anti-apoptotic) was found to not affect the primordial germ cell pool (Riedlinger 

et al. 2002).  This result is surprising as BCL2L1 is responsible for survival of oogonia 

(Rucker et al. 2000).  Second, mice with a global deletion of BCL2 (anti-apoptotic) have 

normal endowment of primordial follicles at P1, 4 and 7 (Jones and Pepling 2013).  

However, following BCL2 knockout mice or mice overexpressing BCL2 out to P42 

results in a decline and increase in the number of primordial follicles, respectively (Ratts 

et al. 1995; Flaws et al. 2001).  This suggests that either:  1) BCL2 regulates cell death 

after P7, 2) the failure to see a difference at P7 is the result of different primordial follicle 

counting techniques, or 3) the mice in the 2013 report no longer harbor the phenotype.  

Third, the use of an MCL-1 (anti-apoptotic) antibody to disrupt its anti-apoptotic ability in 

oocyte cultures from E18 results in enhanced apoptosis but does not inhibit oocyte 

attrition (Jones and Pepling 2013).  Fourth, the global deletion of BAX (pro-apoptotic) 

causes an increase in the follicle pool; however, it was concluded to be attributed to cell 

death that occurs during germ cell migration (Greenfeld et al. 2007).  Fifth, global 

knockout of BAK (pro-apoptotic), BOK (pro-apoptotic) or the double knockouts of 

BAK/BOK and BAX/BOK have no phenotype for oocyte attrition (Lindsten et al. 2000; Ke 

et al. 2013).  Sixth, staining for apoptotic markers in the perinatal ovary suggest that 

apoptosis is not responsible for clearing all of the oocytes that undergo attrition 

(Rodrigues et al. 2009).  Overall, these data suggest that alternative cell death 

mechanisms beside apoptosis exist, or alternatively, the correct combination of apoptotic 

factors has not been identified.  Given that autophagy can mitigate the effects of 

apoptosis, a block in autophagy may result in an increase in apoptosis and a decrease in 

the oocyte pool size. 
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Evidence that autophagy contributes to cell death during oocyte attrition comes from a 

single study by Rodrigues et al. using perinatal wild-type mice.  The results of their 

analysis demonstrate increased autophagic flux and lysosome amplification in oocytes 

during germ cell nest breakdown.  Additionally, the use of an autophagy inhibitor, 3-

methyl-adenine, reduces the cell death in cultured perinatal ovaries placed into 

starvation media (Rodrigues et al. 2009).  While the reduction in cell death was 

moderate (about 30% less), the use of a Caspase inhibitor to prevent apoptosis did not 

alleviate acidification (Rodrigues et al. 2009).  This is not surprising since starvation 

induces autophagy and lysosome biogenesis to maintain energy homeostasis, which 

also occurs in every tissue tested upon parturition (Kuma et al. 2004).  The authors of 

Rodrigues et al. suggest that autophagy participates in cell death during oocyte attrition; 

however, there is an alternative explanation.   

Cell turnover is quick with nearly 8,000 oocytes removed in a matter of 48 hours (Pepling 

and Spradling 2001).  Additionally, the attrition does not induce inflammation or the 

migration of lymphocytes.  Moreover, the dying oocyte bodies must be eliminated yet the 

engulfing cell, presumed to be resident macrophages, but the cell has not been 

identified.  Autophagy and lysosome biogenesis are processes that are upregulated in 

tissues actively removing dying cells, such as the testis or retina (Johnson et al. 2008; 

Deguchi et al. 1994).  It is therefore possible that the increased acidification seen during 

germ cell nest breakdown can be attributed to the phagocytosis of dying cells.  

Furthermore, apoptotic spermatocytes in the testis are numerous but are removed 

during the early stages of apoptosis, perhaps to prevent inflammation in the tissue 

(Nakanishi and Shiratsuchi 2004).  As such, many of the endpoints of apoptosis are not 

observed.  I therefore, propose the hypothesis that autophagy is necessary for germ cell 

nest breakdown to occur normally without an inflammatory response and furthermore, 
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that autophagy is necessary for the survival of oocytes exposed to the parturition related 

starvation.  Using a mouse model with the conditional deletion of autophagy genes in 

embryonic oocytes should determine if autophagy is a regulator of oocyte attrition. 

1.6.2 Primordial Follicle Activation 

Once primordial follicles are born, they follow a sequential growth and differentiation until 

ovulation occurs.  Recruitment into the growing follicle pool occurs in two stages.  First, 

the activation of primordial follicles is continual process throughout life.  Second, the 

cyclical recruitment of a limited number of primary follicles from the activated cohort is 

regulated through gonadotropin signaling which ‘selects’ a subset of follicles for 

ovulation.  As primordial follicles are activated, there is a morphological transition in 

granulosa cells from a squamous to a cuboidal cell type.  Additionally, the diameter of 

the oocyte increases slightly.  The newly differentiated granulosa cells begin making cell-

to-cell contacts between themselves and the oocyte via gap junctions that later serve to 

transport ions, metabolites, small molecules and organelles.  Several growth factors and 

their receptors including follicle stimulating hormone receptor (FSHR), TGFβ 

superfamily, and insulin receptors begin to be expressed in the granulosa cells and 

oocyte that have numerous roles in the downstream stages (McLaughlin and McIver 

2009).  Many of the factors expressed by granulosa cells are also responsible for 

recruiting stromal cells that later become the theca.  While no single factors has been 

identified, it appears that a combination of several including KITL, Growth Differentiation 

Factor 9 (GDF-9), Insulin-like Growth Factor (IGF) and BMPs are necessary for theca 

recruitment and differentiation (Young and McNeilly 2010).  Additionally, the oocyte 

begins expressing many of the genes that regulate the formation of the zona pellucida, 

which is an essential structure for fertilization (Wassarman and Litscher 2012).  The 

molecular mechanisms that govern the activation are poorly understood, although 
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several necessary factors have been identified in mice that demonstrate crosstalk 

between the oocyte and granulosa cells (McLaughlin and McIver 2009).   

Factors that positively regulate activation include newborn ovary homeobox (NOBOX), 

spermatogenesis and oogenesis helix-loop-helix 1 (SOHLH1), SOHLH2, 

folliculogenesis-specific basic helix-loop-helix (Figla), LIM homeobox protein 8 (Lhx8), 

Forkhead bOX L2 (FOXL2) (see Edson et al. 2009 for review).  It is currently unknown 

what triggers the expression of these transcription factors; however, evidence suggests 

that increased signaling through KIT may be an early event.  KIT is expressed in the 

oocyte and KIT ligand in granulosa cells throughout folliculogenesis (Horie et al. 1991; 

Joyce et al. 1999; Manova et al. 1993; Yoshida et al. 1997).  As mentioned previously, 

KIT/KITL interactions mitigate migration of germ cells and recruitment of pre-granulosa 

around oocytes during germ cell nest breakdown.  Thus, it would make sense 

functionally, that the interaction would continue to control the development of oocytes.  

KIT induces the AKT/PI3K signaling cascade that, in turn, inhibits FOXO3 (Accili and 

Arden 2004).  Knockout mice for FOXO3 have premature activation of the primordial 

pool and early depletion of follicles, while inhibitors of AKT/PI3K signaling suppress 

follicle activation (Castrillon et al. 2003).  Moreover, mice constitutively expressing 

FOXO3 in oocytes are infertile with a marked decline in the progression of 

folliculogenesis beyond primary follicles (Liu et al. 2007).  The role of PI3K in activation 

is further demonstrated with the oocyte specific deletion of Phosphatase and TENsin 

homolog deleted on chromosome 10 (PTEN), which inhibits PI3K by catalyzing the 

reverse reaction.  PTEN conditional knockout mice have premature activation of 

primordial follicles similar to the FOXO3a knockouts (Reddy et al. 2008). 
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PI3K activity activates AKT which in turn inhibits autophagy by activating mTOR and 

directly phosphorylating BECN1 (Degtyarev et al. 2008; Wang et al. 2012b).  

Conversely, FOXO3 acts as a positive regulator of autophagy by directly upregulating 

the expression of autophagy genes such as LC3 and Bnip3 (Mammucari et al. 2007; 

Sengupta et al. 2009).  Therefore, I would expect that autophagy is downregulated 

during follicle activation.  This would make sense as the follicle is beginning to produces 

large amounts of protein without a need for degradation.  As an alternate hypothesis, 

autophagy is a positive regulator of mitotic senescence and would need to be inhibited in 

the soon to be proliferating granulosa cells (Young et al. 2009).  Important questions 

remain to be addressed.  Does autophagy negatively regulate follicle activation? Is 

autophagy necessary for primordial follicle survival? 

1.6.3 From Primary to Secondary 

As a primary follicle grows, the oocyte expands in size and granulosa cells enter the cell 

cycle beginning to proliferate to create several layers surrounding the oocyte.  

Additionally, somatic cells recruited to the primary follicle begin differentiating and 

morphologically flatten surrounding the granulosa.  This outer layer of cells are the 

theca, responsible for recruiting endothelial cells and smooth muscle to feed the growing 

follicle and assist in follicle rupture, respectively.  A follicle that has two layers of 

granulosa cells and a complete layer of theca is classified as a secondary follicle.  The 

crosstalk between the granulosa and oocyte is even more apparent during this transition.  

The oocyte relies on the granulosa and theca to support its growth and development; 

however, the rate at which follicles develop are dependent on oocyte-derived factors.  

Eppig et al. completed experiments in which oocytes from secondary follicles were re-

aggregated with granulosa cells from newborn mice, which do not have secondary 

follicles, and placed under a kidney capsule of an immune-suppressed mouse.  The 
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oocytes from secondary follicles supported the development of numerous antral follicles 

9 days later; whereas control re-aggregation of newborn oocytes with newborn 

granulosa only had secondary follicles present (Eppig et al. 2002).  This experiment 

demonstrates that the oocyte regulates the growth and progression of activated follicles. 

The granulosa cells proliferate in response to oocyte-specific factors (e.g. GDF9 and 

BMP15) that are stimulated from KIT/KITL signaling, as described earlier.  However, as 

the oocyte grows it produces increased amounts of GDF9 and BMP15, which both 

negatively regulate the expression of KITL in granulosa cells (Carabatsos et al. 1998; 

Elvin et al. 1999; Yan et al. 2001).  Therefore, a negative feedback loop is activated that 

slows the growth of the oocyte.  Without gonadotropin signaling of FSH and LH released 

from the pituitary, secondary follicles cease growth and granulosa cells initiate apoptosis 

to terminate the follicle (Kumar et al. 1997).  

A small number of studies support that autophagy is significant during primary and 

secondary follicle development.  A study by Choi et al. revealed that protein expression 

of LC3 increases as follicles progress through folliculogenesis with the highest 

immunoreactivity in granulosa cells of secondary and early antral follicles (Choi et al. 

2010).  While this study did not observe evidence for autophagy in the oocytes, Escobar 

et al. demonstrated both LC3 immunoreactivity and autophagosome formation in 

oocytes isolated from 1- through 28-day-old rats after 24 hours of culture (Escobar et al. 

2010).  As secondary follicles are present as early as P9, there must have been oocytes 

from secondary follicles in their study.  Together these data support that both granulosa 

and oocytes from rats undergo autophagy during the developmental time when 

secondary follicles are forming.  Electron micrographs of human primordial follicles 

collected from adults clearly show evidence of autophagosomes (Hertig and Adams 
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1967, figures 13, 30 and 35), supporting that induction of autophagy in oocytes is 

conserved between humans and rats.  It is untested whether autophagosomes 

accumulate from failure to fuse with lysosomes or if there is an overall increase in 

autophagosome formation.  Curiously, Drosophila, mouse and human follicles cultured in 

the presence of rapamycin, which inhibits MTOR, induces oocyte loss and follicle 

degeneration without signs of apoptosis (Thomson and Johnson 2010; McLaughlin et al. 

2011).  Experiments ablating tuberous sclerosis complex 1 (Tsc1) or Tsc2 in mouse 

oocytes leads to the premature activation of primordial follicles and early depletion of the 

primordial follicle reserve (Adhikari et al. 2010, 2009).  Additionally, a granulosa specific 

conditional knockout of Tsc1 in granulosa cells of secondary follicles enhances follicle 

survival and results in increased numbers of ovulated oocytes (Huang et al. 2013a).  The 

knockout experiments demonstrate that TSC1/2 act to inhibit MTOR activity, which 

suggests that mTOR positively regulates follicle survival and progression.  It remains to 

be tested if the modulation of MTOR in the above experiments alters autophagy in the 

granulosa or the oocyte and furthermore, if autophagy is detrimental to follicles. 
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Figure 1.3 Progression of steroidogenesis 
The diagram gives an overview of the structural progression of steroidogenesis with 
associated enzymes.  All steroids are products produced from cholesterol in the 
following order: progestins, androgens and lastly estrogens.  Not depicted are additional 
reactions, for example, the synthesis of corticosteroids.  Carbon atoms in the cholesterol 
skeleton have been added as a reference for downstream transitions.  All enzymes are 
indicated by their abbreviated names.  Adapted from creative commons image by Mikael 
Häggström. 
 
 
1.6.4 Primer of Steroidogenesis and GPCR Signalling 

Physiologically, the secondary follicle begins steroidogenesis due to the expression of 

the full repertoire of enzymes by the granulosa and theca cells.  The best-known 

hormone produced by the follicle is estrogen.  The progression of steroid synthesis can 
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be followed in Figure 1.3.  Theca cells express steroidogenic acute regulatory protein 

(StAR), cytochrome P450 side-chain cleavage enzyme (CYP11A1), 3β-hydroxysteroid 

dehydrogenase (HSD3B1) and 17α-hydroxylase/17,20-lyase cytochrome P450 

(CYP17A1).  On the other hand, granulosa cells express cytochrome P450 aromatase 

(CYP19A1) and 17β-hydroxysteroid dehydrogenase (HSD17B1).  StAR regulates the 

transport of cholesterol into mitochondria where CYP11A1 cleaves cholesterol to create 

pregnenolone, the substrate for all other reproductive steroids.  HSD3B1 creates 

progesterone, while HSD17A1 creates dehydroepiandrosterone (DHEA) from 

pregnenolone.  Both progesterone and DHEA are substrates for andostenedione via 

HSD17A1 and HSD3B1, respectively.  CYP19A1 can then finally convert 

androstenedione into estrogen.  An apparent cooperation must occur between granulosa 

and theca in order to produce estrogen.  Granulosa cells do not express CYP17A1 and 

thus cannot produce the estradiol precursor, androstenedione.  Alternatively, theca cells 

express CYP17A1 and produce androstenedione but are deficient in CYP19A1.  Thus, a 

two-cell Theory exists where theca cells produce androstenedione, which is delivered to 

the granulosa cells for the synthesis of estrogens (Young and McNeilly 2010).  The 

differential expression and downstream signaling of follicle stimulating hormone receptor 

(FSHR) and luteinizing hormone / choriogonadotropin receptor (LHCGR) in granulosa 

and theca, respectively, is partly responsible for the distinction in steroid enzyme 

expression.   

Both FSHR and LHCGR are members of the of the G-protein coupled receptors 

(GPCRs) superfamily.  GPCRs are seven-transmembrane proteins expressed 

throughout the body that mediate cellular responses to a variety of extracellular signals 

(e.g. photons, small molecules, peptides).  GPCRs come in five functional flavors, of 

which FSHR and LHGCR belong to the Rhodopsin sub-family, or Class A GPCRs 
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(Katritch et al. 2013).  The amino acid similarity between human FSHR and LHCGR is 

moderate with approximately 72% shared in the transmembrane domain, about 45% in 

the ligand binding extracellular domain and about 25% in the intracellular signal 

transduction domain (Dias et al. 2002; Vassart et al. 2004).  The variation between the 

FSHR and LHCGR extracellular binding pockets accounts for the specificity to bind and 

respond to the different beta-subunits of FSH and LH or choriogonadotropin, 

respectively.  Although it should be noted that there are species-specific differences as 

equine choriogonadotropin (eCG), also called pregnant mare serum gonadotropin 

(PMSG), binds preferentially to rodent FSHR and human choriogonadotropin (hCG) 

preferentially binds to rodent LHCGR (Mukumoto et al. 1995).   As their name implies, 

FSHR and LHCGR are coupled to G-proteins found on the intracellular side of the 

plasma membrane and it is the G-protein that is responsible for transducing the 

intracellular signaling cascades that occur in response to ligand binding.  Ligand binding 

to either FSHR or LHCGR causes the activation of heterotrimeric Gs proteins, followed 

by dissociation of two molecules, the α-subunit and the β/γ heterodimer.  The α-subunit 

triggers the subsequent activation of adenylyl cyclase to produce cyclic adenosine 

monophosphate (cAMP) (Rajagopalan-Gupta et al. 1998).  In turn, cAMP results in the 

release of protein kinase A (PKA) from its regulatory subunits to activate cAMP response 

element binding protein (CREB) and contribute to increased gene transcription by 

binding at cAMP Response Elements (CREs) (Salvador et al. 2002; Richards et al. 

2002).  CREs can be found in the promoters of the steroidogenesis genes mentioned 

above, in addition to, several genes involved with proliferation, differentiation and 

angiogenesis distinctly within granulosa and theca.  Meanwhile, the β/γ heterodimer 

mainly activates phospholipase C (PLC) that cleaves phospholipid phosphatidylinositol 

4,5-bisphophate to diacyl glycerol and inositol 1,4,5-triphosphate that in turn, activates 

protein kinase C (PKC).  Activated PKC concordantly activates many of the same 
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pathways as PKA.  How then do FSHR and LHCGR cause different responses if they 

activate the same transduction pathways?  Three independent but intertwined findings 

help answer this question.  First, FSHR and LHCGR produce different amounts of cAMP 

when ligand/receptor ratio is held constant, demonstrating that the receptor response is 

not the same (Tobin et al. 2008).  Second, the developmental time is important as the 

receptor density present on the plasma membrane is important for what downstream 

pathways are activated (Andric and Ascoli 2008).  Lastly, other G-proteins that have 

different properties can specifically bind to either the FSHR or LHCGR leading to 

different cellular responses to ligand binding (Breen et al. 2013).  Overall, the binding of 

signaling through FSHR and LHCGR in granulosa and theca, respectively, transduce 

similar intracellular signals, but regulate different processes due to the combination of 

intracellular environment and receptor activity. 

1.6.5 Antral follicle selection 

Once a secondary follicle responds to FSH and LH, the growth of the oocyte and 

proliferation of the granulosa and theca continues to form an antral follicle, which depend 

on gonadotropins for continued growth and ovulation.  Supporting this conclusion, 

immature or hypophysectomized animals that have low levels of gonadotropins do not 

have observable antral follicles, while addition of exogenous gonadotropin rescues 

follicle progression (Braw and Tsafriri 1980; Braw et al. 1981).  The gonadotropins FSH 

and LH are glycoproteins released in biphasic cyclic waves from gonadotrophs in the 

pituitary, which are stimulated by gonadotropin releasing hormone (GnRH) pulses that 

are released from GnRH neurons in the hypothalamus which in turn, are stimulated by 

several forms of the neuropeptide Kisspeptin (mRNA is Kiss1), that are released from 

Kiss1-expressing neurons (Kiss neurons) residing in the arcuate nucleus of the brain 

(reviewed by Popa et al. 2008).   
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The antral follicle is named for the fluid filled antrum that forms in the middle of the 

follicle that creates a functional diffusion barrier resulting in two populations of granulosa 

cells: mural and cumulus (Diaz et al. 2007).  Because the vasculature that feeds follicles 

is in the theca layer, diffusion of opposing factors from the blood and the oocyte set up 

gradients that play a large role in the differentiation of these two granulosa-cell 

populations that are both essential for ovulation.  Mural granulosa cells are found near 

the outside wall of the follicle and receive high amounts of FSH because they are the 

first to receive factors diffused from capillaries.  As such, the mural granulosa are 

responsible for steroidogenesis.  The cumulus granulosa population are the three to four 

layers of granulosa that surround the oocyte and intrinsically, receive high amounts of 

oocyte-secreted factors (e.g. BMP15, GDF9) (Diaz et al. 2007; Su et al. 2004; Hussein 

et al. 2005).  The cumulus promote the growth and maturation of the oocyte and are 

essential for fertilization and its development into an embryo (i.e. developmental 

competence). 

Secondary follicles are ‘recruited’ into the growing follicle pool by their ability to respond 

to FSH.  This recruitment and subsequent growth and ovulation occurs in waves 

controlled by positive and negative feedback loops.  As stated earlier, FSH promotes 

steroidogenesis, in addition to, granulosa cell proliferation.  As a follicle grows, the 

amount of estrogen and progestins it can produce increases.  Both estrogen and 

progestins have numerous roles throughout the body, but for the sake of this review, act 

as inhibitors of FSH and LH release early in the estrus cycle (see Zhu and Conney 1998; 

Deroo and Korach 2006 for reviews).  Estrogens bind to estrogen-receptors (EsRs) in 

the arcuate nucleus, hypothalamus, and pituitary, which indirectly decrease the release 

of Kisspeptin, GnRH, FSH and LH.  Progestins indirectly inhibit the release of GnRH, 

FSH and LH by binding to progesterone-receptors (PgRs) in the hypothalamus and 
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pituitary.  Additionally, a gonadotropin responsive follicle begins producing the peptide 

Inhibin, which acts directly on gonadotrophs to inhibit FSH synthesis and secretion.  

Thus, as an antral follicle grows, it exerts ‘dominance’ by suppressing the recruitment of 

other follicles through decreasing the available FSH.  This establishes a negative 

selection against antral follicles that are not in the correct developmental window.  

Moreover, the dominant follicle(s) have extensive angiogenesis in the theca layer 

providing a larger amount of blood to itself.   

Estrogens also act locally by regulating androgen production from the theca by inhibiting 

Cyp17a1 expression, increasing the ratio of estrogen to androgen.  Furthermore, FSH 

signaling results in the synthesis of insulin-like growth factor 1 (IGF-1) that acts as an 

additional paracrine signal with FSH on neighboring granulosa cells to phosphorylate 

and inhibit FOXO1 (Nakae et al. 2000).  This promotes granulosa cell proliferation by 

stabilizing D- and E-type cyclins and increasing the expression of Fshr and Cyp19a1 to 

escalate estrogen production (Robker and Richards 1998; Rosenfeld et al. 2001).  In 

addition to regulating proliferation, FSH, IGF-1 and estrogen signaling synergistically 

result in the high expression of LHCGR in the mural granulosa cells. 

To my knowledge, there are no experiments addressing the significance of autophagy in 

antral follicle development.  However, drawing from studies stated in earlier sections, 

there is evidence that autophagy occurs in the granulosa cells and the oocyte of 

developing follicles.  A candidate function of autophagy during antral follicle growth is the 

regulation of steroidogenesis.  Experiments culturing rat Leydig cells, the steroidogenic 

cells of the testis, have demonstrated that autophagy activity is linearly associated to 

steroidogeneic output (Li et al. 2011).  It remains unknown if autophagy regulates 

steroidogenesis in other cells, such as granulosa or theca.  
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1.6.6 3… 2…  1… Ovulation! 

Ovulation is a coordinated effort from the entire follicle to release a competent oocyte 

that will traverse into the oviduct for fertilization.  As the dominant follicles continue to 

outgrow all of the other follicles, becoming pre-ovulatory follicles, they will eventually 

produces a peak output of estrogen during proestrus in mice.  Estrogens bind to E2Rs 

on a second population of Kiss neurons in the antero ventral periventricular nucleus 

(AVPV) that results in the increased expression of Kiss1 and synthesis of Kisspeptins.  

With stimulation from neurons projecting from the suprachiasmatic nucleus, the AVPV 

Kiss neurons release Kisspeptins that in turn, stimulate a maximal release of GnRH from 

GnRH neurons and thus, a ‘surge’ of LH (and FSH) is released into the bloodstream 

from the gonadotrophs.  The LH binds to LHCGRs on the theca and mural granulosa 

cells enabling several downstream events summarized below, all of which are 

dependent on LH/LHGCR interaction (Ma et al. 2004; Zhang et al. 2001; Lei et al. 2001):   

1) Changes in steroidogenic capacity to progesterone production  

2) activation of the EGF pathway 

3) cumulus expansion 

4) oocyte meiotic resumption 

5) extracellular matrix degradation 

6) inflammation and increase in follicular fluid pressure 

7) endothelin-2 production and follicle contraction 

8) follicle rupture & release of cumulus-oocyte complex 

9) terminal differentiation of remaining cells and formation of corpus luteum   

The LHCGR/GS/cAMP/PKA transduction (as described earlier), activates actin modifying 

complexes that result in a change in granulosa cell morphology from rounded to spindle 
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shaped cells after LH exposure (Ben-Ze’ev and Amsterdam 1989).  Because neither 

cumulus granulosa nor oocytes express LHCGR, at least in mice, paracrine and 

intercellular signaling must exist to mediate the signal from the LH surge (Eppig et al. 

1997).  LH binds to LHCGR on mural granulosa resulting in the rapid induction in 

transcription and translation of epidermal growth factor (EGF)-like family members (e.g. 

Amphiregulin, Epiregulin and Betacellulin) (reviewed in Conti et al. 2012) and 

a disintegrin and metalloprotease 17 (ADAM17) (reviewed in Yamashita and Shimada 

2012).  The EGF-like transmembrane proteins are trafficked to the plasma membrane 

where ADAM17 cleaves and releases a soluble extracellular domain into the antrum.  

The extracellular domain acts as a ligand for EGF-receptors (EGFRs) present on 

cumulus granulosa cells and results in the activation of the MAPK pathway.  Active 

MAPK activates the transcription factor, CCAAT/enhancer-binding protein β (C/EBPβ) 

that regulates the expression of prostaglandin synthase 2 (COX2) which synthesizes 

prostaglandin E2 (PGE2).  PGE2 is a soluble ligand for prostaglandin receptors found on 

mural granulosa cells that in turn, also activate adenylyl cyclase, generating increased 

cAMP and a positive feedback loop.  Additionally, PGE2 acts to induce many genes 

associated with inflammation and causes the increased secretion of follicular fluid 

(Ricciotti and FitzGerald 2011).  Activated C/EBPβ is also responsible for the expression 

of genes responsible for the synthesis of the hyaluronan-rich cumulus matrix, which is 

termed the ‘cumulus expansion’ (Richards 2005).  Similarly, the oocyte-derived factors 

GDF9 and BMP15 are also necessary for cumulus expansion, demonstrating a further 

role in how the oocyte regulates its own fate.   

Prior to the LH surge, oocytes remain in meiotic arrest due to elevated cAMP levels 

inside the oocyte, which is upheld by cAMP produced by the surrounding granulosa cells 

that enters through gap junctions.  In addition to gene regulation, activated MAPK in the 
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cumulus inactivates connexin-43, a prominent protein in gap junctions connecting 

granulosa cells (Hsieh et al. 2011).  This results in a reduction in cAMP transported into 

the oocyte and along with the increased activity of phosphodiesterase 3A (PDE3) the 

subsequent resumption of meiosis (Sun et al. 2009 and references within).   

The synthesis of the hyaluronan-rich cumulus matrix and the large amount of 

prostaglandins during cumulus expansion supports the infiltration of leukocytes, making 

the follicle prior to ovulation comparable to inflammatory sites.  In fact, blocking 

inflammation or cumulus expansion has negative effects on ovulation, attributing to the 

well-tested hypothesis that ovulation is an inflammatory reaction (Oakley et al. 2011).  

The LH surge induces several transcriptional regulators in the mural granulosa that are 

necessary for ovulation. Of these, the expression of Pgr in mural granulosa appears to 

be most important.  After the LH surge, activated PKA also activates extracellular signal-

regulated kinase 1 (ERK1) and ERK2 which mediate inhibition of Lhcgr, Fshr, and 

Cyp19a1 mRNA expression while activating  Cyp11a1, StAR and Pgr  mRNA expression 

(Fan et al. 2009).  This change in gene expression effectively makes the mural 

granulosa produce and respond to progesterone, in addition, to driving terminal 

differentiation of the granulosa to luteal cells.  The requirement for progesterone 

signaling in the progression to ovulation is well established.  Inhibition of progesterone 

synthesis, treatment with a progesterone receptor antagonist or ablation of Pgr in 

knockout mice all result in ovulation failure (Snyder et al. 1984; Lydon et al. 1995, 1996; 

Loutradis et al. 1991).  One indication for these results is the PGR-dependent 

expression of several extracellular matrix-modifying proteases that begin degrading the 

extracellular matrix at the apex of the follicle, the future site of follicle rupture (Curry 2010 

and references within).  Approximately two hours before ovulation occurs in rodents and 

humans, the mural granulosa cells have a marked induction in endothelin-2 (Et2) 
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expression (Ko et al. 2006; Palanisamy et al. 2006).  The mechanism controlling Et2 

expression is debatable; however, Pgr knockout mice fail to induce Et2 and hypoxia 

exaggerates Et2 expression, in vitro, suggesting that both progesterone and hypoxia are 

required for Et2 expression (Palanisamy et al. 2006; Na et al. 2008).  As ET2 diffuses 

out of the follicle, it binds to endothelin type A receptors (ETA) present on the smooth-

muscle found in the outer layer of theca and induces contraction (Bridges et al. 2010).  

Activity of extracellular matrix modifying proteins weakens the follicle wall, while 

inflammation causes a rush of cells and fluid into the follicle, increasing follicle pressure.  

Finally, ET2 binding results in the contraction of follicle wall followed by follicle rupture 

and the oocyte is released.   

The role of autophagy during ovulation is relatively unexplored.  To my knowledge, there 

have been no experiments published directly testing the function of autophagy during 

ovulation.  In particular, mice with an oocyte-specific deletion of Atg5, discussed earlier 

in pre-implantation development, ovulate wild-type numbers of oocytes, suggesting that 

autophagy in the oocyte is not essential for ovulation (Tsukamoto et al. 2008b).  On the 

other hand, granulosa cell specific MTOR activity regulates ovulation.  The granulosa 

cell specific deletion of Tsc1, a negative regulator of MTOR, results in increased MTOR 

activity and an increased number of ovulated oocytes resulting in larger litters (Huang et 

al. 2013a).  Similarly, premenopausal woman taking Sirolimus (rapamycin) for 

immunosuppression after receiving clinical islet transplantation to treat type 1 diabetes 

have a high incidence of ovarian cysts, suggesting failed ovulation (Alfadhli et al. 2009; 

Cure et al. 2004).  MTOR also regulates the onset of puberty by inducing Kiss1 

expression in the hypothalamus of mice and positively regulates steroidogenesis in 

rabbit ovary slices in response to LH and FSH (Roa et al. 2009; Kádasi et al. 2012).  

Thus, it cannot be concluded that mTOR directly regulates ovulation, but the data 
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suggest that mTOR modulates the endocrine signaling triggering ovulation.  The rate of 

autophagy was not explored in these studies; however, I will speculate that the 

increased mTOR activity, that promotes ovulation, would inhibit autophagy in pre-

ovulatory follicles, therefore making autophagy a negative regulator of ovulation.  

Experiments utilizing conditional knockout alleles for autophagy genes in granulosa cells 

of growing follicles would be useful to examine. 

1.6.7 Atresia 

In the previous sections, I have described successful folliculogenesis through ovulation, 

but this fate only accounts for less than 1% of follicles in most mammals studied 

(Hirshfield 1991).  A human female, for example, is estimated to be born with between 

one and two-million follicles, and by puberty only 400,000 remain (Baker 1963; 

Forabosco et al. 1991).  When it is considered that approximately 400 ovulations occur 

in a lifetime, (one ovulation every 28 days equals 13 ovulations per year and with 

approximately 30 years between puberty and menopause, we arrive at 391 ovulations in 

a female that does not get pregnant), it is easily appreciated that over 99.9% of follicles 

fail to reach ovulation.  The default program of a majority of the follicles is a process 

called atresia, which is Greek for “closure of hollow space”.  Two types of atresia with 

different initiation points have been described (Hsueh et al. 1994).  In primordial and 

primary follicles, oocyte-derived factors determine survival and as such, the oocyte is the 

first cell to die.  In post-secondary follicles, the granulosa cells are critical for follicle 

survival and are initiators of atresia.  A majority of follicles that undergo atresia are at the 

antral/preovulatory stage, consistent with the dependency on FSH to promote follicular 

development, as discussed earlier (Hsueh et al. 1994).  In general, any follicle not 

receiving adequate signaling to develop will initiate atresia.  
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Elimination of pre-antral staged follicles is rare to observe in adult animals.  Studies 

following rodents throughout reproductive life indicate that the majority of small follicle 

atresia occurs prior to puberty (Hirshfield and Midgley 1978; Faddy et al. 1987, 1976; 

Bristol-Gould et al. 2006b).  Conversely, an ultrastructural analysis of ovary slices from 

adult pre-menopausal women support that primordial follicles undergo atresia throughout 

life, although at a low rate (de Bruin et al. 2002).  Nonetheless, small follicle atresia is 

associated with cytoplasmic changes initiated in the oocyte including: mitochondrial 

decay, increased vacuolation of the cytoplasm, ruptured nuclear membranes, 

accumulation of lipid droplets and shrinkage of the oocyte.  Using the prepubescent 

mouse, experiments have suggested that apoptosis is not a driving factor for small 

follicle atresia.  Granulosa cells and oocytes of small follicles are refractory for apoptosis 

markers (e.g. BAX, active Caspases, PARP1, TUNEL, pyknotic nuclei and DNA 

fragmentation) (Vaskivuo et al. 2001; Hurst et al. 2006; Tingen et al. 2009; Rodrigues et 

al. 2009; Escobar et al. 2008, 2010).  In spite of the results that mice overexpressing 

Bcl2 specifically in oocytes have 30% fewer atretic small follicles compared to controls, 

demonstrating that apoptosis is a factor in small follicle atresia (Morita et al. 1999), 

autophagy has been suggested as an alternative cell-death pathway in small atretic 

follicles (Tingen et al. 2009; Rodrigues et al. 2009; Escobar et al. 2008, 2010).   

The argument stems from two observations: 1) autophagy markers are increased in the 

ovaries of prepubescent rodents (Escobar et al. 2010, 2013, 2008; Rodrigues et al. 

2009) and 2) only a few small follicles are positive for apoptotic markers at the time 

points studied (Tingen et al. 2009).  Additionally, only 37 follicles were positive for 

apoptosis out of an estimated 155 that would be eliminated on P10, suggesting that 

these apoptotic small follicles are negligible to the total atresia (Tingen et al. 2009).  

Although, it should be noted that depending on the mouse strain and counting method 
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there is discrepancy in the number of primordial follicles that are lost between P6 and 

P16.  It is entirely plausible that the 37 positive follicles make up all of the atretic follicles 

in the ovaries studied at P10.  Furthermore, the ultrastructure of the oocytes presented 

have extreme vacuolation, as stated by the authors; however, those vacuoles are not all 

autophagosomes as many do not have a double membrane, which was possibly 

misinterpreted by the authors.  The autophagy markers used in these studies, LC3 and 

lysosomal-associated membrane protein 1 (LAMP1), which is actually a late 

endosome/lysosome marker, suggest that there is an increase in LC3 labeled 

membranes and biogenesis of lysosomes.  Recent findings demonstrate that LC3 can 

associate with non-autophagosomal membranes, which brings into question the 

membrane that LC3 is associated with in small follicles (Martinez et al. 2011).  A recently 

published mouse with GFP-labeled germ cells would be ideal to cross with apoptosis, 

autophagy and necrosis markers to observe atresia live in pre-pubertal ovaries to 

conclusively estimate atresia (Lin et al. 2014).  Furthermore, the field needs a new 

method of counting follicles to circumvent the inaccuracy associated with the analysis of 

histological sections.  It might be possible to disassociate ovaries and count GFP-tagged 

oocytes by flow cytometry or through confocal slices of cleared ovaries.  Lastly, to 

determine if autophagic cell death is mediating atresia of pre-antral follicles, genetic 

experiments need to be performed that test whether the ablation of autophagy genes 

affect follicular atresia. 

In contrast to small follicles, apoptosis of the granulosa cells identified by pyknotic nuclei 

is the most prominent feature of an atretic antral follicle.  Early-atretic antral follicles are 

identified by 10-20% of granulosa cells with pyknotic nuclei.  This progresses to the loss 

of nearly 50% of the mural granulosa and invasion of leukocytes due to the loss in 

integrity of the basement membrane.  Next, the entire follicle shrinks, the theca undergo 
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hypertrophy and the oocyte misshapens.  In the final stage of degeneration, the 

granulosa, theca and oocyte are missing and fibroblasts have invaded the antrum.  

Considering that antral granulosa cells express the death receptors FAS and DcR1 in 

addition to the death ligands TRAIL and FASL, granulosa cells are primed to undergo 

apoptosis (Hakuno et al. 1996; Kaipia et al. 1996; Kim et al. 1999; Quirk et al. 1995; Hu 

et al. 2001).  This means that granulosa cells can activate the extrinsic pathway of 

apoptosis in a paracrine fashion.  Demonstrating this idea, mice overexpressing Bcl2 

specifically in granulosa cells have fewer atretic follicles and increased litter sizes 

compared to controls (Hsu et al. 1996).  Thus, granulosa cells dictate a delicate balance 

between pro-apoptotic and anti-apoptotic signals.  Furthermore, when the scale tips 

toward apoptosis, the result is quick and death is extensive throughout the follicle.   

The same factors that promote granulosa cell proliferation and differentiation also inhibit 

apoptosis (Yu et al. 2004; Billig et al. 1993; Chun et al. 1996, 1994).  A series of 

experiments from Aaron Hsueh’s lab developed an understanding of the regulatory 

factors by experimenting with cultured mouse pre-ovulatory follicles.  Fibroblast growth 

factor 2 (FGF2), transforming growth factor alpha (TGFα) and EGF all inhibit apoptosis 

in cultured granulosa cells (Tilly et al. 1992).  The use of FSH or the downstream 

mediators, cAMP and IGF-1, prevent apoptosis of cultured antral and pre-ovulatory 

follicles (Chun et al. 1994, 1996).  We now know that in the absence of FSH or IGF-I,  

FOXO1 induces expression of the death ligand Fasl and the apoptosis mediator Bcl2l11 

to promote apoptosis (Matsuda et al. 2011).  Interleukin-1 beta (IL-1 beta), produced by 

the follicle in response to gonadotropin, induces nitric oxide production that triggers an 

increase in anti-apoptotic intracellular cyclic guanine monophosphate (cGMP) (Chun et 

al. 1995).  Additionally, estrogen withdrawal or androgen administration which 

antagonizes the effect of estrogens can induce apoptosis and atresia of antral follicles in 
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hypophysectomized rats (Billig et al. 1993).  Consequently, estrogen inhibits the 

expression of the pro-apoptotic factors p53 and Bax, as evidenced in aromatase 

knockout mice by their increased expression and the observation that folliculogenesis is 

stalled at the antral stage with abundant atretic follicles (Britt et al. 2001).  Other 

stressors that induce atresia include: oxidative stress (Matsuda et al. 2011; Tilly and Tilly 

1995), lithium treatment (Mirakhori et al. 2013), angiotensin II (Kotani et al. 1999) and 

inadequate angiogenesis (Rosales-Torres et al. 2010).  I have not discussed the 

implications of reducing apoptosis and atresia here, but there is evidence that in the 

failure to undergo apoptosis, granulosa cells can contribute to tumor formation (reviewed 

by Jamieson and Fuller 2012).  Overall, this body of work demonstrates that multiple 

factors produced by the follicle in response to gonadotropins can all effect the onset of 

apoptosis and atresia.   

A recent interest in autophagy during pre-ovulatory development and atresia has 

implicated autophagy as a mediator of granulosa cell death during atresia.  

Characterization of rat follicles for the autophagy marker LC3 identified an increased 

expression of LC3, which paralleled the expression of Active-Caspase 3 in granulosa 

cells deprived of gonadotropin (Choi et al. 2010; Escobar et al. 2013).  In a follow-up 

study, Choi et al. demonstrated increased apoptosis in cultured granulosa cells after 

Bafilomycin A1 treatment, which causes the accumulation of autophagosomes, 

suggesting that autophagosomes trigger apoptosis (Choi et al. 2011).  These 

experiments do not test if the failure of autophagosome fusion and subsequent 

accumulation is the result of the pathways leading to apoptosis induction.  In fact, 

inhibition of autophagy through RNAi or pharmacological inhibition induces apoptosis in 

human cell lines (Boya et al. 2005).  Clearly, granulosa cells from pre-antral follicles 

have high levels of basal autophagy as autophagosomes can be identified in healthy or 
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atretic conditions (Choi et al. 2010), suggesting that autophagy provides a function 

separate from apoptosis.  A recent study using zebrafish, identified that nutritional 

supplementation of probiotics decrease apoptosis and atresia while increasing 

autophagic flux, or the rate of autophagosome formation and clearance (Gioacchini et al. 

2013).  A genetic study testing the function of autophagy during follicle development and 

atresia would be beneficial in understanding any role autophagosomes have during 

atresia.  Furthermore, as with pre-antral atresia, functional experiments need to be 

completed demonstrating a role of autophagy in cell death before calling this autophagic 

cell death. 

1.6.8 Formation and function of the corpus luteum 

The corpus luteum (CL) is a dynamic, transient endocrine gland that rapidly forms from 

the remains of the ovulated follicle, a process called ‘luteinization’.  The first drawings 

and description of CLs come from the work of Regneir de Graaf in 1668 characterizing 

rabbit ovaries, but he called them ‘globules’ (translated by Jocelyn & Setchell, 1972).  

The word corpus luteum literally means ‘yellow body’ and was first used by Marcello 

Malpighi in a 1681 letter to describe the yellow structures found on bovine ovaries 

(Malpighi 1685).  The function of the CL eluded researchers until 1901, where in two 

independent studies ovariectomy or the destruction of the CLs of mated rabbits 

demonstrated the loss of pregnancy (Fraenkel 1901; Magnus 1901).  After a series of 

studies in which a hormone was crystallized from the CL that demonstrated its action on 

maintaining pregnancy, the name progesterone was adopted (Allen 1935).  This work 

allows me to say today that the CL is a professional progesterone producing and 

secreting gland that synthesizes upwards of 40 mg of progesterone per day in humans 

(Carr et al. 1982).  Progesterone is a C-21 derived hormone essential for 1) 

development of the endometrium for implantation of the embryo, 2) the maintenance of 
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pregnancy through quiescence of the myometrium 3) inhibiting the LH surge and 4) the 

development of the mammary glands (reviewed in Conneely et al. 2002, 2007).  A 

comprehensive review of the molecular pathways regulating CL formation, function and 

regression can be found elsewhere (Stocco et al. 2007; Diaz et al. 2002).  Here I will 

highlight CL formation, synthesis of progesterone by the CL during pregnancy and 

discuss roles for autophagy.  As with the previous sections of this review, we will focus 

primarily on the mouse.  It should be further noted that while there are differences in the 

formation, lifespan and regression of the CL between species, the function of the CL to 

produce progesterone in conserved. 

The functional CL contains four main cell types: steroidogenic luteal cells (luteal cells), 

vascular cells, immune cells and fibroblasts.  The luteal cells produce progesterone.  

Vasculature cells, which include pericytes and endothelial cells, allow for the transport of 

cholesterol to the CL, and progesterone away from the CL to the rest of the body.  

Immune cells regulate the lifespan of the CL.  The activation of LHGCR after the LH 

surge in mural granulosa induces cell cycle arrest, changes in gene expression, induces 

the synthesis of progesterone (as described earlier) and regulates the terminal 

differentiation into luteal cells including hypertrophy (Carletti and Christenson 2009).  

There are two populations of luteal cells, large (30-35 µM) and small (15-17 µM), of 

which their cell diameter is the distinguishing characteristic, accounting for a 10-fold 

difference in volume (reviewed in Murphy 2000).  Large luteal cells compared to small 

luteal cells produce on average 40-fold more progesterone, have more rough ER, and 

are more responsive to the regression stimulus, PGF2α (reviewed by Diaz et al. 2002).  It 

is well established that the theca also contribute to the steroidogenic population in 

ruminants and primates (Meidan et al. 1990; Fritz and Fitz 1991), but similar results are 

not observed in rodents (Nelson et al. 1992b, 1992a).  In rodents, both large and small 
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luteal cells appear to have a granulosa cell origin with both cell-types producing 

progesterone in response to LH (Nelson et al. 1992a).  Whether or not the theca 

contribute to the rodent CL remains unknown.   

In most mammals studied, ovulation is accompanied with 1) the folding of the follicular 

wall, granulosa cell layers and theca layers, 2) the destruction of the basement 

membrane and 3) the dilation of the blood vessels in the theca layer that results in 

extravasation of erythrocytes, followed by vascular injury and angiogenesis (Smith, 

McIntush, & Smith, 1994 and references within).  Within minutes after ovulation, 

pericytes and endothelial cells begin invading the future CL that will become one of the 

most vascularized structures in the body (Bruce and Moor 1976; Reynolds et al. 1994).  

This amazing undertaking happens so rapidly that CL formation is only comparable to 

tumor growth (Reynolds et al. 2002).  The microvasculature is so extensive that every 

luteal cells borders at least one capillary, and in the mature gland more than 50% of the 

cells are vascular-related endothelial cells and pericytes (Lei et al. 1991; Tamanini and 

De Ambrogi 2004).  With the LH surge, granulosa cells begin expressing multiple 

angiogenic factors including VEGFA, FGF2, and endocrine gland VEGF (EG-VEGF) 

(Tamanini and De Ambrogi 2004).  The high levels of the angiogenic factors along with 

the vascular injury promote the invasion of pericytes derived from the theca into the 

future CL.  Pericytes play a role in recruiting migrating endothelial cells and then both 

cell populations undergo extensive proliferation creating dense networks of blood 

vessels throughout the CL (Goede et al. 1998).  These extensive networks are 

necessary for the delivery of cholesterol (in the form of lipoproteins) to the luteal cells 

and the subsequent delivery of progesterone to the blood. 
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Production of progesterone is an overwhelming function of luteal cells.  In rodents, luteal 

cells continue to produce androstenedione and estrogen, but the ratio compared to 

progesterone is minor.  As shown previously in Figure 1.3, progesterone synthesis 

requires the substrate cholesterol and has two enzymatic steps requiring CYP11A1 and 

3β-HSD.  As such, luteal cells express several key proteins for the uptake, transport and 

synthesis of cholesterol and in processing cholesterol to progesterone.  Several factors 

have been identified that regulate the expression of these proteins in the CL, called 

luteotropic factors, including LH, prolactin (PRL), placental lactogen (PL) and estrogen.   

 
Figure 1.4  Progesterone synthesis pathway in a luteal cell. 
Stimulation through PRLR and/or LHCGR initiates signal transduction upregulates the 
expression of progesterone synthesis enzymes (e.g. CYP11A1, StAR, 3β-HSD, etc.).  
There are three sources of cholesterol that can be used as a substrate for progesterone 
synthesis: LDL, HDL and de novo biosynthesis of cholesterol in the ER.  LDL is 
endocytosed and cholesteryl ester is hydrolyzed to cholesterol in the lysosome, while 
LDLRs are recycled to the plasma membrane.  NPC1/2 transport cholesterol out of the 
lysosome.  HDL can be endocytosed, as well, but more frequently, cholesteryl ester is 
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directly transported to the plasma membrane where it is included into lipid droplets or 
hydrolyzed by LIPE.  Cholesterol is directly used for steroidogenesis or stored into lipid 
droplets by action of ACAT-1.  StAR and SCP-2 facilitate the transport of cholesterol into  
 
Figure 1.4 Continued 
the mitochondria, where CYP11A1 converts cholesterol to pregnenolone.  Pregnenolone 
is in turn converted to progesterone by 3β-HSD in the ER. 
 
 
Cholesterol is the substrate for steroidogenesis, and must be in constant supply to luteal 

cells to generate such high levels of progesterone.  See Figure 1.4 to illustrate the 

process detailed in the following paragraphs.  The “cholesterol accumulation” network of 

genes regulate the biosynthesis, transport and storage of cholesterol within luteal cells.  

Cholesterol can come from three sources:  intracellular biosynthesis, high-density 

lipoprotein (HDL) and low-density lipoprotein (LDL).  Biosynthesis of cholesterol takes 

place within the ER using acetyl-CoA as a substrate.  The multi-step synthesis is 

regulated by the rate-limiting enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-

CoA) reductase (HMGCR) (Brown and Goldstein 1980).  In order to facilitate storage or 

transport, cholesterol is dehydrated to cholesteryl ester.  Acyl-CoA: cholesterol 

acetyltransferase 1 (ACAT1) catalyzes the dehydration of cholesterol to form cholesteryl 

ester in the ER (Chang et al. 1997).  Cholesteryl can be then transported to other 

membranes by sterol carrier protein-2 (SCP-2) or stored in perilipin-associated lipid 

droplets, which are thought to bud off the endoplasmic reticulum (Gallegos et al. 2001; 

Walther and Farese 2009).  It well established that luteal cells cannot support acute 

steroidogenesis through de novo biosynthesis, at least in part due to low expression of 

HMGCR, and that an extracellular source is necessary (Gwynne and Strauss 1982).  

The lipoproteins HDL and LDL are biochemical assemblies of apolipoproteins and lipids 

(e.g. cholesterol, cholesteryl ester and triacylglycerides) formed in the liver to deliver 

lipids throughout the body (Hegele 2009).  Characterized by their protein-to-lipid ratio, 
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HDL has a high protein-to-lipid ratio, while LDL has a low ratio.  Circulating LDL and 

HDL bind to the membrane receptors, scavenger receptor B1 (SCARB1) and LDL-

receptor (LDLR) found on luteal cells.  The primary lipoprotein utilized by cell types 

varies depending on species studied and is tissue-specific within a species.  Several 

studies around 1980 demonstrated that the rat CL can bind and utilize both HDL and 

LDL, but in early pregnancy HDL is preferentially utilized to synthesize progesterone 

(Gwynne and Strauss 1982).  Endocytosis of receptor-ligand complexes and subsequent 

delivery of the endosome to a lysosome allows for the release of the lipoprotein from the 

receptor followed by hydrolysis of cholesteryl to cholesterol by acidic cholesteryl ester 

hydrolase (aCEH) (HDL reviewed in Röhrl and Stangl 2013; LDL recounted in Goldstein 

and Brown 2009).  Niemann-Pick C1 and C2 (NPC1 & NPC2) are necessary to transport 

cholesterol out of the lysosome to form free cholesterol pools that can be transported to 

other membranes or used for steroidogenesis (Watari et al. 1999; Ko et al. 2003).  

Functional LDLRs are the products of several post-translational modifications that are 

energy and time consuming steps.  To circumvent the constant need to generate LDLRs, 

the cell recycles them back to the plasma membrane where they can perform the 

transport upwards of thousands of times before degradation (Goldstein and Brown 

2009).   

Alternatively, cholesteryl can be directly or bi-directionally transported between either 

LDL and HDL via SCARB1 and the plasma membrane (Connelly et al. 2003).  Any 

extralysosomal cholesteryl can be hydrolyzed by a neutral cholesteryl hydrolase, mainly 

hormone-sensitive lipase (LIPE) in luteal cells, to form free cholesterol pools (Kraemer 

and Shen 2002).  The amount of free cholesterol is regulated through a negative 

feedback loop in the endoplasmic reticulum by insulin-induced gene 1 (INSIG1).  Under 

high sterol concentrations, INSIG1 is expressed to negatively regulate HMGCR 
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transcription and directly increase the degradation of HMGCR and NPC1 (Yang et al. 

2002).  ACAT1 can also catalyze the dehydration of free cholesterol outside of the 

endoplasmic reticulum to form cholesteryl ester, which can be transported to lipid 

droplets for storage.   

Once the luteal cell has cholesterol, the hydrophobic cholesterol must be transported to 

the site of steroidogenesis.  The “progesterone synthesis” network includes genes 

involved in the synthesis of progesterone from cholesterol.  SCP-2 and steroidogenic 

acute regulatory protein (StAR) regulate the transportation of free cholesterol to the 

mitochondria and then from the outer to the inner mitochondrial membrane, respectively.  

Located in the inner mitochondrial membrane is the enzyme cytochrome P450 side 

chain cleavage (CYP11a1), which catalyzes the oxidation of the side-chain to form 

pregnenolone (Stocco and Clark 1996; Gallegos et al. 2000).  The action of StAR is 

considered the rate-limiting step of pregnenolone synthesis as cholesterol cannot diffuse 

across the aqueous intermembrane space fast enough to support acute steroidogenesis 

(Black et al. 1994).  Pregnenolone then exits the mitochondria and is converted to 

progesterone by 3β-hydroxysteroid dehydrogenase (3β-HSD) in the microsomal 

compartment of the endoplasmic reticulum.  In the event of high quantities of 

progesterone and during parturition, progesterone is metabolized to 20α-hydroxy-

progesterone, a biologically inactive progestin, by 20α-hydroxysteroid dehydrogenase 

(20α-HSD).  Low quantities of other steroidogenic enzymes are expressed in luteal cells 

and therefore, mainly progesterone is produced which freely diffuses into 

microvasculature that encompasses luteal cells.   

The expression of the “cholesterol accumulation” and “progesterone synthesis” network, 

mainly CYP11a1, 3βHSD and StAR, are regulated through signaling initiated through the 
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membrane receptors: LHCGR and the prolactin receptor (PRLR).  Upon cervical 

stimulation during coitus, prolactin (PRL) secreted from the anterior pituitary and along 

with FSH and LH form a luteogenic complex that signals through PRLR and LHCGR on 

the luteinizing granulosa cells to promote corpus luteum formation and progesterone 

synthesis.  Two forms of PRLR are found in CLs, the short and long forms activate many 

kinases including: SRC, PI3K, mitogen activated protein kinase (MAPK) and Nek3-vav2-

Rac1; however, only the long form of PRLR (PRLR-L) is shown to activate JAK2/STAT5 

(reviewed in Binart et al. 2010).  These downstream signals indirectly and directly 

regulate gene expression of all components of the progesterone network, including 

PRLR and LHCGR.  Beginning on pregnancy day (P) 6, a placenta-derived homolog, 

placental-lactogen I (PL-I) is produced with concentrations peaking at P10 then rapidly 

declines.  PL-I functionally complements the mother’s pituitary PRL (Colosi et al. 1988; 

Ogren et al. 1989).  On P9, PL-II begins to be secreted and remains high until parturition 

(Soares et al. 1982).  By P11, the mother no longer secretes PRL, and PL-I and PL-II 

are solely responsible for signaling through PRLR-L.  The positive feedback initiated 

through activation of these receptors maintains the mother’s body in a progesterone bath 

that is necessary for fetal development.   

The role of autophagy in corpus luteum development and luteal cell steroidogenesis is 

unknown.  However, the regulation of lipid droplets, mitochondria and endosomes by 

autophagy is of particular interest in luteal cells.  As a luteal cell accumulates 

cholesterol, there is a simultaneous increase in lipid droplet formation.  A balance of lipid 

droplet formation and metabolism is maintained throughout the pregnancy to generate a 

stable quantity of progesterone.  One can imagine how progesterone synthesis would be 

severely hindered when autophagy is inhibited, if lipophagy regulates any part of lipid 

droplet metabolism in luteal cells.  One mechanism to regulate steroidogenesis is to 
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modulate the number of mitochondria, as shown in adrenal cortex and testis (Jing and 

Tang 1995).  Along these lines, mitochondrial dynamics of fusion also regulates the 

production of progesterone in cultured MA-10 cells (Duarte et al. 2012).  Seeing that 

autophagy is the only mechanism to degrade mitochondria, an increase in autophagy 

could remove mitochondria inhibiting steroidogenesis.  In contrast, inhibiting autophagy 

could increase steroidogenesis by increasing the number of mitochondria or allow the 

accumulation of damaged mitochondria increasing reactive oxygen species (ROS) and 

ultimately kill the cell.   

1.7 Autophagy in the adult testes 
The adult testis is the site of testosterone production and male gamete formation through 

the active process of spermatogenesis.  This is in contrast to the female that have 

dormant oocytes at the time of birth, as discussed earlier.  The testis is an organ filled 

with many tubules wrapped and coiled on each other.  The cords of germ and somatic 

cells that form during embryogenesis develop into these seminiferous tubules.  In 

between the tubules is the testicular interstitium, a cellular compartment that houses the 

vasculature and the testosterone-producing Leydig cells.  As sperm are produced, they 

are released into the lumens of the seminiferous tubules and exit through a collection 

duct, called the rete testis where they enter the epididymis to mature.  Three cells types 

populate the seminiferous tubules: spermatogonia and their descendants, peritubular 

myoid cells, and Sertoli cells.  Looking at a cross section of a mouse tubule (Figure 1.5), 

one will find one layer of peritubular myoid cells around the perimeter, which contain 

several actin filaments to provide structural integrity to the tubule.  Additionally, 

peritubular myoid cells secrete a number of extracellular matrix components (e.g. 

fibronectin, type IV collagen and proteoglycans) and growth factors (e.g. TGFβ, IFG-I, 

and Activin) known to regulate Sertoli cell polarity and spermatogenesis (reviewed in 
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Mayerhofer 2013).  On the inside of the tubule, is an organization of spermatogonia 

anchored to the basal lamina, a barrier between the peritubular myoid cells and the 

tubule, sitting in a stem-cell niche created by adjacent Sertoli cells.  Spermatogonia 

proliferation and differentiation relies on interactions with and growth factors secreted by 

the Sertoli cells.  Spermatogenesis occurs in 12 developmental stages, which ranges 

from 30 to 78 days in mammals to complete, and the stages are found heterogeneously 

in the adult testis (Hess and Renato de Franca 2008).  It is now appreciated that 

spermatogenesis occurs in waves throughout the seminiferous tubules, which allows for 

the continual production of mature sperm throughout life (Hess and Renato de Franca 

2008).  Testosterone produced by the Leydig cells binds to androgen receptors in Sertoli 

cells that regulates the progression of spermatogenesis.  Thus, both Sertoli and Leydig 

cells are necessary for sperm production.  The following sections provide a discussion 

for the individual roles of Sertoli and Leydig cells in conjunction with possible roles for 

autophagy. 
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Figure 1.5 Seminiferous epithelium 
(Left) Diagram showing a small area of a cross-section through a seminiferous tubule.  
Spermatogenesis progresses in a basal to adluminal direction terminating with elongated 
spermatid release.  On the basal side of the tubule, in contact with the basal lamina, are 
the spermatogonia, which proliferate and begin meiosis as they migrate toward the 
lumen.  A gap junction (arrows) between two Sertoli cells creates a blood-testis-barrier to 
allow the “non-self” haploid spermatids to evade the immune system.  The columnar-
shaped Sertoli cell are always interacting with developing spermatocytes and spermatids 
regulating their development.  Figure adapted from (Morales and Clermont 1993).  
(Right) Cross-section of a seminiferous tubule from a 10-week old mouse testis stained 
with hematoxylin (blue=nuclei) and eosin (pink=cytoplasm).  The beginnings of 
spermiogenesis are observed in this cross section.  Here, Sertoli cells are difficult to 
observe except by the distinct-shaped nucleus, indicated.  Groups of Leydig cells 
surrounding vasculature are present in the interstitial space between tubules as 
indicated.  Scale bar equals 100 μM. 
 
 
1.7.1 Autophagy and adult Leydig cells 

Leydig cells get their name after Franz Leydig who was the first to describe the presence 

of cells between seminiferous tubules that had been overlooked by other researchers.  

Franz made his observation during a comparative study of the male reproductive tracts 

from nonhuman primates, bats, insectivores, carnivores, marsupials, rodents, rabbits, 

pigs, horses, artiodactyls and a dolphin (Leydig 1850).  In his conclusion, Franz states: 

“From the comparative histology of the testis it is clear that, in addition to seminiferous 
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tubules, blood vessels, and nerves, one find an additional constant component in the 

mammalian testis. Its main constituents are small granules of fatty appearance” 

(translated by Christensen 2007).  We now know that Franz was describing lipid droplets 

inside the steroid producing cells of the testis.  The adult Leydig cell is not present until 

after birth when a population of mesenchyme-like fibroblasts begin differentiating.  There 

is a population of fetal Leydig cells that are eliminated by programmed cell death shortly 

after birth that the adult population entirely replaces, and a review can be found 

elsewhere (reviewed by Huhtaniemi and Pelliniemi 1992).  In the rat, the progression to 

mature Leydig cells has been divided into three stages (Hardy et al. 1989).  Each stage 

is characterized in depth elsewhere (reviewed by Haider 2004).  In the ‘progenitor’ stage 

(P10-28), newly differentiated Leydig cells resemble fibroblasts, produce 

androstenedione (see figure 1.3 for clarification) and begin to express LHCGR.  The 

little androgen they do produce acts in a paracrine manner inducing proliferation in 

neighboring Leydig cell progenitors.  Leydig cell progenitors proliferate to create 

homogenous populations around the seminiferous tubules and form colonies in close 

association with the interstitial capillaries.  In the ‘immature’ stage (beginning P30-P56), 

which is around the same time as the onset of puberty (FSH and LH secretion), Leydig 

cells produce a small amount of testosterone.  This is a synergistic response to both LH 

and androgen, but a majority of the testosterone is metabolized to a non-biologically 

active form.  Additionally, signaling through LHCGR inhibits proliferation and 

downregulates the expression of the androgen receptor.  Interestingly, in rodents the first 

wave of spermatogenesis does not require androgens, while androgen receptor 

signaling is required in all subsequent waves (Yoshida et al. 2006).  In the final stage of 

Leydig cell development, ‘mature’ Leydig cells (P60 and beyond) express high levels of 

LHCGR that regulates the expression of the full complement of testosterone 

synthesizing enzymes, giving them a high capacity for testosterone synthesis.  
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Throughout adult Leydig cell differentiation, the cell morphology changes from spindle-

shaped to large and spherical.  Numerous lipid droplets and mitochondria are present in 

mature Leydig cells, evidence that they are steroid producing cells.  As in theca and 

luteal cells, LHCGR activity in Leydig cells causes the transduction of a 

cAMP/PKA/CREB cascade that induces expression of lipoprotein receptors, cholesterol 

transporters and testosterone synthesizing enzymes (O’Shaughnessy et al. 2014; Ge et 

al. 2005; Sanz et al. 2013).  Additionally, Leydig cells express low levels of CYP19A1 

and do synthesize small amounts of estrogens that mainly acts on Sertoli cells and 

spermatogonia, but high levels of estrogen inhibit androgen synthesis (Abney 1999).  

There are several age-related changes in Leydig cells of rodents and humans.  Common 

among these is a decrease in testosterone that is also associated with a decrease in LH 

(Bethea and Walker 1979).  However, LH treatment does not reverse testosterone levels 

completely, suggesting that there are age-related changes in Leydig cells that diminish 

their ability to produce testosterone (Chen et al. 2002).   

Several of the intermediate pathways of autophagy and its intimate connection to the 

endosome pathway were originally worked out in rat Leydig cells by Xue-Ming Tang 

(Jing and Tang 1999; Tang et al. 1992).  In the introduction of the 1999 paper is stated, 

“We found that the relative frequency of autophagy in Leydig cells is much higher than in 

any [of the other 32 tested] cell types”.  It was later hypothesized that autophagy 

modulates steroid production through degradation of mitochondria within Leydig cells 

(Jing and Tang 1995).  This interaction went untested until recently where in a study by 

Li et al., a comparison of young versus old rat Leydig cells revealed that autophagy 

activity, in parallel to testosterone production, is reduced in the Leydig cells from old rats 

(24 months old) compared to young cells (3 months old) (Li et al. 2011).  Furthermore, 

the authors demonstrated that Leydig cells from young animals are induced to produce 
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lower levels of testosterone, similar to the levels produced by older cells, by knockdown 

of key autophagy genes or pharmacological inhibition of autophagy.  Moreover, the 

overexpression of key autophagy genes in Leydig cells from old animals restored 

testosterone production to levels seen in young cells.  This experiment validates that 

autophagy regulates steroid production in Leydig cells.  Furthermore, the age-related 

decline in testosterone production is at least, in part, caused by an age-related decline in 

autophagy activity.  Interestingly, caloric restriction, which is a potent inducer of 

autophagy throughout the body, can attenuate the age-related decline in testosterone 

and circulating lipoproteins seen in rodents (Chen et al. 2005).  Similar studies in 

humans are difficult, but initial observations suggest that humans’ testosterone response 

to caloric restriction mimics rodents (Cangemi et al. 2010).  Whether or not autophagy 

modulates mitochondria numbers and therefore regulates steroidogenesis is still 

untested, but the insights for autophagy-dependent role in steroidogenesis are intriguing.  

In addition, whether lipid metabolism is dependent on autophagy in steroidogenic cells to 

modulate steroidogenesis is unknown.  Studying a mouse with the conditional deletion of 

autophagy genes in adult Leydig cells is possible, and would provide models to test 

these hypotheses in an in vivo scenario.   

1.7.2 Autophagy and Sertoli cells 

The Sertoli cell was first described as a ‘mother’ cell by Enrico Sertoli in 1865, from 

whom the cell gets its name (Sertoli 1865).  Enrico was working in a medical school at 

the time, and, perhaps luckily, was looking at human testes samples, which have much 

larger Sertoli cells, occupying 37% of the epithelium compared to the 12% in rodents 

(Hess and Renato de Franca 2005).  Enrico’s intuition to call the Sertoli cell a ‘mother’ 

cell is remarkable because he implied its function in poorly fixed tissues.  A testament to 

the Sertoli cell function, many researchers today refer to the Sertoli cell as a ‘nurse’ cell 
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for the developing sperm (Petersen and Soder 2006).  Unlike the adult Leydig cell, which 

develops after testis formation, the Sertoli cell is present from the very beginning of cord 

formation (as described earlier) throughout life, providing a niche for the development 

and maintenance of male germ cells.  In the adult testis, the Sertoli cell has numerous 

functions, all of which are necessary to maintain spermatogenesis (reviewed by Tsai 

2005).  As a summary, the Sertoli cell: 1) maintains the architecture of the seminiferous 

epithelium by extending cellular processes around differentiating germ cells; 2) 

metabolizes and delivers nutrients by metabolic exchange with germ cells and secretes 

tubular fluid into the lumen; 3) produces growth factors to inhibit spermatogonia to enter 

meiosis; 4) forms Sertoli-Sertoli junctions (tight, adherens and gap) that maintain the 

blood-testis-barrier; 5) produces growth factors to support germ cell differentiation; 6) 

forms complex networks of cellular junctions with individual germ cell populations 

physically moving them in a basal to adluminal direction; and 7) is responsible for the 

phagocytosis of dying germ cells and residual bodies formed during germ cell 

differentiation.  Due to the intimacy between the Sertoli cell and sperm production, the 

number of functional Sertoli cells determines both testicular size and daily sperm 

production (Johnson et al. 2008). 

The Sertoli cell goes through a terminal differentiation from an immature to functional 

Sertoli cell around the onset of puberty, marked by the increased secretion of FSH from 

the pituitary.  Pronounced transitions in Sertoli cell morphology, biochemistry and the 

structure of the seminiferous tubule are associated with the Sertoli cell differentiation.  

Upon FSHR binding, immature Sertoli cells enter the cell cycle, become elongated and 

begin polarizing their membranes.  Numerous genes are regulated by FSH that provide 

mechanistic explanations (McLean et al. 2002).  The formation of tight junctions between 

adjacent Sertoli cells begins with the expression of claudins.  Tight junctions inhibit 
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further mitosis of Sertoli cells, as suggested by a reduction of their proliferative capacity 

unless they are disassociated (Steinberger and Steinberger 1971).  Cell-contact 

inhibition and contribution of non-hormonal factors provide evidence for the general 

acceptance that functional Sertoli cells do not proliferate (Schlatt et al. 1996; Jégou 

1992).  These tight junctions form the ‘blood-testis-barrier’ that separates diploid cells 

from haploid cells (Smith and Braun 2012).  As the adaptive immune system develops 

before the onset of spermatogenesis, the haploid spermatocytes are targeted and 

destroyed by leukocytes that infiltrate the tubule in the absence of the blood-testis-

barrier, which are recognized as “non-self”.  FSH also induces Sertoli cells to begin 

producing seminiferous fluid, which transforms the immature tubule from solid testis 

cords to lumen-filled tubules.  The formation of the blood-testis-barrier also seals off the 

tubule for direct access for many nutrients, and as such, the differentiating germ cells 

become dependent on the secretion of factors by the Sertoli cells.  As the Leydig cells 

respond to LH, the concentration of testosterone increases, which bind to androgen 

receptors in Sertoli cells.  The gene targets of androgen receptor has proven to be a 

complicated task, but the identification of extracellular matrix proteins, growth factors, a 

series of reproductive homeobox on the X chromosome (Rhox) genes and phagocytosis-

promoting machinery are among the most influential on spermatogenesis (Maclean et al. 

2005; Zhou et al. 2011b; MacLean et al. 2013).   

Throughout spermatogenesis, the differentiating germ cells undergo blatant morphology 

transformations from round spermatocytes to spermatids that possess a rounded head 

and elongated tail.  This requires cellular remodeling where much of the cytoplasm is 

packaged into cytoplasmic residual bodies that get removed during spermiogenesis via 

the phagocytosis of the material by Sertoli cells (Chemes 1986).  Additionally, there is 

extensive apoptosis of differentiating germ cells that has been estimated to occur in 
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upwards of 60% of germ cells in contact with Sertoli cells (Shaha et al. 2010).  Both 

intrinsic and extrinsic initiation of apoptosis are observed, suggesting that a combination 

of factors regulate this loss.  While it remains uncertain why high amounts of apoptosis 

occur, removal of these dying cells is done exclusively by the Sertoli cell via 

phagocytosis (Chemes 1986).  Thus, it should be appreciated that the functional Sertoli 

cell must have a pronounced ability to metabolize phagocytized material.   

The process of phagocytosis involves binding of the substrate, ingestion and subsequent 

degradation.   The signal recognized by Sertoli cells on dying apoptotic germ cells is the 

“eat-me” signal, phosphatidylserine (PS), as demonstrated by the apparent increase in 

apoptosis after administering Annexin V, which binds to PS (Maeda et al. 2002).  Further 

analysis revealed that the scavenger receptors SR-BI and CD-36 are expressed by 

Sertoli cells and responsible for binding PS found on residual bodies and dying cells 

(Nakanishi and Shiratsuchi 2004; Gillot et al. 2005).  The co-receptors of tyrosine kinase 

receptor (MERTK), GAS6 and protein S (PROS1) are both implicated in the ingestion of 

PS associated bodies by macrophages and are produced by Sertoli cells (Xiong et al. 

2008).  After GAS6 and PROS1 bind to PS, they are coupled to MERTK and ingestion 

occurs.  Studies on mertk, knockout mice show a reduced ability for Sertoli cell 

phagocytosis, suggesting that this pathway is conserved from macrophages (Xiong et al. 

2008).  Once ingested the phagocytized material enters the endosome pathway and 

ends, similar to autophagy, with the fusion to a lysosome (Oczypok et al. 2013).  There 

is a body of evidence suggesting that autophagy is associated with this process.  

Recently, a phenomenon called “LC3-Associated Phagocytosis” was observed in 

macrophages and found to be responsible for the clearance of phagocytic vesicles 

containing Listeria monocytogenes (Lam et al. 2013).  Recent studies using Sertoli cells 

and retinal pigmented epithelial cells, both “non-professional” phagocytes (Rabinovitch 
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1995), have characterized increased levels of autophagy that coincide with 

phagocytosis, suggesting that autophagy is utilized in the processing of phagocytized 

material (Yefimova et al. 2013; Kim et al. 2013).  Furthermore, using microglia cells, 

considered to be another “non-professional” phagocyte, Lucin et al. demonstrated that 

depletion of BECN1 severely abrogates retromer trafficking and phagocytosis (Lucin et 

al. 2013).  Additionally, a role for autophagy in regulating the expression of scavenger 

receptors on the surface of macrophages was observed, further linking autophagy and 

phagocytosis (Bonilla et al. 2013).   The functional role of autophagy in phagocytosis is 

yet to be tested in vivo, but this groundwork provides evidence for the involvement of 

autophagy.  Furthermore, the data includes both professional (macrophages) and non-

professional phagocytes, suggesting that autophagy has a conserved function in 

phagocytosis.  The use of conditional knockout alleles of key autophagy genes 

specifically in Sertoli cells is possible and would provide good models for testing these 

hypotheses. 

1.8 Conclusions 
I have highlighted several studies characterizing the activity of autophagy in the ovary 

and testis throughout development.  Among these, the fertilized embryo, developing 

ovarian follicle and functions in steroidogenesis and phagocytosis provide 

developmental models to test the significance of autophagy in reproductive tissues.  I 

have presented ample evidence that autophagy is a cellular mechanism to maintain 

homeostasis.  Along this line, I propose that autophagy is a necessary cellular function 

within the developing reproductive tract.  Furthermore, the abrogation of autophagic 

activity will inhibit the development and function of the tissues discussed.  Moreover, I 

hypothesize that modulation of autophagy will provide useful models of reproductive 

disease.   
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While a subset of these studies discussed suggest that autophagic cell death is a 

mechanism of cell regulation, the evidence does not fully support such conclusions.    

However, the findings do warrant further investigation into the role of autophagy in the 

ovary and testis during cell death.  The reproductive field is poised at a wonderful time to 

begin answering these questions utilizing conditional knockout and comparative 

approaches. 
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AIMS OF THE DISSERTATION 
Autophagy is an evolutionarily conserved process that is essential for energy 

homeostasis and the destruction of specific cytosolic components within individual cells.  

The overall aim of this thesis is to determine the function of autophagy during perinatal 

gonad development and folliculogenesis.  The focus is the hypothesis that autophagy is 

a survival mechanism for germ cells.  It became apparent early on, that this would not be 

feasible with my methods, but I uncovered several other phenotypes.  In the following 

chapters of this dissertation, I present methodology to test the following hypotheses, 

listed below, and present the data obtained from these experiments.  In chapter 5, I 

discuss how the results of each chapter demonstrates a conserved function, in addition 

to autophagy, for Becn1 in testes and ovaries.  Furthermore, I discuss the implications of 

this work in the field of reproductive biology and how these results will shape future 

experiments. 

Specific Aims 
In Chapter 2, the hypothesis tested is that autophagy is necessary for prenatal germ cell 

development and survival of oocytes.  The specific aims were to: 

• Characterize ovaries from Becn1-decficient and Atg7-knockout mice at 

postnatal day 1. 

• Investigate the role of autophagy in primordial follicle formation by quantifying 

follicles. 

• Determine whether autophagy mediates oocyte attrition or survival 
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In Chapter 3, the hypothesis tested is that autophagy is necessary for folliculogenesis 

and corpus luteum formation and steroidogenesis.  The specific aims were to:   

• Characterize Cyp19-iCre for use in deletion of Becn1 and Atg7 in the follicle 

and corpus luteum. 

• Investigate the role of autophagy on corpus luteum formation and luteal cell 

steroidogenesis by quantifying progesterone production from pregnant mice. 

• Determine the involvement of Becn1 on cholesterol metabolism in luteal cells.  

In Chapter 4, the hypothesis tested is that autophagy is necessary for Sertoli cell 

phagocytosis and thus, regulates spermatogenesis.  The specific aims were to: 

• Characterize the knockout of Becn1 and Atg7 specifically in adult Sertoli 

cells. 

• Determine the role of autophagy on Sertoli cell function as mice age.  
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CHAPTER 2:  AUTOPHAGY IS A CELL SURVIVAL PROGRAM FOR FEMALE 
GERM CELLS IN THE MURINE OVARY.  

 
Keywords: autophagy, fertility, beclin-1, atg7 
 
Abbreviations used:  PGC, primordial germ cell; PCD, programmed cell death; P, post-
natal day; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling 
 
Previously published: 
Reproduction.  2011.  141(6): 759-765 
 
Abstract 
 
It is estimated that infertility affects 15-20% of couples and can arise from female or 

male reproductive defects. Mouse models have ascribed roles to over 100 genes in the 

maintenance of female fertility. Although previous models have determined roles for 

apoptosis in male and female fertility, we find that compromised autophagy within the 

perinatal ovary, through the loss of Becn1 or Atg7, results in the premature loss of 

female germ cells. Becn1(+/-) ovaries have a 56% reduction of germ cells compared with 

control ovaries at post-natal day 1, whereas Atg7(-/-) ovaries lack discernable germ cells 

at this stage. Thus autophagy appears to be a cell survival mechanism to maintain the 

endowment of female germ cells prior to establishing primordial follicle pools in the 

ovary.   
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2.1 Introduction 
Oocyte development can be classically split into six broad steps: 1) colonization of the 

indifferent gonad by primordial germ cells (PGCs), 2) formation of oogonia, 3) meiotic 

arrest at prophase I, 4) primordial follicle formation, 5) follicle maturation, and 6) 

ovulation (Edson et al. 2009).  Early female germ cell development encompasses the 

first 4 stages and occurs during fetal and peri-natal development.  The fetal ovary is 

endowed with the greatest number of germ cells prior to entering meiotic arrest.  After 

this stage, most female germ cell loss occurs either during the fetal/peri-natal window or 

from post-natal follicular atresia.  Ovarian follicular atresia is a cell death event that 

occurs in more than 99% of mature follicles (Byskov 1978), and excessive follicular 

atresia is associated with premature ovarian failure, one of the most common causes of 

infertility in women (Matzuk and Lamb 2008; Anasti 1998).  The loss of germ cells has 

been attributed, in part, to genes devoted to programmed cell death.    

Programmed cell death (PCD), an important physiological process required for 

development, is classified as either: Type I (apoptosis), Type II (autophagy), or Type III 

(non-lysosomal vesiculate degradation).  Autophagy is a conserved mechanism, from 

yeast to mammals, for bulk recycling of proteins and organelles (Klionsky 2000).  This 

process is important for normal development, tissue/organ remodeling, and cell 

death/survival, and can be triggered under stress conditions such as nutrient deprivation.  

A wide array of diseases manifest from altered autophagy including: neurodegenerative 

disorders (e.g. Alzheimer’s, Parkinson’s, Huntington’s diseases), liver disease, 

myodegenerative disorders, heart disease, inflammatory diseases, and cancer (Levine 

and Kroemer 2008).  Initially, the proteins/organelles are sequestered by lipids called 

‘isolation membranes’, which then encapsulate the targets with a double-membrane 

structure called the autophagosome.  These autophagosomes then fuse with liposomes 
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to degrade the internal components.  The yeast autophagy (Atg) proteins responsible for 

this process are classified into 4 groups:  1) induction of autophagy (ATG1 protein 

kinase complex), 2) vesicle nucleation (phosphatidylinositol 3-kinases class III ‘PI3KC3’ 

lipid kinase complex), 3) vesicle expansion (ATG7-ATG12-ATG5 and ATG8 pathways), 

and 4) the Atg protein retrieval system (Maiuri et al. 2007).  Beclin 1 (BECN1), the 

mammalian counterpart of the yeast ATG6 protein, is integral in the vesicle nucleation 

phase for autophagosome formation.  BECN1 forms a complex with UVRAG (UV 

radiation resistance-associated gene) and BIF-1 (BAX-interacting factor-1) to regulate 

the PI3KC3 kinase complex and promote autophagosome formation (Takahashi et al. 

2007; Liang et al. 2006).  ATG7 is an E1-like protein that is required for the conjugation 

of ATG5-ATG12 and the addition of phosphatidylethanolamine to LC3/ATG8 

(microtubule-associated protein light chain 3).   

Previous genetic mouse models have revealed the importance of more than 20 genes 

that impact the germ cell populations or the establishment of primordial follicles in the 

murine ovary (Matzuk and Lamb 2002, 2008).  Of these, three apoptosis-associated 

genes are known to impact germ cell numbers in the fetal-neonatal ovary: Bcl-xL, Bax, 

and Caspase-2 (Rucker et al. 2000; Greenfeld et al. 2007; Bergeron et al. 1998).  BCL-

XL and BAX have been shown to govern primordial germ cell numbers after colonization 

of the fetal gonads, around E11.5- E13.5, when a wave of apoptosis reduces the 

gonocyte populations.  In contrast, the developmental window of germ cell loss at the 

time of parturition may be dependent upon mechanisms other than apoptosis.  Ablation 

of Bcl-xL in the fetal ovaries after this initial wave of germ cell loss does not impact the 

primordial follicle pool in the murine ovary (Riedlinger et al. 2002).  Several additional 

reports suggest that the ovary may rely upon alternative pathways of cell survival and 

cell death.   Analysis of the mouse ovary between E19.5 and P2 revealed a 44% 
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reduction in the number of follicles during this window (Rodrigues et al. 2009).  At this 

stage few germ cells or somatic cells were found to be apoptotic, whereas lysosome 

amplification and increased LAMP1 (lysosomal-associated membrane protein 1) 

expression occurred, suggesting a role for autophagy.  During the germ nest breakdown 

and establishment of the primordial follicle pool, the germ cells may need to maintain 

energy homeostasis through autophagy.  Autophagy can promote cell survival or lead to 

cell death, depending upon the context (Codogno and Meijer 2005).  Therefore, we 

wanted to determine the effect of autophagy, through the genetic loss of Becn1 or Atg7, 

on the endowment of the peri-natal ovary as a pro-survival or pro-death mechanism. 
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2.2 Materials and Methods 

2.2.1 Gene targeting and generation of Becn1 conditional knockout mouse 

For the targeting vector, a 3 loxP plasmid vector (ploxP3-NeoTK) with PGK 

(phosphoglycerol kinase)-neomycin and PGK-thymidine kinase cassettes for positive-

negative selection was used.  Genomic DNA isolated from 129SvEv mice was used to 

amplify three regions of homology for the targeting arms: a 2.7 kb Becn1 arm #1 (Becn1 

promoter sequence), a 3.0 kb Becn1 arm #2 (promoter, exon 1, intron 1, exon 2, and a 

portion of intron 2), and a 2.0 kb Becn1 arm #3 (intron 2 sequence).  For the 

amplification, the AccuPrime Pfx was used according to manufacturer’s directions to 

generate blunt PCR fragments that were gel purified (Gel extraction kit, Qiagen) and 

cloned into pBlunt vector (Invitrogen).  For the electroporations, 25 μg of NotI-linearized 

DNA was resuspended in 25 μl Electroporation Buffer (Chemicon) and electroporated 

into 1 x 107 129SvEv ES cells using the GenePulser II (250 V and 500 μFd; BioRad) with 

0.4 cm cuvettes.  G418 selection (200 ng/ml) was started on day 1 after electroporation 

and continued thereafter; gancyclovir selection (2 μM) was performed on days 4-7 after 

electroporation.  On day 12, 3 x 96-well plates were picked and expanded for cell stocks 

and DNA isolation.  Clones were initially screened by pooled PCRs using LaTaq 

(Takara) with a 5’ flanking reverse primer (5’ CCC TAG CTG GCC TGG AAC TCA GAA 

ATC T 3’) and neomycin-specific reverse primer (5’ TAC CGG TGG ATG TGG AAT 

GTG TGC GA 3’) set.  The presence of the third loxP site was confirmed using flanking 

PCR primers (forward: 5’ CAG GAG AAG TGC CAT GGT GCA TCC TCT T 3’; reverse: 

5’ CAA AGC CAA GGT TTC CAT GCT AAT GCC 3’).  Individual clones were subjected 

to PCR confirmation from positive pools.  Positive clones were confirmed by Southern 

blot diagnostics with an external 5’ probe.  Targeted ES cells were expanded and used 

for blastocyst injections at the Transgenic Animal Core facility at Texas A & M University.  
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2.2.2 Generation of mice for ovary collections 

Beclin ‘floxed’ mice were generated by gene targeting in 129SvEv ES cells and will be 

detailed elsewhere.  Becn1 null alleles were generated through heterozygous breedings 

of Becn1fln/+ and MMTV-CreA mice.  Mice carrying homozygous floxed alleles and 

neomycin cassettes were confirmed by PCR of tail-snipped DNA.  True floxed alleles 

were generated by crossing Becn1fln/+ and Ella-CreA mice. CreA+/- Becn1+/- transgenic 

mice were generated through breeding of homozygous MMTV-CreA (Jackson Labs, 

003551) and heterozygous Becn1+/- mice, or those heterozygous for a “null” Cre 

generated locus.  CreA strain genotypes were confirmed using Jackson Labs Protocol 

for Tg(MMTV-cre)1Mam.  ATG7-/- ovaries were provided by Dr Doug Green.  All animal 

work was conducted using protocols approved by the Institutional Animal Care and Use 

Committee at the University of Kentucky. 

2.2.3 Histological Follicle Counts 

To assess follicle numbers, whole ovaries including oviduct and approximately 1cm 

uterus were collected from control (n=3), Becn1+/- (n=6), and Atg7-/- (n=4) ovaries and 

fixed in 4% (w/v) paraformaldehyde for at least 24 hours.  After fixation, tissues were 

dehydrated, embedded in Paraplast (VWR International, West Chester PA), serially 

sectioned (8 µm), mounted on glass slides, and stained with Weigert’s hematoxylin-picric 

acid methylene blue.  A stratified sample consisting of every tenth section was used to 

estimate total number of primordial and naked germ cells (germ cells not surrounded by 

somatic cells) per ovary.  Only oocytes with a visible nucleus were counted to avoid 

double counting. In addition, all follicles were counted without knowledge of the 

genotype of the animal.   
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2.2.4 Immunohistochemistry 

Whole ovaries including oviduct and a small portion of the uterus were fixed in 4% (w/v) 

paraformaldehyde for at least 24 hours.  After fixation, tissues were cryo-protected by 

washing for 1 hour in 10% sucrose, 1 hour in 20% (w/v) sucrose and at least 12 hours in 

30% (w/v) sucrose at 4 oC.  Ovaries were then embedded in O.C.T. Compound (Sakura, 

Tokyo, Japan), frozen using a liquid-nitrogen-isopentane bath, serially sectioned (15µm) 

and mounted on glass slides.  Slides were then washed for 5 minutes with PBS and 

stained using ImmPRESS Reagent Kit – Anti-Rabbit IgG (Vector Labs, MP-7401) in 

combination with primary antibody (anti-BECN1 at 1:80 dilution (Santa Cruz, sc-11427)) 

overnight at 4oC.  We confirmed the specificity of the antibody in control and BECN1-

deficient mammary glands (WAP-Cre; Becn1fl/-) at lactation day 1.  All sections were 

counterstained with Hematoxylin QS (Vector Labs, H-3404) and visualized using a Nikon 

Eclipse E400.  Total Rabbit-IgG 1:200 dilution (Santa Cruz, sc-2027) was used as a 

primary antibody negative control.   

2.2.5 Statistical Analysis 

Differences in germ cell numbers were evaluated by one-way analysis of variance, with 

statistical significance assigned at p < 0.05.  When a significant p value was obtained, 

Scheffe's test was used in the post hoc analysis.  The SPSS (version 10) program was 

used to compile statistics from the obtained data.  For microarray data, statistical 

analysis, ANOVA and Holm-Sidak pairwise tests were completed with Sigma Plot 

(Systat). 

2.2.6 Microarray Data 

Becn1 mRNA expression data was obtained from microarray experiments of oocytes 

from primordial, primary, secondary, small and large antral follicles obtained from 

B6SJLF1 animals.  Data represents four replicates and bars = standard error, * p<0.05 
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vs Primordial, ** p<0.05 vs Secondary/Large Antral.  Data comes from previously 

published microarray experiments found in NCBI GEO (GDS1266 and GDS1265) (Pan 

et al. 2005).   
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2.3 Results 
Characterization of mRNA from different oocyte stages was possible due to the efforts of 

Pan et al, 2005.  They isolated oocytes from different follicle stages (primordial, primary, 

secondary, small antral, and large antral), extracted total RNA from each set, generated 

biotinylated cRNA, and hybridized probes to the “Mouse Expression Set 430” MOE430A 

and MOE430B Affymetrix GeneChips (Pan et al. 2005).  These arrays, which contain 

mouse maintenance genes as normalization controls, interrogate the expression levels 

of over 39,000 transcripts from the mouse transcriptome.  From this data set, Becn1 

mRNA was found to be expressed at highest levels in the murine ovary within the 

primordial oocyte (Figure 2.1).  With respect to stage, the highest relative expression 

levels were found in the primordial oocyte population (3200 avg) compared to primary 

(1500 avg), secondary (1500 avg), small antral (2000 avg), and large antral oocytes 

(1500 avg).  Becn1 mRNA expression did not differ between 1 month ovaries (4500 avg) 

compared to 2 month (5000 avg) and 7 month ovaries (5000 avg).  Atg7 mRNA 

expression was present at all oocyte stages from the primordial to the large antral stage 

but did not vary statistically (not shown).  Protein analysis by immunohistochemistry 

revealed that BECN1 is localized to the follicle (Figure 2.1).  BECN1 expression is not 

found in the cortex or medulla, but throughout the follicle (oocyte, granulosa cells, and 

theca cells).  Since homozygous Becn1 null mice (-/-) are embryonic lethal at E9.5 (Yue 

et al. 2003; Qu et al. 2003), we decided to examine hemizygous Becn1 ovaries (+/-) to 

compare them with Atg7-deficient ovaries at post-natal day 1 (P1).  Analysis at this 

timepoint was chosen because of the peri-natal lethality of ATG5- and ATG7-deficient 

neonates at P1 (Kuma et al. 2004; Komatsu et al. 2005).  For analysis of Becn1, we 

generated a floxed beclin mouse model by gene targeting in embryonic stem cells, which 

harbor loxP sites around exons 1 and 2.  A null allele for Becn1 was generated by 

crossing with the MMTV-CreA line, a Cre transgenic which is expressed in the ovary for 
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germline-specific deletions (Wagner et al. 1997).  Although this transgene is ‘leaky’, we 

previously used the MMTV-CreA model to perform an oocyte-specific deletion of a floxed 

bcl-xL gene because of its extremely high efficiency of recombination (Riedlinger et al. 

2002).   

Compromised autophagy, through loss of ATG7 or a dose-dependent reduction of 

BECN1, reduces female germ cell populations in the post-natal day 1 (P1) ovaries.  

Morphometric analyses were performed to quantitate germ cells, similar to methods from 

our previous studies (Rucker et al. 2000; Riedlinger et al. 2002; Greenfeld et al. 2007; 

Borgeest et al. 2002).  Quantitative analysis of germ cells in the P1 ovary revealed a 

BECN1-dependent reduction of germ cells (Table 2.1).  Wild-type, control P1 ovaries 

had an average of 8870 germ cells (SEM=962; n=3), compared to an average of 4065 

germ cells (SEM=476; n=6) in Becn1+/- hemizygous ovaries (Becn1+/-, MMTV-CreA; 

Becn1+/-, or MMTV-CreA; Becn1fl/+).  There was a high loss of fetuses with the MMTV-

CreA; Becn1fl/- genotype associated with heart and brain defects at embryonic day 11.5-

12.5.  This was confirmed in subsequent breedings with the EIIa-Cre line as well, which 

have mosaic Cre expression beginning at the 8-cell stage of development.  From over 

100 collected neonates, only 2 survived to the P1 stage (expected 1:4 ratio).  

Histological examination of the mutant P1 ovaries showed an altered distribution and a 

reduction in primordial follicles compared to the control ovaries (Figure 2.2).  Wild-type 

ovaries had a more uniform distribution of follicles, and were larger due to the presence 

of more germ cells and primordial follicles.  To substantiate the role of BECN1 and 

autophagy in the maintenance of female germ cell pools, we also collected P1 ovaries 

from Atg7-/- neonates (n=4).  ATG7-deficient ovaries had a loss of germ cells, and 

moreover, the altered appearance of the germ cells within the ovary made them 

impossible to quantitate (Figure 2.3). 
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2.4 Discussion 
In the context of autophagy, there are 6 major steps associated with the process: 1) 

regulation of induction, 2) isolation membrane recruitment and vesicle nucleation, 3) 

vesicle elongation, 4) protein retrieval, 5) docking and fusion of autophagosome and 

lysosome, and 6) vesicle breakdown and degradation (Maiuri et al. 2007).  BECN1 is 

involved with both nucleation and autophagosome maturation, whereas ATG7 is needed 

for vesicle elongation.  Although autophagy can proceed through either ATG7-

dependent or ATG7-independent pathways, these results demonstrate that female germ 

cells utilize both ATG7 and BECN1 for induction of autophagy for cell survival.  

Determination of germ cell numbers in ATG7/BECN1-deficient ovaries would clarify if 

alternative pathways are utilized.  This study demonstrates that autophagy may be an 

important regulator of germ cell survival prior to formation of the primordial follicular pool.   

In addition to this early window of germ cell loss, evidence is mounting that the atresia 

within the pre-pubertal murine ovary is dependent upon autophagy.  Two recent studies 

highlight a non-apoptotic mechanism for loss of primordial follicle pools.  Atretic oocytes 

from P1 to P28 wild-type rat ovaries were described has having apoptotic markers of 

active caspase-3 and positive staining for TUNEL as well as the autophagic markers of 

increased numbers of autophagosomes (Escobar et al. 2008).  Of particular interest was 

that hallmark apoptotic characteristics, pyknotic nuclei and membrane blebbing, were 

never observed.  In the pre-pubertal mouse ovary, apoptotic characteristics (nuclear 

condensation, caspase 3 activation, PARP1 ‘poly [ADP-ribose] polymerase 1’ cleavage, 

and DNA fragmentation) were not correlated with primordial follicles that were lost from 

atresia (Tingen et al. 2009).  In vitro analyses of murine pre-pubertal oocytes showed 

that both apoptotic and autophagic processes were involved in the cell death of the 

oocytes (Escobar et al. 2008; Lobascio et al. 2007b). The importance of autophagy in 
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follicular atresia has been demonstrated across multiple species including: Drosophila, 

telostei, caecilians, stingray, dove, quail, sheep, rats, and humans (Gaytán et al. 2008; 

Santos et al. 2008; Rosales-Torres et al. 2000; Velentzas et al. 2007; Zarnescu 2004). 

Autophagy has been demonstrated to have a crucial function immediately after 

parturition within hours of birth, when neonates experience a starvation period.  This is a 

crucial timepoint at which the neonate must utilize its energy reserves before the 

suckling response triggers milk ejection from the mother for sustenance.  Knockout 

studies from Atg5-/- and Atg7-/- mice have shown a perinatal lethality (die within 1 day of 

birth) associated with a loss of autophagy during this early starvation period (Komatsu et 

al. 2005; Kuma et al. 2004).  A burst of autophagy occurs upon parturition, peaks in 

tissues within 12 hours, then returns to basal levels within 1-2 days.  In utero, the 

autophagy-deficient fetuses are able to obtain metabolites through the placenta; 

however, amino acid levels within tissues and plasma from the neonates are reduced 

compared to control siblings.  Thus, autophagy appears to be a requisite mechanism to 

maintain energy homeostasis within the neonate. 

In the context of the fetal and neonatal ovary, regulation of autophagy may occur 

through the Kit ligand/c-Kit signaling pathway.  Naturally occurring mutations of Kit 

ligand, Steel Panda (Slpan) and Steel Contrasted (Slcon), have been shown to result in 

reduced germ cell levels and fewer oocytes in the murine ovary (Bedell et al. 1995; 

Huang et al. 1993).  Addition of anti-Kit antibody to fetal or neonatal oocytes in vitro 

caused a dramatic reduction in their growth (Packer et al. 1994).  C-kit has been 

localized by immunohistochemistry to female germ cells at 14 dpc (days post coitum) 

and 16 dpc, and in the oocyte in the P2 and P7 murine ovary (Kang et al. 2003).  C-kit 

signaling traditionally is known to activate the PI3K-Akt-mTOR signaling pathway to 
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promote cell survival, and suppression of this survival pathway leads to premature 

follicle activation and infertility as revealed in knockout studies (Reddy et al. 2009; 

Adhikari et al. 2010; Reddy et al. 2008).  Since mTOR acts to suppress autophagy, the 

question then becomes: how can cells concomitantly activate Akt and autophagy 

pathways?  This apparent contradiction may be reconciled by the notion that signaling 

can occur through two, distinct isoforms of the PI3K p110-beta catalytic subunit.  For Akt 

activation, signaling primarily occurs through the PI3K p110-beta catalytic subunit; 

however, it has been recently demonstrated that the PI3K p110-beta catalytic subunit 

triggers autophagy through activation of the PI3K class III complex (Dou et al. 2011).  A 

recently developed floxed PI3K p110-beta mouse model could be used to address the 

activation mechanism for autophagy in the developing ovary (Jia et al. 2008). 

Regulation of autophagy also may occur through crosstalk with apoptosis proteins, since 

BECN1 contains a BH3-region that serves as a BCL-2 binding domain (Oberstein et al. 

2007; Maiuri et al. 2007; Shimizu et al. 2004).  In vitro abrogation of the BECN1-BCL-

2/BCL-XL interaction with the pharmacological mimetic ABT737 triggers autophagy by 

reducing available BCL-2/BCL-XL (Maiuri et al. 2007).  Similarly, Bcl-2 siRNA in MCF-7 

cells induces autophagy, whereas overexpression of BCL-XL in CHO cells suppressed 

both apoptosis and autophagy (Akar et al. 2008; Kim et al. 2009).    However, BECN1 

and BCL-2 co-expression in HeLa cells did not demonstrate an effect of BECN1 on 

inhibiting the anti-apoptotic effects of BCL-2 (Ciechomska et al. 2009).  Thus, while it is 

clear that BCL-2 and BCL-XL can regulate autophagy, there is some discrepancy as to 

the role the BECN1 has on the integration of apoptotic signaling.  Therefore, the 

susceptibility of cells to undergo apoptosis and autophagy can be linked to the free, 

unbound levels of the anti-apoptotic BCL-2 family members.  Within the developing 

ovary, this regulatory mechanism does not seem to be relevant.  The reduction of 
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BECN1 in the BECN1+/- ovary would result in an increase in the unbound BCL-2/BCL-XL 

fraction, leading to a surfeit of germ cells.  Since the opposite is occurring with the loss 

of germ cells, this suggests that autophagy is not functioning in an autophagic cell death 

role, but rather in a pro-survival role in the ovary.  This mislabeling of autophagy as a 

programmed cell death pathway seems to be a prevailing view in the scientific 

community.  Currently we are using different Cre lines to perform cell-specific deletions 

of Becn1 in the murine ovary to determine its role in follicle maturation and atresia.  In 

the future, in vivo and in vitro models of atresia and premature ovarian failure should 

take into consideration the combined effects of apoptosis and autophagy. 
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Figure 2.1 Expression profile of Becn1 mRNA and protein in the murine ovary. (A) 
Oocyte Becn1 mRNA expression in different stages of follicles (n=3, error bar = S.E.M.; 
a, p<0.05 compared with primordial follicles; b, p<0.05 compared with primary, 
secondary, and antral staged follicles). (B) Ovarian Becn1 mRNA expression at different 
stages of development from diestrus mice (n=2; error bars = S.E.M.). Figure was 
generated from a re-analysis of microarray data originally published by Pan et al. (2005). 
BECN1 immunolabeling in 3-month-old Sv129 ovary is present in all follicles (theca and 
granulosa cells) and oocytes, however absent from ovary epithelium. (C and E) 20X 
Magnification showing several follicles. (D) 40X Magnification of (B). (F) 40X 
Magnification of (E) showing several primordial and primary follicles. Graphs in (A) and 
(B) were generated by CheMyong Ko. Images were taken using Nikon E800, scale bar 
equals 100 µM.   
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Figure 2.2.  Reduction of germ cells in Becn1-deficient ovaries.  Representative 
ovaries from Becn1+/+ (a and c) and Becn1+/- females (b and d). Control ovary (a and c) 
shows a more uniform distribution of healthy germ cells than Becn1+/- ovary (b and d). 
Arrowheads: healthy germ cells; arrows: germ cells with ‘pyknotic’ nuclei. Images were 
taken using Nikon E800, scale bar equals 100 μM.  
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Figure 2.3.  Atg7-deficient ovaries demonstrate loss of germ cells. (a) Postnatal day 
1 (P1) control ovary contains healthy germ cells (marked by arrows). In contrast, P1 
ovaries from three Atg7-/- females show loss of distinguishable germ cells (b–d). Images 
were taken using Nikon E800, scale bar equals 100 μM.   
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Table 2.1 Germ cell count in post-natal day 1 murine ovaries 

Genotype of oocyte Counts Mean (S. E. 
M.) 

Becn1+/+ 10,090 8870 (962) 
 6970  
 9550  
Becn1+/- 4680 4065 (476) 
 2190  
 3610  
 3830  
 4430  
 5650  

     p<0.001 between Becn1+/+ and Becn1+/- 
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CHAPTER 3:  BECLIN-1 DEFICIENCY PROMOTES PRETERM LABOR AND 
IS REQUIRED FOR PROGESTERONE SYNTHESIS IN THE CORPUS 

LUTEUM IN MICE 
 
Keywords: corpus luteum, progesterone, autophagy, preterm birth, Beclin-1 
 
Abbreviations Used:  CL, corpus luteum; ER, endoplasmic reticulum; LH, luteinizing 
hormone; HDL, high-density lipoprotein; LDL, low-density lipoprotein; cKO, conditional 
knockout; P, pregnancy day; PBS, phosphate-buffered saline; TBST, Tris-buffered saline 
with Tween-20; HPG, hypothalamus-pituitary-gonadal; PFA/GLA, 4.0% 
paraformaldehyde / 3.5% glutaraldehyde; w/v, weight per volume; SDS-PAGE, sodium 
dodecyl sulfate polyacrylamide gel electrophoresis; cKO, conditional knockout 
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3.1 Introduction 
The corpus luteum (CL) is an ephemeral endocrine gland responsible for the production 

of the pregnancy-maintaining hormone, progesterone (Gemmell 1995).  After ovulation, 

the remainder of the ovarian follicle undergoes a rapid and remarkable amount of tissue 

remodeling and angiogenesis to form the CL.  This developmental process, termed 

‘luteinization’ is rivaled only by tumor growth (Reynolds et al. 2002).  Steroid-producing 

cells, called luteal cells, terminally differentiate from the population of mural granulosa 

cells and theca cell in response to the luteinizing hormone (LH) surge, and in humans 

can produce upwards of 40 mg of progesterone per day during pregnancy (Carr et al. 

1982; Deanesly 1930).  Progesterone synthesized by luteal cells enters the female’s 

circulation through the extensive microvasculature and binds to progesterone receptors 

throughout the body, regulating several pregnancy-related functions (e.g. endometrium 

activation, inhibition of myometrium, suppression of subsequent LH surges and 

mammary gland epithelium proliferation) (Conneely et al. 2002).  In the mouse, the 

maintenance of pregnancy is entirely dependent on progesterone produced by the CL 

(Moor 1968).  This is in contrast to humans who experience a transition to placenta-

dependent progesterone production during mid-pregnancy (Malassiné et al. 2003).  

However, the mouse provides the ability to study progesterone synthesis throughout 

pregnancy in a single cell type. 

Three enzymatic reactions synthesize progesterone from the substrate cholesterol.  

First, steroidogeneic acute regulatory protein (StAR) transfers cholesterol to the inner 

mitochondrial membrane (Lin et al. 1995).  Second, cytochrome P450 side-chain 

cleavage (CYP11A1) cleaves cholesterol to generate pregnenolone (Stone and Hechter 

1954).  Third, pregnenolone exits the mitochondria and is then converted to 

progesterone by 3-beta hydroxysteroid dehydrogenase (3β-HSD) in the smooth 
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endoplasmic reticulum (ER) (Rhéaume et al. 1991).  Luteal cells have the ability to 

synthesize cholesterol from acetyl-coA, but it is generally accepted that acute 

steroidogenesis is dependent on the extracellular source from circulating low-density 

lipoprotein (LDL) and high-density lipoprotein (HDL) (Gwynne and Strauss 1982).  

Lipoproteins consist of a core of cholesteryl esters and triacylglycerides surrounded by a 

phospholipid monolayer and apolipoproteins (Alaupovic et al. 1972).  A majority of the 

cholesterol obtained from LDL enters through receptor-mediated endocytosis by binding 

of apolipoprotein B to the LDL-receptor (LDLR) (Brown and Goldstein 1986).  The 

subsequent hydrolysis of cholesteryl ester after endosome fusion to a lysosome, allows 

for the transport of cholesterol to cytosolic membranes by Niemann-Pick C1 (NPC1) and 

NPC2 (reviewed by Subramanian and Balch 2008).  Alternatively, scavenger-receptor 

class B type I (SR-BI) specifically transports cholesteryl ester to the plasma membrane 

from HDL, which is then hydrolyzed to cholesterol by hormone-sensitive lipase (LIPE) 

(Acton et al. 1996; Cook et al. 1982).  Intracellular free cholesterol can then be used 

directly for steroidogenesis or stored in lipid droplets after conversion to cholesteryl 

esters, a hallmark of luteal cells (Brown et al. 1979).   

Autophagy is an evolutionarily conserved eukaryotic process that occurs at low 

constitutive levels in all cell types to sequester cytosolic material in a double membrane 

structure, termed the autophagosome, and to deliver the material to a lysosome for its 

breakdown and recycling into basic components (Klionsky and Emr 2000).  In a recent 

study using rat Leydig cells, the testosterone-producing cell in the testis, the role of 

autophagy on age-related testosterone production decline was tested.  Comparison of 3-

month-old versus 24-month-old rat Leydig cells revealed that autophagy activity 

paralleled testosterone secretion (Li et al. 2011).  Furthermore, the authors 

demonstrated that when they inhibited autophagy in young cells, lower levels of 
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testosterone were secreted, and overexpression of an essential gene in autophagosome 

formation, Beclin-1 (Becn1), in old cells, restored testosterone secretion to that of young 

levels (Li et al. 2011). 

Recent studies in multiple cell types have documented that autophagy can regulate free 

cholesterol stores by specifically targeting lipid droplets, a phenomenon called 

‘lipophagy’ (Liu and Czaja 2013).  Specifically, when mice are fasted for 24 hours, lipid 

droplets are observed within autophagosomes of hepatocytes (Singh et al. 2009a; 

Shibata et al. 2009).  Additionally, the hepatocyte-specific, conditional-deletion of the 

essential gene in autophagosome membrane expansion, Atg7, resulted in the 

accumulation of lipid droplets and intracellular lipid concentrations (Singh et al. 2009a; 

Shibata et al. 2009).  Lipophagy is yet to be explored in steroidogeneic cells.  

Furthermore, the mechanism linking testosterone production in Leydig cells to 

autophagy remains unknown.   

I previously made the observation that BECN1 is present in corpora lutea of mice 

suggesting that it might also regulate steroidogenesis in luteal cells.  In order to examine 

the significance of autophagy in the CL, I took advantage of the power of mouse 

genetics to generate mice with conditional knockout alleles for Becn1 or Atg7, 

specifically in luteal cells.  First, we wanted to determine if disruption of autophagy would 

decrease the amount of progesterone produced, as suggested by the Leydig cell study.  

Second, we wanted to determine if ablation of autophagy would abrogate lipid 

metabolism and subsequent progesterone production.  These results suggest that 

BECN1 and ATG7 have different functions in luteal cells, and furthermore that BECN1 

deficiency in luteal cells inhibits progesterone production resulting in preterm labor and 

abortion.    
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3.2 Materials and Methods 

3.2.1 Mice 

Becn1-floxed (Gawriluk et al. 2011), Atg7-floxed (kind gift from Q. Wang) (Komatsu et al. 

2005), CYP19A1-iCre (kind gift from C. Ko) (Fan et al. 2008b), GFP-LC3 (Riken 

#RBRC00806) (Mizushima and Yamamoto 2004), CAG-CAT-EGFP (kind gift from K. 

Wagner) (Kawamoto et al. 2000) mice were all on a 129/Sv and B57BL/6 mixed 

background.  Conditional knockout females were generated by crossing Becn1fl/Δ; 

CYP19A1-iCre+ or Atg7fl/fl; CYP19A1-iCre+ males to Becn1fl/fl or Atg7fl/f females, 

respectively.  Controls females were littermates that did not carry the CYP19A1-iCre 

allele.  The nucleotide sequence of iCre is homologous to the sequence for Cre-

recombinase altered for mammalian codon bias, aka codon-improved Cre (Shimshek et 

al. 2002).  All animals were genotyped using genomic DNA isolated from tail snips and 

alleles were detected by previously published PCR assays (see mouse strain references 

above).  All mice were housed in a University of Kentucky DLAR facility, subjected to a 

14:10 hour light:dark cycle and regular chow and water was available ad libitum.  All 

animal procedures were compliant under the approved University of Kentucky IACUC 

protocol, 2008-0372. 

3.2.2 Determination of Estrus Stage 

All females involved were checked for stage of estrus cycle, by vaginal lavage technique 

(Caligioni 2009), at least 14 days prior to mating.  Briefly, vaginal lavage was performed 

daily, between 0800 and 0900, by flushing the vagina with 0.9% sodium chloride.  The 

samples were collected in a 24-well plate and examined, imaged and scored using a 

microscope with a 10x objective.  Diestrus was determined by the presence of nucleated 

epithelial cells and the highest density of leukocytes.  Proestrus was determined when 

the sample consisted predominately of nucleated epithelial cells.  Estrus was determined 

by the presence of a high density of anucleated, cornified epithelial cells; whereas 
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metestrus was identified by the presence all three cell-types: leukocytes, cornified and 

nucleated epithelial cells. 

3.2.3 Fertility assays 

Two to three females of ages 8 weeks to 6 months old were placed with a single proven 

wild type C57BL/6 male.  Each morning females were checked for the presence of a 

seminal plug and, if present, were separated into a new cage (Pregnancy day 0.5).  

Every morning starting on P10.5 females were palpitated for fetuses and to determine if 

they were pregnant.  The morning at which either a litter was present or the fetuses were 

no longer palpitated was considered the end of gestation.  The ability to get pregnant, 

have a litter, size of litter born and last day of gestation were all recorded for analysis. 

3.2.4  Exogenous progesterone administration 

At 0900 each morning, pregnant females were subcutaneously injected with 1 mg 

progesterone (Sigma-Aldrich, P0130) dissolved in 100 μL sesame oil (Sigma-Aldrich, 

S3547).  Alternatively, 100 μL of sesame oil (vehicle) was injected into separate females 

to serve as controls.  These injections began on P10.5 and continued each morning until 

P16.5 for a total of 7 injections. 

3.2.5 Collection of PMSG-primed granulosa cells 

Granulosa cells were routinely collected from PMSG-primed animals as described 

(Mann et al. 1991).  Briefly, 21-23 day old mice were injected IP with 5 IU PMSG 

(Calbiochem, 367222) at 1200 to stimulate folliculogenesis.  Forty-eight hours later, 

ovaries were dissected, cleaned and incubated in sucrose/EGTA media for at least 10 

minutes to facilitate separation into individual cells.  Granulosa cells were released from 

follicles by poking follicles with 28-gauge needles.  The cell suspension was filtered 
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through 40 μM nylon mesh to remove oocytes.  Granulosa cells were then pelleted, flash 

frozen in liquid nitrogen and stored at -80°C until analysis. 

3.2.6 Tissue and blood collection 

To control for any circadian controlled genes and/or proteins, all mice were euthanized 

between hours 1300 and 1500 on the developmental day indicated.  Mice were 

euthanized by cardiac exsanguination via 18ga needle (see blood collection) after being 

anesthetized with Avertin (0.25 mg per g body weight) by IP injection.  Reproductive 

tracts and number 4 inguinal mammary glands were removed and washed briefly in ice 

cold PBS and immediately processed as detailed in section 3.2.9.  Reproductive tracts 

were trimmed of fat and ovaries were removed from their bursa, weighed, then either 

assigned into one of two groups: histology or molecular analysis.  For routine histology, 

ovaries were placed into fresh, ice cold 4% (w/v) paraformaldehyde for 6 to 16 hours.  

However, for GFP-LC3 analysis immediate fixation was needed.  Females were first 

transcardally perfused at a rate of 20 ml per minute with ice-cold 10% (w/v) sucrose for 3 

minutes, followed by fresh 4% (w/v) paraformaldehyde for 5 minutes.  Ovaries were 

dissected out and post-fixed for routine histology.  For RNA, protein or lipid analysis, the 

corpora lutea were carefully dissected away from the ovary using #5 fine-tipped forceps 

under a stereoscope and flash frozen in liquid nitrogen.   

For serum collections, blood collected during exsanguination was transferred to a 2 mL 

round-bottom tube, incubated for 90 minutes at room temperature to allow for clotting 

and centrifuged for 15 minutes at 1,000 x g.  Serum was removed and transferred to a 

new 1.5 mL tube and stored at -20°C. 

For plasma collections, approximately 50 μL of blood was collected every other day from 

alternating submandibular venous beds using a 5 mm lancet (Goldenrod, Medipoint, 
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INC.).  Blood was immediately mixed with EDTA, to a final concentration approximately 

0.01M, to prevent clotting and then centrifuged for 15 minutes at 1,000 x g.  Plasma was 

removed and transferred to a new 1.5 mL centrifuge tube and stored at -80°C. 

3.2.7 Tissue preparation and histology 

For frozen sections, ovaries and female reproductive tracts were washed with PBS (3 

changes 15 minutes each) and cryo-protected by placing them into 10, 20 and 30% (w/v) 

sucrose solution until the tissues sunk.  Cryo-protected tissues were blotted dry, 

transferred to a mold filled with Tissue-Tek O.C.T. Compound (Sakura Finetek USA, 

Inc.) and then immediately flash-frozen in an isopentane/dry-ice slurry.  Frozen tissues 

were stored at -80°C until sectioned.  Afterward, 5 μm sections were obtained using a 

high-profile blade (Leica 818) on a Leica CM1850 cryostat, with temperature set 

between -22 and -20°C and blade clearance angle of 5.5°.   

For paraffin sections, fixed ovaries were washed with PBS (3 changes, 15 minutes each) 

and dehydrated by transferring them through an ethanol gradient: 50% (w/v) for 

overnight, 70% (w/v) for storage.  Processing was done using a rapid microwave 

processor of 100% ethanol for 1 hour, 100% isopropanol for 1 hour, vacuum dried, and 

infiltrated with molten paraffin for 1 hour and finally embedded into molds.  Sections (5 

μM) were placed onto gelatin-subbed slides and stored at room temperature.  Sections 

were deparaffinized with xylene, rehydrated and then either stained with hematoxylin 

and eosin for routine analysis or processed for immunohistology. 

For immunofluorescence, sections were subjected to antigen retrieval by treatment with 

10mM sodium citrate pH=6.0, incubated at 95°C for 20 minutes.  Sections were washed 

three times with PBS, then incubated in PBS with 0.2% (w/v) Triton-X 100 for 20 minutes 

for membrane permeabilization, followed by three more washes in PBS.  Slides were 
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blocked with 10% BSA in PBS for one hour at room temperature and then incubated with 

primary antibody diluted with 3% (w/v) BSA in PBS overnight at 4°C. (see Table 3.1 for 

dilutions).  The following day, slides were washed with PBS three times, incubated with 

diluted secondary antibody for 1 hour at room temperature, washed with PBS three 

times and mounted with Prolong Gold anti-fade media containing 4',6-diamidino-2-

phenylindole (Life Technologies, P-36931). 

3.2.8 Oil Red-O staining 

Paraformaldehyde-fixed tissue was cryoprotected by immersion into 30% (w/v) sucrose 

at 4°C until the tissue sunk, usually overnight.  Tissue was blotted dry, flash frozen into 

OCT (Sakura, 4583) with a isopentane / dry ice bath, sectioned to 5μM using high-profile 

blades (Leica, 818) at -18 to -23°C, placed onto gelatin-subbed slides and allowed to air 

dry for at least one hour.  Dried sections were washed in PBS to remove OCT, incubated 

in 60% isopropyl alcohol for 5 minutes, stained with freshly prepared 0.15% (w/v) Oil 

red-O for 10 minutes, washed in 60% isopropyl alcohol, counterstained with hematoxylin 

and mounted with glycerol jelly.   

3.2.9 Mammary gland whole mounts 

The number 4 mammary gland was carefully removed from euthanized females, washed 

several times in PBS and mounted onto Superfrost plus charged slides.  Mounted glands 

were placed into Carnoy’s fixative (60% ethanol, 30% chloroform, 10% acetic acid) for 

12-18 hours at room temperature.  Glands were washed in 70% ethanol (twice, 15 

minutes each), 50% ethanol (twice, 15 minutes each), distilled water (three times, 15 

minutes each) and stained in carmine alum overnight at 4 0C.  Glands were dehydrated, 

cleared in xylenes and mounted with Permount until imaged. 
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3.2.10 Hormone profiling 

All hormones were analyzed by the Ligand Assay and Analysis Core run by Center for 

Research in Reproduction at the University of Virginia, School of Medicine, which is 

funded by the National Institute of Child Health and Human Development through a U54 

Center Grant (U54-HD28934).  Estradiol was measured by ELISA (Calbiotech, INC.), 

progesterone by radio-immune-assay (Siemens) and FSH and LH together by Milliplex 

MAP (Millipore). 

3.2.11 Immunoblotting 

Tissue or cells were subjected to ice-cold RIPA buffer (with freshly added 

protease/phosphatase inhibitors, Santa Cruz, sc-24948), sonicated (3 to 5 cycles of 40% 

duty cycle, magnitude of 4, 10 seconds followed by 30 seconds on ice), rocked for 30 

minutes at 4°C  and centrifuged 10,000 rpm for 10 minutes at 4°C  to pellet the insoluble 

fraction.  The soluble fraction was collected and total protein quantified by bicinchoninic 

acid assay (Thermo, 23225).   

Twenty-five μg of total protein per sample was denatured in Laemmli buffer for 10 

minutes at 95°C and separated by SDS-PAGE on a 12% tris-acrylamide mini-gel.  

Granulosa cell extracts were first precipitated by 15% trichloroacetic acid / 0.02% 

sodium deoxychlorate to concentrate the lysate.  Separated proteins were transferred to 

a PVDF membrane with 0.45 μM pores (GE Healthcare, RPN303F) overnight (~16 hours 

@ 70mV) at 4°C.  Transferred proteins were visualized by staining with Ponceau-S and 

membranes trimmed. 

The membrane was blocked using 5% (w/v) skim milk in TBST for 1 hour at room 

temperature.  Primary antibody diluted in 5% (w/v) skim milk in TBST was added to 

membrane and allowed to incubate overnight (~16 hours) in a 4°C cold room on a 
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rocker.  The membrane was washed three times with TBST for 5 minutes each and then 

HRP-conjugated secondary antibody diluted in 5% (w/v) skim milk in TBST was added 

and allowed to incubate for 1 hour at room temperature with agitation.  Membranes were 

washed 3 times with TBST for 5 minutes.  Secondary antibody was detected using 

Pierce ECL Plus substrate (Thermo, 32132, 1:1 dilution) and detected by CCD camera 

and specific band intensities were digitally quantified.  For multiple antigen detection, 

membranes were stripped with 0.2M Glycine, 1% Tween-20, 0.1% SDS, pH=2.2 and 

then re-probed with new antibodies.  Antibodies and dilutions used can be found in 

Table 3.1. 

3.2.12 Real-time PCR 

RNA was extracted from snap frozen tissue using TRIzol reagent as per manufacturer’s 

protocol for high proteoglycan samples (Life Technologies).  Total RNA was subjected to 

DNase (Invitrogen), as per manufacturer specifications, to remove any genomic DNA 

that was co-precipitated and then cleaned up on RNeasy spin columns (Qiagen).  Total 

RNA was quantified by nanodrop and analyzed by bioanalyzer (Agilent).  Only RNA with 

a RNA Integrity Number (RIN) greater than 5 was used.  Total RNA (500 ng) was used 

for first-strand synthesis to create cDNA (Quanta Biosciences).  Detection of specific 

mRNA was then performed on samples in triplicate using SYBR-green PCR and 

quantified by ΔΔCt method.  Primers for specific genes can be found in Table 3.2.  

3.2.13 Electron Microscopy 

Two ovaries from each P13.5 WT and Becn1 (fl/Δ) mice were collected and used for 

routine preparation of transmission electron microscopy under supervision from the 

University of Kentucky Imaging Facility.  Briefly, tissues were quickly dissected out and 

washed several times in ice-cold PBS.  Next, tissues were diced with a razorblade to ~1 

mm3 cubes while in a droplet of freshly prepared 4% (w/v) paraformaldehyde / 3.5% (v/v) 
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glutaraldehyde in 0.1 M cacodylate buffer (PFA/GLA).  Following, tissue pieces were 

incubated in PFA/GLA for 2 hours at 4°C until fixed.  After the first fixation, tissue pieces 

were washed four times with 8% (w/v) sucrose before post-fixing with 1% (w/v) OsO4 for 

1.5 hours at 4°C.  After dehydration through ethanol into propylene oxide, tissues pieces 

were infiltrated and embedded into Eponate 12 (PELCO).  Embedded tissue pieces were 

sectioned to ultrathin slices of about 70 nm using a Reichert Ultracut E, mounted on 

copper grids, stained with uranyl acetate followed by lead citrate and observed by 

transmission electron microscopy (Philips Tecnai Biotwin 12).      

3.2.14 Statistics 

All statistics were performed in SigmaPlot 12 after consultation with the Applied 

Statistics Laboratory at the University of Kentucky.  A two-way ANOVA was used with 

Holm-Sidak post-hoc testing between groups for comparisons with two variables.  For all 

other comparisons, the statistical test used is indicated in the text.  I was unable to run a 

repeated-measures ANOVA for the daily progesterone data due to missing data from 

several time points.  During collections, if a mouse bled more than 4 drops of blood the 

next collection needed to be skipped to comply with IACUC; thus, a two-way ANOVA for 

genotype and day was used to analyze the data. 

3.2.15 Imaging 

All slides were imaged on an Olympus IX-71 microscope equipped with a DP72 CCD 

camera (Olympus).  Images were edited in Photoshop (Adobe) to subtract background 

field.    
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Table 3.1 Antibodies Used 

Antigen 
Species 
Raised in 

Manufacturer  
(Product No.) Dilution Used Application 

GFP Chicken Aves Labs (GFP-
1020) 

1:500 IF 

BECN1 Rabbit Santa Cruz (sc-
11427) 

1:2,000 
 

WB 
 

LC3 Rabbit MBL (PM036) 1:2,000 WB 
SQSTM1 Rabbit Enzo (PW9860) 1:2,000 WB 
StAR Rabbit Dr. Buck Hales – 

UIUC 
1:10,000 WB 

Actin Rabbit Sigma (A2066) 1:10,000 WB 
Secondary Antibodies 
Chicken IgY 
(H&L) 

Goat Invitrogen (A-
11039) 

1:1,000 IF 

Rabbit IgG 
(H&L) 

Donkey Rockland (611-703-
127) 

1:10,000 WB 
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Table 3.2 
Real-time PCR 
PrimersTarget 

NCBI 
Ascension 

Fwd Primer (5’-3’) 
Rev Primer (5’-3’) 

Amplicon 
Size (bp) 

Scarb1 NM_016741 TGC CCA TGC CGA GAG TCT 
CAG AGG CGC ACC AAA CCT 

60 

Ldlr NM_010700 AGG CTG TCC CCC CAA GAC 
GGA GAT GCA CTT GCC ATC CT 

64 

Lipe NM_010719 CGC TGG AGG AGT GTT TTT TTG 
CAG TTG AAC CAA GCA GGT CAC A 

66 

Hmgcr NM_008255 TGT TCA CCG GCA ACA ACA AG 
TGC TCA GCA CGT CCT CTT CA 

72 

Inisg1 NM_153526 CGG CAG CGG CTG TTG 
GGT TCT CCC AGG TGA CTG TCA 

58 

Star NM_011485 CCG GAG CAG AGT GGT GTC A 
GCC AGT GGA TGA AGC ACC AT 

65 

Cyp11a1 NM_019779 CCA GTG TCC CCA TGC TCA AC 
GCA TGG TCC TTC CAG GTC TTA G 

73 

Hsd3b1 NM_008293 CCA GGC AGA CCA TCC TAG ATG 
TGG CAC ACT GGC TTG GAT AC 

 

Akr1c18 NM_134066 TGA TTG CCC TTC GCT ACC A 
TCT CTG ATT CTC TCC TCA TTG AAA CTC 

75 

Lhcgr NM_013582 GAC GCT AAT CTC GCT GGA GTT 
GTA GGA TGA CGT GGC GAT GA 

172 

Prlr (long) NM_011169 GCG TTC TTT GCA AGA AGT GCT 
CCA GGT GGT GAC TGT CCA TT 

243 

Prlr (short) NM_001253781 GGC TCT GAT AGA GCT CCC TG 
GCA ATA GAT CAG AGG CTC CCT TC 

156 

Becn1 NM_019584 TTT TCT GGA CTG TGT GCA GC 
GCT TTT GTC CAC TGC TCC TC 

171 

Atg7 NM_001253717 ATG CCA GGA CAC CCT GTG AAC TTC 
ACA TCA TTG CAG AAG TAG CAG CCA 

349 

Pecam1 NM_008816 CCA AGG CCA AAC AGA 
AAG GGA GCC TTC CGT TCT 

300 

Acat1 NM_144784 TGG GCG CAG GTT TAC CTA TT 
TTC CTG AAG CAC AAA CCT TGT TT 

63 

Scp2 NM_011327 CCC TCA GTC GGC CTT CTT TC 
ATG GCC AGT CCC ATG TTA CC 

60 

Npc1 NM_008720 TCA GTG TTG CGG TGG TGA AC 
ACG AAT CGT TTG GCA TTG AGA 

69 

Npc2 NM_023409 TCC CTG TCA GCT GCA CAA AG 
TGA GTG CCG CTG GTA AAG GT 

63 

Vegf NM_001025250 CAT CTT CCA GGA GTA CCC CGA 
CAC TCC AGG GCT TCA TCG TT 

81 
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3.3 Results 

3.3.1 Disruption of Becn1 in mouse luteal cells 
In order to analyze the role of autophagy in the corpus luteum (CL) I generated mice with 

conditional knockout (cKO) alleles for Becn1 in luteal cells.  Mice carrying one floxed and 

one null allele of Becn1 (Becn1fl/Δ) were crossed with Tg(CYP19A1-cre)1Jri (Cyp19-iCre) 

mice to generate parental strains (Fan et al. 2008a; Gawriluk et al. 2011).  Expression of 

Cyp19-iCre is restricted to granulosa cells of primary and secondary follicles that 

terminally differentiate into both large and small luteal cells after ovulation in rodents 

(Stocco et al. 2007).  I bred the parents such that Cre was passed solely by the father to 

generate two experimental strains:  1) Cyp19-iCre; Becn1fl/fl (Becn1(fl/fl) cKO) and 2) 

Cyp19-iCre; Becn1fl/Δ (Becn1(fl/Δ) cKO) (Figure 3.1 A).  The siblings of the experimental 

strains that did not carry Cre were used as the control strain, or wild-type (WT), and 

unless otherwise specified, the data represent pooled WT genotypes.  Mice were born at 

the expected Mendelian ratios and both males and females were otherwise healthy.  I 

performed Western blot analysis to detect BECN1 protein and SQSTM1 in granulosa 

cells collected from PMSG-primed WT and cKO siblings as stated in the material and 

methods (Figure 3.1 C).  BECN1 protein levels were decreased as expected in both 

Becn1(fl/fl) cKO and Becn1(fl/Δ) cKO with almost 75% depletion of BECN1 in 

Becn1(fl/Δ) cKO compared to WT (Figure 3.1 D).  The decrease in BECN1 observed is 

greater than Becn1fl/Δ control mice that only have a single allele, suggesting that both the 

Becn1(fl/fl) cKO and Becn1(fl/Δ) cKO have more than 50% allele recombination.  The 

turnover of the protein SQSTM1, also known as p62, is autophagy-dependent and can 

be used to monitor autophagy, such that an accumulation of SQSTM1 indicates 

inhibition of autophagy and vice-versa (Bjørkøy et al. 2005; Ichimura et al. 2008).  As 

expected, the deletion of Becn1 caused an almost 3-fold increase in SQSTM1.  

Becn1(fl/fl) cKO and Becn1(fl/Δ) cKO have a similar increase in SQSTM1 protein 
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compared to the wild-type strain, supporting that autophagy is equally inhibited in both 

strains after gene ablation (Figure 3.1 D).  The data demonstrate that there is protein 

reduction and a functional response, providing evidence of gene deletion in PMSG-

primed granulosa cells. 

Previous reports using the Cyp19-iCre mouse have shown variable Cre expression in 

follicles of naturally cycling animals (Hsieh et al. 2011; Bennett et al. 2012).  To 

determine if Cre expression is extensive enough in the CL of natural cycling animals, I 

independently crossed Becn1(fl/Δ) cKO onto a CAG-CAT-EGFP Cre-reporter 

background (Kawamoto et al. 2000).  I chose to look at only Becn1(fl/Δ) cKO mice 

because of the more robust BECN1 depletion that occurs in granulosa cells compared to 

Becn1(fl/fl) cKO.  In cells expressing Cre, a floxed chloramphenicol acetyltransferase 

(CAT) gene recombines allowing for enhanced green fluorescent protein (EGFP) gene 

expression.  In addition, conditional deletion of Becn1 also occurs and allows for the 

determination of cell viability, post gene ablation.  Epi-fluorescent examination of ovaries 

from pregnancy day (P) 8.5 indicated prominent GFP expression in the CLs of CAG-

CAT-EGFP+; Cyp19-iCre; Becn1fl/Δ but not in CAG-CAT-EGFP+; Becn1fl/Δ (Figure 3.1 B).  

Immunofluorescence for GFP on P8.5 tissue sections supports that recombination was 

robust throughout the CLs of Becn1(fl/Δ) cKO females (Figure 3.1 G, H, J, K).  I 

detected GFP in both large and small diameter cells, indicating that recombination 

occurred in both large and small luteal cells.  No recombination was detected in 

mammary glands, uterus or placenta, which is supported by previous reports using the 

Cyp19-iCre mouse (data not shown) (Fan et al. 2008b, 2008a).  Thus, the conditional 

deletion paradigm is viable for examination of the function of Becn1 in luteal cells.   
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3.3.2 Becn1 is necessary to maintain of pregnancy 

I next sought to test the effectiveness of each knockout at impairing autophagy in the CL 

during pregnancy.  I performed Western blot analysis for BECN1, SQSTM1, LC3 (~18 

and 16 kDa), and StAR (~30 kDa) on CLs isolated from P8.5 ovaries (Figure 3.2A) and 

quantified the relative band intensity compared to ACTIN (Figure 3.2B).  Both Becn1 

cKO strains had an approximate 50% reduction in BECN1 compared to WT.  This 

amount of reduction is an expected result, because granulosa-derived luteal cells are 

only approximately 40% of total population and other cells in the CL express BECN1 

(e.g. pericytes, endothelial cells, lymphocytes and theca contribution) (Lei et al. 1991).  

Both Becn1 cKO strains had a nearly 5-fold increase in total SQSTM1 protein compared 

to WT.  Microtubule associated protein 1B light chain 3 (LC3) is a protein that 

incorporates into the expanding autophagosome membrane.  During expansion, the 

cytoplasmic form (LC3-I, ~16 kDa) is processed to the membrane form (LC3-II, ~14 kDa) 

by conjugation to phosphatidyl-ethanolamine (PE) found in the isolation membrane 

(Kabeya et al. 2000).  This allows for an estimate of autophagosome quantity and 

autophagic flux within a tissue by Western blot.  LC3-I was increased almost 3-fold in 

both Becn1 cKOs compared to WT.  No LC3-II was detected in any CL sample, 

suggesting that LC3-II does not accumulate.  Taken together, the accumulation of 

SQSTM1 and LC3-I support that autophagosome formation is impaired in Becn1(fl/fl) 

cKO and Becn1(fl/Δ) cKO corpora lutea.   

To determine if luteal cell differentiation occurs, I examined steroidogenic acute 

regulatory protein (StAR).  StAR regulates the rate-limited step by transporting 

cholesterol from the outer to inner mitochondrial membrane (Black et al. 1994).  

Importantly, StAR expression was induced 5-fold upon luteinization and remained 

elevated throughout pregnancy (Pescador et al. 1996).  StAR protein in both Becn1 
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cKOs was comparable to WT.  Thus, the data suggest that production of StAR is 

unaffected by gene ablation.   

To establish that ovulation, fertilization and implantation are similar between the 

experimental strains, I examined litter size at P8.5.  The number of implanted fetuses at 

P8.5 was equal for all strains, implying that all earlier steps are unaffected by gene 

ablation (Figure 3.2 C).  The mass of ovaries at P8.5 was also unaffected by gene 

ablation, suggesting that cell composition is similar (Figure 3.2 D).   

I next examined the effect of Becn1 ablation on pregnancy success.  8- to 26-week-old 

female mice were mated with wild-type male mice to determine the length of gestation 

for each strain.  The male studs carried non-floxed, wild-type alleles to eliminate any 

effect of recombination that might occur outside of the ovary, specifically in the placenta 

and uterus.  All strains achieved pregnancy at similar rates, as detected at P5.5 (data 

not shown); however, Becn1(fl/fl) cKO and Becn1(fl/Δ) cKO mice cannot maintain 

pregnancy having early parturition and abortion, respectively.  To determine the day of 

parturition in WT and Becn1(fl/fl) cKO, I observed pregnant mice daily for the presence 

of pups as described in the materials and methods (Figure 3.2 E).  WT mice gave birth 

on P18.95 ± 0.12 and Becn1(fl/fl) cKO had a 10% reduced gestation length compared 

with WT to 17.08 ± 0.25 days (p<0.001, Dunn’s multiple comparison test, data presented 

as mean ± s.e.m.).  Furthermore, no litter born from a Becn1(fl/fl) cKO mother before 

P18.5 survived.  Becn1(fl/Δ) cKO mothers had a more drastic phenotype and never give 

birth to litters, despite following females visibly pregnant at P10.5 (n = 28 pregnancies).   

Following up on the Becn1(fl/Δ) cKO, I determined when pregnancy was lost by 

collecting reproductive tracts on P5.5, P8.5 and P13.5 to observe the presence of 
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implanted fetuses.  At P5.5, WT and Becn1(fl/Δ) cKO females had the same pregnancy 

rate (p=1.00, Fisher’s exact test) (Figure 3.2 F).  However, by P8.5, 46% fewer 

Becn1(fl/Δ) cKO females were pregnant compared to their WT siblings (p=0.03, Fisher’s 

exact test).  At P13.5, the observation was more pronounced with only 28% of 

Becn1(fl/Δ) cKO females pregnant compared to WT (p<0.001, Fisher’s exact test).  The 

data support that female Becn1(fl/Δ) cKO mice continuously lose their litters throughout 

pregnancy after implantation.  Thus, the data suggests that Becn1 is necessary to 

maintain pregnancy. 

3.3.3 Becn1 is required for progesterone synthesis during mid-pregnancy 

I next tested if Becn1-deficiency in luteal cells affects progesterone production during 

pregnancy.  Pregnancy is a highly orchestrated process in which the mother must inhibit 

the estrous cycle, maintain quiescence of the myometrium, nourish the fetus and 

physiologically prepare for nursing.  Progesterone is the steroid hormone that signals 

throughout the body to maintain pregnancy, and in rodents, the corpora lutea are solely 

responsible for synthesizing the progesterone necessary to maintain pregnancy 

(Rubinstein and Forbes 1963).   

I collected plasma every other day from WT and Becn1(fl/fl) cKO females beginning at 

P1.5 until parturition to quantify progesterone.  As 72% of Becn1(fl/Δ) cKOs lose their 

pregnancy by P13.5, I collected plasma every day from P1.5 to P8.5 to quantify 

progesterone from mice with established pregnancies at P10.5.   

The WT data are comparable to that of published data with the largest amount of 

progesterone produced late in pregnancy at P15.5 with a mean of 55.9 ng/mL (Virgo and 

Bellward 1974) (Figure 3.3 A).  Both Becn1(fl/fl) cKO and Becn1(fl/Δ) cKO were 

equivalent to WT through P7.5 (Figure 3.3 A and Figure 3.5).  While there appears to 
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be a decrease at P8.5 in the Becn1(fl/Δ) cKO, it is known that rodent progesterone levels 

are bimodal with a trough at P8.5 (Virgo and Bellward 1974) (Figure 3.5).  Thus, I 

interpret that this decrease is likely normal.  From P13.5 onward the Becn1(fl/fl) cKO 

profile is vastly different from WT.  Becn1(fl/fl) cKO progesterone levels peak at P9.5 

with a mean of 51.0 ng/mL.  Every time-point after P11.5 had a drop in progesterone, 

whereas WT levels increased until P17.5.  Thus, Becn1 is required for increased 

progesterone serum concentrations during mid- and late- pregnancy, but is not required 

during in early-pregnancy. 

Knowing that progesterone levels decline during mid-pregnancy in Becn1(fl/fl) cKOs, I 

sought to test if this reduced progesterone is sufficient to cause the reduced gestation 

length.  I administered exogenous progesterone into WT, Becn1(fl/fl) cKO and 

Becn1(fl/Δ) cKO dams in attempt to rescue gestation length and pregnancy, 

respectively.  I started the injections on P10.5 for two reasons.  First, I wanted to 

administer progesterone during the time when progesterone is decreasing, and second, 

P10.5 is a stage when palpitation can be used to confirm pregnancy.  I determined that 

seven, daily, sub-cutaneous injections of 1 mg progesterone diluted in 100 μL sesame 

oil starting on P10.5 until P16.5 did not affect gestation length in WT, and therefore, was 

the experimental paradigm (Figure 3.3 B).   

Vehicle treated dams for all three groups gave birth similarly to the previously stated 

results (Figure 3.3 C).  WT mice (n=4) had their litters on P19.0 ± 0.41 (Figure 3.3 C).  

Becn1(fl/fl) cKOs (n=6) gave birth on P17.2 ± 0.48 (figure 3C).  All Becn1(fl/Δ) cKO (n=3) 

lost their pregnancy as determined by palpitation by P14.3 ± 0.67 (Figure 3.3 C).  

Exogenous progesterone had no effect on WT mice (n=6), as they gave birth on P18.5 ± 

0.22 (p=0.8, Holm-Sidak post-hoc test) (Figure 3.3 C).  However, progesterone-treated 
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Becn1(fl/fl) cKO (n=5) had an extended gestation length equivalent to WT giving birth on 

P18.8 ± 0.2 (p<0.01 vs. vehicle, p=0.7 vs. WT, Holm-Sidak posthoc test) (Figure 3.3 C).  

Moreover, progesterone-treated Becn1(fl/Δ) cKO mice (n=5) had increased gestation 

equivalent to WT, giving birth to live litters on P18.6 ± 0.25 (p<0.001 vs. vehicle, p=0.8 

vs. WT, Holm-Sidak posthoc test) (Figure 3.3 C).  Therefore, exogenous progesterone 

rescues the reduced gestation and abortion resulting after Becn1 ablation.  Thus, 

variable Becn1 ablation in luteal cells results in significantly reduced circulating 

progesterone levels that in turn result in abortion and early parturition. 

To test if the hypothalamus-pituitary-gonadal (HPG) axis is affected by Becn1 deletion in 

luteal cells, I collected serum from WT and Becn1(fl/fl) cKO at diestrus, P13.5 and P16.5 

to quantify estradiol, follicle-stimulating hormone (FSH) and luteinizing hormone (LH).  

No differences between WT and Becn1(fl/fl) cKO were detected at diestrus (Figure 3.4 

B, C, D, E).  Estradiol at P13.5 was increased in Becn1(fl/fl) cKO compared to WT 

(p<0.05, Holm-Sidak post-hoc test), but by P16.5 no difference was detected (p=0.6, 

Holm-Sidak post-hoc test) (Figure 3.4 C).  FSH concentrations were inverse to estradiol 

with reduced concentration in Becn1(fl/fl) cKO at P13.5 and no difference at P16.5 

(Figure 3.4 D).  No difference was detected in LH at P13.5 or P16.5 (Figure 3.4 E).  In 

addition, no difference in estrus cyclicity was found between WT and Becn1(fl/fl) cKO 

(Figure 3.4 A).  This data indicates that the HPG axis is not affected by Becn1 ablation 

and that progesterone reduction is not due to global, systemic effects. 

3.3.4 Becn1 is required for lipid droplet formation within luteal cells 

The reduction in circulating progesterone could result from reduced progesterone 

synthesis within luteal cells or an upregulation of progesterone metabolizing enzymes, 

such as 20α-HSD (Albarracin et al. 1994).  Equally, the failure to transport progesterone 
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to the vasculature could be limited (Pauli et al. 2005).  Free cholesterol, the substrate of 

progesterone synthesis, is created through hydrolysis of intracellular cholestryl ester that 

is stored within lipid droplets, a common characteristic of luteal cells.   

To determine if lipid stores are present in Becn1(fl/Δ) cKO luteal cells, I stained frozen 

ovary sections from P8.5 and P13.5 for neutral lipids using Oil Red-O.  All ovaries, 

regardless of genotype, showed expected staining in the ovarian medulla and in the 

theca at both P8.5 and P13.5 (Figure 3.6 A, B, E, F).  At low magnification, staining was 

evident in the CLs from WT females at both P8.5 and P13.5, (Figure 3.6 C, G).  The 

CLs of Becn1(fl/Δ) cKOs never had intense staining at either time points, suggesting a 

reduction in neutral lipid storage (Figure 3.6 B, F).  At higher magnification, numerous 

red staining puncta are apparent in luteal cells from WT ovaries indicating the presence 

of lipid droplets (Figure 3.6 C, G).  Becn1(fl/Δ) cKO luteal cells are rarely positive for 

staining and when present, the staining appears less intense and the puncta appear 

smaller in diameter compared to WT (Figure 3.6 D, H, arrowheads).  Furthermore, the 

qualitative increase in amount of neutral lipid staining observed from P8.5 to P13.5 in 

WT luteal cells does not occur in Becn1(fl/Δ) cKO luteal cells.  The apparent patterns in 

Oil Red-O staining is similar between Becn1(fl/Δ) and Becn1(fl/fl) cKO luteal cells (data 

not shown).  This data demonstrates that Becn1 deletion causes a failure in neutral lipid 

storage.  Thus, Becn1 promotes neutral lipid storage in luteal cells.  

3.3.5 Becn1 is required for endosome and LC3-positive vesicle clearance 

To determine the level of autophagic flux occurring after ablation of Becn1, I crossed 

Becn1(fl/Δ) cKO mice with GFP-LC3#53 (GFP-LC3) mice (Mizushima and Yamamoto 

2004).  GFP-LC3 is expressed ubiquitously by a CAG-promoter (Niwa et al. 1991) and 

the subsequent fusion protein incorporates into growing autophagosomes similar to 
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LC3B allowing for the observation of membrane-inclusion by increased density as GFP 

puncta.  GFP-LC3+; Becn1(fl/Δ) cKO and GFP-LC3+; WT ovaries were collected at P8.5 

and P13.5 and GFP was observed directly in tissue sections by epi-fluorescence.   

Interestingly, qualitatively very few GFP-puncta are observed at either time point in WT 

luteal cells (Figure 3.7 A, C, E, G).  Granulosa cells and oocytes appear to contain more 

GFP-puncta compared to luteal cells, and there is no marked observable difference from 

P8.5 and P13.5 (Figure 3.7 A, E).  This implies that any LC3-incorporated structures, 

such as autophagosomes, are small, short-lived and do not accumulate within WT luteal 

cells.  On the other hand, luteal cells from Becn1(fl/Δ) cKO ovaries have multiple large 

GFP-puncta (Figure 3.7 B, D, F, H).  In several luteal cells, the GFP puncta take up the 

entirety of the cell (Figure 3.7 D, H).  The data suggest that Becn1 ablation leads to the 

accumulation of multiple, large LC3-incorporated structures, presumably 

autophagosomes. 

To determine if the increased number of LC3-incorporated structures are accumulated 

autophagosomes, I collected CLs from P13.5 ovaries from WT and Becn1(fl/Δ) cKO 

mice for transmission electron microscopy.  This also allowed us to determine if the 

difference in Oil red-O staining is attributed to lipid droplets.  Numerous differences exist 

between WT and Becn1(fl/Δ) cKO luteal cells (Figure 3.8).  First, in corroboration with 

the neutral lipid staining, it appears that there are fewer observed lipid droplets present 

in Becn1(fl/Δ) cKO luteal cells compared to WT (Figure 3.8 A, B).  Second, the 

cytoplasm of Becn1(fl/Δ) cKO luteal cells is extensively vacuolated compared to WT 

cells.  A closer look at these vacuoles shows that they are large, electron-sparse, single-

membrane vesicles (Figure 3.8 D).  I suspect that these are endosomes that are created 

after endocytosis.  In the WT luteal cell numerous multivesicular bodies can be identified 
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(Figure 3.8 E), that are not present in Becn1(fl/Δ) cKO cells.  The data confirm that 

Becn1 is required for lipid droplet formation and further suggest that Becn1 is required 

for endosome clearance.   

By P13, expansion of the smooth endoplasmic reticulum is the most prominent feature 

observable in luteal cells and is thought to be necessary for increased steroidogenesis.  

Endoplasmic reticulum membrane expansion is distinct in WT luteal cells observed as 

numerous small circular single membrane inclusions, or cross-sections of the 

endoplasmic reticulum tubules (Figure 3.8 C, E).  Qualitatively, reduced ER expansion 

as evidence of the presence of whorls in Becn1(fl/Δ) cKO luteal cells suggest that ER-

swelling is not occurring (Figure 3.8 D).  The data support that less cholesterol is being 

utilized by Becn1(fl/Δ) cKO luteal cells. 

I observe Becn1(fl/Δ) cKO luteal cells with autophagosomes containing what appears to 

be numerous organelles and cytoplasmic contents (Figure 3.8 F).  Such structures are 

not observed in WT luteal cells.  The presence of autophagosomes supports that 

autophagosomes are accumulating in accordance with the GFP-LC3 data.  Few 

autophagosomes were identified in the WT luteal cells, which also corroborates the 

GFP-LC3 data.  Overall, the transmission electron microscopy observations support the 

GFP-LC3 data suggesting autophagosome accumulation and decreased lipid droplets in 

Becn1(fl/fl) cKO compared to WT.  Interestingly, there was a qualitative increase in the 

number of endosomes and a reduction in endoplasmic reticulum membrane expansion 

in Becn1(fl/fl) cKO luteal cells compared to WT.  Thus, Becn1 is required for 

autophagosome and endosome clearance in luteal cells. 
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3.3.6 Atg7 ablation results in normal gestation length and increased progesterone 

production 

BECN1 functions as a scaffold for the class III phosphatidylinositol 3-kinase (PtdIns3K) 

‘nucleation’ complex, which is necessary to generate phosphatidylinositol 3-phosphate 

(PtdIns3P) on the forming autophagosome membrane.  PtdIns3P is a lipid that signals 

for the recruitment of subsequent complexes necessary for autophagosome membrane 

expansion, closure, trafficking and fusion to a lysosome.  While the PtdIns3K complex is 

necessary for autophagosome formation it has recently been described in endosome 

fusion, phagocytosis and interacting with the exocyst complex.  To determine if the 

additional functions of BECN1 are responsible for the phenotypes already described, I 

tested another autophagy gene required for conjugation of Atg8-like proteins to the 

expanding autophagosome membrane, Atg7 (Figure 3.9 A).  I crossed Cyp19-iCre+; 

Atg7fl/fl (Atg7 cKO) to CAG-CAT-EGFP mice to determine the extent of recombination in 

corpora lutea, as previously described.  The P8.5 CLs of CAG-CAT-EGFP+; Cyp19-iCre; 

Atg7fl/fl indicate extensive Cre recombination  in small and large luteal cells, that appear 

to be similar to the recombination observed in Becn1(fl/Δ) cKOs (Figure 3.9 B, C).  I 

determined BECN1, SQSTM1, LC3 and StAR protein levels by immunoblot on P8.5 

corpora lutea and quantified the bands relative to ACTIN (Figure 3.9 D).  Atg7 cKO CLs 

have nearly twice as much BECN1 (p<0.01, t-test), potentially indicating a compensatory 

mechanism.  Levels of SQSTM1 and LC3-I are increased several fold in Atg7 cKO 

compared to WT (p<0.01, t-test), suggesting that autophagy is inhibited.  StAR is 

increased in Atg7 cKO by almost two-fold compared to WT (p<0.05, t-test), suggesting a 

higher potential for steroidogenesis.  I also saw increased neutral lipid staining 

compared to WT at P8.5 (data not shown).  These data indicate that loss of Atg7 affects 

autophagy similar to the loss of Becn1, but that StAR quantity is not dependent upon 

Becn1. 

110 
 



 

I next performed a fertility assay on the Atg7 cKOs to determine if Atg7 ablation affects 

pregnancy.  WT and Atg7 cKO gestation lengths are the same, with parturition occurring 

on P18.95 ± 0.12 and P19.06 ± 0.15, respectively (p=0.82, Dunn’s multiple comparison 

test, data presented as mean ± s.e.m) (Figure 3.9 E).  I repeated the progesterone 

quantification with Atg7 cKO mice by collecting plasma every other day during 

pregnancy.  Beginning on P3.5 and until P15.5, Atg7 cKOs have a nearly two-fold 

increase in progesterone concentration (Figure 3.9 F).  These data indicate that Atg7 

ablation does not affect gestation time and suggest an increase in progesterone 

production.  Thus, Atg7 is not required for the maintenance of pregnancy and ablation 

causes increased progesterone production.  This suggests that Becn1 and Atg7 have 

independent roles with regards to steroidogenesis in luteal cells. 

3.3.7 Atg7 ablation causes upregulation of genes in the “progesterone synthesis” 

network 

Several proteins, as described in Chapter 1, are involved in the accumulation of 

cholesterol and the synthesis of progesterone.  As many of the genes are 

transcriptionally regulated, I chose to use real-time PCR to determine how subsets of the 

“cholesterol accumulation”, “progesterone synthesis” and “signal regulation” networks 

are affected by Becn1 and Atg7 ablation.  I did this to determine several ideas related to 

the difference between Becn1 and Atg7, which is: 1) if luteal cell differentiation has 

occurred, 2) if steroidogenesis factors are differentially expressed, and 3) if cholesterol 

transport is differentially expressed.  I isolated individual P8.5 corpora lutea from WT 

(n=4), Becn1(fl/fl) cKO (n=4), Becn1 (fl/Δ) cKO (n=5) and Atg7 cKO (n=4) females for 

RNA isolation.  I chose P8.5 since lipid stores are already reduced in Becn1(fl/fl) cKO at 

this point and made it possible to test if luteal cell differentiation had occurred.   
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No differences were detected in any of the “cholesterol accumulation” genes of 

Becn1(fl/fl) or Becn1(fl/Δ) cKOs when compared to WT mice (p>0.05, Holm-Sidak post-

hoc test) (Figure 3.10 A).  However, there is increased expression of LIPE in the Atg7 

cKO compared to WT (p<0.01, Holm-Sidak post-hoc test), and a trend for increased 

expression in all other genes in the “cholesterol accumulation” network (Figure 3.10 A).  

The data show that Becn1 does not regulate cholesterol transport and biosynthesis in 

contrast to the negative regulation by Atg7.   

I found no differences in any of the “progesterone synthesis” genes of Becn1(fl/fl) cKO or 

Becn1(fl/Δ) cKO mice when compared to WT mice (p>0.05, Holm-Sidak post-hoc test) 

(Figure 3.10 B).  On the other hand, Cyp11a1 and 3β-hsd are increased in Atg7 cKO 

compared to WT (p<0.01, Holm-Sidak posthoc test) (Figure 3.10 B).  Additionally, there 

are trends for increased Star and 20α-hsd in Atg7 cKOs.  The data show that Becn1 

does not regulate, whereas, Atg7 negatively regulates the expression of progesterone 

synthesis genes.    

I saw a reduction in PRLR-S in Becn1(fl/fl) and Becn1(fl/Δ) cKO mice compared to WT 

(p<0.01, Holm-Sidak post-hoc test) (Figure 3.10 C).  There also appears to be a trend 

for reduced levels of LHGCR and PRLR-L, showing that Becn1 positively regulates the 

expression of the regulatory network genes.  I observed no difference in Atg7 cKOs 

compared to WT (p>0.05, Holm-Sidak post-hoc test), suggesting that Atg7 does not 

regulate the expression of the regulatory network genes (Figure 3.10 C).  To determine 

the extent of PRLR signaling in the Becn1(fl/ Δ) cKO I compared the epithelial ductal tree 

that forms in response to progesterone and prolactin receptor signaling to WT at P8.5 

and P13.5 (Hennighausen et al. 1997).  There was no observable difference in the 
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lobuloalveolar growth between WT and Becn1(fl/Δ) cKO at either time, suggesting that 

circulating prolactin and placental lactogen are equivalent (data not shown). 

To confirm that ablation of Becn1 and Atg7 reduces expression, I also quantified mRNA 

expression of Becn1 and Atg7 in the corpus luteum.  Becn1 is reduced in both Becn1 

cKOs compared to WT (p<0.01, Holm-Sidak post-hoc test), demonstrating gene 

knockout (Figure 3.10 C).  Atg7 shows high variability in expression and is not 

significantly reduced in Atg7 cKOs compared to WT (p=0.07, Holm-Sidak test) (Figure 

3.10 C).  However, there is a trend for a reduction in the Atg7 cKO and there is reduced 

variance within the Atg7 cKO compared to the other genotypes.  It is possible increasing 

sample size will make this reduction significant.  Thus, transcription of Becn1 is reduced 

and maybe Atg7 after conditional deletion. 
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3.4 Discussion 
The corpus luteum represents a dynamic endocrine gland during pregnancy which must 

undergo several developmental processes after ovulation to promote and maintain 

pregnancy including tissue remodeling (Liu et al. 1999), extensive angiogenesis 

(Reynolds et al. 2000), granulosa cell differentiation and increased steroid secretion 

(Stocco et al. 2007).  I designed the experiments of this study to test the hypothesis that 

autophagy is necessary for corpus luteum cellular homeostasis.  Specifically, I was 

interested in regulation of lipid droplets through autophagy, or lipophagy, and steroid 

synthesis.  In the present study, I chose to knockout Becn1 or Atg7, which both function 

in autophagosome formation, specifically in luteal precursor cells.  The data presented 

here show that Becn1 but not Atg7 is necessary for progesterone synthesis within the 

corpus luteum to maintain pregnancy, and that luteal cell specific deletion of Becn1 

induces preterm labor in mice.  Furthermore, the data show that autophagy is impaired 

by either Becn1 or Atg7 cKO through accumulated SQSTM1 and LC3, suggesting that 

Becn1’s role in progesterone synthesis is an additional function independent of 

autophagosome formation. 

3.4.1 Role of Becn1 and Atg7 on luteal cell development and corpus luteum formation 

Utilizing the Cyp19-iCre mouse, I found that recombination, which may have occurred in 

the granulosa cells prior to ovulation, is robust within both small and large luteal cells as 

evident from the Cre-mediated GFP-expression.  This study is the first, to my 

knowledge, to use the Cyp19-iCre mouse to study gene function in the corpus luteum 

and furthermore, this represents the first genetic approach to study the function of 

autophagy in the corpus luteum.  The ability to use a granulosa cell specific Cre to study 

the corpus luteum implies that the developmental steps from secondary follicle to corpus 

luteum formation must not be affected.  As expected, the data showed that the deletion 
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of either Becn1 or Atg7 in granulosa cells did not affect the presence of the CL during 

pregnancy.  In regards to luteal cell differentiation, the data demonstrates that Becn1 or 

Atg7 deletion does not decrease progesterone production, the prominent function of 

luteal cells, during the first eight days of pregnancy.  Moreover,  the mRNA expression of 

the luteal-specific transcripts Cyp11a1, 3bHSD, SRBI, LIPE and StAR  , or the protein 

expression of StAR  was not different in either Becn1 or Atg7 cKO mice compared to 

wild-type siblings at P8.5.  Together this supports that luteal cell differentiation and 

corpus luteum formation has occurred in all three experimental strains studied.  The 

numbers of fetuses at P8.5 were also not different among the observed strains, 

suggesting that an equal numbers of oocytes were fertilized and implanted.  Therefore, 

Becn1 or Atg7 is not necessary for folliculogenesis, ovulation or luteinization.   

It is largely unknown how autophagy is related to normal cellular function in granulosa 

and luteal cells.  Ryter et al, recently presented a hypothesis that autophagy is a critical 

regulator of metabolism and homeostasis within all cells (Ryter et al. 2013).  Thus, I 

expected that ablation of autophagy-specific genes would result in dysregulation of 

homeostasis that could ultimately result in cell death.  On the contrary, recent studies in 

rats have suggested that together with apoptosis, autophagy is responsible for granulosa 

cell attributed follicular atresia through in vitro studies (Choi et al. 2010, 2011).  This idea 

is supported by the observation of autophagosomes in granulosa cells of atretic follicles 

in several species including:  rat (Peluso et al. 1980), ewe (Rosales-Torres et al. 2000), 

bovine (Rodgers and Irving-Rodgers 2010), characiform fish (Santos et al. 2008), goose 

(Kovács et al. 1992), quail (D’Herde et al. 1996) and human (Duerrschmidt et al. 2006).  

In the present study, I did not directly study atresia; however, I did indirectly test the role 

of autophagy on atresia.  Atresia is a mechanism to remove “weak” follicles that have 

insufficient FSH-mediated signaling and thus, oocytes are also removed from the 
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ovulatory pool (Hsueh et al. 1994).  I would have expected larger litters from both Becn1 

and Atg7 conditional knockouts if autophagy mediates atresia, which we did not see.  A 

weakness of this conclusion is that poor quality oocytes, which would have a low 

competence to form viable embryos through in vitro fertilization (IVF), are typically found 

in atretic follicles (Eppig and Schroeder 1989; Pavlok et al. 1992).  Nevertheless, the 

developmental competence of oocytes ovulated from atretic follicles is not zero.  While 

we cannot ignore the possibility that Becn1 cKO mice ovulate oocytes from atretic 

follicles that were not fertilized, these data suggests that autophagy does not contribute 

to granulosa cell attributed atresia.  It would be worthwhile to use the strains described in 

this study to observe follicular atresia to test this hypothesis. 

3.4.2 Becn1(fl/fl) cKO mice have spontaneous preterm labor 

Preterm birth is a human-specific term, defined as parturition at less than 37 weeks of 

gestation (full term being 39 or more weeks) (Beck et al. 2010).  Preterm birth occurs in 

an estimated 1 in 8 pregnancies and is the leading cause of neonatal deaths (Shapiro-

Mendoza and Lackritz 2012).  In addition, preterm birth is the direct cause of metabolic, 

heart and behavioral diseases later in life for the preterm infant (Behrman and Butler 

2007).  Few mouse models have been identified that have a similar preterm birth 

phenotype, or preterm labor.  Lipopolysaccharide inflammatory response (Dudley et al. 

1993), acute alcohol exposure in late pregnancy (Salo et al. 1996), progesterone-

receptor antagonism (Dudley et al. 1996), Stat5b knockout mice (Udy et al. 1997; 

Teglund et al. 1998), inactivation of cannabinoid receptor CB1 (Wang et al. 2008) and 

Trp53 deletion in progesterone receptor expressing cell linages (Hirota et al. 2010) are 

the more prominent preterm labor mouse models.  The WT mice in this study gave birth 

on day 19 of gestation which is not different from previously published data for inbred 

mouse strains (Murray et al. 2010).  The shortened gestation length of 17 days as seen 
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in Becn1(fl/fl) cKO mice is not observed in any otherwise wild-type, inbred mouse 

strains.  Furthermore, gestation length is shortened by a similar percent of total gestation 

time for a human categorized as preterm.  Thus, the Becn1(fl/fl) cKO mouse can be 

used as a novel preterm labor model.   

The Becn1 cKO mice gestation length is rescued by exogenous progesterone 

administration which is the only proven clinical treatment for women with a history of 

preterm birth (Conde-Agudelo et al. 2012; Rode et al. 2009; Hassan et al. 2011) .  It is 

also worth reiterating that Becn1(fl/Δ) mice had 100% reabsorption of fetuses by P14 .  

Considering that recombination was extensive but not complete, as some cells were not 

positive for Cre-recombination, begs the question of how many Becn1 alleles are 

necessary to maintain pregnancy.  These data demonstrates that a 50% reduction has 

no effect; however, the data suggests a threshold exists.   

Progesterone production in humans is different in that the syncytiotrophoblast of the 

placenta are the progesterone producing cells after the first eight weeks of gestation 

(Albrecht and Pepe 1990).  Despite this difference, a BECN1 deficiency could be a major 

contributor to preterm birth in human.  A recent study by Hung et al., reported steady 

mRNA and protein expression of Becn1 in villous tissue (which contains 

synciotrophoblast and cytotrophoblast) collected from placenta from 7 weeks of 

gestation to full-term birth (Hung et al. 2013).  Additionally, several studies report no 

change in LC3 immunostaining in placenta from several pregnancy outcomes including 

Caesarian section, intrauterine growth restriction, or preterm birth, suggesting that 

autophagy is not dynamic for placenta function, similar to this study (Oh et al. 2008; 

Avagliano et al. 2013; Hung et al. 2013; Signorelli et al. 2011).  As the data provides the 

conclusion that Becn1 is participating in functions in addition to autophagy in these mice, 
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studying the function of Becn1 in human placenta would be an opportunity to 

characterize a novel pathway that could be affected during preterm birth.  Thus, the 

luteal cell specific deletion of Becn1 offers an interesting model for future studies to help 

understand the regulation of preterm labor and gives insight to possible roles for Becn1 

in human pregnancy.  

3.4.3 Becn1 and Atg7 differentially influence progesterone synthesis in luteal cells 

The data presented here clearly show an unexpected, different response between 

Becn1 and Atg7 ablation.  The first difference is demonstrated by the day of parturition.  

Becn1(fl/fl) cKO females have parturition an average of 2 days early compared to wild-

type siblings and Becn1(fl/Δ) cKO females get visibly pregnant but never give birth.  Atg7 

cKO mice, on the contrary, have no trouble getting pregnant and the day or parturition is 

equivalent to wild-type siblings.  The second result showing the difference is the 

synthesis of progesterone.  The Becn1(fl/fl) cKO mice showed reduced progesterone 

levels after P9.5, down to pre-pregnancy levels by P17.  This corroborates the preterm 

labor since progesterone is sufficient and necessary to maintain pregnancy in mice.  On 

the other hand, I observed increased progesterone levels in the Atg7 cKO mice 

throughout pregnancy.  The third result is neutral lipid storage within luteal cells.  Becn1 

deletion reduces the amount of neutral lipid staining by Oil Red-O whereas Atg7 deletion 

increases it.  The increased lipids in the Atg7 cKO luteal cells would provide more 

available cholesterol for steroidogenesis to support an increase in progesterone 

synthesis.  Lastly, the expression of genes involved with progesterone synthesis are 

different.  Becn1 deletion does not change the expression of any gene studied, with the 

exception of PRLR-S that was decreased in both Becn1 cKOs.  On the other hand, Atg7 

cKO mice have an increased expression of progesterone synthesis genes compared to 

WT, providing additional evidence for the increased progesterone synthesis.  Overall, 
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the data conclude that Becn1 function is required for adequate lipid storage and when 

expression is disrupted, the reduced lipid stores lead to hindered progesterone 

synthesis.  Another conclusion that can be drawn is that Atg7 provides negative 

feedback on  lipid storage and the expression of steroidogenesis genes, such that, in its 

absence lipid storage is increased resulting in subsequent increase in enzyme 

expression and increased progesterone production.   

Autophagy and the mobilization of lipids from lipid droplets are intimately linked.  

Autophagy facilitates a catabolic process termed lipophagy, where autophagosomes 

deliver small inclusions of lipid droplets to lysosomes (reviewed in Liu and Czaja 2013).  

On the contrary, autophagy is also suggested to positively regulate the growth and 

accumulation of lipid droplets in some tissues, including in adipose tissue of obese and 

diabetic individuals (Ost et al. 2010).  The role of Becn1 in lipid droplet regulation has 

only been recently explored.  Knockout of the yeast homolog, Atg6, in S. cervisae 

inhibits the degradation of lipid droplet specific proteins Faa4-GFP and Egr6-GFP by the 

vacuole (van Zutphen et al. 2014), suggesting that Atg6  participates in lipid droplet 

degradation.  Three previous studies support that Becn1 is required for lipid droplet 

growth.  Knockdown of the Becn1 homolog, Atg6, in Drosophila reduces the size of lipid 

droplets in the larval fat body (Wang et al. 2012a).  C. elegans with a mutated Bec-1 

(homologous to Becn1) have reduced numbers of lipid droplets throughout development 

regardless of diet (Lapierre et al. 2013).  Similarly, knockdown of Becn1 in cultured 3T3-

L1 induced-adipocytes reduces lipid storage as detected by neutral lipid staining (Ro et 

al. 2013).  Now, in the present study, I show that knockout of Becn1 in mouse luteal cells 

reduces lipid storage.  All of these studies demonstrate a conserved function for Becn1 

in lipid droplet regulation.  Additionally, except for the yeast study, which did not address 

lipid droplet formation, these studies identify that the absence of Becn1 negatively 
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affects lipid droplet formation.  In the present study, I did not quantify lipid droplet 

formation between the Becn1(fl/fl) cKO and Becn1(fl/Δ) cKO; however, qualitatively there 

was not a difference.  This suggests that the loss of Becn1 results in cell catastrophe, 

like cell death, which was not studied.  Whether lipid droplet formation is a direct or 

indirect function of Becn1, needs to be addressed by genetic rescue and overexpression 

experiments. 

An equally interesting story on lipid droplet maintenance has been emerging for Atg7.  

The increased lipid metabolism and progesterone synthesis seen in the Atg7 cKO mice 

of the present study is similar to the increased lipid metabolism reported in Atg7-

decificient adipocytes (Zhang et al. 2009; Singh et al. 2009b).  Fabp4-Cre; Atg7fl/fl mice, 

which specifically ablate Atg7 in brown and white adipose tissue, are more active and 

slimmer than controls with gonadal fat pads 20% the weight of controls despite no 

difference in food intake (Zhang et al. 2009; Singh et al. 2009b).  Additionally, the 

adipocyte-specific deletion of Atg7 causes a dramatic increase in the number of small 

lipid droplets present, but an overall decrease in the total amount of circulating lipid 

(Zhang et al. 2009; Singh et al. 2009b).  Adipocytes can utilize lipid stores by releasing 

them into circulation during starvation or oxidize them for immediate ATP generation in 

the mitochondria.  An increased number of mitochondria in Atg7-cKO adipose tissue, 

which results in increased β-oxidation, is the main indication as to why adipocyte-specific 

Atg7 cKO mice have increased lipid metabolism.  This suggests that Atg7 negatively 

regulates fatty acid transport to mitochondria in the adipocyte.  In the present study, I 

observed an increase in lipid stores by Oil Red-O staining and increased metabolism as 

determined by progesterone synthesis in Atg7 cKO mice.  Clearly, these data also 

support that Atg7 inhibits fatty acid metabolism. 
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An unanswered question is how lipid droplets form and grow (Ohsaki et al. 2014).  A 

possible link between BECN1 and ATG7 and lipid droplet formation is LC3.  LC3 is 

necessary for lipid droplet formation and is present on lipid droplet membranes (Shibata 

et al. 2010).  Furthermore, both lipid droplets and autophagosomes are formed from 

lipid-rich membranes and are proposed to be formed from endoplasmic reticulum at the 

similar sites, near the mitochondrial-associated membrane (Jiang and Napoli 2013; 

Hamasaki et al. 2013).  ATG7 is required to activate LC3 before it can be conjugated to 

an autophagosome.  It is unknown if LC3 that is associated with lipid droplets is 

activated but this function of ATG7 could be conserved for conjugation of LC3 to a lipid 

droplet to target it for use or removal.  It is also possible that as autophagosomes and 

lipid droplets potentially are synthesized at the same location, BECN1 participates in the 

formation of both autophagosome and lipid droplet formation.   

I postulate that there are three possibilities for the decreased progesterone seen in 

pregnant Becn1 cKO mice: 1) progesterone is not being synthesized, 2) progesterone is 

being degraded or 3) progesterone is not getting into the vasculature.  The plasma 

analysis for progesterone throughout pregnancy demonstrates that progesterone is 

produced at wild-type levels for at least the first 11 days, but then precipitously drops to 

non-pregnancy levels concurrent with preterm labor.  Additionally, the expression of all 

progesterone-related genes are not different from WT, including 20a-HSD, which is the 

dominant gene to metabolize progesterone to an inactive form.  Although the expression 

of PRLR-S was decreased in both Becn1 cKO CLs at P8.5, PRLR-S binds both PRL and 

PL but lacks the intracellular domain to activate Stat5.  However, PRLR-S may promote 

angiogenesis by regulating the expression of vascular endothelial growth factor (VEGF) 

in luteal cells (Le et al. 2012).  Furthermore, PRLR-S is found predominately on 

endothelial cells in the corpus luteum of bovine (Ricken et al. 2007).  These data 
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suggests that progesterone synthesis is reduced after P11.5 because of the reduced 

lipid availability in the luteal cells.  Additionally, the data suggest that there is not an 

increase in the degradation of progesterone from the 20α-HSD expression.  Beyond this 

conclusion, it is also possible that BECN1 function is necessary for Prlr and Lhcgr 

expression as their expression was reduced.  However, I cannot discount that the 

vasculature is negatively affected by Becn1 ablation.  

3.4.4 Becn1 is required for autophagosome and endosome clearance 

Extracellular cholesterol is required for acute steroidogenesis.  Circulating HDL and LDL 

provide the predominant source of cholesterol to luteal cells.  One of the modes for 

transport of HDL and LDL is receptor-mediated endocytosis.  After endocytosis, 

endosomes mature and fuse with lysosomes where the cholesterol esters are 

hydrolyzed and transported out of the lysosome for use by the cell.  LDL-Rs are recycled 

back to the plasma membrane to facilitate further transport approximately every 10 

minutes allowing for maintained cholesterol influx (Brown et al. 1983).  Receptor 

mediated endocytosis is primarily used to transport LDL particles but HDL has been 

observed in endosomes (Röhrl and Stangl 2013).  Substantial evidence demonstrates a 

role for BECN1 in endosome maturation.  BECN1 forms an evolutionarily-conserved 

complex with VPS15, VPS34, UVRAG and Bif-1 that is necessary for autophagosome 

and endosome to lysosome fusion in Drosophila, C. elegans, mouse and human cells 

(Thoresen et al. 2010; Liang et al. 2008; Juhász et al. 2008; Ruck et al. 2011).  

Furthermore, epithelial growth factor receptor (EGFR) undergoes endosome mediated 

membrane recycling and the process requires the BECN1 complex (Petiot et al. 2003; 

Johnson et al. 2006; Thoresen et al. 2010).   
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At P8.5 and P13.5, Becn1(fl/Δ) cKO luteal cells have increased numbers of GFP-LC3 

puncta, which is indicative of autophagosome accumulation.  To determine if these 

puncta were actually autophagosomes, I performed electron microscopy on P13.5 luteal 

cells.  There was an increased number of large autophagosomes, as detected by GFP-

LC3 in the Becn1(fl/Δ) cKO luteal cells but also, surprisingly, a dramatic increase in the 

number of endosomes.  The observation supports the previously mentioned studies that 

the BECN1 complex mediates endosome maturation.  It is possible that these 

endosomes are sequestering lipoprotein receptors, such as LDL-R, to dampen the 

transport of cholesterol into the cells.  Thus, the cell cannot synthesize lipid droplets 

because of reduced lipid transport.  It will be necessary to show lipoprotein transporters 

in these endosomes and to identify if these are retrograde endosomes or secretory 

vesicles.   

3.4.5 Summary 

The present study demonstrates that Becn1 is required for progesterone synthesis in 

murine luteal cells and a threshold of BECN1 is necessary to maintain pregnancy, such 

that below that threshold, preterm labor and abortion occur.  This is one of few genetic 

mouse models for preterm birth and supports the significance of Becn1 in 

steroidogenesis.  The data suggests that Becn1 deletion decreases progesterone 

synthesis in two ways.  First, Becn1 deletion impedes endosome maturation, which in 

turn causes reduced cholesterol availability that reduces progesterone synthesis.  

Second, I showed that Becn1 is required for lipid droplet formation.  Whether the two 

functions is an example of pleiotropy in addition to autophagy or if all three are provided 

by the same function of Becn1 is an important question for future studies.  I also 

presented data showing that Atg7 deletion results in mice producing more progesterone.  
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This suggests that the function of Becn1 in lipid droplet formation and endosome 

maturation is in addition to its function in autophagy. 

These results provide significance to study at Becn1 in many lipid-dependent 

developmental pathways such as atherosclerosis and adrenal gland steroidogenesis.  

The continued research has identified multiple roles for lipid droplets in physiological 

functions.  As such, a Becn1 deficiency may participate in all of the same functions...   
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Figure 3.1.  Cyp19-iCre leads to sufficient recombination in the corpus luteum.  (A)  
Genetic strategy to conditionally knockout Becn1.  Numbered boxes correspond to 
exons with dashed boxes representing engineered insertions and triangles represent 
LoxP sites.  (B)  Ovaries from P8.5 CAG-CAT-EGFP females on both WT and Cyp19-
iCre backgrounds represented in darkfield and GFP-fluorescence with WT ovaries 
outlined.  (C)  Representative immunoblots from granulosa cells 48 hours after PMSG 
injection.  (D)  Quantified band intensity relative to Actin for BECN1 and SQSTM1, n=4 
for each genotype.  Data represents mean with standard error of the mean.  (E - H)  
Representative images showing immunofluoresence for EGFP, indicating Cre 
recombination, co-stained with DAPI on tissue sections from P8.5 ovaries.  Low 
magnification to see entire ovary (E and F).  CL = corpus luteum, AF = antral follicle.  
High magnification of corpus luteum to demonstrate recombination in luteal cells.  Bars 
equal 100 μM.   
  

125 
 



 

 

Figure 3.2.  Becn1 is required to maintain pregnancy.  (A and B)  Immunoblots for 
P8.5 pregnant corpora lutea (A) and relative quantification (B).  * denotes p-value <0.05 
for Holm-Sidak post-hoc test versus WT.  (B)  Day of pregnancy when mothers gave 
birth for WT (n=22), Becn1 (fl/fl) cKO (n=26) and Atg7 cKO (n=18).  Each data point 
represents one individual and the horizontal line indicates the mean.  ** denotes p-value 
<0.001 for Dunn’s multiple comparison test versus WT.  (C and D) Number of implanted 
fetuses observed (C) and wet mass of both ovaries on P8.5 for individual strains (D).  
Data represent mean with s.e.m.  (E) Histogram representing the day of parturition 
observed for WT (n=22) and Becn1(fl/fl) cKO (n=26) females.  Each data point 
represents a single pregnancy, bar is mean, * denotes p-value <0.01 for t-test.   
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Figure 3.2 continued.  (F) Percent of Becn1(fl/Δ) cKO females that are pregnant on the 
designated day after mating.  Observed number of pregnant females out of total females 
mated indicated vertically inside each bar.  * denotes p-value <0.05 for fisher’s exact test 
between the two genotypes.   
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Figure 3.3.  Becn1 cKO early parturition is progesterone-dependent.   
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Figure 3.3. Continued.  (A)  Progesterone quantified from plasma every other day 
throughout pregnancy for WT, Becn1(fl/fl) cKO and Becn1(fl/Δ) cKO.  Data represents 
mean with s.e.m.  * denote a p-value <0.05 for Holm-Sidak post-hoc test versus WT for 
that day.  (B)  Diagram depicting dosing paradigm for exogenous progesterone 
administration.  (C)  Day of parturition for females that were given sesame oil (vehicle) or 
1 mg progesterone daily (n ≥ 3 for each group).  Data represents mean with standard 
error of the mean.  * denotes p-value < 0.001 for Holm-Sidak post-hoc test for interaction 
indicated.  ns = not significant 
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Figure 3.4.  Becn1 (fl/fl) cKO hormone profile and estrus cyclicity are normal.  (A)  
Percent of time that each estrus stage was observed for WT (n=20) and Becn1 (fl/fl) cKO 
(n=15) over 21 days.  Data represents mean with standard error of the mean.  p-value 
equals 0.09 for two-way ANOVA for genotype x stage interaction.  (B, C, D and E)  
Reproductive hormones progesterone (B), estradiol (C), follicle-stimulating hormone (D) 
and luteinizing hormone (E) quantified from serum collected during euthanasia at the 
specified times.  For all charts, data represents mean with standard error of mean.  * 
denotes a p-value <0.05, respectively for Holm-Sidak post-hoc test versus WT.  ns = not 
significant. 
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Figure 3.5.  First eight days of pregnancy plasma progesterone in Becn1 (fl/Δ) 
cKO.  Plasma concentrations of progesterone for Becn1 (fl/Δ) cKO (n=4) and WT (n=6) 
from P1.5 to P8.5.  Data represent mean with standard error of the mean.  No significant 
differences identified, two-tailed t-test for each day, p>0.05. 
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Figure 3.6.  Becn1 promotes neutral lipid stores in luteal cells. (A – H)  
Representative images of frozen tissue sections stained with oil red-O (red) and 
counterstained with hematoxylin (blue) at P8.5 (A-D) and P13.5 (E-H).   
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Figure 3.6. Continued.  Low magnification indicates staining in medulla, theca and 
corpus lutea (A, B, E, F).  Higher magnification of corpus luteum to highlight luteal cell 
staining (C, D, E, H).  Oil red-O stains neutral lipids, mainly observed as lipid droplets 
(arrows).  Bars equal 100 μM. 
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Figure 3.7.  Becn1 is necessary for the clearance of GFP-positive vesicles 
Representative images of frozen tissue sections directly viewed for GFP-LC3.  Low 
magnification (A, B, E and F) shows that only CLs of Becn1 (fl/Δ) cKO have intense 
GFP.  GFP-LC3 puncta are present in Becn1 (fl/Δ) cKO (D and H) but not in WT luteal 
cells (C and G).  Bars equal 100 μM. 
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Figure 3.8.  Becn1 is necessary for the clearance of autophagosomes and 
endosomes.   
Representative images from transmission electron microscopy of P13.5 large luteal cells 
from WT (A, C, E) and Becn1 (fl/Δ) cKO (B, D, F).  An entire cells ultrastructure where 
lipid droplets mitochondria and nuclei are seen (A and B).  High magnification images 
indicating mitochondria (Mt), lipid droplets (LD), multi-vesicular bodies (MVB), endosome 
(End), and autophagosomes (Aut) (C, D, E, F).  Scale indicated on lower right corner of 
each image. 
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Figure 3.9.  Atg7 ablation have normal gestation and have increased progesterone 
throughout pregnancy. (A) Genetic strategy to conditionally knockout Atg7.  Numbered 
boxes correspond to exons with dashed boxes representing engineered insertions, ** is 
a translational STOP and triangles represent LoxP sites.  (B and C) Immunofluoresence 
for EGFP, indicating Cre-recombination in P8.5 ovaries (B) and CL (C).  Bar equals 100 
μM.  (D) Relative quantification of indicated proteins from immunoblots.  * denotes 
p<0.05 for t-test, data represents mean ± s.e.m.  (E) Histogram depicting the day of 
parturition for WT (n=22) and Atg7 cKO (n=18) females.  (F) Plasma concentrations for 
progesterone throughout pregnancy.  * denotes p<0.05 for t-test, data represent mean ± 
s.e.m.  
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Figure 3.10  Becn1 cKO and Atg7 cKO have different responses in the 
progesterone gene network.   
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Figure 3.10. Continued.  (A, B and C)  mRNA expression relative to WT and 
normalized to Beta-actin and Gapdh for genes for progesterone synthesis (A), 
cholesterol transport and synthesis (B) and luteal cell signaling (C).  Data represents 
mean with standard error of the mean for n≥4 for each group.  * and ** denotes a p-value 
<0.05 and <0.001, respectively for Holm-Sidak post-hoc test versus WT individually for 
each gene. 
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CHAPTER 4:  AUTOPHAGY IS NECESSARY FOR ADULT SERTOLI CELL 
FUNCTION IN MICE 

 
Keywords: Sertoli cell, autophagy, Beclin-1, Atg7 
 
 
Abbreviations Used:  PS, phosphatidylserine; PtdIns3k, class III phosphatidylinositol 3-
kinase; PtdIns3P, phosphatidylinositol 3-phosphate; PBS, phosphate-buffered saline; 
TBST, tris-buffered saline; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel 
electrophoresis; PFA/GLA, 4.0% paraformaldehyde / 3.5% glutaraldehyde; w/v, weight 
per volume; cKO, conditional knockout 
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4.1 Introduction 
Sertoli cells have been referred to as “mother” cells because of their distinguishing 

functions in the seminiferous tubule epithelium.  The Sertoli cell fosters the growth and 

development of undifferentiated spermatogonia into elongated spermatids.  

Differentiating germ cells remain in contact with the Sertoli cell throughout this process, 

which in turn, provides growth factors, nutrition and protection from the immune system 

to the differentiating germ cells through the formation of the blood-testis-barrier.  

Therefore, understanding the processes that are required for Sertoli cell function may 

lead to novel mechanisms to treat male infertility. 

Throughout spermatogenesis, the differentiating germ cells undergo a dramatic 

morphological transformation from round spermatocytes to spermatids, which have 

1000-fold less cytoplasm, possess a rounded head and an elongated tail (Hess and 

Renato de Franca 2008).  This requires cellular remodeling where much of the 

cytoplasm is packaged into cytoplasmic residual bodies that will be removed during 

spermiogenesis via the phagocytosis of the material by Sertoli cells (Chemes 1986; 

Nakagawa et al. 2005).  Additionally, there is extensive apoptosis of differentiating germ 

cells that has been estimated to occur in upwards of 60% of germ cells in contact with 

Sertoli cells (Shaha et al. 2010).  Both intrinsic and extrinsic initiation of apoptosis are 

observed, suggesting that a combination of factors regulate this loss.  While it remains 

uncertain why such a high degree of apoptosis occurs, removal of these dying cells is 

completed by Sertoli cells via phagocytosis (Chemes 1986; Nakagawa et al. 2005).  

Thus, it should be appreciated that the functional Sertoli cell has a pronounced ability to 

metabolize phagocytized material.   
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The process of phagocytosis involves binding of the substrate, ingestion and subsequent 

degradation.  Receptors on Sertoli cells bind to phosphatidylserine (PS) on the 

membranes of residual bodies and apoptotic cells as demonstrated by the apparent 

increase in apoptosis after administering Annexin V, which binds to PS (Maeda et al. 

2002).  Once ingested, the phagocytized material enters the endosome pathway and 

ends with the fusion to a lysosome, after which the contents are degraded and 

metabolized by the Sertoli cell (Oczypok et al. 2013).  Autophagy is an evolutionarily 

conserved eukaryotic process that occurs at low constitutive levels in all cell types to 

sequester cytosolic material in a double membrane structure, termed the 

autophagosome, and to deliver the material to a lysosome for its breakdown and 

recycling into basic components.  It should be realized that both autophagy and 

phagocytosis perform similar tasks, especially once a phagocytic vesicle has entered a 

cell. 

There is a body of evidence suggesting that autophagy is associated with the process of 

phagocytosis.  Recently, a phenomenon called “LC3-Associated Phagocytosis” was 

observed in macrophages, and is responsible for the clearance of phagocytic vesicles 

containing Listeria monocytogenes (Lam et al. 2013).  Additional recent studies using 

Sertoli cells and retinal pigmented epithelial cells, both “non-professional” phagocytes 

(reviewed by Rabinovitch 1995), have characterized increased levels of autophagy that 

coincide with phagocytosis, suggesting that autophagy is utilized in the processing of 

phagocytized material (Yefimova et al. 2013; Kim et al. 2013).  Furthermore, using 

microglia cells, considered to be another “non-professional” phagocyte, Lucin et al. 

demonstrated that depletion of BECN1 severely abrogates retromer trafficking 

(endosomes from plasma membrane to the Golgi apparatus) and phagocytosis (Lucin et 
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al. 2013).  The functional role of autophagy in phagocytosis is yet to be tested in vivo, 

but this groundwork provides evidence for the involvement of autophagy proteins.   

In the present study, I utilized a conditional knockout mouse design to independently 

ablate two key autophagy genes specifically in adult Sertoli cells.  The gene Becn1 

encodes a scaffold protein essential to the formation of the class III phosphatidylinositol 

3-kinase (PtdIns3K) ‘nucleation’ complex, which is necessary to generate 

phosphatidylinositol 3-phosphate (PtdIns3P) on the forming autophagosome membrane.  

PtdIns3P is a lipid that signals for the recruitment of subsequent complexes necessary 

for autophagosome membrane expansion, closure, trafficking and fusion to a lysosome.  

The second gene, Atg7, is a key component of the enzyme system that conjugates Atg8-

like proteins to the autophagosome membrane, and is essential for membrane 

expansion.   I performed this study to address 1) if Becn1 has a similar function in 

phagocytosis in Sertoli cells as in glial cells, and 2) if the function of BECN1 in 

phagocytosis is an additional function to autophagy.  These findings support that 

autophagy is necessary for the function of adult Sertoli cells, and that Becn1 has a 

pleiotropic function in regulating phagocytosis.   
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4.2 Materials and Methods 

4.2.1 Mice 

Becn1-floxed (Gawriluk et al. 2011), Atg7-floxed (kind gift from Q. Wang) (Komatsu et al. 

2005), Amhr2tm3(cre)Bhr (kind gift from C. Ko) (Jamin et al. 2002), CAG-CAT-EGFP (kind 

gift from K. Wagner) (Kawamoto et al. 2000) mice were all on a 129/Sv and B57BL/6 

mixed background.  Becn1 conditional knockout males were generated by crossing 

Becn1fl/fl ; Amhr2tm3(cre)Bhr/+ males to Becn1fl/fl; Amhr2+/+ females.  The Becn1fl/fl; 

Amhr2tm3(cre)Bhr/+ males are infertile after 8-weeks old, so they were mated as early as 

five-weeks-old.  Atg7 conditional knockout males were generated by crossing Atg7fl/fl ; 

Amhr2tm3(cre)Bhr/+ males to Atg7fl/fl; Amhr2+/+ females.  Controls males were littermates that 

did not carry the Amhr2tm3(cre)Bhr allele.  All animals were genotyped using tail genomic 

DNA and alleles were detected by previously published PCR assays (see strain 

references above).  All mice were housed in a University of Kentucky, Division of 

Laboratory Animal Resources facility, subjected to a 14:10 hour light:dark cycle and 

regular chow and water was available ad libitum.  All animal procedures were compliant 

under the approved University of Kentucky IACUC protocol, 2008-0372. 

4.2.2 Fertility assay 

Males were placed into separate cages and housed with one or two females.  Each 

morning after being setup, the females were checked for copulation plug and if present, 

placed into a separate cage to monitor for pregnancy and litter.  Males were mated 

starting at 5-weeks-old to 26-weeks-old.  The male’s age when the plug was present, 

status of pregnancy and size of litter was collected for each mating. 

4.2.3 Tissue collection and preparation 

Males of correct age were euthanized by cardiac exsanguination via 18ga needle after 

being anesthetized by IP injection of Avertin (0.25 mg / g body weight).  To control for 
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any circadian controlled genes and/or proteins all mice were euthanized between 1300 

and 1500 throughout the study.  Reproductive tracts were quickly dissected out and 

washed several times in ice-cold PBS.  The cauda epididymis was removed, placed into 

TYH media and sliced open to allow sperm to swim out for quantification by 

hemocytometer.  Testes, seminal vesicles and prostate were carefully separated, as 

previously described, and weighed (Barclay and Cramer 2005).   

For RNA and protein isolation, a testis was cut in half, flash frozen in liquid nitrogen and 

stored at -80°C.  For histology and immunohistochemistry, the tunica was carefully cut in 

several places to facilitate fixative diffusion, and the whole testis was immersed in 

freshly-prepared, ice-cold 4% (w/v) paraformaldehyde for 12-24 hours with agitation at 

4°C.  Fixed testes were washed to remove paraformaldehyde, dehydrated through 25%, 

50% and 70% ethanol and finally embedding in paraffin. 

4.2.4 Histology 

Paraffin embedded tissues were sectioned to 5 μM, adhered to gelatin subbed slides 

and air dried overnight at 37°C.  Sections were deparaffinized with xylene, rehydrated 

and stained with Harris hematoxylin, followed by eosin, dehydrated and mounted with 

Permount. 

For immunofluorescence, slides were blocked with 10% (w/v) BSA in PBS for one hour 

at room temperature and then incubated with primary antibody diluted with 3% (w/v) 

BSA in PBS overnight at 4°C.  The following day, slides were washed with PBS three 

times, incubated with diluted secondary antibody for 1 hour at room temperature, 

washed with PBS three times and mounted with Prolong Gold anti-fade media 

containing 4',6-diamidino-2-phenylindole (Life Technologies, P-36931). 
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4.2.5 Real-time PCR 

RNA was extracted from snap frozen tissue using TRIzol reagent as per manufacturer’s 

protocol for high proteoglycan samples (Life Technologies).  Total RNA was subjected to 

DNase (Invitrogen), as per manufacturer protocol, to remove any genomic DNA that was 

co-precipitated and then cleaned up on RNeasy Spin Columns (Qiagen).  Total RNA 

was quantified by nanodrop.  Total RNA (500 ng) was used for first-strand synthesis to 

create cDNA from a manufacturer kit (Quanta Biosciences).  Detection of specific mRNA 

was then performed on samples in triplicate using SYBR-green PCR and quantified by 

ΔΔCt method.  Primers for specific genes can be found in Table 4.1. 

4.2.6 Immunoblotting 

Tissue was subjected to ice-cold RIPA buffer (with freshly added protease/phosphatase 

inhibitors, Santa Cruz, sc-24948), homogenized (max speed for 45 seconds), sonicated 

(3 to 5 cycles of 40% duty cycle, magnitude of 4, 10 seconds followed by 30 seconds on 

ice), rocked for 30 minutes at 4°C and centrifuged 10,000 rpm for 10 minutes at 4°C to 

pellet the insoluble fraction.  The soluble fraction was collected and total protein 

quantified by bicinchoninic acid assay (Thermo, 23225).   

Twenty-five μg total protein per sample was denatured in Laemmli buffer for 10 minutes 

at 95°C and separated by SDS-PAGE on a 12% tris-acrylamide mini-gel.  Separated 

proteins were transferred to a PVDF membrane with 0.45 μM pores (GE Healthcare, 

RPN303F) overnight (~16 hours @ 70mV) at 4°C.  Transferred proteins were visualized 

by staining with Ponceau-S and membranes trimmed. 

Membrane was blocked using 5% (w/v) skim milk in TBST for 1 hours at room 

temperature.  Primary antibody (see Table 4.2 for antibody concentrations) diluted in 5% 

(w/v) skim milk in TBST was added to membrane and allowed to incubate overnight (~16 
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hours) in a 4°C cold room.  The membrane was washed three times with TBST for 5 

minutes each and then HRP-conjugated secondary antibody diluted in 5% (w/v) skim 

milk in TBST was added and allowed to incubate for 1 hour at room temperature.  

Membranes were washed 3 times with TBST for 5 minutes.  Secondary antibody was 

detected using Pierce ECL Plus substrate (Thermo, 32132, 1:1 dilution) and detected by 

CCD camera and specific band intensity was digitally quantified.  For multiple antigen 

detection, membranes were stripped with 0.2M Glycine, 1% Tween-20, 0.1% SDS, 

pH=2.2 and then re-probed with new antibodies.  Antibodies and dilutions used can be 

found in Table 4.2. 

4.2.7 Electron Microscopy 

Routine preparation for transmission electron microscopy was completed under 

supervision from the University of Kentucky Imaging Facility.  Briefly, tissues were 

quickly dissected out and washed several times in ice-cold PBS.  Next, tissues were 

diced with a razorblade to ~1 mm3 cubes while in a droplet of freshly prepared 4% (w/v) 

paraformaldehyde / 3.5% (v/v) glutaraldehyde in 0.1 M cacodylate buffer (PFA/GLA).  

Following, tissue pieces were incubated in PFA/GLA for 2 hours at 4°C until fixed.  After 

the first fixation, tissue pieces were washed four times with 8% (w/v) sucrose before 

post-fixing with 1% OsO4 for 1.5 hours at 4°C.  After dehydration through ethanol into 

propylene oxide, tissues pieces were infiltrated and embedded into Eponate 12 

(PELCO).  Embedded tissue pieces were sectioned to ultrathin slices of about 70 nm 

using a Reichert Ultracut E, mounted on copper grids, stained with uranyl acetate 

followed by lead citrate and observed by transmission electron microscopy (Philips 

Tecnai Biotwin 12).      
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4.2.8 Statistics 

All statistics were performed in SigmaPlot 12 after consultation with the Applied 

Statistics Laboratory at the University of Kentucky.  A two-way ANOVA was used with 

Holm-Sidak post-hoc testing between groups for comparisons with two variables.  For all 

other comparisons, the statistical test used is indicated in the text.   

Table 4.1 
Real-time 
PCR 
PrimersTarget 

NCBI 
Accession 

Fwd Primer (5’-3’) 
Rev Primer (5’-3’) 

Amplicon 
Size (bp) 

ApoJ NM_013492 AGC AGG AGG TCT CTG ACA ATG 
GGC TTC CTC TAA ACT GTT GAG C 

164 

Beta-Actin NM_007393 GCG TGA CAT CAA AGA GAA GC 
AGG ATT CCA TAC CCA AGA AGG 

187 

HSD17b3 NM_008291 AGG TTC TCG CAG CAC CTT TTT 
CAT CGC CTG CTC CGG TAA TC 

100 

Rhox5 NM_008818 GCA ACA CCA GTC CCT GAA CA 
CAA AAT CTC GGT GTC GCA AA 

101 

Stra8 NM_009292 GAA GGT GCA TGG TTC ACC GTG G 
GCT CGA TGG CGG GCC TGT G 

161 

TNF NM_013693 CCC TCA CAC TCA GAT CAT CTT CT 
GCT ACG ACG TGG GCT ACA G 

61 

Tnp1 NM_009407 GGC GAT GAT GCA AGT CGC A 
CCA CTC TGA TAG GAT CTT TGG CTT TTG G 

162 

 

Table 4.2 
Antibodies 
Used Antigen 

Species 
Raised in 

Manufacturer  
(Product No.) Dilution Used 

Application 
(kDa) 

GFP Chicken Aves Labs (GFP-
1020) 

1:500 IF 

GCNA Rat George Enders 1:50 IF 
BECN1 Rabbit Santa Cruz (sc-

11427) 
1:2,000 
 

WB (60) 
 

ATG7 Rabbit Cell Signaling 
(2631P) 

1:1,000 WB (75) 

LC3 Rabbit MBL (PM036) 1:2,000 WB (16/18) 
SQSTM1 Rabbit Enzo (PW9860) 1:2,000 WB (62) 
Actin Rabbit Sigma (A2066) 1:10,000 WB (42) 
Secondary Antibodies 
Chicken IgY 
(H&L) 

Goat Invitrogen (A-
11039) 

1:1,000 IF 

Rat IgM Goat Invitrogen (A-
11044) 

1:1,000 IF 

Rabbit IgG 
(H&L) 

Donkey Rockland (611-703-
127) 

1:10,000 WB 
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4.3 Results 

4.3.1 Becn1 is necessary for adult male fertility after 8 weeks of age 

To study the function of autophagy in Sertoli cells I generated mice with conditional 

knockout (cKO) alleles for Becn1 in adult Sertoli cells.  Becn1fl/fl mice were crossed with 

anti-Müllerian hormone receptor 2-Cre (Amhr2tm3(cre)Bhr) mice to generate male and 

female mice of genotype Amhr2tm(cre)Bhr/+; Becn1fl/fl or Becn1 cKOs (Gawriluk et al. 2011; 

Jamin et al. 2002).  The Amhr2-Cre allele is a knock-in to the Amhr2 locus and thus, is 

expressed in cells that normally express Amhr2.  This includes the Müllerian duct 

mesenchyme, embryonic Leydig and adult Sertoli cells in the male (Jamin et al. 2002; 

Tanwar et al. 2010; Jeyasuria et al. 2004).  Wildtype (WT) mice were siblings of Becn1 

cKO mice that did not carry Cre.  Becn1 cKO mice were born at regular Mendelian 

frequencies and were healthy, with the exception of infertility in males and subfertility in 

females.  The Becn1 cKO females had smaller litters and hypertrophy in the uterus and 

oviducts (data not shown).  For the remainder of this chapter I will refer only to the 

males.  Becn1 cKO males were mated to CAG-CAT-EGFP Cre-reporter mice to test the 

Sertoli cell deletion specificity (Kawamoto et al. 2000).  In cells that have had Cre-

recombinase expressed, the CAT cassette is removed and an EGFP cassette is 

expressed.  EGFP was detected by epi-fluorescence in the seminiferous tubules of testis 

from CAG-CAT-EGFP+; Becn1 cKO mice but not testis from CAG-CAT-EGFP+; WT mice 

(Figure 4.1 A, B).  Immunofluorescence for EGFP on fixed tissue sections indicates 

EGFP expression only in what appears to be the Sertoli cells of 6-week old Becn1 cKO 

testis (Figure 4.1 C, D).  Previous studies have used the Amhr2-Cre mouse to study the 

Leydig cell population (Jeyasuria et al. 2004; Tanwar et al. 2010); however, I did not 

detect EGFP expression in the interstitial cells, suggesting that recombination does not 

occur in the Leydig cells.  Thus, Amhr2-Cre expression is specific to the adult Sertoli 

cells in six-week-old testes.   
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To determine extent of knockout I performed immunoblotting to quantify the protein 

amount of BECN1 and SQSTM1 relative to ACTIN on whole testis from 6- and 10-week-

old WT and Becn1 cKO mice.  There was no difference in BECN1 quantity between 6-

week-old WT and Becn1 cKO (p=0.6, Holm-Sidak post hoc test) (Figure 4.7 A, B).  

However, BECN1 was reduced by 2-fold in Becn1 cKO compared to WT at 10-weeks-

old (p<0.01, Holm-Sidak post hoc test), demonstrating knockout (Figure 4.7 A, B).  The 

10-week-old Becn1 cKO group probably is a better reflection of deletion rate than the 6-

week-old Becn1 cKO, which has a greater percentage of germ cells in the seminiferous 

tubules.  The protein-turnover of SQSTM1, also known as p62, is autophagy-dependent 

and can be used to monitor autophagy, such that an accumulation of SQSTM1 indicates 

inhibition of autophagy and vice-versa (Bjørkøy et al. 2005).  There was no difference in 

SQSTM1 at 6-weeks between WT and Becn1 cKO (p=0.8, Holm-Sidak post hoc test) 

(Figure 4.7 A, B).  However, at 10-weeks, SQSTM1 was increased by 2-fold in Becn1 

cKO compared to WT (p<0.01, Holm-Sidak post hoc test), demonstrating the 

accumulation of SQSTM1.  Therefore, BECN1 is reduced and there is inhibition of 

autophagy due to the increase in SQSTM1 in Becn1 cKO testes. 

To determine the effects of Becn1 deletion on fertility I set up a fertility assay, as 

described in the materials and methods, to examine age-related reproductive 

performance.  Five-week-old Becn1 cKO males showed evidence of mating with females 

within four days and 71% of the females got pregnant and had a litter (Figure 4.1 J).  

Six-week-old Becn1 cKO males had similar performance (Figure 4.1 J); however, 7- and 

8-week-old Becn1 cKO males have reduced fertility where less than 50% of plugged 

females gave birth (Figure 4.1 J).  No Becn1 cKO after 9 weeks of age or older sired a 

litter, despite presence of seminal plugs (Figure 4.1 J). The fertility assays were 

completed with a minimum of five Becn1 cKO males for each age tested, demonstrating 
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a fully penetrant phenotype.  In contrast, WT mice up to 1-year-old are regularly used in 

the colony for breeding purposes.  Therefore, Becn1 cKO have reduced fertility that 

quickly diminishes to zero by 9-weeks of age.  Thus, Becn1 is required for male fertility 

after 9 weeks of age.   

To determine the basis for reduced fertility, I analyzed reproductive tracts from Becn1 

cKO and WT males at several time points from 6- to 17-weeks-old.  The body weights of 

WT and Becn1 cKO showed similar increases with age and there was no difference 

between genotypes during this period (p>0.5, Holm-Sidak post hoc test) (Figure 4.1 E).  

On the other hand, as Becn1 cKO male mice age, their testes undergo regression such 

that they weigh less than 50% of WT testes by 10-weeks-old (p<0.001, Holm-Sidak post 

hoc test) (Figure 4.1 F, I).  The weight of the seminal vesicles are directly proportional to 

testosterone production by the Leydig cells of the testes and as such, the weight of the 

seminal vesicles can be used to monitor testosterone signaling (Deanesly and Parkes 

1933; Ayata et al. 1988).  The seminal vesicle weights of WT and Becn1 cKO displayed 

similar increases and were not different between genotypes at any time observed 

(p>0.2, Holm-Sidak post hoc test) (Figure 4.1 G).  This result suggests that Becn1 

ablation does not affect Leydig cell function prior to 17-weeks-old and that normal levels 

of inhibin are being produced by the Sertoli cells.  The number of sperm collected from 

the cauda epididymis of Becn1 cKO mice was markedly reduced compared to WT mice 

beginning at 8 weeks of age, and this persisted until the end of the study (p<0.001, 

Holm-Sidak post hoc test) (Figure 4.1 H).  At 12, 15 and 17 weeks of age spermatozoa 

were rarely witnessed in the collection dish, indicating a complete disruption of 

spermatogenesis.  Moreover, at 6- and 8-week time points, there were sloughed germ 

cells and leukocytes in the Becn1 cKO collections that were not present in WT 
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collections.  Thus, Becn1 is necessary for spermatogenesis and male fertility after 6-

weeks-old.    

4.3.2 Becn1 is required for spermatogenesis 

The difference in testis weight, in addition to the difference in observed cauda sperm 

between WT and Becn1 cKO mice, suggested the dysregulation of spermatogenesis.  I 

examined testis histology from 6-, 10- and 17-week-old WT and Becn1 cKO mice to 

determine the effect of Becn1 ablation on spermatogenesis.  Testes from WT mice have 

normal seminiferous tubules with all stages of spermatogenesis present, demonstrating 

typical spermatogenesis at each time point (Figure 4.2 A-F).  At 6-weeks of age, Becn1 

cKO seminiferous tubules are structurally different when compared to WT (Figure 4.2 G, 

J).  There were numerous seminiferous tubules where sperm heads are closer to the 

basement membrane than primary spermatocytes.  Another striking difference is the 

presence of large amounts of eosinophilic material released into the tubule lumens, most 

likely from sloughed spermatocyte cysts and residual bodies.  At 10-weeks of age, large 

vacuoles were found in a majority of tubules (Figure 4.2 H, K, arrowheads).  By 10 

weeks of age, only the occasional sperm head was identified, and there was no 

evidence for spermatogenesis in any tubule.  The ratio of Leydig cells is observably 

increasing, possibly due to hyperplasia.  At 17-weeks of age, no evidence of sperm 

remained and many tubules had a Sertoli-cell only phenotype, suggesting a failure in the 

maintenance of spermatogonia (Figure 4.2 I, L).  Large vacuoles were still present, 

which could be newly formed or persisting from earlier stages (Figure 4.2 I, L, 

arrowheads). 

Histology of epididymides from 6-week old individuals showed a prevalence for 

leukocytes and sloughed cells (Figure 4.2 N, arrows).  I only rarely observe leukocytes 
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in WT tubules (Figure 4.2 M).  Because no recombination was observed in the 

epididymides, this suggests that Becn1 ablation in Sertoli cells disrupts the blood-testis-

barrier or blood-epididymis-barrier, allowing infiltration of immune cells into the 

seminiferous and epididymal tubules. 

4.3.3 Becn1 ablation increases Sertoli cell injury 

To determine if the spermatogonial stem cell niche was negatively affected by Becn1 

ablation and thus, was responsible for loss of spermatogenesis, I measured the 

expression of several testis-specific cell markers by real-time PCR on RNA collected 

from whole testis.  First, I examined markers corresponding to different stages of 

spermatogenesis and cell-types in the testis.  Testosterone 17-beta-dehydrogenase 3 

(Hsd17b3) is the enzyme expressed by Leydig cells that catalyzes the conversion of 

androstenedione to testosterone, and was used as a marker for Leydig cells.  There was 

no detectable difference in Hsd17b3 between WT and Becn1 cKO mice at 6-weeks-old 

(p>0.3, Holm-Sidak post-hoc test) (Figure 4.3 A).  However, there was a 3-fold and 12-

fold increase in Hsd17b3 of Becn1 cKO testes compared to WT at 8- and 12-weeks-old 

(p<0.01, Holm-Sidak post-hoc test).  This data supports the qualitative observation for 

the enrichment of Leydig cells in Becn1 cKO testes found by histology.  The expression 

of Rhox5, a Sertoli-cell specific transcription factor, was not different between WT and 

Becn1 cKO at 6-weeks-old, but Rhox5 was reduced by 2- and 5-fold in Becn1 cKO 

compared to WT at 8- and 12-weeks-old, respectively (p<0.05, Holm-Sidak test) (Figure 

4.3 A).  There was no difference detected between WT and Becn1 cKO at any time 

point, in the expression of Stra8, a marker for spermatogonia and pre-meiotic 

spermatocytes, suggesting that spermatogonia are present (Figure 4.3 A).  Finally, the 

expression of Tnp1, a spermatid marker, was reduced 100-fold in 12-week-old Becn1 
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cKO testes compared to WT (p<0.001, Holm-Sidak post-hoc test), corroborating the 

histological and observational evidence for no spermatogenesis (Figure 4.3 A). 

Due to the dramatic changes in morphology of the Becn1 cKO seminiferous tubules and 

the presence of immune cells in the epididymis, I next examined the injury markers 

tumor necrosis factor (Tnf) and clusterin (Clu).  Tnf is expressed at low levels by both 

Sertoli cells and round spermatocytes in normal conditions and has been shown to 

regulate germ cell survival (reviwed in Lysiak, 2004).  However, when Sertoli cells are  

injured (e.g. phthalate exposure, heat shock), Tnf expression is increased in Sertoli cells 

that induces Fasl expression in Sertoli cells, which in turn induces apoptosis and 

subsequent Tnf expression in spermatocytes (Yao et al. 2007; Mazaud-Guittot 2011).  

Clu is another gene upregulated by Sertoli cells in response to germ cell injury and in the 

presence of apoptotic bodies, is thought to act as a detergent to facilitate the removal of 

cellular material (Bailey et al. 2002; Bailey and Griswold 1999).  Both Tnf and Clu were 

increased in Becn1 cKO testes compared to WT at 8- and 12-weeks-old, demonstrating 

that injury occurs after Becn1 ablation (p<0.001, Holm-Sidak post hoc tests) (Figure 4.3 

B). 

To determine the location of spermatogonia, I next performed immunohistochemistry for 

germ cell nuclear antigen (GCNA).  GCNA positive cells were located in their niche 

locations on the basal side of the tubule near the basement membrane between Sertoli 

cells in all WT tubules (Figure 4.3 C, D, E).  GCNA positive cells were identified in 

Becn1 cKO tubules confirming the rt-PCR results for Stra8, up to the end of the 

experiment at 17-weeks-old (Figure 4.3 F, G, H).  However, the GCNA positive cells 

were not in their niche locations and often present in clusters near the lumen of the 

tubule.  The presence of GCNA positive cells in Becn1 cKO at 17-weeks-old suggests 
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that spermatogonia persist for at least 8 weeks after infertility has occurred.  

Furthermore, this suggests that Becn1function in Sertoli cells is necessary for the 

differentiation of germ cells.  

4.3.4 Becn1 is necessary for endocytosis in Sertoli cells 

BECN1 functions as a scaffold for the PtdIns3K ‘nucleation’ complex, which generates 

PtdIns3P on the forming autophagosome membrane (Funderburk et al. 2010).  While the 

PtdIns3K complex is necessary for autophagosome formation it has recently been 

described in endosome fusion, phagocytosis and regulating the exocyst complex (Liang 

et al. 2008; Bodemann et al. 2011; Lucin et al. 2013).  To test if Becn1 ablation affects 

Sertoli cell autophagy or endocytosis, I performed transmission electron microscopy on 

6-week-old testes.  Six-week-old testes were looked at because beyond 6-weeks-old 

several vacuoles are present in a majority of tubules indicating Sertoli cell damage, and I 

predicted that there would be a difference prior to the phenotypes.  

The wild-type Sertoli cells had numerous lysosomes, as evident by the electron dense 

vesicles and several smaller endosomes with diameters of about 500 nm (Figure 4.4 A, 

C, E, G).  I also observed multiple autophagosomes within WT cells indicating that 

autophagy does occur at detectable levels. 

The Becn1 cKO Sertoli cells, on the other hand, had numerous small vesicles in addition 

to large vacuoles, as seen by histology (Figure 4.4 B, D, F, H).  No autophagosomes 

were observed in any Sertoli cell, indicating a block in autophagosome formation.  

Surprisingly, a sperm head was observed within a Sertoli cell (Figure 4.4 D, labeled), 

demonstrating that Becn1 cKO Sertoli cells were phagocytizing sperm.  Additionally, 

endosomes with cellular debris are present without any indication of productive 

degradation (Figure 4.4 H, labeled).  Most striking was the absence of electron dense 
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lysosomes in the Becn1 cKO Sertoli cells.  Therefore, Becn1 is necessary for the 

clearance of phagocytic vesicles in Sertoli cells. 

4.3.5 Atg7 is necessary for continued spermatogenesis  

Because Becn1 has an  additional function in endocytosis and the data demonstrated 

that endocytosis is clearly abrogated in Becn1 cKO Sertoli cells, I wanted to determine 

the significance of another key autophagy gene, Atg7 for Sertoli cell function    I 

observed that Amhr2tm3(cre)Bhr/+; Atg7fl/fl (Atg7 cKO) also became infertile but not until 26-

weeks old (data not shown).  I performed immunoblot analysis to quantify ATG7 and 

SQSTM1 relative to ACTIN in 20- and 26-week-old WT and Atg7 cKO testes.  There is a 

moderate 25% reduction in ATG7 in Atg7 cKO compared to WT at 20-weeks (p=0.03, 

Holm-Sidak post hoc test) (Figure 4.7 C, D).  Comparing 20-week-old to 26-week-old 

samples there is a 4-fold decrease in ATG7 (p<0.01, Holm-Sidak post hoc test) and 

there is no difference between WT and Atg7 cKO at 26-weeks-old (p=0.6, Holm-Sidak 

post hoc test), suggesting that there is transition in ATG7 expression (Figure 4.7 C, D).  

At both 20- and 26-week-old I detected an expected 3-fold increase of SQSTM1 in Atg7 

cKO samples compared to WT (p<0.001, Holm-Sidak post hoc test), suggesting 

inhibition of autophagy.  Therefore, while the knockout of Atg7 is not detected in 26-

week-old mice, the increase in SQSTM suggests the expected inhibition of autophagy 

(Figure 4.7 C, D). 

To determine if testosterone production was reduced in Atg7 cKO males, I compared the 

reproductive tracts of WT and Atg7 cKOs at 12-, 20- and 26-weeks-old.   WT and Atg7 

cKOs were not different for the first 20 weeks of age in terms of body, seminal vesicle 

and testis weight (p>0.5, t-test) (Figure 4.5 A, B, C).  Furthermore, no difference in the 

number of epididymal sperm was observed at 12- or 20-weeks-old (p>0.4, Holm-Sidak 
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post-hoc test) (Figure 4.5 D).  Interestingly, at 26-weeks-old, testes weight and sperm 

count was decreased compared to WT (p<0.01, Holm-Sidak post-hoc test) (Figure 4.5 

B, D).  Additionally, three 26-week-old Atg7 cKO males were mated to two WT females 

each, but no litters were sired.  Moreover, 26-week-old Atg7 cKO seminal vesicle weight 

was increased by 70% compared to WT (p<0.01, Holm-Sidak post-hoc test) (Figure 4.5 

C).  A similar increase was also seen in prostate weight (data not shown), together 

suggesting an increase in testosterone signaling in 26-weeks-old Atg7 cKO males.   

To determine if Atg7 ablation affect spermatogenesis I performed histology on 20- and 

26-week-old testes.  The histology indicates similarities between the Atg7 cKO and 

Becn1 cKO mice.  At 20 weeks, Atg7 cKO seminiferous tubules had vacuolation in 

addition to eosinophilic contents present in the lumens (Figure 4.6 C).  Moreover, there 

was evidence of leukocytes in the epididymis of Atg7 cKO mice (Figure 4.6 G).  At 26 

weeks, there was extensive vacuolation and many tubules represent Sertoli-cell only 

with no spermatogenesis observed (Figure 4.6 D, arrowheads).  The Atg7 cKO 

epididymis was full of immune cells at 26-weeks-old, further indicating that the blood-

testis-barrier or blood-epididymis-barrier had been compromised (Figure 4.6 H, arrows).  

Thus, Atg7 is required for spermatogenesis and fertility. 
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4.4 Discussion 
The Sertoli cell performs multiple diverse tasks within the seminiferous tubule that make 

it essential for arguably the most important aspect of testicular function, 

spermatogenesis.  I undertook the experiments described here to determine a role for 

autophagy in the adult Sertoli cell by conditionally deleting Becn1 or Atg7, specifically in 

the adult Sertoli cell population.  I predicted that the relationship between phagocytosis 

and autophagy could be exploited in Sertoli cells and that dysregulation of autophagy 

would compromise Sertoli cell function.  The data presented suggests that this prediction 

is correct and that autophagy is required for Sertoli cell function, as both Becn1 cKO and 

Atg7 cKO males have degenerative seminiferous tubules that eventually fail to produce 

sperm.  However, the ablation of Becn1 is more severe with males becoming infertile at 

least 12 weeks earlier than the deletion of Atg7.  Thus, the data suggest that Becn1has 

an additional function besides autophagy in Sertoli cells. 

4.4.1 Both Atg7 and Becn1 are necessary for Sertoli cell function 

The deletion of either Atg7 or Becn1 leads to infertility due to failure of spermatogenesis.  

This was evident by counting sperm from the cauda epididymis, where 8-week-old 

Becn1 cKO males are devoid of sperm and 26-week-old Atg7 cKO males have 

dramatically reduced numbers.  A fertility assay performed on Atg7 cKO and Becn1 cKO 

males corroborated the reduced sperm counts with the failure to sire litters after 26 

weeks and 9 weeks of age, despite mating behavior evidenced by the presence of 

seminal plugs.  Lastly, the testes histology from Atg7 cKO and Becn1 cKO mice 

demonstrates a lack of spermatogenesis and Sertoli-cell only tubules by 26- and 10-

weeks-old, respectively.  Since Sertoli cells are long-lived, prominent regulators of 

spermatogenesis, and autophagy is an essential cellular process, it is not surprising that 
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dysregulation of autophagy would affect spermatogenesis.  However, the dramatic 

difference in timing was not expected. 

Both knockouts have similar phenotypes in that seminiferous tubules show vacuolation 

around Sertoli cells and the presence of cytoplasmic material and leukocytes in the 

epididymis.  While the function of autophagy has not been tested in Sertoli cells, 

signaling pathways that regulate autophagy have been studied.  The induction of 

autophagy occurs in response to the phosphorylation of the ULK1/2 complex.  The 

ULK1/2 complex associates with and is a target of the active mTOR complex, which 

inhibits autophagy.  The conditional deletion of the negative regulators of mTOR, TSC1 

or TSC2, show vacuolation of tubules at 12 weeks, followed by complete loss of germ 

cells by 5 months of age (Tanwar et al. 2012).  Similarly, the conditional deletion of an 

inhibitor of TSC1 and TSC2, LKB1, shows vacuolation of tubules and complete loss of 

germ cells by 5 months of age (Tanwar et al. 2012).  Moreover, AMPK is also a target of 

LKB1, which can directly phosphorylate the ULK1/2 complex not associated with the 

mTOR complex, promoting autophagy (Kim et al. 2011).  When the extracellular ligand 

Wnt binds its receptor, Frizzled, a signal transduction pathway leads to the stabilization 

of cytoplasmic β-catenin.  In turn, β-catenin regulates several processes in the 

cytoplasm and can translocate in the nucleus and regulate transcription.  Cytoplasmic 

and nuclear targets of β-catenin involve inhibiting autophagy (Petherick et al. 2013).  

Alternatively, autophagy inhibits the activation of β-catenin by directly degrading the Wnt 

receptor (Petherick et al. 2013; Gao et al. 2010; Zhang et al. 2011).  The Wnt/β-catenin 

pathway is essential throughout development and was recently explored in Sertoli cells 

through the introduction of a constitutively active β-catenin, which causes the 

vacuolation of the seminiferous tubules and loss of germ cells by 12 weeks of age 
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(Tanwar et al. 2010; Boyer et al. 2008).  In the above studies, autophagy was not tested 

but I could speculate that autophagy was inhibited in the Sertoli cells of all these mice.   

Noticing that the LKB1, TSC1 and TSC2 cKOs all have gradual declines in seminiferous 

tubule morphology, which is similar to the Atg7 cKO, it is possible that the inhibition of 

ATG7-dependent autophagy is related in these phenotypes.  Similarly, the Becn1 cKO 

has a rapid degeneration similar to the constitutively active β-catenin.  Future 

characterization of β-catenin to determine if a higher level of β-catenin activity is present 

in the Becn1 cKO, would test if similar mechanisms are involved.   

4.4.2 Becn1 is necessary for the clearance of phagocytized material 

These results indicate that Becn1 regulates the clearance of phagocytized differentiating 

germ cells.  The Sertoli cell is a non-professional phagocyte within the seminiferous 

tubule and is responsible for the phagocytosis of apoptotic germ cells, in addition to, 

residual bodies.  In H&E stained tissue, I observe the presence of sperm heads within 

Sertoli cells in close proximity to the basal lamina.  Additionally, by ultrastructure 

analysis I observe the presence of elongated sperm heads and what appear to be 

spermatocytes within vesicles of the Becn1 cKO Sertoli cell. Moreover, these inclusions 

have a noticeable structure, with the ability to be identified, and are not present in WT 

Sertoli cells, indicating that they are not being degraded. These observations support my 

hypothesis that autophagy proteins are necessary for the clearance of phagocytic 

vesicles.   

I propose a four-step model for Sertoli cell failure in Becn1 cKO mice.  First, Sertoli cells 

begin phagocytizing apoptotic, differentiating germ cells and residual bodies, but cannot 

fuse these to lysosomes.  The BECN1 complex that binds to UVRAG has been shown to 

be necessary for endosomes containing EGFR and Cathepsin D to fuse to lysosomes 
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(Zeng et al. 2006).  One would expect an excess of lysosomes in Becn1 cKO Sertoli 

cells if this was the case, but the data showed the opposite.  The lack of lysosomes 

could be due to decreased lysosome biogenesis that partly occurs from endosome-

endosome fusion events (Nielsen et al. 2007), which I have implicated BECN1 in 

previously.  Either way, phagocytized vesicles fail to fuse to lysosomes.  Second, Sertoli 

cells undergo a stress response due to having an accumulation of phagocytic vesicles 

and drop in available ATP.  While the true implication of an accumulation of phagocytic 

vesicles is largely unknown, the accumulation of autophagosomes, endosomes or 

lysosomes is attributed to cell death.  Thus, I suspect that the accumulation of 

undigested phagocytic vesicles would be detrimental.  Furthermore, Sertoli cells have a 

very high metabolism compared to other cells in the testis and obtain ATP from lipid 

metabolism or through the degradation of phagocytized material (Xiong et al. 2009).  

Third, since Sertoli cells cannot further support phagocytosis, management over the 

incredibly high amount of apoptosis that occurs in the seminiferous tubule is lost.  The 

observation of particles that resemble residual bodies in the epididymides of both Becn1 

cKO and Atg7 cKO mice suggest that there is a failure in Sertoli cells to support further 

phagocytosis.  Additionally, a role for autophagy in regulating the expression of 

scavenger receptors on the surface of macrophages has been demonstrated (Bonilla et 

al. 2013).  The specific scavenger receptor, scavenger-receptor, class B I (SR-BI) is 

partly responsible for the binding to and phagocytosis of membranes with exposed PS 

(e.g. apoptotic cells and residual bodies) (Nakanishi and Shiratsuchi 2004).  Thus, loss 

of scavenger receptor trafficking by autophagy proteins in my conditional knockouts may 

be responsible for the apparent reduced phagocytosis.  While SR-BI knockout males are 

fertile no study on the testis have been performed to determine what compensatory 

mechanisms exist (Rigotti et al. 1997).  Fourth, with differentiating germ cells undergoing 

apoptosis there is an increase in inflammatory cytokines, such as TNFα, resulting in the 
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degradation of the tubule and infiltration of leukocytes.  Indeed, exposure of the 

seminiferous epithelium to TNFα disrupts the blood-testis-barrier leading to leukocyte 

infiltration (Li et al. 2006a).  Additionally, recent insights have identified that TNFα 

downregulates the expression of Coxsackievirus and adenovirus receptor in Sertoli cells, 

which facilitates germ cell-to-Sertoli cell junctions and results in sloughing of material 

into the lumens (Gao and Lui 2014).  I detected an inflammatory response in the Becn1 

cKO as increased Tnfa and ApoJ expression, and leukocyte infiltration into the 

epididymides.   

To determine if this model is correct, there are several experiments that need to be 

done.  First, a molecular identification of the cytoplasmic material in the epipdymides to 

determine if these are residual bodies should be completed.  Second, the 

characterization of an accumulation of phagocytized material needs to be performed.  

This could be done though feeding bacteria that block phagocytic vesicle fusion.  Third, 

apoptotic indices of differentiating germ cells in mutant testes should be characterized to 

determine if increased apoptosis occurs with gene ablation.  Fourth, to determine the 

apparent permeability of the blood-testis-barrier small molecule tracers could be injected 

into mutant testes.  Characterization of the ability of mutant Sertoli cells to bind 

molecules like PS can determine the propensity to initiate phagocytosis.  Lastly, the 

presence of GNCA positive cells in Becn1 cKO tubules, suggests that Sertoli cells are 

minimally functioning.  If the Sertoli cells are simply stressed, then this should be 

reversible through reintroduction of the gene that was knocked out.  This could be done 

with the use of an inducible gene system, such as a TET-on system, where a 

tetracycline-induced transcription factor induces the expression of a replacement 

transgene that is expressed only after Cre recombination, to limit the rescue to the 

original cells. 
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4.4.3 Summary 

Amhr2-Cre has also been shown to be expressed in interstitial cells of the testis, and 

any confounding effects from that expression might be of concern (Teixeira et al. 1996; 

Jeyasuria et al. 2004; Tanwar et al. 2010).  However, I did not observed recombination 

by GFP expression in Leydig cell and there was no phenotypic defect observed in 

Leydig cell steroidogenesis when comparing WT and Becn1 cKO mice.  The 

dysregulation of Becn1 in rat Leydig cells reduces testosterone production, and would 

have been an expected result if recombination occurred in Leydig cells.  However, I did 

not detect a decrease in testosterone, as suggested by similar seminal vesicle weights.  

Moreover, comparison of the seminal vesicles and prostate from 26-week-old Atg7 cKO 

mice and WT, suggest that there are increasing amounts of testosterone produced.  In 

Becn1 cKO testis, it appears that Leydig cell hyperplasia does occur.  However, at 12-

weeks-old Becn1 cKO testes are smaller than WT testes, and their weight is half of WT 

testes, suggesting the apparent increase in Leydig cells numbers in any given section is 

caused by the decrease in total volume of the adult mutant testis.  Similar observations 

have been made in other mouse models with defective Sertoli and/or Sertoli-germ 

functions (Meng et al. 2000; Papaioannou et al. 2009; Tanwar et al. 2010). 

The conclusions from this study support a role for Becn1 in regulating Sertoli cell 

phagocytosis and function.  Furthermore, the similar phenotype in Atg7 cKO mice 

demonstrate a role for autophagy in Sertoli cell function, although the ablation of Atg7 is 

less severe when compared to the deletion of Becn1.  The conclusions from any study 

where a crucial developmental pathway is perturbed should be carefully analyzed, and 

this is true for this study.  Further experiments are needed for broad and mechanistic 

conclusions, but I provide novel evidence that of autophagy is a necessary process for 

Sertoli cells. 
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Figure 4.1.  Becn1 expression in Sertoli cells is necessary for fertility beyond 8 
weeks.  (A through D)  Six-week-old testis and epididymis from CAG-CAT-EGFP+ 
animals on either WT or Becn1 cKO backgrounds viewed under dark-field (A) and EGFP 
epi-fluoresence (B).  Immunofluorescence for EGFP counterstained with DAPI to show 
cellular localization of GFP expression in WT (C) and Becn1 cKO backgrounds (D).  Bar 
equals 100 μM.   
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Figure 4.1 Continued.  (E through H)  Body (E), testes (F), and seminal vesicle (G) 
masses at time of euthanasia, and estimated number of epididymal sperm (H).  Bars 
indicate mean ± s.e.m.  * indicates p<0.05 versus WT using Holm-Sidak post-hoc test.  n 
≥ 3 for each group.  (I)  Comparison of testis from WT (left) and Becn1 cKO (right) at 10 
weeks of age.  (J)  Results from fertility assay, indicating the percent of successful 
mating for different aged Becn1 cKO males.  Ratio above each bar indicate the number 
of litters per total mating attempts.  Each bar represents attempts from at least five 
different Becn1 cKO males. 
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Figure 4.2.  Becn1 is necessary for Sertoli cell integrity.   
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Figure 4.2. Continued.  (A through H)  Representative images of H&E stained 
seminiferous tubules from males at 6- (A D, G and J), 10- (B, E, H and K) and 17- (C, F, 
I and L) week-old WT and Becn1 cKO males.  Vacuolation of the tubules in Becn1 cKOs 
is evident (arrowheads).  Bar equals 100 μM.  (M and N)  Representative images of H&E 
stained cross-sections of epididymal tubules from 6-week-old WT and Becn1 cKO males 
(M and N, respectively).  Immune cells are present in the tubules of Becn1 cKO males 
(arrows).  Bar equals 100 μM. 
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Figure 4.3.  Spermatogonia are still present with evidence of Sertoli cell injury in 
Becn1 cKOs.  (A and B)  Real-time PCR analysis for germ cell development markers 
(A) and cell injury makers (B).  Bars represent mean ± standard error of the mean.  Data 
is expression normalized to Beta-actin.  * indicates p-value <0.05 for Holm-Sidak 
posthoc test versus WT for that age, within each gene.  (C through H)  Representative 
images of seminiferous tubules immunostained for GCNA (green) and counterstained 
with DAPI (blue) from 6- (C and F), 10- (D and G) and 17- (E and H) week-old WT and 
Becn1 cKO males.  Bar equals 100 μM. 
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Figure 4.4.  Endocytosis is abrogated after Becn1 ablation.   
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Figure 4.4 Continued.  (A through H)  Lower magnification transmission electron 
microscopy images showing the basal side of single Sertoli cells from 6-week-old WT (A 
and C) and Becn1 cKO males (B and D) (dashed line is to outline Sertoli cell).   Higher 
magnification indicating autophagosomes and lysosomes in WT (E and G) in contrast to 
extensive vacuolation and failed endocytosis in Becn1 cKO (F and H).  Structures are 
labeled by abbreviations:  GC, germ cell; Mt, mitochondria; Lys, lysosome; End, 
endosome. 
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Figure 4.5.  26-week old Atg7 cKOs have reduced sperm.  (A through D)  Body, 
testes and seminal vesicle masses at time of euthanasia (E, F and G, respectively) and 
estimated number of epididymal sperm (H).  Bars indicate mean ± standard error of the 
mean.  * indicates p<0.05 for Holm-Sidak post-hoc test for age.  n ≥ 3 for each bar. 
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Figure 4.6.  Atg7 is necessary for Sertoli cell integrity.  (A through D)  
Representative images of hematoxylin and eosin stained seminiferous tubules from 20- 
(A and C) and 26- (B and D) week-old WT and Atg7 cKO males.  Vacuolation of the 
tubules in Atg7 cKO is evident (arrowheads).  Bar equals 100 μM.  (E through H)  
Representative images of H&E stained cross-sections of epididymal tubules from 20- (E 
and G) and 26- (F and H) week-old WT and Atg7 cKO males.  Immune cells are present 
in the tubules of Atg7 cKO males (arrows).  Bar equals 100 μM. 
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Figure 4.7  BECN1 and ATG7 proteins levels in testes. 
(A and B)  Representative immunoblot for BECN1, SQSTM1 and ACTIN at 6- and 10-
weeks-old (A).  Quantification of band density relative to ACTIN (B).  Data represent 
mean with s.e.m. * denotes p<0.05 for indicated comparison by Holm-Sidak post-hoc 
test.  n=5.  (C and D)  Representative immunoblot for ATG7, SQSTM1 and ACTIN at 20- 
and 26-weeks-old (C). Quantification of band density relative to ACTIN (B).  Data 
represent mean with s.e.m. * denotes p<0.05 for indicated comparison by Holm-Sidak 
post-hoc test. n=4. 
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CHAPTER 5: GENERAL CONCLUSIONS AND DISCUSSION 
 

The data presented in this dissertation support that autophagy is required for embryonic 

oocyte survival and adult Sertoli cell function.  Additionally, the data support that Becn1 

is necessary for luteal cell steroidogenesis. The goal of this dissertation was to 

determine the significance of autophagy in the ovary and testis though conditional 

deletion of two key autophagy genes, Atg7 and Becn1 in the mouse.  The underlying 

hypothesis tested was that autophagy is necessary for cellular homeostasis and data 

presented in Chapters 2 and 4 data support this.  Deficiency in either Atg7 or Becn1 

resulted in a reduced oocyte endowment in females and the degeneration of the 

seminiferous tubule followed by infertility in males.  However, in Chapter 3, the data 

support two contradictory conclusions, dependent on the gene studied.  Becn1 is 

required for progesterone synthesis during pregnancy and gene deficiency resulted in 

reduced circulating progesterone followed by abortion or preterm labor.  In contrast, Atg7 

gene deficiency resulted in a 2-fold increased production of progesterone, and did not 

affect pregnancy outcome.  Presented in this final chapter, is a discussion of how these 

findings relate to each other and possible future directions to take. 

Dysregulation of an essential process such as autophagy is likely to have a detrimental 

phenotype.  Indeed, knockout mice for several key regulators of autophagy cannot 

survive after birth or are embryonic lethal (reviewed by Hale et al. 2013).  Additionally, 

many of the secondary and tertiary regulators of autophagy have been implicated in 

several human diseases (reviewed by Jiang and Mizushima 2014).  For example, 

mutation of an Atg8-like protein that becomes conjugated to autophagosome 

membranes in neurons results in higher iron-ion accumulation and causes neuron 

damage leading to behavioral abnormalities (Haack et al. 2012).  By obstructing 
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autophagy through the ablation of Atg7 or Becn1, I expected a negative effect on cellular 

homeostasis that would inhibit the normal function of that cell, as well as the revelation 

of any or non-autophagy related functions.  In the case of embryonic oocytes and Sertoli 

cells this notion was supported.  I observed fewer oocytes at birth and seminiferous 

tubules degenerated in autophagy deficient mice.  However, we must also consider that 

key regulators of essential pathways are under strong selection pressure.  Furthermore, 

this selection pressure supports the development of functionally redundant pathways 

and proteins.  It should be appreciated that autophagy is not only an animal process, but 

that it is deeply rooted in the eukaryote lineage, with a well-supported hypothesis that 

autophagy was developed in the last-common ancestor to all eukaryotes that last existed 

approximately 2 billion years ago (Hughes and Rusten 2007).  This makes sense as 

eukaryotes have organelles, and autophagy is the only process characterized to remove 

and degrade organelles at any appreciable rate.  Thus, it is reasonable that throughout 

time gene duplication events would have allowed for redundant genes and pathways to 

develop.  Many of the single genes identified in yeast that participate in many aspects of 

autophagy have expanded to gene families in mammals.  For example, Atg8 is 

represented in mammals by three gene families for a total of 10 different proteins 

(reviewed by Shpilka et al. 2011).   

Now let us consider all of the processes in a cell.  Many of these processes are 

unrelated, but occasionally we will find proteins that perform functions in several different 

pathways, also called pleiotropy.  Additionally, proteins can develop new functional 

domains that can create dependence for that protein in an additional process.  

Furthermore, some of these proteins are key regulators of essential processes, forming 

interaction networks that are subject to high selection pressure.  However, more often 

we will find that there are cellular processes that rely upon essential processes to 
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function.  Think about ATP synthesis, RNA transcription or fatty acid hydrolysis that all 

generate products that are necessary for downstream cellular processes.  There are 

models that try to explain how selection drives these interactions networks elsewhere, 

but I will not elaborate (Nowak et al. 1997).  It is here that I will leave you with the implied 

hypothesis of this dissertation.  By ablating the key regulators of autophagy Atg7 and 

Becn1 we dysregulate autophagy allowing for the potential discovery of processes that 

depend on either the gene, autophagy or both. 

This dissertation provides evidence that Becn1 is necessary for endosome maturation, in 

addition, to its role in autophagy.  The transmission electron micrographs presented in 

both Chapters 3 and 4 are great examples of this, demonstrating an accumulation of 

endosomes in Becn1 cKO luteal cells and Sertoli cells.  Endosomes are a diverse group 

of vesicles within a cell.  They can originate from the Golgi apparatus to secrete soluble 

proteins, the endoplasmic reticulum to deliver transmembrane signaling molecules and 

transporters or the plasma membrane to internalize extracellular components (Huotari 

and Helenius 2011).  Moreover, there is evidence that not all endosomes are created 

equal.  Different functional families of endosomes have a distinct protein-profile 

associated with their membranes and contents.   

Endocytosis or the process of internalizing extracellular components into endosomes, 

parallels autophagy in many aspects.  First, cells can acquire energy and nutrients 

through endocytosis of macromolecules and proteins.  Second, the end is the same, as 

a mature endosome fuses to a lysosome.  An important function of endocytosis is the 

internalization of cell-surface receptors and their ligands, which is vital for a cell’s growth 

and communication, and can provide an example for endosome maturation.  

Endocytosed material is internalized as endocytic vesicles that fuse together to form 
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early endosomes.  The function of the early endosome is to sort its contents for 

downstream processes.  Cell-surface receptors inside can be recycled back to the 

plasma membrane, transferred to the Golgi network or remain in the endosome.  The 

contents of an endosome can be directly recycled without digestion or can be 

transported to multivesicular bodies, also called late endosomes where the continued 

fusing with intraluminal vesicles and themselves cause them to grow in size and gather 

contents.  Late endosomes then fuse with lysosomes and the contents are digested and 

provided for use by the cell.   

There are a number of proteins involved in transporting and identifying the different 

classes of endosomes.  Of these the Rab-GTPases, Rab5 and Rab7 are best studied.  

Once activated the Rab-proteins facilitate the binding to motor proteins to transport the 

endosome along microtubules.  Additionally, the Rab-proteins recruit other proteins that 

facilitate endosome maturation including hydrogen ion pumps, which act to lower the pH 

inside a late endosome.  Rab5 is found predominately on early endosomes and is 

necessary for early endosome fusion events, suggesting its role in sorting.  On the other 

hand, Rab7 is predominately found on late endosomes and is necessary for 

multivesicular body and lysosome fusion.  Thus an exchange of Rab5 for Rab7 occurs 

during this transition that can be modeled (Binder and Holzhütter 2012).   

In the Becn1 cKO luteal cells, I found an increased number of endosomes with a 

concurrent decrease in progesterone production and neutral lipid storage.  Cholesterol is 

the substrate for steroidogenesis and lipid droplet formation, and as discussed in 

Chapter 3, it is possible that a decrease in the ability to transport cholesterol is 

responsible for these phenotypes.  I observed large endosomes that in many cases were 

empty, throughout a majority of the cytoplasm.  There is no evidence that these 
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endosomes fuse with multivesicular bodies and / or lysosomes because they are too big 

and are not electron dense structures.  It is possible that these endosomes are early 

endosomes and their contents include the compliment of LDL and HDL cell-surface 

receptors.  If we believe this, then receptors cannot be recycled back to the plasma 

membrane because early endosomes are not maturing.  Therefore, the luteal cell cannot 

transport enough HDL and LDL to support progesterone production.  If this is true, then 

there should be an accumulation of Rab5 on the endosomes in the luteal cells of Becn1 

cKOs.  I would also expect a phenotype in progesterone production when the receptor in 

question is inhibited.  The LDLR knockout females have no apparent fertility defects 

(Ishibashi et al. 1993).  As LDLR is the prominent lipoprotein receptor endocytosed and 

mice can compensate for its loss, this is not a likely candidate.  In contrast, SR-BI 

females are infertile (Trigatti et al. 1999).  This appears to be due to an increase of 

circulating HDL that in turn has a detrimental effect on oocyte competence (Miettinen et 

al. 2001).  However, the SR-BI knockout females have been shown to produce 50% less 

progesterone during an induced pseudopregnancy (Jiménez et al. 2010) and knockdown 

of SR-BI in human differentiated granulosa cells results in reduced progesterone 

synthesis (Kolmakova et al. 2010).  This suggests that SR-BI function could be affected 

in the Becn1 cKO.  I did not observe a reduction in Scarb1 mRNA in my study at P8.5 

but it is possible the cellular distribution of SR-BI is not in the plasma membrane where it 

would be expected.  While the relationship between SR-BI progesterone is suggestive of 

the interaction with BECN1, the endocytosis of SR-BI is not the primary function 

described and might be rare.  It would be important to characterize SR-BI endocytosis in 

mouse luteal cells during pregnancy.  Additionally, I do not know what the contents of 

the observed endosomes are.  The endosomes may be full of LDLR and LDL or SR-BI 

contributing to reduced cholesterol transport.  Alternatively, the increased number of 

endosomes may cause cell stress leading to decreased steroidogenesis.  A necessary 
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experiment would be to detect Rab5 and Rab7 in isolated endosome fractions to 

determine if these are early or late endosomes.  In the same study, the presence of the 

cell-surface receptor candidates can be tested.   

The phagocytosis block in Sertoli cells presented in Chapter 4 parallels the endosome 

story.  I identified elongated spermatids and degenerating spermatocytes within the 

Sertoli cells of Becn1 cKO but not in controls.  This supports that phagocytized material 

is not entering the endosome pathway for further maturation and degradation.  

Phagocytized vesicles are decorated with Rab-proteins and proceed to mature similar to 

early and late endosomes.  A difference between endocytosis and phagocytosis being 

that cell-surface receptors are not recycled back to the plasma membrane but to the 

Golgi complex through the retromer complex.  As introduced in Chapter 4, there is 

growing evidence that the Atg8-like protein, LC3, is recruited to phagocytic vesicles that 

contain Listeria monocytogenes (Lam et al. 2013), and this association is necessary for 

degradation.  It is unknown if something similar occurs in Sertoli cells; however, cultured 

Sertoli cells have been shown to activate autophagy as recognized by LC3 conversion 

during phagocytosis (Yefimova et al. 2013).  I attempted to look at this phenomenon by 

observing LC3 in the testes of GFP-LC3 mice; however, there was no detectable GFP 

puncta in WT or mutants (data not shown).  This is surprising because autophagosomes 

have been observed by electron microcopy in Sertoli cells (Galdieri et al. 1981); 

however, GFP puncta were also not observed in WT luteal cells, but were seen in 

oocytes and theca cells.  As both the Sertoli cell and luteal cells are highly metabolic, it 

is possible that any autophagosome that is formed is small and short lived, making it 

difficult to observe puncta.  Alternatively, it could be possible that fixation quenched the 

GFP signal in the testes.  However, I did observed GFP puncta in the epididymal clear 

cells (data not shown).  Additionally, different amounts of fixation did not bring about 
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signal, suggesting that no puncta exist in the testis.  I quantified LC3 by Western blot 

from whole testis but detected no difference between either Atg7 cKO or Becn1 cKO and 

WT (data not shown).  This result could be because there is no difference, or that the 

population of Sertoli cells is too small to detect a difference.  A better experiment would 

be to detect LC3 in a purified population of Sertoli cells.  Now if we believe the GFP-LC3 

results in the testis, that there are no puncta, this must mean either Sertoli cells do not 

use LC3 for incorporation into membranes or the LC3 is quickly degraded.  Treatment of 

cultured GFP-LC3 Sertoli cells with bafilomycin A1, which blocks lysosome maturation, 

and thus causes an accumulation of autophagosomes, would be one way to test this.  

Regardless of these suggested experiments, the data demonstrate the phenotype.   

The ablation of either Becn1 or Atg7 in the Sertoli cells appear to have the same 

phenotype.  I performed no mechanistic analysis to prove this, but the phenotypes are 

similar.  It is possible that dysregulation of autophagy is the cause of the phenotype in 

both mutants, but the delayed onset in Atg7 cKO mice casts doubt.  It is possible that 

Atg7-independent autophagy occurs in Sertoli cells to compensate for the loss of Atg7 

and it merely takes longer for the phenotype to manifest itself.  Alternatively, Becn1 is 

involved with the endosome maturation and this is essential for Sertoli cell function while 

in the Atg7 mutants the Sertoli cell succumbs to the loss of homeostasis.  The latter is 

clearly the case in the luteal cells, where the loss of Atg7 showed the opposite 

phenotype compared to the loss of Becn1.  Not explored in this dissertation was the idea 

that compensation for the loss of Becn1 could be happening through Beclin-2.  It would 

be easy enough to look at mRNA expression of Beclin-2 and protein expression of 

BECN2 in the Becn1 knockouts.   
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So what is the evidence that BECN1 participates in endosome maturation?   The 

receptor recycling of EGFR and the maturation of Cathepsin D are the best examples I 

currently know of.  EGFR is a cell-surface receptor that binds to EGF and EGF-like 

ligands.  Upon ligand binding, the receptor homodimerizes and results in the activation 

of multiple signaling pathways (e.g. MAPK, JAK/STAT, PI3K/AKT/mTOR, and 

PLC/PAG/PKC) (Sui et al. 2014).  Many of which were discussed in relation to the 

activation of the cumulus granulosa during the LH surge in Chapter 1.  Once bound to 

ligand, the EGFR-ligand complex remains active and in order to downregulate the 

transduction pathways, the EGFR-ligand complex undergoes receptor-meditated 

endocytosis to either degrade the receptor-ligand complex or to degrade the ligand and 

recycle the receptors back to the plasma membrane.  The presence of PtdIns3P on early 

endosomes that contain EGFR-ligand complexes is responsible for maturation and 

sorting to late endosomes by recruiting Rab7 (Petiot et al. 2003).  It was later shown the 

presence of PtdIns3P is not a function of the plasma membrane class I PtdIns3k, but of 

the class III PtdIns3k, which also regulates autophagosome formation (Thoresen et al. 

2010).  Moreover, the knockdown of individual components of the PtdIns3k complex 

(e.g. VPS34, VPS15, BECN1, UVRAG and BIF-1) results in inhibited EGFR sorting and 

recycling (Thoresen et al. 2010).   

The evidence with Cathepsin D is similar, but from a different source of endosome.  I 

have only described endocytosis, thus far, but endosomes can mature from the Golgi-

network, as well.  Cathepsin D is an aspartic protease that is a member of the milieu of 

lysosome proteases.  To inhibit random protease activity, many lysosome proteases are 

translated in an inactive form that only become active after entering a lysosome.  

Cathepsin D is such a protein that must undergo maturation by cleavage after entering a 

lysosome.  Thus, tracking of Cathepsin D through the endosome maturation is possible 
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by detecting the different forms.  Using experiments similar to what I just described, 

Cathepsin D was identified as another protein that did not translocate correctly in 

endosomes when trying to elucidate how EGFR is sorted in VPS34 deficient cells (Row 

et al. 2001).  In the same experiments already discussed for EGFR, Cathepsin D 

maturation was equally, negatively affected, suggesting a similar mechanism (Thoresen 

et al. 2010).  The identification of the Rab7 interacting protein, Rubicon, that also 

interacts with BECN1, demonstrated a mechanism for how the BECN/PtdIns3K complex 

could interact with endosomes (Liang et al. 2008).  Later a “feed-forward loop” between 

UVRAG, Rubicon and C-VPS/HOPS (C vacuolar protein sorting complex / homotypic 

vacuole fusion and protein sorting) was found to exist in human cell culture that activates 

Rab7 and subsequent endosome maturation (Sun et al. 2010).  Thus, the 

BECN1/PtdIns3k complex is present on endosomes during endosome maturation.  

However, this appears to only influence some endosomes, such as those containing 

Cathepsin D and EGFR, as other aspects of endosome maturation were reported to be 

normal in the referenced studies.  So, is there a commonality between phagocytic 

vesicles, vesicles containing potential lipid substrate and the EGFR/Cathepsin D 

endosomes?  I am not sure, but will speculate that the scavenger receptors involved with 

phagocytosis in Sertoli cells and endocytosis in luteal cells are similar to 

EGFR/Cathepsin D.  It would be an attractive experiment to follow such receptors in the 

mutants described in this dissertation.   

Within this dissertation, I have presented data supporting my hypotheses that autophagy 

is necessary for oocyte survival and Sertoli cell function.  Additionally, the data provide 

evidence that Becn1 has an essential role for steroidogenesis in luteal cells.  A theme 

that Becn1 has pleiotropic roles to autophagy is also prevalent in the data, further 

supporting that the BECN1/PtdIns3K complex plays a role in endosome maturation, 

182 
 



 

regulating the degradation of phagocytic vesicles and perhaps lipoprotein-receptor 

mediated endocytosis.  Overall, I have shown that autophagy is a process necessary for 

the function of the reproductive system and is an attractable model to study.  The 

preterm labor mouse may provide insights into progesterone production in humans, and 

demonstrates that there is conservation of autophagy regulation on steroidogenesis 

between Leydig and luteal cells.  This provides us with a hypothesis that Becn1 

deficiency in placenta will negatively impact steroidogenesis, and may lead to preterm 

birth.  Additionally, this opens up the opportunity to test the autophagy-steroidogenesis 

interaction in other cell types, like the adrenal corticotrophs.  The implications for the 

Sertoli cell work may be important for future study of phagocytosis, trafficking and 

degradation of the phagocytized material.  Knowing that phagocytosis machinery such 

as BECN1 is conserved among several different phagocytes, allows for a comparative 

approach to studying disease models such as, macular degeneration.  Regardless of 

these outcomes, the data within this dissertation provide a better understanding of the 

role of autophagy in oocytes, luteal cells and Sertoli cells and provides new evidence to 

ask new questions in the field of reproductive biology. 
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