Calcified Infratemporal Mass: Osteochondroma

Galal Omami
University of Kentucky, galal.omami@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/ohp_facpub

Part of the Dentistry Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation
Omami, Galal, "Calcified Infratemporal Mass: Osteochondroma" (2020). Oral Health Practice Faculty Publications. 18.
https://uknowledge.uky.edu/ohp_facpub/18

This Article is brought to you for free and open access by the Oral Health Practice at UKnowledge. It has been accepted for inclusion in Oral Health Practice Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Calcified Infratemporal Mass: Osteochondroma

Galal Omami, BDS, MSc, MDentSc, FRCD(c)1

Osteochondroma is a benign, cartilage-capped outgrowth of medullary and cortical bone. It represents 20% to 50% of all benign bone tumors, and may be developmental or associated with trauma or irradiation.1 The tumor arises from a trapped cartilage and grows at right angles to normal growth plate via endochondral ossification. Most lesions have a limited growth potential that ceases with skeletal maturity. Osteochondroma may be solitary or may occur in multiple form associated with the syndrome hereditary multiple exostoses, which also comprises short stature, knee and ankle valgus deformities, and forearm abnormalities.1

Within the craniofacial bones, osteochondromas have been reported most frequently in the mandibular condyle and coronoid process. Jaw lesions tend to occur at a later age than their counterparts in long bones.2 Patients with condylar osteochondroma may have preauricular swelling, limitation of jaw movement, changes in dental occlusion, and deviation of the mandible to the contralateral side (Figure 1).3 Osteochondroma of the coronoid process may impinge on the posterior surface of the zygoma, restricting mandibular opening.4

Radiographically, the tumor presents as an irregular, often pedunculated radiopaque mass attached to the bone surface. The most useful radiographic characteristic to distinguish osteochondroma from osteoma is the corticomedullary continuity; the cortical and medullary structure of the osteochondroma is continuous with the underlying native bone (Figure 1). Computed tomographic imaging is the modality of choice to demonstrate the characteristic appearance of marrow and cortical continuity.1 The hyaline cartilage cap is not visible on plain images. Occasionally, the chondroid tissue is suggested by the identification of stippled calcifications.1 The nonmineralized cartilage cap has high signal intensity on T2-weighted or proton-density magnetic resonance (MR) images, reflecting its high water content. The tumor has a nonhomogeneous low to intermediate signal intensity on all MR imaging sequences, with peripheral enhancement on gadolinium-enhanced T1-weighted images.

Figure 1. Osteochondroma of the mandibular condyle in a 53-year-old woman with a long history of limited jaw opening. A-C, Contrast-enhanced computed tomographic images show a circumscribed lobulated sclerotic mass arising from the anteromedial aspect of the right mandibular condyle and extending along the lateral pterygoid muscle into the infratemporal fossa. A, Axial view shows the narrow stalk and cortical continuity (arrow) to the underlying condyle, pathognomonic of an osteochondroma.

1 Department of Oral Health Practice, University of Kentucky College of Dentistry, Lexington, KY, USA

Received: January 30, 2020; accepted: February 05, 2020

Corresponding Author:
Galal Omami, BDS, MSc, MDentSc, FRCD(c), Department of Oral Health Practice, University of Kentucky College of Dentistry, 800 Rose Street Lexington, KY 40536, USA.
Email: galal.omami@uky.edu

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
images. Bone scintigraphy of osteochondromas shows markedly increased uptake; however, this is a nonspecific finding that represents any underlying bone condition with increased osteoblastic activity.

Parosteal osteosarcoma and myositis ossificans are common mimics of osteochondroma. The ossification pattern of parosteal osteosarcoma is the radiographic inverse of that seen in osteochondroma, with gradual ossification of the lesion from the center toward the periphery. In contrast to osteochondroma, myositis ossificans lacks corticomedullary continuity between the lesion and underlying bone. Occasionally, condylar hyperplasia may simulate a condylar osteochondroma, but the normal shape of the condyle in the former condition should be discriminatory.

Approximately 1% of solitary osteochondromas may undergo malignant transformation into chondrosarcoma. Continued active growth and a cartilage cap greater than 2 cm in thickness, after skeletal maturation, should increase suspicion of malignant transformation.

Osteochondromas are treated with surgical excision. Recurrence has rarely been noted.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Galal Omami https://orcid.org/0000-0003-1187-1816

References