Seroepidemiology of *Sarcocystis neurona* and *Neospora hughesi* Infections in Domestic Donkeys (*Equus asinus*) in Durango, Mexico

Cosme Alvarado-Esquivel
Juárez University of Durango State, Mexico, alvaradocosme@yahoo.com

Daniel K. Howe
University of Kentucky, daniel.howe@uky.edu

Michelle R. Yeargan
University of Kentucky, myeargan@uky.edu

Domingo Alvarado-Esquivel
Juárez University of Durango State, Mexico

José Alfredo Zamarripa-Barboza
Secretary of Health, Mexico

See next page for additional authors

Right click to open a feedback form in a new tab to let us know how this document benefits you.
Follow this and additional works at: https://uknowledge.uky.edu/gerc_facpub

Part of the [Large or Food Animal and Equine Medicine Commons](https://uknowledge.uky.edu/gerc_facpub)

Repository Citation

Alvarado-Esquivel, Cosme; Howe, Daniel K.; Yeargan, Michelle R.; Alvarado-Esquivel, Domingo; Zamarripa-Barboza, José Alfredo; and Dubey, Jitender P., "Seroepidemiology of *Sarcocystis neurona* and *Neospora hughesi* Infections in Domestic Donkeys (*Equus asinus*) in Durango, Mexico" (2017). *Gluck Equine Research Center Faculty Publications*. 17.
https://uknowledge.uky.edu/gerc_facpub/17

This Article is brought to you for free and open access by the Gluck Equine Research Center at UKnowledge. It has been accepted for inclusion in Gluck Equine Research Center Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Authors
Cosme Alvarado-Esquivel, Daniel K. Howe, Michelle R. Yeargan, Domingo Alvarado-Esquivel, José Alfredo Zamarripa-Barboza, and Jitender P. Dubey

Seroepidemiology of *Sarcocystis neurona* and *Neospora hughesi* Infections in Domestic Donkeys (*Equus asinus*) in Durango, Mexico

Notes/Citation Information
Published in *Parasite*, v. 24, article no. 27, p. 1-4.

© C. Alvarado-Esquivel et al.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Digital Object Identifier (DOI)
https://doi.org/10.1051/parasite/2017030
Seroepidemiology of Sarcocystis neurona and Neospora hughesi infections in domestic donkeys (Equus asinus) in Durango, Mexico

Cosme Alvarado-Esquivel1,*, Daniel K. Howe2, Michelle R. Yeargan2, Domingo Alvarado-Esquivel1, José Alfredo Zamarripa-Barboza3, and Jitender P. Dubey4

1 Biomedical Research Laboratory, Faculty of Medicine and Nutrition, Juárez University of Durango State. Avenida Universidad S/N, 34000 Durango, Mexico
2 Department of Veterinary Science, M. H. Gluck Equine Research Center, University of Kentucky Lexington, Kentucky 40546-0099, USA
3 Healthcare Center No. 1 “Dr. Carlos León de la Peña”. Secretary of Health, Boulevard de la Juventud S/N, 34000 Durango, Mexico
4 United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Building 1001, Beltsville, Maryland 20705-2350, USA

Received 22 May 2017, Accepted 7 July 2017, Published online 21 July 2017

Abstract – There is currently no information regarding Sarcocystis neurona and Neospora hughesi infections in donkeys in Mexico. Here, we determined the presence of antibodies against S. neurona and N. hughesi in donkeys in the northern Mexican state of Durango. Serum samples of 239 domestic donkeys (Equus asinus) were assayed for S. neurona and N. hughesi antibodies using home-made enzyme-linked immunosassays; six (2.5%) of the 239 donkeys tested seropositive for S. neurona. The seroprevalence of S. neurona infection was comparable among donkeys regardless of their origin, health status, or sex. Multivariate analysis showed that seropositivity to S. neurona was associated with increased age (OR = 2.95; 95% CI: 1.11–7.82; p = 0.02). Antibodies to N. hughesi were found in two (0.8%) of the 239 donkeys. Both exposed donkeys were healthy, 3- and 6-year-old females. This is the first evidence of S. neurona and N. hughesi infections in donkeys in Mexico.

Key words: Sarcocystis neurona, Neospora hughesi, Seroprevalence, Donkeys, Cross-sectional study, Mexico.

Résumé – Séroépidémiologie des infections par Sarcocystis neurona et Neospora hughesi chez les ânes domestiques (Equus asinus) à Durango, au Mexique. Il n’y a actuellement aucune information concernant les infections par Sarcocystis neurona et Neospora hughesi chez les ânes au Mexique. Dans cet article, nous avons déterminé la présence d’anticorps contre S. neurona et N. hughesi chez les ânes dans l’État de Durango au nord du Mexique. Des échantillons de sérum de 239 ânes domestiques (Equus asinus) ont été testés pour les anticorps de S. neurona et N. hughesi à l’aide d’immunoassais enzymatiques faits maison; six (2.5 %) des 239 ânes ont été testés séropositifs pour S. neurona. La séroprévalence de l’infection par S. neurona était comparable chez les ânes, quels que soient leur origine, leur état de santé ou leur sexe. L’analyse multivariée a montré que la séropositivité à S. neurona était associée à l’âge (OR = 2.95 ; IC à 95 % : 1.11-7.82 ; p = 0.02). Les anticorps contre N. hughesi ont été trouvés chez 2 (0.8 %) des 239 ânes. Les deux ânes positifs étaient des femelles de 3 à 6 ans en bonne santé. Ceci est la première preuve d’infections à S. neurona et N. hughesi chez les ânes au Mexique.

Introduction

The apicomplexan protozoa Sarcocystis neurona (S. neurona) and Neospora hughesi (N. hughesi) are the etiological agents of equine protozoal myeloencephalitis, which is an important neurological disease of horses in the Americas [3, 4]. Additionally, Neospora spp. can cause abortion in horses. Although S. neurona and Neospora spp. can cause disease in equids other than horses, there are no reports of clinical disease in donkeys. There is scarce information regarding S. neurona and N. hughesi infections outside of the United States [3, 4]. We recently reported the first seroprevalence of these infections in horses in Durango, Mexico [16]. However, we are not aware of any study of these infections in donkeys.
(Equus asinus) in Mexico. Here we determined the seroprevale-
cences of *S. neurona* and *N. hughesi* infections in donkeys in
the northern Mexican state of Durango because there are no
reports of these infections in donkeys.

Materials and methods

**Study design, donkeys surveyed, and serological
eamination**

We performed a cross-sectional study using serum samples
from a previous *Toxoplasma gondii* serosurvey of 239 domestic
donkeys in Durango, Mexico [1]. As a strategy to enroll donkeys
in the study, we obtained permission to sample donkeys in four
equid gathering premises (trade centers) in the municipality of
Durango, Mexico. These premises trade donkeys for slaughter
in abattoirs outside Durango State. All donkeys were mixed
breed. A veterinarian obtained the clinical data for the donkeys.
Of the 239 donkeys examined clinically, 193 were healthy, one
was malnourished, one had an abdominal mass, and 44 had
dermal sores. Donkeys were 0.2–12 years old, and included
170 (71.1%) females and 69 (28.9%) males. According to the
owners, all donkeys were kept on pasture.

Serum samples were evaluated for antibodies against
S. neurona and *N. hughesi* using the rSNsAG2/4/3 [15] and
the bNHsAG1 [10] enzyme-linked immunosorbent assays
(ELISAs), respectively. Antibodies were detected using goat
anti-horse IgG (Jackson ImmunoResearch Laboratories, Inc.,
West Grove, PA, USA) diluted 1:10,000. The positive control
serum for *S. neurona* was from a horse with equine protozoal
myeloencephalitis that was confirmed histologically [9]. The
positive control serum for *N. hughesi* was from a mare
with confirmed *N. hughesi* transplacental passage to the foal
(kindly provided by Dr. Nicola Pusterla, University of
California-Davis, USA). The negative control serum for both
ELISAs was a pre-infection sample collected from a weanling
used in a prior infection trial. Percent positivity (PP) values
were calculated using the optical densities obtained from the
test sample and the positive and negative control samples, as
described previously [9]. PP cut-off values of 10% and 20%
were used for the *S. neurona* and *N. hughesi* ELISAs, respec-
tively. Western blot analysis using whole-parasite antigen was
conducted with all ELISA-positive samples to confirm the
presence of antibodies.

Statistical analysis

For statistical analysis, SPSS 15.0 software (SPSS Inc.,
Chicago, IL, USA) and the Fisher exact test were used for
comparison of the frequencies among groups. The association
between the donkeys’ characteristics and *S. neurona* and
N. hughesi seropositivities was analyzed by stepwise regression
analysis using the backwards elimination method. The depend-
ent variable was seropositivity to *S. neurona*. Independent
variables included in the regression analysis were only those
with *p* < 0.35 obtained in the bivariate analysis: age, sex,
and health status. We calculated the odds ratio (OR) and
95% confidence interval (CI), and a *p* value of < 0.05

was considered statistically significant. The Hosmer-
Lemeshow goodness of fit test to assess the fitness of the
regression model was used.

Results

Antibodies to *S. neurona* were found in 6 (2.5%) of the 239
donkeys. A correlation between seropositivity to *S. neurona*
and donkeys’ characteristics is shown in Table 1. Seropreva-
cence of *S. neurona* infection was comparable (*p* = 0.65) in
donkeys from the valleys region (3.2%) and in those
from the mountainous region (2.3%) (Table 1). Seropositive
donkeys were found in only one (25%) of the four gathering
premises studied, and they came from two (66.7%) of the
3 municipalities.

The seroprevalence of *S. neurona* infection was compara-
tble among donkeys regardless of their health status or sex
(Table 1). Seropositivity to *S. neurona* was observed only in
donkeys aged 6–12 years old. Thus, the seroprevalence of
S. neurona was significantly higher in donkeys > 5 years old
than in younger donkeys (*p* = 0.008). The variables age, sex,
and health status showed *p* values lower than 0.35 in the
bivariate analysis and were included in the regression analysis.
Multivariate analysis showed that seropositivity to *S. neurona*
was associated with increased age (OR = 2.95; 95% CI:
1.11–7.82; *p* = 0.02). However, the other two characteristics
of donkeys (sex and health status) were not associated with
S. neurona seropositivity by multivariate analysis. The result
of the Hosmer-Lemeshow test was 5 (*p* = 0.08), indicating
an acceptable fit of our regression model.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Donkeys tested</th>
<th>Seroprevalence of S. neurona infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>1–5</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>> 5</td>
<td>93</td>
<td>6.5</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>69</td>
<td>0</td>
</tr>
<tr>
<td>Female</td>
<td>170</td>
<td>3.5</td>
</tr>
<tr>
<td>Health status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ill</td>
<td>46</td>
<td>4.3</td>
</tr>
<tr>
<td>Healthy</td>
<td>193</td>
<td>2.1</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mountains</td>
<td>177</td>
<td>2.3</td>
</tr>
<tr>
<td>Valleys</td>
<td>62</td>
<td>3.2</td>
</tr>
<tr>
<td>Municipality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durango</td>
<td>62</td>
<td>3.2</td>
</tr>
<tr>
<td>Mezquital</td>
<td>172</td>
<td>2.3</td>
</tr>
<tr>
<td>San Dimas</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Trade center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>170</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>0</td>
</tr>
</tbody>
</table>

\[p \text{-value} \text{ of } <0.05 \text{ obtained in the bivariate analysis: age, sex, and health status.} \]
Antibodies to *N. hughesi* were found in 2 (0.8%) of the 239 donkeys. One seropositive case was from the valleys region and the second from the mountainous region. Donkeys seropositive to *N. hughesi* were found in only 1 (25%) of the 4 gathering premises, and they came from the municipalities of Durango and Mezquital. Both donkeys seropositive for *N. hughesi* were healthy females, 3 and 6 years old.

Discussion

The seroepidemiology of infection with *S. neurona* and *N. hughesi* in equids other than horses has received little attention. The 2.5% seroprevalence of *S. neurona* infection found in donkeys in Durango was unexpected since a 48.5% seroprevalence of this infection was found in horses in the same Durango State [16]. Opossums of the *Didelphis virginiana* species, one of the definitive hosts of *S. neurona* [3], are present widely in Durango State as shown in a previous study of *T. gondii* infection [5]. It is unclear why donkeys had a lower seroprevalence of *S. neurona* infection than horses. The same immunoassay to detect anti-*S. neurona* antibodies was used in both studies. This assay is based on three parasite surface proteins that are highly immunogenic, and it is likely that the antigens elicit robust antibody responses in donkeys similar to what is observed in all other animals infected or immunized with *S. neurona*. It is possible that horses were in greater contact with opossums than donkeys. Opossums are present widely in urban Durango. We are not aware of any reports regarding differences in densities of opossums in urban and rural areas. However, it was suggested that urban areas provide more resources and may be beneficial to opossums and rural areas. However, it was suggested that urban areas provide more resources and may be beneficial to opossums living within the city limits had a larger average body mass than those in rural areas [14]. Interestingly, urban horses had a higher seroprevalence of *S. neurona* than rural horses [16]. Donkeys in the present study were from rural areas of Durango State. Donkeys studied were pastured on large rural lands and the likelihood of contact with opossum feces was perhaps low. Horses fed with grains and crops had a significantly higher seroprevalence of *S. neurona* than horses fed with grass [16]. We searched for factors associated with *S. neurona* in the donkeys studied. Multivariate analysis showed that seropositivity to *S. neurona* was associated with increased age. Donkeys older than 5 years had the highest seroprevalence of *S. neurona* infection. This finding is consistent with a previous observation in horses. In a recent study in the United States, age > 5 years in horses was associated with *S. neurona* seropositivity [11]. As for horses, the likelihood of infection with *S. neurona* increases with age. There are few reports on the seroprevalence of *S. neurona* in equids other than horses. We are aware of only two reports of *S. neurona* prevalence in donkeys. Sera of 18 donkeys from Ohio, USA were analyzed for antibodies to *S. neurona* using an immunoblot, and 11 (61.1%) of them were positive [13]. Sera of 333 donkeys from four states in Brazil were tested for antibodies to *S. neurona* by using the indirect fluorescent antibody test (IFAT, cut-off 1:40) and direct agglutination tests (SAT, cut-off 1:50). Ten (3.0%) were seropositive by IFAT and 69 (21.0%) were positive by SAT [7]. However, comparison of these seroprevalences should be interpreted with care since different laboratory methods were used to detect anti-*S. neurona* antibodies among the studies. In both IFAT and SAT, whole merozoites are used as antigen, whereas in the present study, ELISA based on recombinant antigens was used.

With respect to *N. hughesi* infection, donkeys had an unexpectedly low (0.8%) seroprevalence of this infection. This seroprevalence is comparable with a 2% seroprevalence of *Neospora* reported in 333 donkeys from the north-eastern region of Brazil using IFAT (cut-off 1:40) [7]. In another study in Brazil, researchers found antibodies to *Neospora* in 2 of 500 donkeys studied using IFAT (cut-off 1:100) [6]. Antibodies to *Neospora* were also reported in 11 (19.7%) of 56 donkeys from Colombia by using Dot-ELISA [2], in 52 (52%) of 100 donkeys from Iran by the *Neospora* agglutination test (NAT, cut-off 1:80) [8], and 28 (11.8%) of 238 donkeys from Italy by using competitive inhibition ELISA [12]. Again, comparison of seroprevalences among the studies should be interpreted cautiously because of different laboratory methods used to detect anti-*Neospora* antibodies. Additionally, reports from Brazil, Colombia, Iran, and Italy used antigen of *Neospora caninum*, whereas in the present study, antigens from *N. hughesi* were used. Currently, there are two species of *Neospora*: *N. caninum* with a wide host range, and dogs (*Canis domesticus*), coyotes (*Canis latrans*), and wolves (*Canis lupus*) as definitive hosts, and *N. hughesi* with horses as intermediate hosts, and unknown definitive hosts [4].

Conclusions

We conclude that seroprevalences of *S. neurona* and *N. hughesi* infections are low in donkeys in Durango, Mexico. This is the first study that provides serological evidence of *S. neurona* and *N. hughesi* infections in donkeys in Mexico.

Conflict of interest

The authors declare that they have no conflict of interest.

References

An international open-access, peer-reviewed, online journal publishing high quality papers on all aspects of human and animal parasitology

Reviews, articles and short notes may be submitted. Fields include, but are not limited to: general, medical and veterinary parasitology; morphology, including ultrastructure; parasite systematics, including entomology, acarology, helminthology and protistology, and molecular analyses; molecular biology and biochemistry; immunology of parasitic diseases; host-parasite relationships; ecology and life history of parasites; epidemiology; therapeutics; new diagnostic tools.

All papers in Parasite are published in English. Manuscripts should have a broad interest and must not have been published or submitted elsewhere. No limit is imposed on the length of manuscripts.

Parasite (open-access) continues Parasite (print and online editions, 1994-2012) and Annales de Parasitologie Humaine et Comparée (1923-1993) and is the official journal of the Société Française de Parasitologie.

Editor-in-Chief:
Jean-Lou Justine, Paris

Submit your manuscript at http://parasite.edmgr.com/