3-29-2017

GABA_B Receptor Attenuation of GABA_A Currents in Neurons of the Mammalian Central Nervous System

Wen Shen
Florida Atlantic University, wshen@fau.edu

Changlong Nan
Florida Atlantic University

Peter T. Nelson
University of Kentucky, pnels2@uky.edu

Harris Ripps
University of Illinois at Chicago

Malcolm M. Slaughter
State University of New York at Buffalo

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/pathology_facpub

Part of the Neurology Commons, Neuroscience and Neurobiology Commons, Ophthalmology Commons, and the Pathology Commons

Repository Citation
Shen, Wen; Nan, Changlong; Nelson, Peter T.; Ripps, Harris; and Slaughter, Malcolm M., "GABA_B Receptor Attenuation of GABA_A Currents in Neurons of the Mammalian Central Nervous System" (2017). Pathology and Laboratory Medicine Faculty Publications. 16. https://uknowledge.uky.edu/pathology_facpub/16

This Article is brought to you for free and open access by the Pathology and Laboratory Medicine at UKnowledge. It has been accepted for inclusion in Pathology and Laboratory Medicine Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
GABA_B Receptor Attenuation of GABA_A Currents in Neurons of the Mammalian Central Nervous System

Notes/Citation Information
Published in *Physiological Reports*, v. 5, issue 6, e13129, p. 1-11.

© 2017 The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Digital Object Identifier (DOI)
https://doi.org/10.14814/phy2.13129

This article is available at UKnowledge: https://uknowledge.uky.edu/pathology_facpub/16
ORIGINAL RESEARCH

GABA_B receptor attenuation of GABA_A currents in neurons of the mammalian central nervous system

Wen Shen¹, Changlong Nan¹, Peter T Nelson²,³, Harris Ripps⁴,⁵ & Malcolm M Slaughter⁶

¹ Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
² Division of Neuropathology, Department of Pathology, University of Kentucky, Lexington, Kentucky
³ Sanders-Brown Centre on Aging, University of Kentucky, Lexington, Kentucky
⁴ Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, Illinois
⁵ Whitman Investigator, Marine Biological Laboratory, Woods Hole, Massachusetts
⁶ Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York

Keywords

GABA_A receptors, GABA_B receptors, human amygdala, mouse retina, µ-subunit GABA_A receptors.

Correspondence

Wen Shen, Department of Biomedical Science, CES College of Medicine, Florida Atlantic University, Boca Raton, FL 33431. Tel: (561)297 0628 Fax: (561)297 2221 E-mail: wshen@fau.edu

Funding Information

This study was supported by grants from the National Science Foundation (NSF, IOS-1021646, to W. S.) and the National Eye Institute (NEI, NIH (EY 14161, to W. S.).

Received: 12 November 2016; Accepted: 18 November 2016
doi: 10.14814/phy2.13129

Physiol Rep, 5 (6), 2017, e13129, doi: 10.14814/phy2.13129

Abstract

Ionotrophic receptors are tightly regulated by second messenger systems and are often present along with their metabotropic counterparts on a neuron’s plasma membrane. This leads to the hypothesis that the two receptor subtypes can interact, and indeed this has been observed in excitatory glutamate and inhibitory GABA receptors. In both systems the metabotropic pathway augments the ionotropic receptor response. However, we have found that the metabotropic GABAB receptor can suppress the ionotropic GABA_A receptor current, in both the in vitro mouse retina and in human amygdala membrane fractions. Expression of amygdala membrane microdomains in Xenopus oocytes by microtransplantation produced functional ionotropic and metabotropic GABA receptors. Most GABA_A receptors had properties of α-subunit containing receptors, with ~5% having µ-subunit properties. Only GABA_A receptors with α-subunit-like properties were regulated by GABA_B receptors. In mouse retinal ganglion cells, where only α-subunit-containing GABA_A receptors are expressed, GABA_B receptors suppressed GABA_A receptor currents. This suppression was blocked by GABA_B receptor antagonists, G-protein inhibitors, and GABA_B receptor antibodies. Based on the kinetic differences between metabotropic and ionotropic receptors, their interaction would suppress repeated, rapid GABAergic inhibition.

Introduction

GABA, the major inhibitory transmitter in brain, binds fast-acting ionotropic GABA_ARs that function as Cl⁻ permeable heteropentameric ion channels. Additionally, GABA activates slower, metabotropic GABA_B G-protein-coupled receptors (GPCRs) that regulate voltage-gated K⁺ and Ca²⁺ channels (Bowery et al. 1980; Kaupmann et al. 1998). As their activity influences many neural systems and behavioral states, the GABA_B receptor is a major target of therapeutic drugs for mental disorders and drugs of abuse (Bettler et al. 2004).

Both retina and amygdala express high levels of ionotropic and metabotropic GABA receptors (Li et al. 1996). Retinal ganglion cells possess both GABA_ARs and GABA_BRs (Friedman and Redburn 1990; Koulen et al. 1998), and GABAergic neurons are essential for image processing in ganglion cells (Fried et al. 2005). GABAergic transmission is also crucial for the low firing rate and strong inhibitory tone in amygdala and projection neurons that target the thalamus and hypothalamus (Barnard et al. 1998; Lang and Pare 1998; Quirk and Gehlert 2003) and have been linked to emotional behavior, such as anxiety (Lehner et al. 2010).
GABARs participate in this action by inhibiting glutamatergic cortical input to lateral amygdala, selectively suppressing excitation of principle neurons (Yamada et al. 1999; Pan et al. 2009). The GABARs also suppress projection neurons postsynaptically by activating inward rectifying potassium channels (Huttmann et al. 2006).

The α-subunit containing GABAAR possesses consensus sequence phosphorylation sites for PKA, PKC, tyrosine, and calmodulin kinases (Song and Messing 2005). Notably, PKC reduces the GABAAR current and this is associated with various serine sites on β- and γ-subunits (Kellenberger et al. 1992; Krishek et al. 1994). An example is serotonin suppression of GABA currents in prefrontal cortex through PKC activation (Feng et al. 2001). PKA can either enhance or suppress GABAAR currents, depending on the β-subunit of the receptor (McDonald et al. 1998).

The GABAAR reduces adenylyl cyclase activity (Dutar and Nicoll 1988; Kamatchi and Ticku 1990; Knight and Bowery 1996) and modulates PKC (Dutar and Nicoll 1988; Taniyama et al. 1992; Kubota et al. 2003). Consequently, the GABAAR can act through a variety of second messenger cascades to modulate the GABAAR current. In GABA receptors that contain the δ subunit, the GABAAR can increase the tonic current of the GABAAR and promote inhibition, likely acting by suppressing PKA activity (Connelly et al. 2013; Tao et al. 2013). This has been found in dentate gyrus, thalamus, and cerebellum.

A report on the interaction between GABA A and GABA B receptors in bullfrog dorsal root ganglion neurons was described in 1997 (Xi et al. 1997), but to our knowledge there has been no further exploration of this phenomenon. The purpose of this study was to explore GABA receptor interactions in two mammalian tissues: native mouse retinal neurons and in tissue derived from human amygdala. The latter was accomplished by microtransplantation of plasma membrane from human amygdala into Xenopus oocytes (Miledi et al. 2006). The in vitro retina preparation demonstrates this crosstalk between GABA A and GABA B receptors in the mammalian nervous system; the oocyte preparation demonstrates the utility of the microtransplantation technique in examining multireceptor activation in an inaccessible part of the human nervous system. In combination, these experiments indicate that GABA B Rs may have a widespread and unanticipated net disinhibitory action in the mammalian central nervous system.

Materials and Methods

Microtransplantation of membrane fractions

The microtransplantation method of incorporating transmitter receptors from native tissue into *Xenopus* oocytes was employed. This is an alternative approach for studying ion channel and receptor properties (Miledi et al. 2002, 2004, 2006). The method is designed to insert into the oocytes with already assembled receptors and ion channels in their native membrane fraction, bypassing the oocyte’s protein processing machinery elicited by foreign RNA transfection.

Human amygdala tissue was obtained from four males and two females autopsied at the University of Kentucky Alzheimer’s Disease (AD) Center biobank, under the purview of the University of Kentucky IRB (Schmitt et al. 2012), but who had no AD pathology. The postmortem intervals were all <4 h, and tissues were snap-frozen at the time of autopsy in liquid nitrogen and then stored at −80°C until use. Membrane fractions were collected following the published protocol (Eusebi et al. 2009). Briefly, a 500- to 600-mg piece of frozen human amygdala tissue was homogenized in a glass tube containing a high glucose solution. The homogenized solution was centrifuged for 15 min at 9400 g (Eppendorf Centrifugal 5418) in a cold room, and the supernatant was collected and ultracentrifuged at 100,000 g (Beckman Coulter Optima L-90K) for 2 h at 4°C. The pellets (membrane proteins and lipids) were resuspended in a cold glycerine buffer solution and stored at −80°C.

Freshly harvested *Xenopus* oocytes were purchased from the Ecocyte Bioscientific US LLC (Austin, TX). The oocytes were injected with 41–82 nL of membrane fraction samples, in which the protein concentrations were calibrated at 0.5–1 mg/mL, using an autonanoliter injector – Nanoject II (Drummond Scientific Company). After 1–2 days, the native membrane proteins embedded in their natural lipid environment readily incorporated into surface membranes of the injected oocytes. A sham control was performed by injection of a glycerine buffer solution.

Electrophysiological recording

The oocytes were placed in the recording chamber and superfused with modified Barth’s solution containing (mmol/L): NaCl (115), KCl (2), CaCl2 (1.8), N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES, 5), pH 7.4, at room temperature. GABA currents were recorded from individual oocytes using a double-electrode voltage-clamp amplifier (GeneClamp 500B, Axon Instruments, Inc.). Microelectrodes were pulled to resistances between 0.7 and 1.5 MΩ when filled with 3.0 mol/L KCl for voltage and current recordings. Data acquisition and analysis were performed using Powerlab-LabChat V7 (AD Instruments). Where applicable, drug–receptor interaction curves were determined by fitting the experimental data to a Hill equation:
were vertically sectioned in 250 photoreceptors down. The retinal tissue and filter paper were prepared in the modified Barth’s solution and were superfused by a gravity-feed perfusion system.

Whole-cell recording from mouse retinal ganglion cells was performed with an EPC-10 amplifier and HEKA software (HEKA). Briefly, the retina was isolated from 4- to 8-week-old mice and flat mounted on filter paper with the University’s Animal Care Committee. The procedures were performed in accordance with the provisions of the National Institutes of Health Guide for the Care and Use of Laboratory Animals, and approved by the University’s Animal Care Committee.

A single slice was moved to a recording chamber and superfused constantly with the MEM solution. Voltage-clamp recordings were made on ganglion cells in the retinal slices. The recording electrodes were filled with an intracellular solution containing (mmol/L): K-glucuronate 120, MgCl₂ 1, CaCl₂ 0.5, HEPES 10, EGTA 5, GTP 1, ATP 5, GABA₃ and GABA₅ receptor agonists were briefly puffed on ganglion cells with a DAD-VM 12 valve manifold superfusion system (ALA Scientific Instruments). All the chemicals were purchased from Sigma or Tocris.

Immunoantibody labeling

After voltage or current recording, the oocytes were washed twice with the modified Barth’s solution and fixed in a 4% paraformaldehyde solution for 45 min at room temperature followed by washing with the Barth’s solution. The oocytes were treated in 1% Triton-X100 contained Barth’s solution for 20 min, immersed in the blocking solution containing 5% goat serum for 2 h, then incubated overnight at 4°C in solution containing rabbit monoclonal anti-GBRII (GABA₅ receptor II, Abcam, ab75838, 1:1000) and 5% goat serum. After washing with the Triton-X100 solution the oocytes were incubated with goat-anti-rabbit Cy-3-conjugated secondary antibody (1:600) for 1 h in darkness. Immunostained oocytes were visualized in a Zeiss LSM 700 confocal microscope system (Munich, Germany).

$I/I_{\text{max}} = \frac{[C]^n}{([C]^n + [EC_{50}]^n)}$

where I is the current response to a drug concentration [C], I_{max} is the current elicited at a saturating drug concentration, n is the Hill coefficient, and EC_{50} (or $1/IC_{50}$, where the reciprocal replaces EC_{50} in the above equation) is the concentration at which a half-maximal drug response is obtained. Average peak current was measured and presented as mean ± SEM of 4–18 sets of data from different oocyte batches. Significant differences were determined by unpaired Student’s t-test using Microsoft Excel. The receptor agonists and antagonists were prepared in the modified Barth’s solution and were superfused by a gravity-feed perfusion system.

Results

Characterizing ionotropic GABA receptors from the human amygdala

GABA responses in human amygdala have not been reported, so initial experiments were performed to characterize the ionotropic GABA receptor currents. Oocytes were studied 2–3 days after injection of amygdala membrane fractions. As illustrated in Figure 1A, currents were elicited by various concentrations of GABA (5–1000 μmol/L) in transplanted oocytes held at −70 mV. The threshold concentration for GABA was around 5 μmol/L and maximum GABA currents were elicited by 500 μmol/L GABA. The current response to 1000 μmol/L GABA was reduced, probably due to fast desensitization (darkest trace in Fig. 1A). Also, a noticeable GABA current decay appeared when the concentration exceeded 20 μmol/L GABA, indicative of receptor desensitization. A similar pattern of dose-dependent currents was induced by muscimol, a selective z-subunit GABA₅R agonist (Fig. 1B). The dose-response curves of GABA and muscimol are plotted in Figure 1C; the calculated mean EC_{50} of GABA and muscimol were 69 μmol/L (n = 9) and 45 μmol/L (n = 9), respectively. On average, the maximum current amplitudes generated by saturating concentrations (500 μmol/L) of GABA and muscimol were 134 ± 21 nA (n = 9) and 189 ± 32 nA (n = 5), respectively, representing a statistically significant difference (P < 0.01) in the responses to these agonists.

GABA-elicted currents were recorded at various voltages as designated in Figure 1D. The peak current amplitudes at each voltage are plotted in Figure 1E, showing that the voltage–current relationship of GABA receptors was approximately linear with the reversal potential around −20 mV, corresponding to the Cl⁻ equilibrium potential in Xenopus oocytes (Kusano et al. 1982). In a negative control, GABA currents were recorded from oocytes injected with a sham solution, showing that no endogenous GABA response (Fig. 1F).

Ionotropic GABA₅Rs can be broadly divided into z-subunit containing receptors (the classical GABA₅Rs) and the more recently discovered p-subunit containing GABA₅Rs (often called GABA₆Rs). Pharmacological properties of z-containing GABA₅Rs from human amygdala were studied using SR95531 (gabazine) and bicuculline, selective antagonists. These agents were tested against 50 μmol/L GABA, the approximate EC_{50} concentration (see Fig. 1C). The GABA currents were antagonized by either SR95531 or bicuculline in a dose-dependent manner (Fig. 2A and B). Picrotoxin, a nonselective blocker of Cl⁻ permeable receptors, was also an effective dose-dependent inhibitor (data not shown). The antagonist dose–response curves shown
in Figure 2C indicate that the IC$_{50}$ of SR95531, bicuculline, and picrotoxin were 0.6 µmol/L ($n = 6$), 8 µmol/L ($n = 5$), and 10 µmol/L ($n = 5$), respectively. The concentrations needed for maximal inhibition (IC$_{max}$) were approximately 10 µmol/L for SR95531 and 100 µmol/L for both bicuculline and picrotoxin (Fig. 2C). However, none of the antagonists fully blocked the GABA-induced current, generally 10% of the current remained (Fig. 2D). Amygdala is reported to express α-subunit GABA ARs (Li et al. 1996; Cunha et al. 2010; Flores-Gracia et al. 2010). CACA (cis 4-aminocrotonic acid) is a α-subunit GABA AR agonist (Johnston 1996; Cherubini and Strata 1997). CACA at 100 µmol/L produced a maximal current that was approximately 9% of the EC$_{50}$ current produced by 50 µmol/L GABA, indicating it contributes about 5% of the total GABA current (Fig 2D).

TPMPA (1,2,5,6-tetrahydropyridin-4-yl methylphosphinic acid) is a α-subunit GABA AR antagonist. In experiments in which the α-subunit GABA$_\alpha$R current was blocked by 200 µmol/L bicuculline, then 100 µmol/L TPMPA, could partially block the remaining current produced by 50 µmol/L GABA (Fig. 2E). The current elicited by 100 µmol/L CACA was partially blocked by TPMPA (Fig. 2F). Collectively, these data identify a small but significant functional α-subunit GABA AR response in human amygdala. Even 200 µmol/L picrotoxin does not fully block 50 µmol/L GABA (Fig. 2G), suggesting that the transplanted human α-subunit GABA$_\alpha$Rs are picrotoxin insensitive. Picrotoxin block of α-subunit GABA$_\alpha$Rs is species specific and ineffective in rat, although heterologous expression of human α-subunit GABA$_\alpha$Rs are picrotoxin sensitive (Zhang et al. 1995).

The histogram in Figure 2D summarizes results obtained from oocytes, indicating that 50 µmol/L GABA-elicted currents were largely blocked by each of the α-subunit GABA$_\alpha$R antagonists: bicuculline, SR95531 and picrotoxin (tested at the IC$_{max}$ values). Only small percentage of the GABA currents were insensitive to these antagonists, averaging 9.8 ± 2% ($n = 18$), 7.2 ± 2% ($n = 16$), and 12 ± 4% ($n = 18$), respectively. This remaining current was very similar to the average current produced by 100 µmol/L CACA, 9.3 ± 3% ($n = 12$). These results indicate that the α-subunit GABA$_\alpha$R is a major inhibitory receptor in human...
The evidence of GABA_BR and its inhibitory action

Both GABA_ARs and GABA_BRs are present in amygdala (Li et al. 1996) and the relative effectiveness of muscimol and GABA (see Fig. 1) suggested an interaction between the two receptor pathways. Since muscimol does not activate GABA_BRs, we examined the current produced by muscimol alone or in the presence of baclofen, a selective GABA_BR agonist. Muscimol (10 µmol/L) elicited currents were robustly suppressed by both 10 µmol/L and 100 µmol/L baclofen in a dose-dependent manner (Fig 3A). The suppressive effect of baclofen could be fully suppressed by 20 µmol/L CGP52432, a GABA_BR antagonist (Fig 3B). However, 10 µmol/L baclofen, with or without CGP52432, produced no effect on the resting
membrane currents prior to application of muscimol (Fig. 3B, asterisk), indicating that activation of GABA BRs alone did not produce membrane currents in the oocytes.

The effect of baclofen on \(\alpha\)-subunit GABA AR was also tested in the transplanted oocytes. A typical example, shown in Figure 3C, indicates that 10 \(\mu\)mol/L baclofen had no detectable effect on CACA-elicited currents. On average, 10 \(\mu\)mol/L baclofen (BAC) reduced 48 \(\pm\) 3\% \((n = 12)\) of 10 \(\mu\)mol/L muscimol-generated peak current, but had insignificant effects on 100 \(\mu\)mol/L CACA-generated currents. (D) Summary of the effects of 10 \(\mu\)mol/L baclofen on the currents produced by muscimol or CACA. On average, 10 \(\mu\)mol/L baclofen (BAC) reduced 48 \(\pm\) 3\% \((n = 12)\) of 10 \(\mu\)mol/L muscimol-generated peak current, but had insignificant effects on 100 \(\mu\)mol/L CACA-generated currents. (E) Western blotting indicates that anti-GBR2 antibody detected a single protein band at 107 kDa from a sample of the membrane fraction (left), and the anti-GBR2 detection of GABA BRs on the membrane surface of oocytes injected with either the membrane fraction or sham control. The inserts show magnified views of oocyte membrane. (F, G) Baclofen (10 \(\mu\)mol/L) had small effects on the oocytes injected with the anti-GBR2 applied membrane fractions. (H) Internal perfusion of GDP-\(\beta\)-S blocked 10 \(\mu\)mol/L baclofen-produced inhibition.

Figure 3. Activation of GABA\(_B\)R inhibits \(\alpha\)-subunit GABA\(_A\)R currents. (A) 10 \(\mu\)mol/L and 100 \(\mu\)mol/L baclofen inhibit muscimol (10 \(\mu\)mol/L)-evoked currents. (B) The suppressive effect of baclofen was blocked by 20 \(\mu\)mol/L CGP52432, a GABA\(_B\)R inhibitor; note that the baclofen with and without CGP52432 have no effect on the resting membrane current (see asterisk). (C) Baclofen (10 \(\mu\)mol/L) did not suppress the CACA-activated current. (D) Summary of the effects of 10 \(\mu\)mol/L baclofen on the currents produced by muscimol or CACA. On average, 10 \(\mu\)mol/L baclofen (BAC) reduced 48 \(\pm\) 3\% \((n = 12)\) of 10 \(\mu\)mol/L muscimol-generated peak current, but had insignificant effects on 100 \(\mu\)mol/L CACA-generated currents. (E) Western blotting indicates that anti-GBR2 antibody detected a single protein band at 107 kDa from a sample of the membrane fraction (left), and the anti-GBR2 detection of GABA BRs on the membrane surface of oocytes injected with either the membrane fraction or sham control. The inserts show magnified views of oocyte membrane. (F, G) Baclofen (10 \(\mu\)mol/L) had small effects on the oocytes injected with the anti-GBR2 applied membrane fractions. (H) Internal perfusion of GDP-\(\beta\)-S blocked 10 \(\mu\)mol/L baclofen-produced inhibition.
(Fig. 3E, left), consistent with the molecular mass of GABA_B2 subunit. The anti-GBR2 labeling results indicate that GABA_B2Rs were transported to the surface of the Xenopus oocytes after injecting membrane fractions from the human amygdala, but absent on the surface of oocytes injected with a sham control (Fig. 3E), demonstrating that GABA_B2Rs are not endogenously expressed in Xenopus oocytes.

In another approach to test the suppressive effect of baclofen on GABA_A currents, the anti-GBR2 antibody was used to selectively disrupt GABA_B2 function. Functional GABA_B1Rs are heterodimers composed of GBR1 and GBR2 (Geng et al. 2013). The anti-GBR2 antibody was applied in the membrane fraction sample with a volume ratio of 1:10,000 (antibody vs. membrane fraction sample), then injected into Xenopus oocytes. After 24 h, the effect of baclofen was tested on the oocytes with the standard protocol: application of 10 μmol/L muscimol with and without 100 μmol/L baclofen. In the presence of the anti-GBR2, baclofen had a comparatively small effect on the muscimol-elicited currents (Fig. 3F). On average, with anti-GBR2 application, muscimol with and without baclofen generated about 97.2 ± 5.7% (n = 7) and 88.1 ± 6% (n = 7) of the control muscimol-elicited currents, respectively. Application of anti-GBR2 had a minor action on muscimol-activated GABA_ARs, but disrupted the actions of GABA_B2Rs (Fig. 3G).

To confirm that baclofen’s effect was mediated by a G-protein cascade, the nonhydrolyzable analog of guanosine-5’-diphosphate (GDP), guanosine-5’-O-(2-thiodiphosphate) trillithium salt (GDP-β-S), was injected into the oocyte. GDP-β-S (100 μmol/L) injection suppressed the effect of baclofen on the GABA_A currents (Fig. 3H). This was also consistent with the previous report that baclofen does not act as a competitive antagonist at the GABA_ARs (Xi et al. 1997).

Increasing GABA_A response by inhibition of GABA_BRs

To test the prediction that the response to GABA would be enhanced if GABA_BRs were not activated, the potent GABA_B antagonists, CGP55845 and CGP52432, were used to block GABA_BRs when GABA was applied. The sample recordings shown in Figure 4A indicate that 10 μmol/L CGP55845 or 20 μmol/L CGP52432 increased GABA (50 μmol/L)-elicited currents. This effect was present in 11 of 19 transplanted oocytes obtained from different batches. Histograms from those 11 cells show that average GABA currents in the presences of CGP55845 or CGP52432 were increased to 142.5 ± 13.2% (n = 11) or 131 ± 6.2% (n = 11), respectively (Fig. 4B). In contrast, when only GABA_ARs were activated with 10 μmol/L muscimol, CGP52432 had no effect on muscimol-induced currents (Fig. 4C), indicating that the GABA_B antagonist has no direct action on GABA_ARs.

Interaction between GABA receptors in retinal ganglion cells

The effects of GABA_BRs on GABA_A currents were also tested on neurons in the in vitro rodent retina slice preparation. Neurons were recorded in the ganglion cell layer using the whole-cell voltage-clamp technique and were characterized by large voltage-activated sodium currents, typical of ganglion cells (Fig. 5A). Neurons were held at various potentials between −90 and −10 mV and either 30 μmol/L muscimol or muscimol plus 10 μmol/L baclofen was focally applied. A typical experiment is shown in Figure 5B, the averaged I–V curve from

© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
recordings in seven neurons is shown in Figure 5C. Baclofen suppressed muscimol-elicited inward and outward currents \((n = 7, \text{Fig. 5B})\). When GDP-\(\beta\)-S (100 \(\mu\)mol/L) was added to the pipette solution to block activation of the G-protein cascade, the effect of baclofen became negligible (Fig 5D, \(n = 5\)), which is consistent with the results in Figure 3H. Because application of GDP-\(\beta\)-S through a recording electrode could only inhibit G-proteins in the local cells, it is possibly that the effect of baclofen is via direct action on GABA\(_B\)Rs in the local ganglion cells, not from network inputs.

Discussion

Interactions between GABA receptor subtypes

The findings, from both in vitro retina and transplanted amygdala membrane, are that the GABA\(_B\)R can suppress the inhibitory action of GABA\(_A\)Rs. The results extend the original observation in bullfrog dorsal root ganglion (Xi et al. 1997) to the mammalian central nervous system and indicate that this regulation may be a common feature at GABA synapses. These results contrast with findings in thalamus and dentate gyrus, where the GABA\(_A\)R current was enhanced (Connelly et al. 2013; Tao et al. 2013). This enhancement was dependent on the presence of \(\delta\) subunits in the GABA\(_A\)R, a subunit that apparently is not present in amygdala (Wisden et al. 1992). It suggests that feed-forward crosstalk between GABA receptor subtypes may be prevalent in the nervous system, but the outcome may depend on the subunit composition of the GABA\(_A\)R.

The main mechanism of action of GABA\(_B\)Rs in CNS is to suppress voltage-dependent Ca\(^{2+}\) channels or to activate inward rectifying K\(^+\) channels. Both actions are inhibitory, reducing transmitter release or causing membrane hyperpolarization, respectively. The interesting finding

Figure 5. Activation of GABA\(_B\)Rs suppressed GABA\(_A\)R currents in mouse retinal ganglion cells. (A) Example of the current–voltage relationship of ganglion cells in whole-cell recording. (B) Baclofen suppressed muscimol-elicited currents in a ganglion cell clamped at various voltages. (C) Average current–voltage relationship of muscimol-elicited currents with and without baclofen. (D) The effects of baclofen were blocked by intracellular application of GDP-\(\beta\)-S (100 \(\mu\)mol/L).
here is that activation of GABA_BRs suppressed GABA_A responses and this disinhibition occurs when both receptors are present on the same cell.

The cross-talk between receptors that we observed would have a net effect of increasing excitation. Although this seems paradoxical for an inhibitory transmitter, it has been repeatedly observed in retina. In rat retinal ganglion cells, the GABA_BR acts to suppress an N-type calcium channel that is linked to a BK channel. Thus, the effect of GABA_BR stimulation is to reduce an outward potassium current, thereby promoting excitation (Garay-cochea and Slaughter 2016). In salamander retina, GABA_BRs promote excitatory synaptic input to ganglion cells (Song and Slaughter 2010) and enhance L-type calcium currents (Shen and Slaughter 1999). The present results provide a third GABA_BR mechanism that can promote excitation.

The concept that GABA_BRs can counteract GABA_AR inhibition is not surprising since one frequent action of metabotropic receptors is to reduce presynaptic release of GABA (Deisz and Prince 1989; Chen and van den Pol 1998; Kobayashi et al. 2012). Furthermore, the GABA_AR activation of inward rectifying potassium channels (GIRKs) is a voltage-dependent inhibition that diminishes activation of inward rectifying potassium channels (Shen and Slaughter 1999). The present results provide a third GABA_BR mechanism that can promote excitation as well as suppress it.

GABA receptors from human amygdala

The microtransplantation technique inserts membrane microdomains, containing an array of proteins and lipids from native tissue (Miledi et al. 2006). This not only permits examination of membrane protein function that is difficult in the native tissue, but also allows for a membrane complex to be inserted together. This is in contrast to the transfection of one or a few known genes and may be particularly relevant for GABA_B receptors, where a diversity of effects arise from auxiliary binding proteins (Chalifoux and Carter 2011).

Amygdala microtransplantation revealed functional expression of ionotropic receptors with the properties of z-subunit and p-subunit GABA_ARs. The study provides the first evidence of functional p-subunit GABA_ARs in human amygdala, although the p-subunit GABA_AR current was only about 5% of the total GABA_AR current. The receptors had a distinctive pharmacological profile, for example, sensitive to CACA, but only partially blocked by TPMPA. It has been reported that p-subunit GABA_ARs mediated miniature IPSCs in rat amygdala are partially sensitive to TPMPA (Delaney and Sah 2001).

Microtransplanted human amygdala membrane demonstrated GABA_BRs based on immunohistochemistry and functional studies. Multiple reports on mammalian amygdala show GABA_BRs are widespread in basolateral and central amygdala (Rainnie et al. 1991; Karlsson et al. 1992; Yamada et al. 1999; Delaney and Sah 2001). The experiments indicated that the metabotropic receptor could suppress z-subunit, but not p-subunit, containing GABA_ARs. Since the p-subunit GABA_ARs have slower kinetics than z-subunit GABA_ARs, the GABA_BR may alter the time-dependent balance of GABA_AR inhibition in the amygdala. This could be important because the two ionotropic receptors have different functions. Activation of p-subunit GABA_ARs in the lateral amygdala enhances the fear learning behavior (Cunha et al. 2010), as opposed to the effect of z-subunit GABA_AR activation, which suppresses emotional learning behaviors (Liu et al. 2014). Furthermore, the GABA_AR–GABA_BR interaction may also depend on the subunit composition of the GABA_AR. Baclofen enhances tonic GABA_AR current in several brain regions where the GABA_AR d-subunit is present (Connelly et al. 2013; Tao et al. 2013), but with the opposite effect in amygdala that lacks d-subunits (Wisden et al. 1992). Therefore, the experiments highlight the potential diversity of control mechanisms produced by crosstalk between GABAAR subtypes.

Conflict of Interest

The authors declare that they have no competing interests.

References

Li, X. F., J. L. Armony, and J. E. Le Doux. 1996. GABA_A and GABA_B receptors differentially regulate synaptic transmission in the auditory thalamo-amygdala pathway: an
in vivo microiontophoretic study and a model. Synapse 24:115–124.