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Sepsis claims over 215,000 lives in the US annually. Inducible 

glucocorticoids (iGC) is produced during sepsis. However, the precise effects of 
iGC in sepsis remain unclear due to a lack of appropriate animal models. 
Glucocorticoid (GC) insufficiency is associated with a marked increase in 
mortality and occurs in 60% of severe septic patients. Yet the conclusion of GC 
therapy on septic patients is still controversial.  
Scavenger receptor class B type I (SR-BI) in the adrenal mediates the selective 
uptake of cholesteryl ester from lipoproteins for GC synthesis. SR-BI-/- mice 
completely lack iGC during sepsis and are highly susceptible to septic death, 
which presents SR-BI-/- mice as a GC insufficient model. However, SR-BI-/- mice 
display multiple defects contributing to septic death, making it difficult to study 
iGC by using these mice. Therefore, we utilized adrenal-specific SR-BI-/- mice 
(ADR-T SR-BI-/-) generated by adrenal transplantation. As expected, the ADR-T 
SR-BI-/- mice failed to generate iGC under cecal ligation and puncture (CLP)-
induced sepsis and showed a significantly higher mortality than the control mice, 
demonstrating that iGC is essential for preventing septic death. High blood urea 
nitrogen (BUN) was observed in the ADR-T SR-BI-/- mice but not in the control 
mice in CLP, indicating that iGC protects kidney injury in sepsis. Plasma IL-6 was 
remarkably higher in the ADR-T SR-BI-/- mice than the control mice, 
demonstrating an anti-inflammatory effect of iGC in sepsis. The ADR-T SR-BI-/- 
mice also displayed significantly lower phagocytic activity of monocytes and 
neutrophils in the blood and lower activation of T cells in the spleen compared to 
the control mice in CLP, suggesting that iGC is immunomodulatory in sepsis. 
Low-dose GC supplementation significantly improved the survival of SR-BI-/- mice 
in CLP, but did not increase the survival rate of SR-BI+/+ mice in CLP, indicating 
that GC supplementation improves the survival specifically in mice with adrenal 
insufficiency.
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Overall, we revealed that iGC is essential for sepsis survival. iGC prevents 
kidney damage, modulates inflammatory responses and exerts 
immunomodulatory functions in sepsis. GC supplementation specifically 
improves survival of individuals with adrenal insufficiency in sepsis. 
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Chapter 1 Introduction 

1.1 Sepsis 

1.1.1 History of sepsis 

The word “sepsis”, deriving from the Greek word “σήψις”, was first 

introduced by Hippocrates (ca. 460-370 BC) in reference to decomposition or 

putrefaction. Sepsis was described as a form of tissue breakdown; it described 

the processes of putrefaction and decay and was associated with death and 

disease. The concept of sepsis introduced in classical antiquity was used until 

the 19th century. At the beginning of the 19th century, Justus von Liebig 

expanded the theory by claiming that the contact between wounds and oxygen 

was responsible for the development of sepsis. Later, Semmelweis deducted that 

the puerperal fever, a form of sepsis, was caused by “decomposed animal matter 

that entered the blood system” and succeeded in lowering the mortality rate by 

introducing hand washing with a chlorinated lime solution before every 

gynaecological examination. Louis Pasteur (1822-1895) discovered that tiny 

single-cell organisms that we now call bacteria caused putrefaction and correctly 

deducted that these microbes could be causing disease. In 1914, Hugo 

Schottmüller (1867-1936) paved the way for a modern definition of sepsis: 

"Sepsis is present if a focus has developed from which pathogenic bacteria, 

constantly or periodically, invade the blood stream in such a way that this causes 

subjective and objective symptoms." Thus, for the first time, the source of 
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infection as a cause of sepsis came into focus. In pre-antibiotic time, a number of 

patients developed sepsis and the death rate was very high. These patients often 

showed a very low blood pressure, a condition called septic shock. With the 

introduction of antibiotics, the death rate of sepsis was reduced. With 

technological progress, intensive care medicine started to develop, and sepsis 

patients soon became the main patient fraction in intensive care units (ICU). In 

the 1980s, it was discovered that the inflammatory reaction in sepsis patients 

was in the whole body. Hence it became clear that the onset of sepsis did not 

derive from an infectious focus alone, but that the host response against infection 

must in some way play a role. In 1989, Roger C. Bone (1941-1997) established a 

sepsis definition that is still valid today: "Sepsis is defined as an invasion of 

microorganisms and/or their toxins into the bloodstream, along with the 

organism's reaction against this invasion." [1, 2] 

1.1.2 Epidemiology of sepsis 

Contemporarily, despite advances in critical care and anti-microbial 

therapy, sepsis remains a leading cause of death in intensive care units (ICUs).[3] 

Approximately 20-35% of people with severe sepsis and 30-70% of people with 

septic shock die.[4] Sepsis causes millions of deaths globally each year.[5] It is 

estimated that in the United States, sepsis is diagnosed in three per 1,000 people 

each year and leads to 215,000 deaths annually.[6]  According to the data from 

the National Hospital Discharge Survey, the number and rate per 10,000 people 

hospitalized for septicemia or sepsis was more than doubled from 2000 through 
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2008 and 17 % of septicemia or sepsis hospitalizations ended in death, whereas 

only 2 % of other hospitalizations did.[7]  

The incidence of sepsis varies among populations. Males appear to be at 

greater risk of developing sepsis than females.[3, 8] Racial and ethnic origin also 

matters as sepsis appears to be highest among African-American males.[9] 

Elderly people are more susceptible to sepsis. In the United States, patients ≥ 65 

years of age account for nearly 60 percent of all episodes of severe sepsis, and 

this is likely to increase over the next 20 years.[7, 9, 10]  

Sepsis can be triggered by infections in any part of the body, among which 

respiratory infection is the most common cause of sepsis and is associated with 

the highest mortality, followed by abdominal infection and urinary tract 

infection.[11] The contribution of various infectious organisms to the burden of 

sepsis has changed over time.[12, 13] Gram-positive bacteria as a cause of 

sepsis have increased in frequency over time, such that they are now more 

common than gram-negative infection, although the number of cases of gram-

negative sepsis remains substantial.[3, 14, 15] The incidence of fungal sepsis 

has also increased over the past decade, but remains lower than bacterial 

sepsis.[16] Infection of parasites such as falciparum malaria may also cause 

sepsis and requires management in the intensive care unit.[17, 18]  

1.1.3 Definitions for sepsis 

The sepsis syndrome is a continuum of clinical events with increasing 

severity and mortality. In the past, the terms bacteremia, septicemia, sepsis, 
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sepsis syndrome, and septic shock were used interchangeably, which lead to an 

imprecise understanding of sepsis. In 1991, the American College of Chest 

Physicians (ACCP) and Society of Critical Care Medicine (SCCM) published 

consensus definitions for sepsis.[19] These definitions were reconsidered in 2001 

during an International Sepsis Definitions Conference and again in 2012.[12, 20] 

Table 1.1 shows the current definitions for sepsis. 

The sepsis consensus definitions recognize a series of progressive stages 

in sepsis, including the systemic inflammatory syndrome (SIRS), sepsis, severe 

sepsis and septic shock. SIRS is a reference for a range of clinical symptoms 

that result from a systemic activation of the innate responses, regardless of the 

cause. Thus SIRS may also arise from non-infectious insults. Sepsis is defined 

as the SIRS resulting from infection. Uncomplicated sepsis, such as that caused 

by flu or urinary infection, is common and may not need hospital treatment. 

Severe sepsis arises when sepsis occurs in combination with multiple organ 

dysfunction syndrome (MODS). Because of problems with their vital organs, 

people with severe sepsis are more likely to die (mortality ≈30%) than those with 

uncomplicated sepsis. Septic shock occurs when sepsis is complicated by shock. 

Patients with septic shock are very ill and need rapid emergency admission to 

the hospital intensive care unit (ICU). Despite active treatment in the ICU, the 

death rate of septic shock patients is around 50 %.  
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Table 1.1 Clinical definitions for sepsis.  
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1.1.4 Sepsis pathophysiology 

Sepsis begins as the inflammatory response to an infection. The 

inflammatory response to an infection is initiated by the recognition of the 

microorganisms and the activation of the innate immune system. Activation of the 

innate immune system involves the production of oxygen radicals, the release of 

cytokines and inflammatory mediators and the activation of complement system. 

Meanwhile, coagulation is activated due to endothelial injuries and is enhanced 

by pro-inflammatory cytokines. In a typical inflammatory response, the oxygen 

radicals, cytokines and activated complement are generated to defense and kill 

invasive pathogens, which can be controlled by the host. However, when the 

host is unable to successfully constrain an infection, a complex dysregulation of 

inflammation arise and sepsis occurs. The factors underlie a typical inflammatory 

response all contribute to the pathophysiology of sepsis (Figure 1.1).  
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Figure 1.1 Pathogenic networks during sepsis.  

LPS and other microbial products simultaneously activate the production of cytokine and 

inflammatory mediators, the complement system and the coagulation cascade that 

contributes to the pathophysiology of sepsis and septic shock. Reduced vascular 

stability and microvascular occlusion leads to coagulation, fever, vasodilatation, and 

capillary leakage, provoking hypoperfusion and inadequate oxygenation and thus organ 

failure.[21] 
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1.1.4.1 Initiation of the inflammatory response to an infection 

The inflammatory response to an invading pathogen is initiated by the 

recognition of the microorganisms and the activation of the innate immune 

system. After entering tissues, many pathogens are recognized, ingested, and 

killed by phagocytes. Two main types of phagocytes are mononuclear 

phagocytes, or macrophages, which reside in the tissues and the neutrophils. In 

most cases, the tissue macrophages are the first cells to encounter most 

pathogens, and are soon reinforced by the recruitment of large numbers of 

neutrophils to the site of infection. Macrophages and neutrophils recognize 

pathogens by means of cell surface receptors, such as the macrophage 

mannose receptor and scavenger receptor. In addition, the repeating patterns of 

molecular structures on the surface of microorganisms, or called pathogen 

associated molecular patterns (PAMPs), can be recognized by specific pathogen 

recognition receptors (PRRs). Typical PAMPs include lipopolysaccharides (LPS) 

from gram-negative bacteria, lipoteichoic acid (LTA) and peptidoglycan from 

gram-positive bacteria as well as CpG DNA (bacterial DNA rich in cytosine-

phosphate diesterguanosine), bacterial flagellins and double-stranded RNAs (ds 

RNA) from viruses. Correspondingly, these PAMPs are recognized by three 

families of PRRs: toll-like receptors (TLRs), intracellular nucleotide-binding 

oligomerisation domain (NOD) proteins and peptidoglycan recognition 

proteins.[22, 23] These PRRs distinguish different types of pathogens and signal 

to direct appropriate immune responses to the pathogens.  
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In many cases, binding of a pathogen to the cell-surface receptors in 

phagocytes leads to phagocytosis, in which the pathogens are killed in acidified 

phagosomes or killed in phagolysosomes formed by the fusion of phagosomes 

and lysosomes. Macrophages and neutrophils also produce a variety of toxic 

products to help kill the engulfed microorganism. These involve the anti-microbial 

peptides such as defensins and cationic proteins, nitric oxide (NO), and reactive 

oxygen species(ROS) including superoxide anion (O2
-), hydrogen peroxide 

(H2O2), and hydroxyl radicals(·HO). In sepsis, however, these is a massive 

production, which leads to the systemic damage of vascular endothelium.[24, 25]  

1.1.4.2 Production of cytokines, chemokines and other chemical mediators 

Another important effect of the interaction between pathogen and tissue 

macrophages is the activation of macrophages to release cytokines, chemokines 

and other chemical mediators that attract neutrophils and plasma proteins to the 

infection site. The binding of a microbial molecule to its specific TLR or NOD 

results in the signal transmission that leads to the activation of nuclear 

transcription factor NF-κB, which drives the transcription of a large range of 

important pro-inflammatory cytokine and chemokine genes.[26-29] Pro- 

inflammatory cytokines (i.e. tumor necrosis factor α [TNF-α], interleukin 1 [IL-1], 

IL-6, IL-12 and high-mobility group box protein 1 [HMGB1]), chemokines (e.g. 

monocyte chemotactic protein-1 [MCP-1] and IL-8) as well as lipid mediators (e.g. 

platelet-activating factor [PAF], prostaglandins [PGs] and leukotrienes) are 

released. This secretion of inflammatory cytokines provokes an activation of 

surrounding innate immune cells and later activation of adaptive immune cells. 
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Chemokines mainly function as chemoattractants for leucocytes, recruiting 

monocytes, neutrophils, and other effector cells from the blood to the sites of 

infection in order to enhance the defense against the pathogens. In favorable 

situation, the infection-induced immune response is tightly controlled by different 

mechanisms that are triggered by PRRs themselves to control the process, 

including the inhibition of the TLR-related intracellular signaling, production of 

soluble receptors and antagonists that neutralize extracellular pro-inflammatory 

cytokine and production of anti-inflammatory cytokines (e.g. IL-10).[30, 31] 

However, in sepsis, this inflammatory response is dysregulated and 

overwhelming levels of pro-inflammatory cytokines are produced, which 

contributes to the endothelial damage and promotes coagulation in sepsis.[32, 33] 

In particular, the systemic release of TNF-α causes vasodilation, which leads to a 

drop in blood pressure and increased vascular permeability.[34]  

Another activated enzyme of major importance is inducible nitric oxide 

synthease (iNOS), which is induced by NF-κB. Sepsis is accompanied by the 

production of excess NO.[35, 36] Excess NO in sepsis provokes a systemic 

vasodilation, which contributes to septic shock and can also induce hepatocyte 

damage, increase gut epithelial permeability [37], impair neutrophil migration to 

infection site [38-40], and exert cytotoxic effects through the formation of ONOO-, 

resulting in damage to DNA, membrane phospholipids and mitochondria.[41] 

1.1.4.3 Activation of the complement system 

Microorganisms and endotoxins also turn on the humoral innate immune 

responses. The complement system can be activated by the binding of 



11 
 

complement component C1q to an antibody complexed with antigen, by the 

direct binding of C1q to the pathogen surface, or by the binding of C1q to the C-

reactive protein bound to the pathogen. Activation of the complement system 

initiates a series of cleavage reactions that culminates in the formation of C3 

convertase, which cleaves complement component C3 into C3b and C3a. C3b 

can mediate the opsonization of pathogens that facilitates phagocytosis. In 

addition, binding of C3b to C3 convertase further forms a C5 convertase which 

cleaves C5 to C5a and C5b. C3a and C5a are peptide mediators of inflammation. 

They are potent leukocyte chemoattractants and can also induce degranulation 

of basophilic granulocytes and mast cells, and thereby lead to a release of 

histamine, serotonin, and leukotriene B4 (LTB4). These molecules further 

increase vasodilatation. Sepsis is accompanied by the excess production of C5a 

and C3a. A high level of plasma C5a in septic patients correlates with poor 

outcome.[42]  

1.1.4.4 Activation of the coagulation cascade 

The activation of coagulation at the site of infection is important to block 

small blood vessels and therefore to prevent further spreading of pathogens by 

the formation of fibrin. However, in sepsis, coagulation is increased and the 

mechanisms that favor fibrinolysis (fibrin breakdown by plasmin) are reduced. 

The endothelial injury at the site of infection, microbial components as well as the 

pro-inflammatory cytokines initiate and promote coagulation pathways leading to 

the increased expression of tissue factor (TF) on polymorphonuclear leukocytes 

(PMNs)  and endothelial cells. Exposure of the coagulation system to TF 
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activates a series of proteolytic cascades, which result in the conversion of 

prothrombin to thrombin. Thrombin in turn catalyzes the conversion of fibrinogen 

to fibrin. Meanwhile, there is an increase in plasminogen activator inhibitor-1 

(PAI-1) that inhibits fibrinolysis by preventing transformation of plasminogen into 

active plasmin. The net result is enhanced production and reduced removal of 

fibrin. This disorder of coagulation leads to the deposition of fibrin clots in small 

blood vessels and inadequate tissue perfusion.[21]  

1.1.4.5 Adaptive immunity in sepsis 

Adaptive immunity can be activated when the infection is not constrained 

in the local site. Unlike innate immunity which plays a major role in the earliest 

phases of the infection, adaptive immunity needs several days for clonal 

expansion and differentiation of naive lymphocytes into effector T cells and 

antibody-secreting B cells that, in most cases, effectively target the pathogen for 

elimination. In the adaptive immunity, the antigen presenting cells (APCs), 

including dendritic cells, B cells and macrophages, present peptide fragments of 

phagocyted micro-organisms to CD4+ T cells by their major histocompatibility 

complex II (MHCII) and initiate the antigen specific immune response. CD4+ T 

cells then clonally expand with the actions of IL-2 induced by the activation of T 

cell receptor (TCR)-associated CD3 complex and the actions of co-stimulatory 

molecules induced on the APCs during their interaction with microorganisms. 

CD4+ T cells then differentiate to effector cells, which can migrate to the site of 

infection and further differentiate into a variety of T helper cell subsets, including 

Th1, Th2 and Th17 cells.  
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Adaptive immune cells classically are considered as bystanders in the 

inflammatory responses in sepsis; however, recent studies have shown that both 

T cells and B cells play a protective role in sepsis. Hotchkiss, et al. have 

demonstrated that Rag1−/− mice that lack mature T and B lymphocytes have 

increased mortality after bacterial sepsis.[43, 44] Although a later study by 

Bosmann M et al. showed no difference in the survival rate between Rag1-/- mice 

and wild type mice in cecal ligation and puncture (CLP)-induced sepsis[45], 

Kelly-Scumpia, K.M. et al. recently have demonstrated a protective role of IFN-I-

activated B cells in sepsis by enhancing early innate immune response.[46] In 

addition, Inoue, M et al. have demonstrated that T cells can interact with 

macrophages in the spleen and down-regulate TNF-mediated inflammation in 

LPS-induced endotoxemia.[47]  

1.1.5 Multiple organ damage in sepsis 

In sepsis, organ damage is frequently observed in vital organs such as the 

kidneys, liver, heart, and lungs that are quickly compromised by the failure of 

blood perfusion. Multiple organ failure contributes to an increased mortality in 

septic patients.[3] The pathogenesis of organ damage, however, is incompletely 

understood. Tissue hypoperfusion and hypoxia are important reasons for the 

organ damage. The mechanisms may involve the decreased microperfusion 

secondary to thrombi formation, reduced red blood cell deformability, blood 

maldistribution, and tissue edema caused by increased capillary permeability. In 

addition, NO-induced impairment in mitochondrial respiration impacts the 

utilization of available oxygen by the cells.[48] Infiltration of neutrophils and 
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lymphocytes can also damage tissue directly by releasing lysosomal enzymes 

and superoxide-derived free radicals.[49]  

1.1.6 Immunosuppression in sepsis and “compensatory anti-inflammatory 

response syndrome” 

Traditionally, an exacerbated production of pro-inflammatory mediators as 

illustrated by the so-called “cytokine storm” was considered to be the cause of 

sepsis.[50] However, recent studies have shown that anti-inflammatory 

responses occur early and simultaneously in sepsis as well.[51] Therefore, the 

host immune response to sepsis is currently considered to be characterized by 

two established hemodynamic phases that may overlap. The initial phase, or the 

hyper-dynamic phase, is defined as a massive production of pro-inflammatory 

cytokines, chemokines and reactive oxygen species by macrophages and 

neutrophils that affects vascular permeability (leading to hypotension) and 

cardiac function and induces metabolic changes culminating in tissue necrosis as 

well as organ failure. The second phase, or the hypo-dynamic phase, is an anti-

inflammatory process involving altered monocyte antigen presentation, 

decreased lymphocyte proliferation and responsiveness and promoted 

lymphocyte apoptosis and anergy.[52, 53] The latter state, also known as 

immunosuppression or immune depression, sharply increases the risk of 

nosocomial infections and ultimately, death.[54] Figure 1.2 shows a simplified 

paradigm of the host response to sepsis.  
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Figure 1.2 Simplified paradigm of the host response to sepsis.   

Progression of sepsis is complex, nonlinear, and varies from individual patient to another. 

(A) The initial response in previously healthy patients with severe sepsis is typified by an 

overwhelming hyper-inflammatory phase. The hyper-inflammation contributes to early 

deaths in sepsis. (B) Patients who survived the first hyper-inflammatory phase may 

develop immunosuppression due to the alterations in immunity during sepsis. This 

immunosuppressive status makes them susceptible to nosocomial infection, which also 

causes death. [55] 
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In clinic, the release of anti-inflammatory mediators appears to be 

exacerbated in septic patients, which can be illustrated by the strong relationship 

between high levels of plasma anti-inflammatory mediators and poor 

outcome.[56] In addition, the plasma of sepsis patients has the capacity to inhibit 

leukocyte functions and is considered an immunosuppressive milieu.[57] 

Furthermore, the fact that intensive care patients are highly susceptible to 

nosocomial infection indicates an alteration of their immune status. Thus, words 

such as anergy [58], immunodepression [59] and immunoparalysis [60] have 

been employed to define such immune status. In 1997, Roger Bone coined a 

new acronym CARS for “compensatory anti-inflammatory response syndrome” to 

describe the properties of immune status in patients with sepsis.[61, 62] 

The immunosuppression in sepsis involves the alterations in both innate 

immunity and adaptive immunity. In innate immunity, sepsis can reduce the 

phagocytic activity of neutrophils. Phagocytosis by neutrophils of septic patients 

was reported to be lower than that of neutrophils from control patients, probably 

due to the immaturity of neutrophils in septic patients.[63] The impaired 

phagocytic activity of neutrophils in septic patients is associated with a high 

mortality sepsis.[64] However, no difference has been observed in the phagocytic 

activity of monocytes in the septic patients.[64] In adaptive immunity, sepsis-

induced lymphocyte apoptosis may play an important role in inducing 

immunosuppression. Prevention of lymphocyte cell death in experimental sepsis 

can improve the survival of mice.[65] Profound progressive loss of B and CD4 T 
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helper cells was observed in septic patients, which is likely mediated by both 

death receptor and mitochondrial-mediated apoptotic pathway.[66, 67]  

A major consequence of CARS is the increased susceptibility to 

nosocomial infections. It has been indicated that the severity of the 

immunosuppression is associated with an increased probability of developing 

severe sepsis.[68] In line, “two hit” animal models have suggested that an 

enhanced susceptibility to a sublethal infection occurs following a first septic 

insult.[69-71] A first insult, usually a peritonitis which is experimentally induced by 

CLP, renders the animal more susceptible to a secondary bacterial or viral lung 

infection.[69-71] In fact, most of the patients with sepsis or septic shock 

undergoing an immunosuppression do not die from the initial systemic infection, 

but from a second or third hit, that they acquire in hospital. [54, 72] 

Thus, a model of immune disorders in sepsis is proposed. In the beginning 

of sepsis, the pro-inflammatory mediators (referred to as the SIRS) and the anti-

inflammatory mediators (referred to as the CARS) are balanced. Inflammation 

activates the SIRS mediators, which activates the host immune-inflammatory 

system and can be de-activated through the expression of CARS mediators; or 

once CARS mediators are more abundant. As sepsis develops, the expression of 

SIRS and CARS is out of control, resulting in an exaggerated and dysfunctional 

inflammatory response.[73] The dysregulation of inflammatory and immune 

responses may be different from individual to individual. This heterogeneity of 

septic patients makes it difficult to treat sepsis clinically.[74] (Figure 1.3) 
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Figure 1.3 Sepsis and CARS  

The host inflammatory response during inflammation can be viewed as a balanced 

response between pro-inflammatory mediators (referred to as the SIRS) and anti-

inflammatory mediators (referred to as the CARS). Inflammation activates the SIRS 

mediators such as TNF-α, IL-1, IL-6 and IL-12, which activate the host immune-

inflammatory system and can be de-activated through the expression of CARS 

mediators, including TGF-β, IL-4, IL-10 and IL-13; or once CARS mediators are more 

abundant. During the development of sepsis, the expression of SIRS and CARS is out of 

control, resulting in an exaggerated and dysfunctional inflammatory response.[73]
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1.2 Glucocorticoids (GC) 

1.2.1 Synthesis of GC 

Glucocorticoids (GC) is a class of steroid hormones. The name 

glucocorticoid derives from its role in the regulation of the metabolism of glucose, 

its synthesis in adrenal cortex and its steroidal structure. Adrenal glands are the 

main source of GC in circulation. Each gland is made of two parts: the medulla 

and the cortex. The medulla belongs to the sympathetic system and produces 

catecholamine (epinephrine, norepinephrine and dopamine). The cortex has 

three zonas. From the outerior to the interior is the zona glomerulosa which 

secretes mineralocorticoids (aldosterone and desoxycorticosterone); the zona 

fasciculata which produces GC (mainly cortisol in human and corticosterone in 

rodents); and the zona reticularis which produces androstenedione, a metabolic 

intermediate in the biosynthesis of the androgen and estrogen sex steroids. The 

hormones secreted from adrenal cortex all derive from cholesterol following a 

cascade of enzymatic reactions, as shown in Figure 1.4.  

http://en.wikipedia.org/wiki/Metabolic_intermediate
http://en.wikipedia.org/wiki/Metabolic_intermediate
http://en.wikipedia.org/wiki/Biosynthesis
http://en.wikipedia.org/wiki/Androgen
http://en.wikipedia.org/wiki/Estrogen
http://en.wikipedia.org/wiki/Sex_steroid
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Figure 1.4 Synthesis of GC in adrenal glands.  

Steroid hormones are synthesized in the cortex of adrenal glands which contain zona 

glomerulosa, zona fasciculata and zona reticularis. Each zona is distinguished for the 

synthesis of different kinds of steroid hormones through specific enzymes. Cholesterol is 

the common substrate for steroid hormones. GC, mainly cortisol in human and 

corticosterone in rodents, are synthesized in zona fasciculata. Mineralocorticoids, mainly 

aldosterone, are synthesized from zona glomerulosa. Androstenedione, a common 

precursor for sex hormone, is produced from zona reticularis.  
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Free cholesterol is the substrate for the glucocorticoid synthesis. In 

steroidogenic cells, about 80% cholesterol required for steroidogenesis comes 

from exogenous sources, namely circulating lipoproteins, and about 20% of the 

cholesterol comes from local de novo synthesis from acetate (acetyl CoA).[75] 

Exogenous cholesterol esters from lipoproteins can be delivered by either 

receptor-mediated endocytic uptake or “selective” cellular uptake. Low-density 

lipoprotein (LDL) receptor mediates the endocytic uptake of LDL, or other 

apolipoprotein B-or apolipoprotein E-containing lipoproteins, where the intact 

lipoprotein is internalized and degraded in lysosomes.[76] The cholesterol esters 

delivered via this pathway are hydrolyzed to free cholesterol in lysosomes. 

Scavenger receptor B1 (SR-BI) mediates the “selective” uptake of lipoprotein 

cholesterol esters in which SR-BI selectively delivers the cholesteryl esters into 

cells without internalizing the lipoprotein particle itself. Selectively-delivered 

cholesteryl esters are hydrolyzed by neutral cholesteryl ester hydrolase 

(hormone-sensitive lipase, HSL).[77] Unesterified cholesterol is also derived from 

the hydrolysis of cholesteryl esters (CE) stored in lipid droplets through the 

actions of HSL or via endogenous synthesis from acetyl CoA via the rate limiting 

enzyme hydroxymethylglutaryl coenzyme A reductase (HMG-CoA reductase). 

Unesterified cholesterol can be esterified for storage in lipid droplets by acyl-

coenzyme A:cholesterol acyltransferase (ACAT) or can be transported into 

mitochondria via steroidogenic acute regulatory protein (StAR) for metabolism by 

cholesterol side chain cleavage enzyme (CYP11A1). (Figure 1.5)  
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Figure 1.5 Sources of cholesterol for the synthesis of GC in adrenal steroidogenic 

cells.  

Cholesterol is the substrate for the synthesis of GC. Uptake of cholesterol from 

lipoproteins involves selective uptake of high-density lipoprotein (HDL) cholesteryl esters 

via SR-BI and the endocytic uptake of low-density lipoprotein (LDL) cholesteryl esters 

via LDL receptor. Selectively delivered cholesteryl esters are hydrolyzed by hormone-

sensitive lipase (HSL), whereas cholesteryl esters delivered by receptor-mediated 

endocytosis are hydrolyzed to free cholesterol in lysosomes. Free cholesterol is also 

derived from the hydrolysis of cholesteryl esters (CE) stored in lipid droplets through the 

actions of HSL or via endogenous synthesis from acetyl CoA via the rate limiting enzyme 

hydroxymethylglutaryl coenzyme A reductase (HMG CoA Red). For steroidogenesis, 

free cholesterol is transported into mitochondria via steroidogenic acute regulatory 

protein (StAR) for metabolism by cholesterol side chain cleavage enzyme (CYP11A1). 

[78] 
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1.2.2 Metabolism of GC 

The major site of GC metabolism is the liver, where GC is reduced, 

oxidized, or hydroxylated. The products of these modifications are made water 

soluble by conjugation with sulfate or glucuronic acid to facilitate their excretion in 

urine. Many enzymes are involved in these processes of GC metabolism, such 

as 5α-reductases, 5β-reductases, and 3α-hydroxysteroid dehydrogenases in the 

reduction, the CYP3A4 enzyme in the hydroxylation, uridine 

diphosphoglucouronosyl transferases [79] and sulfotransferases [80] in the 

conjugation. 11β-hydroxysteroid dehydrogenase (11-β-HSD1) is also a key 

enzyme in glucocorticoid metabolism, with both dehydrogenase and reductase 

activities.[81]  

1.2.3 Basal GC and inducible GC (iGC)  

Under normal conditions, the synthesis and release of GC is regulated by 

the hypothalamic-pituitary-adrenal (HPA) axis in a feedback manner. The 

paraventricular hypothalamus secretes corticotropin releasing hormone (CRH) 

into the hypothalamic-pituitary venous system and enhances the pituitary 

production of adrenocorticotrophic hormone (ACTH) yielded from 

proopiomelanocortin (POMC). ACTH in circulation applies a trophic action on the 

adrenal glands, increasing the production and releasing of GC. GC feeds back 

on the HPA axis negatively, reducing the production of CRH and ACTH. Basal 

plasma GC concentrations display a circadian rhythm reaching the zenith 

between 6-8 am and nadir at midnight.[82] Circulating basal GC is important for 

maintaining organismal homeostasis and is thought to have permissive effects: at 
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basal levels, glucocorticoids help the organism prepare for subsequent energetic 

challenges and potentially enhance the initial response to future stressors.[83]  

Under stressed conditions such as sepsis, the rhythm and feedback of 

basal GC are lost. Circulating and locally expressed pro-inflammatory mediators, 

especially cytokine TNF-α, IL-1β and IL-6 activate the HPA axis independently 

and synergistically. Afferent vagal fibbers at local tissue also stimulate the HPA 

axis after sensing the inflammatory threat.[84] In addition, the production of 

cortisol binding globulin (CBG) decreases at the same time, which further 

increases the plasma concentration of free GC. Consequently, the level of 

circulating GC goes up. Our study has been focused on the GC produced upon 

sepsis, which I call inducible GC (iGC). (Figure 1.6) 
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Figure 1.6 Regulation of GC under basal conditions and in sepsis.  

Under basal conditions, the production of GC is tightly regulated by the hypothalamic-

pituitary-adrenal (HPA) axis in a feedback pattern. In sepsis, the immune and 

inflammatory reaction produces local and systemic inflammatory cytokines and 

mediators, which activate the HPA axis directly and indirectly through the activation of 

stress system. In this case, the feedback is lost and the inducible GC (iGC) is produced. 

CRH, corticotropin releasing hormone; ACTH, adrenocorticotrophic hormone 
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1.2.4 Synthetic GC 

Most of research on the function of GC is conducted using synthetic GC. 

In humans, these include prednisolone and methylprednisolone; in animal 

models and in vitro, dexamethasone is most commonly used. However, because 

synthetic GC has different properties from endogenous GC, studies of synthetic 

GC may have provided an over-simplified view of the actions of GC. 

 Modification of the natural GC yields synthetic GC that may have more 

potent glucocorticoid activity as well as an increase in mineral corticoid potency. 

In contrast to natural GC with high affinity for CBG, synthetic steroids other than 

prednisolone either bind weakly to albumin (two-thirds) or circulate as free steroid 

(one-third). Exogenous GC is subject to the same reduction, oxidation, 

hydroxylation, and conjugation reactions as endogenous steroids. However, the 

plasma half-lives of synthetic GC are generally longer than those of endogenous 

GC.[85-87] GC that are fluorinated at the 6-alpha or 9-alpha position 

(dexamethasone, fludrocortisone, betamethasone) or methylated at the 6-alpha 

position (methylprednisolone), or methyloxazoline at position 16,17 (deflazacort), 

are protected from oxidation inactivation by the type 2 11-β-hydroxysteroid 

dehydrogenase (11β-HSD2) [88], which may explain their longer activity than 

cortisol. Overall, the variation in the susceptibility to metabolism by 11-β-

hydroxysteroid dehydrogenase and in the binding affinities for GR and MR leads 

to the diversity of synthetic GC in ant-inflammatory or mineralocorticoid potency 

and duration of action.[89] (Table 1.2)  

 

http://www.uptodate.com/contents/dexamethasone-drug-information?source=see_link
http://www.uptodate.com/contents/fludrocortisone-drug-information?source=see_link
http://www.uptodate.com/contents/betamethasone-drug-information?source=see_link
http://www.uptodate.com/contents/methylprednisolone-drug-information?source=see_link
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Table 1.2 GC in clinic. 

 

Modification of the natural GC yields synthetic GC that may have more potent 

glucocorticoid activity as well as an increase in mineral corticoid potency. The resistance 

to the oxidation inactivation by the 11β-HSD2 contributes to a longer half-life of synthetic 

GC than that of endogenous GC.  
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1.2.5 Molecular mechanisms of GC action 

Free GC is the biologically active form of GC. However, under normal 

conditions, 90-95 % of plasma cortisol, the main GC in human, is bound to 

albumin and cortisol binding globulin (CBG). The CBG-bound cortisol has 

restricted access to target cells.[90, 91] At inflammatory sites, CBG acts as a 

substrate for elastase produced by neutrophils, allowing localized delivery of 

cortisol.[91] Cortisol then can freely cross the cell’s membrane, or it may interact 

with specific membrane binding sites. Alternatively, cortisol is inactivated by the 

action of type 2 11-β-hydroxysteroid dehydrogenase (11-β HSD2), which 

converts cortisol to cortisone, the inactivate form. The 11-β HSD2 is found mainly 

in mineralocorticoid target tissues (kidney, colon, salivary glands) and in the 

placenta. Conversely, cortisone can be converted into cortisol by type 1 11β-

hydroxysteroid dehydrogenase (11-β-HSD1) converts cortisone into cortisol, 

which is expressed in many glucocorticoid target tissues.[92, 93]  

GC exerts their effects mainly by binding to corticosteroid receptors. There 

are two types of corticosteroid receptors: the type I receptor, which is also 

referred to as the mineralocorticoid receptor (MR) and the type II receptor, which 

is commonly known as the glucocorticoid receptor (GR). In classical 

mineralocorticoid target tissues involved in electrolyte and volume regulation, the 

MR is co-localized with 11-β-HSD2 and thus inactivates GC. (Figure 1.7) 
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Figure 1.7 11β-Hydroxysteroid dehydrogenases modulate GC action. 

11β-Hydroxysteroid dehydrogenases (11β-HSDs) modulate the activation and 

inactivation of GC. 11-β HSD2 inactivates GC and 11-β-HSD1, conversely converts the 

inactive form into cortisol. In mineralcorticoid target tissues, the mineralcorticoid receptor 

co-localizes with 11-β HSD2 and inactivates GC. In contrast, glucocorticoid target 

tissues express 11-β-HSD1, which allows GC to exert its functions. CNS, central 

nervous system 
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Glucocorticoid receptor (GR) is a 94 kDa heterodimeric protein, which 

belongs to the nuclear receptor family. The human glucocorticoid receptor gene 

(GR) is located on chromosome 5 and is responsible for the expression of α and 

β subunits. Like the other steroid receptors[94], GR has three major distinct 

functional domains- the N-terminal or immunogenic domain, the DNA binding 

domain (DBD), and the ligand-binding domain (LBD).[95] GRα in unbound state 

is located primarily in the cytoplasm as part of a hetero-oligomeric complex that 

contains heat shock proteins (HSPs) 90, 70, 50 and 20 and, possibly other 

proteins as well.[96] The free cortisol can enter into the cell and bind to the 

intracellular glucocorticoid receptor type α (GRα). The GR isoform β (GRβ) does 

not itself bind corticosteroids and resides constitutively in the nucleus of cells.[96-

100]. 

Most of the actions of GC are attributable to the transcriptional effects of 

GR.[101] After binding to an agonist ligand, GR undergoes conformational 

changes, dissociats from the HSPs and other chaperone proteins, and 

translocates into the nucleus as a monomer or dimer by means of an active ATP-

dependent process mediated by its nuclear localization signals. Once in the 

nucleus, ligand-activated GR dimers interact directly with glucocorticoid-

responsive elements (GREs) in the promoter regions of target genes. Ligand-

activated GR monomers also interact with other transcription factors at the 

cytoplasmic level and thus indirectly regulate the activity of the latter on their own 

target genes [96]. The ability of GR to inhibit the activity of crucial transcriptional 

regulator of pro-inflammatory genes including NF-κB and activating protein-1 
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(AP-1) is believed as an important mechanism for the anti-inflammatory action of 

GC. In addition, GC can also signal through membrane-associated receptors 

(non-genomic pathways) through a GR-dependent or independent manner, 

which contributes to the quick actions of GC.[102, 103]  

GC has been considered as an anti-inflammatory and immunosuppressive 

agent [101] due to its inhibitory effects on the pro-inflammatory cytokines and 

suppressive actions on immune cells, such as inducing the apoptosis of 

lymphocytes [104] and inhibiting the function of T lymphocytes [105]. However, 

some recent studies challenged this conventional concept. In vitro culture of 

macrophages with the treatment of corticosterone showed that corticosterone 

exerts opposing effects on macrophage functions in a concentration-dependent 

manner. Low-corticosterone treatment can enhance the macrophage production 

of NO, chemotaxis of macrophages and the phagocytosis of E. coli by 

macrophages, whereas high-corticosterone treatment represses these 

macrophages functions.[106, 107] In addition, it has been demonstrated that GC 

can regulate genes involved in the phagocytosis of monocytes and leads to a 

significant increase in the phagocytosis of latex beads and live parasites by the 

cultured human monocytes.[108] These findings led us to ask the question that 

whether or not iGC has actions to promote immunity in sepsis.  
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1.3 SR-BI  

1.3.1 Basics of SR-BI 

Scavenger receptor class B, type I (SR-BI, gene name SCARB1) is a 

75kDa cell surface glycoprotein that belongs to the CD36 superfamily and has 

the common structural features of this family, including membrane-associated 

hydrophobic regions near the N- and C-termini, a large extracellular loop that 

comprises the portion of the peptide sequence between the two membrane-

bound end regions, and several sites of N-linked glycosylation.[109-111] 

Although SR-BI is expressed in many mammalian tissues and cell types, it is 

most highly expressed in tissues that are dependent on HDL cholesterol for bile 

acid or hormone synthesis, including liver, ovary, testes and adrenal glands.[112, 

113]  

SR-BI binds to a variety of ligands including native and modified 

lipoproteins, modified serum proteins such as maleylated serum albumin, lipid 

vesicles containing anionic phospholipids, apoptotic cells and bacterial cell 

surface components such as LPS.[114, 115] Correspondingly, SR-BI has 

multiple functions.  

1.3.2 SR-BI as a multi-functional protein 

The best-known function of SR-BI is to serve as the HDL receptor.[116] 

Studies of knockout and transgenic mice have revealed that SR-BI plays a critical 

role in HDL metabolism, being a very efficient receptor for cholesterol and 

cholesteryl ester transport between cells and HDL.[116-119] Deficiency of SR-BI 
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leads to a disruption of cholesterol metabolism that is characterized by abnormal 

HDLs which are larger in size and enriched with free cholesterol. Thus, SR-BI-

deficient mice develop hypercholesterolemia with a remarkable increase in 

plasma free cholesterol and a high ratio of plasma unesterified cholesterol (UC)-

to-total cholesterol (TC, unesterified plus esterified cholesterol). The increase in 

plasma UC-to-TC ratio in SR-BI-deficient mice leads to the increase of free 

cholesterol in red blood cells [120] and platelets in circulation [121]. Deposition of 

free cholesterol in red blood cells in SR-BI-deficient mice contributes to their 

phenotypes of reticulocytosis (an increase in reticulocytes in blood) and impairs 

the development of erythrocytes.[120, 122] The high unesterified cholesterol in 

platelets in SR-BI-deficient mice also contributes to their abnormal morphologies, 

elevated rates of clearance of platelets from circulation and defects in ADP-

induced aggregation.[123-125] These abnormalities in platelets in mice are 

associated with an increased susceptibility to thrombosis [126]. In addition, as 

the HDL receptor, SR-BI mediates the activation of endothelial nitric oxide 

synthase (eNOS) by HDL, which leads to increased production of NO [127-130] 

and can induce a ligand-independent apoptotic pathway that is regulated by 

eNOS and HDL [131].  

SR-BI is also important in immunity. In innate immunity, SR-BI mediates 

the uptake of gram-negative bacteria, gram-positive bacteria, LPS and LTA in 

macrophages, thus it facilitates the clearance of bacteria and the alleviation of 

inflammation.[132, 133] Recently, studies have revealed that SR-BI also 

mediates HCV entry [134-136], which is very likely attributed to the lipid transfer 
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function of SR-BI. [137] Paradoxically, SR-BI may also be important in initiating 

the host defense against HCV, as dendritic cells depend on SR-BI to uptake 

HCV.[138] In adaptive immunity, SR-BI is critical in maintaining lymphocyte 

homeostasis, as indicated by an imbalanced lymphocyte expansion in the spleen 

and the development of autoimmune disorders in SR-BI-deficient mice.[139] The 

adaptive immune defects in SR-BI-deficient mice are at least partly attributed to 

their abnormal HDL particles which are dysfunctional in inhibiting anti-CD3-

stimulated T cell proliferation and LPS-induced B cell proliferation.[139]  

1.3.3 SR-BI and GC synthesis 

While both SR-BI and LDL receptor participate in the uptake of cholesterol 

from circulating lipoproteins, human studies support that the SR-BI-mediated 

pathway, rather than the other is more important for the steroidogenic function of 

adrenal glands. In homozygous familial hypercholesterolemia patients who have 

complete LDL-receptor deficiency, the adrenal cortex can respond to a single 

injection of ACTH with a normal increase in corticosteroid production [140] and 

only present a mildly reduced function upon a prolonged stimulation (24 to 36 h) 

with ACTH [141]. Additionally, a 50 % reduction in the number of high affinity LDL 

receptors in heterozygous familial hypercholesterolemia patients does not result 

in any impairment in the delivery of cholesterol to the adrenal cortex even during 

conditions of maximal corticosteroid production (36 h i.v. infusion of ACTH).[119] 

In contrast, carriers of the P297S mutation, a functional mutation of SR-BI, have 

attenuated adrenal steroidogenesis, as evidenced by decreased urinary 

excretion of sterol metabolites, a higher level of cortisol-binding globulin in the 
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plasma, a decreased response to corticotropin stimulation, and symptoms of 

diminished adrenal function such as fatigue and dizziness.[142]  

In rodents, the SR-BI-mediated selective uptake of HDL cholesterol 

provides a major supply of cholesterol for GC production under stress.[118, 143-

147] A normal maximum corticosterone production upon ACTH stimulation can 

be observed in the LDL receptor knockout mice indicating that the LDL receptor 

is not necessary for acute adrenal steroidogenesis.[148, 149] In contrast, mice 

deficient in ApoA-I, the major HDL ligand for SR-BI, show a blunted 

corticosterone response to ACTH stimulation [112] and lecithin-cholesterol 

acyltransferase (LCAT) deficient mice which have decreased plasma HDL levels 

also present a diminished corticosterone response to ACTH injection or LPS 

exposure[150]. These studies demonstrate the importance of HDL as cholesterol 

donor for the synthesis of GC in adrenal under stress. In this case, SR-BI, as the 

only receptor that mediates the adrenal uptake of cholesteryl esters from HDL in 

mice [151], is critical for GC synthesis under stress.  

1.3.4 SR-BI and sepsis 

SR-BI is important in preventing septic death. Our group first reported a 

protective role of SR-BI in sepsis induced by LPS [152] or by cecal ligation and 

puncture (CLP) [110]. SR-BI-deficient mice display an increased susceptibility to 

death in LPS-induced endotoxemia and CLP-induced sepsis. A sublethal-dose of 

LPS in wild type mice can cause a mortality of 90 % in SR-BI-deficient mice.[152] 

CLP that causes a 20 % fatality in wild type mice can lead to a 100 % fatality in 

SR-BI-deficient mice.[110] SR-BI can protect against septic death through many 
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mechanisms. A significant suppression of tyrosine-nitrated protein formation by 

SR-BI which prevents NO-induced cytotoxicity may contribute to the ability of SR-

BI to protect against LPS-induced death.[152] SR-BI in the adrenal mediates the 

uptake of cholesterol for the production of iGC in sepsis, which is likely to play an 

essential role in preventing septic death given the potent anti-inflammatory 

effects of GC.[109, 110] SR-BI-deficient mice present no iGC production in 

endotoxemia or CLP. Supplementation of corticosterone by drinking water 

restored survival of SR-BI-deficient mice in LPS-induced endotoxemia [109], 

though supplementation of corticosterone in the same way failed to increase the 

survival rate of SR-BI-deficient mice in CLP-induced sepsis [110]. In addition, 

macrophage SR-BI is important for controlling the inflammatory response. 

Macrophage SR-BI can suppress the macrophage production of pro-

inflammatory cytokines by inhibiting TLR4-mediated NF-κB activation. [110] The 

regulation of macrophage pro-inflammatory production by SR-BI also involves 

JNK and p38 cell signaling pathways.[153] This inhibitory effect of SR-BI protects 

against septic death as indicated by that over-expression of SR-BIC323G (a 

mutant SR-BI lacking activity for GC production but capable of suppressing TLR-

4-NF-κB signaling) in SR-BI-deficient mice significantly improves their survival in 

CLP.[110] SR-BI in the liver is also a critical protective factor in sepsis by 

mediating LPS clearance. ScarbII179N mice, a mouse model specifically deficient 

in hepatic SR-BI, show a higher mortality than the wild type mice.[154] Therefore, 

SR-BI protects the animals from septic death through multiple mechanisms as 

shown in Figure 1.8.  
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Figure 1.8 SR-BI plays multiple functions in preventing septic death.    

SR-BI knockout mice show increased susceptibility to septic death. A number of possible 

mechanisms may contribute to the protective effects of SR-BI in sepsis: (1) SR-BI 

protects against NO-induced cytotoxicity (upper left), which prevents tissue damage; (2) 

Adrenal SR-BI mediates the uptake of HDL cholesterol ester to provide cholesterol for 

the synthesis of iGC, which keeps inflammatory responses under control; (3) 

Macrophage SR-BI inhibits LPS-induced inflammatory signaling involving TLR4, JNK, 

p38 and NF-κB pathways (bottom right), which alleviates inflammatory response. (4) 

Hepatic SR-BI mediates the clearance of LPS and thus attenuates the endotoxemia in 

sepsis.[155]  



38 
 

1.4 Statement of the problem 

1.4.1 Adrenal insufficiency in sepsis 

Adrenal insufficiency (AI) is indicated by the incapability of adrenal to 

produce cortisol and has been reported in association with septic shock.[156-158] 

The secretion failure of the adrenal glands was first implicated as a factor in the 

pathogenesis of circulatory shock associated with infection after the original 

report of Waterhouse and Friderichsen.[159] These observations emphasized 

that the functional integrity of the HPA axis is essential to survival in severe 

insults. Several decades later, variations in adrenocortical responsiveness in 

septic patients were observed as indicated by the different plasma cortisol 

response to synthetic ACTH.[156] In a study of 32 septic shock patients, the 

patients with poor plasma cortisol response to ACTH all died.[158]  

However, the definition of adrenal insufficiency in sepsis has not been well 

defined. The reported range of serum cortisol in sepsis has varied widely, which 

was probably due to different degree of stress that the enrolled subjects had, the 

type of infection, length of time in shock, and the blood pressure at the time of 

blood sampling.[156, 160-162] Of note, the increase in cortisol levels not only is 

due to the activation of the HPA axis but also partly results from decreased 

cortisol extraction from the blood, decreased binding to CBG, and an increase in 

the half-life of cortisol.[163, 164] Some reports stated that absolute AI is 

uncommon in critically ill patients, but incidence depends on criteria used to 

define it.[158, 163, 165, 166] In addition, the optimal range for serum cortisol 

levels in severe sepsis remains unclear. Therefore, the concept of relative AI 
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then emerged. In relative AI, the cortisol level, despite being normal or high, is 

still considered to be inadequate for the current physiologic stress, and the 

patient may be unable to respond to any additional stress.[158, 167] Thus, 

relative AI is currently defined as an inadequate response to exogenous ACTH. 

Unfortunately, the methods and criteria to diagnose AI or relative AI in critical 

illness or sepsis have not been well defined or standardized. Investigators have 

used a lack of increase in plasma cortisol in response to ACTH [158, 165, 167], 

or an inappropriately low cortisol level during critical illness/septic shock [160, 

168], or both [156, 169] to diagnose AI. Meanwhile, the lower end of serum 

cortisol used to diagnose AI in critical illness has ranged from less than 12.5 

µg/ml to 25 µg/ml.[160, 165, 168-171] These factors overall led to the reported 

incidence of AI varying from 1.5% to 54%.[156, 158, 160, 167-169] 

1.4.2 The use of GC in sepsis 

The use of GC in the therapy of sepsis has been controversial for many 

decades.[172] Early in 1970s, the safety and efficacy of GC in the treatment of 

septic shock was investigated, finding that administration of dexamethasone or 

methylprednisolone decreased the mortality of septic patients.[173, 174] After 

this study, a short course of high-dose GC became an accepted therapy. 

However, subsequent studies did not confirm a survival benefit with this regimen 

and suggested an increase in mortality which is related to secondary 

infection.[175-179] In the 1990s, interest was renewed with the observation of 

HPA axis dysfunction in patients with septic shock.[165, 169, 180] Later, the 

investigators used lower doses of hydrocortisone (200 to 300 mg per day) and 
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found that the low-dose GC therapy decreased the duration of shock in septic 

patients.[181, 182] These studies prompted subsequent larger randomized trials. 

In a multicenter double-blind French trial, Annane et al. revealed that 7-d 

administration of hydrocortisone (50 mg intravenously every six hours) plus 

fludrocortisone (50 mcg enterally once a day) within eight hours of the onset of 

septic shock reduced 28-day mortality by 10% in patients with inadequate 

adrenal reserve (non-responders, maximum cortisol increase of ≤9 mcg/dl upon 

a high-dose (250 mcg) ACTH stimulation test), but made no difference to the 

survival of septic patients with adequate adrenal reverse (responders).[183] 

Following this study, the association between GC therapy and improved mortality 

in sepsis was supported by two subsequent meta-analyses.[184, 185] Then the 

use of low-dose corticosteroids was incorporated into the 2004 surviving Sepsis 

Campaign guidelines, recommending the use of GC for patients with septic 

shock who require vasopressor treatment despite adequate fluid resuscitation. 

Yet, the Corticosteroid Therapy of Septic Shock (CORTICUS), a large 

multicenter double-blind trial, revealed that hydrocortisone (50 mg) every six 

hours for five days can lead to a significantly faster reversal of shock (3.3 versus 

5.8 days in the placebo group) but an increased incidence of new infection and 

non-improved 28-day mortality (35 versus 32 percent in the placebo group) in 

both the responders and the non-responders to the ACTH stimulation.[186] In 

comparing CORTICUS with the French trial, there are important methodological 

differences, especially the characterization of patients including the sources of 

infection, sepsis severity and administration time, etc. [187, 188], which may in 

http://www.uptodate.com/contents/hydrocortisone-drug-information?source=see_link
http://www.uptodate.com/contents/fludrocortisone-drug-information?source=see_link
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part explain the contradiction between their findings. (Table 1.3)  At least, the 

time to initiate GC supplementation seems significantly matters the outcome. A 

study of 178 septic shock patients showed that the mortality rates increased 

significantly with increasing quintiles of time to initiation of low-dose corticosteroid 

therapy, as the early therapy group (administered within 6 hours after the onset 

of septic shock, n = 66) had a 37% lower mortality rate than the late therapy 

group (administered more than 6 hours after the onset of septic shock, n = 112; 

32% versus 51%, p= 0.013).[189]  

Table 1.3 Comparison of French trial and CORTICUS 
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The different results in the relative adrenal insufficiency subgroups 

between the French trial and CORTICUS resulted in new recommendations for 

steroid use in the more recent Surviving Sepsis Campaign guidelines that 

suggest steroid use only in adult patients in septic shock who are poorly 

responsive to fluid resuscitation and vasopressor therapy. However, trials 

following these recommendations have not shown benefits of steroid use in 

sepsis. The Surviving Sepsis Campaign included a large observational database 

of 17,847 patients who met eligibility criteria for low-dose systemic corticosteroids 

(hydrocortisone 50 mg intravenously every six hours or 100 mg every eight hours) 

following the guideline. The results from this campaign showed that the adjusted 

hospital mortality was significantly higher in patients who received low-dose 

steroids compared to those who did not.[190] A prospective, multicenter 

observational study reevaluated the Survival Sepsis Campaign guidelines 

recommendations in steroid use and reported that low-dose steroid had no 

benefits on the hospital mortality.[191] More recent international PROGRESS 

(PROmoting Global Research Excellence in Severe Sepsis) cohort study of 

10,925 severe sepsis patients revealed that the hospital mortality in the low dose 

corticosteroid (LDC, equivalent or lesser potency to hydrocortisone 50 mg/6 

hourly plus 50 μg 9-alpha-fludrocortisone) group was higher than the control 

group without LDC treatment.[192] Thus, it can be seen that the use of GC in 

sepsis is still controversial and a better understanding of its function during 

sepsis is needed to use GC more effectively in the treatment of sepsis.  
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1.4.3 Animal models to study GC in sepsis 

1.4.3.1 Previous approaches to study GC function are not feasible to study 

iGC in sepsis. 

Before the current study, two different approaches have been used to 

investigate GC function: removal of endogenous GC (by adrenalectomy or GC-

receptor antagonists) or administration of exogenous GC. However, these 

approaches are not feasible to study iGC in sepsis.  

The approaches of adrenalectomy and GC-receptor antagonist, which 

remove both basal GC and iGC, are not feasible to specifically investigate the 

role of iGC in sepsis. Previous studies have revealed that endogenous basal GC 

has a role in regulating the homeostasis of metabolism, immune functions and 

behavior under basal condition.[193, 194] Our preliminary data have shown that 

survival sepsis is accompanied by the maintenance of basal GC (Figure 1.9). 

Therefore, considering the importance of basal GC in organismal homeostasis 

and a potential role in sepsis, an approach that specifically eliminates the 

production of iGC is needed to study the functions of iGC in sepsis.  

Also, exogenous GC administration is not feasible to study iGC in sepsis. 

For one thing, synthetic GC is different from endogenous GC in terms of the half-

life and potency [195]. For another, administration of natural GC does not restore 

the function of endogenous GC in GC-eliminated animals [196], indicating a 

different action of endogenous natural GC and exogenously supplemented 

natural GC. Therefore, GC supplementation is not a good approach to 

investigate the role of iGC in sepsis.  
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Figure 1.9 Plasma baseline GC is maintained in survival sepsis in mice.  

B6 mice were subjected to a sublethal insult of CLP (21-guage, half ligation). Plasma 

corticosterone concentrations were evaluated at designated time points. Data represent 

mean ± SEM. (n=7)  
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1.4.3.2 SR-BI-/- mice as a model of adrenal insufficiency  

Due to the importance of SR-BI-mediated delivery of HDL cholesterol in 

iGC production, SR-BI knockout (SR-BI-/-) mice display adrenal insufficiency 

under stress. Overnight fasting (approximately 16 h) stimulates the plasma level 

of corticosterone by 2-fold in wild-type mice but has no effect on plasma 

corticosterone levels in SR-BI-/- mice.[197] SR-BI-/- mice also cannot generate 

iGC in LPS-induced endotoxemia [109] or in cecal ligation and puncture (CLP)-

induced sepsis [110]. Importantly, the plasma corticosterone levels under the 

basal conditions in SR-BI-/- mice are in normal range.[110] Therefore, SR-BI-/- 

mice can be used as an animal model of adrenal insufficiency. 

1.4.3.3 Adrenal-specific SR-BI-/- mice as a model to study iGC in sepsis 

Although the SR-BI-/- mouse is a good model of adrenal insufficiency, it is 

not perfect for the investigation of iGC in sepsis due to its abnormalities in other 

aspects such as dyslipidemia and impaired macrophage function.[155] In this 

regard, the adrenal-specific SR-BI-deficient (adrenal-specific SR-BI-/-) mouse 

model is preferred to investigate the role of iGC in sepsis. Compared to previous 

approaches, this model has a normal range of basal plasma GC concentration. 

Compared to SR-BI-/- mice, this model has normal SR-BI expression in other 

tissue and organs and is free of SR-BI deficiency-induced abnormalities other 

than the lack of iGC. The adrenal-specific SR-BI-/- mouse model has been 

reported previously. Using the technique of adrenal transplantation, Hoekstra M 

et al. generated adrenal-specific SR-BI-/- mice to study the role of GC in lipid 
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metabolism.[198] They have shown that the adrenal-specific deficiency of SR-BI 

leads to an impaired iGC production under a mild stress, such as fasting.  

1.5 Hypothesis and experimental design 

In the current project, we aim to elucidate two issues (1) the role of iGC in 

sepsis and (2) the effects of GC supplementation on survival in sepsis. We 

hypothesized that (1) the SR-BI-regulated endogenous iGC is essential for 

survival in sepsis and (2) GC supplementation benefits the individuals with 

adrenal insufficiency in sepsis but not those without adrenal insufficiency.  

To study the role of iGC in sepsis, we first characterized the phenotypes of 

the adrenal-specific SR-BI-/- mice in terms of the production of corticosterone 

after CLP, the lipoprotein profile and the complete blood count and verified that 

the adrenal-specific SR-BI-/- mice can serve as a good model to study iGC in 

sepsis. Next, in order to elucidate the importance of iGC in sepsis, we analyzed 

the survival rate, the organ damages of the liver, lung and kidneys and the 

production of TNF-α, IL-6, NOx and IL-10 in the adrenal-specific SR-BI-/- mice 

under CLP. In addition, to see if iGC exerts immunosuppressive effects in sepsis, 

we analyzed the phagocytic activity of phagocytes in the blood and spleen as 

well as the activation and apoptosis of lymphocytes in the spleen in the adrenal-

specific SR-BI-/- mice in CLP. (Figure 1.10A) 

To study the effects of GC supplementation on survival in sepsis, we first 

transplanted SR-BI+/+ adrenal to SR-BI-/- mice to see if supplementation of 

endogenous GC can improve the survival rate of adrenal insufficient mice in 

CLP-induced sepsis. Then we exogenously supplemented low-dose GC to SR-
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BI-/- mice after CLP to see if exogenous GC can benefit the survival of adrenal 

insufficient mice in sepsis. We also supplemented low-dose GC to SR-BI+/+ mice 

after CLP to test our hypothesis that GC supplementation is not beneficial to the 

mice without adrenal insufficiency in sepsis. In addition, we used a “two-hit” 

model of secondary infection in sepsis to study if GC supplementation also 

benefits the survival of adrenal insufficient mice in the secondary infection in 

sepsis. (Figure1.10B) 
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Figure 1.10 Experimental design for this project.  

(A) The role of iGC in sepsis was investigated using the adrenal-specific SR-BI-/- mice 

which was generated by adrenal transplantation. Sepsis was induced by cecal ligation 

and puncture. The GC production, survival rate, organ damages, cytokine levels, 

phagocytosis and lymphocyte activation and apoptosis in CLP were evaluated. (B) The 

effects of GC supplementation on survival in CLP-induced sepsis were studied by (1) 

supplementing endogenous GC through transplanting SR-BI+/+ adrenal to SR-BI-/- mice 

and by (2) administrating exogenous a GC cocktail to SR-BI-/- mice. SR-BI+/+ mice were 

also administrated with the GC cocktail to demonstrate the effects of GC 

supplementation on the survival of individuals without adrenal insufficiency in sepsis. (3) 

A “two-hit” model was used to evaluate the effects of GC supplementation on the 

survival of SR-BI-/- mice in the secondary infection in sepsis.

Copyright © Junting Ai 2014 
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Chapter 2 Materials and methods 

2.1 Material  

2.1.1 Mice  

SR-BI+/− (B6;129S2-Srb1tm1Kri/J) mice were from the Jackson Laboratory. 

SR-BI-/- mice were generated by breeding SR-BI+/− mice and using the littermates. 

Mice were kept and bred in a temperature-controlled room with 12 h light and 12 

h dark diurnal cycle at the animal facility of the University of Kentucky. They were 

housed in filter-topped cages and were fed a standard laboratory chow and water 

ad libitum. Animal care and experiments were approved by the Institutional 

Animal Care and Use Committee of the University of Kentucky. All procedures 

involving with this strain of mice followed the IACUC protocol # 2012-0975. 

2.1.2 Reagents, kits and materials 

The regents, kits and materials used in this project are listed in Table 2.1. 

Table 2.1 List of reagents, kits and materials and their providers 

Chemical/Reagent/Kit                                              Provider (Cat#) 

UltraPureTM  Agarose                                                    Invitrogen  

BSA (bovine serum albumin)                                       Sigma-Aldrich 

Corticosterone EIA kit                                                 Cayman Chemical  

Corticosterone: HBC complex                                      Sigma-Aldrich 

Cholesterol E                                                               Wako Diagnostics  

Ready-SET-Go!® ELISA sets                                        eBioscience                                

 

 

Dulbecco’s Phophsphate Buffered Saline (DPBS)       Gibco  

Continued Table 2.1 
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EDTA (ethylenediaminetetraacetic acid)                       Fisher 

Ethanol                                                                          Fisher 

Escherichia coli (K-12 strain) BioParticles®                   Invitrogen  

Fludrocortisone acetate                                                Sigma-Aldrich 

Formaldehyde                                                               Fisher 

Free Cholesterol E                                                       Wako Diagnostics  

Hydrocortisone- water soluble                                      Sigma-Aldrich 

Hypodermic disposable needles 27G ½”                     EXEL INT® 

Insulin syringe U100 29G ½”                                        BD Biosciences 

In Situ Cell Death Detection Kit                                    Roche  

Isopropyl alcohol                                                           Fisher  

6δ- methylprednisolone                                                Sigma-Aldrich 

Micro-Hematocrit Capillary Tubes                                Fisherbrand® 

MyTaqTM DNA Polymerase 2x                                      Bioline  

NaCl (sodium chloride)                                                 Sigma  

Needles (21- 27 guage)                                                BD Biosciences 

Nitrate/Nitrite Colorimetric Assay Kit                            Cayman Chemical  

NP-40 (nonyl phenoxylpolyethoxylethanol)                  Calbiochem  

Nuclei lysis solution                                                       Promega Corporation  

Protein Precipitation Solution                                        Promega Corporation  

Proteinase K                                                                 Invitrogen (25530015) 

RPMI                                                                            GIBCO®  

Rotating Tail Injector                                                     Braintree scientific, Inc.               

Sterile cell strainer (100 µm)                                         Fisherbrand®     

Syringes (3-5 ml)                                                           BD 

Tris Base                                                                       Fisher  

 



52 
 

2.1.3 Antibodies 

The antibodies used for flow cytometry in this project are listed in Table 

2.2. 

Table 2.2 List of antibodies and their sources and providers 

Antibody                                    Clone                          Provider (Cat#) 

Anti-B220-APC                            RA3-6B2                     Biolegend (103212) 

Anti-CD11b-PerCP-cy5.5            M1/70                          BD (550993) 

Anti-CD11c-APC                         HL3                              BD (550261) 

Anti-CD115- PE                           AFS98                         Biolegend (135506) 

Anti-CD16/32                               93                                Biolegend (101302) 

Anti-CD19-APC                           6D5                              Biolegend (115512) 

Anti-CD3-APC-cy7                     17A2                             Biolegend (100222) 

Anti-CD3-FITC                           17A2                             BD (553138) 

Anti-CD3-PE-cy5                        17A2                             BD (555276) 

Anti-anti-CD45-APC-cy7            30-F11                          Biolegend (103116) 

Anti-anti-CD69-PE                      H1.2F3                         BD (553237) 

Anti-F4/80-PE                             BM8                             eBioscience (12-4801-82) 

Anti-Gr1-APC                              RB6-8C5                      BD (553129) 

Anti-Ly6C-APC                            HK 1.4                         Biolegend (128016) 
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2.1.4 Equipment and software 

The equipments used in this project are listed in Table 2.3. 

Table 2.3 List of antibodies instruments, software and their providers 

Instruments & Software                                        Provider 

AllegraTM 25R Centrifuge                                 Beckman CounterTM 

Anesthesia Machine                                        SurviVet® 

Centrifuge                                                        Eppendorf 

C24 Incubator shaker                                       New Brunswick Scientific 

FlowJo software                                               Tree Star, Inc. 

GenoAmp® PCR System                                  Applied Biosystems 

Image Reader LAS-4000                                 FUJIFILM 

Microscope                                                       Nikon 

Mettler Toledo AB analytical balance               MonoBloc Weighing Technology 

Multi Gauge V3.0 software                               FUJIFILM 

SoftMax® Pro software                                      Molecular Devices’ Industry 

Spectramax® microplate reader                        Molecular Devices’ Industry 

SPSS Statistics                                                 IBM                                                                         

Stomacher                                                         Seward 

Thermalert TH-5                                               Physitemp 

Utility oven                                                         VWR 
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2.2 Methods 

2.2.1 Mouse work 

2.2.1.1 Genotyping of mice 

Genotypes of mice were determined by PCR using tail genomic DNA 

before weaning the pups and were double-checked using genomic DNA from the 

liver tissue after sacrificing the mice. 

 Tail tips were used to genotype the pups before weaning. To prepare the 

genomic DNA, each tail-tip (~0.5 cm) was digested with the digestion buffer (100 

µl lysis buffer + 2 µl 20 mg/ml proteinase K solution, see appendix) in a 55 °C 

water bath for 16-18 h. The digested tails were then centrifuged at a speed of 

2,000 rpm for 5 min at room temperature, and then heated at 98 °C for 10 

minutes to deactivate the proteinase K. 400 µl ddH2O were added to dilute the 

solution. The tubes were then centrifuged 2,000 rpm for 5 min at 4 °C to 

sediment the undigested materials and cooled down on ice. 1 µl supernatant 

(Template) was used for PCR. 

The liver tissue was used to check the genotypes. About 30 mg liver 

tissue was harvested from each mouse. To isolate the genomic DNA from the 

liver, the tissue was cut into small pieces with small scissors, mixed well with 600 

µl digestion buffer (see appendix) by vortex, and digested in a 55 °C water bath 

for 18-20 h. After digestion, 200 µl Protein Precipitation Solution was added to 

each tube. And the tubes were vortexed and then put on ice for 5 min to allow the 

protein to precipitate and then centrifuged 12,000 rpm for 5 min at 4 °C. The 

supernatant was mixed with isopropanol at a ratio of 1:1. After DNA was 
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separated out, the tubes were centrifuged 12,000 rpm, 1 min at 4 °C and the 

supernatant was discarded. The DNA pellet was washed with 70 % ethanol and 

finally dissolved in 400 µl ddH2O. 1 µl DNA template was used for PCR.  

The primers and reaction system are shown below: 

Primers [199]:  

        AB2: 5’-GAT GGG ACA TGG GAC ACG AAG CCA TTC T-3’ 

        AB3: 5’-TCT GTC TCC GTC TCC TTC AGG TCC TGA-3’  

Reaction system: 

        ddH2O                           7 µl 

        Taq Red Mix                 10 µl 

        10 µM AB2 primer         1 µl 

        10 µM AB3 primer         1 µl 

        Template                       1 µl 

Setup of genotyping PCR reaction 

Enzyme activation                                       95 °C               5 min 

Denaturation                                                94 °C              30 s 

Annealing                    35 cycles                  58 °C              30 s 

Extension                                                     72 °C              2 min 

Elongation                                                    72 °C              10 min 
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PCR products were analyzed on 1.5 % agarose gels, 100 voltages for 30 

min. Pictures were taken using the LAS-4000 Imaging System and the Multi 

Gauge V3.0 software. (Figure 2.1) 

 

Figure 2.1 Genotyping for SR-BI alleles.  

PCR system for SR-BI genotyping was set up as described in 2.2.1. 15 µl PCR products 

were resolved in a 1.5% agarose gel under 100 voltages for 30 min.   

 

2.2.1.2 Adrenal transplantation (ADR-T) Surgery  

Adrenalectomy and subsequent adrenal transplantation were performed 

as previously described by Karpac et al.[200] At postnatal day 8, the pups from 

SR-BI+/- breeders were genotyped using genomic DNA isolated from tails. At day 

9, the pups were euthanized by CO2 to harvest their adrenal glands right before 

the transplantation.  

Immediately after the donor adrenal glands were isolated, recipient mice 

(8-10 weeks) were anesthetized by 5 % isoflurane inhalation and maintained with 

2.5% isoflurane during the surgery. After anesthetization, the mouse was 

bilaterally adrenalectomized by a pair of surgery tweezers through a dorsal 

midline skin incision and lateral retroperitoneal incisions. The left incision was 

sutured right after removal of the left adrenal gland. Then the right kidney was 
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exposed, and one donor adrenal gland was put under the right kidney capsule 

through a slit in the kidney capsule made by the tweezers. Then the right kidney 

was returned; and the right incision and the skin were sutured. The mouse was 

kept warm on a heater mat until it waked up from narcosis. The mice were given 

0.9% NaCl and normal water ad libitum. Then they were housed separately for 

one week and four mice per cage in the following weeks. The mice were used for 

experiments 6 weeks after the surgery. (Figure 2.2)  
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Figure 2.2 The adrenal transplantation surgery  

(A) After anesthetization under isoflurane inhalation, the surgery area is shaved, cleaned 

and disinfected with iodine and 70 % ethanol. Then (B) a dorsal midline skin incision is 

made and (C and D) bilateral adrenal glands are removed by lateral retroperitoneal 

incisions. (E) The left incision is sutured right after the removal of left adrenal gland. 

Then (F) the right kidney is exposed. Subsequently, (G) a slit in the adrenal capsule is 

made by tweezers and (H) one donor adrenal gland from a 9-d pup is put under the right 

kidney capsule. (I)The kidney with the transplanted adrenal is put back and the right 

incision is sutured. Finally, (J) the dorsal skin incision is sutured. The mice are kept 

warm on a heater mat until they wake up from narcosis.  
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2.2.1.3 Cecal Ligation and Puncture (CLP) sepsis model 

The cecal ligation and puncture (CLP) was used to induce septic 

conditions in mice. This model has many pathophysiological similarities to the 

clinical situation where bowel perforation-induced peritonitis results from an 

infection that is caused by mixed intestinal flora. The CLP model is one of the 

most widely used models of sepsis and is considered as a golden model for 

sepsis study. This model fulfills the human condition that is clinically relevant. 

Like in humans, mice that undergo CLP with fluid resuscitation show the first 

(early) hyperdynamic phase that in time progresses to the second (late) 

hypodynamic phase.[201] In addition, the CLP-induced sepsis shows a cytokine 

profile similar to human sepsis.[202, 203] 

For the CLP surgery, the mouse was anesthetized by isoflurane inhalation. 

The abdominal hairs were shaved, and the area was disinfected with iodine 

followed by 70% ethanol. The abdominal cavity was opened via a midline 

laparotomy incision of about 1 cm in an aseptic fashion and the cecum was 

exposed. The cecum was ligated at a designated distance from the ileocecal 

valve. The ligated cecum was punctured twice with a needle. Next, sufficient 

pressure was applied to the cecum to extrude a single droplet of fecal material 

from each puncture site. The abdomen was closed, and mouse was resuscitated 

with 1 ml of PBS by i.p. injection. The mouse was kept warm on a heater mat 

until it woke up from narcosis. (Figure 2.3) 

In the CLP model, the grade of severity has a direct impact on the 

percentage of survival. The severity of sepsis can be modified by the length of 
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the ligation, the thickness of the needle and the number of punctures, which 

could be controlled by the animal surgeon.[204, 205] A substantial variability in 

the CLP results could be induced by the mouse strain [206, 207], sex [208] and 

age [209] of the animal as well. Thus, we used sex and age-matched mice and 

adjusted the severity with different ligation and puncture conditions in our study.  
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Figure 2.3  The cecal ligation and puncture sepsis model.  

(A) After anesthetization, the abdominal hairs are shaved and the area is disinfected.  (B) 

The abdominal cavity is opened via a midline incision of about 1 cm in an aseptic fashion. 

Then (C) The cecum is exposed and (D) is ligated at a designated distance to the 

ileocecal valve, carefully not to disturb the ileocecal flow. (E) The ligated cecum is 

punctured once “through-and-though” with a needle and (F) sufficient pressure is applied 

to the cecum to extrude a single droplet of fecal material from each puncture site. At last, 

(G) the cecum is put back in to the abdomen cavity and (H) the abdomen is closed. (I) 

the mouse is given 1 ml of PBS by i.p. injection for fluid resuscitation and is monitored 

regularly.   
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2.2.1.4 In vivo delivery of bacteria 

FITC labeled-Escherichia coli (E. coli, K-12 strain) were used for the in 

vivo study of bacteriae delivery. FITC-E.coli powder was reconstituted in a vial at 

20 mg/ml in sterile PBS with 2 mM sodium azide as the stock. To prepare the 

bacteria for injection, the designated amount of FITC-E.coli were pipetted out to a 

new sterile 1.5 ml EP tube, washed with sterile 1ml PBS by centrifuging at a 

speed of 8,000 rpm at 4 °C for 5 min and suspended in sterile PBS to a final 

concentration of 1x109/ ml. Then the bacteria were killed by heating at 75 ⁰C for 

20 min. 100 µl final E.coli solution was injected to the mouse by tail vein injection.   

2.2.1.5 GC supplementation 

For GC supplementation to CLP mice, a cocktail containing 100 µg 

hydrocortisone, 25 ng fludrocortisone acetate and 20 µg 6δ-methylprednisolone 

was injected to the mouse right after the surgery. Water-soluble hydrocortisone 

was dissolved in PBS at a concentration of 9.2 mg/ml (equivalent of 1 mg/ml 

hydrocortisone), and 100 μl/mouse hydrocortisone solution was injected 

intraperitoneally. Fludrocortisone acetate was dissolved in oil at a concentration 

of 2.5 mg/ml and diluted to a final concentration of 500 ng/ml. 6δ-

methylprednisolone was dissolved in oil at a concentration of 2 mg/ml and diluted 

to a final concentration of 400 µg/ml. A mix of fludrocortisone and 

methyprodinisolone was injected 50 μl/ mouse subcutaneously. For 

corticosterone administration, corticosterone: HBS was dissolved in PBS and 200 

μg/mouse corticosterone was injected intraperitoneally. For GC supplementation 

to mice with secondary infection, a cocktail containing a half dose (50 µg 
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hydrocortisone, 12.5 ng fludrocortisone acetate and 10 µg 6δ-methylprednisolone) 

was injected after inoculation by the same approach.  

2.2.1.6 Body temperature measurement 

Body temperature was measured in the adrenal-specific SR-BI-/- mice and 

the control mice via rectum. Briefly, the mice were held vertically and the rectal 

temperature was monitored by the TH-5 Thermalert Monitoring Instrument. The 

rectal probe was cleaned by 75% ethanol between measurements. 

2.2.1.7 Blood collection 

Blood was collected through abdominal arterial puncture or tail bleeding. 

For the abdominal arterial puncture, the mice were anesthetized by isoflurane 

inhalation to collect blood through abdominal arterial puncture. 3 ml syringe and 

27-gauge needles were rinsed with 0.5 M EDTA and 20 μl 0.5 M EDTA was 

added to each 1.5 ml EP tube for blood collection to prevent coagulation. For the 

tail bleeding, the blood was collected through a tail cut using a microhematocrit 

capillary tube and pipetted out to a collecting EP tube. The collected blood was 

centrifuged immediately at 12,000 rpm, 4 °C for 10 min. The plasma was pipetted 

out and stored at -80 °C for use.  

2.2.1.8 Lung wet-to-dry (W/D) ratio 

 Lung W/D ratios were detected as a parameter of pulmonary edema. 

Immediately after the mice were killed, the lungs were carefully dissected from 

large airways, heart and mediastinal structures. Excess fluid was absorbed with 

soft tissue paper. The lungs were weighed immediately after being isolated (wet 
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weight) and again after 96 h at 65°C in a drying oven (dry weight) for 

computation of the W/D ratio dividing the wet weight by the dry weight.[210] 

2.2.2 Histology 

Immediately after mice were sacrificed, the kidneys with or without the 

transplanted adrenal glands were carefully removed and fixed in 10% formalin in 

PBS for 24 h. Specimens were then embedded in paraffin. A series of 5-μm-thick 

sections were cut and stained with hematoxylin and eosin (H&E) by the Histology 

Core in the Markey Cancer Center. Pictures were taken using the Nikon 

Microscope and Nikon capture software. 

2.2.3 Biochemistry and molecular biology  

2.2.3.1 Corticosterone assay 

The concentrations of plasma corticosterone were measured using the 

Corticosteroe EIA kit (Cayman Chemicals) according to the manufacturer’s 

instructions. This assay is a competition based assay in which corticosterone 

competes with corticosterone-acetylcholinesterase (AChE) conjugate 

(Corticosterone Tracer) for binding to a limited number of corticosterone-specific 

sheep antiserum binding sites. AChE hydrolyzes acetylcholine, producing 

thiocholine. The reaction of thiocholine with the detection reagent 5, 5'-dithiobis-

(2-nitrobenzoic acid) (DTNB) produces 5-thio-2-nitrobenzoic acid, which has a 

strong absorbance at 412 nm. Samples were diluted 1/200 to 1/400. 
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2.2.3.2 Cholesterol assay 

Plasma total and free cholesterol concentrations were measured by kits 

from the Wako Diagnostics. Briefly, it is an enzymatic method involving the 

oxidation of free cholesterol by cholesterol oxidase to ∆4-cholestenone and the 

simultaneous production of hydrogen peroxide. The total amount of cholesterol in 

the test sample is determined by measurement of the absorbance at 600 nm. 

2.2.3.3 Cytokine assay 

The concentrations of plasma TNF-α, IL-6 and IL-10 were measured by 

ELISA kits from the eBioscience. For the TNF-α assay, all samples were diluted 

1/5.  For the IL-6 assay, samples were diluted 1/10 to 1/40. For the IL-10 assay, 

samples were diluted 1/5 to 1/10. 

2.2.3.4 Nitric oxide assay 

Measurement of NO in vivo is difficult because of its short half-life, but 

plasma nitrate/nitrite (NOx), the stable products of NO oxidation, can be 

measured as markers of NO activity.[211, 212] Therefore, the concentrations of 

plasma NOx were measured by the Nitrate/Nitrite Colorimetric Assay Kit 

(Cayman Chemical). This assay is involved with a conversion of nitrate to nitrite 

by nitrate reductase and a further conversion of nitrite into a deep purple azo 

compound, which has a strong absorbance at 540 nm or 550 nm. Samples were 

diluted 1/4 to 1/8. 
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2.2.3.5 Urea nitrogen assay 

Blood urea nitrogen (BUN) raises if kidneys fail to remove urea from the 

body and has been used a marker for the kidney injury.[213] The concentrations 

of BUN were determined by measuring the urea nitrogen in the plasma using the 

QuantiChromTM Urea Assay Kit with a quantitative colormetritc method.  

2.2.3.6 Alanine aminotransferase assay 

Alanine aminotransferase (ALT) is mainly in the liver and normally kept in 

a low level in the blood. When the liver is damaged, ALT is released into the 

blood stream and therefore increased ALT in the blood is considered as a marker 

for liver damage. To evaluate the liver damage in CLP mice, the concentrations 

of plasma ALT were measured by the ALT reagent from BQ kits. It is a 

colorimetric method. The ALT catalyzes L-alanine and a-ketoglutarate to form 

pyruvate and glutamate. The pyruvate then reacts with 2, 4-

dinitrophemylphdrazine (2, 4-DNPH-one), which can be measured at 505 nm 

after being dissolved by the addition of sodium hydroxide. 

2.2.3.7 Lipoprotein profile analysis  

Plasma lipoprotein profile was analyzed by FPLC as described 

previously.[214] Briefly, plasma (50 μl) was resolved by gel filtration 

chromatography using an FPLC system equipped with a Superose 6 column (GE 

Healthcare). The column was eluted at a flow rate of 0.5 ml/min in buffer 

containing 150 mm NaCl, 10 mm Tris-HCl (pH 7.4), and 0.01% sodium azide, 

and 0.5 ml/fraction was collected. 100 μl of sample was mixed with an equal 
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volume of 2× assay reagent (Wako Chemicals) to determine the cholesterol 

content of fractions.  

2.2.4 Primary cell analysis 

2.2.4.1 Preparation of single cell suspensions 

Single cell suspensions were prepared from freshly dissected spleens 

following standard procedures. Briefly, spleens were weighed immediately after 

dissection and 70-100 mg of a spleen was used. The spleen tissue for 

homogenization was put into a stomacher bag (Seward) containing 10 ml RPMI 

1640-5 (see appendix) and disrupted using the Stomacher 80 (Seward) at the 

high speed for 2 min. The cell suspension was transferred to a 50 ml centrifuge 

tube (BD Biosciences) through a 100 µm cell strainer (BD Biosciences) by a 10 

ml pipette. 5 ml of RPMI 1640-5 was added to wash the stomacher bag in order 

to transfer the cells thoroughly. Then the cell suspension was centrifuged at 

1,500 rpm for 5 min at 4 ˚C. The supernatant was discarded and the cells were 

incubated with 5 ml of ACK lysis buffer (see appendix) at room temperature for 5 

min to deplete erythrocytes. The lysis of erythrocytes was ceased by adding 10 

ml of Dulbecco’s Phophsphate Buffered Saline (DPBS). 100 µl of the cell 

suspension after lysis was diluted 1/10 with RPMI 1640-5 and counted using a 

counting chamber. The cells were centrifuged at 1,500 rpm for 5 min at 4 °C, 

washed again with DPBS and finally suspended in 5 ml RPMI 1640-5.  

Blood was collected from mouse by abdominal arterial puncture as 

described earlier. 300 µl of anti-clotted blood was added into 5 ml of ACK lysis 
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buffer in a 50 ml centrifuge tube to remove erythrocytes. After incubation for 5 

min, 45 ml of DPBS was added to cease lysis and the cells were centrifuged at 

1,500 rpm for 5 min at 4˚C. The pellet was resuspended with 1 ml of RPMI 1640-

5. 10 µl of the cell suspension was directly counted using a counting chamber. 

2.2.4.2 Fluorescence-activated cell sorting (FACS) analysis 

5x105 cells were used for the surface marker antibody staining. The single 

cell solution was centrifuged at 2,000 rpm for 5 min at 4˚C and the supernatant 

medium was removed. The cells were resuspended with 30 µl FACS staining 

buffer (see appendix) containing 0.25 µg of anti-mouse CD16/CD32 and 

incubated for 10 min at 4˚C to block Fc receptors. Then 20 µl FACS staining 

buffer containing fluorescence-labeled antibodies (0.125 µg per antibody) were 

added and the cells were further incubated at 4˚C for 30 min. After the incubation, 

the cells were washed twice with 500 µl of FACS staining buffer and suspended 

in 250 µl FACS staining buffer. Finally the stained cells were analyzed with 

FACSCalibur or LSRII flow cytometer (BD Biosciences). The generated data 

were analyzed with FlowJo software. 

2.2.4.3 TUNEL assay  

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) is 

a wildly used method for cell apoptosis analysis by detecting DNA 

fragmentation.[215] The rationale for this assay is that the terminal 

deoxynucleotidyl transferase (TdT) can identify the nicks in DNA and thus 

catalyze the addition of dUTPs that are secondarily labeled. In this study, TUNEL 

incorporation detection was conducted by using the in situ cell death detection kit 
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following the manufacturer’s protocol (Roche). Briefly, cells were stained with cell 

surface marker antibodies as described in 2.2.4.2, and then incubated with 100 µl 

of BD Cytofix/Cytoperm solution (BD Biosciences) for 20 min at room 

temperature. After the incubation, the cells were washed twice with 1x BD 

Perm/Wash buffer (BD Biosciences) and incubated with 50 µl of TUNEL reaction 

mixture (Roche) for 1 hour at 37˚C. Finally the cells were washed twice with 

FACS staining buffer, suspended in 500 µl of FACS staining buffer and analyzed 

with LSRII flow cytometer.  

2.2.5 Microbiology 

The strain Pseudomonas aeruginosa (ATCC 27853) was utilized in the 

secondary infection model. All procedures involving with this strain of bacteria 

followed the biosafety protocol #B11-1792-M3. 

2.2.5.1 Preparation of bacteria stock 

Bacteria were propagated immediately following the instructions of ATCC 

after arriving. Briefly, the bacteria were rehydrated with 1 ml sterile tryptic soy 

broth (TSB) and then aseptically transferred into 5 ml sterile TSB broth and 

several drops of the suspension were used to inoculate a sterile TSB agar plate. 

After incubation at 37 °C for 24 h, a single colony was used for further 

propagation in a flask containing 400 ml sterile broth by incubating at 37 °C for 

24 h with shaking. Then the bacteria in the broth were then divided into 40 ml/ 

tube and centrifuged at 5,000 rpm, 4°C for 20 min. The supernatant was 

discarded and the bacteriae were resuspended with sterile 7 ml PBS. Then 3 ml 

sterile 50 % glycerol was added to each tube. The bacteria suspension was 
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finally mixed thoroughly and divided into sterile 1.5 ml EP tubes with 1 ml/ tube. A 

drip of the suspension was used to inoculate the agar plates to count the colony-

forming unit (CFU).  

2.2.5.2 Inoculation of animals 

Stock bacterial solution was warmed at 37 °C in water bath. After 

thoroughly melted, the bacteria were washed once by 1 ml sterile PBS by 

centrifuging at 8,000 rpm, 4°C for 5 min and resuspended in 1 ml sterile PBS. 

The bacterial suspension was diluted to a concentration of 1x109 CFU/ ml for 

inoculation. For inoculation, the mice were anesthetized under isoflurane 

inhalation and held vertically in a “heads-up” position. Using an Eppendorf pipette 

that was calibrated, 50 µl of the bacteria suspension (1x109 CFU/ ml) was slowly 

injected intranasally and observed to be aspirated on inhalation. After the 

inoculation, the mice were monitored in a BSL-2 animal room for survival study. 

2.3 Data Analysis 

All the statistical analyses were performed with SPSS Statistics, version 

21 software. For comparison of means, differences in quantitative variables in the 

same group were analyzed by 2-tailed Student's t test. Data from multiple groups 

were analyzed with one-way ANOVA with Tukey post hoc test. All groups 

analyzed conformed to the constraints of parametric analysis. Data were 

presented as means ± S.E.M. Differences in survival rate and survival time were 

analyzed by Kaplan-Meier method with log-rank x2 test. Correlations between 

variables were evaluated by two-tailed Pearson's correlation coefficient value. 
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Data were presented as Pearson’s coefficient (r). P value of <0·05 was 

considered significant.  

Copyright © Junting Ai 2014 
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Chapter 3 The role of SR-BI-regulated iGC in sepsis 

Section 1 Adrenal-specific SR-BI-deficient mice are a good iGC-deficient 

animal model.  

3.1.1 Introduction 

Despite new developments in critical care and sepsis therapy, severe 

sepsis and septic shock are still major healthcare problems.[3, 6, 8] The initial 

inflammatory response to sepsis stimulates the production and release of iGC 

from the adrenal cortex.[92] However, the exact function of iGC in sepsis remains 

unclear due to a lack of good animal model. 

Previous approaches are not feasible to study the role of iGC in sepsis. 

The approaches of adrenalectomy and GC-receptor antagonist, which remove 

both basal GC and iGC, are not feasible to investigate the role of iGC in sepsis 

considering that basal GC is important in regulating the organismal homeostasis 

[193, 194] and is maintained in survival sepsis (preliminary data). In addition, 

studies of exogenous GC may over-simplify the action of endogenous GC.[195] 

Thus a better animal model is needed to investigate the function of endogenous 

iGC in sepsis.  

Mouse specifically deficient in iGC may serve as a good animal model to 

study endogenous iGC in sepsis. SR-BI-/- mice have normal plasma 

corticosterone under basal conditions but cannot produce iGC in sepsis [109, 



73 
 

110, 197, 216, 217], therefore they may serve as an adrenal insufficient mouse 

model. However, mice that are specifically deficient in adrenal SR-BI will be a 

more suitable model than SR-BI-/- mice to study iGC in sepsis, because SR-BI-/- 

mice also display abnormalities in other aspects such as dyslipidemia, impaired 

functions of macrophages and attenuated liver uptake of LPS. [155].  

In this section, we characterized adrenal-specific SR-BI-/- mice as a good 

model of iGC deficiency to study the role of iGC in sepsis. We verified that the 

adrenal-specific SR-BI-/- mice have normal basal GC concentration in plasma but 

cannot generate iGC in CLP. We also showed that the transplanted SR-BI-/- 

adrenal grafts can grow with normal structure. In addition, we showed that the 

adrenal-specific SR-BI-/- mice have no difference in the plasma lipoprotein profile 

and blood cell counts compared to the control mice, demonstrating that adrenal-

specific SR-BI-/- mice are a good model to study the role of iGC in sepsis. 

 

3.1.2 Results 

3.1.2.1 Adrenal-specific deficiency of SR-BI does not impair basal GC but 

leads to iGC deficiency in CLP-induced sepsis.  

To generate the mouse specifically lack SR-BI in adrenal, we transplanted 

a donor adrenal gland from 9-day SR-BI-/- pups to 8-10-week-old female SR-BI+/+ 

mice after their own adrenal glands were removed. The control mice were 

generated by transplanting a donor adrenal gland from age-matched SR-BI+/+ 

littermate pups following the same procedure. To verify the success of this model, 

we conducted CLP to these mice and measured their plasma corticosterone 
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levels at the points of CLP 0 h, 4 h and 18 h. As shown in Figure 3.1, at CLP 0 h, 

the adrenal-specific SR-BI-/- mice did not show significant difference in the 

plasma corticosterone concentration compared to the control mice (113.2 ± 21.0 

ng/ml vs. 173.5 ± 36.6 ng/ml, p=0.192), indicating that adrenal-specific deficiency 

of SR-BI does not impair basal GC. At CLP 4 h, the control mice had a 2.4-fold 

increase in plasma corticosterone (Figure 3.1) compared to their basal levels, 

indicating a production of iGC upon CLP. In contrast, the adrenal-specific SR-BI-/- 

mice displayed a 2.3-fold decrease in plasma corticosterone at CLP 4 h 

compared to their basal levels, which was significantly lower than the level in the 

control mice at this point. At CLP 18 h, the plasma corticosterone in the control 

mice was still 80 % higher than their basal level, whereas the plasma 

corticosterone in the adrenal-specific SR-BI-/- mice remained at the basal level 

and was significantly lower than the control mice (114 ± 14.9 ng/ml vs. 311 ± 

26.2 ng/ml, p<0.001). These data demonstrate that the adrenal-specific SR-BI-/- 

mice are completely deficient in iGC in CLP-induced sepsis. 
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Figure 3.1 Adrenal-specific deficiency of SR-BI leads to iGC deficiency in CLP-

induced sepsis.  

Adrenal-transplanted mice were subjected to CLP surgery (21-gauge, half ligation) and 

the plasma was taken at designated time for plasma corticosterone assay. Data 

represent mean ± SEM. (n=6-8 per group). ** p<0.01, *** p<0.001  
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3.1.2.2 Adrenal-specific deficiency of SR-BI does not influence the growth 

of transplanted adrenal grafts. 

On euthanization of the mice, we harvested the kidneys and adrenal 

transplants from the recipient mice for further gross morphological examination 

and histological analysis. As shown in Figure 3.2, both SR-BI+/+ and SR-BI-/- 

adrenal grafts grew under the kidney capsule. Further histological analysis 

showed that both SR-BI+/+ and SR-BI-/- adrenal transplants consisted of adrenal 

cortex surrounding the medulla and the adrenal cortex has clear zona 

glomerulosa, zona fasciculata and zona reticularis (Figure 3.2). These data 

indicate that adrenal-specific deficiency of SR-BI does not influence the growth of 

transplanted adrenal grafts in the recipients. 
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Figure 3.2 Transplanted adrenal glands show normal structure.  

Six weeks after adrenal transplantation, the mice were sacrificed and the right kidneys 

with transplanted adrenal glands were harvested for the pictures and histology analysis. 

The left panel shows the appearance of adrenal gland under the kidney capsule (upper) 

and the HE staining of the adrenal glands (lower). The right panel shows the amplified 

HE staining pictures of the transplanted adrenal grafts. ZG, zona glomerulosa; ZF, zona 

fasciculata; ZR, zona reticularis; M, medullary region 
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3.1.2.3 Adrenal-specific deficiency of SR-BI does not influence plasma 

cholesterol concentrations or lipoprotein profiles under basal conditions. 

Since plasma lipoproteins serve as the major source of cholesterol for GC 

synthesis in the adrenal [147, 218] and atherogenic diet-fed adrenal-specific SR-

BI-deficient mice display decreased plasma very-low-density and low-density 

lipoprotein levels [198], we determined the plasma cholesterol concentrations 

and lipoprotein profiles to see whether or not the chow diet-fed adrenal-specific 

SR-BI-/- mice display changes in the lipoproteins. As shown in Figure 3.3A, the 

adrenal-specific SR-BI-/- mice showed comparable concentrations of plasma total 

cholesterol (83.8 ± 1.8 mg/dl vs. 89.3 ± 3.7 mg/dl, p=0.227) and free cholesterol 

(19.4 ± 0.7 mg/dl vs. 20.2 ± 1.6 mg/dl, p=0.661) with the control mice. The FPLC 

analysis also showed no difference in the lipoprotein profile between the adrenal-

specific SR-BI-/- mice and the control mice (Figure 3.3B). These data indicate that 

the adrenal-specific deficiency of SR-BI does not influence the plasma lipoprotein 

levels. 
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Figure 3.3 Adrenal-specific deficiency of SR-BI does not influence plasma 

cholesterol concentrations or lipoprotein profiles.  

Six weeks after adrenal transplantation, the plasma was taken from untreated adrenal-

transplanted mice. (A) Plasma total and free cholesterol concentrations were measured. 

Data present mean ± S.E.M. (n=6) (B) Plasma lipoprotein profile was analyzed by FPLC. 

Data show representative lipoprotein profiles. VLDL, very-low density lipoprotein; LDL, 

low-density lipoprotein; HDL, high-density lipoprotein 
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3.2.1.4 Adrenal-specific deficiency of SR-BI does not influence the blood 

cell counts under basal conditions.  

It  has been reported that adrenalectomized mice have a significant 

increase in the number of mononuclear cells in the blood [219], thus we analyzed 

the complete blood counts in the adrenal-transplanted mice to see if adrenal-

specific SR-BI deficiency also impacts those cells. As indicated in the Table 3.1, 

the adrenal-specific SR-BI-deficient mice showed a normal blood cell profile and 

no significant difference in terms of the number of white blood cells, neutrophils, 

lymphocytes, monocytes and red blood cells compared to the control mice. 

These data demonstrate that the adrenal-specific deficiency of SR-BI does not 

influence the blood cell counts.  
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Table 3.1 Adrenal-specific deficiency of SR-BI does not influence the blood cell 

counts under basal conditions. 

 

Anticoagulant blood harvested from the artery puncture was used for complete blood 

counting. WBC, white blood cell; NE, neutrophil; LY, lymphocyte; MO, monocytes; RBC, 

red blood cell; Hb, hemoglobin; PLT, platelet. n=4 vs. 5 
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3.2.3 Summary 

In this section, we checked the phenotypes of adrenal-specific SR-BI-/- 

mice generated by adrenal transplantation and verified these mice as a good 

animal model to study the role of iGC in sepsis. First, we conducted CLP to the 

adrenal-transplanted mice, showing that the adrenal-specific SR-BI-/- mice have a 

normal level of plasma corticosterone under basal conditions but totally lack iGC 

upon CLP, which indicates that adrenal-specific SR-BI deficiency leads to iGC 

deficiency in sepsis. Then we showed that both SR-BI+/+ and SR-BI-/- adrenal 

grafts grow well and have normal adrenal structure. In addition, because 

changes of plasma lipoproteins have been reported in the atherogenic diet-fed 

adrenal-specific SR-BI-/- mice [198], we measured the plasma cholesterol 

concentrations and lipoprotein profiles to see if adrenal-specific SR-BI deficiency 

influences plasma lipoprotein on a chow-diet feeding. We showed that the 

adrenal-specific SR-BI-/- mice have normal plasma cholesterol concentrations 

and lipoprotein profiles, demonstrating that adrenal-specific deficiency of SR-BI 

does not influence the plasma lipoproteins. Finally, since adrenalectomized mice 

have a significant increase in the number of mononuclear cells in the blood [219], 

we analyzed the complete blood counts in the adrenal-specific SR-BI-/- mice and 

observed no difference in the blood counts between the adrenal-specific SR-BI-/- 

mice and the control mice. Overall, this section demonstrates that adrenal-

specific SR-BI-/- mice are a good model to investigate iGC in sepsis. 
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Section 2 Role of SR-BI-regulated iGC in CLP-induced sepsis. 

3.2.1 Introduction 

The exact function of iGC in sepsis remains unclear due to the lack of a 

good animal model. After characterizing adrenal-specific SR-BI-/- mice as a good 

animal model to investigate iGC in sepsis, we used this model to test our 

hypothesis that iGC is essential for survival in sepsis and investigated the 

functions of iGC in sepsis. 

First, we observed a significantly higher mortality in the adrenal-specific 

SR-BI-/- mice in CLP-induced sepsis compared to the control mice, demonstrating 

that iGC is essential for survival in sepsis. We also detected a higher occurrence 

of low body temperature, an indicator of septic shock, in the adrenal-specific SR-

BI-/- mice than the control mice, indicating that iGC participates in preventing the 

development of septic shock. Then, because multiple organ damage contributes 

to a high mortality in sepsis, we measured the plasma alanine amino 

tranasferase (ALT) level, the lung wet-to-dry (W/D) ratio and blood urea nitrogen 

(BUN), which respectively reflect the damage of liver, lung and kidneys in the 

adrenal-specific SR-BI-/- mice to see if iGC protects organ damage in sepsis. We 

found that iGC has no effect on the liver or lung damage but prevents the kidney 

injury in sepsis. To further understand the mechanism underlying the protective 

effect of iGC in sepsis, we analyzed the production of pro-inflammatory cytokine 

TNF-α and IL-6, pro-inflammatory mediator NO and anti-inflammatory cytokine 

IL-10 in the adrenal-specific SR-BI-/- mice to determine if iGC benefits sepsis 

survival through its anti-inflammatory action. We found that iGC regulates the 
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pro-inflammatory cytokines, particularly exerting an inhibitory effect on IL-6. 

Finally, since GC has been considered as an immunosuppressive agent [101] 

and immunosuppression in sepsis is associated with an increased mortality in the 

late phase of sepsis[52],  we tested whether or not iGC is immunosuppressive in 

sepsis. To assess the effects of iGC on innate immunity, we measured the 

phagocytic activity of phagocytes in the blood and spleen by analyzing the 

phagocytosis of injected fluorescence-labeled E. coli. We found that iGC in 

sepsis increases the phagocytic activity of neutrophils and monocytes in the 

blood. To assess the effects of iGC on adaptive immunity, we quantified the 

activation and apoptosis of lymphocytes in the spleen by staining CD69 and 

TUNEL in the CLP adrenal-specific SR-BI-/- mice and showed that iGC in sepsis 

enhances the activation of T lymphocytes and does not induce more apoptotic 

cells in the spleen. In all, our data in this section reveal that iGC is essential for 

survival in sepsis. It prevents the kidney injury, regulates cytokine production and 

exerts immunomodulatory action in sepsis.  

 

3.2.2 Results 

3.2.2.1 Inducible GC protects against CLP-induced septic death.  

After characterizing adrenal-specific SR-BI-/- mice as an iGC-deficient 

mouse model, we used this model to investigate the effects of iGC in sepsis. First, 

we determined the influence of iGC deficiency on the mortality in sepsis by 

looking at the survival rate of the adrenal-specific SR-BI-/- mice in CLP. As shown 
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in Figure 3.4, CLP induced a 46% fatality in the adrenal-specific SR-BI-/- mice as 

against no fatality in the control mice at CLP 24 h. There was a 62% fatality in the 

adrenal-specific SR-BI-/- mice compared to a 17% fatality in the control mice at 

CLP 48 h. After CLP 48 h,  no more death occurred in the control mice whereas 

the fatality in the adrenal-specific SR-BI-/- mice increased to 71% at CLP 72 h 

and 87% at CLP 120 h. Overall, a 7-day survival rate reached a significant 

difference between these two groups (p<0.001). These data demonstrate that 

iGC is critical for survival in sepsis.  
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Figure 3.4 Inducible GC protects against CLP-induced septic death.  

The adrenalectomized SR-BI+/+ mice transplanted with one SR-BI+/+ or SR-BI-/- adrenal 

gland were subjected to CLP (21-guage, half ligation) 6 weeks after adrenal 

transplantation. The survival was monitored for 7 days. Data are expressed as the 

percentage of mice surviving at the indicated time and analyzed by the log-rank x2 test. 

*** p<0.001  
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3.2.2.2 Inducible GC prevents the development of septic shock. 

Low body temperature (<30°C) is an indicator of septic shock.[220] As 

shown in Figure 3.5, low body temperature was present in 9/10 adrenal-specific 

SR-BI-/- mice but only in 1/6 of the control mice at CLP 18 h. The average body 

temperature in the adrenal-specific SR-BI-/- mice was significantly lower than the 

control mice (24.9 ± 1.6 °C vs. 34.0 ± 2.2 °C, p=0.004; Figure 3.5). These data 

suggest that iGC protects the mice from septic shock. 

 

Figure 3.5 Inducible GC prevents the development of septic shock.  

The SR-BI+/+ mice transplanted with SR-BI+/+ or SR-BI-/- adrenal glands were subjected 

to CLP (21-guage, half ligation) 6 weeks after adrenal transplantation. The body 

temperature was measured at CLP 18 h through rectum. Data represent mean ± S.E.M. 

n= 6 vs. 10 in control versus adrenal specific SR-BI-/- mice respectively, ** p<0.01 
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3.2.2.3 Inducible GC protects against CLP-induced kidney injury in sepsis. 

Multiple organ dysfunctions are a hallmark of severe sepsis, which 

contributes to an increased mortality in sepsis.[3] To understand the mechanism 

by which SR-BI protects against septic death, next we investigated the impact of 

iGC in organ functions by assessing liver, lung and kidney damages in CLP. As 

shown in Figure 3.6A and 3.6B, compared to the control mice, the adrenal-

specific SR-BI-/- mice displayed no difference in the plasma ALT level and the 

lung W/D ratio after CLP, indicating that iGC may not protect liver or lung injury in 

sepsis. However, measurements of plasma BUN concentrations showed a 

significant difference between the adrenal-specific SR-BI-/- mice and the control 

group. As shown in Figure 3.6C, BUN increased only transiently at CLP 4 h and 

decreased to the basal level at CLP 18 h in the control mice. In contrast, in the 

adrenal-specific SR-BI-/- mice, although BUN only increased slightly at CLP 4 h, it 

continued to increase by 2.4-fold at CLP 18 h (68.5 ± 9.0 mg/dl vs. 28.8 ± 2.6 

mg/dl, p=0.002, ANOVA), leading to a significantly higher BUN level than that in 

the control mice at CLP 18 h (68.5 ± 9.0 mg/dl vs. 27.9 ± 6.1 mg/dl, p=0.036, t 

test). These data suggest that iGC prevents kidney injury in sepsis. 
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Figure 3.6 Inducible GC prevents kidney injury in CLP.  

CLP (21-gauge needle, half ligation) surgery was conducted on mice 6 weeks after 

adrenal transplantation. Samples were harvested from CLP 0 h, 4 h and 18 h mice for 

assays. (A) Liver injury was indicated by an elevation of plasma alanine 

aminotransferase (ALT). (B) Lung edema was indicated by an increase in lung W/D ratio. 

(C) Kidney injury was evaluated by detecting the levels of blood urea nitrogen (BUN). 

Data represent mean ± SEM. (n=6-8), * p<0.05, ** p<0.01 
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3.2.2.4 Inducible GC regulates the inflammatory response in sepsis. 

GC is known as a potent anti-inflammatory agent.[221] To investigate 

whether the decreased survival rate in adrenal-specific SR-BI-/- mice is due to an 

expansion of inflammatory cytokines, we assessed the plasma cytokine 

concentrations in the adrenal-specific SR-BI-/- mice in CLP. As shown in Figure 

3.7A and 3.7B, the adrenal-specific SR-BI-/- mice had the same levels of basal 

plasma TNF-α and IL-6 to the control mice, indicating that SR-BI deficiency in 

adrenal does not affect inflammatory cytokines under basal conditions. At CLP 4 

h, the control mice exhibited a 6.6-fold increase in TNF-α (p<0.001, ANOVA) and 

a 50-fold increase in IL-6 (11.6 ± 2.6 ng/ml vs. 0.23 ± 0.19 ng/ml, p=0.044, 

ANOVA). The adrenal-specific SR-BI-/- mice also displayed elevations in TNF-α 

and IL-6 at CLP 4 h. However, they exhibited slightly higher TNF-α (300.8 ± 44.9 

pg/ml vs. 240.9 ± 48.5 pg/ml, p=0.382, t test) and over 2-fold higher IL-6 (26.8 ± 

4.3 ng/ml vs. 11.6 ± 2.6 ng/ml, p=0.012, t test) compared to the control mice at 

the same time point. At CLP 18 h, the TNF-α and IL-6 levels in the control mice 

were markedly decreased compared to their levels at CLP 4 h. Interestingly, the 

TNF-α in the adrenal-specific SR-BI-/- mice also decreased significantly at CLP 

18 h compared to its level at CLP 4 h (137.6 ± 37.7 pg/ml vs. 300.7 ± 44.9 pg/ml, 

p=0.028, ANOVA), although at this time point, the TNF-α in the adrenal-specific 

SR-BI-/- mice was 2.5-fold higher than that in the control mice (137.6 ± 46.1 pg/ml 

vs. 54.4 ± 16.9 pg/ml, p=0.15, t test). More importantly, the IL-6 in the adrenal-

specific SR-BI-/- mice remained at a high level at CLP 18 h, which was 5.4-fold 

higher than that in the control mice at CLP 18 h (22.1 ± 6.8 ng/ml vs. 4.1 ± 2.3 
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ng/ml, p=0.03, t test). These data indicate that iGC inhibits the production of pro-

inflammatory cytokines. 

NO is an important pro-inflammatory mediator to defend invasive bacteria 

during sepsis. However, excess NO damages tissues.[35, 36] Next, we 

measured the plasma nitrite and nitrate (NOx) levels in the adrenal-specific SR-

BI-/- mice to determine whether iGC affects NO production in sepsis. As shown in 

Figure 3.7C, though the NOx concentrations were elevated in both groups by 

CLP, the adrenal-specific SR-BI-/- mice displayed a 2.3-fold higher plasma NOx 

level than the control mice at CLP 4 h (11.48 ± 3.28 µM vs. 5.09 ± 1.21µM, 

p=0.08, t test). At CLP 18 h, the adrenal-specific SR-BI-/- mice exhibited a similar 

plasma NOx level to the control mice (14.76 ± 2.79 µM vs. 12.19 ± 4.08 µM, 

p=0.63, t test). These data indicate that iGC may inhibit NOx production in early 

sepsis. 

We also evaluated the effect of iGC on the production of anti-inflammatory 

cytokine IL-10 during sepsis. As shown in Figure 3.7D, in the control mice, the 

plasma IL-10 increased significantly at CLP 4 h (2908.7 ± 785.3 pg/ml vs. 488.4 

± 141.4 pg/ml, p=0.014, ANOVA) and increased further at CLP 18 h (4034.2 ± 

467.2 pg/ml) compared to the basal level. In the adrenal-specific SR-BI-/- mice, 

the plasma IL-10 also increased at CLP 4 h compared to their basal level (2976.0 

± 848.9 pg/ml vs. 792.2 ± 386.3 pg/ml, p=0.082, ANOVA) but was not higher at 

CLP 18 h compared to the level at CLP 4 h (2885.3 ± 585.8 pg/ml). These data 

indicate that iGC is not responsible for the early production of IL-10 and may 

have a small role in the production of IL-10 cytokine in a later stage of sepsis. 
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Figure 3.7 Inducible GC regulates the inflammatory cytokine production in sepsis.  

The adrenal-specific SR-BI-/- mice and the control mice were subjected to CLP for 0 h, 4 

h or 18 h, and the serum concentrations of TNF-α (A), IL-6 (B), IL-10 (C) and NOx (D) 

were quantified. Data represent mean ± SEM. (n=6-8), * p<0.05 
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Next, we analyzed the correlation between the plasma corticosterone 

concentration and cytokine concentrations.  As shown in Table 3.2, the plasma 

corticosterone showed a significant correlation with the plasma IL-6, but not with 

TNF-α, suggesting that iGC particularly exerts a strong inhibitory effect on IL-6.  

Overall, these results demonstrate that iGC regulates the production of 

cytokines and inflammatory mediators and prevents the overwhelming pro-

inflammatory response during CLP.    

Table 3.2 Correlation between the plasma corticosterone concentration and 

cytokine production in CLP 

 

Data from Figure 2.1 and Figure 3.6 were used for the correlation analysis. Data from 

the adrenal-specific SR-BI-/- mice and the control mice were analyzed together. Pearson 

correlation analysis of the plasma corticosterone concentration and cytokine levels was 

done by SPSS. Data show the correlation efficient (r) and p value (two-tailed). Statistical 

correlations are considered significant at p < 0.05. 
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3.2.2.5 Inducible GC in sepsis increases the phagocytic activity of 

phagocytes in sepsis. 

GC has been considered as an immunosuppressive agent.[101] However, 

the immunosuppression in sepsis is associated with an increased mortality in the 

late phase of sepsis.[52] The phagocytic activity of neutrophils has been reported 

impaired in septic patients [63] and is associated with a high mortality sepsis.[64] 

Therefore, we evaluated the phagocytic activity of phagocytes in the adrenal-

specific SR-BI-/- mice in CLP in vivo [222] to see whether or not iGC suppresses 

phagocytosis in sepsis. The adrenal-specific SR-BI-/- mice and the control mice 

were intravenously injected with 1x108 heat-killed fluorescein isothiocyanate 

(FITC)-labeled E. coli at CLP 17 h. An hour later, the mice were killed for flow 

cytometry. The phagocytosis of injected E. coli by monocytes (CD115+ CD11b+ 

Ly6C+) and neutrophils (Gr-1+ CD11b+) in the blood and macrophages (F4/80+), 

neutrophils (Gr1+ CD11b+) and dendritic cells (CD3-CD11c+) in the spleen was 

analyzed.  

As shown in Figure 3.8A, compared to the control mice, the adrenal-

specific SR-BI-/- mice had a 60% lower percentage of the phagocytic monocytes 

(1.53 ± 0.61 % vs. 3.85 ± 0.85 %, p=0.064) and an unchanged percentage of the 

phagocytic neutrophils (43.78 ± 4.86 % vs. 42.36 ± 7.10 %, p=0.873) in the blood. 

The capability of phagocytosis was evaluated by the mean fluorescence intensity 

(MFI) of E. coli in the phagocytes. We found that the adrenal-specific SR-BI-/- 

mice displayed a 39 % lower MFI of E. coli in monocytes (19.3 ± 3.1 ×103 vs. 

31.6 ± 3.3 ×103, p=0.027) and a 55 % lower MFI of E. coli in neutrophils (9.2 ± 
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2.7 ×103 vs. 20.1 ± 1.5 ×103, p=0.011) than the control mice (Figure 3.8B), 

demonstrating that iGC can increase the phagocytic capability of monocytes and 

neutrophils in the blood from the CLP-adrenal-specific SR-BI-/- mice.  
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Figure 3.8 Inducible GC in sepsis increases the phagocytic activity of monocytes 

and neutrophils in the blood.  

At CLP 17 h, the adrenal-specific SR-BI-/- mice and the control mice were i.v. injected 

with 1x108 heat-killed FITC-E. coli, and the phagocytosis capability of phagocytes in the 

blood was analyzed by flow cytometry. (A) The percentage of phagocytic monocytes and 

neutrophils in the blood. The left panel shows representative gating pictures for the 

E.coli+ monocytes (upper) and E. coli+ neutrophils (lower). The right panel shows the 

average percentage of E. coli+ monocytes (upper) and neutrophils (lower) in the blood. 

(B)The average of mean fluorescence intensity (MFI) of E.coli in monocytes (left) and 

neutrophils (right) in the blood. Data represent mean ± SEM. (n>4), * p<0.05 
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In the spleen, compared to the control mice, the adrenal-specific SR-BI-/- 

mice had a lower percentage of phagocytic cells, as indicated by a 54 % lower 

percentage of the E. coli+ macrophages (7.19 ± 1.21 % vs. 15.57 ± 4.41 %, 

p=0.131), a 40 % lower percentage of E. coli+ neutrophils (15.54 ± 1.15 % vs. 

25.78 ± 4.83 %, p=0.101) and a 25 % lower percentage of E. coli+ dendritic cells 

(3.92 ± 0.82 % vs. 5.28 ± 0.68 %, p=0.254; Figure 3.9A). In addition, the 

phagocytic capability of macrophages and neutrophils in the spleen also slightly 

decreased in the adrenal-specific SR-BI-/- mice. As shown in Figure 3.9B, the 

adrenal-specific SR-BI-/- mice displayed a 25% decrease in the MFI of E.coli in 

the macrophages (11.4 ± 2.8 vs. 15.2 ± 2.1, p=0.280) and a 32 % decrease in 

the MFI of E.coli in the neutrophils (6.6 ± 1.8 vs. 9.7 ± 2.2, p=0.240), compared to 

the control mice. The MFI of E. coli in the dendritic cells in the spleen from the 

adrenal-specific SR-BI-/- mice was similar to that from the control mice (8.6 ± 1.8 

vs. 7.1 ± 0.9, p=0.457). These results, together with the data from the 

phagocytes in the blood, demonstrate that iGC in sepsis increases the 

phagocytic activity. 



98 
 

 



99 
 

Figure 3.9 Inducible GC in sepsis trends to increase the phagocytic activity of 

macrophages and neutrophils in the spleen.   

At CLP 17 h, the adrenal-specific SR-BI-/- mice and the control mice were i.v. injected 

with 1x108 heat-killed FITC-E. coli, and the phagocytic capability of macrophages, 

neutrophils and dendritic cells in the spleen was analyzed by flow cytometry. (A) The left 

panel shows representative gating pictures for the E.coli+ macrophages (upper), E. coli+ 

neutrophils (middle) and E. coli+ dendritic cells (lower). The right panel shows the 

average percentage of phagocytic macrophages, neutrophils and dendritic cells in the 

spleen. (B)The average of mean fluorescence index (MFI) of E.coli in macrophage (left), 

neutrophils (middle) and dendritic cells (right) in the spleen. Data represent mean ± SEM. 

(n> 4); DCs, dendritic cells 
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3.2.2.6 Inducible GC in sepsis does not lead more apoptosis but induces 

higher activation of the lymphocytes in the spleen. 

It is known that GC can induce the apoptosis of lymphocytes[223], and the 

apoptosis-induced loss of lymphocytes is considered as a potential factor in the 

immunosuppression of sepsis.[67] To investigate if iGC has such actions in 

sepsis, we evaluated the apoptosis and the activation of lymphocytes in the 

spleen at CLP 18 h. As shown in Figure 3.10A and 3.10B, there was no 

difference between the adrenal-specific SR-BI-/- mice and the control mice in the 

number of spleen cells, the percentage of lymphocytes in spleen cells (66.51 ± 

1.81 % vs. 68.16 ± 1.61 %, p=0.507) and the percentage of T cells (CD3+, 29.61 

± 1.54 % vs. 27.32 ± 1.56 %, p=0.315) or B cells (CD19+, 58.90 ± 1.35 % vs. 

61.72 ± 1.48 %, p=0.186) in lymphocytes in the spleen, indicating that the lack of 

iGC does not affect lymphocyte numbers in the spleen. We then analyzed the 

apoptosis of lymphocytes in the spleen by TUNEL staining. As shown in Figure 

3.10C, we did not observe any difference in the percentage of TUNEL+ cells in 

lymphocytes (3.87 ± 0.81% vs. 3.45 ± 0.29 %, p=0.644), T cells (2.31 ± 0.59 % 

vs. 2.08 ± 0.28 %, p=0.740) and B cells (1.42 ± 0.53 % vs. 0.86 ± 0.11 %, 

p=0.334) between the adrenal-specific SR-BI-/- mice and the control mice, 

indicating that iGC is not associated with the apoptosis-induced loss of 

lymphocytes in sepsis. Using CD69 as an activation marker, we analyzed the 

activation of lymphocytes in the spleen from the adrenal-specific SR-BI-/- mice. 

Interestingly, we observed that the adrenal-specific SR-BI-/- mice had a 

significantly lower percentage of activated T cells (CD69+CD3+) in total 
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lymphocytes compared to the control mice (7.21 ± 0.43 % vs. 5.69 ± 0.35 %, 

p=0.017; Figure 3.10D). Also, the adrenal-specific SR-BI-/- mice had a slightly 

lower percentage of activated B cells (CD69+CD19+) in total lymphocytes than 

the control mice (6.24 ± 0.49 % vs. 4.90 ± 0.63 %, p=0.124; Figure 3.10D). 

These data demonstrate that iGC is not necessarily immunosuppressive but may 

enhance the activation of lymphocytes in sepsis.   
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Figure 3.10 Inducible GC does not lead to more apoptosis but induces higher 

activation of the lymphocytes in the spleen. 

The spleens were harvested from the adrenal-specific SR-BI-/- mice and the control mice 

at CLP 18 h for the flow cytometry. Data show (A) the spleen cell number and the 

lymphocyte percentage in the spleen cells; (B) the percentage of T cells (CD3+) and B 

cells (CD19+) in lymphocytes; (C) the percentages of apoptotic (TUNEL+) cells in total 

lymphocytes, T cells, or B cells; and (D) the activation of T cell and B cells marked by 

CD69. Data represent mean ± SEM. (n=7-9), * p<0.05 
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3.2.3 Summary  

In this section, the important role of iGC in protecting against septic death 

is investigated using the adrenal-specific SR-BI-/- mouse as an iGC deficient 

model. The adrenal-specific SR-BI-/- mice had a high mortality of 87 % in CLP-

induced sepsis whereas only 17 % of the control mice died under the same 

treatment, demonstrating that iGC is important in preventing the sepsis-induced 

death. Compared to the control mice, the adrenal-specific SR-BI-/- mice had a 

high BUN level in the plasma at CLP 18 h, demonstrating an essential role of iGC 

to maintain kidney function during sepsis. Cytokine analysis showed that the 

adrenal-specific SR-BI-/- mice displayed significantly higher levels of plasma IL-6 

at CLP 4 h and CLP 18 h compared to the control mice, a marginally higher level 

of the plasma TNF-α at CLP 18 h and a 2.3-fold higher plasma NOx at CLP 4 h, 

indicating that iGC inhibits the pro-inflammatory cytokines and mediator in sepsis. 

In addition, a strong correlation between the plasma corticosterone and IL-6 was 

observed, indicating that iGC exerts strong inhibitory effects on IL-6 in sepsis. In 

vivo phagocytosis analysis showed that the adrenal-specific SR-BI-/- mice 

presented a lower percentage of phagocytic monocytes in the blood and lower 

percentages of phagocytic macrophages, neutrophils and dendritic cells in the 

spleen at CLP 18 h. In addition, the monocytes and neutrophils from the adrenal-

specific SR-BI-/- mice displayed a reduced phagocytic capability compared to the 

cells from the control mice. These data demonstrate that iGC enhances the 

phagocytic activity of these phagocytes in sepsis. The activation of T cells in the 

spleen from the adrenal-specific SR-BI-/- mice at CLP 18 h was significantly lower 
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than that in the control mice, demonstrating that iGC induces a higher activation 

of lymphocytes in sepsis. The data in this section overall reveal that iGC is 

essential for survival in sepsis and exerts actions of (1) inhibiting the pro-

inflammatory cytokine and mediators, (2) preventing the kidney injury, (3) 

increasing the phagocytic activity of monocytes and neutrophils in the blood and 

(4) enhancing the activation of lymphocytes.  (Figure 3.11) 
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Figure 3.11 The role of SR-BI-regulated iGC in sepsis.  

iGC is produced in sepsis by adrenal glands, which is important for the survival in sepsis. 

Due to the lack of iGC, the adrenal-specific SR-BI-/- mice are very susceptible to death in 

sepsis. In contrast, the control mice survive well in the same CLP treatment. Our data 

revealed that during the sepsis, iGC can (1) inhibit the production pro-inflammatory 

cytokines and mediators, (2) prevent the kidney injury, (3) increase the phagocytic 

activity of monocytes and neutrophils and (4) enhance lymphocyte activation in the 

spleen.  

 

Copyright © Junting Ai 2014 
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Chapter 4 GC supplementation and survival in sepsis 

Section 1 GC supplementation and survival in the CLP-induced septic 

death. 

4.1.1 Introduction 

GC has been given to septic patients for more than five decades, yet GC 

treatment in septic patients got controversial results on survival. Annane. et al 

have shown that low-dose GC supplementation can significantly increase the 

survival rate of septic shock patients who have adrenal insufficiency but cannot 

improve the survival rate of those who do not have adrenal insufficiency.[183] 

However, the Survival Sepsis Campaign used GC in “septic shock patients who 

require vasopressor treatment despite adequate fluid resuscitation” and showed 

no difference in the survival rate between the GC group and the placebo 

group.[190] Using the criteria from the Survival Sepsis Campaign, several other 

trials also revealed no benefit of GC use in sepsis.[191, 192] The reason why GC 

failed to improve sepsis survival in these trials remains unknown.    

We suspected that distinguishing adrenal insufficient patients or not may 

have made a difference in the results of previous trials. We hypothesized that GC 

supplementation improves survival of adrenal insufficient individuals in sepsis but 

not that of individuals without adrenal insufficiency. To test this hypothesis, we 

first investigated whether GC supplementation is beneficial for SR-BI-/- mice, 

which are adrenal insufficient in sepsis. We used two approaches to supplement 

GC to SR-BI-/- mice. The first approach was by transplanting a SR-BI+/+ adrenal 

gland to adrenalectomized SR-BI-/- mice; the second was by injecting GC to the 
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SR-BI-/- mice. We found that GC injections increased the survival rate of SR-BI-/- 

mice in CLP. Then we also tested if GC supplementation benefits individuals 

without adrenal insufficiency by injecting the same GC to SR-BI+/+ mice in CLP. 

We found that GC supplementation that improved survival of SR-BI-/- mice failed 

to increase the survival rate of SR-BI+/+ mice in CLP. Altogether, the results from 

this section support our hypothesis that GC supplementation improves survival of 

adrenal insufficient individuals in sepsis but not that of individuals without adrenal 

insufficiency. 

  

4.1.2 Results 

4.1.2.1 Survival in sepsis is positively associated with the strength of 

corticosterone response. 

To test our hypothesis, we first sought to restore iGC of SR-BI-/- mice by 

transplanting SR-BI+/+ adrenal to these mice. By comparing the corticosterone 

concentration of the SR-BI+/+ → SR-BI-/- mice with that of SR-BI+/+ → SR-BI+/+ 

mice post CLP, we observed a significantly lower production of iGC in the SR-

BI+/+ → SR-BI-/- mice compared to the SR-BI+/+ → SR-BI+/+ mice at CLP 4 h 

(Figure 4.1A). Nevertheless, the plasma corticosterone concentration at CLP 4 h 

showed a significant correlation with the survival time in the SR-BI+/+ → SR-BI-/- 

mice (Figure 4.1B) and the average plasma corticosterone concentration in the 

survivors was significantly higher than that in the non-survivors (Figure 4.1C) in 

these mice. When we divided these mice into responders (C>200 ng/ml) and 
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non-responders (C≤200 ng/ml) by their plasma corticosterone at CLP 4 h, we 

found that the responders had a significantly improved survival compared to the 

non-responders (p=0.049, Figure 4.1D). These data demonstrate that survival in 

sepsis is positively correlated with the strength of corticosterone response. 
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Figure 4.1 The strength of corticosterone response is positively correlated with 

the survival time in CLP-induced sepsis.  

SR-BI-/- mice were transplanted with SR-BI+/+ adrenal gland (SR-BI+/+→SR-BI-/-) and 

subjected to CLP surgery 6 weeks after the transplantation. Plasma was harvested 

though tail bleeding 4 hours after CLP. (A) The plasma corticosterone level at CLP 4 h in 

the SR-BI+/+→SR-BI-/- mice was compared with that in the SR-BI+/+→SR-BI+/+ mice. The 

line shows the mean.  *** p<0.001 (B), (C) and (D) show further analysis of data from the 

SR-BI+/+→SR-BI-/- group. (B) The level of plasma corticosterone concentrations 4 h post 

CLP is positively related with the survival time (r=0.692, p=0.006, Pearson correlation). 

(C) The average plasma corticosterone level from non-survivors was significantly lower 

than that in survivors. Data represent mean ± SEM. * p<0.05 (D) The SR-BI+/+→SR-BI-/- 

mice were divided into a high corticosterone group (C>200ng/ml) and a low 

corticosterone group (C≤200ng/ml) according to the CLP 4 h plasma corticosterone 

concentration. The low corticosterone group had a mortality of 85% while the high 

corticosterone group had a mortality of 42% (p=0.049, log-rank x2 test). * p<0.05      
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4.1.2.2 GC supplementation improves the survival of adrenal insufficient 

mice in CLP-induced sepsis. 

Compared to adrenal transplantation, GC infusion is a more feasible 

strategy to be used in clinical patients; therefore we applied GC injections to 

further study the benefits of GC supplementation in adrenal insufficient mice. In 

our earlier studies, we used corticosterone supplementation through drinking 

water [110] and dexamethasone and fludrocortisones supplementation through 

i.p. injections [224]; however, both approaches failed to improve survival of SR-

BI-/- mice in CLP-induced sepsis. Considering that the dose and kind of 

supplemented GC may affect the results in survival study, in this study, we used 

a corticosteroid cocktail containing 100 µg hydrocortisone, 25 ng fludrocortisone 

acetate and 20 µg methylprednisolone, which was modified from previous 

publication.[225] As shown in Figure 4.2A, administration of the GC cocktail 

increased the survival rate in the SR-BI-/- mice from 40% to 92% (p<0.001). Then, 

because hydrocortisone is recommended in the 2012 surviving sepsis guideline, 

we studied the effects of hydrocortisone supplementation to the survival of the 

SR-BI-/- mice in CLP. Supplementation of 100 µg hydrocortisone alone increased 

the survival rate of SR-BI-/- mice to 70% (p=0.07; Figure 4.2B). Finally, we also 

supplemented the natural GC, corticosterone, to the mice. Supplementation of 

200 µg corticosterone increased the survival rate of SR-BI-/- mice to 80% 

(p=0.067; Figure 4.2C). These data demonstrate that GC supplementation is 

beneficial for the survival of adrenal insufficient mice in sepsis. 
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Figure 4.2 GC supplementation increases the survival rate of SR-BI-/- mice in CLP.  

CLP (23-gauge needle, half ligation) was conducted on SR-BI-/- mice. For GC 

supplementation, the mice were administrated with (A) a GC cocktail containing 100 µg 

hydrocortisone, 25 ng fludrocortisone acetate and 20 µg 6δ-methylprednisolone (+ 

Cocktail), (B) 100 µg hydrocortisone only (+ Hydro) or (C)200 µg corticosterone (+ Cort). 

The control mice received no GC supplementation. Survival was observed for 7 days. 

Data are expressed as the percentage of mice surviving at the indicated time points and 

analyzed by the log-rank x2 test. *** p<0.001 
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4.1.2.3 GC supplementation is unhelpful for the survival of wild type mice in 

CLP-induced sepsis. 

Based on the above results, it seems that GC supplementation is 

beneficial to adrenal insufficient mice in CLP-induced sepsis. However, this did 

not explain why clinical trials on the use of GC in septic patients got controversial 

results. We hypothesized that GC supplementation may only benefit adrenal 

insufficient individuals in sepsis but not those without adrenal insufficiency. We 

conducted CLP in SR-BI+/+ mice using the same condition as that in SR-BI-/- mice. 

CLP which caused a 60 % mortality in the SR-BI-/- mice (Figure 4.2) only induced 

an 20% mortality in the SR-BI+/+ mice (Figure 4.3A), which was consistent with 

former reports [110]. Nevertheless, GC supplementation failed to increase the 

survival rate in the SR-BI+/+ mice in CLP, indicating that GC supplementation 

does not benefit survival of SR-BI+/+ mice in sepsis (Figure 4.3A). When we 

conducted a stronger CLP to SR-BI+/+ mice and injected 200µg/mouse 

corticosterone to the mice, the SR-BI+/+ mice with GC supplementation showed a 

lower survival rate than the SR-BI+/+ mice without GC supplementation (80 % vs. 

40 %, p=0.013; Figure 4.3B).These data demonstrate that GC supplementation is 

unhelpful for survival of mice without adrenal insufficiency in sepsis. 
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Figure 4.3 GC supplementation is unhelpful for survival of SR-BI+/+ mice in CLP-

induced sepsis. 

(A) SR-BI+/+ mice were treated with CLP (23-gauge needle, half ligation) and were 

supplemented with or without a GC cocktail containing 100 µg hydrocortisone, 25 ng 

fludrocortisone acetate and 20 µg 6δ-methylprednisolone after CLP. Survival was 

observed for 7 days. (B) SR-BI+/+ mice were treated with CLP (22-gauge needle, full 

ligation) and were supplemented with or without 200 µg corticosterone after CLP. 

Survival was observed for 5 days. Data are expressed as the percentage of mice 

surviving at the indicated time points and analyzed by the log-rank x2 test. *, p<0.05
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4.1.3 Summary 

The study in this section investigated the effects of GC supplementation 

on survival in CLP-induced septic death. We hypothesized that GC 

supplementation is beneficial for the individuals with adrenal insufficiency but not 

for those without adrenal insufficiency in sepsis. First, by transplanting SR-BI+/+ 

adrenal glands to the adrenalectomized SR-BI-/- mice, we observed that plasma 

corticosterone level at CLP 4 h was strongly correlated with the survival time of 

the SR-BI+/+ → SR-BI-/- mice in CLP-induced sepsis. Second, we injected a GC 

cocktail containing 100 µg hydrocortisone, 25 ng fludrocortisone acetate and 20 

µg 6δ-methylprednisolone to the SR-BI-/- mice, which increased the survival rate 

of SR-BI-/- mice from 40 % to 92 %. Supplementation of 100 µg hydrocortisone or 

200 µg corticosterone can also increase the survival of SR-BI-/- mice to 70 % or 

80 %, respectively. These data demonstrate that GC supplementation can 

improve the survival of adrenal insufficient mice. In SR-BI+/+ mice, injections of 

GC cocktail or corticosterone did not increase their survival rates in CLP, 

demonstrating that GC supplementation is unhelpful for the individuals without 

adrenal insufficiency in sepsis.  
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Section 2 GC supplementation and survival in the “two-hit” model of 

secondary infection-induced death in sepsis. 

4.2.1 Introduction 

Whereas some patients rapidly succumb to the overwhelming pro-

inflammatory cytokine-driven inflammation and died at an early time after the 

initiation of sepsis, more than 60 % of deaths in sepsis are estimated to occur 

after the first 3 days of the disorder.[54] Thus an investigation on the effects of 

GC on the survival in the late stage of sepsis is also needed. A “two-hit” model 

has been used to study the late stage of CLP-induced sepsis in mice.[71] The 

rationale of this model is based on the fact that nosocomial infection of septic 

patients contributes to the late death of septic patients.[55] In the “two-hit”  model, 

the CLP is used as the “first hit” and an infection of sublethal-dose Pseudomonas 

aeruginosa or Streptococcus pneumonia is used to induce pneumonia in mice 

after CLP as the “second hit”. P. aeruginosa is a gram-negative bacterium that is 

one of the most common causes of nosocomial pneumonia and therefore has 

been used in our study.[226] In this section, we used P. aeruginosa-induced 

secondary infection in CLP mice to address the importance of iGC in secondary 

infection in sepsis.  
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4.2.2 Results 

4.2.2.1 The “two-hit” model of secondary infection in sepsis was generated 

by infection with sublethal-dose P. aeruginosa after CLP. 

After identifying the benefit of GC supplementation in adrenal insufficient 

individuals in the “first insult” in the sepsis, we used a “two-hit” model to evaluate 

the importance of iGC and the effects of GC supplementation in the secondary 

infection in sepsis. According to previous studies using the “two-hit” model, a 

decrease in survival in secondary pneumonia infection can be observed in mice 

that were infected 3 days or 4 days after CLP when innate immune responses 

are impaired, but not in mice that were infected 7 days after CLP when the innate 

immunity is recovered. [226, 227] In our study, a sublethal dose of 5x107 CFU/ 

mouse was identified as an appropriate dose of P. aeruginosa for the secondary 

infection in SR-BI+/+ mice. At this dosage, the non-CLP SR-BI+/+ mice all survived 

the secondary infection, whereas the CLP-3 d SR-BI+/+ mice only had a survival 

rate of 25 % (p<0.001; Figure 4.4A). The CLP-7 d SR-BI+/+ mice had a high 

survival rate which is not significantly different from the survival in non-CLP group 

(Figure 4.4B). This result is consistent with earlier studies on the “two-hit” model 

in sepsis [226, 227]; therefore we used 5x107 CFU/ mouse P. aeruginosa for 

secondary infection in the following experiments.  
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Figure 4.4 A “two-hit” model was generated by a secondary infection of P. 

aeruginosa after CLP. 

A “two-hit” model was generated by a secondary infection of P. aeruginosa in CLP (23-

gauge, half ligation) SR-BI+/+ mice. Mice were challenged with an intranasal 

administration with 5x107 CFU P. aeruginosa without CLP, 3 days after CLP or 7 days 

after CLP. Survival was observed for 10 days after the infection. Data are expressed as 

the percentage of mice surviving at the indicated time points and analyzed by the log-

rank x2 test. *** p<0.001 
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4.2.2.2 CLP-7 d SR-BI-deficient mice have impaired GC production in 

secondary infection in sepsis. 

Next, we investigated the iGC production in the secondary infection model. 

As shown in Figure 4.6B, compared to the non-CLP SR-BI+/+ mice, the CLP-7 d 

SR-BI+/+ mice displayed a lower plasma corticosterone concentration at 4 hours 

post infection (265.3 ± 53.8 µg/ml vs. 160.6 ± 27.3 µg/ml), indicating that less 

iGC is needed for survival in secondary infection than CLP. However, the CLP-7 

d SR-BI-/- mice still showed a significantly lower plasma corticosterone level at 4 

hours post infection compared to the CLP-7 d SR-BI+/+ mice (160.6 ± 27.3 µg/ml 

vs. 23.0 ± 9.0 µg/ml, p<0.001, t test), indicating that CLP-7 d SR-BI-/- mice have 

iGC insufficiency in secondary infection.  
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Figure 4.5 CLP-7 d SR-BI-deficient mice have adrenal insufficiency in secondary 

infection.  

For non-CLP SR-BI+/+ mice, the mice were directly treated with intranasal infection of 

5x107 CFU/mouse P. aeruginosa. For CLP-7 d SR-BI+/+ and SR-BI-/- mice, the mice were 

first subjected to CLP (23-gauge, half ligation). Seven days after CLP, the survived mice 

were infected with P. aeruginosa 5x107 CFU/mouse intranasally. To maintain a high 

survival rate of the SR-BI-/- mice in CLP, the SR-BI-/- mice were injected the GC cocktail 

after CLP. The plasma were harvested through tail bleeding 4 hours after the bacterial 

infection and used for corticosterone assay. Data present mean ± SEM. n=6 for non-CLP 

SR-BI+/+ mice, n=12 for CLP-7 d SR-BI+/+ mice and CLP-7 d SR-BI-/- mice, *** p<0.001  
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4.2.2.3 CLP-7 d SR-BI-deficient mice are susceptible to the secondary 

infection-induced death in sepsis.  

Since SR-BI-/- mice presented a deficiency of iGC in secondary infection, 

we then used this mice to investigate whether the lack of iGC is associated with 

an increased susceptibility to secondary infection-induced death in sepsis. As 

shown in Figure 4.6A, CLP-7 d SR-BI-/- mice displayed a mortality of ~85 % in 

secondary infection, while CLP-7d SR-BI+/+ mice displayed a mortality of only 

8 % (p<0.001). This result indicates that iGC insufficiency is associated with an 

increased mortality in secondary infection during sepsis.  

 

Figure 4.6 CLP-7 d SR-BI-deficient mice are susceptible to secondary infection-

induced death in sepsis.  

SR-BI+/+ and SR-BI-/- mice were subjected to CLP (23-gauge, half ligation). SR-BI-/- mice 

were injected the GC cocktail after CLP. Seven days after CLP, the survived mice were 

infected with P. aeruginosa 5x107 CFU/mouse intranasally. Survival was observed for 10 

days after the infection. Data are expressed as the percentage of mice surviving at the 

indicated time points and analyzed by the log-rank x2 test. *** p<0.001  
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4.2.2.4 GC injection trends to increase the survival time of SR-BI-deficient 

mice in the second infection after CLP.  

We then tried to rescue SR-BI-/- mice in the secondary infection by GC 

supplementation. Since a lower plasma corticosterone concentration had been 

observed in the CLP-7 d SR-BI+/+ mice than the non-CLP SR-BI+/+ mice, we used 

a half dose of GC cocktail (50µg hydrocortisone, 12.5 ng fludrocortisone acetate 

and 10 µg 6δ-methylprednisolone) for the CLP-7 d SR-BI-/- mice in secondary 

infection. The SR-BI-/- mice were subjected to CLP and received the GC cocktail 

(100 µg hydrocortisone, 25 ng fludrocortisone acetate and 20 µg 6δ-

methylprednisolone) after CLP to maintain a high survival rate. Seven days after 

CLP, the survived SR-BI-/- mice were intranasally administered P. aeruginosa 

with or without the injection of a half-dose GC cocktail after the infection (Figure 

4.7A). As shown in Figure 4.7B, one day after the infection, a 28 % fatality in the 

SR-BI-/- mice with the 2nd GC injection was induced, as controlled by a 23 % 

fatality in those who did not receive the 2nd GC injection. At two days post the 

infection, the fatality of the no 2nd GC injection group increased to 69% while the 

fatality of 2nd GC injection group only elevated to 36%. During the observation 

period, only 8 % mice without the 2nd GC injection finally survived the secondary 

infection challenge, whereas the survival rate increased to 23 % by a 2nd GC 

injection (p=0.282).  
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Figure 4.7 GC injection increases the survival time of SR-BI-deficient mice in 

second infection after CLP.  

(A) The strategy of GC supplementation in secondary infection model. SR-BI-/- mice were 

subjected to CLP (23-gauge, half ligation) and injected with the GC cocktail after CLP 

surgery. Seven days after CLP, mice were intranasally administered 5x107 CFU P. 

aeruginosa with or without the injection of a half-dose GC cocktail after the infection. (B) 

Survival was observed for 10 days after the infection. Data are expressed as the 

percentage of mice surviving at the indicated time and analyzed by the log-rank x2 test. 
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4.2.3 Summary 

In this section, the effect of GC supplementation on survival in secondary 

infection in sepsis was investigated in a “two-hit” model induced by P. aeruginosa 

infection after CLP. First, we figured out the proper dosage of P. aeruginosa for 

the CLP condition and mouse strain in our study. With the infection of 5x107 P. 

aeruginosa, the CLP-3 d SR-BI+/+ mice displayed a survival rate of 25 % and the 

CLP-7 d SR-BI+/+ mice displayed a high survival rate that is non-significantly 

different from the survival in non-CLP group. This result is consistent with 

previous studies on the “two-hit” model, thus we used 5x107 P. aeruginosa to 

induce the secondary infection the following experiments. Next, we showed that 

at 4 hours post infection, the plasma corticosterone concentration in the CLP-7 d 

SR-BI-/- mice was significantly lower than that in the CLP-7 d SR-BI+/+ mice, 

indicating the presence of adrenal insufficiency in the CLP-7 d SR-BI-/- mice. In 

addition, the CLP-7 d SR-BI-/- mice presented a significantly lower survival rate 

than the CLP-7 d SR-BI+/+ mice (15 % vs. 92 %), indicating that the lack of iGC is 

associated with impairs survival in secondary infection in sepsis. Finally, we used 

the CLP-7 d SR-BI-/- mice to study whether or not GC supplementation can 

benefit the mice with adrenal insufficiency in the secondary infection.  

Administration of a half-dose GC cocktail to the SR-BI-/- mice after the secondary 

infection increased the survival rate from 8 % to 23 %, indicating that GC 

supplementation trends to improve the survival of adrenal insufficient mice in the 

secondary infection in sepsis.      

 

Copyright © Junting Ai 2014 
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Chapter 5 Discussion and future directions 

The present dissertation demonstrates the important role of iGC in 

protecting against septic death and the beneficial effects of GC supplementation 

on survival in sepsis. First, by analyzing the difference between the adrenal-

specific SR-BI-deficient mice and the control mice in CLP, we elucidate that iGC 

protects against septic death. The iGC in sepsis has several the functions, which 

includes: (1) preventing the kidney injury, (2) inhibiting the production of pro-

inflammatory cytokines and inflammatory mediators, (3) increasing the 

phagocytosis and (4) enhancing the activation of lymphocytes in sepsis. Then, by 

administrating GC to SR-BI+/+ mice and SR-BI-/- mice, we demonstrate that GC 

supplementation improves survival of mice with adrenal insufficiency during 

sepsis but is unhelpful for survival of mice without adrenal insufficiency. In 

addition, by investigating adrenal insufficiency in the “two-hit” model, we reveal 

that the adrenal insufficiency is associated with a reduced survival rate in 

secondary infection and GC supplementation has a trend to increase the survival 

rate of SR-BI-/- mice in secondary infection in sepsis.  

5.1 Adrenal-specific SR-BI-deficient mice as a model of iGC deficiency 

To investigate the role of iGC in sepsis, we generated adrenal-specific 

SR-BI-/- mice by transplanting SR-BI-/- adrenal to adrenalectomized SR-BI+/+ mice. 

Some phenotypes of the adrenal-specific SR-BI-/- mice have been previously 

studied. Hoekstra et al. measured the fasting plasma corticosterone level in the 

adrenal-specific SR-BI-/- mice and showed that these mice have GC 

insufficiency.[198] Consistent with this study, using CLP, a surgery inducing 
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septic stress, we observed an impaired production of inducible corticosterone in 

adrenal-specific SR-BI-deficient mice.  

Hoekstra et al. also revealed a decrease in the plasma very-low-density 

and low-density lipoprotein levels in atherogenic diet-fed adrenal-specific SR-BI-

deficient mice, suggesting that adrenal SR-BI may play a role in modulating the 

lipoprotein profile.[198] However, we found that the adrenal-specific SR-BI-/- mice 

under normal diet show no difference in the plasma lipoprotein profile compared 

to the control mice, indicating that adrenal SR-BI deficiency does not affect 

lipoproteins under normal conditions. Actually, unlike normal diet, the atherogenic 

diet itself can stimulate inflammation in the liver [228] and significantly increase 

the plasma corticosterone in mice[229]. Therefore, the changes of the lipoprotein 

profile in the atherogenic diet-fed adrenal-specific SR-BI-deficient mice could be 

a result of iGC insufficiency in the diet-induced inflammation. In addition, in their 

report, the authors concluded that general immune status is not affected in mice 

lacking adrenal SR-BI. In our study, we showed that although the basal immune 

status of the adrenal-specific SR-BI-/- mice is generally normal, these mice are 

very susceptible to septic death due to the lack of iGC.  

It has been reported that adrenalectomized mice have a significant 

increase in the number of mononuclear cells in the blood [219]. Our data show 

that the adrenal-specific SR-BI-/- mice display normal counts of the circulating 

lymphocytes, neutrophils, macrophages and monocytes. Therefore, this result 

clearly demonstrates that the adrenal-specific SR-BI-/- mice are different from the 
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adrenalectomized mice and implies the importance of basal GC in maintaining 

the homeostasis of immunity.  

One limitation of the adrenal transplantation model is the cutoff of the 

communication between the preganglionic sympathetic neuron and the 

chromaffin cell in the adrenal medulla, which are responsible for the secretion of 

catecholamine vasopressors.[230] The lack of hemodynamic effects of 

catecholamine may make the mice more susceptible to sepsis. However, the 

control group and the experimental group were subjected to the same treatment 

(adrenal transplantation); therefore, the neuronal communication is similarly 

disrupted in adrenal-specific SR-BI-/- mice and the control mice, and hence 

should not contribute to the differences between the adrenal-specific SR-BI-/- 

mice and the control group in our endpoints. 

It is worth noting that the response to sepsis in the adrenal specific SR-BI-

deficient mice is different from that in the whole-body SR-BI-deficient (SR-BI-/-) 

mice. Earlier work by our group showed that SR-BI-/- mice display a delayed 

inflammatory response after CLP, as indicated by a delayed generation of pro-

inflammatory cytokines and NOx, partly due to the role of SR-BI in LPS 

recruitment from inflammation site to circulation.[110] In the current study, the 

adrenal-specific SR-BI-deficient mice had a quick inflammatory response upon 

CLP, which implies that the delayed inflammatory response in SR-BI-/- mice is not 

attributed to the lack of iGC. This feature of the adrenal-specific SR-BI-deficient 

mouse also makes it a better model to study adrenal insufficiency in sepsis than 

the whole-body SR-BI-deficient mouse. 
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5.2 GC and acute kidney injury in sepsis 

Sepsis causes multi-organ dysfunction, and kidney is one of the organs 

frequently afflicted.[231] Acute kidney injury (AKI) occurs in about 19 % of 

patients with moderate sepsis, 23 % with severe sepsis and 50 % with septic 

shock when blood cultures are positive.[231] Patients with both sepsis and AKI 

have an mortality rate of 70 %, as compared with a 45 % mortality rate among 

patients with acute renal failure alone.[232] In clinic, AKI is diagnosed by a 

sudden decrease in GFR, the primary measure of kidney function, which is 

currently detected clinically as a rise in serum creatinine and BUN.  

In animal studies, the CLP model does not develop reproducible AKI. AKI 

has been detected by elevation of BUN or creatinine in some [233-236] but not 

other studies [237]. In this study, we used BUN as the marker of AKI and showed 

that the adrenal-specific SR-BI-/- mice, which have iGC deficiency, display an 

abnormally high BUN level at CLP 18 h, whereas the control mice with normal 

iGC production do not develop AKI in sepsis. Our data indicate that iGC protects 

the kidney function in sepsis and the occurrence of AKI may be associated with 

iGC deficiency in sepsis.  

The detailed mechanism of sepsis-associated AKI is unknown. Several 

pathophysiological mechanisms have been proposed: vasodilation-induced 

glomerular hypoperfusion, dysregulated circulation within the peritubular capillary 

network, inflammatory reactions by systemic cytokine storm or local cytokine 

production, tubular dysfunction induced by oxidative stress and disseminated 

intravascular coagulation associated glomerular microthrombi.[238] GC has been 
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known to enhance the suppressor effects of catecholamines that improve the 

perfusion of the kidney and may also alleviate the pathological changes in renal 

tubules in sepsis by reducing mitochondrial damage and apoptosis [239] and 

prevent hypoxic injuries by suppressing iNOS activity after endotoxemia [240]. 

(Figure 4.2) These links between iGC and renal functions may lead future studies 

to understand how iGC protects from kidney injury in sepsis. 
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Figure 5.1 Acute kidney injury (AKI) in sepsis  

Acute renal injury occurs in sepsis due to multiple factors. Sepsis induces the cytokine 

storm and an overwhelming production of reactive oxygen species. Cytokine storm is 

responsible for the endothelial damage, disseminated intravascular coagulation (DIC) 

and excess production of nitric oxide. Endothelial damage and DIC contribute to the 

formation of glomerular microthrombi. Nitric oxide leads to systemic vasodilation and 

simultaneously renal vasoconstriction, which together results in the glomerular 

hypoperfusion and renal ischemia. Reactive oxygen species can directly or indirectly 

damage the tubules. The glomerular microthrombi, renal ischemia and the tubular 

damage overall lead to the acute renal injury in sepsis.[238] GC can enhance the effect 

of catecholamine and therefore increase the perfusion of kidneys. GC may also inhibit 

cytokines and nitric oxide [239] and prevent mitochondria damage-induced apoptosis of 

tubules [240]. 
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5.3 GC and cytokine production in sepsis. 

The suppressive influences of GC on the synthesis of inflammatory 

cytokines and mediators are well documented.[101] Earlier studies showed that 

adrenalectomy leads to an exaggerated production of TNF-α in LPS or bacteria-

induced sepsis [241, 242] and chronic replacement with a 5 mg corticosterone 

pellet inhibits TNF-α and IL-6 in adrenalectomized mice upon the stimulation with 

poly I:C, a ligand of TLR3 [243]. The mechanism by which GC inhibits 

inflammatory cytokine production involves multiple pathways. First, GC inhibits 

the activity of crucial transcriptional regulator of pro-inflammatory genes such as 

NF-κB. Second, GC inhibits inflammatory gene expression at a post-

transcriptional level via destabilization of mRNA or inhibition of translation. Third, 

the GC-induced expression of dual specificity phosphatase 1 (DUSP1) and 

glucocorticoid inducible leucine zipper (GILZ) can interfere with signaling 

pathways that are activated by pro-inflammatory stimuli and hence block pro-

inflammatory gene expression.[244] 

Intriguingly, our results of cytokines in the adrenal-specific SR-BI-/- mouse 

model is different from previous studies using adrenalectomized mice or GC 

supplementation approaches. We provide in vivo evidence that iGC specifically 

regulates the production of IL-6 in sepsis. We show that there is no difference 

between the adrenal-specific SR-BI-/- mice and the control mice in the plasma 

TNF-α level at CLP 4 h, although these mice have a significant difference in the 

plasma corticosterone concentrations at that time. In contrast to TNF-α, IL-6 is 

suppressed in the control mice but not in the adrenal-specific SR-BI-/- mice in 
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CLP. IL-6 has a wider variety of cellular source than TNF-α which is mainly 

produced from macrophages. Many cells including fibroblasts, cells of the 

monocyte-macrophage lineage, endothelial cells and adipocytes can secrete IL-6 

in inflammation.[245-247] Therefore, iGC may also exert the inhibitory effect on 

IL-6 production from other cell types, given the ubiquitous expression of GR. 

Actually, a normal down-regulation of TNF-α has been reported in mice with a 

dimerization-deficient glucocorticoid receptor (GRdim) in LPS-induced septic 

shock, and the authors concluded that a classical transrepression of TNF-α by 

GC is fully functional in the GRdim mice.[248] Based on our data, the normal 

regulation of TNF-α in the GRdim mice could be explained by the cellular 

specificity of iGC action. 

In addition to the different cellular sources, IL-6 presents different 

properties from TNF-α. TNF-α is characterized as a pro-inflammatory 

cytokine.[249] Nevertheless, IL-6 is a pleotropic cytokine that plays disparate 

roles in inflammatory conditions depending on the infection model.[250]  For 

example, it protects the host from death following infection since IL-6 −/− mice 

have higher mortality when infected with Escherichia coli, Klebsiella pneumoniae, 

or Streptococcus pneumonia.[251-254] Treating mice with IL-6-blocking Abs may 

improve survival from CLP by reducing C5a receptor expression [255] or have no 

benefits [256]. A complete lack of IL-6 does not alter mortality in sepsis as 

indicated by no differences in the survival between IL-6 knockout mice and the 

wild types.[257, 258]   

 



134 
 

IL-6 is a candidate marker of sepsis mortality. As early as in 1989, it has 

been found that the plasma IL-6 levels in patients with sepsis are markedly 

increased, particularly in patients who develop a fatal septic shock.[259] Later 

investigations on clinical patients revealed that IL-6 appears to be a good 

candidate marker of severity during bacterial infection.[260, 261] In CLP models, 

a high IL-6 level after CLP also suggests a high mortality.[257] We show that a 

very significant correlation exists between the plasma corticosterone 

concentration and the plasma IL-6 level in CLP-induced sepsis, indicating an 

association between the plasma corticosterone and survival in sepsis. The point 

that plasma GC level is associated with survival in sepsis is also supported by 

our data from the SR-BI+/+ → SR-BI-/- mice.  

IL-10 is known as an important modulator in inflammation. It selectively 

blocks the expression of pro-inflammatory genes encoding cytokines and 

chemokine in myeloid cells activated by PRR ligands and simultaneously 

enhances the expression and production of anti-inflammatory molecules. [262, 

263] It is known that GC can induce the gene expression of IL-10 as one of its 

anti-inflammatory actions[244]. The adrenal-specific SR-BI-/- mice had the same 

IL-10 production as the control mice at CLP 4 h, indicating that the early 

production of IL-10 is not induced by iGC. However, iGC may be involved in 

promoting the IL-10 production in a later stage of sepsis, since we also observed 

higher IL-10 in the control mice than the adrenal-specific SR-BI-/- mice at CLP 18 

h. Because IL-10 can act at the adrenal gland and negatively regulate the 

corticosterone synthesis [264], the iGC-induced increase in IL-10 in a later stage 
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of sepsis could be a homeostatic mechanism to terminate HPA-axis activation 

once inflammation is resolving. 

5.4 GC is not necessarily immunosuppressive.  

GC has been considered as an immune-suppressive agent.[101] However, 

this concept has been challenged by several recent in vitro studies which 

demonstrated that GC has opposing effects on macrophage function dependent 

on the concentration [106, 107] and can significantly increase the phagocytic 

function of cultured human monocytes through regulating genes involved in the 

phagocytosis [108]. Our study revealed that iGC in sepsis significantly enhances 

the phagocytic activity of monocytes and neutrophils in blood and to some extent 

increases the phagocytic macrophages, neutrophils in the spleen in CLP-induced 

sepsis. Thus, we for the first time provide in vivo evidence that iGC is supportive 

to the functions of phagocytes in sepsis.  

Synthetic GC can induce the apoptosis of lymphocytes [104] and inhibit 

the function of T lymphocytes [105]. Experimental and human studies suggest 

that the apoptosis of immune cells, in particular lymphocytes, may contribute to 

the immunosuppressive status in sepsis.[67, 265] We show that compared to the 

control mice, the adrenal-specific SR-BI-/- mice display reduced lymphocyte 

activation in the spleen during CLP, indicating that endogenous iGC is supportive 

for the activation of adaptive immunity. In addition, the number of lymphocytes 

and apoptosis of them were not affected by iGC during sepsis. Overall, our data 

in adrenal-specific SR-BI-/- mice show that iGC in sepsis support the function of 

both innate immunity and adaptive immunity.  
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5.5 GC therapy in sepsis 

Septic patients represent an inhomogeneous group since the individual’s 

immune response can be modulated by a variety of factors, such as the nature of 

the infectious stimuli, the genetic background of the host, the comorbidities, 

exogenous factors, etc. This heterogeneity makes it difficult for physicians and 

scientists to design effective therapies.[74]   

In the last few decades, increasing evidence of relative adrenal 

insufficiency in septic shock evoked a reassessment of hydrocortisone therapy. 

Rather than high-dose GC supplementation used in old studies, low-dose (or 

stress-dose) hydrocortisone infusion has been evaluated for benefits on septic 

patients and is preferred as GC therapy.[169, 266] Actually, in line with our 

finding that iGC modulates the inflammatory responses and prevents kidney 

injury without suppressing the immune response in sepsis, some small clinical 

studies in the early 2000s provided evidence that low-dose hydrocortisone 

therapy may also benefit the septic patients in the same way.  

First, it has been shown that stress-dose hydrocortisone infusion in septic 

patients decreases IL-6 levels but not TNF-α in septic shock patients [267], which 

indicates that low-dose GC may act in the same way as endogenous iGC to 

inhibit pro-inflammatory cytokines in sepsis. Second, clinical studies show that 

low-dose hydrocortisone improves the permeability of the glomerular 

endothelium and normalized free water clearance and renal sodium excretion in 

septic patients [268, 269], which is in consistent with the protective effect of iGC 

on kidney function in sepsis. Third, Keh D et al. showed that the infusion of low-
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dose hydrocortisone does not induce severe monocyte or granulocyte 

dysfunction as indicated by the expression of HLA-DR on monocytes, the 

enhancement of monocyte phagocytosis, and only slightly depressed (2%) 

granulocyte phagocytosis [270], which indicate that low-dose GC is not 

suppressive to the innate immunity in sepsis. Finally, Hotchkiss and colleagues 

observed that low-dose GC treatment had no effect on the rates of lymphocyte 

apoptosis in severe sepsis [66] and Weber et al. showed that low-dose GC 

treatment may not influence the expression of apoptotic genes such as Bim, Bid, 

or Bak in severe sepsis.[271] These studies indicate that low-dose GC can exert 

modulating effects on immune responses that are similar to iGC in sepsis. 

Although the low-dose GC treatment in sepsis showed some benefits on 

organ function [268, 269], the results of mortality in clinical studies remain 

controversial. Current guidelines from the Survival Sepsis Campaign do not 

recommend the diagnosis of adrenal insufficiency before the administration of 

GC in septic patients.[190] Our study provides evidence that GC 

supplementation should be given to the septic patients with adrenal insufficiency. 

Importantly, our data also indicate that for septic individuals without adrenal 

insufficiency, an additional GC supplementation maybe redundant and is 

completely unhelpful. Therefore, we recommend the diagnosis of adrenal 

insufficiency before GC supplementation in septic patients. This finding may also 

explain why the Surviving Sepsis Campaign showed no benefit of GC on survival 

of septic shock patients. In addition, the GC dose currently recommended for 

septic patients may be too high. Considering a factor of 1/12.3 that should be 
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applied when converting a drug dose from mouse to human according to the 

guidance from FDA, the dose of 100 µg hydrocortisone / mouse (~20g) in our 

study is converted to a human dose of  ~61.5mg/kg, which is lower than the 

200mg/kg hydrocortisone used in clinic as the “low-dose”.[272] 

Older application of high-dose GC to septic patients led to an increased 

occurrence of secondary infection. In contrast, the recent randomized controlled 

HYPOLYTE study revealed that in trauma patients, the use of an intravenous 

stress-dose of hydrocortisone can decrease the risk of hospital-acquired 

pneumonia.[273] Our data in the secondary infection model show that iGC is also 

important to prevent secondary infection-induced death in sepsis. We did not use 

CLP-3 d SR-BI-/- mice to investigate this issue, because CLP-3 d mice suffer from 

an unrecovered immune system, which makes it hard to distinguish the effect of 

adrenal insufficiency and that of the weak immunity. We show that after surviving 

the first insult of CLP-induced sepsis with the first injection of GC cocktail, the 

SR-BI-/- mice still suffer from adrenal insufficiency in secondary infection and are 

very susceptible to the secondary infection-induced death. The second injection 

of GC cocktail in a half dose increased the survival time of SR-BI-/- mice in 

secondary infection. The improvement in survival by the second GC injection in 

secondary infection is not as remarkable as that by the first injection in CLP, 

which may due to the lack of SR-BI in other organs and cells, such as the liver 

and macrophages, in the SR-BI-/- mice. Therefore, it will be better to use adrenal-

specific SR-BI-/- mice to demonstrate the benefits of GC supplementation in the 

secondary infection.  
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In conclusion, a model of GC function and supplement stratagem in sepsis 

is proposed (Figure 5.2). Sepsis induced both pro-inflammatory and anti-

inflammatory responses. iGC modulates the balance between anti-inflammatory 

and anti-inflammatory responses and thus helps to survive sepsis. For individuals 

without adrenal insufficiency, iGC regulates the balance and leads to survival in 

sepsis. Additional GC supplementation to these individuals may be unhelpful. For 

individuals with adrenal insufficiency, the lack of iGC leads to the loss of this 

balance, which may result in SIRS when the pro-inflammatory response 

overwhelms and CARS when the anti-inflammatory response dominants. The 

overwhelming cytokine storm in SIRS contributes to the septic death, while the 

immunosuppression in CARS can also lead to death. A proper GC 

supplementation can rescue the mice from systemic inflammation and survive 

CLP-induced sepsis. For the septic individuals that are in a status of CARS, a 

lower amount of GC supplementation may be helpful as well. However, further 

study is needed to investigate the optimal GC supplementation in CARS.     
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Figure 5.2 GC therapy in sepsis.  

Variability in the production of GC upon sepsis influences the outcome of sepsis. Sepsis 

induced both pro-inflammatory and anti-inflammatory responses. iGC plays an important 

role in modulating the balance between pro-inflammatory and anti-inflammatory 

responses, like the balance of fire and water, and thus helps to survive sepsis. For 

individuals without adrenal insufficiency, iGC regulates the balance and leads to survive. 

Additional GC supplementation to these individuals may be unhelpful. For individuals 

with adrenal insufficiency, the lack of iGC leads to the loss of this balance, which may 

result in SIRS when the pro-inflammatory response overwhelms and CARS when the 

anti-inflammatory response dominates. The overwhelming cytokine storm contributes to 

the septic death in SIRS, and the immunosuppression in CARS can also lead to death. 

Optimal GC supplementation can help to control this balance. Our data have 

demonstrated that a proper GC supplementation can rescue the mice from systemic 

inflammation and survive CLP-induced sepsis.  
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Appendix 

ACK lysis buffer  

0.15 M NH4Cl  

10 mM KHCO3  

0.1 mM EDTA-2Na 

PH=7.4 

Proteinase K solution 

1 M Tris-HCl PH 7.5     0.5 ml 

0.1 M CaCl2      10 ml 

Glycerol     25 ml 

H2O     14.5 ml 

Proteinase K     1 mg 

Lysis buffer for tails for 

genotyping  

50 mM Tris-HCl (PH 8.0)  

RPMI 1640-5 

RPMI 1640 medium      500 ml 

FBS     25 ml 

FACS staining buffer  

DPBS     100 ml 

BSA       1 g 

 

 

 

 

 

 

 

0.45 % NP-40 
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