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Abstract: The United States is one of the largest per capita water withdrawers in the world, and
certain parts of it, especially the western region, have long experienced water scarcity. Historically, the
U.S. relied on large water infrastructure investments and planning to solve its water scarcity problems.
These large-scale investments as well as water planning activities rely on water forecast studies
conducted by water managing agencies. These forecasts, while key to the sustainable management of
water, are usually done using historical growth extrapolation, conventional econometric approaches,
or legacy software packages and often do not utilize methods common in the field of statistical learning.
The objective of this study is to illustrate the extent to which forecast outcomes for commercial,
institutional and industrial water use may be improved with a relatively simple adjustment to forecast
model selection. To do so, we estimate over 352 thousand regression models with retailer level
panel data from the largest utility in the U.S., featuring a rich set of variables to model commercial,
institutional, and industrial water use in Southern California. Out-of-sample forecasting performances
of those models that rank within the top 5% based on various in- and out-of-sample goodness-of-fit
criteria were compared. We demonstrate that models with the best in-sample fit yeild, on average,
larger forecast errors for out-of-sample forecast exercises and are subject to a significant degree of
variation in forecasts. We find that out-of-sample forecast error and the variability in the forecast
values can be reduced by an order of magnitude with a relatively straightforward change in the
model selection criteria even when the forecast modelers do not have access to “big data” or utilize
state-of-the-art machine learning techniques.

Keywords: commercial; institutional; and industrial water use; forecast methods; water planning;
sustainable water management

1. Introduction

The United States (U.S.) is one of the largest per capita water withdrawers in the world [1].
It has a large water supply overall; however, water scarcity is still a challenge as water is not present
where, when, and in the form it is needed. A large portion of the Western U.S. has been vulnerable to
drought, and this also portion constitutes the areas with the fastest population growth [2]. Water is an
essential input for most sectors in the economy; hence, its scarcity has caused the U.S. to be historically
dependent on large water infrastructure investments as well as extensive planning, both of which rely
on water use forecasts [3,4]. The severity of droughts is expected to be exacerbated by the changing
climate [5,6], which increases the importance of reliable forecasts for sustainable water management.
California, by far the largest U.S. state both by population [7] and by economic activity measured
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using gross domestic product (GDP) [8], requires all water utilities serving more than 3000 users to
formulate an Urban Water Management Plan (UWMP) every five years [9]. UWMPs guide important
water infrastructure investment and policy decisions.

Water use is studied within three broad sectors, which are agriculture, residential, and commercial,
institutional, and industrial (CII). For definition and terminology, see [10]. These studies are conducted
both within academia and by water utilities where there are two overarching objectives: forecasting
water use and estimation of policy parameters such as responsiveness to price or other interventions
such as social comparisons and subsidies on low flow equipment.

Advances in computational power and the size of data collected in different contexts has meant
increased interest in statistical learning in a variety of fields, and especially in the field of forecasting.
While we see some examples of such methods being used in water studies by academic researchers,
there is evidence that it is not the norm [11]; further, the ones conducted by water utilities rely on
extrapolation based on historical growth, conventional econometric methods, and black-box software
packages (see the literature review section for more detail).

A prominent idea in the field of statistical learning is the distinction between the training error and
test error. The former refers to the error within the training sample, whereas the latter is the measure of
error that results from using a statistical learning method to predict the outcome on a new observation
that was not used in the training process. Training error can be easily calculated by applying the
model to the observations used in its training, a concept referred to as in-sample goodness-of-fit in the
field of econometrics. Training error often differs from test error rate, and in particular, the former
can significantly underestimate the latter [12]. The statistical learning field offers a class of methods
that estimate the test error by holding out a subset of the training observations from the model fitting
process and then applying the model to those observations that are held out. This is known as the
validation set approach, namely allocating the available set of observations into two parts, a training
set and a validation (or hold-out) set. The model is fit on the training set, and the fitted model is used
to predict the outcomes in the validation set. The resulting validation set error, typically assessed using
mean squared error, gives an estimate of the test error. For a more detailed explanation of the concepts,
see James, Witten, Hastie, et al. [13].

The main objective of this study is to demonstrate, within the context of CII water use, how current
practices prevalent in water forecast studies published by many utilities as well as academic researchers
can be prone to large forecast errors and how these forecasts can be significantly improved with a
relatively straightforward adjustment. Specifically, we estimate a large set of models and implement
the validation set method described above. Then we rank the models based on their performance in
forecasting data points that are outside of the training sample, which is also known as out-of-sample
performance. Afterward, we compare the forecast performances of the models that are selected in this
fashion to those of the ones that would be selected based on more conventional metrics that are widely
used in econometric studies.

The context within which we conduct our study is the CII water use in the Metropolitan Water
District of Southern California (MWDSC), the largest water utility in the U.S. by population served
and treated water delivery [14]. The output of our analysis is a distribution of CII water use forecasts
in Southern California.

Studying CII water use is important for an array of reasons. First, it remains an understudied
component of urban water demand and management mostly due to lack of data, and because of
the variety of different activities in the sector. Due to differences in drivers of water use, it is not
appropriate to rely on findings from the residential or agricultural sector to forecast CII water use.
For example, it is shown that although the amount of water use in the commercial sector is somewhat
sensitive to water price, it is not as sensitive as residential water use [15].

Second, while CII water use is not as large a portion of publicly supplied water in the U.S. [16] as
are residential and agriculture sectors, in terms of overall water use, it still has a sizeable share because
self-supply of water is common in the CII sector [17]. The portion of CII water use via self-supply,
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however, may become smaller since water shortages in the western U.S. have led to state governments
becoming more involved in water resource management. For example, in California, lawmakers
passed a landmark legislation in 2014 that aims to regulate, for the first time, sustainable groundwater
management [2]. This trend towards a centralized management mechanism further increases the
importance of planning and forecasting within the CII sector, at least from the perspective of public
water suppliers. Additionally, changing trends in the economic landscape of both developed and
developing countries, a shift towards commercial activities in developed countries, and increasing
industrial activities gaining pace in developing nations [18] are likely to increase the relative importance
of CII sectors in total water use. As an example, the majority of the water used in industrial activities
in California is, for the time, being self-supplied, while commercial water is supplied by public
utilities [17]. Therefore, in addition to the institutional changes mentioned above, the shift from
industrial towards commercial activities in the economic mix is another reason we may see the CII
sector take up a greater share of publicly supplied water in the U.S.

Third, the CII sector already makes up a considerable portion of water use in other parts of the
world, which makes this study relevant in the international context as well. In Europe, the industrial
sector accounts for 23% of total water use, with significant variability in water use patterns across
countries [19].

Finally, water-saving measures are likely to be a crucial part of overall water management in the
face of droughts induced by climate change, rising population, and the surge in per capita demand
due to globally increasing life standards [20,21]. The commercial sector can be an important avenue
to save water, for example, through various rebate programs [22–24]. Effective implementation and
credible evaluation of such programs will require reliable water use forecasts in the CII sector, which
will also improve the success of water plans and budgets.

1.1. Current State of the Literature

There is a large body of literature studying urban water use, which can be divided into two
main groups. The first group comprises studies that look at the effect of price and various other
factors on water demand as well as determine the weight of different determining components. For a
meta-analysis on earlier work, see Espey [25]. Estimating the effect of price on quantity demanded
poses an econometric challenge, known as the simultaneity problem because quantity demanded and
price affect each other simultaneously. Said differently, since the suppliers can set the price depending
on what they expect the demand to be, the price is not an actual “independent variable”. Therefore a
price response parameter recovered from observational data cannot easily offer a credible estimate of the
price effect. In order to overcome this challenge, more recent studies have used experimental methods
to investigate the effect of price as well as other factors like social norms and comparisons [26–29].
Quasi-experimental methods like difference-in-difference and regression discontinuity design are also
being more commonly used in recent years to avoid the simultaneity bias, where methods to study
the effect of price and interventions such as low flow equipment on demand. Romano, Salvati, and
Guerrini [30], and Morote, Hernández, and Rico [31] are examples of studies that study the individual
determinants of urban water demand from Italy and Spain. An accessible account of experimental and
quasi-experimental econometric methods can be found in Angrist and Pischke [32].

Though not as numerous as residential water forecast studies, we do see examples of papers that
specifically focus on water use in the CII sector. Using survey data from large manufacturing plants in
New Jersey, Derooy [33] calculated a price elasticity of 0.89. Ziegler and Bell [34] did a similar study
for self-supplied firms in Arkansas. Within the context of Canadian manufacturing firms, Renzetti [35]
used instrumental methods for price to avoid the simultaneity problem in their estimations for the
price elasticity of water use. Using a system of simultaneous equations method, Babin, Willis, and
Allen [36] examined the relationship of water intake and the utilization of other outputs (the degree
of substitutability). Using data from 51 industrial plants in France and both seemingly unrelated
regression and the feasible generalized least squared methodology, Reynaud [37] demonstrates how
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the elasticity of water use varies across water sources. As an alternative to an econometric method,
Calloway, Schwartz, and Thompson [38] develop a linear programming model in order to analyze the
effects of water quality policy on the use of water in ammonia production and on the cost of ammonia.

Another strand of studies pertains to water demand forecasting, to which our study contributes.
In these studies, credible identification of parameters in the face of omitted variable type problems
(such as the simultaneity problem explained above) is not necessarily the main objective. Rather,
the priority is to generate accurate water use forecasts for the future in order to formulate policies
and guide infrastructure investment decisions financed by tax or rate payer funds. For example,
Alhumoud [39] uses 50 years of annual country-level data from Kuwait and time-series methods to
generate forecasts 20 years into the future. His model selection method is based on the Box-Jenkins
method. Using monthly household-level data from California, Brekke, and Larsen [40] demonstrate
that modeling water demand via stepwise regression is an accessible alternative to the trend analysis
method that is widely used in smaller suburban utilities. We also see examples of studies that use
decision support systems (DSSs) from different geographies like China, the U.K., and California [41–43].
DSSs are used as a part of integrated frameworks that provide forecast output for different scenarios.
Other urban water forecast works from the U.K. include Khatri and Vairavamoorthy [44], that use time
series methods and ten years of monthly water use data from Birmingham, and Williamson, Mitchell,
and McDonald [45], that use imputed household water use data and multilinear regression method.
For thorough qualitative and quantitative reviews of models and methods, see Donkor, Mazzuchi, and
Soyer [46] and Sebri [47], respectively.

In recent years, we see a surge in the studies that utilize state-of-the-art machine learning
techniques in urban water use forecasting. Usually, these studies compare the forecast performances of
different modeling methods using actual water use data from different parts of the world. Unlike any
of the papers cited above, it is common to see out-of-sample forecast performance being used in these
studies. For example, with water use data from South Africa, Oyebode and Ighravwe [48] provide a
comparison of the performances of artificial neural networks (ANNs) (with two different algorithms),
support vector machines (SVMs), and multiple linear regression methods. They find that evolutionary
ANN performs better than the rest of the methods, while regression method outperformed ANN with
the conjugate gradient algorithm. House-Peters and Chang [49] use data from Canada to compare
the wavelet-bootstrap-neural-network (WBNN) method with moving average and bootstrap-based
neural networks. Moving average, exponential smoothing, and ANN models are compared in Kofinas,
Mellios, Papageorgiou, et al. [50] who have 3 years of time series data from a touristic island in Greece.
Using urban water data use from southeastern Spain, Herrera, Torgo, Izquierdo, et al. [51] demonstrate
that the SVM performs better than multivariate adaptive regression splines and random forests. In his
detailed meta-analysis, Sebri [47] shows that forecast methods make a difference in the forecast errors.
He states that ANN, Box-Jenkins, and SVM methods, on average, result in lower forecast errors than
methods such as multilinear regression or Kalsman filter. Other recent examples of forecast papers
that perform a comparison among different techniques including machine learning algorithms, time
series, etc. include Adamowski and Karapataki [52] and Ghiassi, Zimbra, and Saidane [53].

While advanced machine learning and big-data methods can offer advantages, they may not be
immediately accessible to smaller water utilities, who may or may not employ in-house data analysts
with these skills [40]. Water Resources Municipal and Industrial Needs (IWR-MAIN) is a software that
has been widely used by utilities to forecast water demand. In this method, the size of each CII sector
is estimated using total employment, and CII water use is estimated based on the Standard Industrial
Classification (SIC) of sectors. The method uses regression analysis to determine water intensity of each
sector where the explanatory variables are the number of employees, the price of the water and sewer
services, and whether or not there was a water conservation program [54]. A nationwide survey of
over 3 thousand establishments and surveys from manufacturers from the U.S. Census Bureau and the
California Department of Water Resources were utilized to improve the model [55]. The main intuition
of this approach is to estimate a “water use coefficient" for each sector, multiply that by the forecasted
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size of the sector, and then sum up the estimated water use across all sectors. A summary of the
historical progression of the IWR-MAIN model can be found in Morales, Heaney, Friedman, et al. [56].

Further, the current version of IWR-MAIN and its application among California utilities is
discussed in a 2019 report by Dziegielewski et. al. [57]. The approach of IWR-MAIN has inspired
similar applications by other utilities. For example, using establishment-level water billing and
employment data from Idaho, Cook, Urban, Maupin, et al. [58] calculate the standard industrial
classification (SIC) level employment coefficients, which are a weighted average of the per-employee
water consumption for the SICs. Then, under various growth scenarios and employment forecasts,
they use these coefficients to project water use into future periods. For an example, Morales, Heaney,
Friedman, et al. [56] present a CII water use estimation methodology using a rich database of parcel-level
consumer attributes and water use billing from Florida.

In addition to software packages, regression-based econometric models are currently being used
by the utilities for forecast purposes. See Buck, Auffhammer, Soldati, et al. [11] for a summary of
methods being used by a group of large California utilities; they show out-of-sample performance
is not commonly used as a model selection criterion and forecast modelers typically only consider a
narrow set of models.

In this paper, we show that the forecast performance among models of CII water use can be
significantly improved with a relatively small adjustment in the model selection methodology, even if the
state-of-the-art machine learning algorithms are not used. Using a model space of 352,116 models, we
look at how the models that yield the best results based on R-squared and/or other common in-sample-fit
criteria such as adjusted R-Squared, Akaike information criterion (AIC), and Bayesian information
criterion (BIC) perform when forecasting out-of-sample. AIC and BIC or Schwarz Criterion are methods
of comparing alternative specifications by adjusting the summed squared residuals for the sample size
and the number of independent variables [59]. See Table 4 for the formulas. We then compare them to
those models that would be selected under three different out-of-sample criteria we define.

1.2. Preview of the Results

The out-of-sample fit criteria are defined following Auffhammer and Steinhauser [60], which are
also commonly used in evaluating models in the field of machine learning. Models are generated
through inclusion and exclusion of different key covariates and the actual versus logged values of the
dependent variable. The dependent variable is the water retailer (utility) level total annual CII water
use. Covariates include median tier price, manufacturing and service sector employment in the service
area of the retailer, and weather variables (maximum temperature, degree days, and precipitation).
Degree days are defined as the difference between the daily temperature mean, (high temperature plus
low temperature divided by two) and 65 ◦F. In other words, the temperature mean is above 65 ◦F, we
subtract 65 from the mean, and the result is “degree days” [61].

In order to account for the fact that the demand for CII water is derived, together with other factors of
production, we also included real U.S. GDP as a proxy for the overall purchasing power in the economy.

The results indicate that selecting models solely based on in-sample fit will yield poorly performing
models when forecasting CII water use out-of-sample. Specifically, we demonstrate that the predictions
that are generated by the highest R-squared models are highly dispersed around the actual value,
relative to those that are generated by the models with the lowest absolute error. While it is known that
models selected on in-sample fit can perform poorly out-of-sample, this paper brings the magnitude of
the problem in the CII water forecast context to the attention of water planners. Equally important, the
analysis contrasts variation in forecasts generated by prediction models that were selected based on
different criteria. This highlights that decision-makers should consider a range of forecasts generated
by a suite of the “best”-performing models.

These findings suggest that water planners, the forecasts of whom are often used to guide water
policy, can avoid large errors by taking out-of-sample prediction performance into account when
selecting models to forecast CII water use, which is a relatively small adjustment to their procedures.
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The path followed in this paper is similar to the one used in Auffhammer and Steinhauser [60]
for forecasting CO2 emissions. They use 41 years of state-level data to test about 27,000 models and
compare the out-of-sample forecasting performances of benchmark models from the related literature
and the ones that they find to be best under the aggregate error criterion. They find that benchmark
models, which are calibrated against in-sample performance criterion, are likely to overestimate CO2

emissions, which might be consequential in climate policy and international agreements.
In a similar spirit, this study compares the out-of-sample performances of the models that would

be selected under various in- and out-of-sample criteria given the available dataset. Our findings
highlight that the model selection criteria determine CII water use forecast performance.

The rest of the paper proceeds as follows: the geographical scope of the study, summary of the
data, econometric model, and the details of performance criteria are provided in Section 2. Section 3
presents and discusses the results, and Section 4 concludes.

2. Data and Methods

2.1. Geographical Scope

The geographical scope of this study is defined by the boundaries of the MWDSC, the largest
water utility in the U.S. serving more than 18 million people [14,62]. For a geographical reference,
see the map of the region published by the Southern California Association of Governments [63].
The dataset used here is a subset of a larger dataset collected for a study about forecasting single-family
residential (SFR) sector water use [11]. Data collection effort, therefore, was focused on the retailers
that reported more than 3000 single-family residential accounts as it is estimated that these retailers
account for about 99% of this sector. One hundred fifty-three retailers were contacted within the realm
of the study. CII data were obtained from 75 retailers and has 709 observations from 25 of the 26
member agencies that are under MWDSC. The only unrepresented member agency is San Marino,
which has one of the lowest CII sectors of all member agencies. Table A1 in the Appendix A lists
the agencies and the associated retailers. The water retailers in the study are located in Los Angeles,
Orange, Riverside, San Bernardino, San Diego, and Ventura counties.

2.2. Data Sources

The rate schedules were received directly from retailers, while the water use figures are mostly
based on monthly data in the Public Water System Statistics (PWSS) augmented with data received
from retailers and aggregated to the calendar year [64]. For the price measure, we use the median tier
of the rate schedule.

Location-specific data on average precipitation were obtained through the use of the geographical
information and mapping software system, ArcGIS. Spatially referenced boundaries of state and private
water districts were obtained from the Cal-Atlas geospatial clearinghouse [65]. These boundaries
allowed visualization of each water district polygon using ArcGIS. The points at the centroid of
each water system polygon were then geo-referenced. Based on the resulting set of points, the local
precipitation data were extracted from rasters provided by the PRISM Climate Group from Oregon
State University [66].

In those cases where the retailer level district boundaries were not available, zip codes were used
as a geographical proxy. Retailers were assigned to representative zip codes on a case-by-case basis.
The centroid of each zip code polygon was geo-referenced, and based on the resulting set of points,
local precipitation data were extracted. The precipitation variable in our dataset is in millimeters of
rainfall per year.

Data on temperature were obtained in the same manner as the precipitation data described
above. Rasters for the temperature data (in degrees Celsius) were obtained from the PRISM Climate
Group. The year-round maximum and minimum temperatures are used to calculate retailer-specific
cooling degree.
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Total employees within a retailer are computed based on two data sources. Historical annual
employment is provided by the metropolitan water district at the member-agency-level from 1990
to 2010. To calculate employment at the retailer level, we used the Census Zip Code Business
Statistics (ZCBS), which reports historical employment estimates at the zip code level from 2004 to
2010. The ZCBS only provides employment numbers based on the majority of sectors (largely excludes
non-service oriented government positions) so total employment is not complete. Therefore, we only
use the ZCBS to calculate the share of employment within a member agency due to a particular retailer.
We calculate the relevant share using a crosswalk between zip codes and retailer level boundaries, and
zip codes and member-agency-level boundaries. Finally, to compute a historically based retailer level
total employment measure, we multiplied the share of employment within a member agency by the
total employment in the member agency obtained from MWD (based on Employment Development
Department data). For years prior to 2004, when ZCBS is unavailable, we assume the retailer level
average employment shares from 2004 to 2006. That is, for each retailer, we assume their share of total
employment within a member agency is constant between 1994 and 2003.

A variable measuring GDP is also included in the universe of considered regression models.
Unlike the residential sector, water demand in the CII sector is derived, together with other inputs,
as a part of the production process. In other words, water demand in CII is indirectly caused by the
consumption for the goods and services that these sectors offer to consumers. Therefore, CII water
use should not only depend on its own price but also on total consumption in the economy, which
ultimately depends on income. A national, rather than regional, measure of GDP is utilized as CII
water customers may provide goods and services to locations outside of California.

The real GDP data are obtained from the publicly available international macroeconomic data
series provided at the USDA website [67]. All monetary figures in this study are standardized to
2000 dollars in order to account for the effect of inflation.

Tables 1 and 2 present the summary statistics of the variables in the training and the forecasting
subsamples, respectively. The training sample is composed of data from the years 2000–2005, while the
forecast sample is composed of data from the years 2006–2010.

Table 1. Summary Statistics of the Training Sample. MWDSC Years: 2000–2005.

Variable Mean Std. Min. Max.

Water Quantity (1000 Acre-feet) 7.73 23.62 0.07 182.24
Real GDP (in Year 2000 $Billion) 16,992.49 764.27 16,102.66 18,249.53

Price (in Year 2000 $) 1.33 0.42 0.44 2.48
Manufacturing Employment 9472.27 27,108.52 31.56 225,540.53

Service Employment 29,425.89 93,287.3 206.14 682,037.75
Max Temp. (C) 24.19 1.73 19.9 28.85

Cooling Degree Days 1.17 0.41 1 3.27
Precipitation (mm Per Year) 373.92 157.34 102.81 900.13

Number of Observations 326

Table 2. Summary Statistics of the Training Sample. MWDSC Years: 2006–2010.

Variable Mean Std. Min. Max.

Water Quantity (1000 Acre-feet) 7.21 22.3 0.05 181.84
Real GDP (in Year 2000 $Billion) 18,857.88 214.49 18,486.07 19,069.42

Price (in Year 2000 $) 1.47 0.51 0.47 3.73
Manufacturing Employment 8078.8 21,815.74 28.53 171,248.09

Service Employment 31,226.67 94,688.02 216.71 719,254.69
Max Temp. (C) 24.44 1.68 20.46 28.24

Cooling Degree Days 1.44 0.62 1 3.44
Precipitation (mm Per Year) 339.76 182.32 102.15 909.27

Number of Observations 310
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2.3. Econometric Model

In the regression models, we follow the general form provided in Equation (1):

qtar = β pricetar + µman.emp.tar + σ serv.emptar + τ tmaxtar +π preciptar + γ cddtar + αa + ηt + εtar (1)

where

qtar is the annual water use in the CII sector in year t served by the retailer r that is under agency a;
pricetar is the median tier price charged;

man.emp.tar is the number of manufacturing employees;
serv.emptar is the total number of service employees;
tmaxtar is the average maximum temperature;
preciptar is the average annual precipitation;
cddtar is the cooling degree days;
αa is the agency fixed effects;
ηt represent the time fixed effects. (Year indicators or GDP. Note that the year indicators and GDP
cannot be used at the same time due to perfect collinearity);
εtar is the stochastic error term.

The model universe was created using different permutations of dependent and independent
variables (and their actual and logged values). There are three main avenues through which new models
are added to the model space. A first avenue is the inclusion versus exclusion of the main variables:
price, number of employees in the manufacturing and service sectors in the retailers’ boundaries,
maximum temperature, degree days, precipitation, and GDP, as well as lagged dependent variables
(up to two lags). The second variation is due to the inclusion of variables accounting for heterogeneity
with respect to time and the institutions corresponding to different locations and levels of governance.
These include agency indicators, time trends (up to cubic time trend), and year indicators. Finally,
further variations are generated using logged vs. level dependent variables as well as total quantity
versus per employee quantity as the dependent variable. Table 3 summarizes the details. As a result of
these permutations, we ended up with 352,116 models.

Table 3. Variables Used to Define the Model Universe.

Main Variables

Price
Number of employees in the manufacturing sector (both linear and squared form)
Number of employees in the service sector (both linear and squared form)
Average maximum temperature Cooling degree days Precipitation
GDP
Lagged dependent variable (up to two lags)

Temporal and Institutional Heterogeneity

Agency fixed effects
Time trend (up to cubic) and year fixed effects

Additional

Levels vs. logs of both dependent and independent variables
Total quantity vs. quantity per employee as the dependent variable
Number of employees in the service sector (both linear and squared form)

For the regression analyses, the data set is divided into two subsets: training and forecast samples.
Data from the years 2000–2005 are used to train (estimate) the models and the years 2006–2010 are
used as the forecast sample to measure out-of-sample performances.
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For each model, effectiveness in terms of both common in-sample performance measures including
R-squared, adjusted R-squared, AIC score, BIC score, and three out of sample performance measures
(explained below) are calculated. Afterwards the models are sorted based on their performances with
respect to each of these criteria, and then the out-sample performances of the top 1% in each category
are compared.

2.4. Model Performance Criteria

Many different performance criteria can be chosen based on the forecasting and planning goals
such as aggregating absolute or squared errors across different geographical or institutional boundaries.
In this paper, we studied three different out-of-sample performance measures: mean squared forecasting
error at both retailer and agency levels and the overall absolute aggregate error. Table 4 provides
the formulations for in- and out-of-sample performance criteria, and in the following paragraphs we
explain them in detail.

Table 4. Summary of the In-Sample and Out-of-sample Criteria Used for Model Selection.

In Sample Performance Criteria Formulation

R-Squared 1−
∑2005

t=2000
∑At

a=1

∑Rta
r=1 ε

2
tar∑2005

t=2000
∑At

a=1

∑Rta
r=1(qtar−qtar)

2

Adjusted R-Squared 1− N−1
N−k

(
1−R2

)
AIC n

(
2005∑

t=2000

At∑
a=1

Rta∑
r=1

ε2tar
N

)
+ 2k

N

BIC ln
(

2005∑
t=2000

At∑
a=1

Rta∑
r=1

ε2tar
N

)
+ k

N ln(N)

In the formulas above, k refers to the number of explanatory variables, N
is the number of observations, and ε2tar is the squared forecast error.

Out-of-sample performance
criteria Explanation Formulation

Retailer level MSFE
Squared forecast errors are

calculated at the retailer level and
then averaged.

1
N

2010∑
t=2006

At∑
a=1

Rta∑
r=1

(
qtar − qtar

)2

Agency level MSFE
Forecasts are first added up at the
agency level; then forecast errors

are squared and averaged.
1
M

2010∑
t=2006

At∑
a=1

(
Rta∑
r=1

qtar − qtar

)2

Absolute Aggregate Forecast Error

Forecasts are added up at the
overall aggregate level; then the
absolute value of the aggregate

forecast error is calculated.

∣∣∣∣∣∣ 2010∑
t=2006

At∑
a=1

Rta∑
r=1

qtar − qtar

∣∣∣∣∣∣
The first out-of-sample criterion is the retail level mean squared forecast error (MSFE) (the third

one from the bottom of Table 4). Here, qtar is the annual CII water use in year t for retailer r that belongs
to agency a in the forecasting sample. qtar is the forecasted quantity for the same data point. Rtar is the
number of retailers for which data was available in agency a in year t, At is the number of agencies in
the sample in year t, and N is the total number of data points in the forecast sample (N = 310).

The second criterion is the counterpart of the first one at the agency level. We first aggregate the
differences between the actual numbers and forecasted numbers at the agency level for each forecast
year. Afterward, we take the mean of the squared forecast error over agencies (M = 101).

The final out-of-sample performance criterion is the absolute aggregate forecasting error.
We calculate it as follows. All the quantities (both forecasted and actual) are aggregated over
the forecast sample for each year, the aggregate of the forecasts is subtracted from the aggregate of
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the actual numbers, and then the average of the absolute value of the aggregate error is taken over
the years.

One important detail to note is the comparability of the performance criteria across the models
with different dependent variables (i.e., level vs. logged). It is important to establish this comparability
of the goodness-of-fit measures across the models to be able to make meaningful statements about
their relative performances. In order to do that, the performance measures for the models with a
logged dependent variable had to be transformed in the following manner [68]. After the models
with a logged dependent variable are estimated, the fitted values are exponentiated. Then, the actual
quantities are regressed (without a constant term) on these exponentiated values. The fitted values are
obtained from this second regression. These fitted values are used to calculate the prediction errors.
The square of the correlation coefficient between the actual and the fitted within the training sample is
comparable to R-squared.

A separate forecast adjustment is made due to the existence of models both with total quantity
and quantity per employee as dependent variables. AIC and BIC scores are calculated using the sum of
squared errors (see Table 4 for the formula). Therefore, unlike R-squared and adjusted R-squared, the
magnitude will depend on the scale of the variables for AIC and BIC scores. For this reason, the scale
of the error needs to be adjusted for a fair comparison of different models. All AIC and BIC scores
are calculated using the deviance from the actual total quantity and the total quantity implied by the
model. In other words, if the model is logged, the AIC and BIC scores are calculated from the squared
errors obtained from the fitted values described above. If the dependent variable is per employee
water quantity, the predicted total quantity is obtained by multiplying the fitted value by the total
employee number. Finally, the models are ranked based on each one of the criteria in our list.

3. Results and Discussion

Table 5 summarizes and compares the performances of the top 5% of models in each criterion
for the models where the dependent variable is the total quantity. Every column (except for the first
column) refers to a subset of all of the models in our model universe. Each row gives the mean and
standard deviation of the performance measures of the top 5% models based on the criteria listed
in that row within the subset given by the column. For example, the numbers in the first row of the
second column present the mean and the standard deviation of the “Retail Level MSFE" of the models
that rank in the top 5% in terms of the “Retail Level MSFE" category among only models that use a
level dependent variable (as opposed to logged dependent variable). This categorization allows us to
observe the association between the inclusion of certain variables in a model and forecast performance.
We see that in models for which the dependent variable is total quantity, log models (3rd versus 1st and
2nd columns) displayed better out-of-sample performance on average, while in-sample performances
were similar for models across all categories.

One notable result is that models without any lagged variables did much worse than models with
lagged variables overall (comparing columns 1 versus 5) for almost all criteria. This is not surprising
given the serially correlated nature of water use. Additionally, we see that, though it may reduce the
noise, adding agency fixed effects did not improve forecasting performance.

Since the data are annual, we were forced to choose between year indicators variables and
the (lagged) per capita GDP since including more than one of these covariates at the same time
would result in perfect collinearity. In the models that use year fixed effects, the projection needs
special consideration as we do not have a clear way to forecast the year fixed effects for future years.
For simplicity, we treated all years in the forecast sample as the end year of the training sample.

Comparing the final two columns, we see that the performance of the models with year fixed
effects and per capita GDP are fairly comparable for both in- and out-of-sample criteria. Therefore, in
addition to providing a proxy for the size of the economy in forecasting indirect demand for water,
measures of GPD appear to largely capture year fixed effects. The results are very similar for models in
which the dependent variable is quantity per employee (Table A2 in the Appendix B).
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Table 5. Averages and Standard Deviations (in parenthesis) Statistics of the Errors Calculated from Top
5% of the Models—Dependent Variable: Total Quantity.

All
Models

Levels
Only Logs Only No

Agency FE No Lags Year FE Lagged
GDP

Retail
MSFE 1.858 3.816 1.770 1.837 12.93 1.819 2.111

(0.228) (0.624) (0.194) (0.211) (2.417) (0.158) (0.322)

Agency
MFSE 6.396 28.12 6.065 6.273 49.74 6.187 7.598

(0.844) (7.287) (0.705) (0.807) (10.99) (0.556) (1.118)

Abs. Agg.
Error 12.72 40.52 12.16 13.28 30.06 12.50 14.69

(1.659) (9.608) (1.541) (1.505) (9.154) (1.054) (2.478)

R Squared 0.987 0.988 0.982 0.983 0.987 0.988 0.987
(0.000664) (0.000291) (0.00190) (0.000794) (0.000833) (0.00033) (0.00125)

Adj. R
Squared 0.986 0.987 0.980 0.983 0.986 0.986 0.985

(0.000727) (0.000301) (0.00181) (0.000768) (0.000915) (0.000348) (0.00130)

AIC 15.95 15.91 16.42 16.10 15.97 15.93 15.99
(0.0458) (0.0224) (0.0464) (0.0436) (0.0627) (0.0267) (0.0834)

BIC 16.23 16.18 16.52 16.20 16.27 16.25 16.25
(0.0410) (0.0340) (0.0385) (0.0370) (0.0203) (0.0424) (0.0447)

Table 6 compares the absolute aggregate error of the models ranked within the top 5% of our
criteria. For example, the number on the second row and the first column of Table 6 is the mean of
the aggregate forecast error (in thousand acre-feet) of the models that are in the top 5% based on the
“Retailer Level MSFE" criteria. We see that the models that score high based on in-sample-fit criteria
did poorly in aggregate compared to the models that are selected based on the out-of-sample criteria.
While the qualitative result was expected given the selection criteria, the key point is the magnitude of
the difference between the mean of the aggregate error under different categories. The models that
score high in the out-of-sample performance criteria yielded much lower absolute errors (12.72 for
the absolute aggregate error (in 1000-Acre feet)), and a narrower distribution (standard deviation of
1.66) whereas the models that had the highest R-squared value, for example, did poorly, on average
(mean absolute aggregate error: 535.90 (in 1000-Acre feet)), and the dispersion of their performance
was almost two orders of magnitude larger (standard deviation of 918.88). The results are similar for
the comparison of the models for which the dependent variable was quantity per employee (Table A3
in the Appendix B).

Table 6. Aggregate Forecast Error (in 1000 Acre-Feet) of the Top 5% of the Models Dependent Variable:
Total Quantity.

Mean SD Min. Max.

Absolute Aggregate Error 12.72 1.66 4.32 14.84
Retailer Level Average MSFE 15.25 3.10 7.38 32.11

Agency Level MFSE 14.85 2.72 7.38 26.00
R Squared 535.90 918.88 26.09 4598.55

Adjusted R Squared 388.46 678.72 26.09 4472.80
AIC 307.15 479.85 39.90 4032.11
BIC 148.00 121.59 30.91 1253.92

Figures 1 and 2 help visualize the point made in Table 6. In these graphs, the black dashed lines
represent the highest and lowest forecasts generated by the models that ranked among the top 5%
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based on R-squared and retailer level MSFE, respectively, while the red solid line shows the actual
values. Graphs for the rest of the criteria carry the same message and are provided in Figure A1 of the
Appendix B.
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Figure 2. Highest and lowest projections generated by best models based on retailer level mean squared
forecast error (MSFE) versus the actual value. Dependent variable is total quantity.

Notice the wide gap between the lowest and the highest CII water use forecasts in the graph
displaying forecasts from the models with the top R-squared scores. We see in these figures that the
CII water use forecasts generated by the models that are selected based on in-sample criteria are much
more widely dispersed compared to those that are selected based on out-of-sample forecast criteria,
signifying a large uncertainty in the forecast accuracy due to model choice.
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To provide further visual insight, Figures 3 and 4 show the actual aggregate (represented with the
red spike) and the histogram of the aggregate of forecasts for the models that are within the top 5% of
the R-squared and absolute aggregate error criteria for year 2010. The graphs for the other years have
very similar characteristics. They are provided in Figure A2 in the Appendix B.
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Figure 3. Distribution of the 2010 forecasts generated by top (highest) R-squared models around the
actual value (red solid line). The average of the forecasts are denoted by the black dotted line.
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Figure 4. Distribution of the 2010 forecasts generated by top (lowest) absolute aggregate error models
around the actual value (red solid line). The average of the forecasts is denoted by the black dotted line.

Here, in addition to the dispersion, we also see that the average of the forecasts generated by
models chosen with in-sample goodness-of-fit are also further away from the true value.

4. Conclusions

The historic mismatch between the location of water supply and demand has shaped water
infrastructure investment decisions and planning activities in the United States, one of the largest
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water users in the world—both in terms of total and per capita water use. These decisions are often
guided by water forecast studies from utilities that rely on conventional econometric methods and/or
black box software packages when generating CII water use forecasts. Splitting a dataset into a
training set and validation set is a prominent idea in the field of statistical learning. This improves
the accuracy of out-of-sample forecasts because forecasting, by definition, requires using the model
to estimate new data points. In this paper, we demonstrate that using the out-of-sample forecast
performance criteria can significantly improve CII water use forecast accuracy and reduce forecast
uncertainty due to modeling. Our study context is water use within the commercial, institutional, and
industrial sector under MWDSC—the largest water utility in the U.S. CII water use is an understudied
component of overall water demand due to lack of data and its complex nature. Yet its share of
publicly provided water-use is expected to grow as water governing institutions evolve. As CII
water use becomes a more significant portion of public water deliveries, then so too will its place
in water-saving conservation policies designed to adjust to changes in water supply conditions, for
example, in response to climate change.

Using over 352,000 models and rich panel data, CII water use forecasting performances of models
selected based on in-sample and out-of-sample goodness-of-fit criteria were compared. Note that
finding the best forecast method or studying the relative importance of different variables in explaining
CII water use are not the objectives of this paper as these topics are very well documented both
in academic papers and studies conducted by utilities from all around the world. While machine
learning methods and large data sets offer advantages in forecasting, they might not yet be accessible
to some utilities, especially smaller suburban utilities. The goal of our study is to demonstrate that a
relatively straightforward adjustment to the model selection criteria significantly improves the forecast
performance even when no advanced machine learning methods besides regression models are used
and the dataset is composed of a few hundred observations.

Policymakers and planners who rely on water consumption forecasts for the CII sector, therefore,
should pay attention to the out-of-sample performance of the models that are being utilized in their
analyses. If a water governing body chooses to use econometric methods using the data available
from the local region, they should avoid selecting models of CII water use based on in-sample-fit as
this may result in suboptimal results in terms of the accuracy of forecasts for the CII sector. Further,
decision-makers would be wise to consider uncertainty in forecasts, which may be considerable,
especially in the CII sector. Instead of considering forecasts from one single model, we advise
considering projections from a suite of models based on their out-of-sample forecasting accuracy in
training data sets.
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Appendix A

Table A1. Agencies and retailers included in the study.

Member Agency Retailer Years Data are Available

Anaheim Anaheim 2001–2003, 2007–2008
Beverly Hills Beverly Hills 2000–2003

Burbank Burbank 1994, 1996–1998, 2000–2008
Calleguas MWD Westlake 1996–1998, 2000–2010

Camarillo 1998, 2000–2010
Camrosa WD 1994–1995, 2000–2008

Oxnard 2003–2008
Simi Valley 2003–2004, 2007–2010

Thousand Oaks 2000–2002,2004–2007
Central Basin MWD East Los Angeles 1996–1998, 2000–2010

Cerritos 1996–1998, 2000–2004, 2006–2010
Downey 2006–2010

Lakewood 2000–2003, 2005–2010
Orchards Dale WD 1996–1997, 2000–2010

Paramount 2005–2010
Pico Riviera 2001, 2008–2010

Pico WD 1994, 1996–1998, 2000–2003, 2005–2007
Whittier/ La Mirada 1995–1998, 2000–2010

Vernon 2002–2010
Compton Compton 2008–2010

Eastern MWD Eastern MWD 2004–2010
Rancho California WD 1997–1998, 2000–2010

Foothill MWD La Canada ID 2002–2010
Fullerton Fullerton 1994, 1996–1997, 2000–2010
Glendale Glendale 1998, 2004-2010

IEUA Ontario 1997-1998, 2000–2003, 2005–2009
Upland 2000, 2002–2008, 2010

Las Virgenes MWD Las Virgenes MWD 1994, 1996–1997, 2000–2010
Long Beach Long Beach 1996–1998, 2000–2010
Los Angeles Los Angeles 1996–1998, 2000–2010

MWDOC Buena Park 1994, 1996–1997, 2000–2010
Fountain Valley 1994, 1996–1997, 2000–2010
Garden Grove 2006–2010

Huntington Beach 2001–2010
Mesa Consolidated WD 1996, 1998, 2000, 2006, 2008–2010

Westminster 1996–1997, 2000–2010
Yorba Linda WD 1994, 1996–1998, 2000–2010

Pasadena Pasadena 2007–2010

San Diego CWA Carlsbad MWD 2001–2003, 2005–2010
City San Diego 2001–2004, 2006–2010

Escondido 1998, 2000–2010
Fallbrook PUD 2000–2001, 2003–2010

Helix 2001–2010
Oceanside 2000–2010

Olivenhain MWD 2000–2010
Otay, Padre Dam MWD

Eastern 1998, 2000–2003, 2007

Poway 2000–2001, 2005–2010
Rainbow MWD 2003–2005, 2008, 2010
Ramona MWD 1998, 2000, 2001–2010

Rincon del Diablo MWD 2001–2004, 2006–2010
San Dieguito WD 2004–2005

Santa Fe ID 1997, 2000–2010
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Table A1. Cont.

Member Agency Retailer Years Data are Available

Sweetwater Authority 2000–2010
Vallecitos WD 2000–2010

Valley Center MWD 2001–2007
Vista ID 2000–2010

San Fernando San Fernando 2000–2001, 2003–2005, 2007, 2009–2010
Santa Ana Santa Ana 2001–2003, 2009–2010

Santa Monica Santa Monica 1994, 1996–1997, 2000–2010
Three Valleys MWD Covina 2001–2009

Pomona 2000–2010
Walnut Valley WD 2000–2010

Torrance Torrance 1994–1995, 2000–2001
Upper San Gabriel Valley

MWD Alhambra 2000–2007, 2009–2010

Arcadia 2008–2010
Azusa 2001–2010

Monrovia 2006–2010
West Basin MWD Hermosa Redango 1996–1998, 2000–2003, 2005–2010

El Segundo 2004–2005, 2007–2008
Western MWD Corona, Elsinore Valley MWD 1996–1998, 2001–2003, 2005–2006, 2008–2010

Jurupa CSD 2000–2003, 2007–2010
Norco 2001–2010

Western MWD 2000–2010

Appendix B

Table A2. Summary Statistics of the Results from Top 5% of the Models—Dependent Variable: Quantity
Per Employee.

All
Models

Levels
Only Logs Only No

Agency FE No Lags Year FE Lagged
GDP

Retail
Level
MSFE

1.870 1.956 1.836 1.856 14.87 1.781 2.230

(0.228) (0.265) (0.210) (0.218) (2.998) (0.158) (0.311)

Agency
Level
MFSE

6.781 7.441 6.518 6.795 53.76 6.417 9.195

(1.006) (1.039) (0.953) (0.986) (9.968) (0.621) (1.095)

Absolute
Aggregate

Error
13.63 14.50 13.28 13.44 25.37 12.80 21.11

(2.340) (2.636) (2.197) (2.140) (7.135) (1.640) (3.512)

R Squared 0.882 0.880 0.882 0.876 0.458 0.880 0.882
(0.00154) (0.000300) (0.00141) (0.000824) (0.00922) (0.000672) (0.00157)

Adj. R
Squared 0.872 0.871 0.873 0.873 0.404 0.871 0.872

(0.00123) (0.000237) (0.00116) (0.00116) (0.00948) (0.000332) (0.00128)

AIC 16.15 16.07 16.26 16.21 16.59 16.04 16.25
(0.0966) (0.0921) (0.113) (0.0550) (0.128) (0.0906) (0.0674)

BIC 16.36 16.29 16.48 16.33 16.80 16.29 16.42
(0.0554) (0.0448) (0.0443) (0.0462) (0.105) (0.0481) (0.0555)
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Table A3. Aggregate Forecast Error (in 1000 Acre-Feet) of the Top 5% of the Models—Dependent
Variable: Quantity Per Employee.

Mean SD Min. Max.

Absolute Aggregate Error 13.63 2.340 3.44 17.07
Retailer Level Average MSFE 15.98 4.522 6.24 35.92

Agency Level MFSE 15.04 3.475 6.24 27.65
R Squared 204.18 466.291 6.74 3535.92

Adjusted R Squared 69.16 265.547 6.74 3496.91
AIC 563.10 892.693 9.18 3539.80
BIC 546.46 883.917 9.24 3539.80
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Figure A2. Distribution of the forecasts around the actual value. Dependent variable is total quantity.
Criteria: R-Squared on the left panels vs. Aggregate Absolute Error Criteria on the right panels.
(a) Distribution of 2006 forecasts of top R-squared models; (b) distribution of 2006 forecasts of
top absolute aggregate error models; (c) distribution of 2007 forecasts of top R-squared models;
(d) distribution of 2007 forecasts of top absolute aggregate error models; (e) distribution of 2008
forecasts of top R-squared models; (f) distribution of 2008 forecasts of top absolute aggregate error
models; (g) distribution of 2009 forecasts of top R-squared models; (h) distribution of 2009 forecasts of
top absolute aggregate error models.
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