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Abstract

HIV-associated neurocognitive disorder (HAND) remains highly prevalent in HIV infected 

individuals and represents a special group of neuropathological disorders, which are associated 

with HIV-1 viral proteins, such as transactivator of transcription (Tat) protein. Cocaine abuse 

increases the incidence of HAND and exacerbates its severity by enhancing viral replication. 

Perturbation of dopaminergic transmission has been implicated as a risk factor of HAND. The 

presynaptic dopamine (DA) transporter (DAT) is essential for DA homeostasis and dopaminergic 

modulation of the brain function including cognition. Tat and cocaine synergistically elevate 

synaptic DA levels by acting directly on human DAT (hDAT), ultimately leading to dysregulation 

of DA transmission. Through integrated computational modeling and experimental validation, key 

residues have been identified in hDAT that play a critical role in Tat-induced inhibition of DAT 

and induce transporter conformational transitions. This review presents current information 

regarding neurological changes in DAT-mediated dopaminergic system associated with HIV 

infection, DAT-mediated adaptive responses to Tat as well as allosteric modulatory effects of novel 

compounds on hDAT. Understanding the molecular mechanisms by which Tat induces DAT-

mediated dysregulation of DA system is of great clinical interest for identifying new targets for an 

early therapeutic intervention for HAND.
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1. Introduction

HIV infection continues to be a major global public health issue with an estimated thirty-five 

million people worldwide living with HIV. Despite the widespread use of efficacious 

antiretroviral therapies to control peripheral HIV infection and improve the life of HIV 

patients, more than 50% of HIV-1 positive individuals suffer from neurological 

complications collectively referred to as HIV-associated neurocognitive disorder (HAND)

(Heaton et al., 2010). HIV can enter the brain and produce proviral DNA by viral replication 

in the early stage of HIV infection, which contribute to the development of HAND (Nath et 

al., 2011; Smith et al., 2017). Since antiretroviral medications cannot cross the blood-brain 

barrier while infected monocytes carrying HIV can (Burdo et al., 2013; McArthur et al., 

2010; Saylor et al., 2016), HIV replication and production of viral proteins can be persistent 

in the brain of HIV infected patients treated with combination antiretroviral therapy (cART). 

Most HAND patients experience cognitive, memory, motor, and behavioral deficits (Gartner, 

2000; McArthur et al., 2004; Rackstraw, 2011). The HAND patients present the 

neuropathological conditions and neurocognitive deficits that emerge from the continuous 

exposure of the CNS to HIV-1, viral proteins, immune inflammation, and cART (Brack-

Werner, 1999; Clifford et al., 2013; Frankel et al., 1998; Johnston et al., 2001; King et al., 

2006; Power et al., 1998). Among the viral proteins, transactivator of transcription (Tat) 

protein plays a crucial role in the neurotoxicity and cognitive impairment evident in 

neuroAIDS (King et al., 2006; Rappaport et al., 1999). Importantly, drugs of abuse, such as 

cocaine have been shown to increase the incidence of HAND and its severity by enhancing 

viral replication (Ferris et al., 2008; Nath et al., 2001). Currently, there are no promising 

therapeutic strategies for HAND. Considering the progressive and neurodegenerative nature 

of HAND, establishing an early intervention strategy would be beneficial to the preservation 

of neurocognitive function in HIV-infected individuals.

Converging lines of clinical observations, supported by imaging (Chang et al., 2008; Wang 

et al., 2004), neuropsychological performance testing (Kumar et al., 2011; Meade et al., 

2011), and postmortem examinations (Gelman et al., 2012), have implicated the 

dysregulation of dopamine (DA) system with the abnormal neurocognitive function 

observed in HAND (Berger et al., 2000; Purohit et al., 2011). The presynaptic DA 

transporter (DAT)-mediated DA reuptake is essential for normal DA homeostasis and 

dopaminergic modulation of the brain function including attention, learning, memory, and 

motivation. In vitro, the interplay of Tat and cocaine augments synaptic DA levels and Tat 

release by inhibiting DAT activity (Ferris et al., 2010; Zhu et al., 2009). Prolonged exposure 

to Tat protein eventually causes DAT-mediated dysregulation of DA to accelerate the 

progression of HAND (Gaskill et al., 2017; Purohit et al., 2011). Indeed, human DA 

transporter (hDAT) activity is strikingly reduced in HIV-1-infected cocaine-using patients, 

correlating with the severity of HIV-1 associated cognitive deficits (Chang et al., 2008; 

Wang et al., 2004). However, the molecular mechanisms underlying HIV infection-impaired 

DA transport process are still largely unclear. Therefore, there is a pressing need to define 

the molecular mechanism(s) by which the impaired DA system by HIV-1 infection affects 

the progression of HAND in concurrent cocaine abusers. The recently published work has 

demonstrated that Tat-induced inhibition of DAT is mediated by binding to allosteric binding 
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site(s) on DAT, not by interacting with the DA uptake site (Yuan et al., 2015; Zhu et al., 

2011; Zhu et al., 2009). Accordingly, attenuating Tat binding to DAT would be expected to 

have minimal influence on physiological DA transport. To achieve these goals, a greater 

understanding the intermolecular interactions between Tat and hDAT is needed, which 

involves identifying key residues in hDAT with which Tat interacts and the mechanisms by 

which Tat induces inhibition of DA transport. This review focuses on recent investigations 

regarding neurological changes in DAT-mediated dopaminergic system associated with HIV 

infection, DAT-mediated adaptive responses to Tat as well as allosteric modulatory effects of 

novel compounds on hDAT.

2. Viral protein, dopamine system and HIV-associated neurocognitive 

disorder

2.1. HIV-1 viral proteins

Viral replication and proviral DNA induction within the central nervous system (CNS) in the 

early HIV-1 infection (Nath et al., 2011) have been implicated as a risk determinant of 

HAND (Berger et al., 2000; Purohit et al., 2011). Since most antiretroviral therapy 

medications cannot cross the blood-brain barrier (Buckner et al., 2006), these medications 

have no influence on the production of viral proteins in the CNS. Therefore, viral proteins 

are associated with the persistence of HIV infection-induced neuropathology and subsequent 

cognitive deficits (Brack-Werner, 1999; Frankel et al., 1998; Johnston et al., 2001; Power et 

al., 1998). The HIV genome contains three major genes, 5′gag-pol-env-3′, encoding major 

structural proteins as well as essential enzymes (Shrivastav et al., 2008). Proteins encoded 

by the HIV genome are classified as 1) viral structure proteins, Gag polyprotein, Pol 

polyproteins, and envelop proteins, gp120 and gp41; 2) essential regulatory proteins, Tat and 

Rev; and 3) accessory regulatory proteins, nef, vpr, vif and vpu (King, 1994). Among the 

viral proteins, Tat protein plays a crucial role in regulating the reverse transcription of viral 

genome RNA, ensuring efficient synthesis of viral mRNAs (Shrivastav et al., 2008). Tat is a 

nonstructural viral protein that is encoded from the first and second exons comprised of 

amino acids 1-72 and 73-101, respectively. Tat-induced neurotoxicity primarily contributes 

to HIV infection associated cognitive impairment evident in neuroAIDS (King et al., 2006; 

Rappaport et al., 1999). Tat is secreted from HIV infected cells (Ensoli et al., 1990) and 

further taken up by the surrounding microglia and neurons (Ensoli et al., 1993). Tat can be 

detected in DA-rich brain area (basal ganglia and related structure) (Del Valle et al., 2000; 

Hudson et al., 2000; Lamers et al., 2010) and in the sera (Westendorp et al., 1995; Xiao et 

al., 2000) of HIV-1 infected patients. However, it is still not clear what the actual biological 

concentration of Tat (for producing effects on DAT activity) is at or around the synapse or 

how this effective concentration of Tat might be reflected in cerebrospinal fluid of HIV-

infected patients.

2.2. Dysregulation of dopaminergic neurotransmission

DA-rich brain regions (basal ganglia and related structures) are highly susceptible to the 

effects of both HIV infection and substance use. Long-term exposure to HIV viral proteins 

impairs the central dopaminergic transmission (Berger et al., 2000; Koutsilieri et al., 2002; 
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Nath et al., 1987) and the brain pathways controlling motivation (Berridge, 2007; Everitt et 

al., 2005; Wise et al., 1987). In the early stage of HIV infection, increased levels of DA and 

decreased DA turnover are found in the cerebrospinal fluid of therapy-naïve HIV patients in 

asymptomatic infection (Scheller et al., 2010), which may contribute to decreased levels of 

DA in DA-rich brain regions (Kumar et al., 2009; Kumar et al., 2011; Sardar et al., 1996) in 

the advanced stages of HIV infection. Importantly, HIV-induced elevated levels of 

extracellular DA in CNS can stimulate viral replication in human macrophages within DA-

rich brain regions (Gaskill et al., 2013; Gaskill et al., 2009; Gaskill et al., 2014), resulting in 

viral protein release, which has been implicated in the pathophysiology of HAND (Li et al., 

2009). Thus, understanding the molecular mechanism(s) of viral proteins-mediated 

neuropathological changes in HAND is of great scientific and clinical interest.

2.3. HIV associated neurocognitive and behavior deficits

HAND is a spectrum of disorders generally divided into three main groups: asymptomatic 

neurocognitive impairment (ANI; 33%), mild neurocognitive disorders (MND, 20-30%), and 

the more severe albeit rare HIV-associated dementia (HAD; 2-8%) (Heaton et al., 2010; 

McArthur et al., 2010). Several risk factors are linked to the development of HAND, 

including cardiovascular risk factors, age, hepatitis C virus infection, and substances of 

abuse (Saylor et al., 2016). Among these factors, comorbidities have been considered as a 

key factor for cognitive impairment of HAND. In addition, early HIV infection of the CNS 

is believed to contribute to the development of HAND, and evidence suggests that early 

infected brain can subsequently serve as a sanctuary for HIV replication, thereby limiting the 

opportunity for a sterilizing cure or eradication (Fois et al., 2015). For example, during the 

first weeks of HIV infection, infected monocytes carrying HIV enter the CNS and viral 

proteins can be produced in macrophages by viral replication. Macrophages, the major type 

of infected cells in the brain, can become HIV reservoirs in the brain and promote 

inflammation and neuronal damage (Carvallo et al., 2017). Previous studies showed that 

elevated DA levels can increase HIV entry into human macrophages and HIV replication, 

thereby stimulating Tat release from the infected cells (Gaskill et al., 2014). It has been 

highlighted that cocaine and Tat protein synergistically elevate DA levels by inhibiting DAT 

function (Gaskill et al., 2017; Purohit et al., 2011). Although numerous studies show a 

variety of potential biomarkers for HAND, the majority of these are associated with HAD 

rather than ANI and MND, which are most common forms of cognitive impairment (Saylor 

et al., 2016). Thus, further understanding of the underlying molecular mechanisms and the 

differences in biomarkers across the spectrum of HAND will ultimately facilitate the 

identification and development of precision therapeutics for early stage of HAND.

3. Identifying Tat binding sites on human dopamine transporter

Clinically, Wang et al (2004) reported that HIV infected patients with associated dementia 

had significantly lower DAT availability in putamen and ventral striatum, which is the first 

evidence of decreased DAT associated with the pathogenesis of HIV dementia (Wang et al., 

2004). Moreover, the decreased DAT in the basal ganglia was greater in HIV patients with 

comorbid cocaine use than HIV dementia patients (Chang et al., 2008), which is correlated 

with impaired learning and memory performance (Hsieh et al., 2010; Mozley et al., 2001). 
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In contrast to the decreased DAT, one study on postmortem brain tissue from HAND patients 

(Gelman et al., 2006) reported increased levels of DAT expression in the striatum. Thus, the 

distinct and opposing patterns of HIV infection associated alteration of DAT expression 

suggest that different stages of HIV infection with or without substance use may influence 

DAT levels. Further studies to extensively examine the neuropathological changes in DAT 

expression and activity in HIV infected individuals including the all factors such as the 

stages of HIV infection, age, and substance use, are warranted. Nevertheless, these clinical 

observations suggest that developing neuroprotective agents that protect dopaminergic 

system from HIV infection associated DAT impairments would be beneficial to the 

preservation of neurocognitive function in HIV-infected individuals.

Since HIV does not infect rodents, several approaches have been used for studying the 

effects of viral proteins on DAT function and DAT-mediated effects through: 1) rodent brain 

tissues or cells expressing human DAT in the presence of recombinant Tat1-86 (Midde et al., 

2013; Midde et al., 2015; Perry et al., 2010; Quizon et al., 2016; Wallace et al., 2006; Zhu et 

al., 2009); 2) intra-brain region infusion of recombinant Tat (Harrod et al., 2008; Zhu et al., 

2015); 3) Doxycycline-induced Tat-transgenic (iTat) mouse model (Kim et al., 2003; Perry 

et al., 2010); and 4) HIV-1 transgenic rat model (Ray et al., 2003; Reid et al., 2001; Zhu et 

al., 2016). In vitro exposure of rat striatal synaptosomes or cells expressing hDAT to 

recombinant Tat1-86 (140-500 nM, final concentration) displays a decrease in [3H]DA uptake 

in a concentration dependent manner (Midde et al., 2013; Midde et al., 2015; Quizon et al., 

2016; Zhu et al., 2009). Intrastriatal bilateral injection of 15 µg/µl of recombinant Tat1-72 

significantly enhances cocaine-induced total activity and alters the development of cocaine-

mediated behavioral sensitization in rats (Harrod et al., 2008). An in vivo microdialysis 

study reported that intra-accumbal infusion of recombinant Tat1-86 (4 µg/µl) significantly 

reduces DAT-mediated uptake/release efficiency in rats (Ferris et al., 2009). Furthermore, 

intra-ventral tegmental area recombinant Tat1-86 (10 µg/µl) alters the mesocorticolimbic 

ERK and CREB signaling in rats (Zhu et al., 2015). These findings suggest that in vivo 
exposure of Tat disrupts the mesocorticolimbic pathways, which is consistent with the 

previous studies (Bansal et al., 2000; Zauli et al., 2000). With regard to genetically 

expressing viral proteins in animal models, DAT function and expression are altered in the 

HIV-1Tg rats (Zhu et al., 2016). Recently, McIntosh et al (2015) reported that HIV-1Tg rats 

exhibit a greater affinity for the binding of cocaine to DAT compared to control Fisher 344 

rats (McIntosh et al., 2015). iTat mouse model utilizes a “tetracycline-on” system coupled to 

Tat1-86 protein coding gene that becomes transcriptionally active Tat when doxycycline is 

present (Kim et al., 2003; Perry et al., 2010). Although inducible expression of Tat in this 

model is not equivalent to human HIV-infection and does not induce the same host response, 

this model displays extensive neuropathological changes such as loss of cerebellum and 

cortex, neuronal death (apoptosis), astrocytosis, degeneration of neuronal dendrites, and the 

CNS infiltration of monocytes and activated T lymphocytes (Kim et al., 2003). In addition, 

this model exhibit a significant changes in DAT function and expression (Perry et al., 2010) 

and recapitulates many aspects of cognitive impairments observed in HIV infected 

individuals such as impairments of reversal learning, novel object recognition, and spatial 

learning and memory (Carey et al., 2012; Fitting et al., 2013; Paris, Singh, et al., 2014), and 

increased cocaine-conditioned place preference (Paris, Carey, et al., 2014). Therefore, this 
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model offers specific advantages to study Tat-mediated dysregulation of DA transmission. In 

addition to Tat, recent studies show that other viral proteins, such as gp120 and Nef also 

influence DAT activity (Acharjee et al., 2014; Hu et al., 2013).

3.1. Tat interacts with human DAT directly

A question of significant interest is whether Tat interacts with DAT protein directly through 

protein-protein interaction. Studies demonstrated that Tat protein interacts biophysically and 

biochemically with DAT as a direct protein-protein interaction, which was validated by 

Surface plasmon resonance (SPR) analysis (Zhu et al., 2009), co-immunoprecipitation (Co-

IP) and Glutathione S-transferase (GST)-Tat (350 nM recombinant Tat1-86) pull down assays 

(Midde et al., 2013). These investigations greatly support the later work with mapping Tat 

binding sites in hDAT. Although several forms of Tat (Tat1-72, Tat1-86 and Tat1-101) are 

available for laboratory studies, recombinant Tat1-86 has been extensively used to study its 

neuropathological effects on the CNS (Aksenova et al., 2006; Bruce-Keller et al., 2003; Nath 

et al., 1996; Zhu et al., 2009; Zhu et al., 2015). Evidence shows that Tat1-72, Tat1-86, and full 

length Tat1-101 released from Tat-expressing cells exhibit equivalent inhibitory effect on 

DAT function (Midde et al., 2013). There are two clade B types of Tat1-86, including the 

released Tat1-86 from Tat-expressing cells (Li et al., 2008; Midde et al., 2013) and the 

recombinant Tat1-86 (Diatheva, Fano, Italy or ImmunoDX, Woburn, MA) (Quizon et al., 

2016; Sun et al., 2017). Since the recombinant Tat is considerably less potent than Tat 

released from Tat-expressing astrocytes (Li et al., 2008; Li et al., 2009), higher 

concentrations of this commonly used recombinant Tat protein may be required to 

adequately mimic the effects of Tat constitutively produced in the HIV-1 infected cells. 

However, the advantage of using the recombinant Tat is that it is a purified protein and can 

be used at exact molar concentrations for the designed experiments. Peptides derived from 

the first exon of Tat, including Tat46–60, Tat37–72, and Tat31–61, have been found to cause 

neurotoxicity (Nath et al., 1996; Philippon et al., 1994). Particularly, evidence shows that the 

cysteine-rich domain (residues 22-37) in the first exon of Tat is critical for the biological 

function of Tat (Bertrand et al., 2013; Debaisieux et al., 2012). Mutation of Tat cysteine 22 

to glycine completely eliminated the inhibitory effect of wild type recombinant Tat1-86 

(500-1000 nM, final concentration) on DAT function (Midde et al., 2015; Zhu et al., 2009). 

Thus, understanding the functional relevance of additional residues in Tat on modulation of 

DAT will provide useful feedback for identifying the recognition binding sites on hDAT for 

Tat protein.

3.2. Computational structural models of dopamine transporter and Tat interaction

As described above, Tat interacts directly with DAT (Midde et al., 2013; Zhu et al., 2009), 

which makes it feasible to perform computational modeling for studying the interaction of 

Tat with DAT. It is essential to understand how hDAT interacts with Tat at a molecular level, 

especially the detailed hDAT-Tat binding mode. However, it would be a grand challenge to 

determine an X-ray crystal structure of hDAT-Tat binding complex in the physiological 

membrane environment. In fact, X-ray crystal structure is not available even for hDAT itself. 

Nevertheless, state-of-the-art molecular modeling techniques have provided useful tools to 

model the possible hDAT-Tat interaction. Early homology modeling studies on 3D structures 

of hDAT were performed by using the X-ray crystal structure of Na+/H+ antiporter or 
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Lactose permease (LacY, e.g. PDB entry of 1PV7 with a resolution of 3.6 Å) as a template. 

X-ray crystal structure of leucine transporter from Aquifex aeolicus (LeuTAa) that became 

available in 2005 was considered as a more suitable template for modeling the 

neurotransmitter sodium symporter (NSS) family (Singh et al., 2008; Yamashita et al., 2005) 

of transporters to which DAT belongs. The LeuTAa-based first homology model of hDAT 

was first reported in 2007 (Huang et al., 2007). Several computational and experimental 

studies on the structures of hDAT and associated transporters have addressed some critical 

questions of the NSS members (Gedeon et al., 2010; Gelman et al., 2012; Guptaroy et al., 

2009; Henry et al., 2011; Huang et al., 2009; Huang et al., 2007; Koldso et al., 2011; Shan et 

al., 2011; Stockner et al., 2013; Sucic et al., 2010). Although the LeuTAa-based 3D 

structures of hDAT have been proven as a valuable model in predicting the hDAT-Tat 

interaction (Midde et al., 2013), the LeuTAa-based 3D structures of hDAT are not perfect 

due to the fact that the sequence identity between LeuTAa and hDAT is less than 25%. The 

recent hDAT structural models reported in literature (Yuan et al., 2015) were obtained from 

homology modeling using the X-ray crystal structure (Penmatsa et al., 2013, 2015; Wang et 

al., 2015) of drosophila DAT (dDAT). Interestingly, the dDAT-based hDAT model (Yuan et 

al., 2015) in the outward-open state is essentially the same as the corresponding state of the 

LeuTAa-based model, but provides additional finer details. Therefore, the dDAT-based hDAT 

structure may be considered as a refined 3D model of the LeuTAa-based hDAT structure 

(Yuan, Huang, et al., 2016). The sequence identity between hDAT and dDAT is 46%, which 

is sufficient for constructing a satisfactory homology model (Nayeem et al., 2006; Sali et al., 

1995).

Through the dDAT-modeled hDAT structures, further computational modeling studies aimed 

to understand how Tat protein via its recognition binding sites on hDAT interacts with hDAT 

(Midde et al., 2013; Midde et al., 2015; Yuan et al., 2015; Yuan, Huang, et al., 2016). This 

modeling reveals that the DA uptake is associated with the conformational conversion of 

hDAT from the outward-open state to the outward-occluded state and then to the inward-

open state (Yuan, Huang, et al., 2016). Furthermore, the computational modeling prediction 

indicates that Tat protein directly interacts with hDAT in the outward-open state, which is 

validated by experimental studies (Midde et al., 2013; Midde et al., 2015). Based on this 

principle, antagonizing DAT-mediated DA uptake may be achieved by either blocking the 

DA binding or preventing the conformational conversion of hDAT after DA binding (Yuan, 

Huang, et al., 2016). According to the 3D model of hDAT-Tat interaction complex, the 

binding of Tat with hDAT would permit the binding of in a way without competing with DA 

binding, but preventing the conformational conversion from the outward-open state to the 

other states (outward-occluded and inward-open states). Therefore, the Tat binding should 

not compete with the DA binding. Further, the computationally predicted hDAT-Tat binding 

model revealed the roles of some key residues (such as Y88, K92, Y470, and H547) of 

hDAT in binding with Tat, suggesting that amino-acid substitution on any of these residues 

will weaken the hDAT-Tat binding. Further, in a most recently reported study, computational 

modeling indicated that residue H547 of hDAT plays a crucial role in not only the hDAT-Tat 

binding, but also DA uptake by hDAT, predicting that the H547A mutation will not only 

considerably attenuate Tat-induced inhibition of DA uptake, but also significantly increase 

the Vmax of hDAT for DA uptake. The above computational models and predictions were 
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followed by extensive experimental tests that support the models and predictions as 

discussed below.

3.3. Pharmacological validation of the key residues on dopamine transporter for Tat 
binding

To obtain experimental evidence for the mode of binding predicted by the 3D structural 

model of hDAT binding with Tat, the effects of Tat on DA reuptake by hDAT bearing 

mutations of the identified key residues have been validated and refined by site-directed 

mutagenesis and pharmacological assays (Yuan et al., 2015; Yuan, Huang, et al., 2016). This 

work was recently highlighted in the HIV research by Nature Chemical Biology (Bucci, 

2015). Through the integrated computational modeling prediction and experimental 

validation, key residues can be identified in hDAT with which Tat interacts, which are 

critical for Tat-induced inhibition of DAT. In general, in vitro exposure of cell lines 

expressing hDAT to 140 nM Tat1-86 displayed a 30% decrease in [3H]DA uptake in WT 

hDAT (Midde et al., 2013; Midde et al., 2015; Quizon et al., 2016). One may expect that 

mutations of identified binding residues on hDAT for Tat would attenuate the Tat-induced 

inhibition of DA transport. One caveat is that Tat-induced inhibition of hDAT in cell system 

may not reflect hDAT-Tat interaction in HIV infected human brain and does not measure the 

biological effects on HIV-1 Tat protein on hDAT function. However, through this in vitro 
model we can explore the molecular mechanism(s) of Tat inhibition on the DA uptake by 

DAT and interactions with cocaine.

3.3.1. The functional influences of Y88, K92 and Y470 of hDAT on DA transport 
process—The amino acid sequence of hDAT has 12 transmembrane (TM) helices. 

According to the computationally modeled hDAT structures (Midde et al., 2015; Yuan et al., 

2015), TM1, TM6 and TM10 are crucial for conformational conversion of DA transport 

process from the outward-open to the outward-occluded state of hDAT. This is consistent 

with the previous studies showing R85-D476 (between TM1 and TM10) salt bridge as a key 

indication for the conformational conversion (Gedeon et al., 2010; Huang et al., 2007; 

Manepalli et al., 2012; Schmitt et al., 2011). Therefore, any structural changes involving the 

intermolecular interactions of TM1, TM6 and/or TM10 are expected to influence the 

conformational conversion, thereby altering DA uptake by hDAT. Interestingly, 

computational modeling using the dDAT-based hDAT model predicts Tat binds most 

favorably with the outward-open state of hDAT. Further analysis of the molecular dynamics 

simulations of the hDAT-Tat binding structure revealed that Y88, K92, and Y470 of hDAT 

are key residues involved in the intermolecular interaction between hDAT and Tat (Yuan et 

al., 2015). Among these residues, K92 (TM1b) interacts with D313 (TM6a) side chains 

forming a favorable salt bridge during the molecular dynamics simulations on the hDAT-DA 

binding structures, which is necessary for the conformational conversion of hDAT during the 

DA uptake process. As a result, elimination of the K92-D313 salt bridge is expected to 

impair/slow down the DA uptake process. This computational prediction has been validated 

by site-directed mutagenesis and in vitro pharmacological assays. For example, mutations of 

K92 (K92M) (Midde et al., 2015) and D313 (D313N) (Chen et al., 2004) decrease the Vmax 

for DA uptake by 70% and 80%, respectively, relative to wild type hDAT. In addition, Y470 

residue (in TM10) of hDAT is a key component of a hydrophobic region, which is critical 
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for stabilizing the compact structure of hDAT. As a result, significant change in the 

hydrophobic property or shape of Y470 by mutations (Y470H or Y470A but not Y470F) 

could decrease the Vmax for DA uptake (Midde et al., 2013; Midde et al., 2015). The 

aromatic ring of the Y88 side chain is sandwiched between TM1b and extracellular loop 4 

(EL4) in a hydrophobic region as a stable intermolecular structure of hDAT. As a result, 

mutation of Y88 (Y88F) retains the reuptake function of hDAT without change in the Vmax 

(Midde et al., 2015).

3.3.2. The functional influences of H547 of hDAT on DA transport process—In 

addition to R85-D476 salt bridge, computational modeling prediction has revealed that a 

stable structural motif (Y548-Y470-Y551, denoted as YYY motif) is also an essential 

structural feature for the conformational conversion of hDAT during DA transport process 

(Yuan, Quizon, et al., 2016). This YYY motif contains a typical U-turn loop with a 

hydrophobic region which is associated with extracellular loop 6 (EL6) and TM10a. Any 

amino-acid-based structural changes that destabilize the YYY motif would impair the 

formation of the R85-D476 salt bridge, which then influences the conformational conversion 

associated with the DA transport process. As described above, mutation of Y470 (Y470H) 

that destabilizes the YYY motif by disrupting the hydrophobic interaction dramatically 

decreases the Vmax for DA uptake (Midde et al., 2013; Midde et al., 2015). Interestingly, 

mutations of H547 residue that is adjacent to Y548 of the YYY motif is also expected to 

significantly affect the stability of the YYY motif (Yuan, Quizon, et al., 2016). The H547A 

mutant improves the strength of the R85-D476 salt bridge that is comparable to that in wild 

type hDAT, whereas the salt bridge is broken in the H547P and H547D, thus, affecting the 

DA transport by hDAT (Yuan, Quizon, et al., 2016). The computational modeling 

predictions were validated pharmacologically. For example, the Vmax for DA uptake is 

increased by 196% in H547A and decreased by 99% in H547P and 60% in H547D, 

respectively, but not altered in H547R (Quizon et al., 2016).

3.3.3. Attenuation of Tat-induced inhibition of DA transport—Through the 

computational modeling and molecular dynamics simulations, it is possible to identify the 

most favorable hDAT-Tat binding mode, including a cation-π interaction involving Y470 of 

hDAT and two hydrogen-bonding interactions involving hDAT residues Y88 and K92 (Yuan 

et al., 2015). Based on this prediction, the cation-π interaction between hDAT and Tat would 

be eliminated by Y470H and Y470A mutations but not Y470F. Mutations of K92 (K92M) 

and Y88 (Y88F) are expected to inhibit the Tat binding with minimal influence by the 

mutated Y88. Accordingly, in vitro pharmacological studies reveal that exposure to 140 nM 

Tat1-86 induces a 30% reduction of the specific DA uptake in wild type hDAT, which is 

completely attenuated in mutants Y470H, Y470A, and Y88F, but not in Y470F mutant 

(Midde et al., 2013; Midde et al., 2015). In addition, both the side chain and backbone of 

H547 residue on hDAT forms a hydrogen bond with residue R49 of HIV-Tat (Yuan, Quizon, 

et al., 2016), which is expected to be broken with the H547 mutation. As a result, Tat1-86 

(140 nM)-induced inhibition of the specific [3H]DA uptake in wild type hDAT is attenuated 

in H547 mutants (H547A, H547P, and H547D) and associated hDAT residue Y551H .
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Based on the modeled Tat-hDAT binding structure, a total of 20 residues of hDAT were 

predicted to be key residues for the hDAT-Tat interaction (Yuan et al., 2015). Table 1 shows 

a summary of the partial results of the different effects of mutants on basal DA uptake and 

Tat-induced inhibition of DA transport, which can be categorized as: 1) retaining normal DA 

uptake but attenuating Tat’s inhibitory effect (Y88F and H547R) or 2) not affecting Tat’s 

inhibitory effect (Y470F); 3) reducing DA uptake and attenuating Tat’s effect (Y470H, 

Y470A, K92M, H547P, and H547D); and 4) enhancing normal DA uptake while attenuating 

Tat’s effect (H547A). Thus, understanding the binding residues on hDAT for Tat will 

provide a mechanistic basis for identifying targets for developing compounds that 

specifically block Tat binding site(s) in DAT or diminish the Tat binding affinity by allosteric 

modulation.

4. Allosteric modulatory effect of Tat protein on DA transport

An estimated prevalence of comorbid HIV infection and drug abuse is about 40-70% of HIV 

positive individuals. Drugs of abuse, such as cocaine, have been shown to increase the 

incidence of HAND and exacerbate the severity of HAND by enhancing viral replication 

while there is no FDA-approved therapy for cocaine addiction. Cocaine is thought to 

mediate most of its behavioral and rewarding effects via blockade of the DAT and the 

resulting elevation in extracellular brain DA levels (Dutta et al., 2003). Interplay of Tat and 

cocaine augments synaptic DA levels and Tat release by inhibiting DAT activity (Ferris et 

al., 2010; Zhu et al., 2009), which may contribute to the progression of HAND underlying 

the cognitive deficits in HIV-1 positive cocaine-using individuals (Chang et al., 2008; Wang 

et al., 2004). Therefore, there is a pressing need to define the molecular mechanism(s) by 

which how Tat through their recognition binding sites on hDAT potentiates cocaine-induced 

inhibition on DAT function, thereby leading to dysfunction of the DA system. Attenuating 

inhibitory effects of Tat and cocaine on DA transport are important for preventing the DAT-

mediated dysfunction of DA system in HIV infected patients with cocaine abuse.

4.1. Cocaine and Tat protein differentially interact with hDAT

Molecular model for DAT binding of cocaine constructed from the high-resolution structure 

of the bacterial transporter homolog LeuT suggests that the binding site for cocaine is deeply 

buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites 

for the substrate, DA (Beuming et al., 2008). This cocaine-DAT model is validated by 

detailed mutagenesis and by trapping the radiolabeled cocaine analog [3H]CFT in the 

transporter, which demonstrates the molecular basis for the competitive inhibition of DA 

transport by cocaine. Moreover, according to further molecular modeling and dynamics 

simulations, the cocaine competes with DA for binding with DAT (Huang et al., 2009). 

Taken together, these studies conclude that it is impossible to generate a competitive 

inhibitor of cocaine binding that treats cocaine addiction without itself inhibiting DA uptake. 

In contrast, with respect to Tat protein, Tat-induced inhibition of DAT is mediated by 

binding to allosteric binding site(s) on DAT, not by interacting with the DA uptake site 

(Yuan et al., 2015; Zhu et al., 2011; Zhu et al., 2009). This conclusion is supported by the 

following pharmacological studies: 1) recombinant Tat1-86 (140 nM, final concentration) 

decreased the Vmax of [3H]DA uptake and Bmax of [3H]WIN 35,428 binding and increased 
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the apparent Km and Kd values in a concentration-dependent manner (Zhu et al., 2009); 2) 

recombinant Tat1-86 displays a similar decrease in IC50 values for cocaine-induced inhibition 

of [3H]DA uptake by a competitive inhibitor such as indatraline as well as by allosteric 

modulators such as the SRI compounds (Pariser et al., 2008; Zhu et al., 2011); and 3) the 

addition of recombinant Tat1-86 (5µM) after cocaine significantly slowed the dissociation 

rate of [3H]WIN 35,428 (Zhu et al., 2011). The observed results demonstrate that Tat 

modulates the transporter conformation transitions by binding to allosteric binding site(s), 

not by interacting with the DA uptake site where cocaine and WIN35,428 bind. Consistent 

with these results, computational modeling revealed that Tat-DAT interaction does not 

overlap with the substrate DA binding site (Yu et al., 2013).

4.2. Allosteric modulation of DAT by cocaine and Tat

In general, transporter ligands that interact with neurotransmitter transport are typically 

classified into two categories: cocaine-like competitive inhibitors and amphetamine-like 

substrates (Schmitt et al., 2013), which increase extracellular monoamine levels and display 

addiction liability similar to that of cocaine. In addition to competitive inhibitors and 

substrates of transporter, there is a growing interest in allosteric modulators of DAT. 

Allosteric sites on hDAT may represent novel drug targets that display neutral cooperativity 

with the classical DA uptake site. If inhibition of DA uptake by cocaine or Tat is the result of 

an allosteric mechanism, it would be possible, at least in theory, to generate an allosteric 

modulator that might attenuate cocaine and Tat binding to DAT without affecting DA 

transport for treatment of individuals with comorbid HIV infection and cocaine use. DAT-

mediated DA transport is a dynamic DA translocation process, which is regulated by three 

typical conformational states: Outward-open → Outward-occluded → Inward-open 

(Beuming et al., 2008; Kniazeff et al., 2008; Zhao et al., 2010). The substrate (DA) transport 

process is associated with the transporter protein conformational changes. Conformational 

transitions via substrate- and ligand-binding sites on DAT are responsible for allosteric 

modulation of DAT (Shan et al., 2011). Cocaine and Tat protein preferentially stabilize the 

DAT in the outward-open state, resulting in reduction of DA uptake by directly blocking DA 

uptake site (Loland et al., 2002; Reith et al., 2001; Yuan et al., 2015; Yuan, Huang, et al., 

2016). Generally, the processes of the conformational changes in DA transport involve 

conversions between outward-open and inward-open states (Zhao et al., 2010). In support of 

an allosteric modulation for cocaine binding, previous studies have reported that mutations 

of several residues in DAT produce differential effects on cocaine and DA binding (Chen et 

al., 2005; Chen et al., 2006; Lin et al., 2002; Loland et al., 2004; Uhl et al., 2003). However, 

the marked decrease in affinity for cocaine by mutating these residues is the result of an 

altered conformational equilibrium of DAT toward an inward-open conformation, rather than 

because of disruption of a direct interaction between the identified residues and cocaine 

(Loland et al., 2004; Loland et al., 2002; Sen et al., 2005). Given that Tat protein and 

cocaine synergistically impair DAT function, a detailed understanding of the interplay 

between Tat and cocaine in disrupting DAT-mediated DA dysregulation may provide 

therapeutic insights into HAND in concurrent cocaine abusers. As described above, several 

key residues have been identified in hDAT, which are critical for Tat-induced inhibition of 

DAT and transporter conformational changes. Interestingly, compared to WT hDAT, 

mutations in these residues lead to an increase in affinity for cocaine (Midde et al., 2013; 
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Midde et al., 2015; Quizon et al., 2016), which may implicate a high rate of cocaine use in 

HIV-infected individuals. Computational modeling of Tat-DAT suggested that mutating 

these residues for Tat binding may modulate the conformation of cocaine binding with 

hDAT via an allosteric modulatory mechanism. Occupancy of the endogenous Zn2+ binding 

site in WT hDAT (His193, His375, and Glu396) stabilizes the transporter in an outward-

open state, which allows DA to bind but inhibits its translocation, thereby increasing 

[3H]WIN35,428 binding sites (Moritz et al., 2013; Norregaard et al., 1998), but decreasing 

DA uptake (Loland et al., 2003). On the basis of this principle, it was found that mutating 

Tat binding residues alters Zn2+ modulation of [3H]DA uptake and [3H]WIN35,428 binding 

sites as well as the basal DA/or MPP+ efflux (Midde et al., 2013; Midde et al., 2015; Quizon 

et al., 2016). By using a hDAT homology model to dock Tat into the transporter and MD 

simulations to probe the conformational state of hDAT bound to Tat, it was found that Tat 

can only bind to the outward-open structure with favorable binding energies (Yuan et al., 

2015). Therefore, it was predicted that Tat binding would block the entry pathway of the DA 

substrate, thereby inhibiting DA clearance from the presynaptic cleft. These findings suggest 

that Tat protein via its recognition residues in hDAT produces inhibition of DA transport by 

altering transporter conformational transitions.

4.3. Developing biological probes for attenuating Tat binding to DAT

Evidence showing Tat-induced allosteric modulation of DA transport provides a molecular 

basis for developing allosteric modulatory molecules that decrease the affinity and maximal 

binding potential of cocaine and Tat. This could be a viable approach for treatment of 

cocaine- and Tat-induced dysfunction of DA system. Identifying suitable molecular probes 

and performing proof of concept studies is of great scientific and clinical interest. Recent 

studies have reported that a novel quinazoline series (SRI-compounds) of monoamine 

transporter ligands, function as partial antagonists of DA uptake without the full inhibitory 

profile that is typical of classic competitors of DAT (Pariser et al., 2008; Rothman et al., 

2015; Rothman et al., 2009; Schmitt et al., 2013). There are number of advantages in using 

allosteric modulators of DAT as preferred therapeutic agents over classic competitor of the 

DA uptake site. Such allosteric modulators could potentially attenuate the effect of cocaine 

and Tat on DAT while having minimal effects on the physiological DA transmission. 

Although it is still unclear how the SRI-compounds through their interaction with allosteric 

modulatory sites on hDAT alter the affinity and maximal binding potential of cocaine and 

Tat, recent studies have demonstrated that the SRI-compounds attenuate the inhibitory 

effects of cocaine and Tat on DA uptake and binding (Sun et al., 2017; Zhu et al., 2011). For 

example, compared to indatraline, a competitive inhibitor for DAT, SRI-compounds produce 

~40% reduction of the specific [3H]DA uptake and display ~30% increase in IC50 values for 

inhibiting [3H]DA uptake by cocaine in rat synaptosomes and cells expressing hDAT (Sun et 

al., 2017; Zhu et al., 2011). These findings suggest that SRI-compounds display a partial 

antagonism on DA transport in an allosteric modulation manner. Furthermore, SRI-

compounds were evaluated in a dissociation assay, in which the dissociation is initiated by 

blocking the forward reaction with 10 µM cocaine, a concentration high enough to occupy 

all DAT binding sites followed by assessing the cocaine-mediated dissociation rate of 

[3H]WIN 35,428 in the presence of SRI-compounds. In this assay, cocaine as a competitive 

inhibitor of DAT potently dissociates the binding of the cocaine analog [3H]WIN 35,428, 
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and the addition of SRI-compounds after cocaine slows the dissociation rate of [3H]WIN 

35,428. These findings further demonstrate that SRI-compounds modulate the conformation 

of DAT by binding to a site to which cocaine or WIN 35,428 does not bind, thereby leading 

to alteration of the kinetics of the [3H]DA uptake and [3H]WIN 35,428 binding.

As described above for Tat-mediated allosteric modulation, one recent study reported that 

SRI-30827 attenuated 40 nM recombinant Tat1-86-induced inhibition of [3H]WIN35,428 

binding, indicating that Tat binding to DAT can be modulated by allosteric ligands (Sun et 

al., 2017). Computational docking study shows that SRI-30827 interacts with hDAT 

extracellular loop 6 that contacts directly with Tat and can partially inhibit DAT uptake 

function (Sun et al., 2017). Since the conformational changes in DA transport process 

involve conversions between the outward- and inward-open conformations (Zhao et al., 

2010), further docking studies were performed using homology models of hDAT at the 

different conformational states and two SRI-compounds. These studies revealed that the 

SRI-compounds could only fit into the outward-open hDAT model. Interestingly, the docked 

pose of the ligands at hDAT-Tat complex reveal that compounds such as SRI-30827 could 

potentially influence the conformation of residues Tyr470 and Tyr88 in the EL6 region, and 

thus likely modulate the binding of Tat on hDAT via an allosteric modulatory mechanism. 

However, it is still unclear whether the attenuation of Tat-induced inhibition of 

[3H]WIN35,428 binding by SRI-30827 is through direct interaction with Tat binding site or 

other allosteric binding sites. Recent studies have demonstrated that DAT tyrosine 470 and 

88 replaced by histidine (Y470H) or phenylalanine (Y88F) retain the normal surface DAT 

expression and attenuate Tat-induced inhibition of DA transport (Midde et al., 2013; Midde 

et al., 2015). Further, mutating these two residues prevented zinc-induced regulation of DA 

uptake and WIN35,438 binding (Midde et al., 2013; Midde et al., 2015), which may suggest 

that these two residues are critical for Tat allosteric modulation of DAT. According to the 

previous modeling results, in the outward-open hDAT conformation, Y470 extends to the 

extracellular region where it interacts directly with Tat residues (Yuan et al., 2015). In the 

SRI-compound docked models, SRI compounds may potentially influence the conformation 

of residues Tyr470 and Tyr88 with EL6 region, and thus likely modulate the binding of Tat 

on hDAT via an allosteric modulatory mechanism. Hence, although SRI-compounds may 

not interact directly with either Tyr470 or Tyr88 for competing with Tat binding, they can 

weaken the Tat DAT binding by changing the DAT conformation allosterically. One 

possibility is that Y470H- and Y88F-mediated transporter conformational transitions may 

contribute to these changes in cocaine-mediated inhibition of DA uptake and dissociation in 

these mutants. Taken together, considering both Y470 and Y88 are associated with hDAT-

Tat interactions, developing compounds directly targeting the specific binding sites on hDAT 

for Tat could provide a viable approach for treatment of Tat-induced dopamine dysfunction. 

Alternatively, developing DAT-based allosteric modulator interacting with the specific 

residues that are structurally distinct from Tat binding sites would be another possible 

therapeutic approach.

5. Reversible Tat-induced dysfunction of dopamine transporter

Given Tat-induces dysregulation of DA system by inhibiting DA transport, it is critical to 

define whether the inhibitory effects of Tat on DAT function is reversible, since the 

Zhu et al. Page 13

Pharmacol Ther. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dysfunction occurs long before dopaminergic neuron loss and the development of HIV-

associated dementia (Wang et al., 2004). As such, effective prevention of the early effects of 

Tat exposure in the brain of HIV-infected individuals is a potentially promising approach to 

prevent Tat-mediated neurocognitive impairments. This will provide insight into 

understanding the most appropriate therapeutic window during early HIV infection.

5.1. Tat regulates DAT trafficking

The efficacy of DA uptake largely depends on DAT expression in the plasma membrane, 

which is dynamically modulated by a trafficking mechanism (Zhu et al., 2008). Particularly, 

dynamic cell surface localization of DAT is regulated by cellular signaling pathways and 

endocytotic trafficking (Melikian, 2004). It has been demonstrated that Tat inhibits DA 

uptake in a time- and concentration-dependent manner (Zhu et al., 2009), Particularly, a 15-

min exposure of rat synaptosomes to 1 µM recombinant Tat1-86 induced a rapid and 

reversible decrease in the Vmax of [3H]DA uptake without changes in total DAT levels (Zhu 

et al., 2009), suggesting that Tat-induced reduction of DA uptake is not caused by DAT 

protein degradation. Further, the transporter turnover rate, which reflects the number of DA 

molecules transported per second per site, was determined and shown that 15-min exposure 

of synaptosomes to 1 µM recombinant Tat1-86 did not alter the ratio of Vmax for [3H]DA 

uptake/Bmax for [3H]WIN 35,428 binding (Zhu et al., 2009), providing evidence that a short 

time exposure to Tat does not decrease the DAT turnover rates. Furthermore, after 15-min 

exposure of rat striatal synaptosomes to 1 µM recombinant Tat1-86, DAT expression was 

decreased by 46% in plasma membrane and increased by 49% in intracellular compartment 

without changes in total DAT levels (Midde et al., 2012). These data indicate that exposure 

to Tat results in a redistribution of DAT from the cell surface to intracellular compartments 

(i.e. internalization) and that loss of DAT from the plasma membrane is responsible for the 

decrease in Vmax observed after Tat exposure. In contrast, Perry et al (2010) reported that 

exposure of rat mesencephalic neurons or PC12-hDAT cells to 120 nM recombinant Tat1-86 

induces a slight decrease in DAT-mediated DA uptake at 15 min, however, the DA uptake 

was significantly increased by 4-fold at 30 min and 2-fold after 24 h, respectively (Perry et 

al., 2010). Interestingly, using total internal reflection fluorescence assay Perry et al 

identified that DAT expression in plasma membrane is increased after 30-min exposure of 

PC12 hDAT culture to 120 nM recombinant Tat1-86, whereas 24-h Tat exposure increases 

DAT protein synthesis, suggesting that Tat in vitro influences DAT function and expression 

through different mechanisms (Perry et al., 2010).

The elevated DAT levels were observed in the postmortem brain tissue from HAND patients 

(Gelman et al., 2006). It is important to correlate the in vitro findings with in vivo evidence 

of dopaminergic dysfunction in the context of HAND. Perry et al reported that striatal DAT 

expression levels are increased in iTat mice compared to wild type control mice after 7-day 

administration of doxycycline, suggesting that in vivo Tat exposure alters DAT levels. 

However, this study did not examine the DAT levels in these animals in the absence of Tat 

induction, such as saline control groups (Perry et al., 2010). Moreover, it has been reported 

that the HIV-1 Tg rats exhibit significantly enhanced Vmax values of [3H]DA uptake into rat 

synaptosomes of both prefrontal cortex and striatum (Zhu et al., 2016), which is opposite to 

the findings showing decreased DAT reuptake in vitro (Zhu et al., 2009). The increased Vmax 
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in the prefrontal cortex and striatum was accompanied by distinctly different alterations in 

DAT expression in the plasma membrane in a brain region-specific manner (Zhu et al., 

2016). Particularly, decreased Bmax values of [3H]WIN 35,428 binding was observed in the 

striatal plasma membrane fraction, indicating an increase in uptake turnover rate in HIV-1 

Tg rats. Thus, these findings suggest that neuroadaptive changes in DAT function are 

evidenced in animal models with genetically expressing HIV viral proteins, perhaps in 

compensation for viral protein-induced abnormal dopaminergic transmission. Thus, these in 
vitro studies suggest that Tat-induced inhibition of DAT-mediated DA uptake is reversible, 

which provides insight into understanding the most appropriate therapeutic window during 

early HIV infection.

5.2. Tat regulates DAT function by affecting subcellular signaling

The dynamic regulation of DAT function is under the control of complex processes 

involving subcellular signaling, protein-protein interaction, substrate pretreatment, and 

interaction with presynaptic receptors (Zhu et al., 2008). For example, activation of protein 

kinase C (PKC) results in reduced DA transport activity, decreased transporter recycling and 

DAT cell surface expression, thereby causing reduced DA uptake (Daniels et al., 1999; 

Foster et al., 2016; Zahniser et al., 2004). One study reported that 0.7 µM recombinant 

Tat1-86-induced decrease in the specific [3H]DA uptake in rat striatal synaptosomes was 

completely attenuated by a PKC inhibitor, BIM-1 (Midde et al., 2012). Similarly, 

preincubation of the synaptosomes with BIM-I completely blocked amphetamine-induced 

decrease (31%) in [3H]DA uptake, which is consistent with a previous report (Richards et 

al., 2009). Therefore, compared to amphetamine, Tat produces a similar regulatory effect on 

DAT uptake function through a PKC-dependent mechanism. Moreover, as described above, 

His547 in hDAT is a key residue for Tat binding (Quizon et al., 2016). In addition, it was 

found that promoting PKC phosphorylation of DAT with PMA, a PKC activator, results in 

40% and 60% reduction of DA uptake in WT hDAT and H547A, respectively. Similarly, 

preventing PKC phosphorylation of DAT with BIM produces a 98% and 42% increase in 

DA uptake in WT hDAT and H547A, respectively. This suggests a differential sensitivity to 

PMA- or BIM-induced activation or inhibition of DAT function between WT hDAT and 

H547A. One possibility is that mutation of His547 alters basal levels of PKC-mediated 

phosphorylation of DAT, thereby resulting in the enhanced DA uptake. Recent studies 

demonstrate that the serine-7 residue in DAT is critical for PKC-dependent DAT 

phosphorylation (Moritz et al., 2013), and the alanine mutation of serine-7 results in an 

increase in DA uptake relative to WT DAT (Moritz et al., 2015). As the PKC 

phosphorylation sites on cytoplasmic domain (intracellular side) of hDAT are structurally far 

away from the residue H547 on the extracellular side of hDAT (Midde et al., 2013; Yuan, 

Quizon, et al., 2016), the H547A mutation is likely to regulate the PKC-mediated 

phosphorylation by allosteric effect. In addition to PKC signaling, evidence shows that 

inhibition of GSK-3β stabilizes β-catenin and increases the number of DA neurons from 

ventral mesencephalon precursor (Castelo-Branco et al., 2004). Perry et al (2010) reported 

that 120 nM recombinant Tat1-86 significantly elevates plasma membrane-localized DAT 

expression and DA transport by activation of glycogen synthase kinase-3 (GSK-3) signaling 

pathway (Perry et al., 2010). GSK-3β inhibition prevented Tat-induced increases in 

membrane DAT and membrane calpain activity, highlighting mechanisms by which GSK-3β 
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inhibitors may confer neuroprotective benefits for dopaminergic symptoms in HAND 

(Ances et al., 2008; Dewhurst et al., 2007).

Collectively, these observations may suggest the potential regulatory pathways for DAT 

compensatory response to in vitro Tat exposure by 1) enhancing reuptake capacity, 2) 

increasing DAT turnover rate, 3) trafficking DAT to the plasma membrane, and 4) changing 

subcellular signaling pathways. Although there is limited evidence supporting the 

conclusion, these studies provide novel insights for future investigations of Tat-induced 

dysregulation of dopaminergic transmission by DAT. Long lasting exposure to viral proteins 

and elevated DA eventually lead to dysregulation of DAT-mediated DA transmission that 

potentiates HAND severity and accelerates its progression.

6. Conclusion

There are two outstanding reviews that discuss recent investigations regarding the 

interactions between the Tat protein and dopaminergic neurotransmission (Gaskill et al., 

2017; Purohit et al., 2011). What has emerged from the extensive studies is a clear link 

between perturbation of dopaminergic transmission by exposure of the CNS to Tat and the 

risk of HAND. Given the importance of DAT in DA homeostasis and synaptic DA 

transmission, this review highlights the impact of DAT on the Tat-induced dysregulation of 

DA system. Most importantly, Tat and cocaine synergistically elevate synaptic DA levels by 

acting directly on hDAT, which ultimately leads to dysregulation of dopamine transmission. 

This process provides a mechanistic explanation for why cocaine abuse increases the 

incidence of HAND and exacerbates its severity. Fig. 1 provides a summary cartoon of what 

has been described in this review of recent investigations, which highlights a vicious circle 

of HIV-1 infection-induced impairment of dopaminergic neurotransmission. There appears 

to be multiple mechanisms by which DAT can compensate for Tat-induced dysregulation of 

DA system, which maintain a constant level of DA at the synaptic cleft. In the past few 

years, much progress has been made in identifying the intermolecular interactions of Tat and 

hDAT and their impact on DAT-mediated DA neurotransmission. Allosteric modulators may 

have therapeutic utility in HAND, not only by preventing Tat binding to hDAT but also by 

reversing DAT function. However, fundamental questions remain as to the biological form of 

Tat protein, its concentration in the CNS, and how Tat influences DAT-mediated DA system 

in the early stage of HIV infection. Through integrated computational modeling and 

experimental approaches, the unique residues on hDAT are identified and validated; 

however, these binding residues for Tat may not reflect the hDAT-Tat binding mode in the 

brains of HIV infected patients. To explore the role of the identified residues in HIV 

infection-induced neurocognitive deficits in inducible Tat transgenic mice is an essential task 

in future studies. Notably, the prefrontal cortex is a critical brain region for higher cognitive 

function (Dalley et al., 2004; Miller et al., 2001; Ridderinkhof et al., 2004), where 

norepinephrine (NE) transporter (NET) is more concentrated than the DAT and plays a 

primary role in reuptake of DA (Moll et al., 2000; Moron et al., 2002). The serotonin 

transporter has a low affinity to effectively take up and transport DA at physiological levels, 

whereas the NET can transport DA and NE (Horn, 1973; Raiteri et al., 1977). For these 

reasons, it is likely that Tat-induced dysfunction of DA system could be mediated by 

inhibition of both DAT and NET, which is evidenced by increased prevalence of comorbid 
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psychiatric conditions related to NE and serotonin dysregulation in HIV infected patients 

(Adams et al., 2016; Jallow et al., 2017; Miners et al., 2014; Mirani et al., 2015). 

Determining the mechanistic basis underlying the Tat interactions with DAT/NET is 

currently underway because it may reveal novel therapeutic possibilities for preventing the 

increase in comorbid conditions as well as HAND. Overall, further understanding of the 

molecular mechanism(s) of Tat-induced impairment of DA transport process will greatly 

provide a novel mechanistic basis for developing compounds that specifically attenuate 

cocaine and Tat binding site(s) in hDAT to normalize DA transmission to physiological 

levels in HIV-infected cocaine-using patients. In summary, the findings presented herein 

raise the exciting possibility of potential therapeutic intervention for HIV infected patients 

with concurrent cocaine abuse. Proof of this concept could emerge from efforts directed 

toward discovery and development of candidate in vivo probe molecules with the desired 

allosteric modulation profiles coupled with favorable drug-like attributes. The effectiveness 

of an early intervention for HAND to preserve neurocognitive functions in HIV-infected 

individuals may ultimately depend on a treatment approach that combines compound(s) that 

specifically attenuate Tat binding site(s) in DAT with antiretroviral therapy, without affecting 

the normal function of DAT.
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Fig. 1. 
Theoretical representation of the role of hDAT in HIV infection-impaired dopaminergic 

neurotransmission. HIV crosses the blood brain barrier (BBB) in the early of HIV infection 

① and viral replication is happened in macrophages (Mɸ) ② in the basal ganglia. While 

virus takes place in macrophages, viral proteins are released ③, which damage DA neurons. 

Tat and cocaine synergistically elevate DA levels by directly blocking DA transport process 

④. The elevated DA ⑤ further stimulates viral replication and Tat release by activating DA 

receptors in macrophages ⑥. In addition, DAT activity can be regulated through trafficking 

dependent and/or independent mechanisms as well as phosphorylation of subcellular 

signaling pathways ⑦, compensating for Tat-induced increase in DA levels and thereby 

maintaining a constant level of DA at the synaptic cleft.
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Table 1

Effects of hDAT mutants on basal DA transport and Tat-induced inhibition of DAT function

Extracellular loop Vmax, DA uptake % reduction in the presence of rTat1-86 (140 nM) Publications

WT hDAT 100% 30%↓ Midde et al., 2013
Midde et al., 2015
Yuan et al., 2015
Yuan et al., 2016
Sun et al., 2017

Y470H 5 86%*↓ 0%

Y470F 5 9.0%↓ 35%↓

Y470A 5 92%*↓ 0%

Y88F 1 6.0%↓ 0%

K92M 1 71%*↓ 0%

H547A 6 195%*↑ 0% Yuan et al., 2016
Quizon et al., 2016
Yuan et al., 2016H547P 6 99%*↓ 0%

H547R 6 8.0%↓ 0%

H547D 6 60%*↓ 0%

*
indicates percentage of the mutants-induced reduction of Vmax for DA uptake as 100% in WT hDAT in the absence of Tat. 0% refers to the 

mutants-induced attenuation of Tat-induced inhibition of DA uptake observed in WT hDAT.

Pharmacol Ther. Author manuscript; available in PMC 2019 March 01.


	The Role of Human Dopamine Transporter in NeuroAIDS
	Repository Citation

	The Role of Human Dopamine Transporter in NeuroAIDS
	Digital Object Identifier (DOI)
	Notes/Citation Information

	Abstract
	1. Introduction
	2. Viral protein, dopamine system and HIV-associated neurocognitive disorder
	2.1. HIV-1 viral proteins
	2.2. Dysregulation of dopaminergic neurotransmission
	2.3. HIV associated neurocognitive and behavior deficits

	3. Identifying Tat binding sites on human dopamine transporter
	3.1. Tat interacts with human DAT directly
	3.2. Computational structural models of dopamine transporter and Tat interaction
	3.3. Pharmacological validation of the key residues on dopamine transporter for Tat binding
	3.3.1. The functional influences of Y88, K92 and Y470 of hDAT on DA transport process
	3.3.2. The functional influences of H547 of hDAT on DA transport process
	3.3.3. Attenuation of Tat-induced inhibition of DA transport


	4. Allosteric modulatory effect of Tat protein on DA transport
	4.1. Cocaine and Tat protein differentially interact with hDAT
	4.2. Allosteric modulation of DAT by cocaine and Tat
	4.3. Developing biological probes for attenuating Tat binding to DAT

	5. Reversible Tat-induced dysfunction of dopamine transporter
	5.1. Tat regulates DAT trafficking
	5.2. Tat regulates DAT function by affecting subcellular signaling

	6. Conclusion
	References
	Fig. 1
	Table 1

