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ABSTRACT 

The objective of this research was to investigate the institutional and individual factors that influence 

scientists’ data sharing behaviors across different scientific disciplines. Two theoretical perspectives, 

institutional theory and theory of planned behavior, were employed in developing a research model that 

showed the complementary nature of the institutional and individual factors influencing scientists’ data 
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sharing behaviors. This research used a survey method to examine to what extent those institutional and 

individual factors influence scientists’ data sharing behaviors in a range of scientific disciplines. A 

national survey (with 1,317 scientists in 43 disciplines) showed that regulative pressure by journals; 

normative pressure at a discipline level; and perceived career benefit and scholarly altruism at an 

individual level had significant positive relationships with data sharing behaviors; and that perceived 

effort had a significant negative relationship. Regulative pressure by funding agencies and the availability 

of data repositories at a discipline level and perceived career risk at an individual level were not found to 

have any significant relationships with data sharing behaviors. 

Keywords 

Data sharing, data reuse, eScience, cyberinfrastructure, institutional theory, theory of planned behavior, 

multilevel analysis 

INTRODUCTION 

Data sharing is a critical issue in modern scientific research with the emergence of e-Science or 

cyberinfrastructure. e-Science revolutionized the process of scientific discovery by enabling data-centric 

science or scientists sharing their data through technological development and collaborative effort (Hey & 

Trefethen, 2008). In addition, primary data collected by individual scientists becomes an important 

“information currency” along with research analyses and finding in the traditional publications (Davis & 

Vickery, 2007). As the primary data becomes important in terms of scientific research and scholarly 

communication, data sharing is now essential in most modern research activities. 

In the last few decades, the science and engineering communities made continuous endeavors to promote 

scientists’ data sharing in order to improve scholarly communication and eventually realize the vision of 

data-centric scientific research. National funding agencies, in order to leverage their investments, began to 

require their grant awardees to eventually make primary data available to others (National Science 

Foundation, 2010). Researchers gradually agreed that primary data generated by public funding should be 



shared with others (Arzberger et al., 2004). Additionally, many scientific journals’ data sharing policies 

began to mandate data sharing for the published articles. Such mandates were implemented throughout 

several scientific communities (Faniel & Zimmerman, 2011).  

Despite continuous efforts by funding agencies and science institutions, data sharing is still not well-

deployed throughout science and engineering disciplines. Although data sharing benefits scientists and 

improves scientific research development, scholars observed that data sharing is not a common practice 

(Piwowar & Chapman, 2010). In some disciplines, such as genetics and molecular biology, scientists 

continue to have prolific positive outcomes through data sharing. Still, many other disciplines do not fully 

deploy the idea of data sharing for their scientists and engineers. Sometimes, even fields that have good 

support for data sharing still struggle with the actual data sharing by individual scientists. 

There are several barriers that prevent scientists from sharing data. According to the traditional norms of 

science, scientists are supposed to share their scientific findings and related information under the ideals 

of communalism (Merton, 1973). However, disciplinary traditions, institutional barriers, lack of 

technological infrastructure, intellectual property concerns, and individual perceptions prevent scientists 

from sharing their data with others. Prior efforts focused on the development of data repositories and 

relevant technical tools to facilitate scientists’ data sharing. However, diverse external issues, including 

the policies developed by funding agencies and journals continue to influence scientists’ data sharing 

(Borgman, 2010). Related to these institutional issues, individual scientists’ perception toward data 

sharing significantly influences their data sharing behaviors (Tenopir et al., 2011). 

Compared to the importance of data sharing in scientific research, prior studies do not fully address the 

complex nature of data sharing. Scholars from a diverse range of disciplines studied scientists’ data 

sharing, in order to understand both the prevalence of sharing or withholding of data, and factors that 

influence data sharing or withholding. Although scientists’ data sharing practices are embedded in a 

higher level context (i.e., scientific discipline or institution), prior studies focused on the technical and the 

individual aspects of data sharing, rather than combining them within their institutional contexts. The 



institutional or disciplinary context is critical for understanding scientists’ data sharing. Each scientific 

discipline has its own institutional context(s), influencing its scientists’ data sharing behaviors, along with 

individual and technological aspects of data sharing. 

The main objective of this research is to investigate the factors influencing scientists’ data sharing 

behaviors in diverse scientific communities. This research considers both individual and contextual 

factors in influencing scientists’ decisions to share their data with others. More specifically, this research 

considers the combination of institutional and individual factors that influences scientists’ decisions on 

data sharing behaviors. By taking an integrated perspective both at the disciplinary and individual levels, 

this research demonstrates the dynamics of institutional and individual influences affecting scientists’ data 

sharing behaviors. 

LITERATURE REVIEW 

Data sharing would be desirable scientific behavior under the norms of communalism and 

disinterestedness proposed by Merton (1973); however, other scholars argued that scientists do not 

behave entirely according to Merton’s scientific norms, but rather also seek their own interests based on 

solitariness and interestedness (Mitroff, 1974; Mulkay, 1976). A number of later studies also showed the 

gap between Merton’s norms of scientists and their actual behaviors (Cronin, 1984; Kellogg, 2006; Ziman, 

2000). Unlike traditional publication methods, data sharing does not have standard or formal mechanisms 

of citation, and thus cannot provide appropriate rewards for the scientists who collected the data 

(Borgman, 2010). Therefore, data sharing has not yet been established as major scholarly communication 

methods throughout different scientific communities (Borgman, 2007; Tenopir et al., 2012).      

 

Although sharing data among scientists means that more scientists can benefit from the data, there is 

ample evidence that scientists nonetheless withhold their data rather than sharing it in popular science 

journals (Campbell & Bendavid, 2003; Cohen, 1995; Piwowar, 2011). Previous literature on scientists’ 



data sharing and withholding has paid considerable attention to (1) the prevalence of data sharing and 

withholding, (2) the motivations behind and barriers to data sharing and withholding, and (3) the benefits 

and consequences of data withholding (Campbell et al., 2002; Campbell, Louis, & Blumenthal, 1998; 

Campbell, Weissman, Causino, & Blumenthal, 2000; Kim & Stanton, 2012; Louis, Jones, & Campbell, 

2002). 

Especially, prior studies research on diverse factors influencing scientists’ data sharing and withholding, 

and those factors can be categorized into three groups: (1) Institutional factors including  funding 

agency’s policy (McCullough, McGeary, & Harrison, 2008; Piwowar & Chapman, 2008), journal 

requirements (McCain, 1995; Piwowar & Chapman, 2008), and contract with industry sponsors (Louis et 

al., 2002), (2) IT resource factors including metadata (Bietz, Baumer, & Lee, 2010; Hey & Trefethen, 

2004; Karasti, Baker, & Millerand, 2010) and data repositories (Choudhury, 2008; Witt, 2008), and (3) 

individual factors including personal characteristics (Campbell & Bendavid, 2003; Campbell et al., 2002), 

perceived benefit (Kim, 2007; Kankanhalli, Tan, & Wei, 2005; Kling & Spector, 2003), perceived effort 

(Campbell et al., 2002; Louis et al., 2002; Tenopir et al., 2011), perceived risk (Reidpath & Allotey, 2001; 

Savage & Vickers, 2009; Stanley & Stanley, 1988). In addition, other organizational and environmental 

factors have been studied as important factors influencing scientists’ data sharing and withholding 

(Tenopir et al., 2011; Vogeli et al., 2006). These prior studies informed this research to choose a relevant 

theoretical framework and develop a concrete research model by addressing institutional, IT resource, and 

individual factors together.   

Previous studies provided valuable insights; however, they were limited in terms of main focus, research 

methods, theoretical frameworks used, what research constructs were employed, and what disciplines 

were studied. First, previous studies focused mainly on individual motivational factors and technical 

factors rather than institutional and environmental factors. Next, the majority of previous studies hardly 

employed any theoretical model to explain scientists’ data sharing behaviors. Additionally, previous 

studies identified few research constructs regarding the factors influencing scientists’ data sharing. Finally, 



previous studies did not cover diverse science and engineering disciplines in regards to scientists’ data 

sharing behaviors. By understanding the limitations of previous studies, this research discussed possible 

theoretical framework and research method that can triangulate scientists’ data sharing behaviors. 

THEORETICAL FRAMEWORK 

Drawing upon institutional theory and the theory of planned behavior, this research proposed a research 

model to investigate how both institutional and individual drivers influence scientists’ data sharing 

behaviors. Scientists’ data sharing behaviors can be understood through the lens of institutions’ seeking 

organizational legitimacy and individual motivation. Institutional theory (Scott, 2001) provides 

significant insights regarding the importance of institutional environments including institutional rules, 

norms, and culture on individuals’ actions (behaviors) (Tolbert, 1985; Tolbert & Zucker, 1983). In 

contrast, the theory of planned behavior provides insights regarding how individuals’ attitudes, subjective 

norms, and perceived behavioral control influences individuals’ behaviors mediated by intention (Ajzen, 

1991). 

The research model builds on insights from Scott’s (2001) neo-institutional theory. According to Scott 

(2001), institutions shape individuals’ beliefs and their non-rational behaviors. Individuals are embedded 

in institutional environments; these provide individuals with a basis for actions and shape individuals’ 

priorities and activities (Powell, 1991; Thornton & Ocasio, 2008). Individual actors consider diverse 

institutional influences in order to interpret what actions are legitimately available to them and make their 

decisions (Lawrence, Suddaby, & Leca, 2011).  

Neo-institutional theory posits three kinds of institutional pressures influencing behaviors: regulative, 

normative, and cultural-cognitive. These institutional pressures provide guidelines and constrain actions 

(Scott, 2001, p. 50). Regulative pressure arises from the rules that an authoritative organization or actor 

sets for desirable behaviors of other organizations or its organizational members. Regulative pressure 

provides organizations or individuals with coercive constraints, and legally sanctions those who do not 

comply. Normative pressure refers to social obligation caused by collective expectations in a community. 



Normative pressure sets shared norms for the appropriateness of individuals’ or organizations’ behaviors. 

Training, education, and association teach individuals shared norms, and individuals are governed 

morally by these collective expectations. Lastly, cultural-cognitive pressure refers to the shared 

understanding of the world that is taken for granted. The cultural-cognitive institution is deeply embedded 

in communities and is supported culturally. Organizations or individuals observe others’ activities and 

simply imitate their behaviors. 

The theory of reasoned action and its successor, the theory of planned behavior are well-established social 

psychology theories that describe how salient beliefs influence behavioral intentions and subsequent 

behavior (Ajzen, 1991; Fishbein & Ajzen, 1975). Theory of planned behavior explains an individual’s 

behavior based on his or her behavioral intentions. These intentions are in turn influenced by his/her 

attitude toward a behavior, perception of the subjective norms regarding that behavior, and perceived 

behavioral control. Behavioral intention refers to a person’s aim to perform a particular behavior (Ajzen, 

1991). An attitude is a cognitive and emotional evaluation of an object or behavior (Ajzen, 1991). A 

subjective norm is a person’s belief that people who are important to him or her expect that he or she 

should or should not perform a particular behavior (Ajzen, 1991). Perceived behavioral control is an 

individual’s perceptions of his or her ability to perform a given behavior easily (Ajzen, 1991). Each of the 

determinants of behavioral intention is in turn influenced by underlying belief structures such as 

behavioral, normative, and control beliefs (Ajzen, 1991; Fishbein & Ajzen, 1975).  

Based on institutional theory and theory of planned behavior, a research model was developed to explain 

and predict scientists’ data sharing behaviors. Drawing on theories and previous literature, this research 

identifies two groups of factors – institutional predictors and individual predictors, respectively – that 

influence scientists’ data sharing behaviors. The combination of two theoretical perspectives provides an 

opportunity to examine scientists’ data sharing behaviors from both institutional and individual 

perspectives. Institutional theory explains the context within which individual scientists are acting; 

whereas the theory of planned behavior explains the underlying motivations behind scientists’ data 



sharing behaviors in an institutional context. The Figure 1 below shows the research model for scientists’ 

data sharing behaviors. 

 

Figure 1. Research Model for Scientists’ Data Sharing Behaviors 

Individual Level 

The three behavioral beliefs toward data sharing including perceived career benefit, perceived career risk, 

and perceived effort would influence scientists’ data sharing behaviors. Based on prior literature, we 

found that these three behavioral beliefs are the main individual level perceptions that either positively or 

negatively influence scientists’ data sharing behaviors.  

Perceived Career Benefit 

Scientists’ perceptions of the career benefit of data sharing would positively influence their data sharing 

behaviors. Perceived career benefit means the degree to which a scientist believes that sharing data could 

provide rewards such as recognition and reputation through acknowledgements, citations, and sometimes 

authorships. Prior studies reported that scientists’ perceptions of rewards (i.e., acknowledgements, 

citations, and authorship) for data sharing enhanced their data sharing behaviors (Kankanhalli et al., 2005; 



Kling & Spector, 2003); however, if they perceive low or no reward, they are unlikely to share their data 

with others (Sterling & Weinkam, 1990). Thus, the perceived career benefit of data sharing would 

encourage scientists to share their data with other scientists. 

H1: The perceived career benefit of data sharing positively influences scientist’s data sharing behavior. 

Perceived Career Risk 

Perceived career risk is defined as a scientist’s belief about the potential negative outcomes from data 

sharing that might affect his or her career adversely. The perception of data sharing as risky is an 

important barrier for scientists who are considering whether to make their data available to other scientists. 

In the context of scientists’ data sharing, prior studies identified diverse components of perceived (career) 

risk including losing publication opportunities (Reidpath & Allotey, 2001; Savage & Vickers, 2009; 

Stanley & Stanley, 1988), protecting one’s career (Campbell et al., 2002; Louis et al., 2002), and misuse 

of data (Borgman, 2007; Cragin, Palmer, Carlson, & Witt, 2010; Pryor, 2009). Therefore, if scientists 

believe that data sharing has possible negative outcomes for their careers, they are less likely to share 

their data with others.  

H2: The perceived career risk involved in data sharing negatively influences scientist’s data sharing 

behavior. 

Perceived Effort 

Perceived effort refers to the degree to which a scientist believes that sharing data would require work 

(energy) and time. In the context of knowledge sharing, Thorn and Connolly (1987) found that 

individuals were less likely to share their knowledge the more time and effort it took to share it. In regards 

to scientists’ data sharing, prior studies also pointed out time and effort required to share their data 

impeded scientists’ data sharing (Campbell et al., 2002; Stanley & Stanley, 1988; Tenopir et al., 2011). 

Therefore, if scientists believe that data sharing requires their effort, they are less likely to share their data 

with others.  



H3: The perceived effort required to share data negatively influences scientist’s data sharing behavior. 

Scholarly Altruism 

Scientists’ scholarly altruism would increase their data sharing behaviors. Scholarly altruism refers to the 

degree to which a scientist is willing to work to increase others’ welfare without expecting any benefits in 

return (Hsu & Lin, 2008). There are few prior studies focusing on the link between (scholarly) altruism 

and scientists’ data sharing. A couple of studies found that altruism is an important factor influencing 

faculty members’ contribution to institutional data repositories (Foster & Gibbons, 2005; Kim, 2007). 

Those faculty members who contribute their data to institutional repositories have greater altruism to 

make their data available to the public (Cronin, 2005; Foster & Gibbons, 2005; Kim, 2007). Therefore, if 

scientists have more altruistic motivations, they are more likely to share their data with others. 

H4: Scientist’s scholarly altruism positively influences his/her data sharing behavior. 

Data Sharing Behavior 

This research considers actual data sharing behavior as an outcome variable. In the context of scientists’ 

data sharing, data sharing behavior can be defined as the extent to which scientists provide other scientists 

with their research data and information related to their published articles by depositing them into data 

repositories and providing them upon request. In this research, data sharing behaviors can be determined 

by both individual predictors (i.e., perceived career benefit, perceived career risk, perceived effort, and 

scholarly altruism) and institutional predictors (i.e., regulative pressures by funding agencies and journal 

publishers, normative pressure, and the availability of data repositories).  

Institutional Level 

Regulative Pressures by Funding Agencies and Journals 

Governmental funding agencies and journal publishers require scientists to share data in order to receive 

funding or publish articles in their journals. Scientific funding agencies create data management and 

sharing policies requiring grantees to share raw data with others. Funding agencies can increase regulative 



pressures on scientists by controlling the funding resources available to them. As such, scientists are 

subject to influence from scientific funding agencies such as NSF and NIH. Because the resources 

controlled by these funders are so critical to scientists’ career progress, they need to comply to secure 

their own professional survival (Pfeffer & Salancik, 1978).  

Similarly, many science and engineering journals in some disciplines require their authors to share 

original data in various ways, such as submitting data to data repositories, and/or providing data upon 

request. Since journal publishers control access to the publication of research articles, they are one of the 

dominant sources of coercion for scientists. Scientists who feel more regulative pressures from journals 

will be more likely to share their data with others. Prior studies found that the compliance with regulative 

pressures influence individuals’ intention and their actual behaviors directly (Liu, Ke, Wei, Gu, & Chen, 

2010; Teo, Wei, & Benbasat, 2003). Therefore, this research assumes that the regulative pressures by 

funding agencies and journal publishers would directly influence scientists’ data sharing behaviors.  

H5: The regulative pressure by funding agencies positively influences scientist’s data sharing behavior. 

H6: The regulative pressure by journal publishers positively influences scientist’s data sharing behavior. 

Normative Pressure 

In the context of scientists’ data sharing behaviors, normative pressure would lead scientists who are in 

the same community to follow the socially adopted norms of their communities. Normative pressures 

constrain scientists’ data sharing behaviors through a system of values, norms, expectations, and roles 

(DiMaggio & Powell, 1991; Scott, 2001). Ceci (1988) found that scientists in the physical and social 

sciences endorse the data sharing principle, since it is a desirable norm in scientific communities. 

Scientists’ perceptions of normative pressure originate from their research communities, which share 

similar values, norms, and expectations. Scientists conform to norms in order to maintain their legitimacy 

by reassuring constituents in their fields (John, Cannon, & Pouder, 2001; Zsidisin, Melnyk, & Ragatz, 



2005). The institutional norm as the forms of professionalism and expectation from peer-scientists in a 

scientific community would positively influence scientists’ data sharing behaviors.  

H7: The normative pressure in a scientific discipline positively influences scientist’s data sharing 

behavior.  

Data Repository 

The institutional resources that are already known as resource-facilitating conditions in prior studies 

would be important institutional level factors influencing scientists’ data sharing. Prior studies found that 

resource-facilitating conditions reduce the perceived efforts as individual’s attitudinal belief (Phang et al., 

2006). Resource-facilitating conditions have been studied in prior knowledge sharing studies, and those 

studies revealed that the resource-facilitating conditions play an important role in predicting people’s 

attitude toward knowledge sharing, intentions to share knowledge (Ryu, Ho, & Han, 2003; So & Bolloju, 

2005). Therefore, scientists’ resource-facilitating conditions including data repositories would enhance 

scientists’ data sharing behaviors.  

H8: The availability of data repositories in a discipline positively influences scientist’s data sharing 

behavior. 

The current research focuses on how institutional and individual factors influence scientists’ data sharing 

behaviors across scientific disciplines. The research model and hypotheses developed at this stage were 

empirically validated by using survey data collected from scientists in diverse science and engineering 

disciplines. The survey research helps in investigating data sharing factors at individual and institutional 

levels. 

RESEARCH METHOD 

This research employed a survey method to examine the constructs and hypothesized relationships of the 

scientists’ data sharing model. By conducting the survey in a range of science and engineering disciplines, 



this research validated the scientists’ data sharing model by investigating both institutional and individual 

influences of scientists’ data sharing behaviors. In addition, consistent with the multilevel theoretical 

framework combining institutional theory (discipline level) and theory of planned behavior (individual 

level), a multilevel analysis was employed for this research, since the estimation of variances in different 

levels is theoretically relevant (Dansereau, Yammarino, & Markham, 1995; Klein, Dansereau, & Hall, 

1994). 

Population and Sampling 

The target population of this research included faculty members and post-doctoral researchers in U.S. 

academic institutions who belong to STEM (Science, Technology, Engineering, and Mathematics) 

disciplines. They are expected to have their own data collected and to have ownership of those data. The 

sampling frame of this research was identified from the scholar list in the Community of Science’s (CoS) 

Scholar Database (http://pivot.cos.com). This database provides a global researcher profile directory, 

though mainly from universities and colleges rather than from industry. The CoS scholar database 

provides the means to directly access the population of this research. Based on the list of scholars who 

were registered in U.S. academic institutions, scientists were randomly selected from STEM disciplines 

categorized in the CoS database. 

This research originally planned to collect a sample size of at least 40 disciplines, with a minimum of 20 

scientists per discipline according to the sample size recommendations of prior studies (Goldstein, 2011; 

Hox, 2002; Raudenbush & Bryk, 2002; Scherbaum & Ferreter, 2009). Since this research measures 

group-level variables based on individual data in each group, at least 20 scientists (observations) are 

needed in each discipline (Hox, 2002; Scherbaum & Ferreter, 2009); however, we decided to include any 

discipline which has more than 15 scientists for the final data analysis in order to increase the statistical 

power to detect the discipline-level predictors. Since this research has four Level-2 predictors (i.e., 

regulative pressures by funding agencies and journals, normative pressure, availability of data 

repositories), it is necessary to have at least 40 disciplines to detect Level-2 effects (Goldstein, 2011; 



Raudenbush & Bryk, 2002). Scholars argued that a sufficient number of groups are required to estimate 

the level 2 parameters properly (Goldstein 2011; Raudenbush et al. 2002), and it is more important to 

increase the number of groups included in multilevel analysis as opposed to the number of members in 

each group (Zhang et al. 2009). By lowering the minimum number of scientists in each discipline from 20 

to 15, this research can include more disciplines for its multilevel analysis, and eventually this would 

increase statistical power and make Level-2 estimates stable.  

Measurement of Constructs 

The theoretical framework was translated into measurements of constructs. The measurement scales were 

refined and validated through the instrument development procedure including subject matter experts’ 

review, pre-test, and pilot-test. Most of the survey items were adapted from previous studies, and they 

were modified for the context of scientists’ data sharing through the scale development procedure. Some 

of the survey items were newly created and validated with the existing measurement items. At the 

beginning of the survey, we provided a brief definition of data sharing saying that “In this survey, Data 

Sharing means providing the raw data of your published articles to other researchers outside your research 

group(s) by making it accessible through data repositories/ public web spaces/ supplementary materials or 

by sending the data via personal communication methods upon request.” With regards to the 

measurement of scientist’s data sharing behavior, new items were developed to capture diverse forms of 

data sharing behaviors by considering the number of times they share their data with others. In this study, 

a minimum of three items for each construct were used to measure each construct (Fabrigar, Wegener, 

MacCallum, & Strahan, 1999; Rakov & Marcoulides, 2000). All the variables were measured using Likert 

scales (1 – 7), ranging from “Strongly Disagree” to “Strongly Agree” for scientists’ perceptions and 

disciplinary factors regarding their data sharing; or “Never” to “Always” for their data sharing behaviors. 

Respondents were asked to mark the response that best described their level of agreement in the 

statements.  



Since this research employed a multilevel model, institutional level constructs needed to be measured 

properly in order to conduct a multilevel analysis. Regulative pressures, normative pressure, and 

institutional resources in a discipline can be considered as “shared (institutional) properties” because they 

are usually originated from experience, perceptions, and values (Klein & Kozlowski, 2000). These shared 

(institutional) property constructs were measured by individual scientists’ subjective rating for the items 

of those constructs. Through these subjective measurements, this research examined the extent to which 

those shared property constructs are shared by individual scientists in a same discipline (Klein & 

Kozlowski, 2000). The measurement items for each construct and its sources are indicated in the 

Appendix A. 

Data Collection Procedure and Result 

Since this research involved human subjects, Institutional Review Board (IRB) approval was granted 

prior to data collection. This research was approved by the IRB at authors’ research institution. The IRB 

allowed us to perform the national survey with the sampling frame based on the list of scientists from the 

CoS scholar database. A formal request was made to receive permission from the CoS Pivot (ProQuest) in 

conducting a random sampling from its scholar database, and CoS Pivot allowed us to perform the 

random sampling using their scholar database for only the purpose of this research. 

The survey questionnaire was created and distributed to individual scientists by using SurveyGizmo. The 

online survey questionnaire consists of research introduction and purpose, specific questions to measure 

the constructs, and respondents’ demographic information. This online survey presented an online consent 

form at the beginning of the survey, so the participants can proceed to this survey by agreeing to the 

survey requirements by IRB. Once a participant has submitted the survey, the survey data was recorded in 

the online survey (SurveyGizmo) server and used for the future data analyses. Two incentives were 

offered for survey participants who submitted their responses and provided their email addresses: (1) a 

raffle to win one of ten $50 gift cards and (2) the final report of this survey. 



The final field survey instrument was distributed to the 16,165 potential survey participants in 56 STEM 

disciplines. From November 19, 2012 to February 15, 2013, a total of 2,674 participants submitted their 

partial and full responses. Out of 2,674 responses, there were 2,470 valid responses used for the initial 

data analysis (15.28% of response rate). From the original 2,674, 204 responses were removed because 

those responses were missing more than 20% of answers and/or the answers regarding participants’ data 

sharing behaviors. Reports of data sharing behaviors were critical for all aspects of the data analysis. Out 

of 2,470 initial responses, this research excluded (1) scientists who were from non-academic institutions 

since their data-sharing decisions may be made by their organizations (298, 12.06%), (2) student 

scientists, since they often do not have any authority to share their research data and may not have a clear 

understanding about institutional pressures (e.g., funding agencies’ requirement), (247, 10.00%), and (3) 

the scientists who did not produce any data related to their publications in the last two years, since their 

responses on both discipline-level and individual-level independent variables cannot lead to its dependent 

variable (i.e., data sharing behavior) (155, 6.28%). In terms of the number of scientists in each discipline, 

this research excluded any disciplines that had fewer than 15 qualified scientists (304, 12.31%) or that 

were categorized as “others” (e.g., bioscience-other) (149, 6.03%). This resulted in 1,317 usable 

responses for the final data analysis for hypothesis testing, and out of 2,470 initial usable responses, 1,153 

responses were excluded. 

Demographics of the Respondents 

The descriptive statistics of demographics include gender, age, ethnicity, education, position, status, 

sector, and discipline. Of the selected sample of 1,317 scientists, there were 936 male participants 

(71.07%) and 348 female participants (26.42%), while 33 participants (2.51%) did not indicate their 

gender. In terms of age, the survey participants are well distributed in each age group: 25-34 (139, 

10.55%), 35-44 (332, 25.21%), 45-54 (334, 25.36%), 55-64 (328, 24.91%), 65+ (174, 13.21%), and 10 

(0.76%) missing values. With regards to the distribution of ethnicity, the number of Asian was 167 

(12.68%), African-American was 14 (1.06%), Caucasian was 1,046 (79.42%), Hispanic was 32 (2.43%), 



Native American was 1 (0.08%), Other/Multi-Racial was 27 (2.05%), and 30 participants (2.28%) did not 

indicate ethnicity. In terms of position, most of the survey participants were professors. They were listed 

as full professor (544, 41.31%), associate professor (305, 23.16%), assistant professor (197, 14.96%), 

professor emeritus (53, 4.02%), professor of practice (6, 0.46%), and lecturer (8, 0.61%). There were also 

these distinctions in respondents: post-doctoral fellow (101, 7.67%), researcher (78, 5.92%), and other 

positions (e.g., director, medical doctor, research professor) (25, 1.90%). In regards to status, 790 

participants (59.98%) received tenure, 187 participants (14.20%) are on tenure track, 268 participants 

(20.35%) are not on tenure track, 57 participants (4.33%) were retired, and 15 participants (1.14%) did 

not indicate their status. As for the education and work sector, all the participants (1,317, 100%) have 

PhD degrees and work in academic institutions. The summary of demographics of survey participants is 

presented in Table 1. 

Demographic Category Number Percentage 

Gender Male 936 71.07% 

 Female 348 26.42% 

 Missing 33 2.51% 
Age 25-34 139 10.55% 

 35-44 332 25.21% 

 45-54 334 25.36% 

 55-64 328 24.91% 

 65+ 174 13.21% 

 Missing 10 0.76% 
Ethnic Asian/Pacific Islander 167 12.68% 

 Black/African-American 14 1.06% 

 Caucasian 1,046 79.42% 

 Hispanic 32 2.43% 

 Native American/Alaska Native 1 0.08% 

 Other/Multi-Racial 27 2.05% 

 Missing 30 2.28% 
Education PhD/Doctoral Degree 1,317 100.00% 
Status Tenured 790 59.98% 
 On Tenure Track 187 14.20% 
 Not On Tenure Track 268 20.35% 
 Retired 57 4.33% 
 Missing 15 1.14% 
Position Lecturer/Instructor 8 0.61% 

 Professor of Practice 6 0.46% 

 Post-Doctoral Fellow 101 7.67% 

 Researcher 78 5.92% 



 Assistant Professor 197 14.96% 

 Associate Professor 305 23.16% 

 Full Professor 544 41.31% 

 Professor Emeritus 53 4.02% 

 Other 25 1.90% 
Sector Academic 1,317 100% 
Total  1,317 100% 

Table 1. Demographics of Survey Participants 

With regards to the academic disciplines, 1,317 survey participants belong to 43 STEM disciplines based 

on the NSF discipline codes. They are from seven disciplines of Engineering (181, 13.74%), three 

disciplines of Physical Sciences (93, 7.06%), three disciplines of Earth, Atmospheric, and Ocean Sciences 

(114, 8.66%), five disciplines of Agricultural Sciences (129, 9.79%), 14 disciplines of Biological 

Sciences (552, 41.91%), three disciplines of Psychology (77, 5.85%), five disciplines of Social Sciences 

(115, 8.73%), and three disciplines of Health Sciences (56, 4.25%). The discipline information of survey 

participants is shown in the Appendix B. 

Scale Assessment 

Scale assessment was conducted by using Cronbach’s alpha and principal component factor analysis. 

Cronbach’s alpha was used to estimate the internal consistency of multiple items for a construct and 

assess the extent to which a set of items belong to a construct. The Cronbach’s alpha values in this 

research for each construct were greater than .70. They range from .867 for Regulative Pressure by 

Funding Agencies and Perceived Career Risk to .948 for Scholarly Altruism. In addition, each set of 

multiple measurement items for a construct was examined using item-total correlations to identify items 

that exhibited measurement problems or did not fit the core of each construct. All the items have item-

total correlations ranging from .592 to .880, all of which are above the minimum recommended value 

of .50 (Field, 2009). Cronbach’s alpha coefficients and item-to-total correlations are indicated in Table 2, 

saying that all the research constructs have satisfactory reliability values. 



Variable Number 
of Items 

Cronbach’s 
alpha 

Number of 
Cases Used 

Item-to-
Total 

Correlation 
Regulative Pressure by Funding Agencies 4 .867 1210 .646 - .800 
Regulative Pressure by Journal Publishers 4 .911 1177 .739 - .859 
Normative Pressure by Disciplines 4 .875 1269 .694 - .766 
Data Repository 3 .931 1251 .846 - .878 
Perceived Career Benefit 4 .922 1273 .734 - .876 
Perceived Career Risk 4 .867 1301 .592 - .793 
Perceived Effort 4 .877 1277 .710 - .766 
Scholarly Altruism 6 .948 1256 .806 - .869 

Table 2. Reliability Values (N=1,317) 

The construct validity of the measurement items was assessed by using factor analysis. In this research, 

principal component factor analysis with Varimax rotation was performed by extracting factors with 

eigenvalues greater than 1. The results of factor analysis showed the existence of eight factors with 

eigenvalues greater than 1, and good convergent and discriminant validity. Together, the eight observed 

factors explained 78.13% of the total variance, which is considered satisfactory (Hair, Black, Babin, 

Anderson, & Tatham, 2006). All items loaded with factor loading value of .646 or more on each intended 

construct for which they were used to operationalize, showing good convergent validity. There were no 

cross-construct loadings above .293 for each factor, showing good discriminant validity. The results of 

scale assessment suggest that all the research constructs have satisfactory reliability and validity data. 

DATA ANALYSIS AND RESULTS 

Consistent with the multilevel theoretical framework combining institutional theory (discipline level) and 

theory of planned behavior (individual level), a multilevel analysis was employed for this research, since 

the estimation of variances in different levels is theoretically relevant (Dansereau et al. 1995; Klein et al. 

1994). The theoretical framework presented in this research shows that scientists’ data sharing behaviors 

are expected to vary significantly, based on both on their discipline as well as individual factors. 

Individual scientists are nested within scientific disciplines, and this research assumes that the scientists in 

the same discipline share the same institutional influences. Variations in scientists’ data sharing behaviors 

are partly attributable to scientists’ perceptions and characteristics toward data sharing and partly 



attributable to the institutional influences in their disciplines. Multilevel analysis is an appropriate method 

for analyzing data in which one unit is nested within another higher level unit (Sacco et al. 2003).  

This research employed a multilevel analysis method that examines the nested nature of social 

phenomena (e.g., students within schools) and accomplishes an integrated understanding of the multiple 

units of analysis. Among the diverse multilevel models by Kozlowski and Klein (2000), this research 

considered a cross-level direct-effect model. Such models examine how both higher-level predictors and 

lower-level predictors account for a lower-level outcome. In this research, the hierarchical data allowed a 

multilevel analysis with scientists nested within their disciplines. The multilevel analysis enabled 

examining the influence of both individual and discipline-level predictors on scientists’ data sharing 

because it can simultaneously estimate the variation of scientists’ data sharing behaviors based on 

individual and discipline-level predictors. 

Before the multilevel analysis, the Intra-class Correlation Coefficients (ICCs) and rwg(j) statistics were 

used to assess whether the disciplinary-level variables were properly aggregated to the group level of 

analysis. Aggregated scales for discipline-level variables were created based on the individual scientists’ 

responses on a set of items for each discipline-level construct. The individual responses for group level 

variables can be aggregated to the group level if there is a sufficient within-group agreement for 

considering group level variables as shared properties (Klein et al., 1994; Kozlowski & Klein, 2000). 

Therefore, it is important to check whether the aggregations of individual scientists’ responses to the 

discipline-level variables are appropriate. The data aggregation statistics including ICC(1), ICC(2), and 

rwg(j) are indicated in Table 3.  

Group-Level Variable ICC(1) ICC(2) rwg(j)  

Regulative Pressure by 
Funding Agencies 0.072 0.705 0.67 

Regulative Pressure by 
Journals 0.182 0.872 0.65 

Normative Pressure 0.086 0.742 0.76 



Data Repository 0.156 0.850 0.70 

Table 3. Data Aggregation Statistics for Discipline-Level Variables 

The reliability statistics show that four discipline-level predictors can be aggregated to group level. ICC(1) 

values for regulative pressure by funding agencies (.072), regulative pressure by journal publishers (.182), 

normative pressure (.086), and repository (.156) were within the acceptable range (.05 to .20) (James, 

1982), and ICC(2) values for regulative pressure by funding agencies (.705), regulative pressure by 

journal publishers (.872), normative pressure (.742), and repository (.850) were greater than .70, which is 

considered acceptable for data aggregation (Lindell, Brandt, & Whitney, 1999; Richardson & Vandenberg, 

2005). Across the five discipline-level variables, the median rwg(j) values for normative pressure (.76) and 

data repository (.70) were above the .70 recommended value (Bliese, 2000; James, Demaree, & Wolf, 

1993), and the median rwg(j) values for regulative pressure by funding agencies (.67) and regulative 

pressure by journal publishers (.65) were slightly below the .70 but still above the .60 acceptable value, 

suggesting moderate agreement (LeBreton & Senter, 2008). By considering any relevant indicators, 

discipline-level variables were aggregated to group level from the individual scientists’ responses in each 

discipline. 

The multilevel regression analysis in this research was performed using Hierarchical Linear Modeling 

(HLM) software. For the data analysis, the three-step multilevel modeling procedure (Hofmann, 1997) 

was conducted. First, the fully unconditional model with no individual and discipline level predictors was 

created, and this null model was used to determine what portions of the total variance in the dependent 

variable resided within and between groups. A one-way ANOVA was utilized to partition the variance in 

the dependent variable (data sharing behavior) within and between discipline components. This allowed 

determining whether there is significant between-discipline variance in scientists’ data sharing behaviors 

(Raudenbush & Bryk, 2002).  

Unconditional Model 



The unconditional model (in which no discipline- and individual-level predictors were included other than 

scientists’ data sharing behaviors) was formulated. Based on the unconditional model with one-way 

ANOVA, the between- and within- discipline variance in scientists’ data sharing behaviors was estimated 

(Raudenbush & Bryk, 2002). The ANOVA results showed that there was significant between-discipline 

variance in scientists’ data sharing behaviors (F (1, 42) = 684.729, p<.001). The χ2 test for the portion of 

variance in data sharing behaviors between disciplines was also significant (χ2=352.065, p<.001). This 

significant result suggests that further analysis for examining disciplinary-level influences on scientists’ 

data sharing behaviors can be pursued using multilevel analyses. The results of these analyses were 

shown in Table 4. 

Fixed Effect Coefficient Standard 
Error t-Ratio P-Value 

Data Sharing  
Behavior (γ00) 

4.130 0.155 26.592 <0.001 

Random Effect Variance 
Component df Chi-

Square P-Value 

Intercept (u0) 0.915 
42 352.065 <0.001 

Level 1 (r) 3.865 

Table 4. Results from Unconditional Model 

Based on the unconditional model, this research examined how much the amount of variance in scientists’ 

data sharing behaviors resided within and between disciplines. The null model showed that the estimate 

for within-discipline (scientist level) variance was 3.865, and the between-discipline variance (discipline 

level) was 0.915. The Intraclass Correlation Coefficient (ICC) was calculated by the portion of 

disciplinary-level variance of the total variance, including disciplinary- and individual-level variances in 

the dependent variable (i.e., data sharing behavior) (Raudenbush & Bryk, 2002). The ICC for scientists’ 

data sharing behaviors was .191 (0.915/(0.915+3.865)=.191), indicating that 19.1 percent of the total 

variance in scientists’ data sharing behaviors existed between disciplines, while 80.9 percent of the 

variance existed within disciplines. In other words, the scientists’ data sharing behaviors may vary 



between disciplines, and the scientists’ data sharing behaviors were influenced by not only individual-

level predictors, but also by discipline-level predictors. 

Individual Model 

The Level 1 model was estimated based on the individual-level variables only, with no discipline-level 

predictors included for the Level 2 model. The Level 1 model includes four individual-level variables 

(including perceived career benefit, perceived career risk, perceived effort, and scholarly altruism). The 

within-discipline variance (σ2) has changed from 3.865 to 3.227, and this difference shows the portion of 

within-discipline variance explained by individual level predictors (Within-Group R2=.165). These four 

individual-level independent variables explained 16.5 percent of the within-discipline variance ((3.865 – 

3.227) / 3.865 = .165). After adding individual-level predictors, the residual variance at the disciplinary 

level (τ00) becomes low (from .915 to .588). This means that some of the between-discipline variance in 

data sharing behaviors was partially explained by those individual-level predictors identified in the Level 

1 model. Table 5 below shows the results of the individual-level model as well as unconditional model 

and multilevel model. 

Predictors 
Step 1 Step 2 Step 3 

Unconditional 
Model 

Individual-Level 
Predictors Only 

Adding Group-
Level Predictors 

Discipline 
Level 
Predictors 

Funding Agencies’ Pressure   -0.051 
Journals’ Pressure     0.366** 
Normative Pressure      0.762** 
Data Repository    0.194 
Residual Variance (τ00) 0.915 0.588  0.129 

Individual 
Level 
Predictors 

Perceived Career Benefit   0.088*  0.081* 
Perceived Career Risk  -0.010 -0.008 
Perceived Effort    -0.142***   -0.138*** 
Scholarly Altruism    0.688***    0.667*** 
Residual Variance (σ2) 3.865  3.227  3.229 
Within-Group R2   0.165  

Between-Group R2   0.781 
***p<.001, **p<.01, *p<.05 

Table 5. Fixed-Effect Results for Data Sharing Behavior 



Multilevel Model 

The multilevel model was estimated by using both Level 1 and Level 2 predictors. Based on the Level 1 

model, four discipline-level predictors (including funding agencies’ regulative pressure, journals’ 

regulative pressure, normative pressure, and data repository) were added into the multilevel model. The 

between-discipline variance (τ00) has changed from 0.588 to 0.129, and this difference shows the portion 

of between-discipline variance explained by discipline-level predictors (Between-Group R2=.781). These 

four discipline-level predictors accounted for 78.1 percent of the between-discipline variance in data 

sharing behaviors ((0.588 – 0.129) / 0.588 = .781). Table 6 below shows the results of multilevel model 

including unstandardized beta and standard error, t-value, and p-value.  

Fixed Effect 
Unstandardized Coefficients 

Standardized 
Beta t-ratio p-value 

Beta Std. Error 

Discipline Level      
Funding Agencies’ Pressure -0.051 0.243 -0.012 -0.210 0.835 
Journals’ Pressure 0.366 0.130 0.140 2.826 0.007 
Normative Pressure 0.762 0.216 0.184 3.526 0.001 
Data Repository 0.194 0.148 0.064 1.311 0.198 
Individual Level      
Perceived Career Benefit 0.081 0.037 0.059 2.179 0.030 
Perceived Career Risk -0.008 0.041 -0.006 -0.203 0.839 
Perceived Effort -0.138 0.041 -0.085 -3.368 <0.001 
Scholarly Altruism 0.667 0.060 0.315 11.081 <0.001 
      
Random Effect Variance Component df Chi-Square p-value 
Intercept 0.129 38 81.199 <0.001 
Level 1 3.229 

Table 6. Results from Research Model (2 Level Model) 

The data analysis results showed how both individual and institutional factors influence scientists’ data 

sharing behaviors at the same time. At the individual level, perceived career benefit (β=0.081, p<0.05) 

and scholarly altruism (β=0.667, p<.001) are found to have significant positive relationships with 

scientists’ data sharing behaviors, and perceived effort (β=-0.138, p<.001) is found to have a significant 



negative relationship with scientists’ data sharing behaviors. Perceived career risk (β=-0.008, p=0.839), 

however, is not found to be significantly related to scientists’ data sharing behaviors.  

At the discipline level, both regulative pressure by journals (β=0.366, p<0.01) and normative pressure 

(β=0.762, p<0.01) are found to have significant positive relationships with data sharing behaviors; 

however, regulative pressure by funding agencies (β=-0.051, p=0.835) is not found to have a significant 

relationship with data sharing behaviors. Also, the availability of data repositories (β=0.194, p=0.198) is 

not found to be significantly related to scientists’ data sharing behaviors. Overall R2 based on both 

discipline and individual level predictors was 0.297. By separating the overall R2 into between-discipline 

and within-discipline portions, 16.4 percent and 13.3 percent of total variances in scientists’ data sharing 

behaviors are explained by the discipline-level and individual-level predictors respectively. Therefore, 

this research demonstrated that scientists’ data sharing behaviors are influenced by both institutional 

factors (i.e., regulative pressure by journals and normative pressure) and individual factors (i.e., perceived 

career benefit, perceived effort, and scholarly altruism). Figure 2 below shows the summary of hypothesis 

testing results: 

 

 



Unstandardized Beta, ***p<.001, **p<.01, *p<.05 

Figure 2. Hypothesis Testing Results based on Scientists’ Data Sharing Behavior Model 

DISCUSSIONS 

In this section, we provided detailed discussions of the research findings based on the multilevel analysis. 

We also used some excerpts from the responses for the open-ended question asking survey participants to 

“share any additional comments, questions, or suggestions about scientific data sharing.” Those excerpts 

were included in the discussions in order to help us to interpret the survey results.  

Individual Level Predictors 

Perceived Career Benefit 

Perceived career benefit was found to have a significant positive influence on scientists’ data sharing 

behaviors. This means that scientists who perceive there are more career benefits in sharing data in their 

published articles are more likely to share their data with others. This result supports prior studies’ 

findings that professional recognition (Kim, 2007), institutional recognition (Kankanhalli et al., 2005), 

and academic reward (Kling & Spector, 2003) all influence scientists’ data sharing behaviors. 

Recognition and reputation through increased citations and possible credits are associated with the 

concept of perceived career benefits. This research shows that in the perspective of motivation, scientists’ 

data sharing behaviors are driven by their perceived values of their behaviors and by the rewards they 

expect to derive from sharing their data. According to Merton’s (1957) value of science, the motivation 

for scientists to achieve reputation is an important value in many scientific communities. The finding of 

this research suggests that scientists’ motivation to achieve academic recognition and credit can increase 

their data sharing behaviors, and we can encourage scientists’ data sharing behaviors by better utilizing 

the reward system in scientific communities. 

Prior studies in knowledge sharing also found that expected social rewards from knowledge sharing 

behavior have a positive effect on individuals’ attitudes toward knowledge sharing and their intentions to 



share knowledge (Hsu & Lin, 2008; Jones, Hesterly, & Borgatti, 1997; Kim & Han, 2009). The concept 

of reward through recognition and reputation is a well-known factor influencing knowledge sharing 

behavior (Hung, Lai, & Chang, 2011b). This research shows that in the context of scientists’ data sharing, 

as scientists perceive more career benefits through recognition and reputation, they are more willing to 

share their data with others. This finding is also related to Piwowar and colleagues’ (2007) finding that 

articles that provided their relevant data sets (i.e., microarray data) through data repositories received 

more citations than articles that did not provide their data sets. 

Perceived Career Risk 

In this research, perceived career risk was not found to have a significant relationship with scientists’ data 

sharing behaviors. Prior studies argued that scientists view data sharing as potential loss (e.g., losing 

publication opportunities) or impediment for their careers, so they are reluctant to share their data (Louis 

et al., 2002; Reidpath & Allotey, 2001; Savage & Vickers, 2009; Stanley & Stanley, 1988). However, this 

research did not find any significant negative relationship between perceived career risk and scientists’ 

data sharing behaviors. One possible reason for this insignificant result is that data sharing in this research 

is conceptualized as sharing the data of published articles only rather than the data of unpublished articles. 

Therefore, the different concepts of data sharing in each research need to be considered in interpreting 

this finding. 

Scientists have concerns about sharing the data of unpublished work, but they are less concerned about 

sharing the data of published articles. Several survey participants provided the comments that they are 

less concerned about sharing the data of published articles. A scholar in plant science mentioned, “I avoid 

sharing sensitive data before it is published because I do not want my students and postdocs to be scooped. 

[...] Once we are published, then we share our data and the scientific materials with any who want them.” 

Therefore, this research suggests that perceived career risk involved in sharing the data of published 

articles does not have a significant negative effect on scientists’ data sharing behaviors (i.e., sharing the 

data of published articles). 



Perceived Effort 

Perceived effort was found to have a significant negative effect on scientists’ data sharing behaviors. This 

means that scientists who perceive that it requires more effort to participate in data sharing are less likely 

to share their data with others. This result supports many of prior studies’ arguments that the efforts (e.g., 

additional work, cost, and time) involved in data sharing discourage scientists to share their data 

(Campbell et al., 2002; Foster & Gibbons, 2005; Louis et al., 2002; Tenopir et al., 2011). This finding is 

also relevant to what Tenopir and colleagues (2011) recently found: scientists do not make their data 

available online because they lack the time and funding to organize their data. 

Data sharing requires a lot of time and effort from scientists to make their data accessible. Scientists need 

to organize and arrange their data sets for other scientists, and sometimes they also need to provide 

extensive explanations about their data in order to help other scientists make sense of the data sets. 

Therefore, many scientists have concerns about the efforts involved in data sharing, so perceived effort 

negatively influences scientists’ data sharing behaviors. A scholar in electrical engineering emphasized 

the issue of extra effort required in data sharing, saying: “For many small experiments, the amount of 

effort required to fully organize, document, and explain data to an outside researcher is greater than the 

effort required to simply recreate the experiment.”   

Scholarly Altruism 

Scholarly altruism was found to have a significant relationship with scientists’ data sharing behaviors. 

This finding agrees with prior studies’ findings that altruism has a significant influence on information 

sharing behaviors (Hsu & Lin, 2008). In the context of data sharing, a few prior studies discovered that 

altruism is an important factor influencing faculty members’ contribution to institutional data repositories 

(Foster & Gibbons, 2005; Kim, 2007); in the context of knowledge sharing, altruism was extensively 

studied and found to have significant influence on knowledge sharing (Constant, Sproull, & Kiesler, 1996; 



Davenport, & Prusak, 1998; He & Wei, 2009; Hung, Durcikova, Lai, & Lin, 2011a; Kankanhalli et al., 

2005; Lin, 2008).  

Some of previous studies in information sharing defined the concept of altruism as a form of intrinsic 

motivation (i.e., having psychological benefits such as satisfaction and enjoyment of helping others) (Cho, 

Chen, & Chung, 2010; Hung et al., 2011a; Hung et al., 2011b; Lee & Lee, 2010); however, this research 

redefines “scholarly altruism” by focusing on individual’s willingness to work to increase others’ welfare 

and contribute to their communities without expecting anything in return (Hsu & Lin, 2008). This 

research shows that scholarly altruism motivates scientists to help other scientists to save time and effort, 

allowing them to find something missing from the original research, and contributing to scientific 

development in their fields through data sharing.  

Institutional Level Predictors 

Regulative Pressure by Funding Agencies 

Regulative pressure by funding agencies was not found to have a significant relationship with scientists’ 

data sharing behaviors, and this finding is different from what prior research argued. Prior studies found 

that data sharing policies by funding agencies have positive influences on scientists’ data sharing 

(McCullough et al., 2008; Piwowar & Chapman, 2008); however, this research did not find a significant 

correlation between regulative pressure by funding agencies and scientists’ data sharing behaviors. The 

discrepancy of the findings between prior studies and this research may be resulting from the differences 

in disciplines included for each research. Prior studies focused on certain disciplines in biological 

sciences (Piwowar, 2011; Piwowar & Chapman, 2008); however, this research extended to diverse STEM 

disciplines.  

Many scholars argued that funding agencies’ data sharing policies would increase scientists’ data sharing 

behaviors (McCullough et al., 2008; Piwowar & Chapman, 2008; Stanley & Stanley, 1988); however, this 

research did not find a positive correlation between funding agencies’ regulative pressure and scientists’ 



data sharing behaviors across diverse STEM disciplines. One possible interpretation of this non-

significant result is that since the data management requirement with strong encouragement for data 

sharing by NSF was implemented fairly recently (National Science Foundation, 2010), the effects of 

funding agencies’ push was not reflected in scientists’ data sharing behaviors yet. The analysis of 

preliminary interviews showed that there were two different perspectives regarding NSF’s new data 

sharing policy. A professor in environmental engineering mentioned:  

“Every proposal has a data sharing policy now. And so we were rewarded, and I mean, I guess we are 

penalized for not sharing data because you won’t get your grant unless you have a policy for sharing your 

data. So I think that you know the question about not sharing data is now moot because NSF funded most 

of our research. We have to share our data.”  

However, another professor in biology mentioned that the NSF policy did not have a significant impact 

on scientists’ data sharing, by saying:  

“I haven’t seen much of it yet, how NSF’s changes [of data management policy] will affect people 

because it’s a relative new requirement. […] And NSF themselves, I was personally at NSF when they 

were making these changes, and even then, program officers at NSF weren’t taking it particularly 

seriously. […] So, you know, if it meant the difference between your proposal being funded and not being 

funded, then people are going to take it very seriously. But it was just an extra thing you had to write.”  

In addition, it also might be possible that scientists do not perceive funding agencies’ data sharing policies 

as a serious coercive pressure, even if the agencies have had data sharing policies for a while (e.g., 

biological and health sciences funded by NIH). A number of survey participants commented that national 

funding agencies do not enforce their data sharing policies, so scientists do not perceive any serious 

coercive pressures from funding agencies. A professor in neuroscience mentioned:  

“There is little institutional/funding pressure to do so [data sharing]. NIH (biomedical funding) requires 

data sharing, but [it is] only taken seriously by a few disciplines (genomic data, brain imaging). As far as I 



can tell there are no explicit checks on whether data sharing occurs or penalties if the data [are] is not 

made available.”  

This shows that although there are data sharing policies required by funding agencies (NSF and NIH), 

scientists do not perceive any serious coercive pressures from those policies because (1) the data sharing 

policies were implemented recently (i.e., NSF), and (2) funding agencies do not explicitly enforce their 

data sharing policies except particular discipline(s) (i.e., NIH). Therefore, it can be concluded that 

regulative pressure by funding agencies does not have a significant influence on scientists’ data sharing 

behavior across diverse STEM disciplines.  

Regulative Pressure by Journals 

This research found that journals’ regulative pressure has a significant influence on scientists’ data 

sharing behaviors. This finding demonstrates that journals exert strong coercive pressures on scientists’ 

data sharing behaviors. This finding is consistent with some of the prior bibliometric studies’ findings that 

there are positive correlations between the existence of data sharing policy in journals and the rate at 

which scientists deposit data in public databases (Piwowar & Chapman, 2008; Piwowar & Chapman, 

2010). However, other studies argued that the data sharing policies in certain journals did not have 

significant impacts on actual data sharing rates (Cech et al., 2003).  

Compared to prior studies, this research examined the relationship between regulative pressure by 

journals and scientists’ data sharing behaviors across different science and engineering disciplines, and 

found that regulative pressure by journals in each discipline positively increases scientists’ data sharing 

behaviors. A good number of journals in biological sciences have required their authors to submit data 

either as supplements or in data repositories as a condition of publication, and more journals (e.g., 

evolutionary biology and ecology) recently have implemented data sharing policies that require their 

authors to share data by depositing it into data repositories (Savage & Vickers, 2009; Weber, Piwowar, & 



Vision, 2010). This research shows that there is a significant relationship between the regulative pressure 

by journals in each discipline and scientists’ data sharing behaviors. 

Normative Pressure 

This research found that normative pressure from each scientific discipline (or community) significantly 

influence scientists’ data sharing behaviors across different disciplines. Prior studies did not examine the 

relationship between the normative pressure in each discipline and their scientists’ data sharing behaviors 

as yet. This research showed that there are significant between-discipline variances in normative pressure, 

and normative pressure in each discipline positively influences scientists’ data sharing behaviors. This 

finding supports the idea that the scientific community’s consensus toward data sharing is critical to 

facilitate scientists’ data sharing behaviors (Zimmerman, 2007). With regards to Merton’s (1973) norm of 

science, this finding suggests that scientists regard data sharing as a valuable norm of science. Especially, 

in terms of communalism, scientists would consider that scientific data related to their findings need to be 

shared with their communities, and this norm of science incorporated in normative pressure would 

positively increase scientists’ data sharing behaviors.  

The normative pressures can be formulated as the forms of professionalism and expectation from peer-

scientists in a scientific community. Scientists need to conform to the established norms in their 

disciplines in order to maintain their legitimacy and conduct research with other scientists. This research 

shows normative pressures differ across diverse scientific disciplines, and normative pressure plays an 

important role in scientists’ data sharing behaviors. Scientists socially agree on their data sharing 

practices and follow the socially adopted norms about their data sharing. Therefore, scientists in the 

disciplines that have strong normative pressures about data sharing are more likely to share their data with 

other scientists, In other words, scientists in the disciplines with low normative pressures are less likely to 

share their data.  

Data Repository 



The availability of data repositories in a discipline was not found to have a significant relationship with 

scientists’ data sharing behaviors. Although a prior study showed that the lack of data repositories was an 

important barrier for data sharing in several disciplines (Kim & Stanton, 2012), this survey study did not 

confirm the positive relationship between the availability of data repositories in each discipline and 

scientists’ data sharing behaviors. Prior studies argued that the existences of data repositories facilitate 

and promote scientists’ data sharing in certain disciplines (e.g., molecular biology) (Brown, 2003; Cragin 

et al., 2010; Marcial & Hemminger, 2010). However, this research examined the relationship between the 

availability of data repositories and data sharing behaviors across diverse scientific disciplines, and it did 

not find any significant relationship. 

This result showed that the availability of data repositories does not necessarily increase scientists’ data 

sharing behaviors. The comments provided by survey participants indicate that the existing data 

repositories in some disciplines do not support scientists’ data sharing due to the difficulties and the lack 

of supports in using those repositories. A microbiologist mentioned that, “NCBI Pubmed is a data 

repository that is so onerous to submit to (e.g., multiple genomes), that there is a significant barrier to data 

fidelity in this important public repository.” Also, the existing data repositories in each discipline do not 

allow scientists to share all types of data generated in their disciplines. Another scholar in psychology 

mentioned that, “In my sub-field, there is one prominent and well respected repository for sharing raw 

data -- it’s the CHILDES website. But this is a place for naturalistic data, not experimental work. While it 

is some trouble to post to CHILDES (formatting, permissions, etc.) it is well respected.” Although this 

finding seems unexpected, the availability of data repositories in each discipline may provide some 

explanation for scientists’ data sharing behaviors. 

Limitations of the Study 

This research has a few limitations that should temper interpretation and application of the results. First, 

the recruiting method employed in the survey study may have resulted in self-selection bias or 

nonresponse bias. Although the sampling frame was randomly selected from the CoS scholar database, 



the field survey ultimately involved those participants who voluntarily participated in the survey. The 

overall response rate was only 15.28%, leaving ample opportunity for concerns about either kind of bias. 

According to a meta-analysis of the response rates for online surveys in the articles published from 1995 

to 2006, the average response rate was only 34% (Shih and Fan, 2008). Another recent study by Allen 

(2010) found that the average response rate has been decreased significantly by 24% based on the surveys 

conducted between 2005 and 2010. Although the response rates for online surveys are low, it is necessary 

to increase the overall response rate in order to prevent any nonresponse bias. The future research can 

employ online and mail surveys together as suggested by Millar and Dillman (2011), since both email and 

mail addresses of scientists are available on the CoS database.   

Another methodological limitation of survey was the self-report nature of the dependent measures. The 

survey method included self-reports regarding the measurement of scientists’ data sharing behaviors. 

Each participant was asked to provide their own data sharing behaviors: Prior research has shown that 

individuals often respond to surveys in a way that presents a positive impression, so scientists may have 

over-reported their actual data sharing. It was not feasible for us to obtain more objective observations of 

their actual behaviors in this research project. In addition, the survey participants might interpret data 

sharing differently in spite of the definition of data sharing was provided at the beginning of the survey. 

For example, some scientists in a certain discipline may consider research materials (e.g., reagent) and 

protocols (e.g., source codes) as raw data to be shared; however, other scientists in the same discipline 

may not consider those materials and protocols as a part of raw data.  

The multilevel method utilized in this research also has limitations. One of the limitations is that the 

discipline-level constructs may have a potential bias in their measurements. This research measured the 

discipline-level constructs by aggregating individual scientists’ reports about their discipline-level 

information. This may not measure the exact status of group-level constructs, and it may cause a potential 

bias in group-level measurements. In a different perspective, it is possible to consider the institutional 

factors as individual-level constructs by assuming that scientists’ perceptions toward institutional factors 



would differ within each discipline and consequently influence scientists’ data sharing behaviors. 

Therefore, based on the same dataset, we can validate the research model by focusing on each major 

discipline (e.g., biological science) and further conduct a comparison study with different major 

disciplines (e.g., biological science vs. physical science).      

Finally, another limitation of the multilevel method in this research is the small group size for several 

disciplines included in the final analysis. Although at least 20 observations in one group are 

recommended by recent studies (Hox, 2002; Scherbaum & Ferreter, 2009), this research included five 

disciplines (out of forty-three disciplines) that contained fewer than 20 members (but still more than 15 

members) for its multilevel analysis. The small group sizes for those five disciplines may have a potential 

problem with internal consistency; however, we decided to include those five disciplines in order to 

increase the statistical power to detect the discipline-level (Level 2) predictors.  

CONCLUSION 

This research investigated how both institutional environments and individual motivations influence 

scientists’ data sharing behaviors across diverse disciplines. The results of this research showed that both 

institutional pressures (i.e., regulative pressure by journals and normative pressure in disciplines) and 

individual motivations (i.e., perceived career benefit, perceived effort, and scholarly altruism) have 

significant relationships with scientists’ data sharing behaviors. The findings of this research suggested 

that in order to encourage data sharing, we need to consider both institutional environments and 

individual motivations simultaneously.  

The research findings have several theoretical implications for institutional theory and theory of planned 

behavior. First, the integration of institutional theory and individual motivation theory provided a new 

theoretical lens to understanding scientists’ data sharing behaviors. The combined theoretical framework 

was found to nicely account for how institutional and individual factors influence scientists’ data sharing 

behaviors simultaneously. Second, with regards to institutional theory, this study sheds light on how 



institutional environments can influence individuals’ behaviors. The results of this research showed the 

micro-foundations of institutions by looking at institutional influences and individual motivations 

together. Consequently, this research can advance the neo-institutional theory by applying it to the 

individual levels. Third, the research also contributed to the theory of planned behavior. The results of 

this study showed that perceived career benefit and perceived effort have direct relationships with actual 

data sharing behaviors. Those results support prior studies looking at the direct relationships between 

perceptions and actual behaviors based on the theory of planned behavior (Shi, Shambare, & Wang, 2008; 

Watson & Hewett, 2006; W.-L. Wu, Lin, Hsu, & Yeh, 2009).   

This research also has methodological implications. This research utilized a multilevel analysis method in 

order to incorporate the multilevel theoretical framework and analyze the hierarchical data (i.e., scientists 

nested within their disciplines). Prior studies have predominantly examined scientists’ data sharing as an 

individual phenomenon ignoring its institutional context; however, it is important to examine institutional 

influences as well as individual motivations together in studying scientists’ data sharing behaviors. The 

multilevel regression analysis was employed to validate the multilevel research model, which was 

developed based on institutional theory and theory of planned behavior. Another methodological 

contribution of this research is the scale development procedure, taken to develop the measurement items 

to be used in the context of scientists’ data sharing. Since the existing measurement items were not 

applied and tested in scientists’ data sharing contexts, and there were potential gaps between existing 

items and constructs studied in this research, it was necessary to develop a dedicated measurement scale 

for studying scientists’ data sharing behaviors. This research systematically developed its scales by 

validating the existing measurement items and creating new measurement items for its research model. 

This research also proposes practical implications. Scientific data sharing can be promoted by the joint 

efforts of funding agencies, journal publishers, professional associations, and research institutions. This 

research argues that the vision of scientific data sharing can be achieved through (1) implementing 

funding agencies’ and journals’ data sharing policies with strong enforcement, (2) building community 



norms of data sharing through education and promotion supported by professional associations, (3) 

developing a good incentive system to provide appropriate credits for data sharing, (4) reducing the 

efforts involved in data sharing by standardizing data sharing protocols and providing data curation and 

management supports, and (5) lastly, facilitating individual scientists’ scholarly altruism by creating an 

altruistic culture of data sharing in a scientific community. 

This research showed a holistic picture of the phenomena of scientific data sharing across diverse 

disciplines rather than focusing on a particular case of data sharing in a discipline. Scientific data sharing 

practices may differ across disciplines. Even in disciplines where scientists generate different types of 

data, each discipline may have different data sharing requirements and expectations, which would be 

perceived differently by the group members. Therefore, future research also needs to investigate how data 

sharing factors and its methods differ across different disciplines and positions (e.g., student researchers 

vs. faculty members), and what contribute to those differences. Furthermore, the future studies need to 

address how both discipline-level and individual-level factors influence different forms of data sharing 

respectively. Since scientists’ data sharing factors are influenced by the contexts of data sharing, it is 

important to investigate how both discipline- and individual-level factors interact with each other toward 

different forms of data sharing behaviors. The cluster analysis with data sharing factors can be a possible 

solution for understanding how data sharing factors are related to each other under different data sharing 

circumstances. 

Also, future research needs to further examine some of the research constructs studied in this research; for 

example, scholarly altruism can be considered as a discipline-level construct showing a professional norm 

in each discipline, and discipline-level constructs can be considered as individual-level constructs in the 

perspective that institutional pressures can be perceived differently by individual scientists.  Moreover, 

future research also needs to consider data reuse issues along with data sharing. This series of research 

endeavors can help us better understand scientists’ data sharing behaviors. The findings of those research 



efforts can accelerate scientific collaborations and eventually advance scientific development in diverse 

scientific disciplines. 
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Appendix A. Measurement Items for Research Constructs 

Construct Items Sources 

Regulative 
Pressure by 

Funding 
Agencies 

• Data sharing is mandated by the policy of public funding 
agencies.  

• Data sharing policy of public funding agencies is enforced. 
• Public funding agencies require researchers to share data. 
• Public funding agencies can penalize researchers if they do not 

share data. 

(Kostova et al., 
2002) 
(Teo et al., 2003) 

Regulative 
Pressure by 

Journals 

• Data sharing is mandated by journals’ policy. 
• Data sharing policy of journals is enforced. 
• Journals require researchers to share data. 
• Journals can penalize researchers if they do not share data. 

(Kostova et al., 
2002) 
(Teo et al., 2003)  

Normative 
Pressure 

• It is expected that researchers would share data. 
• Researchers care a great deal about data sharing. 
• Researchers share data even if not required by policies. 
• Many researchers are currently participating in data sharing. 

(Kostova et al., 
2002) 
(Son et al., 2007)  

Data 
Repository 

• Researchers can easily access data repositories. 
• Data repositories are available for researchers to share data. 
• Researchers have the data repositories necessary to share data. 

(Taylor et al., 
1995) 
(Venkatesh et al., 
2003) 

Perceived 
Career Benefit 

• I can earn academic credit such as more citations by sharing 
data. 

• Data sharing would enhance my academic recognition. 
• Data sharing would improve my status in a research 

community. 
• Data sharing would be helpful in my academic career. 

(Wasko et al., 
2000) 
(Bock et al., 2005) 

Perceived 
Career Risk 

• There is a high probability of losing publication opportunities if I 
share data. 

• Data sharing may cause my research ideas to be stolen by other 
researchers. 

• My shared data may be misused or misinterpreted by other 
researchers. 

• I believe that the overall riskiness of data sharing is high. 

(Featherman et al., 
2003) 
(Pavlou 2003)  

Perceived 
Effort 

• Sharing data involves too much time for me (e.g. to 
organize/annotate). 

• I need to make a significant effort to share data. 
• I would find data sharing difficult to do. 
• Overall, data sharing requires a significant amount of time and 

effort. 

(Davis 1989) 
(Davis et al., 1989) 
(Thompson et al., 
1991)  
 



Scholarly 
Altruism 

• I am willing to help other researchers by sharing data. 
• I would share data so that other researchers can conduct their 

research more easily. 
• I would share data so that other researchers can utilize it for their 

research. 
• I would share data to support open scientific research. 
• I would share data to contribute to better scientific research. 
• I would share data to help improve the quality of scientific 

research. 

(Kankanhalli et al., 
2005) 
(Baytiyeh et al., 
2010) 
Newly Developed 

Data Sharing 
Behavior 

• How frequently have you deposited your data into disciplinary 
data repositories for every article? 

• How frequently have you deposited your data into institutional 
data repositories for every article? 

• How frequently have you uploaded your data into public Web 
spaces for every article? 

• How frequently have you provided access to your data by 
publishing supplement materials for every article? 

• How frequently have you responded to the data sharing 
request(s) by providing data via personal communication 
methods (e.g. email)? 

Newly Developed 

 

  



Appendix B. Disciplines of Survey Participants 

Main Discipline Sub Discipline Frequency Percentage 
Engineering Biomedical Engineering 28 2.13% 
 Chemical Engineering 35 2.66% 
 Civil Engineering 27 2.05% 
 Electrical Engineering 26 1.97% 
 Environmental Engineering 22 1.67% 
 Mechanical Engineering 23 1.75% 
 Metallurgical and Materials Engineering 20 1.52% 
Physical Sciences Astronomy 27 2.05% 
 Chemistry 30 2.28% 
 Physics 36 2.73% 
Earth, Atmospheric, 
and Ocean Sciences 

Atmospheric Sciences 20 1.52% 
Geosciences 52 3.95% 

 Ocean Sciences 42 3.19% 

Agricultural Sciences Agricultural Sciences 26 1.97% 
Animal Sciences 22 1.67% 

 Forestry 21 1.59% 
 Natural Resources Conservation 21 1.59% 
 Plant Sciences 39 2.96% 
Biological Sciences Biochemistry 55 4.18% 
 Biology 21 1.59% 
 Biometry and Epidemiology 15 1.14% 
 Biophysics 24 1.82% 
 Botany 17 1.29% 
 Cell Biology 35 2.66% 
 Developmental Biology 32 2.43% 
 Ecology 60 4.56% 
 Entomology and Parasitology 21 1.59% 
 Genetics 48 3.64% 
 Microbio, Immunology, and Virology 70 5.32% 
 Molecular Biology 57 4.33% 
 Neuroscience 73 5.54% 
 Physiology 24 1.82% 
Psychology Clinical Psychology 22 1.67% 
 Psychology, Except Clinical 34 2.58% 
 Psychology, Combined 21 1.59% 
Social Sciences Anthropology 23 1.75% 
 Geography 23 1.75% 
 Political Science 30 2.28% 
 Public Administration 15 1.14% 
 Sociology 24 1.82% 
Health Fields Nursing 21 1.59% 
 Oncology/Cancer Research 16 1.21% 
 Preventive Medicine & Comm. Health 19 1.44% 

Total  1317 100% 
 



Appendix C. Survey Instrument 

(Page 1) 
NOTE: In this survey, Data Sharing means providing the raw data of your published articles to other 
researchers outside your research group(s) by making it accessible through data repositories/ public web 
spaces/ supplementary materials or by sending the data via personal communication methods upon request. 
 

ABOUT YOUR DISCIPLINE 
1. Which one of the following best describes your primary subject discipline based on your current 
research? (Dropdown Selection Provided) 
 
Please indicate to what extent you agree with the following statements. For validation reasons, we may 
have to ask similar questions. 
 

2. Public Funding Agencies Strongly Agree  

N
ot

 A
pp

lic
ab

le
 

D
o 

N
ot

 K
no

w
 

Moderately Agree   

In my discipline, 

Slightly Agree    
Neutral     

Slightly Disagree       
Moderately Disagree       
Strongly Disagree        

Data sharing is mandated by the policy of public funding agencies. 1 2 3 4 5 6 7  8 9 
Data sharing policy of public funding agencies is enforced. 1 2 3 4 5 6 7  8 9 
Public funding agencies require researchers to share data. 1 2 3 4 5 6 7  8 9 
Public funding agencies can penalize researchers if they do not share data. 1 2 3 4 5 6 7  8 9 

 

3. Journal Publishers Strongly Agree  

N
ot

 A
pp

lic
ab

le
 

D
o 

N
ot

 K
no

w
 

Moderately Agree   

In my discipline, 

Slightly Agree    
Neutral     

Slightly Disagree       
Moderately Disagree       
Strongly Disagree        

Data sharing is mandated by journals’ policy. 1 2 3 4 5 6 7  8 9 
Data sharing policy of journals is enforced. 1 2 3 4 5 6 7  8 9 
Journals require researchers to share data. 1 2 3 4 5 6 7  8 9 
Journals can penalize researchers if they do not share data. 1 2 3 4 5 6 7  8 9 

 

4. Atmosphere Strongly Agree  

N
ot

 A
pp

lic
ab

le
 

D
o 

N
ot

 K
no

w
 

Moderately Agree   

In my discipline, 

Slightly Agree    
Neutral     

Slightly Disagree       
Moderately Disagree       
Strongly Disagree        

It is expected that researchers would share data. 1 2 3 4 5 6 7  8 9 
Researchers care a great deal about data sharing. 1 2 3 4 5 6 7  8 9 
Researchers share data even if not required by policies. 1 2 3 4 5 6 7  8 9 
Many researchers are currently participating in data sharing. 1 2 3 4 5 6 7  8 9 
5. Data Repositories Strongly Agree  N o t  A p p l i c a b l e D o  N o t  K n o w

 



Moderately Agree   

In my discipline, 

Slightly Agree    
Neutral     

Slightly Disagree       
Moderately Disagree       
Strongly Disagree        

Researchers can easily access data repositories. 1 2 3 4 5 6 7  8 9 
Data repositories are available for researchers to share data. 1 2 3 4 5 6 7  8 9 
Researchers have the data repositories necessary to share data. 1 2 3 4 5 6 7  8 9 

 
(Page 2) 

ABOUT YOUR MOTIVATION 

6. For Other Researchers Strongly Agree  

N
ot

 A
pp

lic
ab

le
 

D
o 

N
ot

 K
no

w
 

Moderately Agree   

 

Slightly Agree    
Neutral     

Slightly Disagree       
Moderately Disagree       
Strongly Disagree        

I am willing to help other researchers by sharing data. 1 2 3 4 5 6 7  8 9 
I would share data so that other researchers can conduct their research 
more easily. 1 2 3 4 5 6 7  8 9 

I would share data so that other researchers can utilize it for their research. 1 2 3 4 5 6 7  8 9 
 

7. Benefits Strongly Agree  

N
ot

 A
pp

lic
ab

le
 

D
o 

N
ot

 K
no

w
 

Moderately Agree   

 

Slightly Agree    
Neutral     

Slightly Disagree       
Moderately Disagree       
Strongly Disagree        

I can earn academic credit such as more citations by sharing data. 1 2 3 4 5 6 7  8 9 
Data sharing would enhance my academic recognition. 1 2 3 4 5 6 7  8 9 
Data sharing would improve my status in a research community. 1 2 3 4 5 6 7  8 9 
Data sharing would be helpful in my academic career. 1 2 3 4 5 6 7  8 9 
	
  

8. Concerns Strongly Agree  

N
ot

 A
pp

lic
ab

le
 

D
o 

N
ot

 K
no

w
 

Moderately Agree   

 

Slightly Agree    
Neutral     

Slightly Disagree       
Moderately Disagree       
Strongly Disagree        

There is a high probability of losing publication opportunities if I share data. 1 2 3 4 5 6 7  8 9 
Data sharing may cause my research ideas to be stolen by other researchers. 1 2 3 4 5 6 7  8 9 
My shared data may be misused or misinterpreted by other researchers. 1 2 3 4 5 6 7  8 9 
I believe that the overall riskiness of data sharing is high. 1 2 3 4 5 6 7  8 9 
	
   	
  



 

9. Efforts Strongly Agree  

N
ot

 A
pp

lic
ab

le
 

D
o 

N
ot

 K
no

w
 

Moderately Agree   

 

Slightly Agree    
Neutral     

Slightly Disagree       
Moderately Disagree       
Strongly Disagree        

Sharing data involves too much time for me (e.g. to organize/annotate). 1 2 3 4 5 6 7  8 9 
I need to make a significant effort to share data. 1 2 3 4 5 6 7  8 9 
I would find data sharing difficult to do. 1 2 3 4 5 6 7  8 9 
Overall, data sharing requires a significant amount of time and effort. 1 2 3 4 5 6 7  8 9 
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ABOUT YOUR DATA SHARING BEHAVIOR 

10. For Research Community Strongly Agree  

N
ot

 A
pp

lic
ab

le
 

D
o 

N
ot

 K
no

w
 

Moderately Agree   

 

Slightly Agree    
Neutral     

Slightly Disagree       
Moderately Disagree       
Strongly Disagree        

I would share data to support open scientific research. 1 2 3 4 5 6 7  8 9 
I would share data to contribute to better scientific research. 1 2 3 4 5 6 7  8 9 
I would share data to help improve the quality of scientific research. 1 2 3 4 5 6 7  8 9 

 
11. In the last two years, how many publications involving actual research data have you produced per year? 
a) None b) 1-2 c) 3-4 d) 5-6 e) 7+ 
 

12. Data Sharing Frequencies Every time  

N
ot

 A
pp

lic
ab

le
 

D
o 

N
ot

 K
no

w
 

Usually   

In the last two years, how 
frequently have you… 

Frequently    
Sometimes     

Occasionally       
Rarely       

Never        
Deposited your data into disciplinary data repositories for every article? 1 2 3 4 5 6 7  8 9 
Deposited your data into institutional data repositories for every article? 1 2 3 4 5 6 7  8 9 
Uploaded your data into “public” Web spaces for every article? 1 2 3 4 5 6 7  8 9 
Provided access to your data by publishing supplement materials for 
every article? 1 2 3 4 5 6 7  8 9 

Been personally asked to share data for each article? 1 2 3 4 5 6 7  8 9 
Responded to the request(s) by providing data via personal 
communication methods (e.g. email)? 1 2 3 4 5 6 7  8 9 
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ABOUT YOURSELF 
13. What is your age? 
a) Under 24 b) 25-34 c) 35-44 
d) 45-54 e) 55-64 f) 65+ 



 
14. What is your gender? 

a) Male b) Female 
 
15. What is your ethnic background? 
a) Asian/Pacific Islander b) Black/African-American c) Caucasian 
d) Hispanic e) Native American f) Other/Multi-Racial 
 
16. What is your highest education so far? 
a) Associate Degree b) Bachelor’s Degree c) Master’s Degree d) PhD/Doctoral Degree 
 
17. What is your current position? 
a) Assistant Professor b) Associate Professor c) Full Professor d) Professor Emeritus 
e) Professor of Practice f) Lecturer/Instructor g) Post-Doctoral Fellow h) Researcher 
i) Graduate Student j) Other (Specify)   
 
18. Please choose the option most applicable to you. 
a) Tenured b) On Tenure Track But 

Not Tenured 
c) Not on Tenure Track d) Retired 

 
19. Which one of the following best describes your primary work sector? 
a) Academic b) Government c) Commercial d) Non-Profit e) Other (Specify) 
 
20. Please share any additional comments, questions, or suggestions about scientific data sharing. 
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